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1. Introduction.

A one dimensional subexponential distribution is defined by the property that the
distribution tail is asymptotically equivalent to the tails of the convolution powers of
the distribution. The class of one dimensional subexponential distributions has proven
useful in a variety of contexts where the subexponential property provides a necessary
and sufficient condition for some sort of tail equivalence. (See, for example, the surveys
by Embrechts, 1985; Bingham, Goldie and Teugels, 1989, pg 429-432 and the references
therein.) Tail equivalence is a useful property because for instance when a distribution is
in a domain of attraction (either in the sense of extreme values or of partial sums of iid
random variables) any tail equivalent distribution will also be in the domain of attraction
and the normalizing constants will be the same (cf. Resnick, 1971). Our goal is to see
what sensible generalizations of these concepts are possible in higher dimensions.

In one dimension, the definitions are as follows: a distribution function F on R is in
the class £(a) for a > 0 if its tail F' = 1 — F satisfies

. F_(w — y) _ oy
mll{%o ) =e%, yelR, (1.1)
and the distribution F is in the class S(a) if F € L(a) and
lim -F—_.f.ﬂ”-”l = D < oo. (1.2)
&L OO F(w)

The constant D is known to equal 2 [ e*®F(dz), which was proved for the case F(0)=0
by Chover, Ney and Wainger (1973) and by Cline (1987) and extended to the case that
F concentrates on IR by Willekens (1986). When F(0) = 0 and D = 2, (1.2) implies
(1.1) with a = 0 (Chistyakov (1964)) and in this case the class S(0) has been called the
subezponential class. For our purposes, it is not natural to restrict distributions to [0, co).
Examples include the log normal, generalized inverse gaussian, pareto and distributions
with tails of the form kz7e™*",0 <p < 1.
For d—dimensions (d > 1) we propose the following definitions. Let

E = [~o00,00]"\{~00}

be the compactified Euclidean space punctured by the removal of the bottom point. Rel-
atively compact sets are thus those which are bounded away from —oco. Let v be a Radon

measure on E such that

a) v #0,

b) Each one dimensional marginal (1 <17 < d),

Vi) = ”(Foo,oo}i"l x (-) % [—-oo,oo]d—i>
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(where we interpret [—oo, 00]9x A = A) has the property v;((z,o0]) > 0,for allz € R. Also
let b(t) = (b1(t),...,b4(t)) be a function satisfying bj(t) — oo as ¢ — oo fori=1,...,d.
For a distribution F on R? we say F € L(v;b) if, as t — oo,

tF(b(t) +-) — v (1.3)

v .
where ” —” denotes vague convergence of measures on E and v satisfies (a) and (b) above.

We say the distribution F' is in the class S(v;b) if F € L(v; b) and
tF+F(b(t) + ) -5 (2 (1.4)

for some Radon measure v(2). (This will entail (2) satisfies (a) and (b) above and thus
that FxF € £(v(2); b).) In section 2 we show that v(2) = 2uxF.

The formulation of the multivariate subexponential property in terms of vague con-
vergence of measures rather than convergence of distribution functions is advantageous
because, first of all, multivariate distribution functions are much more awkward to deal
with than are one dimensional distribution functions and, secondly, vague convergence of
measures allows access to point process techniques for proving vague and weak conver-
gences (Resnick, 1987).

Pick z > —oo and continuous functions with support compact on E and which ap-
proximate the indicator of a set of the form (z,00] x [-—oo,oo]d'l. By inserting these
functions into the vague convergence given in (1.3) and (1.4) we may deduce marginal

vague convergence. Thus, at continuity points of the limit:

Jim (Fi(a + bi(t)) = 7ilx) := (2, o) (1.3)
and
Tim (FFi(e + b)) = 70 (@) = v (@, o)), (1.4)

where F; and v; are the ith one-dimensional marginals of F and v, respectively. From

Bingham, Goldie and Teugels (1989, Theorem 1.10.3; cf. also de Haan, 1970; Feller, 1970;

Resnick, 1987, Prop. 0.4) we have that (1.3') implies Fj(logz) is regularly varying with

some index —a;, a; > 0. That is, (1.3') implies, for z € IR,
lim w = e ¥ (1.5)
t—oo  Fy(t)

so that F; satisfies (1.1) and F; € L(a;). Also, we have for X1, X9 independent with
distribution F; that

FaFy(z) > P[X1 + X2 > 7,X1 <2/2] + P[X1+ Xo 2 ¢, X5 < z/2]

z/2__
= 2[—00 Fi(z — s)F;(ds)



and therefore

—_ (z+b:(1)/2 _
tF;xFy(z + b;(t)) > 2/ tF;(z — s + b;(1))F;(ds).

e o

If (1.4') holds, then by Fatou’s lemma,

I o0
tlim tFFy(z + bi(t)) = 2/ vi(x — s)Fi(ds)
—00

-0

= 2u;xF(x).

Since we assumed 7;(z) > 0 for z € IR and since lim¢—o0 tFi*Fj FxFy(z + b;(2)) = 1/( )(:1:) at
points of continuity, we conclude Vg )(w) > 0. From (1.4') we get therefore that Fj*Fj(log z)
is regularly varying, and since b;(t) is the same in both (1.3") and (1.4’) we conclude that
for some constant D > 0

FxFi(t) ~ DFy(t)

and hence that (1.2) holds. Thus we infer the important fact that (1.3) and (1.4) imply
that each marginal distribution F; satisfies (1.1) and (1.2) for some a; > 0. We will write
F; € L(a;), and F; € S(a;) for the marginal properties. The purpose of section 2 is to
prove that the converse is true in the sense that if (1.3) holds and each marginal F; satisfies
(1.2), then (1.4) holds.

We now present a slight elaboration of the previous discussion, showing that our
formulation subsumes the univariate definitions. We make use of results to be proven in

section 4.

