SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-7501

TECHNICAL REPORT NO. 919

August 1990

PERMUTATION VS. NON-PERMUTATION
FLOW SHOP SCHEDULES

by

Chris N. Potts!, David B. Shmoys®
David P. Williamson?®

YUniversity of Southampton

?This research was supported in part by NSF PYI Award CCR-89-96272 with matching support from
UPS, IBM and Sun and by the Cornell Computational Optimization Project.

3Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA 02139. This research was
supported in part by a NSF graduate fellowship and Siemens Research Agreement of June 10, 1987 on
Joint Research in Learning Systems.



Permutation vs. Non-Permutation

Flow Shop Schedules

Chris N. Potts David B. Shmoys™
University of Southampton Cornell University
David P. Williamson'

MIT
Abstract

In studying the m-machine flow shop scheduling problem, it is common
practice to focus attention on permutation schedules. We show that for the
problem of minimizing the maximum completion time, this assumption
can be a costly one, by exhibiting a family of instances for which the
value of the best permutation schedule is worse than that of the true
optimal schedule by a factor of more than VM /2.

Keywords: Flow-shop scheduling, permutation schedules, approximation algo-

rithms

In the flow shop scheduling problem, there are n jobs and m machines, and
each job j, 7 =1,2,...,m, consists of m operations where the ith operation is
to be performed, in order, by machine i for a specified time p;;. In other words,
each job j is first processed by machine I, then machine 2, and so on, until it
completes its processing by machine m; the time at which job j completes its
last operation shall be denoted Cj. The objective is to find a nonpreemptive
schedule that minimizes Cpnqe = max; Cj, the maximum completion time of any

job. This optimum shall be denoted C% ... The recent paper of Lawler, Lenstra,

*Current address: ORIE, Upson Hall, Cornell University, Ithaca, NY, 14853. This research
was supported in part by NSF PYI Award CCR-89-96272 with matching support from UPS,
IBM and Sun and by the Cornell Computational Optimization Project.

tCurrent address: Laboratory for Computer Science, 545 Technology Sq., Cambridge,
MA, 02139. This research was supported in part by a NSF graduate fellowship and Siemens
Research Agreement of June 10, 1987 on Joint Research in Learning Systems.



Rinnooy Kan & Shmoys [2] surveys many of the known results pertaining to this
problern.

Permutation schedules constitute an important subclass of schedules, where
the order in which each machine processes the jobs is identical for all machines.
Most research on flow shop scheduling problems has focused on permutation
schedules, due the relative combinatorial simplicity of schedules that can be
specified simply by giving a permutation of the jobs. Unfortunately, this sim-
plicity is bought at the price of drastically inferior schedules, and the purpose
of this note is to study the worst-case behavior of the ratio of the maximum
completion time of an optimal permutation schedule, denoted Cj,,,(7), to the

optimum value C}, If p(Z) denotes this ratio for an instance Z, we will prove

maz "
that p is not bounded by any constant, by exhibiting a family of instances
{Zan : n € N} for which p(Zn) > [v/m + £]/2, where the instance Zpm involves
m machines.

The instance Zo,, is relatively easy to describe: there are n jobs, 2n machines,

and
_J1 fi=j4+nori=n+1l-7
Pii =\ 0 otherwise.

When p;; = 0, this value should rather be interpreted as an arbitrarily small
positive constant; in other words, each job must still be processed on each
machine. It is easy to see that Cp,,, = 2; since each job requires 2 units
of processing, any schedule must take at least that long, and if the jobs are
processed in the order 1,2,...,n on machines 1,2, ...,n, but then in the order
n,n—1,...,1 on machines n + 1,n+2,...,2n, all jobs are completed at the
end of the second time unit. To prove the main result of this note, we need
only prove a lower bound on the length of the optimal permutation schedule.
The fundamental insight into analyzing the length of permutation schedules for

these instances is the following easy fact:

Fact 1 For the instance Zon, Cmaz = 1 + 1 for the schedules given by either of

the permutations 1,2,...,norn,n—1,..., 1



Proof: The schedules are given in Figure 1. O

This simple fact will have important consequences. Consider an arbitrary
permutation of the n jobs ji, ja, .. .jn and let ji,, Ji,, ..., Ji, b€ @ subsequence
of jobs such that j;, < ji, < -+ < ji,. Note that the subinstance formed by this
subset of jobs, along with machines n+1—ji,,n+ 1—Jisyy---yn+1—73;, and
n+Ji, N+ Jig, .- -+ i, 18 isomorphic to Ip;. From this it follows that if there is
an increasing (or decreasing) subsequence of length s in the permutation, then
for this permutation schedule, Craz > s + 1. ‘

A well-known result of Erdds and Szekeres [1] states that in any sequence of
k2 + 1 distinct integers, there is either an increasing sequence of length k + 1,
or else there is a decreasing sequence of length & + 1. Thus, this result can
be combined with Fact 1 to prove an (y/m) bound on p(Zm). In order to
prove a tight bound, we will need to use some of the ideas in the proof of the

Erdos-Szekeres result in a slightly stronger setting.

