TRAS3

An Optimal Algorithm for Computing
Visibility in the Plane

(Extended Abstract)

Paul J. Heffernan*
Joseph S. B. Mitchellf
SORIE, Cornell University, Ithaca, NY 14853

December 5, 1990

Abstract

We give an algorithm to compute the visibility polygon from a point among a set of
h pairwise-disjoint polygonal obstacles with a total of n vertices. Our algorithm uses
O(n) space and runs in optimal time ©(n + hlog k), improving the previous upper
bound of O(nlogh).

1 Introduction

Let D be a planar polygonal domain with A holes and n vertices: D is a connected closed
subset of the plane whose boundary consists of a set of n line segments. If h =0, then D
is simply connected and is called a simple polygon. If h > 0, then D is multiply connected,
and its holes form a set P = {P,, P,,..., Py} of pairwise-disjoint simple polygons in the
plane. The wvisibility polygon with respect to a point s € D is the locus of all points ¢ € D
such that 35 C D. The problem of computing the visibility polygon with respect to a given
point s is known as the “hidden line removal” problem and is fundamental in computational
geometry.

Our Result. We provide an algorithm to compute a visibility polygon in optimal time
O(n + hlog k) and space O(n).

*Email: heff@orie.cornell.edu. Supported by an NSF graduate fellowship.
tEmail: jsbm@cs.cornell.edu. Partially supported by a grant from Hughes Research Laboratories, Malibu,
CA, and by NSF Grant ECSE-8857642.



Relation to Previous Work. Algorithms to compute the visibility polygon have been
known for some time; a clear summary of the many known visibility algorithms is given
in chapter 8 of O’Rourke’s book [O’R]. For the case of a simple polygon P, optimal
O(n) algorithms have been given by [EA,Le2] and by [JS], who correct a minor error in
[EA,Le2] while simplifying the algorithm of [Le2]. For the case of a polygon P with holes,
straightforward O(nlog n) time algorithms can be based on plane (rotational) sweep about
s (as in [Le1,SO)) or based on divide-and-conquer (as in [AM]). In fact, by using the linear-
time algorithms for simple polygons to compute the visible portion of the boundary of each
hole, and then merging these “profiles”, one can obtain a simple O(nlog h) algorithm for
computing the visibility polygon (see [AM,AAGHI]).

There is an Q(n + hlog h) lower bound (from sorting) for computing a visibility poly-
gon [AAGHI,0’R,SO]. Optimal algorithms that achieve this time bound were known for
the special case in which the holes P; are convex ([AM,AAGHI)) or star-shaped ([AM]).
The question of whether or not an algorithm exists for the general case whose running time
is linear in n has been a fundamental open problem. No algorithm was previously known
with running time O(n + f(k)) for any function f(h).

We resolve the open question by providing a few different methods, culminating in an
optimal algorithm. We outline our approach below. We let 7(n) denote the time required
to triangulate a simple polygon. By Chazelle’s recent breakthrough [Ch2], we know that
7(n) = O(n), and there are several fast deterministic and randomized algorithms giving

bounds of O(nloglogn) ((KKT,TV]) or O(nlog™n) ([Ch1,CTV,Se]).
(1) We give a very simple O(n + h?) algorithm.

(2) We have an O(7(n)+h log? 1) algorithm that is relatively simple, but relies on trian-
gulation. This algorithm is not discussed in this abstract, since it does not directly
lead to our strongest theoretical result.

(3) We give an O(7(n) + hlog(@ + h)) algorithm for the special case in which all of
the holes are stabbed by a line. Here, # < n is the number of sides of the most
complex hole.

(4) We give an O(7(n) + hloglog hlog® n) algorithm based on applying the result (3) to
O(log k) classes of obstacles, and then merging the resulting set of visibility polygons.

(5) Finally, we show how the algorithm of (4) can be modified to yield an optimal time
bound of ©(n + hlog k) for the general problem.

