SCHOOL OF QPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853

TECHNICAL REPORT NO. 900

QOctober 1987
Revised October 1989

BOND PRICING AND THE TERM STRUCTURE
OF INTEREST RATES: A NEW METHODOLOGY
FOR CONTINGENT CLAIMS VALUATION®

by

David Heath?, Robert Jarrow, Andrew Morton®

Formerly titled “Bond Pricing and the Term Structure of Interest Rates: A New
Methodology.”

?Research partially supported by the U.S. Army Research Office through the
Mathematical Sciences Institute at Cornell University.

FResearch partially supported by a Natural Sciences and Engineering Research
Council of Canada Graduate Fellowship.

Helpful comments from P. Artzner and F. Delbaen and from workshops at
Berkeley, Columbia University, Cornell University, Dartmouth College, Duke
University, New York University, Stanford University, U.C.L.A., University of
Tlinois at Chicago, and Yale University are gratefully acknowledged.






Abstract

This paper presents a unifying theory for vaiuing contingent claims under a stochastic
term structure of interest rates. The methodology, based on the equivalent martingale
measure technique, takes as given an initial forward rate curve and a family of potential
stochastic processes for its subsequent movements. A no arbitrage condition restricts this
family of processes yielding valuation formula for interest rate sensitive contingent claims
which are independent of the market prices of risk. Examples are provided to illustrate the

key resuits.






Bond Pricing and the Term Structure of Interest Rates:

A New Methodology for Contingent Claims Valuation

In relation to the term structure of interest rates, arbitrage pricing theory has two
related purposes. The first, is to price all zero coupon (default free) bonds of varying
maturities from a finite nurber of economic fundamentals, called state variables, The
second, is to price all interest rate sensitive contingent claims, taking as given the
prices of the zero coupon bonds. This paper presents a general theory and a unifying
framework for understanding arbitrage pricing fheory in this context, of which all existing
arbitrage pricing mxdels are special cases (in particular, Vasicek {1977], Bremnan and
Schwartz [1979], Langetieg {19801, Ball and Torous [1983], Ho and Lee [1986], Schaefer and
Schwartz [1987], and Artzner and Delbaen [1988]).

The primary contribution of this paper, however, is a new methodology for solving the
second problem, i.e., the pricing of interest rate sensitive contingent claims given the
prices of all zero coupon bonds. The methodology is new because (1) it is independent of
the "market prices of risk,* (i1) it has a stochastic spot rate process with multipie
stochastic factors influencing the term structure, (iii) it can be used to consistently
price (and hedge) all contingent claims (American or European) on the term structure, and
(iv) it is derived from necessary and {more importantly) sufficient conditions for the
absence of arbitrage. None of the existing models simultaneously satisfy all of these
criteria.

Indeed, the arbitrage pricing models of Vasichek [1977], Brennan and Schwartz [1979],
Langetieg [1980], and Artzner and Delbaen [1988] all require estimates of the market prices
of risk to price contingent claims. These quantities, being stochastic and nonstationary,
are difficult to estimate. They appear in the valuation formulae due to the two-step
procedure utilized in these papers to price contingent claims. The first step is to price

the zero coupon bonds from a finite number of state variables. Given these derived prices,



the second step is to value contingent claims. The equilibrium model of Cox, Ingersoll,
Ross [1985], when used to value contingent claims, also follows this same two-step
procedure. It is in the first step in this procedure that introduces the market prices of
risk into the valuation formulae.

In the above models, for parameterized forms of the market prices for risk, it is
possible to invert the bond pricing formula after step one, to obtain the market prices for
risk as functions of the zero coupon bond prices. This inversion would remove the market
prices for risk from contingent claim values. The inversion, however, is problematic.

First, it is computationally difficult since the bond pricing formula are highly non-linear.
Secondly, as will be shown later, the spot rate and bond price processes parameters are not
independent of the market prices for risk. Hence, arbitrarily specifying a parameterized
form of the market prices for risk as a function of the state variables can lead to an
inconsistent model, i.e., one which admits arbitrage opportunities. This possibility was
originally noted by Cox, Ingersoll, and Ross [1985, p. 398].

Another class of arbitrage pricing models, illustrated by Ball and Torous [1983] and
Shaefer and Schwartz [1987] avoids this two-step procedure by taking a finite number of
initial bond prices and bond price processes as exogenously given. Unfortunately, Schaefer
and Schwartz's model requires a constant spot rate process, and as shown by Cheng [1987],
Ball and Torous' model is inconsistent with stochastic spot rate processes and the absence
of arbitrage. Furthermore, due to their special structure, neither model can be utilized to
value American type claims with a continuum of possible early exercise dates.

The model of Ho and Lee [1976] is the closest in spirit to our model. They alsoc avoid
the two-step procedure by taking the initial bond prices and bond price processes as
exogenously given. Unlike all the previous models, however, they utilize a discrete trading
economy. The zero coupon bond price curve, in constrast to a finite number of bond prices,
is assumed to fluctuate randomly over time according to a binomial process. Unfortunately,

it is only a singie factor model, so bonds of all maturities are perfectly correlated. The



discrete process chosen for estimation and computation also implies negative interest rates
with positive probability. This is another drawback of their model, not shared by ours.
Last, to implement their model, they estimate the parameters of the discrete time binomial
process. For large step sizes, as shown by Heath, Jarrow, Morton [1988], the parameters are
not independent. This makes estimation problematic, as the dependence is usually not
explicitly taken into account. The continuous time limit of this model, which is studied
below as a special case, is not subject to this same difficulty.

In contrast to the previous class of models which avoid the two-step procedure, our
model imposes the exogenous stochastic structure upon forward rates, and not the zero coupon
bond prices. This change in perspective facilitates the empirical estimation and practical
implementation of the model. Indeed, forward rates as a stochastic process are more
staticnary than are zero coupon bond prices. Since zero coupon bond prices are a fixed
constant at matu'm'ty, their "volatilities” must change over time. In contrast, constant
forward rate volatilities are consistent with a fixed value for a default free, zero coupon
bond at maturity. This stationarity facilitates estimation. Further, the standard
properties of the bond price process and the spot rate process are easily deducible from
forward rates.

The forward rate perspective is also advantageous for irrpieménti ng these models.
Indeed, traders use the Black-Scholes technology and are accustomed to thinking in terms of
a "term structure of volatilities.” Our approach requires such a "term'structure of
volatilities" as the input. Analogous to the Black-Scholes model when applied to price bond
options, the inputs to our contingent claim valuation formulae are only the initial forward
rate curve, volatilities, and the details of the contract.

As mentioned above, the model in this paper takes as given the initial forward rate
curve. We then specify a general (possibly non-Markov) continuous time stochastic process
for its evolution across time. To ensure that the process is consistent with an arbitrage

free economy (and hence with some equilibrium), we use the insights of Harrison and Kreps



[1979] to characterize the conditions on the forward rate process such that there exists a
unique, equivalent martingale probability measure. Under these conditions, contingent claim
valuation js then a straightforward application of the methods known from Harrison and
Pliska {1981]. We illustrate this approach with multiple examies. The exanples themse:ves
should prove useful for practical applications to financial trading.

An outline of this paper is as follows: Section 2 presents the terminoiogy and
notation. Section 3 presents the forward rate process. Section 4 characterizes arbitrage
free forward rate processes. Section 5 extends the model to price interest rate dependent
contingent claims. Sections 6-9 provide examples. Section 10 relates the arbitrage pricing
approach to the equilibrium pricing approach, while Section 11 summarizes the paper and

discusses generalizations.

2. Terminology and Notation

This section of the paper presents the model’s terminology and notation. We consider a
continuous trading economy with a trading interval [0,7] for a fixed 7> 0. The uncertainty
in the economy is characterized by the probability space (Q,F,Q) where Q1 is the state space,
F is the g-algebra representing measurable events, and Q is a probability measure.
Information evoives over the trading interval according to the augmented, right continuous,
complete filtration! {Ft: t ¢ [0,7]} generated by two independent Brownian motions
{wl(t), |.wlz(t): t € [0,7]} both initialized at zero. The restriction to two Brownian motions
is imposed only for expositional clarity. All the subseguent results are readily extended
to the case of a finite number of independent Brownian motions. We let E(-) denote
expectation with respect to the probability measure Q.

A continuum of default free discount bonds trade, one for each trading date T ¢ [0,r].
The T maturity bond pays a certain dollar at date 7. P(t,T) denotes the time t price of the
T maturity bond for all T ¢ [0,7] and t ¢ [0,T]. We require that P(T,T) = 1 for all
Te [0,7], P(t,T) >0 for ali Te [0,7] and t € [0,T], and that 3 log P(t,T)/dT exists for



all Te [0,7] and t € [0,T]. The first condition normalizes the bond's payoff to be one
dollar at maturity. The second condition excludes the trivial arbitrage opportunity where a
certain dollar can be obtained for free. The last condition guarantees that forward rates
are well-defined.

The instantaneous forward rate at time t for date T > t, f(t,T), is defined by
f(t,T) = -dTogP(t,T)/8T for all T e [0,7], t € [0,T]. (1)

It corresponds to the rate that one can contract for at time t, on a riskless loan that
begins at date T and is returned an instant later. Solving the partial differential

equation of expression (1) yields:

T
P(t,T) = exp(-{f(t,s)ds) for al1 T ¢ {0,7], t € [0,T]. (2}

The spot rate at time t, r(t), is the instantaneous forward rate at time t for date t,2

i.e.,
r(t) = f(t,t) for all t e [0,7]. (3)

For the subsequent analysis, it is convenient to define an accumulation factor, B(t),
corresponding to the price of a money market account (rolling over at r(t)} initialized at

time 0 with a dollar investment, i.e.,

t
B(t) = exp(jo'r(_y)dy) for all t e [0,7]. (4)

3. Term Structure Movements

This section of the paper presents the family of stochastic processes representing
forward rate movements, condition (C.1). This condition describes forward rates, and

uniquely specifies the spot rate process and the bond price process. Additional boundedness



conditions, (C.2) and (C.3), are required to guarantee that the spot rate and the bond price

orocess are well-behaved.

{(C.1: A Family of Forward Rate Processes)
For fixed, but arbitrary T e [0,7], f(t,T) satisfies the following equation:
t 2t
f(t,1-f(0,T) = [ a(v,Tw)dv + L ]ai(v,T,w)cMT. (v) foralto{t(T (5)
0 i=1 0
where
(i) {f(0,T): T e [0,7]} is a fixed, non-random initial forward rate curve which is
measurable as a mapping f{(0,-): ([0,7],B[0,7]} + (R,B) where B[0,7] is the Borel

o-algebra restricted to [0,7],

(i1) a: {(t,s): 0t <{s{T} x0+R is jointly measurable from
B{(t,s): 0 {t{s{T}xF+ 8, adapted, with

T
[ |a(t,T,w)|dt 4+ a.e. Q, and
0

(i11) The volatilities o, {(t,s): 0{ t{'s { T} x A + R are jointly measurable
from B{(t,s): 0 { t { s { T} x F + B, adapted, and satisfy

T
I o’?(t,?,w)dt (Hmae, Qfori=1, 2
0

This is a very general stochastic process. Two Brownian motions determine the
stochastic fluctuation of the entire forward rate curve starting from a fixed initial curve
{f(0,T): T ¢ [0,7]}. The sensitivity of a particular maturity forward rate‘s change to each
Brownian motion is reflected by differing volatility coefficients. The volatility
coefficients, {0“1. (t,T,w): Te [0,7]} for i = 1, 2 are left unspecified, except for mﬁd

measurability and integrability conditions, and can depend on the entire past of all of the



Brewnian motions. Different specifications for these volatility coefficients generate
significantly different qualitative characteristics of the forward rate process.

For a fixed maturity T, the forward rate process's drift term, a{t,T,u), is non-
constant and may depend on the path of the Brownian motion from time O to t. The family of
drift functions {a(*,T): T e [0,7]} is unrestricted (at this point), except for mild
measurability and integrability conditions.

It is important to emphasize that the only substantive economic restrictions imposed on
the forward rate process are that they have continuous sample paths and that they depend on
only a finite number of random shocks (across the entire forward rate curve). The first
restriction implies that information flows continuously over time, and can be relaxed by
standard techniques involving jump processes (see Merton [1976]). The second restriction
can aiso be relaxed by including a countably infinite number of Brownian motions where all
but a finite number are diversifiable. This generalization would proceed along the lines of
Ross [1976] or Chamberiain [1988].

Given condition (C.1), we can determine the dynamics of the spot rate process:

t t t
r{t) = f(0,t) + fa(v,t,w)dv + fal(v,t.u)dwl(v) + faz(v,t,w)dwz(v)
0 0 0
for all t € [0,T]. (6)

The spot rate process is similar to the forward rate process, except that both the time and
maturity arguments vary simuitaneously.
Given the dynamics of the spot rate process, we need to ensure that the value of the

money market account, as defined in expression (4), satisfies:
0 {B(t,w) {+ a.e. Q forallte [0,r]. 7

This is guaranteed by condition (C.2).3



(C.2: Regularity of the Money Market Account)

T
[ 10 ) |dv < 4=,
0

t
{I lalv,t,w)|dvidt (+o a.e. Q,
0

Ot

T
{tw) + [ 2 (\!,t,w)d‘m‘i (v) is measurable as a mapping from B[0,7] x F + B
0

for ail T ¢ [0,t], and

1

O—
Ot= o+

o (v.t,u)owi (V)[dt { += a.e. Qfori=1, 2.
Next, we are interested in the dynamics of the bond price process. The following
condition imposes sufficient regularity on the coefficients of the forward rate process so

that the bond price process is well-behaved.