Theorem 1 For each instance Zon, n = 1,2,... , Crmaz(7) 2 [V20 + 3], and
this bound is tight.

Proof: Let ji,ja,...,Jjn denote a permutation of the jobs 1,2,...,n. We will
show that if the jobs are scheduled in this order, then the value of Cpaz for this
schedule will be at least v/2n + %,-, and since the value of Cnar is an integer,
this implies the claimed result. The proof will isolate a particular subsequence
of jobs that will, by themselves, imply this lower bound.

Let £ denote the length of the longest increasing subsequence in ji, j2, .- -, Jn,
and let #; denote the length of the longest increasing subsequence that starts
with the element j;. Note that £ € {1,...,£}. Consider the multiset S = {£; :
i=1,...,n}, and let m; denote the number of times that k occurs in S. It
is evident from the jobs of a longest increasing subsequence that my; > 0 for
k=1,...,¢0 Fork =1,...,¢{ we will show that the (non-empty) subsequence
containing all jobs j; for which £; = k must complete processing no earlier than

k + mg. If we let k* denote the value k € {1,2,...,€} for which k + my is



maximized, we will also show that k* + m- 2 f\/_2—7{ -+ -12-} By combining these
two facts, we obtain the claimed lower bound.

Let ji,, Jiay-- -, Ji, denote the subsequence of jobs j; for which £; = k. Note
that s = mg. If j, and j, are two jobs of this subsequence with u < v, it 18
easy to see that ju < j, implies that £, > £y, since j, can be placed at the head
of the longest increasing sequence starting with j,. Thus, &, = £, = - = 4;,
implies that ji,, jizs - - -+ Ji, forms a decreasing sequence. Note that job j;, must
be processed for one time unit on machine n + 1 — j;,, and after that j;, must
be processed for one time unit on machine n + 1 — ji,, and so forth, so that job
ji, completes its processing on machine n no earlier than after s = my units
of time. But now consider the increasing subsequence of jobs of length k that
starts with j;,; call this sequence ji,, ji, 41, - - y Jivyu_y- This sequence must now
be processed on machines n+1,... ,2n. Once again, first j;, must be processed
for one time unit on machine n + j;,, and this must be followed by j;,,, on
machine n + ji,,,, and so forth, so that ji,,,_, is completed on machine 2n at
least k time units later. Thus, the subsequence requires in total at least k 4+ my

time units to complete processing,.

To prove the second fact, suppose that k+ my < r, for each k=1,...,L

Then Z(k-{»mk) < £-r. But note that Zk = ¢(£+1)/2 and ka = n. Thus,

k=1
r>n /£ + (£+1)/2. Applying elementary calculus, we see that the right-hand

side achieves its minimum when £ = V2n, and so r > Vin+ i 5. Since k* 4 mps
is an integer, we obtain the desired inequality.

To see that this bound is tight, consider the schedule given by the per-
mutation 1,3,2,6,5,4,10,9,8,7,...; the pattern of increasingly longer blocks
of decreasing sequences should be clear from this prefix. For n = 10, this
schedule is given in Figure 2. Extrapolating from this example, we see that if
k(k—1)/2 < n < k(k+1)/2, then this schedule for Zap, has Cpaz = k41, which
equals the bound claimed in the theorem. O

The algorithm of Réck and Schmidt [4] proves that p(Z) < [m/2] for any



instance Z. It remains an interesting open question to determine whether there
is a family of instances with an asymptotically larger ratio than O(y/m) or, from
the opposite (and more interesting) point of view, whether there is an algorithm

that always delivers a permutation schedule with Crer < O(VmM)Cryps-

References

[1] P. Erdés and A. Szekeres. A combinatorial problem in geometry. Compositio

Mathematica, 2:463-470, 1935.

[2] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequenc-
ing and Scheduling: Algorithms and Complezity. Technical Report Report
BS-R8909, Centre for Mathematics and Computer Science, 1989.

[3] H. Rock and G. Schmidt. Machine Aggregation Heuristics in Shop Schedul-
ing. Technical Report Berich 82-11, Fachbereich 20 Mathematik, Technische
Universitat Berlin, 1982.

[4] H. Rdck and G. Schmidt. Machine aggregation heuristics in shop-scheduling.
Methods of Oper. Res., 45:303-314, 1983.



Time O T2 3. Time O t 2 3.

Machine |
2p-1] 2 |

n+1

w2

n+2

1]

2n 2n

()

H

(b)

Figure 1: (a) The permutation schedule 1,2, ..., n; (b) the permutation schedule
nn-—1...,1



Time 0 1 2 3 4 5

Machine 1

2

(2]
;

4
-]

. [
O

3
t4

s

19

20

8

Figure 2: A good permutation schedule.



