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Abstract

We describe an interior-point algorithm for linear programming that is almost as simple as the
affine-scaling method and yet achieves the currently best complexity of O(4nt) iterations to attain
precision t. The basic algorithm needs neither dual estimates nor lower bounds, although its analysis is
based on Ye’s results for the primal-dual potential function. We also present some computationally

preferable variants.



1. Introduction

The polynomial-time interior-point algorithms that have been developed in the last few years
can be roughly classified as follows:

i) projective-scaling algorithms, stemming from Karmarkar’s original method [16], such as
those of Anstreicher [1], de Ghellinck and Vial [9], and Todd and Burrell [28];

ii) path-following methods, which attempt to follow closely the central path studied by
Megiddo [20] and Bayer and Lagarias [6], such as the dual algorithm of Renegar [26], the primal
algorithm of Gonzaga [11], and the primal-dual algorithms of Kojima-Mizuno-Yoshise [17,18] and
Monteiro-Adler [24, 25]; and

iii) potential-reduction algorithms, such as those of Gonzaga [12], Ye [31], Freund[8], Kojima-
Mizuno-Yoshise [19], Gonzaga [13], and Anstreicher [2, 3].

While the derivations of these methods follow very different lines, the search directions employed are
invariably linear combinations of two directions: the affine-scaling direction and the centering
direction, which try respectively to improve the objective function and to drive the current iterate
towards the analytic center (Sonnevend [27]) of the feasible region. This property of the search
direction was noted in several papers: Yamashita [30], Gonzaga [10], Mitchell-Todd [22], Zimmerman
[32], and the recent survey of den Hertog and Roos [15]. (In case an algorithm does not require a
feasible starting point and generates infeasible iterates, a third “feasibility” direction is also included in

the search direction; see, e.g., de Ghellinck and Vial [9] and Anstreicher [2].)

The affine-scaling direction mentioned above is the basis of the affine-scaling algorithm first
proposed by Dikin [7] and rediscovered by Barnes [4] and Vanderbei-Meketon-Freedman [29]. This
method is believed not to be polynomial on the basis of results of Megiddo and Shub [21], although a
variant that includes centering steps does possess a polynomial time bound (Barnes-Chopra-Jensen [5]).
The convergence results assume a step a fixed proportion of the way either to the boundary of the
feasible region [29] or to the boundary of the inscribed ellipsoid [7,4], which corresponds to a step of

fixed Fuclidean length in the transformed space.

In this paper we propose a new algorithm whose search direction is a very simple combination
of the affine-scaling and constant-cost centering directions. The step length is a constant in the
transformed space. This simple algorithm attains the best-known complexity for the number of
iterations without requiring the generation of lower bounds on the objective value or of dual feasible
iterates. The proof however does make use of results of Ye [31] concerning the primal-dual potential

function used in his potential reduction algorithm.

Complexity results given in the literature typically address the case of a linear programming

problem with integer data, and bound the computational work in terms of the number of inequalities



n (the number of variables in a standard form problem) and the length L of the input (the total
number of bits necessary to describe the problem). Hence, after suitable initialization, the projective-
scaling algorithms require O(nL) iterations (and O(n3'5L) or O(n4L) arithmetic operations in
total) and the path-following and potential-reduction methods O(JnL) iterations (and O(n3L) or
O(n3'5L) arithmetic operations). This number of iterations guarantees a feasible solution that is
close enough to optimal that an exact solution can be obtained with modest additional computational
effort. However, we feel it is more appropriate for linear programming (where the data are usually
regarded as real) to state the complexity results in terms of n and a parameter ¢, which represents
the precision required as well as the quality (initial objective value and “closeness” to the central path)
of the initial solution. Our algorithms require O(JTt) or O(nt) iterations in this sense, and easily

translate to O(NTL) or O(nL) iteration methods in the integer data case.