ProPOSITION 1.1.
(i) F € L(v;b) for some b implies F; € L(a;) for each i and the latter is true if and
only if (1.3') holds.
(i) F € L(v;b) and G € L(u;b) for some v, p and b implies

oy i) _ 7i0)
100 Gi(t)  Ai(0)’

(iii) F € S(v;b) for some b implies F; € S(a;) for each i and the latter is true if and
only if both (1.3') and (1.4") hold.

for each 1.

PROOF: (i) We have already pointed out that (1.3) implies (1.3") and that (1. 3') implies
F; € L£(a;). Conversely, if F; € L(ay) we let g(t) = 1/F;(t). The function g is right-

continuous and its left-continuous version g~ (t) = supy«¢ g(z) satisfies

1=sup hm —.F(t) < lim g ()
e>0 t—00 z(t — 6) -0 g(t)
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Let ¢ (¢) = inf{z: g(x) > t}. By Lemma 4.1(iii),

Filg(®) +w) ¢
Fi(g— () 9(97())

lim tF;(¢=(t) + u) = lim
t—00 1-—00
= e~ %Y,
So F; € L(«;) implies (1.3') with b; = ¢*.
(ii) For each 1,
lim ¢F;(b;(t)) = 7i(0)
100
and
JHim tG;(bi(t)) = 7i(0)-
—00
The result follows as a consequence of Lemma 4.1(iv).

(iii) Suppose F € S(v;b). This means F' € L(v; b) and FxF € L£(+?);b). By (ii)

gy 52
FixFy(t) _ 7;°(0)
oo Fa(t) | wil0) (1-6)

and F; € S(a;).

Next, suppose (1.3') and (1.4') hold. By (i) this is true only if F; € L(«;) and
F+F; € L(a;). Since the same norming sequence b;(t) is used, Lemma 4.1(iv) gives the
further implication that (1.6) holds. That is, F; € S(a;).

Finally, suppose F; € S(a;). Then F; € L(a;) and choosing ¢ and b; as in part (i),
(1.3') holds. Also, (1.4') holds as an immediate consequence of (1.2) and (1.3'). o

In case «; > 0 for each i, v can be considered as the exponent measure of a multivariate
max-stable distribution. de Haan and Resnick (1977), Cline (1988) and Omey (1989)
provide characterizations of such measures.

When a; = 0, forall: = 1,...,d, the form of the limit measure v in (1.3) is distinctive.
From (1.5) there exists ¢; > 0 such that for all z € IR,

vi((x,00]) = lim tFi(z + bi(t)) = ci-
Thus v;(IR) = 0 and

,,( ;[—oo, o]~ x R x [~oo0, oo]d~i> =0

2

so that v concentrates on

Ei= E\( LdJ [—00,00] "} x R x [—o00, oc]d-i)

i=1

= {—00,00}%\{~o0}.
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That is, v concentrates on the 24 _ 1 points whose coordinates are +o0o but not all of whose

coodinates are —oo. Thus v is of the form

0 .= Z Wg€q- (1.7)

oES
where
we = v(A] X -+ X Ag) =tlim tF(Aq x -+ x Ag +b(t))
> OO
and

{ (1,00], if 0; = o0;

A=

[—o00,1], if ;= —00.

If in addition (1.4) holds, then the limit measure »(2) in (1.4) (we will show) is equal to
2uF = 2v. We emphasize (1.7) is for the case a; = 0 for alli =1,...,d.

In case some, but not all, of the a;’s are zero, the limit measure v cannot in general
be expressed as a mixture between the two types (see section 3).

Additional special cases of interest are when (1.3) holds with F' being a product
measure and when (1.3) holds with F concentrating on {x : ) = ... 2(D}. These cases
are taken up in section 3.

In section 2 we prove that if F' € £(v) with marginal properties (1.4"), then F € S(v)
and that (1.4) holds. The limit measure (2) in (1.4) is shown to satisfy

(D) = 2uxF.

The mode of proof uses a point process transform technique which equates tail properties of
measures with weak convergence of a sequence of induced point processes to limiting Pois-
son processes. In section 2 we also show that for multivariate subexponential distributions,
domains of attraction are preserved by taking convolution powers.

In section 3 we consider a variety of applications, extensions and examples. We show
that if F is a multivariate distribution which is regularly varying at oo (Resnick, 1987;
Omey, 1989) then F' € S(V(O);b) where (0) is specified in (1.7). Also, we prove that, if
F e L(v;b) and F*" € S(u(”); b) for some n and (") then F € S(v). Finally we consider
compound distributions and some specific examples. Section 4 presents a discussion of the

normalizing function b(t) and proves lemmas used elsewhere in the paper.

2. Marginal and Global Properties; Domains of Attraction.

In this section we show that an L£(v; b) distribution F' whose one dimensional marginals
F; are in S(a;), 1 < i < d, is also in S(v;b) and that the limit measure v(2) in (1.4) is
2uxF.
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First a word about notation. Operations on vectors are to be interpreted component-

wise. Thus if xp = (Zp1,"**,Tnd) € RY, n = 1,2, we have

x§ = ((z1,0%- -+, (21,9)") 5

x1+xg= (211 + 221, ",%1d+ z9.4)

x1Vxg = (z11Vagt, 214V T24),
x1xg = (211721, " T1,d2,d)
and
X1_ (rL | Tid
Xy (w2,1’ ’wz,d) '
Similarly, x; < x9 means z1; < 22, ¢ = 1,-+,d and if X1 < X9 we write [x1,x9] =
{x:x1 <x < x9}. We write —0o = (—00,+++,—00) and oo = (00, -+, 00).

