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Abstract

A max-autoregressive moving average (MARMA(p,q)) process {X;} satisfies the recursion
Xi=p1 Xs 1 V-V ¢pXt-p VZ; VO Zi V-V Qqu_q

for all t where ¢;,8; > 0, and {Z;} is iid with common distribution function @1 ,¢(z) := exp{—ocz~ '}
for z > 0, ¢ > 0. Such processes have finite dimensional distributions which are max-stable and
hence are examples of max-stable processes. We provide necessary and sufficient conditions for the
existence of a stationary solution to the MARMA recursion and we examine the reducibility of the
process to a MARMA(p', ¢') with p’ < p or ¢’ < ¢. After introducing a natural metric between two
jointly max-stable random variables, we consider the prediction problem for MARMA processes.
Assuming that Xi,... ,X, have been observed, we restrict our class of predictors to be max-linear,
ie. of the form V7b;X;, and find by,... ,b, to minimize the distance between this predictor and
Xn+k for k > 1. The optimality criterion is designed to minimize the probability of large errors and
is similar in spirit to the dispersion criterion adopted in Cline and Brockwell [Stoch. Process. Appl.
19(1985):281-296] for the prediction of ARMA processes with stable noise. Most of our results
remain valid for the case when the distribution of Zy is only in the domain of attraction of @1 ..
In addition, we give a naive estimation procedure for the ¢'s and the 8's which, with probability

one, identifies the true parameter values exactly for n sufficiency large.
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1. Introduction

A time series which is stationary in appearance and exhibits large peaks or sudden bursts of
outlying observations is a potential candidate for modelling as an ARMA process with heavy tailed
noise. Examples of such data can be found in Stuck and Kleiner (1974), who considered telephone
signals, and Fama (1965), who modelled stock market prices. In this paper we explore the class of
max-autoregressive moving average (MARMA) processes, which share many of the characteristics
of heavy-tailed ARMA processes. As such, MARMA processes offer an alternative class of models
for modelling stationary data with outlying observations.

A stationary process {X,} is a MARMA(p,q) process if it satisfies the MARMA recursion,
namely:

XTL = ¢1Xn-—1 V- A% ¢an—p \% Zn v 91Zn._.1 Ve \% qun_q

for all n where ¢;,6; >0,1<i<p,1<j< g and {Z,} is iid with common distribution function
B »(z) := exp{—oz~1}. As will be evident from the discussion of Section 2, such processes have
finite dimensional distributions which are max-stable (cf. Resnick, 1987) and in fact MARMA
processes are examples of general max-stable processes considered by de Haan (1984), de Haan and
Pickands (1986), Balkema and de Haan (1988). MARMA processes constitute a relatively simple
parametric family with p + ¢ + 1 parameters. The finite dimensional distributions of a MARMA
process possess much structure that can be used for prediction (Section 4), estimation (Section 5),
and model fitting.

Section 2 deals with some foundational issues such as when the defining equation for 2 MARMA
has a stationary solution. This coincides with the property that the MARMA process can be written
as a max-moving average (MMA) of order oo or synonymously a max-linear process of the form
X, = V2, ¥iZn—;. This property we call causality and we show how the coefficients {¢;} can be
computed by means of a recursive procedure. We are also interested in when the MARMA process
is reducible; i.e. when the process can be written as the solution of a MARMA(p', ¢') recursion with
either ' < por ¢ < gq.

Section 3 considers a natural metric between two jointly max-stable random variables and in Sec-
tion 4 we give a procedure which produces predictors which are optimal in the sense of minimizing
the distance (in the sense of Section 3) between a max-linear function of the past and the future
value one needs to predict. So for instance given that Xi,..., X, have been observed, we restrict
our class of predictors to be max-linear, ie of the form Vioy biX; and find by, ... ,b, to minimize
the distance between this predictor and Xn4x for k& > 1. The optimality criterion is designed to
minimize the probability of large errors (cf. Cline and Brockwell, 1985) and thus is different in
spirit to the usual Hilbert space approach to prediction. We can exhibit explicitly the optimal
predictor for a variety of examples and the form of the predictor seems natural in most cases.

To get a feel for the sample paths of MARMA(p,q) processes, we have simulated 250 observations
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from each of the following models (see Figures 1, 3, and 5),

Xi=.TX¢t 1V Zs,
Xe=2Z4 V 871,
Xt = .5Xt_.1 A .3Xt__2 \Y Zt \% -GZt——la

where Z; ~ ®;,. Figure 2 contains the plot of 250 observations from the AR(1) process X; =
7X,_1 + Z, where the noise variables are identical to those used in generating the plot in Figure
1. Observe that the MARMA(1,0) graph is slightly smoother than the AR(1) graph but the
corresponding peaks in the two plots are practically the same. Figure 4 contains a realization
of the MA(1) process, X; = Z; + .87;_1, which again was generated from the same innovations
used to construct the MARMA(0,1) process in Figure 3. This time the two plots are essentially
indistinguishable from one another. As an alternative to comparing ARMA and MARMA, one can
imagine a MARMA model as an alternative to a shot noise model. For example, in Figure 1, the
process descends exponentially from each spike and then fluctuates around small values until the
next major spike is encountered. By adjusting the order and parameter values of the process, the
frequency and width of the spikes can be altered.