Section 2 describes the basic algorithm, and the O(Jnt) complexity result is derived in section
3. Section 4 describes two variants, one of which maintains this complexity while the other requires
O(nt) iterations. These variants sacrifice some of the simplicity of the basic algorithm for improved
practical behavior, and, in particular, recur lower bound estimates of the optimal value; the algorithms
then bear a strong resemblance to those of Gonzaga [12], Ye [31] and Freund [8]. Section 5 contains
the results of preliminary computational experience showing the superiority of the second variant. T his
illustrates a phenomenon which has also been observed elsewhere: the better practical versions of
interior-point algorithms frequently do not have the best theoretical complexity bounds. Our results
also suggest the most important modifications in making the basic algorithm efficient; line searches are

essential, and then the tightest lower bounds significantly improve performance.

2. The basic algorithm

We consider the linear programming problem in standard form:

min ¢’x
(P) Ax=b
x > 0,

where A ismxn. Let F(P):= {x € R": Ax = b, x > 0} denote its feasible region, and

F (P)={x € F(P): x> 0} the relative interior of the feasible region. We assume that F_ (P) is
nonempty, and that (P) has a nonempty bounded set of optimal solutions. Let v(P) denote the
optimal value of (P).
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We suppose that an initial point LeF +(P) is available. At iteration k we will have the
current iterate xfe F +(P), and we define a scaled problem (P) as follows. Let X := diag(xk) be the
diagonal matrix with the components of xE down its diagonal, and consider the affine transformation
X — X 1= Xk'lx. The image of xk under this transformation is e, the vector of ones in R™. In

terms of X, (P) becomes

<]l

min

o
I
i
o

(P)

4l
v
=L

where A = AXk and € = Xkc.

In the scaled problem (P), there are two very important directions. Let P i denote projection

into the null space of A. The first direction is the affine-scaling direction
-Cp == P- ¢; (1)

the second is the projection of the negative gradient of the barrier function
p(X) i= - Ej: in X (2)

evaluated at the point X = e, which is

ep o P;&e. (3)

If €p = 0, then it is easy to see that all feasible points of (P) have the same objective

function value, so are optimal, and hence <K is optimal in (P). Henceforth we assume that € # 0.

Most of the directions we are concerned with are combinations of the form
aﬁ = 'ﬁép + ep (4)
of our two basic directions, for some scalar (. In particular, the direction dy , where

o= ‘c’ge /Egé‘p, (5)



will be very important to us. We note that it has three properties:

dy = argmin {||d||: d = aﬁ for some fB}; (6)
agép = 0; and (7)
5o = d3dq for all B. (8)

It is easy to see that d, is the steepest descent direction for the barrier function in the set

{x:AxX = b, tTx = ¢Te}, so we call d, the constant-cost centering direction. This direction appears
in the centered version of the affine-scaling algorithm due to Barnes, Chopra and Jensen [5] and in the

monotonic versions of the standard-form projective variant (Anstreicher [1]) and of the scaled potential

algorithm (Anstreicher [3]).

The direction of our algorithm is then chosen as follows:

Case 1: ||dg|| > -3. Then set

o
i

do / ldall- (9)
Case 2: ||dgll < -3. Then set
d=-cp / lpll. (10)

Thus our direction is proportional either to the constant-cost centering direction or the affine-scaling

direction, and in either case is normalized to have length 1.

Having defined the direction d, we take a step of length -2, so that
Xy =e+ -2d (11)
in the transformed space, and then

= X (e + -2d) =K + 2x,d, (12)
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. -~ - . Te k-1
Since ||d]| =1,%, > 0 and it is easy to check that A%, =Db; hence x* ' "€ F (P). Moreover,
TR < Tk,

©'x + < cTe (strictly if case 2 obtains) so that c

3. Analysis

In this section we show that, if X0 s suitably chosen, in O(Jnt) iterations we will have an

. k .
iterate x~ € F+(P) with
TxE - y(p) < 27, (13)

The argument uses the results proved by Ye [31] in his scaled potential reduction algorithm.

The dual of (P) is
max by
(D) ATy +s=c¢
s >0,

and, for any x € F(P) and (y,s) feasible in (D), the duality gap is bTy-cTx =xTs > 0. Let
FD)={s € R": ATy + s =c forsome y and s > 0} and F,(D) ={s€FD):s >0}. The
fact that (P) has a nonempty bounded optimal solution set implies that F +(D) # §. For an
x€F (P) and se€F +(D), and for any q > 0, we define the primal-dual potential function (with

parameter q) to be

gbq (x,8) :==q én(sz) -5 xj -3 in Sj -fnn

J J
= (@-n) t(Ts) - 5 tn ] (14)
3 x's/n

> (q- n) tn(xTs)

since the X8 /(xTs/n) terms are positive with arithmetic mean one. We also use ¢(x, s) to denote
gbq(x, s) where @ :=n + 1.

