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Asymptotic expansions for waiting time
probabilities in an M/G/1 queue with
longtailed service time
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Abstract

We consider an M/G/1 queue with FCFS queue discipline. We present
asymptotic expansions for tail probabilities of the stationary waiting time
when the service time distribution is longtailed and we discuss an exten-
sion of our methods to the MX1/G/1 queue with batch arrivals.

Keywords and Phrases: M/G/1 queue, wailing time, regular variation, subez-
ponentialily

1 introduction

Consider an M/G/1/FCFS queue in which customers arrive according to a Pois-
son process with intensity A > 0. The interarrival times of the customers are
gathered in the sequence (4;){2; and the service times are denoted by (B;)2;.
The probability distribution function (p.d.f) of B; is denoted by F and the mean
service time is E(B;) = [;~ 1—F(z)dz = 1/p. If we denote the successive wait-
ing times (in the queue) of the customers by (W;)2, then it is evident that W;
satisfies the following recursive relation (cf. Feller(1971))

W1 = max(W, + B, — An,0), n2>0

where it is understood that Wy = Ay = By = 0. Putting T, = B, —
A, and S, = Z?:()Ti; 0 < n < oo, it follows that the stationary waiting
time W, is given by
Weo & max Sy, (1)
n>0
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where £ has to be interpreted as equality in distribution. This shows that Weo
is the maximum of a random walk which is generated by the distribution of
By — A;. It is well known that W, is a proper random variable if the random
walk drifts to —oo, i.e. if E(By —A;) < 0or p:=X/p < 1 (see e.g. Feller(1971)
or Rogozin(1966)). Under this condition the distribution of max,»o Sp may be
found from Wiener-Hopf theory and it is known that

P(Weo <z)=(1=p) 3. p"H™(z), £20. @)

n=0

Here H is the p.d f of the first ascending ladder height in the random walk (or the
right Wiener-Hopf factor of By — A;) and H™" denotes the n-fold convolution of
H with itself, i.e. H*™+D = H« H*" and H*" is the p.d.f of a random variable
degenerate in 0. Since in an M/G/1 queue A; is exponentially distributed, H
is known explicitely and equals (cf. Feller(1971))

@ =u [ 1-Fwdy

which is the stationary residual lifetime distribution of F. Except for some
special cases, the infinite series in (2) is hard to interprete and almost impossible
to write in a compact form. Efficient numerical procedures for calculating the
waiting time distribution when the service time is of phase-type were developed
by Tijms and Van Hoorn(1981). These authors also treat the situation of finite
capacity and state dependent entrance rates. In that case we can still express
Weo as in (1) but (Sn)S% is no longer a random walk as the summands are
dependent and not identically distributed. Other approximations based on the
matching of moments were proposed by Kiihn(1972,1976).

In this paper we primarily deal with approximating waiting time probabilities
when the underlying service time distribution is longtailed, i.e. is not of phase-
type. We concentrate on distributions of Pareto-type, lognormal and Weibull-
type with shape parameter smaller than 1. All these distributions share the
property that their tail function decreases slower than any exponential function
and for that reason they are called ’sub’exponential. We show in the next
sections that the class of subexponential distributions is particularly useful in
obtaining asymptotic approximations for tail probabilities of the waiting time.
The second part of section 3 is concerned with an extension of our methods to
the MX1/G/1 queue with batch arrivals.



2 Asymptotic approximations of compound
tail probabilities

Let us first take a closer look at (2) when the right tail of H is exponentially
bounded. It follows from (2) that

¥(z) = P(Weo > 2 | Weo > 0) = 1—;—’-’- S (1= H*(a))
n=1

and it is not hard to see that 1 satifies the following renewal equation
P(z) = (1 - H(z))+ p¢ » H(z). (3)
Applying the key-renewal theorem then yields that

N h(—7) (- h(—7))
¥ W (~7)

with h denoting the Laplace-Stieltjes transform of H and with 7y a positive real
number satisfying iz(—-'y) = p. If the service time of the queue is of phase-type,
i.e. its tail is decreasing exponentially fast, also H is of phase-type (Neuts(1981,
p 52)) and then for any 0 < p < 1 there exists ¥ > 0 with h(=7) = p such
that (4) holds for any 0 < p < 1. However, if h is finite at its left abscis of
convergence (denoted by €), (4) is only valid for p restricted to the range [a, 1)
with a = ﬁ‘l(ﬁ). If the service time is longtailed, i.e. £ = 0, then (4) is not
valid for any value of p and there is need for another method to approximate
¥{z) which we present below.