In Section 5, we give a naive estimation procedure for the #'s and @'s which, with probability
one, identifies the parameter values exactly for n sufficiently large. This procedure is applied to the
MARMA examples displayed in Figures 1, 3, and 5, as well as to the AR(1) process in Figure 2.

It is our contention that the class of max-stable processes possesses many desirable and elegant
mathematical properties. We intend in future work to pursue questions of parameter estimation
and model fitting and it is our hope that, with the inclusion of some form of observational noise,
MARMA processes will be useful in fitting data which exhibit sudden large jumps. It is entirely
possible that the MARMA class will model the small values of such data badly. However since
many applications are concerned with whether large values exceed specified limits, if a MARMA
process is a good model for large values of the data we may have an adequate model for the intended
purpose and in this case our prediction criterion-minimizing large differences between predicted
and true values—is quite appropriate.

Our results are more widely applicable than may at first be apparent. Although we have assumed
Zy ~ ®;,, this is not essential. If instead, Z; has the heavy tailed extreme value distribution
exp{oz~°}, then one can transform back to the a = 1 case by taking 1/a powers in the MARMA
recursion. More generally we hope to examine estimation techniques for long tailed stationary data
which allow instantaneous transformations of the data in such a way that the transformed data
can be reasonably modelled by the MARMA model with @, marginals. Furthermore, most of our
results remain valid for the case when the distribution of Z; is in the domain of attraction of @1 ..

These instances are pointed out in the sequel when applicable.
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2. Causality and reducibility.
Consider a stationary process {X,} which satisfies the max-ARMA(p,q) (or MARMA(p,q) for
short) recursion

(21) Xn=¢1Xn1 v"'V¢an—pVZnV61Zn~1V"'veqzn—qv n=0,x1,£2,...

for ¢;,0;, >0, 1 <i<p, 1 <j<g, and {Z,} iid with common distribution function @4 ,(z) :=
~exp{—cz~'}, z > 0, 0 > 0. Such a process is called causal if there exist constants ¢; > 0, 7 > 0
such that \/52, ¥;Z; < 00 a.s. and

oo
(2.2) Xn=\ ¥Zn_j.
=0

In analogy with traditional time series models, a process having representation (2.2) will be called
maz-linear. We first note the following easy but useful facts about the existence of max-linear

processes.
PROPOSITION 2.1. If{Z,} is iid with P[Z; < z] = ®1,0(z) then
(a) \/ Y;Z; < oo a.s. fori; >0 if and only if Z¢j < 0o,
j=0 =0

g oo
(b) Define Z,, = \/ 6;Zn—; where g =1, 6; > 0. Then \/ a;jZn_j<oo as for a; >0
J=0 Jj=0
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if and only if
(o o]
Z(xj < cC.
=0

In particular, {52 @jZn-j, n=0,%1,...} has representation (2.2) with

ProoF: The proof of (a) follows readily since by the Kolomogorov 0-1 law P[V3Zo¥;Z; < o] =
0 or 1. This probability is one if and only if for some z > 0

0 < P[\/ $;2; < ol = [] ®1,0(¢52) = exp{-0z7* 345}
j=0 j=0 j=0

However exp{—oz =" Y 52 %;} > 0 if and only if e ¥ < .
For (b) it is convenient to define 8, = 0, if k£ > ¢, then

8

0 Zn—k) =\/ \/a]9k3 n—k

j=0 k=j k=0

i
<8

¢an—k-

E
il

0
Since 3 ;%; < oo if and only if 37, aj < oo the result now follows from (a). K

REMARK 1: There is a parallel result for the case when it is only assumed that the df F of Z; isin
the domain of attraction of ®; ,. Using Potter’s inequalities (see for example Resnick (1987), p.23),
the counterparts of (a) and (b) of Proposition 2.1 can be combined into the following statement
(see Cline (1983) and Hsing (1986)). If F(0—) = 0 and F" € D(®1,,), then for ¥; > 0,

V %Zj{
7=0

and in the former case, we have

<oo a.s. if E;f:o ¥? < oo for some § < 1,

=00 as. if 32,95 = oo for some § > 1,

o P[\/J 0o ViZ; > 7] kel
:vlgréo P(Z; > 7] Z i

In the remainder of this section we assume the df F of Z; is in fact equal to ®1,0. However by
virtue of the preceeding remark, the following results will also be valid for the case F(0—) = 0 and
F € D(®1,0)-



To investigate causality of the solution to the MARMA recursions, suppose a solution of (2.1)
exists of the form X, = \/;f__o @;Zn_; wWhere again Z, = ! 00:iZn_i and 3 a5 < oo. Then

plugging this expression into both sides of (2.1) and setting a; = 0 for j < 0, we obtain
o0 oo [e e} o0 _
\ @iZn_j=($1\] @j-1Z0-5) V (42 \ @j=2Zn-;)V (¢ \/ @j=pZn-5)V Zn
j=0 i=1 j=1 i=1

= Zn A (\/((,15101j__1 \% ¢201j__2 V-V d)paj_p)Zn_j).
Jj=1

This leads to a solution of (2.1) provided {e;} satisfies the recursions

Olo:l

(2.3) a; = ¢roj_1 Vdaaj_a VooV gpo_p, 721

(ej = 0for j < 0)and 3, @; < c0. If ¢ := Vi_; ¢; < 1,then a; < (¢*)’ and hence by Proposition
2.1, the process V;.;.o jZn—; is one such stationary solution to (2.1). As the following propositon

demonstrates this is the unique stationary solution to (2.1).