2 Notation and Basic Properties

The wisibility profile of a set of pairwise-disjoint polygonal obstacles Py, ..., Py is the “lower
envelope” of the obstacles — it is what is seen by an observer at y = —oo. In order to
solve our problem of computing the visibility polygon from a point s € D, it suffices to



consider the problem of computing the visibility profile of the set of holes of D. In O(n)
time, we can compute the visibility polygon with respect to s in the simple polygon whose
boundary is the outer boundary of D, and then merge this with the visibility profile of the
obstacles (holes of D) viewed in the polar coordinate system (8,7) centered at s. Thus,
without loss of generality we concentrate on the problem of finding the visibility profile of
the polygons Pi,..., Ph.

We let z(p) and y(p) denote the z- and y-coordinates of a point p in the plane. If
a value z represents an z-coordinate, then let 2~ and z* denote the z-coordinate values
infinitesimally left and right of z, respectively.

A polygon P; contains two vertices, [; and r;, of minimum and maximum z-coordinate,
respectively. Since we assume that the observer is at y = —o0, the chain obtained by
traversing P; clockwise from [; to r; is completely blocked from the view of the observer
by the counterclockwise chain of P: from [; to r;. We therefore use only this lower chain
of P; when computing the visibility profile. In fact, in the remainder of this paper, we
assume that Py, ..., P, are polygonal chains joining their left endpoints (1;) to their right
endpoints (r;).

For any set S C P = {Py,..., Py}, we let VP(S) denote the visibility profile of the
chains in S, and we let V P(S; z) denote the point of V P(S) with z-coordinate . We abuse
notation slightly and write V P(i,...,7) and VP(i,...,j; ), instead of VP({P,,..., P;})
and VP({P,,..., P;};z).

We can think of the profile VP(S) as a piecewise-continuous function over the domain
[2(I;nin)s (Tmaz)], Where T(lnin) = min;es z(l;) and 2(maz) = maxies 2(ri). The points z
of discontinuity of V P(S) are of two types:

o zis a jump if VP(S) coincides with the same chain P; at both z~ and zt; and
o zis a leap if VP(S) coincides with distinct chains P; and P; (2 # j) at z7 and .

A maximal connected subdomain of [£(Imin), Z(Tmas )] DOt containing a leap in its interior
is called a piece (the corresponding section of V P(S) over this domain is also called a piece).
Since a piece of V P(S) corresponds to a section of a specific chain P;, we say that P; appears
in VP(S) with this piece. These definitions are illustrated in Figure 1.

While we have thought of VP(S) as a function in order to define jumps and leaps, our
algorithms will store a visibility profile VP(S) as a polygonal chain. A vertical edge of
the chain V P(S) corresponds to a jump or leap. We call the vertical edge of a jump of a
profile V P(3) a lid, since its interior is disjoint from P;. We will usually represent a lid by
b, where y(a) < y(b); therefore, if abis a lid of VP(i), then VP (3; z(a)) = a. ,

A leap = between chains P; and P; can occur in one of two manners. The leap r may
be caused by the left or right endpoint of one of the two chains, or it may occur where one
profile intersects a lid of the other. These cases are illustrated in Figure 1: Coordinates
z; and z3 correspond to leaps at a left endpoint, z5 and zs correspond to leaps at a right
endpoint, and z; and x4 correspond to leaps at lids.

We will often use the expression “p is below ¢” to indicate that y(p) < y(q). Similar
use is made of the terms “above”, “left”, and “right”. We say that profile VP(S) is below

3



profile VP(S') at z-coordinate z if y(VP(S;27)) < y(VP(S';527)) orif y(VP(S;2%)) <
y(VP(S';zt)). It is possible for one but not both of these conditions to hold if one of the
profiles has a jump or leap at z.

We will assume without loss of generality that all chains Py,..., Ps lie completely above
the z-axis, so that the point p = (z,0) is below V P(z) for any © and any profile V P(z).

Lemma 1 If z(l;) < z(l;), then P; appears at most once in VP(i,j); that is, at most one
piece of VP(i,7) is contributed by VP(j).