(C.3: Regularity of the Bond Price Process)

t t

I a; (v,y.u)dy]zdv {4+ a.e. Qforallte[0,rJandi =1, 2,

0 v

t T 2

I 0 ai(v,y,w)dy] dv{+ a.e. Qforallte[0,7T], Tef07], 1=1,2
0t

T ¢
t+f ai(v,y,w)dwi (v)]dy is continuous a.e. Q for all Te [0,7] and i = 1,2,
t 0

It is shown in the appendix that under conditions (C.1) - (C.3), the dynamics of the bond

price process (suppressing the notational dependence on w) is:



t 2t
I P(E,T) = T P(O,T) + [ [r(v) +b(v,)]dv - (1/2) T [ a(v,D%v
0 i=10
2 t
+ I a; (v,T)dw]. (v) a.e. Q (8)
i=1 0
where
.
a;(t,Tw) = - [ o,(t,vw)dv for i = 1,2, and
t

2

T 2
b(t,T,w) = - [ a(t,vw)dv + (1/2) I a; (t,T,w)".
t i=

i=1
A straightforward application of Ito's lemma to expression (8) yields P(t,T) as the
strong solution to the following stochastic differential eguation:

2
dP(t,T) = [r(t) +b(t,T)IP(t,T)dt + L &, (t,T)P(t, )M (t) a.e. Q. (9)
j=

i
In general, the bond price process is non-Markov since the drift term [r(t,w) +
b(t,T,w)] and the volatility coefficients a; (t,T,w) for i = 1,2 can depend on the history of
the Brownian motions {wl(t), wz(t): t € [0,7]}. The form of the bond price process as given
in expression {9) is similar to, but more general than, that appearing in the existing
literature, see for example, Brennan and Schwartz [1979] or Langetieg [1980]. The process
as given in expression (9) is more general since it requires less regularity assumptions and
it need not be Markov.
We define the relative bond price for a T-maturity bond as Z(t,T) = P(t,T)/B(t) for
Te {0,7] ad t € [0,T]. The relative bond price is the bond's value expressed in units of
the accumuiation factor, not dollars. This transformation removes the portion of the bond's
drift due to the spot rate process. As such, it is particulariy useful for anaiysis.

Applying Ito's lemma to the definition of Z(t,T) yields:
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t 2t 2
Tn Z(t,T) = In Z(0,T) + [ b(v,T)dv - (1/2) L | a; (v,T)dv
5 .

i=1 0

(10)

2 t

+ L Ja (v,T)cM}. (v} a.e. Q
i=1 0
or
dz(t,T) = b(t, T)Z(t,T)dt + al(t,T)Z(t.T)dwl(t) + az(t,T)Z(t,T)dwz(t)

for all T e [0,7], t e [0,T]. (11)

Again, the relative bond price at date t depends on the path of the Brownian motion through
the cumlative forward rate drifts, volatilities, and, in general, it cannot be written as a

function of only the current values of the Brownian motions {\.»J1 (t) ,wz(t): t e [0,7]1.

4. Arbitrage Free Bond Pricing and Term Strucfure Movements

Given conditions (C.1) - (C.3), this section characterizes the conditions on the
forward rate process which are necessary and sufficient to guarantee the existence of a

unique, equ'iva1ent4 martingaie probability measure.

(C.4: Existence of the Market Prices for Risk)
FixanS, Te [0,7] such that 0 (ST T,
Assume there exists soluticns 71.(',',3,T): Qx[0,S]+Rfori=1,2a.e. §xitothe

following system of equations:

o (12}
b(t,T)

b9 | [3®9) 5t ) [nesn) (o
+
al(trT) a-z(tnT) 72(tySrT) 0



i1

which satisfy

S
é T (v,S,T)zdv (o ae Qfori=1,2 (13.3)
2 S 2 S 2
Elep{ L ffy.(v,S,T)dw}. (v) - /2 £ [ 9.(v,S,T)%v}) = 1, and (13.h)
i=10 ' =10
2 S 2 S >
E(em{iﬂlé (a;(v,y) + (.5, T)]dW; (v) - (1/2)):1 ! [a;(v.y) + 7; (.S, DIV = 1
= i=
(13.¢)

fory e {S,T}

where X is Lebesque measure.

The system of equations in expression (12) gives 1 (t,S,T) for i = 1,2 the

interpretation of being the market prices for risk associated with the random factors wi (t)
for i = 1,2, respectively. Indeed, to see this, we can rewrite expression (12) for the T-
maturity bond as:

2
b(t,T) = I ay(6,T) (4 (£,5,7) (14)

i=1
The left side of expression {14) is the instantaneous excess expected return on the
T-maturity bond above the risk free rate. The right side is the sum of (minus) the "market
price of risk for factor i" times the instantaneous covariance between the T-maturity bond's
return and the i-th random factor for i = 1 to 2. It is important to emphasize that the
solutions to expression (12) depend, in general, on the pair of bonds {S,T} chosen.

The following proposition shows that condition (C.4) guérantees the existence of an

equivalent martingale probability measure.
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Proposition 1 (Existence of an Equivalent Martingale Measure)

Fix an S,T € [0,7] such that 0 { S T 7. Given a pair of forward rate drifts
{a(*,S), a(*,T)} and volatilities {01‘("5)' "i("T)} for i = 1, 2 satisfying conditions
(C.1) - (C.3); then, condition (C.4) holds if and only if there exists an equivalent
probability measure aST such that Z(t,S) and Z(t,T) are both martingales with respect to
{Fy: t e [0,S]].

Proof: In the appendix. ///

This proposition asserts that under conditions (C.1) - (C.3), condition (C.4) is both
necessary and sufficient for the existence of an equivalent martingale measure QST' In

fact, the proof of proposition 1 identifies this probability measure as

~ 2 S 2'S
dQST/dQ = exp{ﬁl é 1 (V.S.T)Owi v) - (1/2) '21 tl; o8 (V.S.T)zd\'}- (15)
i= i=
Furthermore, it can also be shown that
t
W) = W () - [ 95(v,S,Tdv  for i =1,2 (16)
0

are independent Brownian motions on [(O,E)ST,F), {Ft: t ¢ {0,511].
Although condition (C.4) guarantees the existence of an equivalent martingale measure,

it does not guarantee that it is unique. To obtain uniqueness, we impose:

{C.5: Uniqueness of the Equivalent Martingale Measure)

Fix an S, T e [0,7] such that 0 { S T ¢ 7. Assume that

a(t,s)  a,(t.s)
a (6T a(t,T)

is nonsingular a.e. Q x A.
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The following proposition demonstrates that condition (C.5) is both necessary and sufficient

for the uniqueness of the eguivalent martingale rneasur‘e:.f‘:J

Proposition 2: (Characterization of Uniqueness of the Equivalent Martingale Measure)
Fixan S, T e {0,7] such that 0 { S{ T 7. Given a pair of forward rate drifts
{a(*,S), a{*,T)} and volatilities {01-('.3). a].(',T)} for i = 1, 2 satisfying conditions

(C.1) - {C.4); then, condition (C.5) holds if and only if the martingale measure is unique.

Preof: In the appendix. ///

Conditions (C.1) - (C.5), through the functions 1 (t,S,T) for i =1, 2, impose
restrictions upon the drifts for the forward rate processes {a(*,T), a(*,S)}. It imposes
Just enough restrictions so that there is a unique martingale measure for the pair of bonds
P(t,S), P(t,T) with 0 { S T 7. Both the market prices for risk and the martingale
measure, however, depend on the particular pair of bonds {S,T} chosen. To quarantee that
there exists a unique equivaient martingale measure simultaneously making all reiative bond

prices martingales, we prove the following proposition.

Proposition 3: (Uniqueness of the Martingale Measure Across all Bonds)
Given a family of forward rate drifts {a(*,T): T ¢ [0,7]} and a family of volatilities
{ai(',T): Te [0,7]} for i =1, 2 satisfying conditions (C.1) - (C.5), the foliowing are

equivalent:

[a defined by 5 = 5s—r for any S € (0,7) is the unique equivalent (17)
probability measure such that Z(t,T) is a martingale for all T ¢ [0,7] and
t e [0,S]1;



14

[71. (t,Sl,Tl) =% (t,SZ,Tz) fori =1, 2 for all 51'52' I'T e [0,7], (18)

te [0,7] such that 0t S, <T,{rand0{t<S,<{T, <

2
[a(t,T) = - EI a.(t,T) (4;51 (t) - f A (t,v)dv) for all (19)
Te[0,r] and t e [0T]wherefor1 =1, 2
P (t) = g2 (t,S,7) forany S e (t,7) and t € [0,S]].

Pmof
From proposition 2, for each pair S,T with S { T, QST is the unique equivalent
probability measure making Z(t,S) a martingale over t { S. These measures are all equal to

Q i and oniy if

71.(t,Sl,T1) = 'Ii(t S T) for i =1, 2 and all $1:55 Ty T, € [0,7] and

t ¢ [0,7] suchthat0§t<Sl<T1§'rand0§t<$2<T2g'r.

To obtain the third condition, by expression (14) and the fact that (¢1(t),¢2(t)) is
| independent of T, one obtains b(t,T) = - al(t,T)gsl(t) - az(t,T)giz(t). Substitution for
b(t,T}, al(t,T), az(t.T) and taking the partial derivative with respect to T gives (19).
Q.E.D.

This proposition asserts that there is a unique eguivalent probability measure, 5, such
that for all maturity bonds, relative prices are martingales {condition (17)) if and only if
the market prices for risk are independent of the particular pairs of bonds {S,T} chosen
(condition (18)) if and only if a forward rate drift restriction is satisfied {condition
(19)). We discuss each of these conditions in tum.

The martingale condition (17) implies that

E@T.TIF,) = Z(t,T) a.e. Q for all t € [0,T] (20)
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where E(-) denotes expectation with respect to the probability measure a Using the

definition of Z(t,T), we abtain

P(t,T) = B()E(L/B(T)|F,) | (21)

or

2T 2T
PET) = BOE@RLL [9(t)d4 () - (V2) T [, (t)%dt} /B IF,). (22)

Expression (22) demonstrates that the bond's price depends on the forward rate drifts
fa(*,7): T e [0,7]}, the initial forward rate curve {f(0,T): T e [0,7]}, and the forward
rate volatilities {a]. (*:.T): Te [0,7]} for i = 1, 2. All of these parameters enter into
expression (22) implicitly through ¢ (t) i =1, 2, the market prices for risk and B(T), the
money market account. For explicit representations of the forward rate volatility
functions, expression (22) simpiifies considerably. Examples are provided in subsequent
sections.

Condition (18) of proposition 3 is called the standard finance condition for arbitrage

free pricing. This is the necessary condition for the absence of arbitrage used in the
existing literature to derive the fundamental partial differential equation for pricing
contingent claims (see Brennan and Schwartz [1979] or Langetieg- [1980]).

Last, for purposes of contingent claim valuation, the final condition contained in

expression (19} will be most useful. It is called the forward rate drift restriction. It

shows the restriction needed on the family of drift processes {a(*,T): T e [0,7]} in order
to guarantee the existence of a unique equivalent martingale probability measure. As seen

below, not all potential forward rate processes satisfy this restriction.

5. Contingent Claim Valuation

This section serves two purposes. First, it demonstrates how to value contingent

claims in the preceding economy. This analysis is a slight extension of the ideas contained
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in Harrison and Kreps [1979] and Harrison and Pliska [1981], so the presentation will be
brief. Second, it provides the unifying framework for categorizing the various arbitrage
pricing theories in the literature (i.e., Vasichek [1977], Brennan and Schwartz [1979],
Langetieg [1980], Ball and Torous [1983], Ho and Lee [1986], Schaefer and Schwartz [1987],
Artzner and Delbaen [1988]) in relation to our own.

For our analysis, the key insight of Harrison and Kreps [1979], as extended by Harrison
and Pliska [1981], is the association between the absence of arbitrage opportunities and the
existence of equivalent martingale probability measures. To clarify this association (and
to use the propositions of the preceding section), we first need to present the detailed
definitions of trading strategies and arbitrage opportunities. We do this in the context of
our economy.

Let conditions (C.1) - (C.3) hold. These define the forward rate process, money market
account dynamics, and the zero coupon bond price processes. Fix two particular zero coupon
bonds of maturities {S,T} e [0,7] where 0 { S T { 7. We consider the subset of our
economy consisting of these two bonds and the money market account.

A trading strateqy is defined to be a 3-dimensional stochastic process {No(t) . Ns(t) '
NT(t): t e [0,S]} such that

(i) No(t), Ns(t), NT(t) are measurable and adapted, and

S
(1) é Ny () [r(B)B(t)dt (4= a.e. Q,
)
é lNu(t) [r(t) + b(t,u)]|P(t,u)dt { +» a.e. Q forue {S,T}, and

)
[ N, (0%, (it (e ae. Q fori=1,2adue (5,7
0
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Define the value process V: [0,S] x f + R for the trading stragy {No(t), NS(t), NT(t):
t e [0,5]} by

V(t,w) = No(t,w)B(t) + Ns(t,w)P(t,S) + NT(t,w)P(t,T) a.e. Q
for all 0 { t < S.