PROPOSITION 2.2. There is a solution to the equations (2.1) if and only if ¢” := ?___1 ¢; < 1.If

¢* < 1, then there is a unique stationary solution given by

(2.4) Xn = Zo:jZn_j = \/ Q,Z)jZn._j
— o
where
iNg
(2.5) b=\ a;_xbk,
k=0

8o = 1 and {a;} satisfies the recursions (2.3). In addition, the t; satisty the recursion

Vi =151 VeV pPip

for j > p.
PROOF: We have already seen that there is a stationary solution to (2.1) if ¢* < 1. Conversely

suppose ¢* = ¢, > 1 for some 1 < r < p, then forany £ > 1

Xn 2 X’n—-r N Zn
Z X'n.—~2r N Zn \% Z'n-—r

e ZnVZn—rV"'VZn—-kr-
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Since, by Proposition 2.1, V§=1 Zu_jr — o0 as. as k — o0, we conclude that X, = o0 as., a
contradiction. Consequently, ¢* must be less than one.

As for uniqueness, suppose ¢* < 1 and let {¥,} be a strictly stationary solution to (2.1), ie.
Yo=¢1 Y1V -V@pYn_pV Zn.

Tterating this equation back k time lags, we may write

k
(2.6) Y, = \/ Othn__j \% (ak,lYn_k_.l \% ak,g}’n_k_g VeerV ak,pYn__k_p)
=0
where the constants ag ; satisfy 0 < ay; < (¢*)k/P 5 = 1,...,p, [z] = integer part of z, and

{a;} is given by (2.3). Thus, since {Y,} is stationary,
2
ak1Yn—k-1Var2Yn_gk2aV---VagpYn_p—0

as k — oo so that by letting kK — oo in (2.6) we obtain
oo
Yn = \/ ijZn—j-
.

This is the unique stationary solution with causal representation as specified in the statement of
the proposition.

Finally the relation ©; = ¢1¢j_1 V---V ¢pthj_p for j > p follows directly from (2.3) and (2.5). §
REMARK 2: The 8; play no role in determining whether (2.1) has a stationary solution. i

REMARK 3: Proposition 2.2 does not assert that there is a unique solution to (2.1) if ™ < 1; only
that there is a unique stationary solution. To construct nonstationary solutions to (2.1), let {X,}
be the stationary solution as specified by (2.4) and suppose {Y,} is any solution to the homogeneous
maz-linear difference equation
Yo=¢1Yn 1 V-V Yn_p.

For example, if p = 1 then Y, = ¢7Yp. The process {X, V Y.} is then easily seen to be a (non-
stationary) solution to (2.1). The stationary solution is always the minimal solution of (2.1). &

If we write ¢(z) = VI, ¢iz?, ¢ > 0 and define B to be the usual backwards shift operator,

BX, = X,_1, we may represent (2.1) symbolically as
(2.7) Xn=&B)XnV Zy.
If * < 1, the solution (2.4) can be seen as follows: Iterate (2.7)
Xy = H(BYH(B)XnV Z0) V Zn
= ¢*(B)Xn NV §(B)Zn V Zn

k
= = ¢UBX, v \ ¢(B)Zn

=0



where ¢°(B) is the identity. The solution is
Xn=(\ ¢(B)Zn
.

Now reading off the coefficient of z7 in

we have an explicit expression for the ; in terms of ¢1,... ,¢, given by

a():l

aj=\/ \/ Fiy -+ Pis

k=144 Fig=]
J

(2.8) = \/ \/ Giy - i

k=j/pii+-tir=j
J p

VooV I

k=j/p mnat-dng=k  i=l
nyi+2ngttpnp=J

fi

It is a simple matter to check that this choice of e, is indeed the solution to the recursions (2.3).
We next consider when a process {X,} satisfying (2.1) is reduciblein the AR component; i.e.

when we can write

<.

Xn= d)an——i N Zn
=1
for p < p. In what follows, the dependence of a; in (2.3) on ¢, = (é1,... ,%p) is sometimes
emphasized by writing @; = a;(¢,). Observe that with this notation a;j(¢1,... ,6p-1,0) are the

corresponding coefficients in the causal representation (2.4) of a MARMA (p-1,q) process.

PROPOSITION 2.3. Suppose {X,} is the stationary MARMA(p,q) process satisfying (2.1) with
p > 2. Then the order of the autoregression is reducible to p — 1 if and only if

(29) ap(qslv e 7¢p—-170) = d)lap—l VeV qsp—-lal > ¢p~

By (2.8), this in turn is equivalent to

P p-1
Ty i
V V [[ 4" 2 ¢
k=2 n1+...+np~1=k =1

n1+2ng+-+(p—1)np_1=p

9



ProOF: From the causal representation of {X,}, it is clear that the process is reducible if and only
if
a;j(dp) = aj(b1,- .- 1$p-1,0)  F=0,1,....

Setting j = p the necessity of (2.9) is immediate from the recursions (2.3).