We proceed by means of a point process transform technique (Resnick, 1987, 1986;
see also Davis and Resnick, 1985 a, b, 1986, 1988). We set Mp(E') equal to the space of
point measures on the LCCB space E' and metrize Mp(E') by the vague metric (denoted
p). A point measure on E' is a Radon measure on E' of the form Y; €y, where z; € E'
and for a Borel subset B C E' we have €;(B) = 1 if z € B and €;(B) = 0 otherwise.
A Poisson process on E' with mean measure p will be denoted PRM(p); t.e., a Poisson
random measure with mean measure p. Recall from section 1 that E = [—oo, oo]®\ {—o0}.

Lebesgue measure on [0, 00) will be denoted with A.

PROPOSITION 2.1. Let F and G be probability measures on R and let v and p be Radon
measures on E satisfying (a) and (b) of the definition of the multivariate class L given
in section 1. Suppose a(t) € R4, b(t) € R? are functions such that b(t) — oo and
a(t) — v~ 1 € (0, oo]® and suppose

tF(a(t) - +b(t)) — v, (2.1)
tG(a(t) - +b(t)) = u (2.2)
on E. Suppose also, for i = 1,...,d that the marginals of F' and G satisfy: F; € S(a;),
G; € S(a;). Let {X,k > 1} be iid random vectors with distribution F andlet {Yg, k > 1}

be iid random vectors with distribution G and independent of {Xj}. Then ast — oo,

> €<k Xk+Yk-—b(t)) — PRM(A x (v+G(v~ 1) + pxF (v~ 1)) (2.3)
=1 (070

in Mp([0,00) x E) and so equivalently (Resnick, 1987, Proposition 3.21)

tFG(a(t) - +b(t)) - vxG(y~ 1) + pxF(y 7). (2.4)
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Remark. The following are the cases of interest:
a) F € L(v;b) and G € L(pu;b). Then a(t) =1 and v = 1.
b) F and G are regularly varying so that a(t) = b(t).
¢) F and G are in a type III multivariate domain of attraction and each marginal F;
and G; is in the univariate domain of attraction of A(z) := exp(—e™ %), z € R.
Then assuming also that Fj(z) < 1, Gi(z) < 1 for all z € IR, we have F; €
D(A) N S(a), Gi € D(A) N S(a;) and a(t) » y7! = a1,

PROOF: We proceed in a series of steps which are somewhat analogous to those in Goldie
and Resnick (1988). Recall first that (2.1) and (2.2) are equivalent respectively to

o0
Z::l E(g,xﬁ;{:’(tl) = § E(tg)’jg)> := PRM(A x v) (2.5)
and
00
> it
k=1 t

T

Yk"’(ﬂ) == ; E(iscg),jgz)) = PRM(A X p) (2.6)

a(t

in My([0,00) x E) (Resnick, 1987, p. 154).
For what follows we need the following variant of Proposition 3.21 in Resnick (1987).

LEMMA 2.2. Suppose Ey and Eq are LCCB spaces and for each n, {Zpp, Wi, k > 1}
are iid random elements of E{ x Eg defined on the same probability space. The following
statements (a),(b) and (c) are equivalent:

(a) For all compact A and B,

nP[Zn1 € A,Wn1 € B] - 0,
nP[Zy €] — p1,
nP[Wnl € ] LN 1. (2.7)

(b) In Mp(E1) x Mp(Es),

(Z €an’ Z GWnk) = (Z ezk’ Z GWk) (28)
k=1 k k

k=1
where the limits are independent Poisson random measures with mean measures p11 and

w9, respectively.
(c) In Myp([0,00) x By) x Mp([0,00) x Ep),

(Z”: “(bz )’i “(x Wnk)) = (Z ‘f(tk,zk)v%: E(Sk,Wk)) , (2.9)

k=1 \n7mk n’ k
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where the limits are independent Poisson random measures with mean measures A X p1

and A\ X ug, respectively.

PROOF: Let fi € Cx(E1), fo € Ck(Es). Taking joint Laplace functionals at (f1, f2)
shows that (2.8) is equivalent to

lim (Ee-(fl(znmfz(wnl)))" — exp [_ /E (1) du + /E (1-e) dm}
1 2

n—00
(2.10)
The left side of (2.10) is rewritten as
— o= F1(Zn)— 2 (Wu)\ "
lim (1 — nBll-e ])
t—»00 n
and so (2.10) is equivalent to
lim (1 - e’—fl(z)"h(w)) nP[Zn1 € dz,Wp € dw)
n—0oo E1XE2
(2.11)

:/;E’l(l—e—fl) dp1+L2(1—e"f2) dps.

Let A; be the support of f;, ¢ = 1,2. Decompose the left side of (2.11) as

Hss™ oo™ s St
E1XE2 Aleg A%XAQ A1><A2 A‘{XA%

=Ip+ IIn+ III, + IVy.
Suppose (a) holds. Then

In :/ (1 — e"fl(z)) nP[Zp € dz] —/ (1 — e"’fl(z)) nP[Zp1 € dz,Wp1 € dw].
A1 A1><A2

Since 1 — exp{—fi} < 1, the second term is bounded above by nP[Z,1 € A1, Wn1 € A9
whose limit is zero. So I, — w1(f1). Similarly, I, — po(fo), II1I, — 0 and IV, = 0.
This verifies (2.11).

Conversely, suppose (2.11) holds so that

lim [nE [1 — e"fl(zﬂl)_h(Wnl)} —nE [1 - e"fl(Z‘”l)] —nkE [1 — e—fz(Wm)H = 0.
A (2.12)
Then applying (2.12),

Tim nE Kl _ e_fl(Zn1)> (1 _ e“'fZ(Wnl))]
— nE [1 _ o= f1(Zn1) _ o= F2(Wn1) 4 e—'fl(an)—fz(Wnl)]

=0,
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for any f; € Cg(E;), i = 1,2 and this is equivalent to (a).
We have verified, therefore, that (a) and (b) are equivalent. The rest of the proof is
similar to the proof of Resnick (1987, Proposition 3.21). O

Returning to the proof of Proposition 2.1, we now apply this lemma with

N )
W = (Y5 2)
where both Z;;, and Wy, live in E X [—o0, oo]d. For A1, Ag compact in E, Ag, A4 arbitrary,
= lim v(A1)u(42)/t =0.