In order to generalize the subject a little we take a discrete probability measure
(pn)3%o and we consider the compound p.d.f

P(z)

-exp—yr  ,T — 00 (4)

G(z) = an H™(z) ,z>0. (5)

To avoid trivialities we always assume that pg +p; < 1. We primarily deal with
longtailed p.d.f H, which are defined as follows

Definition 1 Let H be a p.d.f on [0,00) such that H(z) < 1 for every z € IR.
Then

H is longtailed (H € C)
iof
1-H(z—y) _



Some archetypes of p.d.fin £ are
(a) The Pareto family, i.e.

H(@)y=1-(z—20+1)"% ;z>20>0, a>0. (6)
(b) The lognormal distributions, i.e.

H'(z) =

exp—-—z%(loga: —loga)? ,z>0,0,0>0. (7)

1
or 27w

(c) The Weibull family with shape parameter smaller than 1, i.e.
H(z)=1-exp—(az)’ ,a>0,0<f< 1L (8)

The main aim of this paper is to approximate G(z) in (5) when the underlying
p.d.f H is longtailed. In order to motivate the type of approximation one may
expect, we turn to the following probabilistic interpretation of (5): let Xy, Xa, ...
be a sequence of i.i.d. random variables with common p.d.f H and let N be a
discrete random variable with P(N = n) = p,, n > 0. Then G(z) is the p.d.f
of the random sum Sy = X; + X2 + ...+ Xn. Now if H is longtailed, large
observations X; may occur with high probability and it is not unreasonable
to think that the random sum Sy may be governed by just one outstanding
summand. For that reason it might be possible to relate the tail behaviour of
G to that of H. A lot of attempts have been made in the literature to do so
and it was first shown by Cohen(1973) that

1—G(z) ~ (D npa) - (1= H(z)) ,z— 00 (9)

if (pn)2% 1s a Poisson sequence and if
1—- H(z) ~ 2z~ L(x) (10)

for some o > 0 and L slowly varying, i.e. L(zt)/L(z) — 1 asz — oo, Vi >0
(cf. Bingham et al.(1987)). If 1 — H satisfies (10), it is called regularly varying
with index —a (notation 1 — H € R_,). Notice that every p.d.f of Pareto type
belongs to Uy>0 R-o and that Us>oR-o C £. One may ask whether the class
of p.d.f with regularly varying tail can be extended so as to characterize the
asymptotic behaviour in (9). It turns out that the proper class for this purpose
is the class 8 of subezponential distributions, defined below.

Definition 2 Let H be a p.d.f on [0,00) and let H(z) < 1 for every x € .
Then



H is subexponential (H € S)

uf
. 1-H**x) _

The class S was originated independently by Chistyakov(1964) and Chover et
al.(1973) and has been thoroughly investigated among others by Teugels(1975),
Pitman(1980), Embrechts and Goldie(1980,1982) and Willekens(1988). It is
known that S is a proper subclass of £ though examples in £ N 8° are mainly
pathological. Furthermore the three archetypes of £ mentioned above also be-
long to S. A very important probabilistic property of the class S is the charac-
terization of the asymptotic behaviour in (9). The most general result in this
direction is due to Cline(1986):

Theorem 1 Let (p,)%%, be a discrete probability measure such that its proba-
bility generating function P(2) = Y oo (Pnz™ is analytic at 1 and let G be given
by (5). Then the following assertions are equivalent:

(i) He S
() Ges8
(i) 1= G(z) ~ (O _pr npn)(1 = H(z)) ,&— 00.

The fact that P(z) has to be analytic at 1 is no real restriction in practical
problems and only means that the sequence (p,)» has to decrease exponentially
fast, which is for example the case for Poisson, geometric or negative binomial
sequences. On the contrary, when (p,), is not exponentially decreasing, e.g.
Pn ~ n~ for some o > 0, then theorem 1 is no longer valid and it was shown
by Stam(1973) that the asymptotic constant (3.2, np,) may be altered.
Whereas theorem 1 provides a first order approximation to the tail of G, we
are interested in its accuracy and we therefore investigate the behaviour of the
remainder term

R(z):=1-G(z) — (O npa)(1 - H(z)).