Conversely suppose ¢r1ap,_1 V -+ V ¢p_101 = ¢p, and we prove {o;(¢1,.-- ,ap_1,0)} satisfies
(2.3). Because aj(¢p) = a; = a;j(¢1,... yp1,0) = $raj_1 V-V djag for g = 0,1,...,p— 1, it
thus suffices to show that for h > 0

Qpph = ¢>lap+h—1 V.-V ¢'p-1 Q41

or that

(2.10) $raprh-1 VoV $po1@hi1 2 $pQh.

For h = 0, this follows by assumption so now assume the validity of (2.10) for 0 £ h < n. Then

since aj > ¢paj_p. We have with h=n+1

<73105104-71 VARERY ¢p—~1an+2 > ¢1¢pan Vo---V ¢p—1 ¢pan+2-—p
= ¢p(¢1an VeV ¢p——lan+2—p)

= ¢pOint1 (by induction).

This finishes the proof. i
An outgrowth of the argument just presented is that if {X,} satisfies (2.1), the coefficient @,

is not necessarily uniquely determined. For example, any ¢, satisfying the inequality (2.9) gives
rise to the same MARMA(p-1,q) defining equations. We may also consider the analogous questions
relative to the other autoregressive coefficients. The coefficient ¢; where 2 < 1 < p is not uniquely
determined whenever ¢; Xn—; < ¢;X,—; for some j < i. In this case, using the same argument as

above, the MARMA(p,q) equations (2.1) may be reduced to

Xn=01Xn1 V- VoimiXnoit1 Voip1Xn_ic1 V GpXn—pZn
for some 2 < 7 < p if and only if
(2.11) prai_1 V-V gioion 2 G

or equivalently if
i i1
V V [1¢7 2o
=1 ny4-ni.1=k Jj=1
1420+ {(i—1)n; =1

o

10



This is exactly the condition that a MAR(i) process with parameter values ¢1,... ,¢; can be reduced

to an MAR(i-1) process.

Examples: MAR(1). We have
Xn= ¢Xn~l vV Zy

andifp < 1

A solution does not exist if ¢ > 1.
MAR(2). We have

Xpn=Xna Vo XnoaVZn.

Assume ¢ V ¢y < 1. The coefficients {¢;} in Proposition 2.2 are

P =1
P = ¢y
P = ¢ V by

V3 = @5V d16hs
and so on. The process is reducible if and only if #? > ¢y and if ¢y > #?, then the ¥; become

. { prgb/?, if k is odd
k =

k/2 e
2/ ) if k is even.

MAR(3). We have
Xn=01Xn1VdrXnoVo3Xn_3VZy,

and if &1 V @2 V @3 < 1, the coefficients z,b'js are

o =1
v = ¢
Py = ¢] V s

V3 = ¢V 1o V 3
;= P11V $athi_2 V @33 for j > 3.

From (2.11), the coefficent ¢ may be replaced by zero if and only if ¢? > ¢, and the process is
reducible if and only if ¢3 V 12 > @s.

11



The reducibility of the moving average component of a MARMA(p,q) process can also be ad-
dressed. It is clear that 6;, for some 1 < i < g, is not uniquely determined in (2.1) whenever
0;Zn_i <P Xn_1V---V¢pXn_p. A necessary and sufficient condition for this to occur is that

i-1

(2.12) \ cizibi > 6,
k=0

where a; satisfies the recursions (2.3). If the equations (2.1) do not depend on ¢;, then t; in (2.5)
must be independent of §; which is exactly (2.12). On the other hand if (2.12) holds, then we have

from Proposition 2.2

P g P g
Xp = v (ijn—j \2 \/ 9jZn_j = \/ 45an__7' Vv V HjZn—-j Vi Zni
j=1 i=0 j=1 j=0
p q 11
=\ ¢iXn_i V' \/ 6520 Vv (\/ icibi) Zn_s
=1 §=0 k=0
J#1
P q
=\ 6Xn-i vV \/ 62
i=1 J;‘O
J#

which does not depend on ; as asserted.

3. A metric for max-stable random variables.
In this section, we introduce a metric for max-stable random variables which will be the basis
for prediction in the next section. Suppose (X,Y) has a max-stable distribution with marginals

@l,ox
non-negative integrable functions f, and f, such that

and 1,0, respectively, which, by Proposition 5.11 in Resnick (1987), implies there exist

1 1
(3.1) jg fr(s)ds = oy, jﬁ £y (s)ds = oy

and

1
(3.2) PX <2, Y <y]= exp{—/o I—X—mgs—) % f—’iy(;g—)— ds}.

There is an obvious extension of this relation to more than two max-stable rv’s.

We now define the distance between X and Y by

(3.3) AY) = [ 106 = £l ds

Since f, and f, are not uniquely determined in the representation (3.2) (see de Haan and Pickands
(1986)) it is not immediately obvious that d(,-) is a well defined function. To see that d(-,-) is
indeed well defined, observe that from (3.2)

(3.4) PIXVY L2]= P10, (%),

12



where 0,,, = fol £ (8)V fy(s)ds. Now if Z ~ ®;, then Z~! is exponential with mean o' and
thus from the identity, |a — b] = 2(a V b) — a — b, we see that

[ 160 = @)l ds = 200y =0 0y
(3.5) =2EB(XVvY)™)' —(EXH)' - (EY~H)!

and so d(-,-) is unambiguously defined in terms of the moments (X vV Y)~1, X-1',and Y1,
It is clear from (3.3) that d(-,-) satisfies the triangle inequality; namely if (X,Y, Z) is max-stable,
then
d(X,2) < dX,Y)+dY,Z).