A trading strategy {No(t), Ns(t), NT(t): t ¢ [0,5]} is said to be self-financing if

t t t
V(t,w) = V(0.w) + [ Ny(t)dB(t) + [ N(t)dP(t,S) + [ N(t)dP(t,T) a.e. Q
0 0 0
forall 0 t {s.

An arbitrage opportunity is any self-financing trading strategy (s.f.t.s.) {No(t), Ns(t) .

NT(t): t ¢ [0,S]} such that its value process satisfies:
V(0) <0, Q(V(S) > 0) >0, and Q(V(S) 2 0} = 1.

Assuming condition (C.4) for the bonds {S,7} e [0,7] in oﬁr economy, proposition 1
quarantees the existence of an equivalent probability measure aST on (n,Fs) such that Z{t,S)
and Z(t,T) are 55T martingales on t € [0,5]. Let EST(') denote expectation with respect to
Qsr-

An admissible s.f.t.s. is defined to be a s.f.t.s. {No(t), Ns(t), NT(t): t ¢ [0,S]}

such that its value process satisfies:
V(t) >0 a.e. Qforallte [0,S] and {;E : te [0,5]} is a aST—martingale.
If we restrict traders to use only admissible s.f.t.s., then by proposition 2 assuming

condition (C.5) gives the existence of a unique martingale measure QST' This implies that

there are no arbitrage opportunities in the economy (nor any suicide strategies), see
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Harrison and Pliska {1981; p. 239]. Consequently, we assume for the sequel that all of
conditions (C.1) - {C.5) hold.

The uniqueness of aST is important. The uniqueness of 6ST implies that the market is
also complete (Harrison and Pliska [1981]; Corollary 3.36, p. 241]), i.e., given any random
variabie X: R + R which is nonnegative, FS measurable with EST(X/B(S)) { +m, there exists an

admissible s.f.t.s. {No(t), NS(t), NT(t): t € [0,S]} such that its value process satisfies
V(S) = X a.e. Q.

The random variable X is interpreted as the payout to a contingent claim at time S.

For example, consider a European type call option on the bond P(t,T) with maturity date

S and exercise price K > 0. Its time S cash flow would be {max[P(S,T) - K,0]}. This is Fs

measurable, non-negative, and satisfies:

EST(max[P(S,T) - K,01/B(3)) < EST(Z(S,T)) { 4o,

The admissible s.f.t.s. which attains max{P(S,T) - K,0] is called the synthetic call. We

define the arbitrage free price for the European call at time t to be the value process of

the synthetic call, i.e.,

V(t) = Er(V(S)/B(S)[FB(Y) = Eqy(max[P(S,T) - K,01/B(S)|F)B(E).

By analogy, given any contingent claim X: 1 + R {(wnich is FS measurabie, non-negative

with EST(X/B(S)) { +)), its unique arbitrage free price at time t is defined to be:

e

V(t) = E; (X/B(S)|F,)B(t), (23)

where V(t) is the value process for the admissible s.f.t.s. {No(t), Ns(t), NT(t): t ¢ {0,5]}
which duplicates X, i.e., such that
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X = Ny(S)B(S) + N (S)P(S,S) + N-(S)P(S,T) a.e. Q.

Using this s.f.t.s. and expression (23) we can gain insights into contingent claim

valuation under the above structure. Substitution yields:
V(t) = EST(NO(S) + NS(S)/B(S) + NT(S)Z(S,THFt)B(t). (24)

To evaluate the arbitrage free price V(t) expression (24) demonstrates that we need to know
the distributions of (i) N (S) NS(S) NT(S) at time S, (i) 1/B(S) = -exp{f r{y)dy}, and
(111) Z(8,T), all under the martingale measure QST' The dynamics for r(t), Z(t S), and
Z(t,T) are obtainable from expressions (6), (11), and (16); that is,

2t . 2
r(t) = f(0,t) + j a(v,t)dv + z j‘a (v, t)oﬁS (v) + z ; 7, (1,8, Dy (v, t)dv (25)

a.e. {

2t 2 2t T
2tw) = 20ep(-(1/2) [ ajlv)dv + I éai(v,u)d\r.l? W} a.e. Q
= =]
(26)
for u e {S,T}.

Observe that to evaluate the arbitrage free price of any contingent claim (in general) under
the above structure, we need to know 12 {v,5,T) for i = 1,2, the market prices for risk.
These enter through the dynamics of the spot rate process in expression (25). This is true
even though the evaluation proceeds in the risk neutral economy under the martingale measure
Ot

As the notation also makes explicit, the pricing procedure depends on the particular
pair of bonds {S,T} chosen. All other bonds of differing maturities u e [0,7] are assumed
to have values at time S, through expression (8), which are F. measurable. Assuming

S
EST(P(S,U)/B(S)) { + for all u ¢ [0,7], since the market is complete under conditions (C.1)
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- (C.5), every other bond can be duplicated with an admissible s.f.t.s. involving only the
two bonds {S,T} and the money market account. Thus, given the two bond price dynamics (as
in expression (26)), the spot rate process (as in expression (25)), and the assumptions that
2(5,V) are FS measurable and 55? integrable, one can price all the remaining bonds and all
contingent claims. These are the two purposes for the arbitrage pricing methodology as
stated in the introduction.

As expressions (25) and (26) make clear, the dynamics for the bond price process, spot
rate process, and the market prices for risk cannot be chosen independently. Independently
specifying the bond price processes parameters, the spot rate processes parameters, and the
market prices for risk will in general Tead to inconsistent pricing models. This is a
serious practical problem when implementing the preceding valuation formula to price traded
claims. Indeed, since the market prices of risk must be estimated, a simplified parametric
form must be assumed. The existing literature, with the exception of Cox, Ingersoll, Ross
[1985], are subject to this difficulty. This is the logic underlying the criticism of the
arbitrage pricing methodology presented in Cox, Ingersoll, Ross [1985; p. 398].

The mdel, as presented above, captures the essence of all the existing arbitrage
pricing models. To see this, let us first consider Vasichek [1977], Brennan and Schwartz
[1979], and Langetieg [1980]. Since all three models are similar, we focus upon that of
Brennan and Schwartz. Brennan and Schwartz's model differs marginally from the above
approach. Instead of specifying the two bond processes for {S,T} directly as in expression
(26), they derive these expressions from two more fundanent51 assumptions. First, they
exogenously specify a Tong rate process and a spot rate process. Second, they assume that
all bond prices at time t can be written as twice-continuously differentiable functions of
the current values of the long rate and short rate. In conjunction, these assumptions (by
Ito’'s Tetma) imply condition (26). The analysis could then proceed as above, yielding

contingent claim values dependent on the market prices for m‘sk.6
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Artzner and Delbaen's [1988] analysis differs from Brennan and Schwartz. They
exogenously specify only the spot rate process and assume the weaker condition that the
bond's price is adapted with respect to the Brownian filtration. In a comlete market, they
use the martingale approach outlined above to generate bond prices and contingent claim
values dependent upon the market price for risk.

Ball and Torous [1983] and Schaefer and Schwartz [1987] exogenously specify the two
bond price processes {P(t,S), P(t,T)} directly. They price centingent claims based on
necessary, but not sufficient conditions, for the absence of arbitrage. Unfortunately, both
the Ball and Torous modei (as shown by Cheng [1987]) and the Schaefer and Schwartz model are
inconsistent with stochastic spot rate processes and the absence of arbitrage.

Along with the framework for categorizing the various models, an additional
contribution of our approach is to extend the above analysis to eliminate the market prices
for risk from the valuation formulas. Intuitively speaking, this is done by utilizing the
remaining information contained in the bond price processes to “substitute out” the market
prices for risk in the spot rate process (condition (25)). Since the spot rate process is
deducible from the bond price (forward rate) processes alone, and the bond price processes
are independent of the market price for risk in a risk neutral economy, this should be
possible, But first, we need to extend the analysis in the preceding economy. Formaily, in
the preceding economy, only two bonds {S,T} were assumed to trade and the remaining bonds
priced by redundancy. This needs to be expanded to allow the simultaneous trading of alil
available bonds.

Again, we maintain assmptiohs {C.1) - (C.3) which characterize the forward rate, spot
rate, and bond price processes. We now allow trading in the money market account and atl
bonds of maturities T ¢ [0,7]. This is a continuum of tradeable securities. To incorporate
this expansion, but still utilize the previous methodology, we define a trading strategy to

be any arbitrary, but finite collection of these tradeable securities. Formaily, a trading



strateqy s defined to be a {n+1)-dimensional stochastic process {NO(t), NT1 t), ...,

Ny (t): t e [0,7]} such that
n

(i) n{ # is Fo—measurame,

{(i1) NO(t), N (t) for i = 1,...,n, are measurable, adapted, with Ny (ty =0
i i
fort > T, and

(iii) g]NO(t)lr(t)B(t)dt<+« a.e. Q,
T
f INT ) [r(t) + b(t,Ti)]lP(t,Ti)dt C+ooge. Qfori=1,...,n,
0 i

.
jNTﬂF%&JQ%&JQ%t<W a.e. Qfori=1,...nandj=1,2.
0T

Define the value process V: [0,7] x @ + R for the trading strateqy {No(t) Ny (t),
1
eer Ny (t): t e {0,7]} by
n

n
V(t,w) = No(t,w)B(t) + LN (t,w)P(t,T].) a.e. Qforallodt{r.
i=1 i

The trading strategy is said to be self-financing if

t t
v(t) = V() + No(t)dB(t) + gl 6 NT (t)dP(t,Ti) a.e. Q
0 i= i

forall 0t (.

To be self-financing, by condition (ii) we see that the trading strategy must satisfy
Ng(t) = NO(S) for all t > S where S = max{Tl,...,Tn}. Thus, the value process at time T
relative to the money market account, V(T)/B(T), is Fg measurable where

S = max{T),Tprenn, T 1



An arbitrage opportunity is defined to be any s.f.t.s. whose value process
{v(t): t e [0,7]} satisfies V(0) < 0, Q(V{r) > 0) > 0, and Q(V(r) > 0) = 1.

Next, we assume that conditions (C.4) and (C.5) simuitaneously hold for all bond pairs

{S,7} ¢ [0,7] with 0 { S T< 7. By proposition 2, we know that for any arbitrarily
selected pair, {S,T}, there exists a unique equivalent martingale measure aST making both
Z(t,S) and Z2(t,T) FJST-martingaTes on [0,S]. Proposition 3 concerning the equality of these

measures, motivates the following condition which we assume to hold.

(C.6: Common Equivalent Martingale Measures)

Given conditions (C.1) - (C.3), let (C.4) and (C.5) hold for all bond pairs {S,T} ¢ [0,7]
with 0 (S T r. Further, let asl'Tl = 532'72 (on their common domain) for all pairs
0<Sl<Tlg‘rand0<52<T2§'r.

Define a finitely additive measure 5: U Fr+ [0,1] by the following construction.
Given A € 1L'}<1' FT' then A ¢ FSO for some 50 z<:rr- Define a by a(A) = aST(A) for any
pair {S,T} e [0,7] such that So { ST . Under condition (C.6), this is well-defined.
Furthermore, under condition (C.6) by proposition 3, the measure 5 when restricted to FS is
a probability measure which is equivalent to Q and for which Z(t,T) is a a-martingale for
all Te [0,7] and t € [0,S]. Denote expectation with respect to 5 by E(').

we define an admissibie s.f.t.s. to be any s.f.t.s. such that its value process
{v(t): t e [0,7]} satisfies V(t) > 0 a.e. Q for all t € [0,7], %—g} is FS measurable for
some S < 1, and {-;—8—: te[0,r]}isa a-mar'tingafe.

We can now characterize the minimal conditions for the absence of arbitrage

opportunities in the expanded economy, which justifies the imposition of condition (C.6).

Proposition 4 (Characterization of the Absence of Arbitrage)
Given conditions {C.1) - {(C.3), let (C.4) and (C.5) hold for ail bond pairs
{S,T} e [0,7} with0{S{TL .
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{(a) No arbitrage opportunities implies (C.6).
(b) {C.6) implies there are no arbitrage opportunities in the class of admissible

self-financing trading strategies.
Proof: In the appendix. ///

This proposition states that modulo inadmissible trading strategies, the absence of
arbitrage in the expanded economy is equivalent to condition (C.6). The logic of the proof
is straightforward. Given condition (C.6), the standard martingale argument implies that no
arbitrage opportuniti es exist. Conversely, suppose there existed a quadruple of bonds
{Sl'Tl'SZ'TZ} and an event A ¢ FSl such that 651T1 (A) # aSZTZ(A). Since markets are
complete, there exists the contingent claim 1A with two different “implicit prices”,
aslTl(A) and SSZTZ(A). Thus, an arbitrage opportunity can be constructed by buying and
selling the different duplicating s.f.t.s.'s involving {Sl'Tl} and {S

2,T2 . This

contradiction yields the result.

Thus, to value contingent claims under the absence of arbitrage in the expanded economy
we assume that conditions (C.1) - (C.6) hold for all bond pairs {S,T}. A contingent claim
is defined to be any random variable X: 1 + R which is FS measurable for some S < 7, non-
negative, and with E(X/B('r)) { +e, Choose a pair of bonds {S,T} € [0,7] such that .