This was done by Omey and Willekens(1986,1987) and their main result reads
as follows:



Theorem 2 Suppose P(z) is analytic at 1. Let H € § be a p.d.f with densily
H'=h and let 1/p = fooo 1 — H(z)dz < co. Then the following assertions are
equivalent:

*2 z _ r
0 Ji%‘o - H*( )h(f)(l H(z)) % (12)
L 1= G(e) = (Tari npa)(1- H(z) _ 2 <
(i) Jlim h(z) ;::2( )

Notice that theorem 2 is very powerful as it does not only yield the right rate
of convergence of R(z) but also provides the correct asymptotic constant. The
minor drawback for practical purposes is that condition (i) is hard to check for
a given p.d.f H.

One may ask whether the above approximation procedure can be iterated, i.e.
is it possible to determine the behaviour of

1= 6@) ~ (O )1~ HE) -2 3 (5 )onhia) sz oo
n=1 n=2

In view of theorems 1 and 2 one would expect that the rate of convergence in
this case will be given by the derivative of h(h') if it exists. The following result
was achieved by Omey and Willekens(1987):

Theorem 3 Suppose P(z) is analytic at 1. Let H € S be a p.d.f with differen-
tiable density h and let 1/p = [;° 1~ H(z)dz < co.

If

lim H*3(z) — 3H**(z) + 3H(z) — 1 _3
2

s W) i (13)

then

1= Gla) = (55, mpa) (1= H(z)) + T ( )pn (1 = H)%(z)
Iim

- ~h(z)

-$5(1)
uznz_:;s 3 )P

As indicated by Omey and Willekens(1987) it is possible to continue this pro-
cedure and expand the tail of G(z) in a series containing successive derivatives
of H. However, the higher the order of approximation, the more impracticable



and cumbersome the conditions. We restrict ourselves to third order approxi-
mations and we show below that the condition in (13) is satisfied for the three
main types of longtailed p.d.f which we introduced before.

Lemma 1 Let H be a p.d.f with a twice differentiable density and suppose that
W' € Reg witha > 4. Let 1p = [°1— H(z)dz and 1/pz = 2[5 2(1 -
H(z))dz < co. Then

1— H**(z)—2(1 - H(z)) — %h(‘”) _1

(i) lim

700 —h'(z) P2
and
*3 — *2 _
(i) lim H*3(z) — 3H**(z) + 3H(z) — 1 _ 3
T-—+00 h’(:c) /12
Proof

Part (ii) was proved by Willekens(1986). As to (i), we prove the stronger state-
ment

X2(g) — 2h(z zfx~—£":c z — 00
P2e) — 20(z) + 2 (0) ~ o) (2 o0)

which implies (i) by de ’Hépital’s rule (x denotes the density convolution
product,i.e. h*%(z) = [ h(z — y)h(y) dy). Notice that

X202\ _ 9h(z) + Zh (2
h**(z) 2h()+#h()

z/2
= 2 (e ~ 0)hy) dy = 2h(z) + =H(2)

il

z /2
2 / (h(z = 5) — h(z) + yh'(2))h(y) dy — 2h(x)(1 — H(z/2))

42K (a) [ Z yh(y) dy

(I) + (IT) + (II1).

i

By the regular variation of h” and Karamata’s theorem(cf. Bingham et al.
(1987)),
(IN+ 1) = o(h"(z)) as ¢ — oo. Since

h(z —y) — h(z) + yh'(z) = /01/ /Oz h'(z — u)dudz,



it follows from the uniform convergence theorem for regularly varying func-
tions(Bingham et al.(1987)) and Lebesgue’s theorem on dominated convergence
that

z /2
(1) ~ ( [ v dy) W(e) ~ 2h' (@) (2 = o).

This proves the lemma.

Lemma 2 Let H € S with h” asymptotically decreasing. Suppose there exists
a positive function x € Ry (0 < v < 1) such that

" "
LRI

T 00 B (x) =exp—y VyeR (14)

Finally, let h(z — y)h(y) be monotone decreasing for large z and ¢ < y < z/2
where ¢ > 0 is some constant. Then (i) and (i) of lemma 1 hold.

Remark.

It is rea,dlly verified that H in (7) or (8) satisfies the conditions of lemma 2 with
x(z) = o%z/logx if H is given by (7) and x(z) = (« ~B/B)xz'~F if H is given

by (8).