The condition we require on Ve F (P) is that, for some e F (D) (which need not be
known), ¢(x0, sO) = O({1t). (When the data of (P) are integer, Monteiro and Adler [24, 25] show
how to construct a related linear programming problem for which such an initial (xo, SO) can easily

be obtained, with t = L, the size of the input.)
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Suppose that at each iteration we can reduce ¢ by a constant. Then in O(dnt) iterations

we will have (xk, sk) with ¢(xk, sk) < -ynt, so that by (14)

Txk v(P) < (xk)Tsk <2t

as required.

We aim to show that this constant reduction is achieved even though the iterates X are not
explicitly computed. For each xfe F +(P), we use an associated oK = S(Xk) € F (D) that
minimizes qﬁ(xk, -). First we show the existence and uniqueness of such an sk (In fact, it is not hard

to see that s& is on the central path [6,20] for the dual.)

Proposition 1. If $€ F_(P) then inf{¢(x, s):s € F (D)} is attained by a unique

§ € F (D). Write 8 =s(%). If X € F (P) with ¢T% < cT%, then ¢T% - %78 < cTx - &7

8,
where § = s(X), § = s(%).

Proof. Choose any § € F +(D); then we can confine the minimization to those s € F +(D)
with é(%, s) < #(%, §). By (14) this shows that we can add the constraint %Ts < p for some p,
and since & > 0, that s can be confined to a bounded set. Next, since ¢(%, s) > {n én(iTs) -
fn (ijsj) + en(xTs) - tnn, and %Ts > ¢k - v(P) > 0, we can further restrict 55 to be at least some
positive 8 and this argument applies to each j. But ¢(X, -) is continuous on the compact set
{s € F(D): xTs < p, 5; > 5 all j}, so it attains its minimum there, and existence follows. Uniqueness
is then implied by the argument of [28, Lemma 2.3]. So we can write § = s(X).

Now suppose § = s(X), § = s(X), where Tx < Tk If ¢Tx =cT%, then 4(%, -) and
#(%, ) differ by a constant, so § =§ and the second part follows easily; both sides of the inequality
equal bT§, where (§,8) is feasiblein (D). So assume that ¢Tx < c¢T%. Then from ¢(%,8) <
#(%,3) and ¢(X, 8) < ¢(%, 5) we deduce that &n %Ta+ n 78 < tn £75 + In %75, Suppose (¥, 8)
and (¥, §) are feasible in (D). By exponentiating the last inequality and simplifying, we find

(cTx - <T)(DBTy - bTy) < 0.
Then bTy < bT§, which yields the second part.

We will show that ¢(xk+1, s(xk)) < ¢(xk, s(xk)) - -02 for each k, so that

oL (5T < g, s()) - -02 (15)
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a fortiori. This will prove the desired complexity result. (In effect, we are working with the primal-

only potential function

P(x) := min{(x, 5) : s € F (D)} = ¢(x, s(x)), (16)

which is the only such function we know that can ensure an O(Ynt) iteration bound.)

Note that (;S(A’lx, As) = ¢(x,s) for any positive definite diagonal matrix A. We can
therefore always scale so that our current iterate <K is e, and it is straightforward to check that the
algorithm of section 2 is invariant under such scaling. We will therefore assume until the statement of
Theorem 1 that such a scaling has already been performed, so that xk = e, and we omit the overbars
in our notation, so that ¢cp = PAc, ep = PAe, dﬂ = -fep +ep, o= cge/cgcp, and d is our

search direction. We wish to show that

d(e + -2d, s(e)) < ¢(e, s(e)) - -02; (17)

this will then imply (15) as desired.