0 (ST 7, then by condition (C.6) and proposition 3,
E(X/B(S)) = Eg(X/B(S)). (27)

The analysis preceding expression {23) now applies. Since the market is complete,
there exists an admissible s.f.t.s. involving B(t), P(t,S), and P(t,T) such that expression
(24) is true. Furthermore, expressions (25) and (26) hold as written. To remove the market

prices for risk from expression (25), we utilize condition (C.6). By proposition 3
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{expression (18)), we have that 4z (v,S,T) are independent of S,T for i = 1,2, denoted by

$: (v) = T; (v,S,T). Equivalently, the no arbitrage condition (expression (19)) is:

t
fafv,t)dv = - L
0 : i

2t t
g (\.r,t)gﬁi (vidv + L [ o; (v,t) [ o5 {v,y)dydv. (28)
i=l i=1 Q v

O ¢+

Substitution of this expression into expression (25) for the spot rate yields:

2 t
L [ o (vt (V). (29)

t t
r(t) = f(0,t) + L [ o {v,t) jai(v,_y)dydv +
=1 0 v i=1 0

i=1
The market prices for risk drop out of expression (25) and they are replaced with an
expression involving the volatilities across different maturities of the forward rates,
i.e., a "term structure of volatilities." Thus, contingent claim values, expression (27),
can be calculated independently of the market prices for risk {¢1 (t) ,¢2(t)}. We further
illustrate this abstract procedure with concrete examples in the next two sections. Before
these examples, however, to complete our discussion of the literature, we point out that the
analysis of Ho and Lee [1976] can be viewed as a special case of the construction leading to
expression (29), see Heath, Jarrow, Morton [1988].

6. An Exampie (Constant Volatility)

This section presents an example to illustrate and to clarify the analysis in section
5. This example is interesting because it may prove useful in practical appiications due to
its computational simplicity. It is also a continuous time limit of Ho and Lee's [1986]
model, see Heath, Jarrow, and Morton [1988].'

We assume that forward rates satisfy the stochastic process from condition (C.1) with a

single Brownian motion and the volatility al(t,T,u) =g >0, a positive constant, i.e.,

df(t,T) = a(t,T)dt + gdW(t) for all Te [0,7] and t e [0,T]. (30)
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We let the initial forward rate curve {f(0,T): T e [0,7]} be measurable and absolutely
integrable (as in condition (C.2)). Given a particular, but arbitrary stochastic process
for the market price of risk, ¢: [0,7] x @ + R which is predictable and bounded, we assume

that the forward rate drift condition (19) is satisfied:
a(t,T) = 4(t) +5°(T-t) for all T e [0,7] and t € [0,T]. (31)

It is easy to verify that conditions (C.1) - (C.5) are satisfied. Of course, condition
(C.6) is satisfied due to expression (31). This implies, therefore, that contingent claim
valuation can proceed as in section 5. Before that, however, we analyze the forward rate
process in more detail.

To calculate the solution to expression (30) with the drift (31), substitution and

integration yield:
t
£(£,T) = £(0,T) + 32t(T-t/2) - F{p(v)dv + aW(t). (32)
0

By Girsanov's theorem, there exists a unique martingale probability measure 5 (defined by

expression (15)) such that
~ t
W(t) = w(t) - éqb(y)dy (33)

s a Brownian motion. In terms of this Brownian motion, the stochastic process for the

forward rate is:

£(E,T) = £(0,T) + 62L(T-t/2) + aW(t). (34)

This expression demonstrates that under condition (30) forward rates can be negative with

positive probability.
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To calculate the stochastic spot rate process under the equivalent martingale measure,

set T = t in expression (34):

r(t) = £(0,t) + aW(t) + 3°t%/2. (35)

The spot rate at time t equals the forward rate at time t (projected from time 0), a random
deviation, and an adjustment factor. Spot rates can also be negative with positive
probability.

The dynamics of the bond price process over time is given by substituting expression
(34) into expression (2).

The solution is:

T ~
[F0,y)dy - GH/2)TE(T-t) - F(T-t)W(L)
P(t,T) =e® or (36.a)

P(e,T) = [P(0,1/p(0,0)]e" @ TATET-OG(T-00(E) (36.b)

The bond's price process depends on the initial forward rate curve from time t to time T,
{f(0,y): y € [t,T]}, the volatility parameter s, the maturity date T, and the current value
of the Brownian motion ﬁ(t). Since ;J(t) is Elot directly observable, the spot rate process
in (35) can be used to provide an observable quantity. Using this approach, the bond's

price can be written as:

T
-f[£(0.y) - £(0,0)1dy - G%/2)t(T-t)% - (T-t)r(t)
P(t,T) =e ¢ ) (37)

Given the bond price process as in (36), it is easy to price options on bonds using the
analysis given in section 5. Indeed, consider a European call option on the bond P(t,T)

k.
with an exercise price of K and a maturity date t" where 0 {t{t {T. Let C(t) denote



the value of this call option at time t. By definition, the cash flow to the call option at

maturity is:
* * .
Ct) = max[P(t ,T) - K, 0]. 138)

Using the valuation procedure in section 5 for pricing contingent claims, the value of the

call at time t can be written as:
C(t) = Emax[P(t ,T) - K, 0JB(t)/B(t))|F,). (39)

An explicit calculation, contained in the appendix, shows that expression (39) simplifies

to:

Ct) = P(L,TIO() - KP(,t)o(ho(T-t M (£ -t)) (40)
were  h = [log(P(t,T)/KR( ) + (1/25(1-t 2 0160 (£ -t) and

8(*) 1s the cumlative normal distribution,

The value of the bond option is given by the Black-Scholes formula but in which the
*
bond price, P(t,T), replaces the "stock price," P(t,t ) replaces the “discount factor," and
- * -
o(T-t ) replaces the “volatility of the stock." The parameter, a(T-t*), is not equal to the

variance of the instantaneous réturm on the T-maturity bond,
o(T-t)dt = {var(dpP(t,T)/P(t,T)). (41)

Rather, it is equivalent to the variance of the instantaneous returmn on the forwarc orice

(at time t*) of a T-maturity bond, i.e.,
(T-t)dt = FERAP(t, T)/P(t, £ )1/ [P(E, T /P (L, £)]). (42)

This distinction is crucial for parameter estimation procedures involving expression (40).



The valuation formula (40) is further clarified by studying an alternative derivation.

An easy calculation involving expressions (9) and (31) shows that the T-maturity bond

process satisfies :7

dP(t,T)/P(t,T) = [r(t) + 4(t)a(T-t)]dt - g(T-t)dW(t) for all T e [t,7]. (43)

Expression (43) has the appropriate form to apply Merton‘s [1973] stochastic interest rate
option pricing mdel. This model generates expression (40) with the following
identifications: the T-bond price P(t,T) represents the "stock," the t*~bond represents the
"bond,"” and the correlation coefficient between the two processes is unity since they are

generated by the same Brownian motion.

7. Exampile with Multiple Brownian Motions

The previous example treated a forward rate process based on a singie Brownian motion.
This section presents an exanple based on two independent Brownian motions which is easy to
compute and aliows different maturity bonds to have inperfecf.ly correlated (instantaneous)
returmns. Unfortunately, this model still has negative forward rates with positive
probability.

Assume that forward rates satisfy condition (C.1) with the volatilities 7y (t,T,w) = 51
> 0 and az(t,‘!',w) 3 EZe'(V 2)(1-1) > 0 where El' g, \ are strictly positive constants,

i.e.,

dF(t,T) = alt,T)dt + G, (t) + &Ze“("/ 2) (T"t)crwz(t) (44)
for all Te [0,7] and t € [0,T].

Expression (44) indicates that instantaneous changes in forward rates are caused by two
sources of randomness {wl(t), wz(t): t e [0,7]}. The first, {wl(t): t € {0,7]}, can be
interpreted as a "long-run factor" since it uniformly shifts all maturity forward rates

equally. The second, {wz(t): t € [0,7]}, however, affects the short maturity forward rates
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significantly more than it does long term rates. Consequently, it can be interpreted as a

spread between a "short" and "long term factor.®

The volatility functions are strictly positive and bounded. Furthermore, the matrix

-V2)(T-) _ 3y, (43)

3, (t,3) ,(t,S) _ —&1(S-t) + 2&2(e
3 (t,T) & (t,T) -51(T-t) + z&z(e

is non-singular for all t,S,T e [0,7] such that t { S T.
We arbitrarily fix two bounded, predictable processes for the market prices of risk,

g5+ [0,7] x@+R for i = 1,2. To guarantee the absence of arbitrage (by proposition 4), we

set
a(t,) = 59, ()5, VDT (1332 (1) 2(G2/ne W2 T8 (W20 y) - (a)
Substitution into expression (44) yields:

dF(t,T) = (58, (05,6 VD Ty ()32 (1-0) 2@nye W2 (T8 (WL _ypge

(47)
+ iy () + 7,6 M2 0y .
A direct calculation generates the solution:
t t
£(t,T) = £(0,7) - 51 (j; ¢1(v)dv - 52 é e-()«/Z)(Tw) ¢2(v)dv
+ P(1-1/2) - 26NN (@ - 1) - 2 WATENVAT 1 (43)

t
RS WA gy ().

Proposition 3 implies that there exists a unique equivalent martingale measure Q making

Z(t,T) martingales for all T ¢ [0,7]. The definitions of the Brownian motions

~

{ 1(t),‘:12(t): t € [0,7]} under the new measure (expression (15)), are:
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~ t
Wi (t) = W () - é g (v)dv for 1 = 1,2. (49)

Substitution of these quantities into expression (48) simplifies it further,

F(6,T) = £(0,T) + 57t (1-t/2) - 2G,N M (@ - 1) - ‘ZQ-Q/Z)T(e()«/Z)t 1]

-~ R W)~ (50)
+ a'lwl(t) + 0, £ e (A/2) (T-v) dwz(v).
This expression shows that forward rates can be negative with positive probability.
The spot rate follows the simpler process:
M) = £0,1) + Fot%/2 - 26,12 - 201" MDY
(51)

~ t "
+ Elwl(t) + 52 é e'o‘/ 2){t-v) dwz(v).

At any time t € [0,7], spot rates are normally distributed under this risk neutral measure

with a mean (f(0,t) + 5%1:2/2 - 2(32/)«)2[(1-6."“) - 2(1-e"0\/ 2)t)] and variance (&%t +
(&glk) (1—e'}‘t)). Both parameters are increasing in t.

The dynamics for the bond price are:

]
P(t,T) = exp{=[F(0,y)dy-(@/2) Tt (T-0)-(@A) [(¥E1) (e -e™)
t

- 4Dt gy (o= WAT_-Ov2)ty
(52)

- t ~
- 5, (T () + (@, (" VAT WY, cf}eW 2V (1)}

Using the spot rate and any other forward rate, both ';&1 (t) and ‘:\}z(t) could be substituted

out of expression (52), yielding an equivalent expression based on only cbservables.
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As in section 6, we can calculate the value of a European call option on the bond
P(t,T) with an exercise price of K and a maturity date t* where 0 { t € t,E { T. Let C(t)
denote the value of this call option at time t. By definition, the cash flow to the call

option at maturity is:
¥* x«
c(t ) = max[P(t ,T)-K,0].
Using the valuation procedure of section 5, the call's value at time t is:
C(t) = Emax[P(t",T)=K,0]B(t) /B(t ) |F,). (53)
An explicit calcul a‘ztion8 gives:

C(t) = P(t,T)a(h) - KP(t,t)8(h-q)
where

h = [log(P(t,T)/KP(t,t)) + (1/2)7)/a,
(54)

. * *
q? = G-t 1) + (452/13)(e-(AIZ)T_e-(k/Z)t 2 My o
8(+) is the cumlative normal distribution.

Again, the value of the bond option is given by the Black-Scholes formula in which the

bond price, P(t,T), replaces the "stock price,” P(t,t*) replaces the “discount factor," and

q2 = var(d[P(t,T)/P(t,t*)]/ [P(t,T)/P(t,t*)]) reptaces the "volatility of the stock." The

2

*
volatility parameter g~ is the instantaneous variance of the forward price (at time t ) of

and X.

the T-maturity bond which depends on the forward rate process's parameters 51, 52,

8. A Class of Stochastic Differential Equations

The previous two sections provide examples of forward rate processes satisfying

conditions (C.1) - (C.6). These processes all have deterministic volatilities which are
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independent of. the state of nature w € 0. This section provides a class of processes which
allow the volatilities to depend on w € 0. This class of processes is interesting from a
practical perspective since they are estimable, yet consistent with a wide range of
potential stochastic processes for forward rates.

This class of processes can be described as the solutions (if they exist) to the
following stochastic integral equation with restricted drift.

t 2t
f(t!T) = f(OrT) = f a(V,T,w)dv + L I 0'1- (V,T,f(V,T))CMT (V)
0 =10

i=1 (85)
foralt 0 {t<{T
where

a(v,T,w) & -
;

| Wt
—

T
o (VT AV T8 (v) - [ oo (viy, T(ty))dy]
v

for all T € [0,7],
g, {t,S): 0 {t{S<{T}xR+R1is jointly measurable and satisfies
T 2
ja]. {t,T,f(t,T))dt { 4 a.e. Q fori =1,2, and
0
$y: @ x [0,7] + R is a bounded predictablie process for i = 1,2.