Proof. Suppose that V P(j) contributes two pieces to VP(i,j). Let p and g be points of
VP(j) on each of the two pieces, with p on the left piece and ¢ on the right piece. Let r
be a point of V P(3) that lies on a piece between the two pieces contributed by V P(3), so
that z(p) < z(r) < z(g). Refer to Figure 2.

Now consider the closed Jordan curve given by starting at point (z(p),0), going up to
p, following chain P; to ¢, going down to (2(g),0), and then returning to (z(p),0) along
the z-axis. Since point r is on the profile V P(z, j), it must lie in the bounded component
defined by this Jordan curve. On the other hand, the left-most point /; must lie in the
unbounded component defined by the closed curve, since [; is to the left of [;. This implies
that P, must cross the Jordan curve, which is a contradiction, since p and ¢ are on the
profile, and P; and P; do not cross. U

Lemma 2 If z(r;) < z(r;), then P; appears at most once in VP(i,5).

Proof. Similar to Lemma l. O

We can now give a full characterization of VP(z,7), for chains P; and P; whose z-
coordinate domains overlap. Assume without loss of generality that z(l;) < (I ;)- Refer to
Figure 3.

(1) If z(r;) < z(r;), then clearly P; and P; each appear at least once in VP(7,5), and by
the previous two lemmas, each appears at most once. The profile V P(i,j) therefore
consists of a piece from V P(3) lying left of a piece from V P(j).

(2) If z(r;) < z(r;), there are two possibilities:

(a). Profile VP(j) may lie completely above VP(i), in which case VP(i,j) is the
single piece V P(7).

(b). If P; appears once in V P(3, ), then P; must appear exactly twice, since pieces
alternate, and the left- and right-most pieces are from P;.

We now state a combinatorial lemma of fundamental importance:

Lemma 3 The profile VP(S) has O(|S]) pieces.



Proof. Consider the (ordered) sequence o of indices of chains P; that contribute pieces
to VP(S). There are |S| different indices, and by the definition of pieces, no index ¢ can
appear twice consecutively in 0. By Lemma 1 (or Lemma 2), it is not possible to have a
subsequence of the form ...,%,...,4,...,%,...,J,.... This implies that ¢ is a Davenport-
Schinzel sequence of order 2, so its maximum length is given by Az(|S [) = 2|S| — 1. (See
[Sh] for background on the theory of Davenport-Schinzel sequences.) O

3 An O(n+ h?) Algorithm

We describe now a simple O(n + h?)-time algorithm for computing the visibility profile of a
collection of disjoint polygons. Not only is the algorithm relatively easy to implement, but
it resolves the previously open theoretical question of whether or not an algorithm linear
in n exists.

Assume that we have indexed the chains P = {Py,..., Py} so that their left endpoints
li,...,l, are sorted by decreasing z-coordinate. The algorithm simply considers the profiles
one-by-one according to this order: Step i consists of adding V P(z) to VP(1,...,1—1) to
obtain VP(1,...,7). The time to update the profile when we insert VP(i) is linear in h
and the size of P;, implying the claimed overall time bound.

The algorithm maintains a sorted list of the leaps, z1,...,7k, of the current profile
VP(1,...,i —1). Each leap z; in the list stores a pointer to the point VP(1,...,2 —
1;zx). To add VP(i) to the profile, we traverse V P(i) to place pointers on the points
VP(i;z1),...,VP(i;zx). Now, for each leap zx, we compare the points VP(1,...,7 —
1;z;) and V P(3; k), to determine whether VP(3) is below VP(1,...,1 — 1) at this z-
coordinate. If so, we have identified a piece of VP(i) in VP(1,...,1); we simultaneously
traverse VP(i) and VP(1,...,i — 1) to the left, maintaining our pointers at the same
approximate z-coordinate, until we reach the z-coordinate, i, where V P(7) is no longer
below VP(1,...,i —1); z; is the left endpoint of this piece of V P(i), and consequently is
a leap in VP(1,...,1). Similarly, we simultaneously traverse VP(i) and VP(1,...,i — 1)
to the right to obtain the right endpoint, z,. The portion of VP(1,...,1— 1) between x;
and z, is replaced by the corresponding portion of V P(i), and the leaps at z and z, are
incorporated into the list, along with pointers to VP(1,...,22) and VPQ,...,5z.). Of
course, the interval [z, z,] may contain leaps of VP(1,...,7 — 1) other than zf, but this
poses no difficulty to the algorithm. The following lemma establishes that the new profile
obtained in this manner is in fact VP(1,...,i), and that the updated list of leaps is the
list for VP(1,...,1%).