So (2.7) is satisfied. Furthermore since Xy and Y}, are independent and since a(t) — ~—1
it is clear
X—b(t) Y —
Pl ) €] 6™
and

Y;-b(t) X v -1
PK at ’E(%)e']"“‘xp(" )
So it follows from Lemma 2.2 that as t — oo

o0 o0
(Z e(k Xp—b(t) Yy ) >3 6(5 Yi—b(t) X )) = (Z €(tk:j1(g1)f7Y§c) ’ % e(s;c e rﬂ%))

k=1 \t' " a@) ’a(t)) k=1 \&'" a() ‘a(t) k
(2.13)

in (Mp([0,00) x E X [-—oo,oo]d))2 where the limit consists of two independent Poisson
processes with mean measures A X ¥ X G(‘y‘l-) and A X g X F('y”l-), respectively. Because

addition is vaguely continuous we get from (2.13)

O
> e +€ =Y |€/ .« +€
» Xp—b(t) Y g Yp—=b(t) X; { tr, ( ), v/ , { ), x! }
k=1 <'{: a t) )J%) ('{v a(t) ’a(t)) k ( kil Y k) (Sk Jk Y k)
(2.14)

in Mp([oo0,00) X E X [—o0, o0]4) where the limit is Poisson with mean measure

A XV X G(~y"1-) + A X px F('y“l-) =Ax(rx Gy + p x F(v~1Y).
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Now restrict the state space in (2.14) to the compact set [0,7T] x [~o0, —61]°

[—00, 00]%.

in (2.14) to get (via Proposition 3.18 of Resnick (1987))

With the state space so restricted we may add the X and Y components

Nig= ) GG ka-b(t))l[xk;(-gug_m]c + 2 G(xk+Yk—b<t)>1[Yka—(;;(t)g_mr

k<tT \ U a(t) k<tT a(t)
2o (1 2er0h00) ( e o 61}) -

== € 1 ¢ € 1 c .
Z (1P vy)  [[587 <-01] i) i ; (sdP4s) [ [17 <-01] s
Call this latter limit Ng. As 8§ — oo we have, almost surely,

No = 3 (1 047wy ST ¥ 2 504 s
and so by Billingsley (1968, Theorem 4.2) we need to show for § > 0,

lim limsup P [p(INy g, Nt) > §] =0 (2.16)

f—00 t—oo

where p is the vague metric and

Ny = Z E(E_ Xk+Yk—bgt)>'

E<iT \ U a(t)
For (2.16) it is enough to prove that for any h € Ck(E) and any n > 0,

o e P || 37 (SE0280) (40 4 1) = 3 (W)\ . n} o

f—00 t—c0 E<tT E<tT
(2.17)

where 1(1),1%2) are the indicators appearing on the left side of (2.15). The difference
referred to in (2.17) is bounded by

Y h (Xk+Yk—-b(t)) ‘1 _ 121) _ 122)‘

k<tT

and so the probability in (2.17) is bounded by

Pl {h (_______—i—lxk”k*bi ) > 0, 11 —1M - 1§f)| # 0}

a(t)
k<tT



11

Suppose the support of h is contained in [—oo, ~M1]°. Then the previous probability is
bounded by

TP { [h (Xk'*;f’;‘b t ) > 0] N ([121) —0= 153)} u [121) —1= 19])}
<{TP { [Xk‘f(';”bt < —Ml]c n (Bl < -91] N [Yk;(‘g < -91}}
#rp { [Rtdebt < ) [Bichld < o1 [¥igp® < -]
=Lig+ 1Ly

Now

l1msupIIt9<l1msuptTP [X—’f—(?}iﬁ< 6} [~ﬁ‘—b—(—t—1< 91] }zO,

t—00 (t)

because of (2.1), (2.2) and the independence of X} and Y.
As for I g, it is dominated:

d
Xy i+Yg,i—bi(t) Xpi—bi(t) Yi,i—bi(t) ]
L,<tTS p |2 tki 000 o gy ZREORD < g TRl < g 2.18
b ; [ ai(® ai(®) ai(®) (2.19)
Once b;(t) > 26 — M, the i-th term within this sum is bounded by
P[ kit Yei—bi(t) > M, (_)Qc_z_/\ Yk,z) >9—-M}
a;(t) a;(t)  ai(?)
_p [Xk,i+Yk,i—bi(t) S —-M} _p [Xk,ﬁyk,r-bi(t) > M, ki Xyi <f- M]

a;(t) a;(t) a;(t)

Xi i+ Y i—b Yis
_Pp [-"-‘f——’i——-(f-)- > M, 2B < g M} (2.19)

a;(t) z( )

By Lemma 4.1(iv) and by the exponential tails of v; and y;,

g Git) _ E(0) _ FEi(=M)
t—oo Fi(t)  7i(0)  7i(—M)’

where the limit is actually independent of M. Using a standard result (¢f. Embrechts and
Goldie, 1982), the first term on the right in (2.19) satisifies

L FixG;(bi(t) — ai(t)M)
t—oo  Fy(b;(t) — a;(t)M)

([ envgian + SR [ mrian) )7
—oi(-0) [ vGi(dy) + (M) | eepan) (2.20)

lim tP

{—00

[M _ } {Fi(bi(t) — ai(t)M)

a;(t)
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By Fatou’s lemma and the fact that F}, G; € £(a;), the two terms subtracted in (2.19)
satisfy

X,itYi,i—bi Xk Y, i —b;
%minftp ‘:_’ﬁ_’“_“_(t_) —M, 2R < o—M] +tP [Xk,z+yk,z bi(t)
-0

Yis
R < M,—— < 68-M
a0 at) o a ]
| ai(t)(6-M ai(t)(0—M)
= liminf tFi(bi(t)—ai(t)M—y)Gi(dy) +f tGi(b;(t)—a;(t)M—z)Fi(dz)
7 1(0-M) 710~ M)
> 7i(— M) / VG (dy) + (M) / %% F(dz). (2.21)

Combining (2.20) and (2.21) into (2.18) and (2.19) and letting 6 — co yields the desired
result that

lim limsupl; g = 0.
f—00 t—o00 !

a

COROLLARY 2.3. Suppose F € L(v;b),G € L(y;b). If also F; € S(a;), Gi € S(as),

i=1,...,d then ast — oo,

o0
;f\;l € (£ Xu¥ib0) — PRM (A x (v+G + p*F))

so that
tF*G(- + b(t)) — v+G + p*F.