We now study sufficient conditions on the volatility functions such that strong
selutions to this class of stochastic differential squaticns exist. A continuous time
analogue of Ho and Lee's [1986] model as given in expression (32) is seen to be a special
case of this theorem. A surprising exampie is also provided below to show that additional
hypotheses are needed, This example concerns the forward rate process arising from a
proportional volatility function.

A key step in proving the existence theorem is the following lemma, which asserts that
the existence of a class of forward rate processes in the initial economy is guaranteed if

and only if it can be guaranteed in an "egquivalent risk neutral economy."
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lemma 1: (Existence in an Equivalent Risk Neutral Economy)
[The processes {f(t,T): T e [0,7]} satisfy (55) with 7 (t,S,T) = 2 (£
forall 0<t{S<{Trand i =1, 2] (56)

if and only if
[The process {;(',T): T e [0,7]} defined by

3]

at,T) = I
i=1

T
o (t,7,f(t,T) IUT (t,v,f(t,v))dv for all T ¢ [0,7] (57)
t
satisfies (55) with ;(t,T) replacing a(t,T), ';11. {t) replacing W; (t) where
t

v“&_] (t) = W, (t) - J 2 (y)dy is a Brownian motion with respect to [(ﬂ.F,a),{Ft: te
0

. - 2 1 2 1
[0,73], and Q replacing Q where d0/dQ = ep( L [ ¢;(1)a;(B)-(/2) T | p, (1)t}
1= 1=

Proof: In the appendix. ///

This lemma shows that there are "two degrees of freedom" in obtaining drift processes
consistent with the arbitrage free pricing condition of proposition 4. These two degrees of
freedom are the market prices for risk. Once the market prices for risk are specified, the

forward rate drift process is uniquely determined (if it exists).

Lemma 2: (Existence of Forward Rate Processes)

let o5 {{t,;s): 0t {s TP xR+Rfori=1,2be Lipschitz continuous in the
last anfgument,9 non-negative and bounded.

Let (ﬂ,F,a) be any eguivaient probability space with {1:}1 (t),\;lz(t): t e [0,7]}
independent Brownian motions;

Then, there exists a jointly continuous f(-,+) satisfying (55) with ‘:f(t) replacing w(t)

and
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~ 2 T
a(t,T) = E ai(t,T,f(t,T)) j‘ai(t,v,f(t,v))dv for all T e [0,7] replacing a(t,T).
j=1 t

Proof: Morton [1988]. ///

The proof of this Jemma is contained in Morton [1988]. The hypotheses of lemma 2
differ from the standard hypotheses guaranteeing the existence of strong solutions to
stochastic differential equations in the boundedness condition on the volatility functions.

Lemmas 1 and 2 combined generate the major proposition of this section.

Proposition 5: (Existence of Arbitrage-Free Forward Rate Drift Processes)

Let ¢.: [0,7] x 0 + R be a bounded predictable process.

let ;2 {(t,s): 0{t{s T} xR+Rfori=1, 2be Lipschitz continuous in the Tast
argument, non-negative, and bounded; then, there exists a jointly continuous forward rate

process satisfying condition (55).
Proof: In the appendix. ///

By appending the nonsinguiarity condition (C.5), this proposition provides sufficient
conditions guaranteeing the existence of a class of forward rate processes satisfying
conditions (C.1) - (C.6). This set of sufficient conditions is easily verified in
applications,

To show that this boundedness condition in pmposifion 5 cannot be substantially
weakened, we consider: the special case of a single Brownian motion where o(t,T,f(t,T))
= ¢ - f(t,T) for a fixed constant ¢ > 0. This volatility function is positive and Lipschitz
continuous, but not bounded. The example is the simplest forward rate process consistent

with nonnegative forward rates.
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For this volatility function, the no arbitrage condition of proposition 5 with

¢ (t) = 0 implies that the forward rate process must satisfy:
- T—. -
df(t,T) = [of(t,T)[of(t,v)dv]dt + of(t,T)AW(t) for all T e [0,7] and t € [0,T]. {58)
t

In integral form expression (58) can be written as:
tT _2 _ ‘

f(t,T) = f(0,TVexp{] [fu,v)dvdulexp{-o“t/2 + oW(t)} for all T ¢ [0,7] and t € [0,T].  (59)
0u

Unfortunately, it can be shown (see Morton [1988]) that there is no finite valued solution
to expression (59).

By proposition 4, this forward rate process is therefore inconsistent with arbitrage
free pricing. In fact, it can be shown that under (58), in finite time, forward rates
explode with positive probability for the martingale measure, and hence for any equivalent
probability measure. Infinite forward rates generate zero bond prices and hence arbitrage
opportunities.

The forward rate process given in (58) is in some ways the simplest model consistent
with nonnegative forward rates. The incompatibility of this process with arbitrage free
bond prices raises the issue as to the general existence of a drift process
{a(+,T): T e [0,7]} satisfying conditions (C.1) - (C.6), and with nonnegative forward rates.

This existence issue is resolved in the next section through an example.

9. An Example with Nonnegative Interest Rates

The constant volatility example yields a consistent forward rate process (in section
6), but it has the possibility of negative forward rates. The proportional volatility

example (in section 8) has nonnegative forward rates, but they explode with positive
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probability. This section provides an example of a forward rate process consistent with
conditions (C.1) - (C.6) and with nonnegative forward rates.

This example can be thought of as a combination of the two previous examples. When
forward rates are "small" the process has a proporticnal volatility, and when forward rates
are “large" it has a constant volatility. Intuitively, as shown below, rates cannot fail
below zero nor explode. Formally, consider a single Brownian motjon process with
o(t,T,f(t,T)) = & min(f(t,T),x ) for g,x > 0 positive constants. This volatility function
is positive, Lipschitz continuous, and bounded, thus, for an arbitrary 1‘m‘tja1 forward rate

curve proposition 5 guarantees the existence of a jointly continuous f(t,T) which solves
- T - -
df(t,T) = @ min(f(t,T),A){f 7 min(f(t,s),\)ds)dt + o min(f(t,T) A)dW(t). (60)
t

The following proposition guarantees that this forward rate process remains positive for any

strictly positive initial forward rate curve.
Proposition 6 (Nonnegative Forward Rate Process)
Given f(t,T) solves expression (60) and given an arbitrary initial forward rate curve
£(0,t) = I{t) > 0 for all t € [0,7],

then with probability one, f(t, T} >0 for all T e .[O.r] and t ¢ {0,T].

Proof: In the appendix. ///

The martingale measure for this forward rate process is given in expression (15).
Since the forward rate process is a mixture of the constant volatility and proportional
volatility models, it is easy to see (using expression (60)) that the forward rate drifts

{a(*,T): T € [0,71} will be dependent upon the path of the Brownian motion. This path
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dependent property of the forward rate process makes computation more difficult for this
model than for the constant volatility example. Nonetheless, we conjecture that the
multiple Brownian motion analogue of expression (60) will prove to be the most useful from
an empirical perspective. Another forward rate process consistent with non-negative forward

rates is provided in the next section (expression (68)).

10. The Equilibrium Pricing versus the Arbitrage Pricing Methodoloqy

The crucial difference between our methodology for pricing contingent claims on the
term structure of interest rates and that of Cox, Ingersoll, and Ross [1985] is the
difference between the arbitrage free pricing methodoiogy and that of equilibrium pricing,
respectively. The arbitrage pricing approach is more robust than the equilibrium pricing
approach because it requires less structure on preferences, endowments, and the trading
mechanism. Indeed, equilibrium requires an exogenous specification of preferences, beliefs,
and a specific trading mechanism to generate a valuation model. CObservable prices are then
tested against the valuation model. In contrast, arbitrage requires only a specific trading
mechanism defined on a subset of exogenously given prices to generate a valuation model.
This valuation model is then tested against the remaining observable prices. The arbitrage
free pricing approach is potentially consistent with many altemative equilibrium based
models.

To cIaf‘ify the relationship betwéen our approach to pricing contingent claims and the
equilibrium approach, we illustrate how to describe {or modei) the equilibrium determined
Cox, Ingersoll, Ross {1985] square root model (CIR) in our framework. The CIR model is
based on a single state variable, represented by the spot interest rate r(t) for t e [0,7].

The spot rate is assumed to follow a square root process

dr(t) = K(@(t)~r(t))dt + air(t) dw(t) (61)
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where r(0), K, ¢ are strictly positive constants,
g: [0,7] + (0,+») is a continuous function of time,
{w(t); t e [0,7]} is a standard Wiener process initialized at zero, and
2Ka(t) > 02 forall te [0,7}.10

Although this stochastic differential equation has a solution (see Feller [1951]), an
explicit representation is unavailable. In equilibrium, CIR show that the equilibrium bond

dynamics are:
dP(t,T) = r(t)[1-3B(t,T)IP(t,T)dt - B(t,T)P(t,Tadr{t) dw(t) (62)

where A 1s a constant,

Bt T) = 271y (peen) (7T0-1) + 291,
and 7 = (k)2 + 29172,

The parameter A is related to the market price of risk, ¢(t), as fo]lows:ll

#(t) = [E(dP(t,T)/P(t,T)) ~ r(t)dt]/iVar (dP(t,T)/P(t,T))

(63)

- Mr{t)/o.

Although stochastic, the market price of risk is restricted in equilibrium to be of this

particular functicnal form. CIR solve for the bond price process

P(t,T) = ﬁ(t,y)e'g(t.T)r(t)

(64)
~ T
where A(t,T) = exp(-K J 8(s)B(s,T)ds).
t

Under this process, the forward rate is:

T
f(t,T) = r(t) (8B(t,T)/3T) + K [ 8(s) (8B(s,T)/37)ds. _ (65)
t



By Ito's lemma, the stochastic differential equation satisfied by f(t,T) is:

df(t,T) = r(t) (8%B(t,T)/8taT - BB(t,T)/aT)dt
(66)
+ (3B(t, T)/8N)air(t) dW(t).
A solution to this equatian, in terms of r(t), 6(t), A, K, ¢ is given in eguation (65). An
explicit solution to (65) in terms of the original parameters for the stochastic process for
r{t) (i.e., r{0), 6(t), X, o) is unavailable.
In contrast, our approach starts with an exogeneous forward rate process, initialized
at an arbitrary, but fixed initial forward rate curve {f{0,T): T e [0,7]}. Given its
parameters, CIR's model has a predetermined functional form for the forward rate process at

time 0 given by expression (65) and repeated below for convenience:
—— T —
f(0,T) = r(0)(8B(0,T)/3T) + K | &(s) (8B(s,0)/3T)ds for all T ¢ [0,7]. (67)
0

To match any arbitrary, but given initial forward rate curve, CIR suggest that one "inverts"
expression (67) for {9(t): t e [0,7]} to make the spot rate process's parameters implicitly
determined by the initial forward rate curve, see CIR [p. 395]. CIR never prove that such
an inversion is possible, i.e., that a "solution" {#(t): t e [0,7]} exists to expressidn
(67)}. We show in the appendix that if {3f(0,T)/8T: T e [0,7]} exists and is continuous,
then- there is a unique continuous solution to equation (67). In fact, using standard
procedures, the solution {8(s): s € [0,7]} to equation (67) can be approximated to any order
of accuracy desired (see Taylor and Lay [1980; pp. 196-201]).

Hence, in our framework we have that CIR's term structure model can be written as:

df(t,T) = r(t) (8%8(t,T)/BtaT - 3B(t,T)/aT)dt

. (68)
+ (8B(t,T) /Aol () dW(t)
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r
where r(t) = [f(t,T) - K J 8(s) (8B(s,T)/3T)ds]/(8B(t,T)/aT),
t .

{f(0,T): T e [0,7]} is a continuously differentiable fixed, initial forward rate
curve, and

g: [0,7] + (0,+») is the unique continuous solution to expression {67).

To apply our analysis based on expression (68), we need to guarantee that conditions
{(C.1) - (C.6) are satisfied. Recall that conditions (C.1) - {C.3) guarantee that the bond
orice process satisfies expression {8). Next, given expression (8), conditions (C.4) and
{C.5) quarantee that for any pair of bonds {S,T} an equivalent martingale measure 5ST exists
and is unique. Finally, condition (C.6) ensures that the martingale measure is identical
across all pairs of bonds. These conditions are sufficient to price all contingent claims
when starting from forward rates.

Alternatively, CIR exogenously specify the spot rate process. Consequently, using
different methods, they are ahle to guarantee that the bond price process satisfies
expression (8), (see equation {(62)). Hence, we don't need to check sufficient conditions
(C.1) - (C.3), since expression (8) is the starting point of our analysis. Next, given that
the bond prices are generated by an equilibrium with a single Brownian motion, conditions
(C.4), (C.5), and (C.6) are easily verified. In fact, to check condition (C.6} one only

needs to verify that expression (19) is satisfied. From proposition 3, this is:
E(df(t,T))/dt = -¢(t)air(E) (3B(t,T)/aT)

) T (69)
+ g%(OB(t, T)/AT)r(t) | (3B(t,s)/oT)ds
t

forall 0{t{T< .
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It is shown in the appendix that ¢(t) from expression (63) and E(df(t,T)) from expression
(68) satisfy this expression.