Proof of lemma 2
Since h” satisfies (14) it follows from de Haan(1970) that x(z) may be chosen
as —h/(z)/h"(z) and that

— W(@)/W"(z) ~ h(z)] — K(z) ~ (1 = H@))/h(z) = ofz) (& —o0). (15)

Let A(z) be a positive function such that A(z) — oo but A(z) = o(x(m)) as

z — oo (Take e.g. A(x) = Togz)® if H is given by (7) and A(z) = 5 ®if H is
as in (8)). Then by the asymptotic monotonicity of h” we have that
B'(z —y)/h'(z) =1 (z — o0) (16)

uniformly in y € [0, A(z)].

Proof of (i)
As in lemma 1 we show that

*2(2) — 2h(x z’zfv—l—”m z — 00
h()2h()+“h() uzh() ( )-



Now

B¥2(z) — 2h(z) + -z—h'(:c)
A(z) 9 , z—A(x)
= 2 / z ~ Y)hy) dy — 2h(z) + =H'(z) + ]A e ) s

Ax)
= 2 / (h(z — y) — h(z) + yh(2))h(y) dy — 2h(2)(1 — H(A()))

z—A(z)
vor'(z) [ wh(y)dy + / h(z — y)h(y) dy
A(x) A(z)

= (I)+ {I)+ III)+(IV).

Since
h(z —y) — h(z) + yh'(z) = /oy /02 h"(z — u) dudz,

it follows from (16) that (I) ~ ﬁ;h”(m) (xz — co). Also, by (15) and the choice
of A(z) we have that (IT) + (I1I) = o(h"(z)) (2 — o0). As to (IV) it follows
from the conditions of the lemma that h(z — y)h(y) is monotone decreasing on
the interval [A(z), /2] which implies that |(IV)] < zh(z — A(z))h(A(x)) =
o(h"(z)) (z — 00). This proves (i).

Proof of (ii)
Put Ry(z) := 1 — H**(z) — 2(1 — H(z)). Then from the proof of (i),

. Ry(z) 2
@)

(17)
Now
1—3H(z)+3H"*(z) — H*(z)
= [[(Rale =) - Ree)h(o) dy = Ro(@)(1 = H =)

1l

A(z) z—A(x) z
{/0 * A(2) +/x_A(x)} (Rz(z —y) — Ra(@))h(y) dy

— Ry(z)(1 - H(z))
{(I)y+ (ID) + 1IN} + (IV).

It follows from (15) and (17) that (IV) = o(h'(z)) (z — o). Again by (17),

1l

A(z) ry
(I)= -—/0 /0 Ry(z — z)dz h(y)dy ~ —%h'(x) (z — o0). (18)

9



Also

A(x)
(Irn / Ra(y)(h(z — v) — h()) dy

A(z)
4 h(z) / Rao(y)dy — Ro(2)(H(z) - H(z = A(2)))
= (II1)q + (IIT)y + (IIT),.

Clearly by (17), (ITT). = o(k(z)) (2 — o0). Since [;"*) Ra(y)dy =
- f;()x) Rs(y) dy, it follows from (15) and (17) that (I1T), = o(h'(z)) (z — 00).

Finally by (15) and (16), we have that (IIT)s ~ —h'(z) fOA(I) yRa2(y)dy ~

—L%h'(m) (z — 00). Combining the estimates shows that
1
(I11) ~ —~—“—5h'(w) (z — o). (19)
It follows from (18) and (19) that the proof is finished if we can show that
(II) = o(W' (z)) (xz — o0).
Since y € [A(z), z — A(2)], = — y > A(z) such that by (17),
Y 2
Ry(z — y) — Ra(2z) = —/ Ry(z — z)dz ~ -’;(h(m —y)—h(z)) (z— c0).
0
Using this together with (15) and (17) then yields

z— A{z)
LI~ / h(y)(h(z — y) — h(z)) dy

Alz)

Alx) z-—A(x)
= Wz) - 2 / h(y)h(z — ) dy — h(z) / O

A(z)

= (W(z) - 2h(z)) — 2 f h(w)(h(z — y) — h(z)) dy
(@)1 HAG) ~ W) = A) = HAC))

~ -2W@) + ZHE) + o) (o)

o (@) (2 — oco).

This completes the proof.

Combining lemma’s 1 and 2 together with theorem 3 yields the following ex-
pansion for G(z).