PROOF: Set a(t) =1 in Theorem 2.1. O

COROLLARY 2.4. Suppose F € L(v;b) and the marginals of F satisfy F; € S(aj), t =

1,...,d. Suppose also that {Xy} and {Y}} are independent iid sequences with common
distribution F'. Then

oo
€ — PRM(A x 2v%F
k}__:l (5 Xt Y,-b(0)) ( )

so that
tF*F(- + b(t)) — 2vxF.

Thus F € S(v,b) and s(2) = 2u«F.
PROOF: Set F' = G, a(t) = 1 and apply Theorem 2.1. O

The next result shows how domains of attraction in extreme value theory may be

preserved by convolution.
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COROLLARY 2.5. Suppose F and G are in a domain of attraction of a multivariate extreme
value distribution (Resnick, 1987) and that (2.1) and (2.2) hold with v, p the exponent
measures of multivariate extreme value distributions with marginals of the type A(z) =
exp{—e "%}, ¢ € IR. Suppose further that F; € S(e;), G; € S(a;), i = 1,...,d. Then as
t — 00, (2.3) and (2.4) hold so that F*G is in the domain of attraction of the multivariate

extreme value distribution
exp {—V*G(a"l[—-oo,x]c) - p*F(a”l[—oo,x]c)}
which also has marginals of the type A(z).

PROOF: Apply Theorem 2.1 with 4 = a. That the marginals of the limit distribution are
of type A(z) follows from Resnick (1987, Proposition 1.19). O

3. Examples and Extensions.

In this section we provide several examples in addition to the Type III domain of
attraction example given above. We also extend known results about the univariates
classes S(a;) to the multivariate setting.

A simple example is the case where the components of X are independent or, more
generally, for 1 <: # j < d,

Jlim tP[X; > 2+ bi(t), Xj > o + bj(t)] = 0.
—00

One may easily show that F; € L(a;) for each ¢ implies F' € L(v;b) where

d
7(u) := v([—o0,ul) = Z e it
i=1
Note that v therefore concentrates on the axes, Q; = {u: u; > —oo,uj = —00,j #1}, ¢ =
1,...,d.
At the other extreme, suppose X1 = - -- = X almost surely. Then F € L(a1) implies

F € L(v;b) where v has all its mass on the ray {rl: 1 € (—o0,00]} and

i(u) — et min; %;_
We next present an example which is a mixture of the cases o; = 0 and o; > 0 and
also a mixture of independence and total dependence. Let Xq and X i be independent
. ro
exponential(1) random variables and let X9 = eX1 with probability § and Xg = eX1 with
probability 1—§. A little computation shows the joint distribution of (X1, X9) is in the class
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L(v; (logt,t)) with limiting measure concentrating on (—00,00) X {—o0}U[—00,00) X {o0}
and so that

v((z1,00) X {—o0}) = tl_i_)xgotP[(Xl —logt, X9 —t) € (z1,00) X [—00, z9]]
=e 1 —§(1Ae™)

and
v((21,00) x {oo}) = lim ¢P[(X1 —logt, X3 —1) € (21,00) X (zg,00]]

= 5(1 A 8“:81) -+ (1 — 5)1{_00}(231)

This example shows that when some but not all of the exponents «; are zero, v is not

generally expressed as a mixture of the two pure types of exponential measures.

Regular variation. A distribution F' on ]Rff_ has regularly varying tails on the cone
[0, 00]%\ {0} with limit measure p (written F' € R(y; b)) if there exists a sequence b(t) and
a Radon measure p on [0, 00]%\{0}, satisfying (a) and (b) of the introduction, such that

tF(b(t):) — n() (3.1)

on [0,oo]d\{0}. (¢f. de Haan and Resnick, 1977; Resnick, 1987; Omey, 1989.)
We extend the well known univariate result that regular variation implies subexpo-

nentiality.

PROPOSITION 3.1. Suppose F' € R{(y;b). Define Atoo = (1,00), A—oo = (—00,1] and let
»(0) to be the discrete measure on E, having all its mass on = := {~oo, co}¥\{—o0} given
in (1.7) and with weights

VO ({e}) = p(Agy X -+ x Agy), ock.
Then F € S(V©;b) and FxF € R(2u;b) N S(2v"); b).

PROOF: Regular variation of F implies regular variation for the probability tails of all
subvectors. (To see that ¢ dimensional marginals are regularly varying, take a sequence
of functions which are continuous with support compact in E and which approximate the
indicator function of (z1,00] X -+ X (z;, 00] X [—00, oo]d“'i and insert these into the definition
of multivariate regular variation.) Thus it suffices for what follows to take u to be a finite

vector. From (3.1) and the locally uniform convergence implicit in regular variation,
Jim £F(u+ b(t)) = fim F (b(t) (1 + (Cui/i(t)))
=7(1)

=5 00,

oct
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This being so for all subvectors as well, it follows that F' € C(v(o); b).

The argument of Resnick (1986; Prop. 4.1) is easily modified to allow for vector
scaling. Furthermore it is valid even if some a; = 0. See Resnick, 1986, section 5. Hence,
FxF € R(2u;b) and

tl_lzzgo tFxF(b(t)u) = 2f(u).