Given the form of the CIR model as in expression (68), we can now proceed directly as
in section 5 to price contingent claims. This analysis will generate the identical
contingent claim values as in CIR subject to the determination of {6(s): s € [0,7]}. Note

that the forward rate's quadratic variation
. 2
<f(t,T)>t = [ [(8B(s,T)/8T)air(s)]1* ds
0

depends on the parameters X, #, K, r(0), and {f(0,T): T € [0,7]}. The parameter A, however,
is functionally related to the market price of risk (see expression (63)). This makes
contingent claim valuation explicitly dependent on this parameter as well (e.g., see CIR
[expression (32), p. 396]).

With this analysis behind us, we can now discuss some differences between the two
pricing approaches. First, CIR's mode] fixes a particular market price for risk {condition
(63)) and endogenously derives the stochastic process for forward rates (expression (66)).
In contrast, our approach takes the stochastic process for forward rates as a given (it
could be from an eduﬂibm‘ um model) and prices contingent claims from them. The contingent
claim values, therefore, only depend on the parameters of the forward rate processes
quadratic varfation. These values are independent of the market prices for risk to the
extent that it is possible for the forward rate process to be generated by different

economies and therefore different market prices for risk.

11. Sumary

This paper presents a new methodology for pricing the term structure of interest rates.
Given an initial forward rate curve and a mechanism which describes how it fluctuates, we

develop an arbitrage pricing model which yields contingent claim valuations which are
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independent of the market prices for risk. This is in contrast to the existing methodalogy
which generates pricing models whose values require estimation of these quantities.

For practical applications, we specialize our abstract economy and study particular
exarples. For these exanples, closed form solutions are obtained for some contingent claims
depending only upon observables and the forward rate volatilities. These models are
testable and their empirical verification awaits subsequent research.

Although our model for the forward rate process is generated by two Brownian motions,
this simplication was imposed for expositional purposes. The general theory of this paper
readily generalizes to forward rate processes generated by a finite number of independent
Brownian motions. Given that a continuum of bonds trade, sufficient discount bonds exist to
complete the analysis. Generalized versions of propositions 1, 2, 3, 4, 5 and 6 are easily
obtained, using the multivariate versions of Girsanov's theorem and the techniques for
proving strong solutions to stochastic differential equations.

The paper can be generalized in another fashion. Our term structure model can be
imbedded into the larger economy of Harrison and Pliska [1981] which includes trading in
altemative risky assets (e.g., stocks) generated by additional (perhaps distinct)
independent Brownian motions. Our model provides a consistent structure for the interest
rate process employed therein, This merging of the two analyses can be found in Amin and

Jarrow {1989].



4.

FOOTNOTES

The text assumes familiarity with the standard terminology of continuous time
stochastic processes. For the appropriate definitions, we refer the reader to Elliott

{1982].

This is equivalent to r(t) = lim [1-P(t,t+h)]/P(t,t+h)h = f(t,t).
0

To see this, note that 0 { B(t,w) { +» a.e. Q forall t e [0,7] if
T
[ Ir(tw)|dt {+ a.e. Q.
0

But

2
L

T T Tt
[ |rtw)[dt < [ [F(0,t)]dt + [ [ |a(v,t)|dvdt +
0 : 0 00 i=1

T 1

I “‘ o'-i (vltlw)ml]‘ (V)ldt
00

by expression (6). This is finite a.e. by condition (C.2).

Two measures P, Q on (Q1,F) are said to be equivalent if P(A) = 0 if and only if
Q(A) = 0.

For the case of a single Brownian motion, condition {C.5) simplifies to the statement

that al(t,T,f(t,T)) > 0 a.e. Q x A, This case will be utilized in subsequent examples.

Brennan and Schwartz [1979], however, didn't use this martingale approach. Instead,
they priced based on necessary conditions given by the partial differential equation

satisfied by a contingent claim's value under condition (18).
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Expression (9) and (19) yield

2 T

;
dP(t,T)/P(L,T) = [r(t) - [ alt,)dv + 1/2 T [f o, (t,v)dv}Tdt
t i=1 t

i

+

2
L a; (t,T)dw]. (t).
i=1

with

T 2 T v
U o (tv)avig: (t) - L [ o (tv){[ oy (ty)dylav.
t =1t t

+
LI o I AN

T
- [ a(t,v)dv =
t i=1

But
T 2 T v
(1/2) [J a; (t,v)dvl® = o, (. [f a; (t,y)dy]dv.
t t t
Substitution yields,

2 T 2
dp(t, T)/P(t,T) = [r(t) + £ [J o (t,v)dv]g(t)]dt + El a (t,T)dwi (t).
i=1 t =
T
Using a, (t,0) =-f o (t,v)dv we get:
t

2 2
dP(t, T)/P(t,T) = [r(t) - 121 a; (t,Tg(t)]at + ‘El a; (t, T)aW, (t).
= 1=

This calculation can be found in Brenner and Jarrow {1988]. One methed is to write the
dynamics for the bond price process as in expression (43) and apply Merton's [1973]

formuia.

Lipschitz continuous means that there exists a positive constant K such that

lo(t,T,x) - a(t,T,y)| {K|x-y| for all t,T, € [0,7] and X,y € R.



10, This last condition guarantees that zero is an inaccessible houndary for spot rates

{see CIR [p. 391]).

11. This is most easily seen from footnote 7.
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APPENDIX

Proof of Expression (8):

Before proving expression (8), we need to prove a generalized form of Fubini's theorem
for stochastic integrals. This proof of Lenma 0.1 follows Ikeda and Watanabe [1981; p. 116]

very closely, and is consequently omitted.

Lemma 0.1
Let (R,F,Q) be a probability space, (Ft) a reference family.
M e!"ig, i.e., a continuous square-integrable martingale such that M =0 a.s.
Let {8(t,a,w): (t,a) € [0,7] x [0,7]} be a family of real random variables such that
(i) ({t,w),a) e {{[0,7] x Q) x [0,7]} + &(t,a,w) is L x B[O, 7] measurable
where L is the smallest o-field on [0,7] x @ such that all left-continuous

(Ft) adapted processes are measurable, and B[0,7] is the Borel o-field on

[o,7].

(i1) f d(s,a w)dM eug. Since #(s,a,w) is predictable for all a € [0,7] (this
t
fo]lows by (i) above), this condition is that E(j 82 (s,a,w)d < ) { 4o for

all t e [0,7].

t
(1i1) {aw) + [ @(s,a,w)dMS is 8[0,7] x F measurable for al1 0{ t < 7.
0
Let p(da) be a non-negative Borel measure on R.
t r 2
(iv) E(f {J #(s,a,w)p(da)}™d <M>s) { 4o for all t € [0,7].
00

r
[Note that (s,w) + [ 9(s,a,w)u(da) is predictable since (s,w) + &(s,a,w) is predictable
0

for all a € [0,7].



Thus t + ?@(t,a,w)p(da) € L2(<M>) by (iv), and
0

r
{f o(s,a,w)u(da)}d, eif5 1.
0

O

Given (i) - (iv), if

t
@) ] (] ols et u(ea]3 o for all t ¢ (0]

(B) j E{j 9? (s,a,w)d<d }1/ u(da) ¢ +o for all t e [0,7]
then

t t
(4.5) é {Z @(s,a,w)p(da)}dMS = }r {J #(s,a,w)aM_}u(da) for all t e [0,7].
0 0

Lemma 0.2
Let (0,F,Q) be a probability space. (Ft) a reference family.

M Erzgk’c, i.e., a continuous local square-integrable martingale such that

MO = ( a.s.

let {&(t,a,w): (t,a) e [0,7] x [0,7]} be a family of real random variables such that
(i) ((t,w),a) € {([0,7] x Q) x [0,7]} + &(t,a,w) is L x B[0,7] measurable.
(i1) j 8(s,a w)ciM € ‘*‘C }OC. Since &(s,a,w) is predmtable for all a € [0,7]

(thas follows by (1) above) this condition is that j <I> (s,a w)d<M> { +o 3.e.

for all t ¢ [0,7].
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t
(i11) (aw) » | 8(s,aw)d, is B[0,7] x F measurable for all 0 { t (7.
0

Let u(da) be a non-negative Borel measure on R.

T

(iv) {/ @(s,a,w)p(da)}2d<M>s { +» a.e, for all t ¢ [0,7].
0

oY

(Note that (ii1) and (iv) imply

-3

{f ¥(s,a,0)u(da) e eH5r'™)

Gy ot
O

Given (i) - (iv),
t T 7Tt
4.5) | {J @(s,a,w)p(da)}dMs = { (b(s,a,w)dMs}p(da) for all t € [0,7]
0 0 00
if and only if
T t
(A t=+J{f Q(s,a,w)dMs}p(da) is continuous a.e. and
0 0
(B) there exists a seguence of stopping times {Tn}nr:zl such that 7_ + 7 a.s. and

T 2,1/2
E{[ 1 "¢(s,a,w)dM_1“} (da) ¢ +o for all n=1,2,... where t A T_=min{t,7_;.
0 0 s A n n

c,loc

Proof: Given (i) - (iv), if (4.5) holds then the right side is in/7

(B).
Conversely, given (i) - (iv), if (A) and (B) hold then define

This implies (A) and

71
¥y = inf{t € [0,7]: ]é{é @(S,a,w)dMS}p(da)l > n}.
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t
Since ?{j @(s,a,w)dﬁs}p(da) is
g0

continuous in t on each sample path, it is bounded on [0,7].

So, as e, Yo * T s, Define tn = ynfrrn forn=1,2,... .

T Ut 2 2

Note that E{f ( J (s,a,w)dM )p(da)}” {n” forall 0 {t < r
0 0

and

T fAt
L[ o aman ] outea) C o

Thus, by lemma 0.1 for t € [0,7],

. r T At
é & {6 o(s,a,u)p(da)aM, = | { é : 8(s,a,w)dM Ju(da) for all 0t {7
0

since tn + 7 a.s. this gives us our result.

Q.E.D.

Lemma 0.3
Let the hypotheses (i) - (iv) of Temma 0.2 hold, and let u(a) be Lebesgue measure on
R, and d<M>S be absolutely continuous with respect to Lebesgue measure, then if

t t
t+ ] {s @(s,a,w)dMs}p(da) s continuous a.e.
0 0

t t
then ! {(‘r @(s,a,w)p(da)}dMs = } { @(s,a,w)dMS},u(da) for all t € [0,7].
c 0 o 0
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Proof:

We show that (A) and (B) of lemma 0.2 hold. First, (A) holds as part of the hypothesis.

consider

t
(E{[é Q(S,a,w)dMsjz})l/Z

t t
-q 6 (5,0, )2 1+ ] ¢(s,2,0)d00.
0
Integrating over [0,7] yields,
Tl 20\1/2 Tt
é (E{[é o(s,a,w)dM ]"H ™" p(da) £T+(I) [{) ¥ (s,a,w)M> Jdu(a)

By the standard Fubini's theorem on the last integral (along with condition (ii)) since

the integrand is positive, we get

=T +

T2
[é (s, a,u)dp(a) JM, .

O

The last integral is continuous in t, hence it is bounded on [0,7] for a fixed samle

path w € Q.
t 7T 2
Define T, = infft e [0,7]: [ [] ¢ (s,a,w)dp(a)]dKFDg > ni.
00
Then T,*Tae asnre and

tA
? (E{[ fTh Q(S,a.w)dMs]Z})l/z p{da) ¢ +» for each n
0 0

Next,



52

This completes the proof.
Q.E.D.

Lemma 0.4
Let the hypotheses of Temma 0.3 hold.
Let M, = wﬁ(s) for s e [0,7] and fix t € [0,7].

Define
o ) J 0 if  (s,a) € [0,t] x [t,7]
s,a,w) =
\ oi(s,a,) 1t (5,) € [0,t] x [t,7].
then

y I Ty

T{ ai(s,a,w)da}dwi(s) =[{J ai(s,a,w)dwi(s)}da for all y € [0,t].

0t t 0

Proof:

Direct from lemma 0.3.
Q.E.D.

Lemma 0.5
Let the hypotheses of Temma 0.3 hold.
Let M, = wi(s) for s € [0,7] and fix t € [0,7].
Define
0 if  (s,a) ¢ [0,t] x [0,t]

J.
¢(s,q, =
(s,a,w) \_ o5 (sia,w)1 <a if  (s,a) € [0,t] x [0,t].

then

t ah
[ ai(s,a,w)da]dwi(s) =10 jy ai(s,a,w)dwi(s)1da for all y € [0,t].
g 0

O
U oy
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Proof:

Direct from Temma 8.3.
Q.E.D.

Now we can proceed with the proof of expression (8).
T
In P(t,T) = - [ f(t.y)dy
t

I

Tt 2 Tt
= - [ T(0,y)dy - f[[ a(v,y)dvidy -
t t 0

i=l t 0

ng%MW%MM

Note that the integrals are well-defined by conditions (C.1), (C.2).

By condition (C.2), we can apply the standard Fubini‘s theorem to get

Tt tT
[ alv,yydvldy = J[f a(v,y)dv]dy.
t 0 0t

By conditions (C.1) - (C.3) we can apply lemma 0.4 with y = t to get

Tt t T
[ o5 (v,y)dW, (V)]dy = [I] o;(v,y)dy]d; (v).
to 0t

Substitution yields

T tT 2
MP&J)=—{ﬂmw®—éQaWJNﬂ®'_§

i=1

t
i
0

[

.
[
t

o; (Viy)dyJdw, (v) .