10



Corollary 1 Suppose P(z) is analytic at 1 and let H satisfy the conditions of
lemma 1 or 2. Then

1-G(z) = ann)ﬂ»H(:v)) + = Z( g )pn.h(z)

n=2

—(p—n=3<z>pn+;%§“:;<z>m)-h'<w>

+o(H(z)  (z— o0)

The results above are valid for a large class of compound p.d.f and may be
applied in various domains of stochastic processes where random sums do ap-
pear as process characteristics (cf. risk-theory, dam-theory, queueing-theory,
branching-processes etc ... ).

In the next section we apply our results to the M/G/1 queue when the service
time distribution is of the form (6)-(8). We concentrate on these types of p.d.f
since among all p.d.f. in the class S they arise most frequently in practise.

3 expansions for the waiting time distribution
in an M/G/1 queue

Recall that the waiting time distribution of a delayed customer is given by (3).
In this case p, = (1 — p)p"~ !, n > 1, and it is not hard to check that

k-1

S (1)m-dmr ez

nm=k

Furthermore if the service time distribution F is of the form (6)- (8) straight-
forward calculation shows that H(z) := p [, 1 — F(y) dy satisfies the conditions
of lemma 1 or 2. Applying corollary 1, we thus get the following expansion of

P(x).
Corollary 2 Let Y(z) be given by (3) and suppose F' is of the form (6)- (8).
Let % = fooo z' f(z)dz and 7‘1'; = -‘1‘- Then

v@) = T—f—p(/;(l—F(y))dy)wL - Fe)

3,2
i + gt @) + U@ @ =)

It follows from the theory of the previous section that o( f(z)) may be interpreted
as O(f'(z)). Notice that the proportional descend rate of successive order terms

11



in the expansion is governed by the failure rate f(z)/(1 — F(x)); the faster the
rate at which f(x)/(1—F(x)) tends to zero, the better the approximation of ¥/(z)
for smaller x. However, the coefficients of the order terms grow geometrically
fast with a factor p/(1— p), so for p close to 1, it may be expected that corollary
2 will only provide a decent approximation for x large. It turns out in practise
that the approximation starts to perform quite well beyond the 0.999 percentile
of the waiting time distribution. If one is interested in approximating central
and intermediate waiting time probabilities, an alternative is to act as if the
underlying service time distribution is exponentially bounded (e.g. by changing
the original distribution into a phase-type distribution which results from a two
moment fit) and then apply the exponential estimate in (4), see e.g. Seelen et
al.(1985). Although such estimate is asymptotically not correct, it is superior
to the approximation in corollary 2 for a large range of x values. This is partly
explainable from the stability of the waiting time in an M/G/1 queueing system
with respect to changes in the service time and from the fact that a two moment
fit of a distribution of the form (6)-(8) by a mixture of Erlang distributions
performs very well on 99 % of the range of the distribution. Only (far) out
in the tail the deviation becomes important, implying that in that range the
expansion in corollary 2 should be used, rather than the exponential estimate.

3.1 extension to batch arrivals

It is interesting to note that the results of section 2 can also be applied to approx-
imate the waiting time distribution of an individual customer in the M Xl/G/1
queue.
Suppose that the batch size distribution is given by (gx)j%, and denote the
mean batch size as ¥ = ¥ 1o, kgx (As to other quantities we stick to the nota-
tion of the previous sections). Cohen(1976) showed that if py < 1, the stationary
waiting time distribution is given by
z
P(We < 2) = /0 Wsc(z — y) dWr(y) (20)

with
oG h 1 oo
Wr(z) =Y F*¥ @) | =g
k=1 v ji=k

and with Wgc the waiting time of a so called super customer (a complete batch).
As the batches follow an ordinary M/G/1 queue with service time distribution

(o]
Fgo(z) = Z gn F*7(2),
n=1
we have that

Wso(a) = (1=vp) Y (7p)" H3E(2)

nz=1

12



where -
Hsel(z) = 5—/ 1— Fsc{y)dy.
0

In case the service time distribution is exponentially decreasing, it was recently
shown by Van Ommeren(1988) that P(Ws, > z|W,, > 0) satisfies an exponen-
tial estimate comparable to (4). The results we obtain below are complemetary
to the result of Van Ommeren as we concentrate on longtailed service time dis-
tributions. The following theorem provides a second order expansion for the
waiting time in an MIX1/G/1 queue.

Theorem 4 Suppose 3 o, gnz™ is analytic at 1 and let F' be given by (6)-(8).
Then

1 =1/7+p)¢(=)

BYP /°°
=L | 1-F(y)d
Ty (y) dy

[HEE) ) ) Yo () foren
+o(l1—F(z)) (z— ).