Applying this to the above argument, F*F € L(Qz/(o); b) and hence F € S(V(O); b). And
applying the last conclusion to FxF, we also have F*F € § (21/(0); b). O

Multivariate stable laws and Type I max-stable laws are examples of such distributions.

There exist, however, class £ distributions which do not have multivariate regularly
varying tails even though the marginal tails are regularly varying. As an example of this,
consider F such that for z; > 0,

1 + 7 sin(log r(x)) sin(7¢(x))

r(x) ’
where r(x) = 1 + z1 + 29, ¢(x) = (z1 — z2)/r(x) and 0 < [|y| < 1/12. The tails are
asymptotically Pareto:

P[X1 > z1,X9 > 9] =

(3.2)

P[X; > z] ~ 7l 2 0.
One may easily show that
lim tP[X; > z; +t] =1, 1=1,2,
t—00

and
1
lim tP[X; >z +¢,Xo > 20+t = -,
100 2

But tP[X; > t, X9 > ct] does not generally converge. Since the marginals are subexpo-
nential, this distribution is in fact multivariate subexponential.

To show that marginal membership in £(a;) does not imply membership in L(v; b),
consider the related example
1 + v sin(log r(x)) cos(n$(x)/2)

r(x) '

Again, the marginals are Pareto. If this distribution is to be in L(v;b) then we could
choose b(t) = (c1t, cgt) for some ¢; > 0. But in this case, tP[X1 > c1t, X9 > cot] converges

P[Xq > z1,X9 > 39 =

only if cos(wd(c1t,cat)/2) — 0, that is, only if either ¢; =0 or cg = 0.

Higher order convolutions. Much of the past effort on the univariate class S(a) has

been directed at the behavior of F*™ and of the distribution of a randomly stopped sum
(¢f. Chover, Ney and Wainger, 1973a; Embrechts and Goldie; 1982; Embrechts, Goldie and
Veraverbeke; 1979; Cline 1987). These results may now be extended to the multivariate

case.
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PROPOSITION 3.2. Suppose F' € L(v;b). The following are equivalent:
(i) F € S(v;b).
(ii) F*" ¢ E(m/*F*(n“l); b) for some n > 2.
(iii) F*™ € S(v(; a) for some n > 2, some (") some a.

When these hold, they hold for all n and with a = b, () = pyxFrn=1),

PROOF: (i) = (ii). For each n, (ii) follows by application of Corollary 2.3 and induction.
(i) = (iii). Since by the above F*" € ,C(V("); b) and F*2" € [,(V(Q”); b) for some v(n)
and ") then F** € S(v(;b).
(ii) = (i). Since F € L(v;b) is assumed, we only need to show that F; € S(o;) for
each ¢. We have
Jim tFi(bi(t)) = 7i(0)
and

o0 n—1
Jim {FF(b;(1)) = vk FX1(0) = n ( / ea”’Fi(dw)) 7;(0).
—r OO

—00

By Proposition 1.1(ii),

lim an(t) = n(/oo 6aimFi(d:€)>n 1.
t—oo Fy(t) —00
According to the univariate theory (e.g., Cline, 1987, Cor. 2.11, which is valid even if
F;(0) > 0), this is sufficient to conclude F; € S(ay).
(ii) = (i). Again, it suffices to show F; € S(a;) for each 1. According to Proposition
1.1(iii), F}™ € S(a;). This implies F; € S(a;) (¢f. Cline, 1987, Cor. 2.11). O

Note that it is necessary to specify the norming sequence b in (ii) of Proposition 3.2.
For example, the gamma(1) and gamma(2) distributions are each in the class £ but with
non-equivalent norming sequences. Hence neither is in the class S.

For the following discussion on compound distributions, let {\np} be a probability
measure on {1,2,...} and define \(z) = % | Anz" for real z and H = oo 1 An T,
H' =322 | n)\g F*" for the measure F'.

PROPOSITION 3.3. Let F € L(v;b) such that F;(0) = 1 for each ¢, and let m; =
Jo° e*i® Fi(dz). Suppose A(m; + €) < oo for some ¢ > 0 and for each 1. Then the fol-
lowing are equivalent:
(i) F € S(v;b)
(i) H € L(v+H';b).
(iii) H € S(vy;a) for some vy and some a; and one of the following holds
(a) lim sup;_,o0 tH (bi(t)) < oo for each 1.
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(b) Mq + €) < oo, where g = sup; A(m;).
() imsupp_,c0(An+1/An) <inf;(1/my).

PRrROOF: (i) = (ii). Let u € (—oo,oo]d. For each marginal, Cline (1987, Thm. 2.13) gives

R . O Hi(t 4wy
i, (B (00) + ) = fim T 500)
o0
= g @il ( Z Annm?'”l)?i(())
n=1
m A———————
— il Z nn Vz'*-Fz'*n_l(O)
n=1

o)
= z tl—l-fgo A FF™M(ui + bi(1)).
n=1

Also,
d

F(u+b(t) < Y Ff(u; + bi?)).

i=1

Thus, by Proposition 3.2 and dominated convergence,
. [e.0]
lim tH(u+b(t) = > lim AF*(u-+ b(t))
100 =1 t—00

0 U S————
= Z nAp v F*—1(u)
n=1
= v+H'(u),

whenever u € [—oo, oo]d, u; > —oo for each ¢. That is H € L(v+H';b).
(i) = (iii). This follows by applying the above implication to each of H and HxH =
A2(F).

(ii) = (i). As in the corresponding argument for Proposition 3.2, (ii) implies

H(t)

i yrie X (m;)vi(0)

which is sufficent (Cline, 1987, Thm. 2.13) for F; € S(a;), every t, and hence for F' €
S(v;b).