A key point is that, for any q > 0,

- PA(Vxdq(e s(e)) = - Py (or s 5(6) - @

q
= - Cp + €
eTs(e) P P

(since ATy + s(e) = ¢ for some y, PAs(e) =Pyc= ¢p), and this is of the form dﬁ for some
8 > 0. We now have

Lemma 1. For any q > n + +n,

I gl 2 "

Proof. Assume the contrary, so that ||h|] < -4 where h = (q/eTs(e)) cp - ep for some
q > n + 0. Then, for some vy,

T
ATy+§—Z(e—)(e+h):c,



so that

¢:= 250 (o 4 ny e T, (D) (19)
=2 (D).

Moreover, the associated duality gap is

T T
els = e——-—?) (eT(e -+ h)) < If—:(j'z—l (n + -4 \I_I—l)
<(1- n'iﬁﬁ) eTs(e). (20)
Finally, lemma 2 of Ye [30] shows that
T T
IIs-S52ell < -5 5% (21)

note that Ye’s argument does not require that q (his p) equals n + Yn. We can then argue as in

theorem 1 of Ye [30] that

52
5e,5) < glers(e) - $ + 5L
< ¢(e, s(e))s

which contradicts our choice of s(e). Hence (18) must hold.

We also require the following standard result; see for instance Ye [3 1.

Lemma 2. If Ad=0, ||d]| =1, and 0 < v <1, then

2
pqle + 7d, s) < dqle, s) + YVxdqle, $)Td + Z—lzj—:f‘) (22)

Now we consider the two cases of our algorithm, and prove that in each case (17) holds.
Define 6 by -P, Vxé(e, s(e)) = ds.

First assume that ||dq|| > -3 so that d = dy/||dg]|- Then
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Ve, s(e)Td = (P, Vxd(e, s(e))) da/lldall

= -dTda/lldall
= -d%da/lldall = -lldall < -3,

where the first equality holds since d is in the null space of A, the second by definition of 6, and
the third by (8). Hence with v = -2, lemma 2 yields

(-2)
2(T--2)

< ¢(e, s(e)) - -02. (23)

gb(e + -2d, S(e)) < (]5(8, S(e)) -2 x 34+

Now suppose that ||dg|] < -3. Then § > o (otherwise o = q/eTs(e) for some
q > n + {0, contradicting lemma 1) and in fact, since Hdéﬂ > -4, dg makes an angle of at least
arc cos(3/4) with dq, and hence an angle of at most arc cos (5/8) with -cp (see Figure 1). Hence,

with d = -cp/|lepl| we have dgd < -(5/8)x-4 = --25. Using lemma 2 we can conclude

2
(-2)
$le + -2d, s(e)) < d(e, s(e)) - -2 x 25 + 2(1--2)
< é(e, s(e)) - -02.
To summarize, we have shown
Theorem 1. At each iteration of the algorithm of section 2,
1 <41
BT, () < 6k, (2K - -02. (24)

If ¢(x0, SO) = O(+nt) for some e F (D), then after O(41t) iterations we have xK with

Tk - v(P) < ot
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-P 5 Vxé(e, s(e)) in this cone

4. Refinements

The simple algorithm of section 2 does not perform well in practice. Indeed, (12) shows that
each component of xk can decrease by at most 20% in each iteration, so that the best we can hope
for is linear convergence with ratio -8. In this section we describe refinements that attempt to
improve the convergence while maintaining the simple structure of the algorithm. Usually, an interior-
point method can be improved significantly by incorporating a line search. Here, however, the
potential function on which we would like to perform a line search cannot easily be computed, and
hence complications arise. We use the insights obtained from the analysis of section 3 and update

lower bounds on the optimal value. The resulting methods bear a strong resemblance to those of
Gonzaga [12], Ye [31] and Freund (8].

Our first variant maintains inequality (24), and hence provides an O({mt) iteration method
(O(NTL) for a problem with integer data), while our second variant is preferable in practice but has

only an O(nt) iteration bound.

At each iteration, we try to update the current lower bound 2o then choose a search direction

and make a line search in this direction to minimize approximately some potential function. In the

second variant we only need z < v(P). In the first, we require further that <TxK - 7y = (xk)Ts(xk),
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and when we update zy, toz) 11 e insist that )11 also satisfies this inequality. Since our

algorithm is monotonic, Proposition 1 then implies that cTXk+1 > (xk+1)Ts(xk+1). In both

T P41
variants we can initialize with zg = -00-

To describe the iteration it is again convenient to assume that the problem has been scaled if
necessary so that the current iterate is e. Suppose cp, ep and o have been calculated. In the first

variant, Zy is updated as follows.