In addition, setting z = y in (3.2), we see that X = Y a.s. if and only if 0y,, = 0, = 0, and

hence from (3.5)
d(X,Y)=0 ifandonlyif X =Y a.s.

Thus d(-,-) is a metric when applied to any collection of jointly max-stable random variables with
one dimensional marginals @ ,.
Using the metric d, a measure of dependence between a pair of max-stable random variables X
and Y can be defined by
1., X Y
XY)=1-=d(—,—).
p(X,Y) 5 (UX —)

This measure of dependence was originally proposed by Tiago de Oliveira (1962) and has the

following properties:

(1oL p(X,Y)< L

(2) p(X,Y) =0 if and only if X and Y are independent.

(3) p(aX,bY) = p(X,Y) for all positive constants a and b.

(4) p(X,Y) =1if and only if X = c¥ a.s. for some positive constant c.

Properties (1), (3), and (4) are immediate from the definitions of p and d. Asfor (2), it is easy to see
from (3.2) that X and Y are independent if and only if fl f’(x(s) f”{s) ds = [} f‘(m(s) ds +f1 f”(s) ds
for all z and y which is equivalent to f, and f, being supported on dlSJOlnt sets a.e. (de Haan

(1984), de Haan and Pickands (1986), and p.292 of Resnick (1987)). This in turn is equivalent to

which establishes (2).
As the following theorem indicates, the metric d may be roughly interpreted as the asymptotic
scale of | X —Y|. This is analogous to the dispersion metric for random variables which are jointly

(sum) stable (see Cline and Brockwell (1985) and Section 4, Remarks 1 and 4).
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THEOREM 3.1. Suppose (X,Y) is max-stable with joint distribution given by (3.2). Then
zP[|X -Y|> z] — d(X,Y)

as ¢ — oo.

COROLLARY 3.2. Suppose the distribution of the nonnegative random vector (U,V) is in the
domain of attraction of the max-stable distribution of (X,Y) with normalizing constants (@n,an),
ie.,

1
oV < 2,05V €)= PIX <2, ¥ <) = ep(~ [ 2V I ag
0

Then 1
RPIU = V] > an] = dX,Y) = [ 1fc(0) = ()] ds.

Proor orF COROLLARY: By assumption we have
nPla;' (U, V) € ] = v()

where -+ denotes vague convergence on the space [0,00]? \ {(0,0)} and v is the exponent measure
of the distribution of (X,Y) (see Chapter 5, Resnick (1987)). Since the set {(z,y) : |z —y| > 1}
is bounded away from the origin and v(8{(z,y) : |z — y| > 1}) = 0, it follows from the vague

convergence that
nPlas U = V] > 1] = v{(z,9) < Jz -y > 1}.

But also
2Pz HX - Y| > 1] = v{(z,y) : |z —y| > 1}
so that by the theorem,

4X,Y) = v{(z,9): lo 9l > 1)

which proves the corollary. §

The proof of Theorem 3.1 is based on a representation for (X,Y’) in terms of a Poisson process
(cf. de Haan (1984) and p.268 of Resnick (1987)). Let {I'n,n > 1} be the points of a homogeneous

Poisson process with rate 1 so that
Fn :E1++En

where {E;} is a sequence of iid unit exponentials. Suppose {U;} is a sequence of iid uniform (0,1)

rv’s, independent of {I',,}. Then

(X,v) < (V &éf@‘)) \/ fyéffé))'
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To verify this representation, note that {(U;,T;), ¢ > 1} are the points of a Poisson process on
[0,1] x [0, 00) with intensity measure u(du,ds) = 1j01)() du X 1jg «)(8) ds (see Proposition 3.8 in
Resnick (1987)). Hence

(U:)
I

P[_\/ f"(f]") <, < y]

b
s
-

1

il
A
ii

= P T2 1) {(ne): L s o or W5 4y 2 g
= exp{—,u{(U,S) : fx(u) > st o1 fY(u) > 33/}}

= exp{-n{(w) 10 <5 < LWy fY—f‘l}

:exp{—/o -‘f-‘—’(—z(-u—) V—‘&Z—Ey—)du}

as asserted.

ProoF oF THEOREM 3.1: Observe first that for z > 0,

and therefore

PX >Y +1z] <PU{fX(U) fyl(f]i)‘*’fc}}

?
=1

=1— P{(U;,T3), i > 1} 0 {(u,8) : s fr(u) > 87V fy (u) + 2} = ¢]
=1—exp{—p{(u,8): 0 < s < 27 (f, (w) = fy (u)}}
C 1 exp{—z- / (e (@) — £y (w)) du}

[Fx>Fy]

<a- /{f (Fr () = £y (w)) du

> 1y

Thus we conclude,

(3.6) limsupzP[|X - Y| > 2] < /0 lfx (u) = fy(w)] du = d(X,Y).