Lemma 4 Each piece of VP(i) in VP(1,...,4) must cover a leap of VP(1,...,1— 1); that
is, for each piece contributed by V P(i), there exists a leap z of VP(Q,...,i — 1) such that
VP(1,...,i;z) € VP(7).

Proof. Suppose we have a piece [z,z,] of VP(i) in VP(1,...,t) that lies between
consecutive leaps zx and zx4; of VP(1,...,i — 1). Since [z, Tk41] is a single piece of

5



VP(1,...,i—1), the points VP(1,...,i—1;2{) and VP(1,...,i —1;z},,) lie on the same
profile VP(j). We have that VP(j) lies below VP(z) at z} and ., and that V.P(3)
lies below VP(j) at zf, where zx < z; < Tr41. But this contradicts Lemma 1, since
z(l;) < z(l;), by our ordering of the polygonal chains. O

We now analyze the time complexity of the algorithm. The initial indexing of the
polygonal chains requires time O(hlog h), to sort the left endpoints of the chains. Adding
VP(:) to VP(1,...,i — 1) requires that we traverse V P(i) twice — once to place pointers
to VP(i;z1),...,VP(i;2k), and once during the simultaneous traversals of VP(z) and
VPQ,...,i —1). The time spent in all steps except the traversing of VP(1,...,i—1)is
O(|P:| + h), implying a total of O(n + h?) over all steps. The simultaneous traversals of
the updating step require that we traverse sections of VP(1,...,1 — 1), which consists of
profiles that have already been processed. However, the portions we traverse are deleted
from the current profile VP(1,...,i), and are never traversed again. Thus, the entire
algorithm runs in time O(n + A?).

4 An Optimal Algorithm

We turn our attention now to a different algorithm, one which attains the optimal ©(n +
hlog k) time bound. We will describe first an algorithm that runs in time O(n-+hloglog h log?n),
and will then modify it to perform in optimal time.

We begin by sorting the z-coordinates of the endpoints of Py, ..., P, thereby obtaining
a list z1,...,2on. If P = {P,,..., P}, define S; to be the chains of P stabbed by the
vertical line £ = z,. Define S, to be the chains of P \ S; stabbed by = z|n/2j or
T = T|3n/2)- Continuing in this way, we obtain a partitioning of P into a class of subsets
Siy..-,SMogh]- Below we will show that the visibility profile of a set S’ of A’ polygonal
chains stabbed by a vertical line can be computed in time O(n' + h'log#@’), where n' is
the total number of vertices in $’, and @’ is the number of vertices on the largest chain
in S’. Therefore VP(S1),...,VP(Sqogh)) can be computed in time O(n + hlog ), where
7 is the size of the largest chain in P = {P,,...,P.}. We will also show how to merge
VP(S') with VP(S") in O(hlog?n) time, for two subsets S’ and S" of {S1,---,SM0gh}>
with maz{i|S; € §'} < min{j|S; € 8"}, where h is the total number of polygonal chains
in the sets comprising S’ and S”. This allows one to compute VP(P) by recursively
computing VP(S1 U ... U Spoghs21) and VP(Spogh/2141 U ... U Snogn]) and then merging
them. Each step of the recursion requires time O(hlog?#), and the recursion has depth
O(loglog h), giving a total algorithm run-time of O(n + hloglog hlog?#).