It ||dall > -4, By "= Pk

Otherwise, let € > o be such that [|de|| = -4.

If e<0, 2y = % (25)
If ¢>0, let zy := cTe- (n 440)/e and g = max{zy, 2 }.

This method of updating 2 is very similar to that of Gonzaga [12, section 5] and closely related to
those of Freund [8] and Ye [31]. We then have

Lemma 3. Assume that ce- 7y 2 eTs(e), so that 7 isa valid lower bound on v(P).
Then if il is updated by (25), cTe - )41 > eTs(e) also, so that 2}yl is a valid lower bound

too.

Proof. There is nothing to show if 2y = U Otherwise, 2y 11 = 2y Because of lemma 1,
(n + vm)/eTs(e) > e = (n + \)/(cTe - z, ), which gives the desired inequality. Then 2., isa
valid lower bound because it is at most c'e - eTs(e), the value of the dual solution corresponding to

s(e).
Next we compute the search direction d as follows. First, let

q/(cTe - 21 1) if 2 ¢ > -0,
¢ { -+ + (26)

0 if g = "0

for q =n + v1. Note that, if ||dg|| < -4, then { > ¢ > a so that HdCH > -4 by definition of e,
while if ||dgl] > -4 then ”dCH > .4 by (6).

Case A ¢ < a. Then ||[dg|| > -4. In this case, set

— __(.i_g__ )
4= Tl 27)
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Case B ( > a. Let
- d ~C
i=-S 4+ B
Hcp“ (28)

T,
d = d/|id]l.
(Note that Gonzaga [12], Ye [31], and Freund [8], given a lower bound z) , 4 and resulting { with

d sufficiently large, would choose d = d ..
¢ ¢

Lemma 4. If d is defined as above, then
Vxoqle, s(e))Td < - 28

for any q > 0 if iyl = -0 and for any q > n + n if zk+1>—oo.

Proof. Define § by -P, Vxéq(e, s(e)) = dg. Then Vxdqle, s(e))Td = -dgd. In case A,
d=dg/lldall and -dfd =-djda/lldall = -dada/lldall = -lldall < --4 using (8).

In case B, lemma 3 and (26) show that § > ( > a as long as By =0 (=0, 6 >0 for
any q > 0) or q > n+ 0 (using lemma 1). Hence ”déll > ”dC” > -4. Now d is a unit vector
that bisects the angle between the two extreme directions for dg, namely d ¢ and -cp. Since
¢ > @, these two directions form a non-obtuse angle, so the angle between d; and d is at most

7 /4. Then

—dgd < -||d5{}cos(7r/4) < --4 cos(mf4) < --28.

Now we search on the half-line {e + Ad: A > 0}. If Zypyq = -0, We seek to minimize

qﬁg(x, -00) 1= - }: fn X35 (29)
J

the barrier function. It is easy to see that, in either case A or case B, qSOP can be decreased by at
least -03. Moreover, since ¢'d < 0, we obtain at least as great a decrease in the primal potential

function

gbc};(x, z) :=q tn(cTx - 2) - 2 In X (30)
J

for any ¢ > n and z < v(P), and hence in 4(x, s(e)), since this differs by a constant from

gbg(x, z) with q=n++n and z = cTe - eTs(e).
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If 2t 1 > -00, we seek to minimize

¢(]i)(xa Zk+1) (31)

for q = n + {1. Again, our updating scheme for z) ensures that this can be decreased by at least

.03, and that ¢(x, s(e)) can be reduced by at least as much.

Hence our first variant of the basic algorithm preserves (24), while employing directions
probably closer to the negative of the projected scaled gradient of the appropriate potential function

and allowing line searches to achieve greater reductions in such potential functions.