(iii) = (i). The assumption (iii) implies H; € S(e;). With one of the additional
assumptions (a), (b) or (c), it follows that F; € S(a;) for each ¢ (¢f. Cline, 1987, Thm.
2.13 and Cor. 2.14). Thus F € S(v;b). O
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Other examples. Suppose Y ~ G € R(y';b’). Then componentwise transformations
will give rise to a variety of examples.
For one such example, suppose G; € RV_ g; with §; > 0 and ¥; > 0 a.s. and let F' be
the distribution of
X = (¢;log Y3)s, ¢; > 0.

Here G € R(i;b') is equivalent to F' € L(;b), for some p and b, and p has exponents
a; = B;/c; > 0. Thus F is in S(v;b) if and only if every F; € S(a;). Cline (1986) gives
examples both of F; € S(a;) and of F; ¢ S(a;). For instance, if e%i'F;(t) € RV, for some
real v;, then F € S(y; b) if and only if

o0
/ e** F;(dz) < o0 for every 1.
—00

As another example, again suppose Y ~ G € R(y/;b') and let F; € S(0) N D(A). (cf.
Goldie and Resnick (1988) for sufficient conditions.) Define

X =F (Gi(Y2)).

By de Haan and Resnick (1977, Thm. 4) F is in the (extreme value) domain of attraction
of a max-stable law with double exponential (A) marginals. Since the marginals of F' are
also subexponential then F' is multivariate subexponential.

A specific two-dimensional example of this, with lognormal marginals, is for z; > 0,

P1(z1 )ba(z2)
P1(z1) + Pa(zg)’

where ¢;(z) = 1 — ® ((logz — p;)/0;)) and ® is the standard normal distribution.

F(z1,29) =1 —1(x1) — ba(z2) +

4. Norming Sequences.

In this section we examine the norming function b(t) appearing in definitions (1.3)
and (1.4) with the intent of describing equivalent versions. When we say two norming
functions by(t), ba(t) are equivalent for given distribution F', we mean that either could
be used in the definitions of the classes given in (1.3) and (1.4).

Let g be a nondecreasing function and define its left- and right-continuous versions:
g~(t)=supg(z) and g7 (t) = inf g(z).
We will use the left-continuous version of the inverse:

g~ (t) = inf{z: g(z) > t}.
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Note that g(z) > t implies z > g~ (¢) and g(z) < t implies z < g~ (¢). We also observe that
(¢7)~ = g~. Following Geluk and de Haan (1987, p. 32), two functions hy, hg : [0,00)
R are inversely asymptotic if for every e > 0 there exists tg = to(€) such that for ¢ > g

ha((1 — ) < ha(t) < ha((1+ )t). (4.1)

If h; and hg are non-decreasing then the relation inversely asymptotic means hy~ ~ hs;
i.e., the inverses are asymptotically equivalent. We start with a lemma about inverse

asymptotic equivalence.

LEMMA 4.1.
(i) Suppose g is nondecreasing. Then g(b(t)) ~ t if and only if both g(g—(t)) ~ t and
g and b are inversely asymptotic.
(i) Suppose g and b are nondecreasing. If g(b(t)) ~ t then b= (t) ~ g(t).
(ili) Suppose g is nondecreasing. Then g(g*(t)) ~ ¢ if and only if gt (t) ~ g~ (¢).
(iv) Suppose g1, g9 are each nondecreasing. If g1(b(t)) ~ ga(b(t)) ~ t, then g1 ~ g2.

PROOF: (i) Let by and by be two functions such that g(b1(t)) ~ t and b and by are inversely
asymptotic so that for each € > 0,

b1((1 = €)t) < by(t) < by((1 +€)t)

whenever t is large enough. Then for some ¢; and all ¢ > 11,

(1— €% < g(by(1 — 1)) < glba(1) < g(b1((1+ ) < (1 + %1,

Hence g(ba(t)) ~ t.
The “if” part is satisfied, therefore, by choosing b1 = ¢ and by = b.
On the other hand suppose g(b(t)) ~ t. Given € > 0 and large enough ¢,

g(b((1 = e)t)) <t < g(b((1 +€)t)),

which implies
(1 —e)t) < g7 (1) S b((1 +€)t)-

This implies (4.1) for some ¢y and the “only if” part follows with by = b and bg = g™
(i) One may easily show that for any € > 0,

b((1 — )b (1)) <t < B((1+ €)™ (1)),
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so that
= o jim U0 D7)
t—00 b‘—(t)
1m1n 9(t)
<1l f (1)
g(t)
SR ()
g1+ )b (1)) _
St%ggo ) =1+e
Thus g ~ b™.

(i) If g(¢=(t)) ~ t then, by (ii), g~ = (¢7)~ ~ g. However, the argument for (ii)
holds equally well if we replace b~ with the right-continuous version of the inverse, b, .
Since g7 = (g7 ), we also conclude g ~ gt and hence gt ~ ¢g~.

Conversely, note that g~ (g (t)) <t < gT(¢7(t)). Thus gt ~ ¢~ implies

(g (¢t T(g(t
RN I AN 2) I N Al 0) N
t—r00 t t—00 t
and, since g~ < g < g7, we have that g(g=(t)) ~ t.
(iv) By (i), g1 and g are each inversely asymptotic to b and thus to each other.

Therefore, g1(g5 (t)) ~ t. By (ii) and then (iii) g1 ~ (95)" = g9 ~ g2 O

The condition g(g=(t)) ~ t does not generally hold. It does hold for g = r o s where

r € RV, and s is a continuous 1-1 function. In particular, it holds for ¢ = 1/F;, when
F; € E(O{z) Let

— 1 -
a0 =Fr (/9= (25) ©
An immediate consequence of Lemma 4.1 is that F; € £(o;) if and only if tF;(q;(t) +u) —

e~ %% (see Proposition 1.1).