Notice that the higher order term also involves higher moments of the batch
size distribution. If the batch sizes are degenerate at 1, we end up with the first
two terms of the expansion in corollary 2. The proof of theorem 4 is split up in
several lemma’s.

Lemma 3 Let F satisfy the conditions of lemma I or 2, and suppose that F'
has an ultimately decreasing failure rate. Then

lim 1= fie(2) =20 = Hse(e)) _ £, li( ; )gj-

=00 hsc(z) B2 TR

Proof
We will show that under the conditions of the lemma,

i 156 = 2hsc() _ g, _2_35—3()

z—oo —hge(z) Ha YR



Let A(z) be a positive function such that A(z) — co  (z — oc) but A(z) < z/2.
Then

hy&(e) — 2hsc(z)

2 pA(z)
2(£) [ (Fscto) - Frcta =) (1= Fcw) dy

It

~9 (%)2 (1— Fse(=)) [:;)(1 — Fsc(y)) dy
+2 (%)2 /:(::(1 —~ Fsc(z —y))(1 — Fsc(y)) dy

(I) = (IT) + (I1I).

il

From the conditions on F, we have that fsc(z) ~ vf(z) (see e.g. Chover et
al.(1973)) such that Fgsc inherits the asympotic properties of F'. By appropriate
choice of A(z) and proceeding in exactly the same way as in the proof of lemma
2, it follows that

(1) ~ 2fsc(z) (5) [ o= Fscwidr @)

and that (IT) + (III) = o(fsc(z)) (x — o0). Since

2fsc(2) (5—)2 [ v - Pt dy = (@) (f— +25°(9) gj) ,

the proof is finished.

Lemma 4 Let F satisfy (12) and suppose 3 oo, g,2" is analytic at z=1. Then

1—Hsc(33)
= u/m l—F(y)dy+;<]§;2<;)gj)(l"F(m))
+o(1~ F(z)) (z— 00).

Proof
By theorem 2 and de "Hépital’s rule,

oQ

1-Hsc(x)—u/ 1— F(y)dy

T

14



o0

(1= Fsc(y)) —v(1 = F(y)] dy

(Z ( } ) w’) (1= F(z)) +o(1~ F(z)) (2= o0).

j=2

e

Qi =T

Lemma 5 Supose the conditions of lemma 4 hold. Then

e 9]

>(2) g,.) (1= P(&) +o(1 ~ F(x)) (z— o0)
j=2

() 1= Wea) = - (

(i) Who(a) = 25 (1= (@) +o(1 = F(2) (2= 00).

Proof
(i) Straightforward from theorem 1.
(ii) Clearly

oo
Wic(z) = (1—7p) D_(1p)"hss(x)
n=0

with hge(z) = %(1-—-F50(.’8)). Since F satisfies (12), it follows from de 'Hopital’s
rule that also s (1_F L_F 5

o[- FE-n) (- F@) 2

T Jo 1 - F(x) H
Furthermore, by theorem 1, 1 — Fsc(z) ~ y(1 = F(z)) (z — 00) such that

: (1= Fsclz—y))(1=Fsc(y) , _ 27
lim /0 1= Fec(2) dy =

T+ OO

o x2
h
lim __S_C_(‘Q = 9.
s—oo hsc(z)
Hence hsc(e) is a subexponential density and it was shown by Chover et
al.(1973) that in this case,

Wie() = 120ohse(z) +olhsc(e)) (2= o)
_ e
= ———1_7p(1~F(z))+o(1—F(x)) (z — 0).
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Proof of theorem 4
From (20),

P(Wy >1z) = /Ox(l — Wr(z - y)Wic(y)dy + 1 - Wsc(z).

By lemma 3, Hgc satisfies (12) such that by theorem 2,

1 - Wse(x)

= 1 zp’)/p(l — Hgc())

2 =)
5 :
; (—&) L2 (;).qj hsc(®)
L—7p Hoo YH D

+ o(1 —~ F{z)) (z — o0).

By lemma 5 and the fact that F satisfies (12), we may apply lemma 3.1.1 of
Omey and Willekens(1987) to find that

[ =Sy

dim P [T we)ay

1— Wg(z) ,
+ Jim L20FE [wc@yay+ o) @0

- s (D515
+ o(1) (z — o0)

- 1f7p{§g(§)m}+om (2 — ).

The desired expression now follows from a combination of the results above and
the fact that P(Wo, = 0) = %(1 ~¥p).
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