The following argument, which improves the author’s original and is due to Y. Ye (private
communication), shows that a finite lower bound must be generated in O(Ynt) iterations. Indeed,
qS(XO, SO) = O(Jnt) implies ¢n(xo, SO) = O(Jnt). Until a lower bound is generated, ¢y decreases

by a constant at each iteration, while it is bounded below by zero. This yields the desired complexity.

Once again we have a monotonic algorithm, so all iterates lie in the compact set {x € F(P):
1/n

Tx < CTXO}. Let ¢ := max{eTx/n: x € F(P), ¢"x < CTXO} and let §0 = H?:l x?) , the
geometric mean of the components of xo. Our remarks above on decreasing qﬁg ensure that,
60 (X, 7)) < 50, 2,) - 03K (32)
for ¢ = n + 1, and using the estimates above and the fact that n < n 4 {n < 2n, we find
(TxK - 2) < (€/€%) - exp(--01k/n)-(cTx0 - 7). (33)

Assuming that Tx0 - zy and &/ §0 are bounded by 2t we can obtain from (33) an O(nt) bound on
the number of iterations to obtain Txk - 7, < 278, This contrasts with the O(41t) bound in
Theorem 1, which is still valid; one reason for the difference is that v(P) is not known in Theorem 1,
whereas here 2y is a known (and possibly not very tight) lower bound on v(P). By contrast, the
algorithms of Ye [31] and Freund [8, section 4] require only O(ynt) iterations to obtain this

inequality, where now Zy is the lower bound associated with an explicitly computed dual solution.

This first variant of the basic algorithm generates better directions than the original, but it
still converges rather slowly in practice. The reason appears to be that the lower bounds generated are
rather poor, so that in the line search to minimize gbll;) + ﬁ(x, 2y +1)’ the barrier term —Zj In x.

J
forces a small step size, typically of the order of a tenth the maximum feasible step size.
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In order to obtain better lower bounds, we reconsider the argument used in lemma 1. For any
B> 0,if ||- Bep + epll < 1, we find that s := (1/8)(e + Bep - ep) =cp + (e-ep)/B belongs to
F(D), and the associated duality gap is eTcp +eT(e- ep)/B = eTcp + |le - epi|2/,6', which is
decreasing as a function of 3. In fact, it is not even necessary that || - Bep + epH < 1; aslongas s

is nonnegative, it provides such a bound. Hence we have

Lemma 5. If there is some B >0 with cp + (e-ep)/B >0, let 8 be the maximum such.
Then z = cTe - cpTe - lle - epHQ/B is a lower bound on v(P).

This lower bound was also obtained independently by Gonzaga [14]. In fact, it is also implicit in the

statement on performing a line search for A in Freund [8, section 3].

Thus our second variant sets z, as above if the criterion of the lemma is met, and then sets

Byl = max{z, 2y}

In this second variant, 2} is always a lower bound, but we may not have cTe - ) > eTs(e) as
we did before. Given z; 11 We define the search direction d as above (see (27)-(28)) and perform
a line search on (29) or (31) as before. However, since we no longer have 2y < <TxK - (xk)Ts(xk),
we may not obtain a corresponding decrease in ¢(x, s(e)). Nevertheless, our line search can guarantee a
decrease of at least -03 in ¢0P(x, -00) (and in qﬁg(x, z) for any z and any q) if pgq = - and
the same decrease in qﬁg(x, Zk+1) for q=n++n if z; ;> -co. Thus (32) - (33) remain valid,
and we deduce that the second variant provides an O(nt) iteration algorithm. This remains true if g

in (26) and (31) is O(n), rather than n + n.

5. Computational Results

We conclude the paper by giving the results of some very preliminary computational testing.
These results suggest that the key refinement is the incorporation of a line search, followed by the use

of impoved lower bounds.

The test problems were obtained as follows. For a given m and n, we generated each entry
of A,y and s as an independent standard normal random variable, then set b = Ae and
¢ = ATy + |s|, where [s| = ([sj]); the initial solution was xU = e. We describe the results of several
variants. In all of them, we generated a sequence of lower bounds z), even if they were not used in

the algorithm, in order to terminate when (cTx - zy) /max{1, |cTx|} was less than 10"%. Whenever a
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search direction d¥ was obtained, we checked this termination criterion at the point
X = XX + Amax dk, where Apax = max{\: <K + )\dk > 0}, so that the algorithm could terminate

in a reasonable number of iterations even if it chose rather small step sizes.