Adding and subtracting the same terms yields

T t7 2 tT
- é £(0,y)dy - IU a(v,y)dyldv - 21 {]U a; (v,y)dyldi. (v)
i= \

tt 2
+ f f{0,y)dy + IU a(v,y)dyldv + E ][I o (v,y)dyldW, (v).

But, recall that
t t ty 2 ty
[r@)dy = [ fOy)dy + [[f a(viy)dvldy + £ [{f o, (v.y)aw; (v)]dy
0 0 00 =100

which is obtained by utilizing expression (6).

ty
Using the standard Fubini's theorem, and since t + J[f o (v,y)dwi (v)1dy is continuous
00

a.s. {by the properties of Lebesgue integrals), conditions (C.1) - (C.3) with lemma 0.5

fory = t imly:
2 tt
f r(y}dy = f f(0,y)dy + I [f a(v,y)dyldv + El L[] o, (v.y)dyldW, (v).
i
Substitution yields:
tT 2 tT
In P(t,T) = In P(0,T) + f r{y)dy - f[f a(v,y)dv]dy - 21 é[f o (v,y)dyldi, (v) .
v

This completes the proof. Q.E.D.

Proof of Proposition 1:

This proposition is proved in a sequence of two lemmas.
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fetma 1.1 Assume (C.1) - (C.3) hold for fixed S,T € [0,7] such that 0 { S {T .

t 2t

Define X(t,y) = J b(v,y)dv + L jai(v,y)dwi(v) for all t € [0,y] and y € {5,T}.
0 i=1 0

Then, 7;° 0x[0,7] +Rfori=1, 2 satisfies

-

b(t,S)
(1 l
b(t,T)

a (£,5) a(t,s) 0

3, (t,7) a,(t,T)

+ a.e. A X GQ,

.|
72(13) | 0|

~ .

S o2
(i1) f 71.(\1) dv {40 a.e. Q fori=1, 2,
0
25 2 S 2
(111) E{exp{ E f7i(v)dwi (v) - (1/2) L I (v)“dv}) = 1, and
i=1 0 i=1 0

(1v) Ecexp{él 2 [a; (v.y) + 7, ()W, (v) - (1/2)51 {i [a; (vay) + 7, ()1%) = 1
for y € {5,7}.
if and only if
there exists a probability measure aST such that

2 S

- 2 S
() dogy/d0 = ep{ I [ 7 0) - (172) § [ 90}
i=1 0 i=1 0

~ t ~
(b) w?T(t) = wi (t) - 6 g2 {(v)dv are Brownian motions on {(ﬂ,F,QST), {Ft: t e [0,S]3}

fori=1,2

(c) } for t e [0,5], and

(t,5) ‘ [ 3 (t,5) a,(t,9) } a0 (1)
e | lal(t.n 2, | | 5

v ; K

LN

(d) Z{t,S) and Z(t,T) are martingales on {(Q,F,E)ST), {Ft: t € [0,5]}1.
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Proof:

Suppose (i), (ii) and (iii) hold.

By Girsanov's theorem (El1iott [1982; p. 169]), the existence of a 65T satisfying
(a) and (b) follows. Condition (c) follows by a substitution of (b) into the definition of
X(t,y). This implies that X(t,y) is a local martingale for y e {S,7}. From expression {11)
of the text, dZ(t,y) = Z(t,y)dX(t,y). This stochastic differential equation has the unique

solution

2 t
Z(t,y) = 2(0,y) exp{X(t,y) - (1/2)_21 é ai(V.y)Zdv}.
1=

see Elliott [1982, Theorem 13.5, p. 156]. This is a martingale with respect to Qg if and
only if EST(Z(t,y)) = 7(0,y) for all t € [0,S]. This holds if and only if

t 2 2 t ) 5
E(exp{é blv,y)av + _El [a; (viy) + 7, (V) ], (v) - (1/2)_21 6 [a, (viy)™ + 1, (VTaV}) = 1
i= i=

2
for all t € [0,S]. But, b(v,y) =-1L ai(v,y)qi(v) from condition (i}. Substitution yields
i=1

2t 2t
HeolL [ [3() + HWIGO) - (25 [ @)+ 5 ()7a) =1
i= i=

for all t € [0,S]. Since Z(t,y) is a supermartingale, this equation holds if and only if
2 S 2 S 5
Eep{ L [ [a;(viy) + 1; (DI, (V) - (1/2) [ [a;(viy) + 9, (1%} = 1.
j=1 0 i=1 0
Hence, Z(t,y) is a martingale with respect to aST if and only if (iv) holds. This
completes the proof in one direction. Note that we have just proved: given (i),
(i1), and (i), [(iv) if and only if (d)].
Suppose (a), (b), (c), and (d) hold.
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Conditions (i1) and (i11) follow since 55T is a probability measure satisfying (a).

Substitution of (b) into the definition of X{t,y) yields

r \ .

dX(t,S) b(t,S) | [ a(69) a,(tS) | | 7,0 | -
= +
| dX(t,T) & b(t,T) [ a; (t,7) az(t,T) | | 7,(t) !
|49 ) [ " (1) ]
a6 T) a,(tT) | an' ) |

The difference between a process satisfying this expression and one satisfying (c) must be
of bounded variation and also a 5ST Tocal martingale. By ElTiott [1982; p. 121] this implies
(1). Hence, (a), (b}, and (c) imply (i), (ii), and (i1i). By the remark above, (d) implies

(iv).
Q.E.D.

Lemma 1.2 Assume {C.1) - (C.3) hold for fixed S,T € [0,7] such that 0 {S{ T T.

t 2 t
Define X(t,y) = [ b(v,y)dv + E [ ai(v,y)dwi {v) for all t € [0,y] and y € {S,T}.
0 i=1 0

There exists a probability measure Q equivalent to Q such that Z(t,S) and Z{t,T) are
martingales on {(Q,F,Q), {Ft: t € [0,S1}} .

if and only if
there exists 7 Il x {0,7] + R fori=1, 2 and a probability measure aST such that (a),

(b), (c), and (d) of Lemma 1.1 hold.

Proof:
Suppose Z fori=1, 2 and 63T exist as stated. Set Q = aST'

Conversely, suppose there exists Q with the properties stated.



Define M(t) = E(dQ/dQ[Ft). This is a Q-martingale.

Since W (t) is a martingale under Q, by Elliott [1982, p. 162]
- t 4 -
W, (t) = w}. (t) - T Mv) d< W, M >V is a local martingale under § for i = 1, 2.
0

Note that <w¥.,w1.>t =t fori=1, 2and

<w1’w2>t 0.

Since L;t]. (t) have continuous sample paths, by Levy's theorem (Durrett [1984; p. 78])
\:I]. (t) are independent Brownian motions with respect to 6

By the martingale representation theorem, Ikeda and Watanabe [1981; p. 80] there
exist h 2 x [0,T] » R for i = 1,2 such that M{(t) = g } h, (v)dw (v) and f n (s)ds
a.e. Q. Note that d<w M> = h (v)dv, so define 1 (v) Vi M(v) 1?: {v}, then
w (t) = w1 (t) - é‘ 2 (V)dv as required. Finally, substitution of w (t) = W (t) + f 2 (v)dv

for i = 1, 2 into the definition of X(t,y) yields:

[ dX(t,S) iy [66) || 2(68) 8,69 | [ 5 | .
dX(t,T) bt | | a6 at,T) | | 50

2, (1S) a,(t,S) | | diy(t)

ay(t.1) ay(t,T) | | ay0) |

But, by definition dX(t,y) = dZ(t,y)/Z(t,y). Since Z{t,y) is a (3~mart1'nga]e, x(t,y)
isa E) local martingale, (see Elliott [1982; Theorem 13.22, p. 167]). The contribution of
the drift term, a process of bounded variation, is also a Tocal martingale and hence by
Eltiott [1982, p. 121] equal to zero a.e. X X 5

Q.E.D.
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Proof of Proposition 2:

The proof of this proposition requires the following two lemmas.

Lemma 2.1 FixS< .

Let pT.: fx [0,7] +R fori=1, 2 be such that

S
é p?(v)dv { 4 a.e. Q.

2t
Define T = inf{t e [0,5]): Elexp{(1/2) T J f;(1)°d}) > n}
i=1 0

i=1

0 2 [m'n(Tn,t) 2 min(Tn,t) 5
e =ep(E 17 00 - 0120 T g%,
'1: ]z

E{exp{

i

[{I e W S

S 2 S

[ (0B () - (1/2) T [ p;()d¥}) = 19f and only if
10 i=140
o (S)}:::l are uniformly integrable.

Proof:
Define £ (v) = P15, ¢ 7 3. then by ETliott [1982; p. 165],
n
2°S 2 S
M(t) = exp{ L jp’;(v)awi (v} - (1/2) L fﬂ;(v)zdv} is a supermartingale.
i=1 0 i=1 0
1 2T T 2 S )
Since E{exp{(1/2) _):1 {)pi (V)<dv}) = E(exp{(1/2) _zl {)p‘g(v) dv}) < n,
i= i=
by Elliott [1982; p. 178] EM'(S)) = 1. Hence,
2°s 2 S
M'(t) is a martingale. Note 1im M(S) = exp{ L jp!. (v)dwi (v) - (1/2) E jp?(v)dv}
oo i=1 0 i=1 0

with probability one since Tn + S with probability one. Observe that {Mn (S)}:(;:1 is a
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martingale with respect to n=1, 2, ... because sup E(M(S)) = 1 { +o and
n

1 . . .
E(M™ (S)[an.n (S:Tn)) = Mn+1(m1n(S,Tn)) by the Optional Stopping Theorem

(since TS, see Elliott [1982; p. 17]) = M'(S) by the definition of M",

(STEP 1) Suppose {i\’in(s)}::=1 are uniformly integrable, then
0 2 S 2 S 5 1
TimM(S) = exp{ L [ B (v)dwi v) -(1/2) ¢ [ B (v)Tdv} in L (see Elliott
=19 i=1 0

n+0 i

2 S 2 S
[1982; p. 22]) and thus E{exp{ L éﬁi (v)dwi (v) - (1/2) & ép}. (v)zdv}) =
i=1 i=1

Tim EM(S)). But, E(M'(S)) = 1. This completes the proof in one direction.
40

(STEP 2) Conversely, suppose
2 S 2 S >
Elep{ L [ A (MdW.(v) - (1/2) L [ B; (V%)) = 1.
i=10 1_=1 0

2 S 2 S
We know E(exp{ L I B (v)dwi (v) - (1/2) ¢ [ B (v)zdvlFT) = M'(S), hence
i=1 0 i=1 0 n

MI(S) is uniformly integrable,
Q.E.D.

Lemma 2.2: Assume conditions (C.1) - (C.3) hold for fixed S,T € [0,7] such that
0 ST . Suppose conditions (1), (i1), (ii1), and (iv) of Lenma 1.1 hold; then,

% (t) for i =1, 2 satisfying (i), (ii), (iii) and (iv) are unique (up to X x Q equivalence)

if and only if

!

a,(t,9) a,(t,5)
a, (t,T) ay(t,T)

is singular with (A x Q) measure zero.
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Proof:

a,{t,$) a,(t,5)
is singular with (A x Q) measure zero. Then, by

Suppose A(t) = {

kS

al(t,T) az(t,T) l‘
condition (i) of Lemma 1.1, T (t) for i =1, 2 are unique {up to X x Q equivalence).
Conversely, suppose L = {t x w: [0,5] x Q: A(t) is singular} has (A x Q(E) > 0. We
want to show that the functions satisfying conditions (i), (ii), (ii1), and (iv) are not
unique. First, by hypothesis, we are given a pair of functions (71 (t) ,72(t)) satisfying

(i), (11), {di1), and (iv).

(STEP 1) Show that there exists a bounded, adapted, measurable pair of functions

(r‘)‘1 (t),ﬁz(t)) non-zero on & such that

2 t 2 t 2t
g{t) =exp{ T [ &, (VAW (v) - L (] 6;(v)y;(V)av) - (1/2) X | &;(v)dv}
i=1 0 i=1 © i=1 0

is bounded a.e. Q.

let L= f(t,w): A(t) *has rank 0} and

Ly = {{t,w): A(t) has rank 1}. Both L and Zl are measurable sets.

Then £ = E5 U L andZy N I, = ¢.
Fix 7> 0.
On the set L, set 6g(t) = min(y, 1/7,(t))

5J(t) = min(y, 1/7,(t)).
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This satisfies

’ o(1) 0
A(t) = on EO
§7(t) 0

On the set 21, define 6?(t), ég(t) as the unigue solution (xl(w),xz(w)) to

| x (w) 1 jo)

Aftw) | L
Xo (W)

i

e max (x; (W), %, () = min(n, 1/7,(t), 1/7,(t)),

xzﬁw) >0, and if xz(w) = 0 then xl(w) =1,

Finaily, let 5?(t), 6g(t) be zero on I°. Note that we shall always interpret superscripts
on § as the upper bound on the process, and not as an exponent.