Throughout our algorithm, we will wish to make logarithmic-time queries that we call
lid queries. Basically, given a chain P; and a point in the plane p, a lid query of p on
P; asks where p is with respect to P;. The result of such a query will give us important
information about V P({P;,c}), for any chain ¢ containing p such that cN F; = 0. We now
describe lid queries in detail.

Consider a lid ab of V P(3), the visibility profile of chain P;. The lid ab and the subchain



of P; between a and b form a simple polygon, which we call a pocket, such that all points
in the interior of the pocket are non-visible from below. If a point p in the pocket lies on a
chain ¢ that does not intersect P;, then ¢ can be below V P(i) only if it crosses ab. Since ab
is on VP(i), crossing ab is also a sufficient condition for ¢ to be below V P(i) somewhere.
We now state formally the information that we want from a lid query:

Definition 1 (Lid Query) For a point p not on P;, one of the following 1s true:
1. p is below V P(2),

2. p is in a pocket of VP(1),
8. p lies in the region above the simple, infinite chain c = pu(li) U P; U pu(rs).

If (1) is true, a lid query of p on P; returns V P(i;2(p)) (in Figure 4, for example, a query
on py returns VP(i;2(p1))). If (2) is true, the lid query returns the lid ab that defines the
pocket (e.g. a query on p; in the figure returns lid agby). If (8) is true (as it is for p3 in the
figure), then the rays pu(li) and pu(r;) together have the property that we desire in the lids,
so the lid query returns them.

Lid queries will be used often in our algorithm to determine quickly if and where a
chain ¢ containing a point p lies below the current profile VP(S). Often, we will try to
add a chain ¢ to VP(S) to form V P(S U{c}), knowing only that c contains a certain point
p and that c and S are disjoint. We formalize this notion by defining the lid property:

Definition 2 (Lid Property) An z-coordinate x has the lid property for point p and profile
VP(S) if, for any chain c that contains p and is disjoint from S, VP({c}) is below VP(S)
somewhere only if VP({c}) is below VP(S) at x.

When a lid query of a point p on a chain P; returns a lid @b, the z-coordinate z(a)
satisfies the lid property for p and V P(¢). Our algorithm will produce, through the use
of lid queries, z-coordinates that satisfy the lid property for the current profile VP(S);
typically these will be the z-coordinates of either leaps or jumps of VP(S).

Lid queries are basically planar point location. We first obtain the vertical visibility
map of P; (in O(n) time for all chains, by [Ch2]). Then F; can be preprocessed to return the
trapezoid of the map containing a query point in logarithmic time (by [Ki], for example);
this is sufficient to answer the query for case (1). For cases (2) and (3), we need to do
some more work. Consider the dual graph of the trapezoidal decomposition, with the
edge corresponding to the decomposition ray pu(r;) deleted. This graph is a tree, and the
trapezoids that comprise any given pocket correspond to a subtree. Each lid of VP(:)
corresponds to an edge in the tree, that separates the subtree of the adjacent pocket from
the rest of the tree. For each lid (including p.(%)), we begin at the corresponding edge
in the dual graph, and traverse through the subtree of the pocket, assigning to each node
a pointer to the lid. Therefore, if the planar point location query encounters a trapezoid
with a pointer to a lid, the lid query returns that lid. We see that the chains Pi,..., Px
can be preprocessed in O(n) total time to handle lid queries in time O(log 7), where 7 is
the number of vertices on the largest of Py,..., Ps.