00

For the reverse inequality, observe that

P[\/ fXI(‘Ui) > \/ fYI(wUZ) +:E]

X U Y U Y fx U fY U fy(Ul)
Z[flgln A Y m)z\é( ALY

15



To evaluate this probability, note the first event is {z~1(f, (U1) — f, (U1)) > I'1} and so by condi-
tioning on U; and I';, the probability on the right hand side of (3.7) is

(3.8) (/ e—sp[v fX(Uz) < fx(u) \/ fyrb < fy(u)]d8> du
x> Fy] M0,272(15 (w)=Fy (w)] ,-=25+F='—1 s+ L s

Now for y1, y2 > 0,

fy (Ui)
\/8+1-.11 15\/ +F_1<y]

<
[V
..+.
=3
l/\
IT<38

= PH(U, T, i 2 1) 0 {(0,1) - fX” >yor 2 5y = g
= exp{—p{(0,1) 10 <t < (y] L oV () - )
(3.9) :exp{_/o (%gf’lvfrg—)nsﬁ do}.

If we replace (y1,¥2) by (fx(u)/s, fy (u)/s) as dictated by (3.8), then (3.9) becomes

exp{—slI(u)}, where I(u) = /(}[;(EZ _i%% 1) dv.

Using this in (3.8), we obtain

sPX —Y >a] > w/ exp{—s(1 + I(u))} ds) du

fx >fy](/[0’z—1(fx(u)—fy(u))]
_ / (A2 exp{—2 7 (fx(u) = £, (w))(1 + [(u)})
[fx >fol 1+ ](u>

3

so that by Fatou’s lemma,

liminfzP[X =Y > z] > /[f g (fx () = fy(u))du.

I e OO

It thus follows )
liminf 2 P[|X 4 Y| > 2] > / 1F, (0) — £, (u)l du = d(X,Y)
T 0 o

which together with (3.6) proves the theorem. N

4. Prediction of max-linear processes.

In this section, we consider prediction of an observation from a max-linear process in terms
of the infinite past of the process, and then specialize to prediction based on the finite past for

MARMA(p,q) processes. The predictor will be restricted to the class of max-linear combinations

16



of past observations and will be chosen so as to minimize the distance (in terms of the metric d(-, )
of Section 3) between the observation and the predictor. This prediction criterion is similar in
spirit to the dispersion criterion adopted by Cline and Brockwell (1985) for the prediction of linear
processes with infinite variance. The minimum dispersion predictor has the property of minimizing
the probabilities of large prediction errors. As we shall see in Remarks 1 and 4 below, the same
interpretation is also valid for our criterion. Before embarking on the formal prediction set-up, we

first record some elementary properties of max-linear processes.
PROPOSITION 4.1. Let {Z,} be iid with common distribution function ®; ,(z), ¢ > 0. Define
oC o0
X=\ ez, Y=\ p;z
7=0 7=0

where a; > 0, 8; > 0 with 3°, a; < oo, 3, f; < co. Then the distribution (X,Y) has representa-
tion (3.2) (ie. (X,Y) is max-stable) with

o0 o0
(4.1) fx(s)=0 ZanjHl(z—i—l,z-i](S) and f,(s) = UZﬁjWHl(z—i—l,‘z-i](s),

7=0 7=0
and
(4.2) dX,Y)=0) la;- Bl
j=0
Moreover,

X =Y a.s. if and only if aj = f3; for all j.

Proor: We have

PIX <a,Y <yl =P[[|({e;Z; <2} n{8;Z; < y})]
j =0

J

g=0 a] ﬁj

- a5, B
= exp{—o Z v Y

7=0 Y

But with f, and f, as defined by (4.1)
1 X s .

[ 50 oSy

0 z y 7=0

and hence the distribution of (X,Y) has the desired representation (3.2). Equation (4.2) is now

immediate from the definition of d.

17



As for the last assertion of the proposition, note that d(X,Y) = 0 3772, oy = B;] = 0iff ; = f3;
for all 7 and since d is a metric, this is true iff X =Y as. I
REMARK 1: With X and Y defined as in Proposition 4.1, we have from Theorem 3.1 and the above
proposition (also see Remark 4 below)
_ PIX—Y|> 3]

lim

s Tz < i< S

i=0

Now to establish the connection between this metric and the dispersion metric discussed in Cline

and Brockwell (1985), suppose

o0 o0
U= a;W;, V=> BW,
J=0 7=0
where {W;} is iid and W; belongs to the domain of attraction of a stable random variable with

index @, 0 < @ < 2. Then under suitable summability conditions on {a;}and {§;}, we have from a

theorem of Cline (1983),

. PlU-V]|>4] : .
1 == s B9 =1 d U - V).
Jim AR jE:O la; — B;] ispersion( )

Consequently, our prediction criterion for max-linear processes is the natural analogue of the dis-

persion metric in the stable linear process setting. I

To set up the prediction problem for max-linear processes, let {X;} be the (causal) max-linear

process
(4.3) Xe=\ ¥ Zi;
o
where {Z,} is iid with Z; ~ @15, %; 2 0, and 37, 1; < co. Let H be the class of random variables
0
Hz{ \/ CYJ‘ZJ‘: ajZO,Zaj<oo}.
j=—o0 i
Fix n > 1 and for each YV € H, define the set
o0 [e @)
PY = {\/ biXnt1-5 ¢ dY, \/ b; Xpnt1—j) is minimum}.
Jj=1 i=1

The following proposition, which parallels Lemma 2.1 in Cline and Brockwell (1985), shows that

on a subset of H, P is uniquely determined (i.e. consists of one element) and is max-linear.