By construction, (6?(t),6g(t)) are adapted, measurable, bounded by 1,

o | o
A(t) = a.e. A x Q, and
g | o
2t 2t 2 2
El i 6?(v A{vidv + (1/2) § é Tv)av | < [2 + 7°]r a.e. Q.
i=1 0 i=1

let a = inf{j e {1, 2, 3, ... }: (124 s¢ 13,

Define inductively the stopping times.

t
Lls 61/ (Vi (v) > (1/2)}

Ill"’]l\)

Ty = inf{t € [0,5]:
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2 t j .
my - ntiee 0l B ] a(l/z)zm (V)W (v) > (1/2)%)
i T

-1
forj=2,3, 4, ...

We claim that Q(1im 7, = S) = 1.
e

Indeed,

alr <5 | F, )ga(lr ;s Ganw 1> 02 1, )

J i=] TJ 1 3_1
; (1/2) 2
=7 [/ 2]23 f ( (v)) dv by Chebyshev's inequality [Durrett [1984, p. 296]]
< [ /I]zj ([1/2]2j+a)25 < (1/2)3 by choice of a.
1/2

Hence  E[(ry <5 [ F, )1 =Qr; <5) < E(1/2%) = (1/2)3. Since,
‘}..-

Q(hm 75 = S)=1- Q(hm'r <{S) and

Joe Jw
Q(lim 7 <s) <aln ('rj {S))
Joe J=1
< 1’m‘{Q('ar'j <S):j=123,...} =0. This proves the claim.

o j+
Set6.(t) = L 1 (t) 5(1/2)7 ") fori=1, 2.
} 30 [75075,] 1
61(t) 0

G (t) is bounded, adapted, and measurable and satisfies A(t)
8, (t)
2

a.e. A x Q.
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2 t
Note that for all t € [0,S], | z [ 6; (1), (1) | < T (1/2)9 = 2, so
= 0 J....

2t 2t
%M%fémmﬁﬂ-%éﬂMnMV-um

b= P

t
ffmm}
i=1 0

is bounded a.e. A x Q. This comletes (STEP 1).
(STEP 2) Show that (71(t) + 61(t), (72(t) + 62(1‘.)) satisfies conditions (i}, (i), (iii),

and (iv) of Lemma 1.1, This step will complete the proof.

Conditions (1) and (ii) are obvious. To obtain condition (iii),

2 t
mmwﬁmmemmammmxﬂhﬁhqmﬂwpn
i=1 0

2 mm(Tn t) 2 min(Tn,t) 2
M) = el [T i) <600 - (1) BT i)+ 00T,
i=

By Lemma 2.1, we need to show that M'(S) is uniformly integrable.

2 min(S,T ) 2 min(S,T ) 2 min(S,T )
But M'(S) = ep{t [ ") -1/2) L 7; (V) dv}exp{ L J 5'% (V) (v)
i=1 0 i=1 ¢ i=1 0
2 min(S,T.)

-2 T " ey W6 W) + 6, ).
i=1 0

2 min(s,T ) 2 min(S,T )

Since exp{.ﬁl 6 5 (v)dW; (v) - (1/2) 21 é [271(v)6 (v) +6,(v) %lav}
1=

is bounded,
2 min{S,T) 2 min(5,T )

0< m(s) CKexp{L | 4 %; (v)dwi (v) - (1/2) El {j}' on T; (v)zdv} for some K > 0.
i=1 0 i=
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By Lemma 2.1 since 7, (t) satisfies (iii), the right hand side is uniformly integrable. By
Kopp {1984; p. 29], it can be shown that M'(S) is uniformly integrable. Finally, an
analogous argument used to prove (i11) shows (iv) holds as well.

Q.E.D.

Proof of Proposition 4:

(STEP 1) Assume (C.6) holds. Let {No(t),NT (t),...,NT {t}: t € [0,7]} be an
1 n

admissible s.f.t.s. which is an arbitrage opportunity. Then its value
process, V(t), satisfies V(0) =0, Q(V(r) > 0) = 1, Q(V{r) > 0) > 0. But,
(N) > Q implies E(V('r)) >0, i.e., E(V(’r)) > V¥(0). This contradicts the
condition that V({t)}/B(t) is a a-marti ngale.

(STEP 2) Suppose there are no arbitrage opportunities, yet there exists {Sl'Tl'SZ'TZ}
with_Sl<SZ, 0<Sl(T1§'r, O(SZ<T2g'randAe FSI such that
Qe + (A) # Qe + (A). Without loss of generality, let Q. + (A) < Qe 7 (A).
Si! STz B U )

Consider the contingent claim

1 ifweh
L=
A 1_ 0 otherwise.
By the analysis after expression (23) in the text, for each pair {Si'Ti} fori=1,2
there exists an admissible s.f.t.s. {N&(t),NS.(t),NT'(t): te [0'31]} for i = 1, 2 such

i i
that for i = 1,2,

1,B(5) = Ng(s) N Nsi(S)P(S,Si) " NTi(S)P(S,Ti) a.e. Q.
By expression (23),

0.7 (A = Es r. (L)

_ :
= Ny(0) + Nsi(o)P(o,si) + NTi(O)P(O,Ti) for i =1, 2.
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Consider the following portfolio consisting of five securities:

- P ~ 1 2
N.(t) = A) - Q A) + N-(B) - N&(t
0( ) QSZTZ( ) SlTl( )+ 0( ) 0( )
Ne {t) = N (¢t

Sl() Sl()

N. () =N, (t
Tl() Tl()

Ne (t) =« N. (¢t
32( ) SZ( )
NTZ(t) = - NTZ(t) forall te [o,sI].

This is an arbitrage opportunity. Indeed, its value process at time 0 is

V(0) = Qg 1 () - Qg 1 (&) + Ng(@) + N (0)P(0,S,) + N (O)P(0,T,)
2'7 11 1 1
-%m)-%gmmm%)-m;mmmg)=&
It is a s.f.t.s. since {NT,NS ,NT } are s.f.t.s, fori =1, 2. Its time S value is
i
V(S) = [Q - () - O 1 (WIBE) >0 ace. Q.
3oT5 STy

This contradiction completes the proof:

Q.E.D.
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Proof of Expression (40):

C(0) = Efmax(P(t",T)-K,0)/B(t")]

*

~ & t
= E{max(P(t ,T)-K.O)/exp(é r{y)dy)]

By substitution of expression (36) this gives

* *

t * r t. T * * * N %
c() = exp(—é £(0.y)dy-o°(t )3/6)E[e><p(~aé W(y)dy)maX[eXP(-{*f(O,y)dy-(02/2)Tt (T-t )-o(T-t Jw(t ))-K, 0L}

*

t 2,.%3,.9 b~ e
= exp(—(f) f(0,y)dy-0"(t )7/6) ] E{exp(-cfj(; W(y)dy) [W(t )=u].
T 2 * * * -(u2/2t*) *
(exp(-[T(0,¥)dy-(0"/2)Tt (T-t )-o(T-t Ju)-K)e HA2xt du
t

T * * *
where g = [-log K - [,£(0,y)dy-(0%/2)Tt (1=t )1/a(T-t )
t

*

Consider E[exp(-of W(y)dy) |W(t )=u].
0
Let W(t) be the Brownian bridge conditioned to hit u at time t* defined by

mm=hm—%@€%m.

* *

. t . . . t
Then E(exp(-rf(fJ W(y)dy) [W(t )=u) = E(exp(-a[f) W(y)dy)).



* *

®
t o t * ~ t o w
Since [ W(y)dy is Gaussian with E[J W(y)dy] = ut /2 and EL(S W(y)dy)z] = (t )3/12 + (t )2u2/4,
0 0 0

%
~ t

using the moment generating function gives E(exp(-of W(y)dy)) = exp((t*) 30'2/24 - ut*a/Z) .
0

Substitution of this expression into the previous equation for C(0) generates:

E

* 3 2 t 2 * 3 g T 2 * *
C(0) = exp((t )¢ /24)exp(~é f(0,y)dy-o"(t }7/6)f (exp(-{*f(O,y)dy—(a /2)Tt (T-t)).

* * 2 * —
exp(~o(T-t Ju-gut /2-u°/2t )/iZxt )du
*

* 3 2 t 2, %3 g % 9k ek
-exp((t ) o"/24)exp(~f (0,y)dy-0"(t ) /B)K[ (exp(-out /2-u"/2t )/i2xt )du
0 i

Completing the square in the integrals, using expression (2), and simplification

generates
= P(0,M8([g + /20t (2T-t )] AL")
- kp(0,t)8([g + 1/20t /it

Define h = [g + (1/2)at (2T-t )]/t

= [-log(kP(0,t ) /P(0,T)) + o2t (T-t")2/2]/alt" (T-t")

to get the final result. Q.E.D.

Proof {of Lenma 1 in Section 8):

Suppose that the condition involving (57) is satisfied.

2 ~
Define a(t,T) = - L o (t,T,f(t,T));b]. (t) + a(t,T). Substitution into (57) yields
i=]
2
df(t,T) = a(t,T)dt + L o (t,T,f(t,T))dwi {t), which satisfies (55) since ¢ 1s bounded.
i=1



69

Conversely, suppose that the condition involving (56) is satisfied.
~ t ~
Define W, (t) = W (t) - /85 (y)dy. Since g; is bounded, by Girsanov's theorem, W (t) is
0
a Brownian motion as stated in the Temma.

~ 2
Define a(t,T) = a(t,T) + I o, (t,T,F(t,T))4; ().

i=1
5 _
Now df(t,T) = a(t,T)dt + E o (’c,Tn"(t,T))dw,i (t) satisfies (55).
i=1
2 2
So  df(t,T) = a(t Tidt - E o (t,7,f(t, T))¢ (£)dt + L oo (t,7,f(¢t, T))dw (t)
1"1 i=1

= a(t T)dt + E 7 (t,T,f(t, T))dw (t) satisfies (55) with
i=1

\:ii (t) replacing W, (t), 2 replacing a, and 5 replacing Q.
Qm’

Proof of Proposition 5:

Under the hypotheses on ¢ for i =1, 2, by E11iott [1982, Theorem 13.36, p. 178]
and Girsanov's theorem, w (t) = w (t) - }c ¢ (vidv for i = 1, 2 are independent Brownian
motions on {(Q,F Q) {F te [0,T]}} where dQ/dQ = exp{ g } ¢ (t)dw (t) -
(1/2) %1 } #; (t)zdt} Applying Lenma 1 and Leima 2 in sequence, guarantees there exists a

forward rate process with drifts

2
alt,T) =-L a; (t,T,7(t, T))[ga t) - j o, (t,v, f(t,v))dv]
i=1

" satisfying (55).
Q.E.D.
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Proof of Proposition 6:

Fix a TO.

I
Consider 5(t) = ¢ min(f(t,TO),)\) jOE min(f(t,s), \)ds/o min(f(t,TO),A)
t

TO_
-{"o min(f(t,s),\)ds
t
Since ¢ min(f(t,s),\) is bounded, g(t) is bounded. Hence,
To 2

E(exp{(l/Z)é n(t)dt}) < 4.
By Girsanov's theorem, there exists an equivalent probability measure §§ and a Brownian
motion W(t) such that

df(t,TO) =g min(f(t,TO),x)dW(t).

Define ty = inf{t e [O'TOJ: f(t,TO) = 0}. By Karlin and Taylor [1981; lemma 15. 6.21,

zero is an unattainable boundary, i.e.,
Gty < Tod = Qfty < Tk = 0.

Since f(t,TO) has continuous sample paths, f(t,TO) > 0 a.e.
Let {T}.: i=1,2,3,...} be the rationals in [0,7].
Q{f(t,Ti) = 0 for some T, and some t ¢ [O,T].]} =

Q{LT {f(t,Ti) =0 forsome t e [O'Ti]}}
i=1

)
< I Qff(t,T;) = 0 for some t € [0,T,]} = 0.
=1
By the joint continuity of f(t,T), Q{f(t,T) > 0 for all T e [0,7] and all t ¢ [0,T1} = 1.
Q.E.D.
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Proof that a unique continuous solution 8(s) to expression (67) exists.

Let {f(0,T): T € [0,7]} be twice continuously differentiable.
Note that ET(t,T) = 9B(t,T)/8T and BTT(t,T) z aZBT(t,T)/aT are continuous on
0< £ T rwith Bt,t) =0 and Bo(t,1) = 1.
Expression {(67) is
T
f(0,T) = r(O)ﬁT(O,T) +K £ G(S)BT(S,O)ds.

Differentiating with respect to T yields

T :
[ (0,7)/3T - r(0)B,(0,1)1/K = 8(T) + | 6(s) (KB (s, T))ds.
0
This is a Volterra integral equation of the second kind with a unique continuous solution
6{-) on [0,7], see Taylor an Lay [1980; p. 200].

Q.E.D.

Proof that condition (69) is satisfied.

Condition (69) is (using notation from the previous proof)
" = = 2= T_
() Gy 6D - By(6T) = Me(B(e,T) + oBr(e, () [ Byleis)is

= Ar(t)B(t,T) + 0B (t, TB(t,T)

since B(t,t) = 0.
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Using

By(tT) = a2V T8 o) (€7T0)t) + 2972 an

Bry (t,T) = -7+ 2r(pxpel 0

and 72 = (K}A)Z + 2% shows that condition (69) is valid.

Q.E.D.
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