The first variant differs from the basic algorithm of section 2 in three respects. It uses a
sequence of lower bounds, generates improved directions, and performs a line search on a suitable
potential function. The second variant adds to this an improved lower bound update. For one
50x100 problem, we tested all combinations of these features, as well as trying
gq=n1n+ 0 and q = 2n for the second variant. Thus we tried nine algorithms: the basic algorithm
of section 2 (with termination based on lower bounds as in the first variant), then this basic method
with a line search, the basic method with improved search directions, and the basic method with
improved lower bounds (which only affect the termination criterion in this case); next, the basic
algorithm with two of these features, namely, with improved directions and improved lower bounds,
with a line search and improved lower bounds and with a line search and improved directions (the first
variant); and finally, with all three features and q =n + Y0 or q = 2n (the second variant). The
results are given in table 1, which also presents a typical value of ’\k /Amax, where /\k is the step
size chosen and Apax the maximum feasible step size. All runs used PRO-MATLAB [23] Version
3.5e on a Sun SPARCstation 1.

It is clear that the most significant enhancement is the incorportation of a line search; when
this is present, improved lower bounds are more important than better directions because they allow
longer step sizes to be used. Finally, all three features together allow a considerable decrease in the
number of iterations required, especially for q = 2n. (If we also recur the improved lower bounds in
the first variant, but only use them in the termination criterion (thus maintaining the theoretical
O(41it) bound) then the number of iterations required decreases only slightly, to 77. Thus the
difficulty is slow primal convergence, not a poor termination criterion.) Similar results hold for other

test problems solved.

We also solved ten random 50x100 problems using the second variant. With g = n + «n,
the average number of iterations was 12-2, with Ak /Amax typically -87; with q = 2n, the figures
become 11-0 and -97. Five random 100x200 problems needed an average of 14-0 iterations with
g=n+ V0 and 12-2 with q = 2n. For 150x300 problems the figures were 14-4 and 13-0
respectively, and for 200x400 problems 15-4 and 13-6. The typical step size ratio was similar to those

reported above.

Finally, a single 100x200 problem, which required 16 or 14 iterations for the second variant,

needed 161 for the first variant (144 if termination was based on the improved lower bounds) and 626
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for the basic algorithm and a 200x400 problem also needing 16 or 14 iterations for the second variant

required 240 (or 202) for the first variant and 739 for the basic algorithm.

Acknowledgment. I am very grateful to the referees for their helpful comments, which considerably

improved the presentation.

Method Number of Iterations  Typical ’\k /Amax
Basic 347 -04
Basic with line search 98 -13
Basic with improved directions 347 -04
Basic with improved bounds 282 -04

Basic with improved directions
and improved bounds 262 -04

Basic with line search and
improved bounds 27 -46

Basic with line search and
improved directions

(first variant) 95 -14
Second variant, g=n-++n 12 -87
Second variant, q=2n 11 -98

Table 1. Computational Results on a 50x100 problem
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4. Refinements

The simple algorithm of section 2 does not perform well in practice. Indeed, (12) shows that
each component of xk can decrease by at most 20% in each iteration, so that the best we can hope
for is linear convergence with ratio -8. In this section we describe refinements that attempt to
improve the convergence while maintaining the simple structure of the algorithm. Usually, an interior-
point method can be improved significantly by incorporating a line search. Here, however, the
potential function on which we would like to perform a line search cannot easily be computed, and
hence complications arise. We use the insights obtained from the analysis of section 3 and update
lower bounds on the optimal value. The resulting methods bear a strong resemblance to those of

Gonzaga [12], Ye [31] and Freund [8].

Our first variant maintains inequality (24), and hence provides an O(ymt) iteration method
(O(4nL) for a problem with integer data), while our second variant is preferable in practice but has

only an O(nut) iteration bound.

At each iteration, we try to update the current lower bound Zyer then choose a search direction
and make a line search in this direction to minimize approximately some potential function. In the

second variant we only need z) < v(P). In the first, we require further that Txk zy 2 (xk)rs(xk),
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