7



4.1 The Profile for a Set of Stabbed Polygons

Given a collection of polygonal chains Py, ..., Py, all of which are stabbed by a vertical
line , it is possible to compute the visibility profile VP(1,...,k) of the chains in O(n +
hlog @ + hlog k) time, where n is the total number of vertices of the chains and 7 is the
number of vertices on the largest chain. The procedure sorts the chains in terms of the
y-coordinates of the bottom points b; of the chains, where b; is the point of P; N 7 of least
y-coordinate. In this manner, the procedure incrementally adds a profile VP(k) to the
current profile VP(1,...,k — 1); since by is above b; for ¢ € {1,...,k — 1}, we are able to
show that V P(k) contributes at most one piece to VP(1,... ,k). This means that V P(k)
can be added efficiently to VP(1,...,k — 1) if we can find an z-coordinate x; with the
lid property for a point of P and the profile VP(1,...,k — 1). By maintaining some
additional information about VP(1...,k — 1), the procedure finds zx with a constant
number of lid queries, and constructs VP(1,...,k) from V P(k) and VP(1,...,k—1)in
O(ny, + nf +log + log h) time, where ny is the number of vertices of Py, and nj is the
number of vertices of VP(1...,k—1) not on VP(1,...,k). With the initial sorting of the
bottom points, this yields the claimed time complexity.

4.2 Merging

We describe the merging of the visibility profiles of two subsets S’ and §” of § = {S1,...,Sogh] }>
where maz{i|S; € §'} < min{j|S; € §"}. We have a family of vertical lines such that ev-
ery chain in &' is stabbed by at least one of the lines, but no chain of S” is stabbed by
a line. Since the vertical lines separate the elements of S”, we can individually consider
the interval between each pair of consecutive lines. Therefore, we consider a vertical strip
bordered by the lines 7 and x,. All chains of S’ that appear in VP(S') in the strip are
stabbed by either m or ,, and no chain of §” appearing in V P(S") is stabbed by either
line.

Inductively, we assume that we have, for VP(S’) (VP(S")) over the strip, a sorted list
of all leaps, and for each leap z of VP(S") (VP(S")), a pointer to VP(S"; z) (VP(S"; z)).
We merge the lists to form a single sorted list z1,...,2x of all leaps in VP(S') and
VP(S"). For a leap z from VP(S') (VP(S")), we must compute a pointer to V P(S8"; xk)
(VP(S';21)). We do this through lid queries, as follows. We can assume that in forming
the list z1,..., Tk, every leap zx from VP(S’) knows which profile from S” contributes
VP(S";z;) (this consists of knowing the leaps from VP(S") that are nearest to zx to
the left and right). Since we know the profile VP(j) that contributes VP(S"; zx), we
can compute VP(j;zi) = VP(S";zi) by querying the point (z;,0) on P;. Since (z,0)
lies below V P(j) (by our assumption that chains lie above the z-axis), the query returns
VP(j; k).

We define a subpiece of VP(S') or VP(S") as the portion of the profile between two
consecutive leaps in the merged list z;,...,zx. Note that a subpiece is a subset of some
piece. The following lemma motivates the merge procedure:



Lemma 5 Suppose we have a subpiece over the interval [k, Tk41], such that VP(3) and
VP(j) contribute this subpiece to VP(S') and VP(S"), respectively. Then VP(S') is below
VP(S") somewhere in [Tk, Tk41] only if VP(i) is below VP(j) ot Tk 0T Tk1.

Now we combine the two profiles over the subpiece [k, x41]. If VP(j) is below V P(3)
at both zx and zi4y, then the entire subpiece is contributed by V P(j). Below we describe
a procedure for the case when VP(i) is below at one of 2 and Tkt1, and VP(j) is below
at the other. We then show how this procedure can be modified to handle the case where
V P(7) is below at both =} and Z41.

If V P(3) is below at one of zx and zi41, and V P(j) is below at the other, then our task
consists of finding the unique leap in VP(i,7) between zx and k41, without traversing
portions that are part of VP(S'U S"). A naive scheme could take time linear in the size
of the portions of VP(S') and VP(S") between z and 41, but our approach requires
only polylog time. Assume that the vertices of each original profile have been numbered
in left-to-right order, and placed in a data structure so that if we are given a pointer to
a vertex of the profile, we can in constant time return the numbering of the vertex. Our
procedure maintains two pointers to V P(i), denoted pi and pi, which are initialized to
VP(i;z) and V P(i; Zk41), and pointers pl and pJ to VP(j), initialized to VP(j;zx) and
VP(j; zx41)- The pointers pj and pl will be maintained at the same z-coordinate, as will pi
and pi. Initially we know that there is exactly one leap of VP(i,] ) between z(p}) = z(p})
and z(pi) = z(p?); the procedure maintains this property while moving z(p}) = z(p{) and
z(pi) = z(p?) closer together, eventually sandwiching the leap. The procedure alternates
steps on the pointer pairs (p},p.) and (p{ ,p!). We describe a step on the pair (pi,pl):