18



PRrROPOSITION 4.2. Let {X;} be as specified in (4.3) above.
() IfY = Vj——oo a;Z; € H, then

P*}f = P:( \/ (IJ'ZJ').

j=—o0

(ii) Let S;; be the subset of H consisting of the rv’s

oo o0
(4.4) Y = \/ a;Z; Vv \/ BiXnt1-j
j=n+1 j=1

where §; > 1, Zj B; < co. Then for each Y € S, P;Y is uniquely determined and
o0
PiY) =\ BiXni1-;
=1

with error of prediction d(Y,P;Y) =0 E;in—}-l aj. Moreover, the mapping Y — P]Y is max-linear
on S} in the sense that Pr(aY VbZ) = (aP;Y )V (bP;Z) for all a, b > 0.

PrOOF: Forb; > 1, >7,b; < co, we have

\/bXn+1 J—\/b V¢an+1 —j-k
j=1 k=0

= V b \/ wz -3 n+1 i
7=1 jz= 7
oo
=\ \/ bjtii) Znt1-i
i=1 j=1
o0
= \/ ai(b)Znt1-i
i=1
where
(4.5) ai(b) = \/ bjvi_;.
j=1
Now applying Proposition 4.1 with ¥ = \/J- oo @ Z;, We have
oS [ee] o0 foe)
d(y, \/ bjXnt1-5) =d( \/ a;Z;jV V ens1-iZni1-i, \/ ai(b)Zrs1-:)
J=1 j—n+1 i=1 i=1
= o Z aﬂ“zianﬂ i —ai(b)])
J=n+1
=0 Z a; + d( \/ a;Z;, \/b Xnt1-;)
j=n+1 j=—x
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from which (7) is now immediate.
As for (i1), suppose Y is given by (4.4). From the calculation above with anyi_i = a;(B),1>1,
where a;(-) is given by (4.5), we have

d(Y, \/ b;Xnp1-5) =0( Y aj+ ) _lai(B) - ai(b)|

j=1 j=n+1 i=1

>o( Y ;)

Jj=n+1

Equality holds if and only if a;(8) = ai(b), ¢ = 1,2,... in which case, by appealing to Propo-

sition 4.1 once again, we conclude that there is a unique element of P7Y which is given by

Vie, ai(B)Zny1-i = V;‘;l B;Xn41-; as asserted. It is also clear that d(Y, PrY) = o Z?‘;nﬂ aj.
The max-linearity is immediate from the form of Y and P7Y. I

REMARK 2: If Y ¢ S*, then P;Y need not be unique (see the MARMA(1,1) example below). Also

if Y € H is independent of Xy, Xn_1,..., then P7Y = 0. I )

REMARK 3: Proposition 4.2 remains valid if we replace S by

o0 k(3
S, ={Y = \/ o; LV \/ BiXng1-5: a; 20, B; >0, Zaj < oo}
j=nt =1 ;

and PY by
PrY = {\/ bjXpt1-j:d(Y, \/ b;Xn41-4) is minimum}.

i=1 =1

In particular,
P\ @z)=P( \ a;Z;)
j=—-0 j=—o0
and
Pl \ iZiv\] BiXpp15) =\ BiXoraoj R
j=n+1 j=1 j=1

REMARK 4: As in Section 2 we can extend the above results to the case when the distribution F

of Z satisfies F(0—) = 0 and
F'(anz) — @1 0(2).

In particular let 7 be the class or rv’s

H={ \/ a;Z;: ajzoand2a§<oof0rsomeé<l}

j=—o0 J
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and define the distance between the tworv’s U = \/j a;Z;, V= \/j B;Z; € H by

O

dU,V) =0 Y laj - Bl

j=—o0

Then d is a metric on H and since (U, V) belongs to the domian of attraction of the max-stable

distribution described in Proposition 4.1, we have by Corollary 3.2 and Proposition 4.1
nP[|U = V| > a,] — d(U,V)

or, equivalently,
PlU - V| > z]

P(Z > z]

— 0"1d(U,V). 1

ExAMPLES:
MAR(p). Suppose {X;} is the MAR(p) process satisfying

Xi=p1 Xpc1 Ve VX pV 2y

and write X,H_k = P,Xn.x for k > 1. Then using max-linearity, we have that for n > p, this

predictor satisfies the recursion

Xn+k - ¢’1Xn+k-1 VeV ¢an+l~:-p

with initial conditions XJ- = X;, 7=1,...,n. The error of prediction is
k-1
d(Xntk, Xntr) = (O ¥5)
i=0

where {v;} are the coefficients in the causal representation of {X;} (see Proposition 2.2). As

expected

U Xty Kns) = 0y = 0(S )
J=0
as k — oo.
MARMA(1,1). In this case, let {X,} be the causal MARMA(1,1) process satisfying the recursion

X=Xy 1 VZiVOZi4

where 0 < ¢ < 1. We further assume that ¢ < 8 since otherwise {X;} is reducible to an MAR(1)
(see (2.12)). Because Z,+1 is independent of X,,... , X1, it follows from causality and Remark 3
that

Xpg1 1= Pr(@Xn V Zny1 VOZ,) = Pu(dX, V 02,).
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However, P, is not necessarily max-linear on this expression since ¢X, vV 0Z, ¢ S,. To compute

P(¢X, Vv E8Z,), write
Xn = \/ Vil ;
Jj=0

where {1} is as specified in Proposition 2.2, namely
Yo =1 and ¥; = 647~ for j > 1.