PROPOSITION 4.2. Suppose F € L(v;b). Then F € L(v;a) if and only if a is such that

ai(t) and b;(t) are inversely asymptotic for each ¢ =1,...,d. In particular, we may take

a;i(t) = ¢i(t/7:(0))-

PROOF: Suppose a; and b; are inversely asymptotic for each 1 = 1,...,d. Then for every
¢ > 0 there is ty such that for all z and all > 29

ai(1 = ) < bilt) < (1 + o). (4.2)
Thus for ¢t > tg and any u € (-—oo,oo]d,

F(u+b((1+e)t)) < F(u+a(t)) < F(u+b((1 - e)).
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Hence
1

1+e€

7(u) < liminf tF(u + a(t))
t—00

1
. EF(u).

< limsuptF(u+ a(t)) <
t—r00
This shows F' € L(v;a).
In particular, let a;(¢t) = ¢;(t/7;(0)). Since lim;—o tF;(b;(t)) = 7;(0) then for large

enough ¢

vi(0) _ = ;(0)
A+t < Fi(bi(t)) < =t

Hence a;((1 — €)t) < b;(t) < a;((1 + €)t), which is (4.2).
On the other hand, if F € £(v;a) and we let g(t) = 7;(0)/F;(t) then

lim t~1g(b;(¢)) = lim t71g(a;(t)) = 1.
{—r00 t—o0

By Lemma 4.1(i), it must be a; and b; are each inversely asymptotic to ¢~ and hence to

each other. O

Given that F' € L(v;b), Proposition 4.2 characterizes the possible norming sequences
a such that F € £(v;a). However, we would like to characterize the sequences a such that
F € L(p,a) for some p. At least, we want to know when b;(t) may be replaced with ¢;(c;t)
for an arbitrary positive c;.

For those marginals whose characteristic exponent «; is positive, a characterization

follows from a multivariate convergence of types result.

PROPOSITION 4.3. Assume F € L(v;b) and let a be such that a;(t) = bi(t) whenever
o; = 0. Then F € L(;a) for some p if and only if for each 1

d; = tlim (b;(t) — a;()) exists finite. (4.3)
—+00

In this case p(-) = v(- — d).
Furthermore, (4.3) is satisfied when a;(t) = g;(¢;t) for a; > 0 and ¢; > 0.

PROOF: Let Fy be the marginal distribution for the subvector of those X;’s having «a; > 0.
Then Fy € L(vy;by) for corresponding choices of v1 and by. This is equivalent to saying
F¥(x) = Fi((log 21, . ..,logzg)) € R(v1;b1) (see section 3 or de Haan and Resnick, 1977).
That is, Fj is in a Type I multivariate extreme value domain of attraction. By the
convergence of types theorem, therefore, we have Fy € L£(u1;a;) if and only if for each ¢

the ratio eb1i() / eari(t) converges to a finite positive constant, that is, if and only if

dy; = tlim (b3(t) — a14(t)) exists. (4.4)
—00
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If, therefore, F € L(p,a), then (4.3) follows from (4.4) for each i such that o; > 0 and it
follows by assumption for each ¢ such that a; = 0.

Conversely, if (4.3) holds then by the uniform marginal convergence
Jim [tF(u+ a(t)) — tF(u+ b(t) — d)]
—00

d
< lim Y [tFi(u; + ai(t)) — tFi(ui + bi(t) — di)| = 0.
100 =1

Hence F' € L(v(- —d);a).
Finally, we know from Proposition 4.2 that F' € L(v;b) with b;(t) = ¢;(¢/7;(0)). But
for 7 such that a; > 0, we have for any ¢ > 0

Jim (gi(ef) - gi(t)) = “E°. (45)

1

(This is again due to the fact that F;(logz) € RV_q;.) Thus for each such 4, b;(t) may be
replaced with g;(¢;t). O

Indeed, if every a; > 0, then F' € L(v(- — d); q) where d; = (log7;(0))/ ;.

In case the a;’s are zero, one may use a similar argument (convergence of types) when
Fis in a multivariate extreme value domain of attraction (see de Haan and Resnick, 1977).
A general approach which encompasses all of these is as follows. Let My, = (Vi1 Xki)i

for an #id sequence {Xp}.

PROPOSITION 4.4. Suppose there exists a sequence of vector-valued functions gn(x) =
(gni(z;)); such that P[My < gn(x)] converges to a probability distribution H(x) with
exponential(1) marginals. Then for each c € [0, o0)®\{0},

limtF(q(et)) = ~log H((cy ', ¢z "),

PROOF: From the assumption we immediately have that for each ¢
Jlim nFi(gni(e;)) = lim —log P[Mpi < gni(z:)] = i
By Lemma 4.1(i) , it follows that

Jim nFi(gi(n/z;)) = ;.

Thus, . N
lim n[F(gn(x)) — Fa((n/2)i))l
d
< lim Y n[Fi(gni(e:) — Filai(n/2i))|
i=1 :

=0.
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Hence .
lim nF(q((n/z;);)) = lim —log P[Mn < gn(x)]
= 10g H(X),
which is equivalent to the assertion. o

Therefore if F € L(v;b) with a = 0 and F also satisfies the conditions of Proposition
4.4, then for x finite,

lim tF(x + q(t)) = —log H(1).
00

When one or more components of x are equal to +oco, and we define ¢; = ool {OO}(a:i) +
1(__00)00)(322'), then

Jim tF(x + q(t)) = —log H(e).

—00

Furthermore, suppose F satisfies the conditions of Proposition 4.4 and has marginal

equivalency, i.e., for each :

¢; = lim «————-—Fg(u)

e exists finite, positive.
U= OO Fl(u) » P

Then it is clear (by Lemma 4.1 and the argument of Proposition 4.4) that ¢;(t) may be
replaced with ¢1(c;t) and

tlim tF(q1(t)1) = —log H(c).

—00

On the other hand, the condition in Proposition 4.4 need not be satisfied, as the
example in (3.2) shows.
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