1. Query the numbering of the vertices of V P(¢) nearest pi and pi, and assign these
numberings to pi and pi.

2. Find q, t‘he vertex of V P(i) whose numbering is halfway between the numberings of
p; and p}.

3. Compute V P(j;z(q)).

4. Compare the y-coordinates of VP(j;z(¢)) and ¢ = V P(i;z(qg)); this tells us whether
the leap is left or right of z(g); accordingly, update either pi and p, or pl and pl.

Upon completion of this step on the pair (p},p}), perform a symmetric step on (p7, ),
and continue to alternate the steps. Eventually the total number of vertices on VP(3)
between p} and p! and on VP(j) between p{ and p? is less than a small, pre-set constant,
so in constant time we find the leap and complete this subpiece of VP(S'U S ).

A slight modification of the above procedure handles the case where VP(i) is below
VP(j) at both z4 and z41. Query VP(j;21) on VP(z), to find a lid @b which V P(j) must
cross in order to contribute a piece to VP(i,5). If z(a) ¢ [z, Zk+1], then VP(j) is not
below VP(i) anywhere in the interval [zi, zz41]. If 2(a) € [€k, Tr41), then perform a lid
query on the point (z(a),0) to compute VP(j;z(a)). If V P(z) is below VP(j) at z(a), then

9



the subpiece between z and z4; is contributed totally by V P(i); otherwise, we break the
subpiece [Tk, Tr41] into two subpieces, [zk, z(a)] and [z(a), Tx+1], and process each subpiece
with the above procedure.

Consider the total time of merging VP(S’) and VP(S"). Let h represent the total
number of chains in S’ and S”, and 7 the number of vertices on the largest chain in the
set S’ US"”. Creating the combined sorted lists of leaps zi,...,7k for all strips takes
time O(R), because we already have the sorted lists of leaps for S" and 5" separately.
Computing V P(i;zx) and V P(j;zx) for every leap z) requires time O(hlog ), since it
consists of performing one lid query per leap. We then process each of the O(h) subpieces
separately, perhaps breaking some subpieces into two subpieces with the help of a single
lid query. Processing a subpiece consists of alternating steps on the pairs of pointers
(pi,pi) and (p],p?). Each step consists of one lid query plus some constant time work,
and is therefore O(log 7). Because every two steps eliminate at least half of the vertices of
V P(i) between pj and p. and of V P(j) between pi and p?, the number of steps is O(log 7).
Therefore each subpiece requires O(log?71) time, for a total of O(h log? 7)) time to merge
VP(S’) and VP(S").

4.3 Putting It Together: An Optimal Algorithm

The above subsections describe how to compute VP(P) for P = {Pi,..., P} in time
O(n + hloglog hlog? 1), where n is the total number of vertices in P, and 7 is the number
of vertices on the largest chain of P. A modification allows this algorithm to compute
VP(P) in optimal ©(n + hlog k) time. The modification consists of breaking P into two
groups, the “large” chains and the “small” ones, computing the visibility profile of each
group separately, and then merging the profiles with a final linear-time merge.

The first observation to be made is that if A = O(n/log®n), then the algorithm’s
complexity is O(n). Motivated by this observation, we break P into two groups as follows:
all chains in P with more than log® n vertices are placed in the “large” group, and the rest
in the “small” group. The large group can have no more than n/ log® n members, so the
algorithm can compute the visibility profile of this group in O(n) time.

Assume that the small group has h = Q(n/log®n) members (if not, the algorithm is
O(n) on this group). No chain of the small group has more than log® n vertices, implying
that 7 < log®n. The complexity of the algorithm is therefore O(n+hlog log hlog?(log®n)) =
O(n + hloglog h(loglogn)?). Since h = Q(n/log®n), we have that loglogn = O(log log h),
giving a complexity of O(n + h(loglog h)?) = O(n + hlog k). Therefore, the visibility pro-
files of both the small group and the large group can be computed in O(n + hlog h), giving
VP(P) in the same time bound.

References

[AM] E. Arkin and J.S.B. Mitchell, “An Optimal Visibility Algorithm for a Simple Polygon With
Star-Shaped Holes”, Technical Report No. 746 School of Operations Research and Industrial

10



Engineering, Cornell University, June, 1987.

[AAGHI] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, “Visibility of Disjoint
Polygons”, Algorithmica, Vol. 1, (1986), pp. 49-63.

[Ch1] B. Chazelle, “Efficient Polygon Triangulation”, CS-TR-249-90, Princeton Univ., 1990.

[Ch2] B. Chazelle, “Triangulating a Simple Polygon in Linear Time”, CS-TR-264-90, Princeton
Univ., May 1990.

[CTV] K. Clarkson, R.E. Tarjan, C. Van Wyk, “A Fast Las Vegas Algorithm for Triangulating a
Simple Polygon”, Proc. Fourth Annual ACM Symposium on Computational Geometry, pp. 18-22,
1988. Also Princeton Technical Report CS-TR-157-88.

[EA] H.A. El Gindy and D. Avis, “A Linear Algorithm for Computing the Visibility Polygon From
a Point”, Journal of Algorithms, Vol. 2 (1981), pp. 186-197.

[JS] B. Joe and R.B. Simpson, “Correction to Lee’s Visibility Polygon Algorithm”, BIT, 27 (1987),
pp. 458-473.

[Ki] D.G. Kirkpatrick, “Optimal Search in Planar Subdivisions”, SIAM Journal on Computing, 12
(1983), No. 1, pp. 28-35.

[KKT] D.G. Kirkpatrick, M.M. Klawe, and R.E. Tarjan, “Polygon Triangulation in O(nloglogn)
Time with Simple Data-Structures”, Proc. Sizth Annual ACM Symposium on Computational
Geometry, Berkeley, CA, June 6-8, 1990, pp. 34-43.

[Lel] D.T. Lee, “Proximity and Reachability in the Plane”, Ph.D. Thesis, Report R-831, Dept. of
Electrical Engineering, University of Illinois at Urbana-Champaign, Nov. 1978.

[Le2] D.T. Lee, “Visibility of a Simple Polygon”, Computer Vision, Graphics, and Image Process-
ing, Vol. 22 (1983), pp. 207-221.

[O’R] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.

[Se] R. Seidel, “A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal
Decompositions and for Triangulating Polygons”, Manuscript, October, 1990.

[Sh] M. Sharir, “Davenport-Schinzel Sequences and their Geometric Applications”, pp 253-278,
NATO ASI Series, Vol. F40, Theoretical Foundations of Computer Graphics and CAD, R.A.
Earnshaw (Ed.), Springer-Verlag Berlin Heidelberg, 1988.

SO] S. Suri and J. O’Rourke, “Worst-Case Optimal Algorithms For Constructing Visibility Poly-
g
gons With Holes”, Proc. Second Annual ACM Symposium on Computational Geometry, York-
town Heights, NY, June 1986, pp. 14-23.

[TV] R.E. Tarjan and C. Van Wyk, “An O(nloglog n)-Time Algorithm for Triangulating a Simple
Polygon”, SIAM Journal on Computing, 17 (1988), No. 1, pp. 143-178.

11



Ty z3 2.4 T3 Te
Figure 2: Proof of Lemma 1

(b).

(1) 2)

Figure 3: Structure of VP(i, )

VP(i; z(p1))

az

b4

Figure 4: Results of lid queries of points py, p3, p3 on chain F;