Now with a;(b) = V;f\__ri b;ji_;, we have by Proposition 4.1,

d($XnV OZn, \J b Xnp1-5) = d(@V 0)Zn V \ ($%ic1 Zns1-1), \ @i(D)Zns1-4)
j=1 i=2 i=1
=o(|0 - b+ Y |¢io1 — ai(b)])
1=2

=:m(b).
If ¢ < by, then a;(b) > ¢1pi_1 and hence

m(b) > o (|6 — bi| + 5_:7/)1‘-1(51 - 9))
7==2

é
=U(|9~bll+1_¢(bl—¢))
= m(bl,(),... ,0)
>{m(6‘,0,...,0) iféd<1-2¢

m($,0,...,0) iff>1-4.

On the other hand if ; < ¢, then

m(b) > o(6 - by)
(6 — &) = m(e,0,...,0).

v

Combining both cases, we conclude that

6X, ifo+0<1

Pan = .
+ {qun ifo+6>1

For the case ¢+ 6 = 1, the predictor is not unique and in fact can be chosen as b; Xy, for ¢ < b; < 6.

For prediction of further lags ahead, we have by iterating backwards and using Remark 3

Pan+h = Qsh—lpn)(nﬁ-l
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for h > 1 with prediction error given by

h~1
d(Xnshs PaXnsn) = d(@" 7 Xnp1 V \) ¥ Znin-js 8" PrXnp)
j=1
h-1

=0y %+ 0" d(Xnt1, PaXns1)

j=1

where d(Xnt1, PanXns1) is (14 (8 — ¢)) if ¢ + 6 < 1 and is equal to o(1+ 6(8 — ¢)/(1 - ¢))
otherwise.
Finally, we note that as long as ¢ +8 # 1, then the operator P, is indeed max-linear for the term

¢X, VOZ,. To see this, clearly P, X, = X, and an argument similar to the one given above yields

X, ifo+0<1

Pu(Zn) = { 0 ifé+0>1.

Therefore Pp(¢X, V 0Z,) = ¢PrXy V0P, Z, as asserted.

5. Estimation

In this section we make some brief remarks concerning the estimation of the parameter vector

(¢1y-+ »,@pyb1,... ,04) of the MARMA(p,q) process

Xt = ¢1X¢..1 \ERERY ¢p-Xi-p \% Zt \% 9121_1 AV 'qut—q

based on the observations X1i,... ,X,. We first estimate ¢;. Observe that
Xt
.. > s a.s.
Xioj J

with equality holding if and only if
Xt = gb]Xt__J

If ¢; is identifiable, or in the sense of Section 2, uniquely determined, then P[X; = $;X¢—j] > 0.
Consequently, by the ergodic theorem, P[X; = ¢;X:_;, 1.0] = 1 and hence with probability one

. X
$i= N\ x-=9
t=j+1 "

for n sufficiently large.
Now to estimate the 6’s, assume for simplicity that ¢ = 1 and that ¢; < 61 (see (2.12)). Let A

be the event

(51) A= [Zi Z 9;1[((2)1 \% ¢2)Xt._1 VooV (¢p~1 A ¢p)Xt+l—p \% ¢pXt-p] \Y% (01 Zt—-l) A Zz‘-;—l}
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if 8, < 1, otherwise replace the leading coefficient 67 ! on the right hand side by 1. Since the rv’s
on both sides of the inequality in (5.1) are independent and finite a.s., it follows that P[A] > 0.

Moreover on A we have

Zt = Xt
and since 81 > ¢

612 > 91 XV X1 VeV Xip1-p

which implies X;11 = 6, Z;. Thus, P[X; = Z;, X;41 = 6, X:] > 0 so that by the ergodic theorem

(52) P[Xt+1 = 01Xt, 10] = 1.
Having already correctly identified ¢1,... ,¢p, we consider those ¢ for which
(5.3) Xt g1 X1 Ve Vo Xip and Xiv1 01 Xe VeV opXip1p.

For such ¢, we search for equality between any two ratios, X;y1/X;, and then estimate 6; to be
their common value. Because of (5.2), it follows that with probability one, this procedure correctly
identifies 8, for n large.

This estimation procedure, when applied to the simulated MARMA processes displayed in Figures
1, 3, and 5, correctly identified all of the parameters. For the MARMA(2,1) process, (5.3) held
for 164 t's of which 71 had ratios %{—1— = .6 = #;. We also found that for the AR(1) process,
X; = .7X¢-1 + Z; displayed in Figure 2, ¢; = /\fi%gi{‘—l- = .7063. This is not too surprising since
this estimator often performs quite well for AR(1) process with positive innovations (eg. Davis and
McCormick (1988)).

It is unreasonable to expect any nonsimulated data to follow a MARMA model exactly. Nev-
ertheless, the estimation procedure described above for the ¢:s may have desirable properties for
a wider class of processes which will hopefully include a more realistic model such as a MARMA

with observational noise. These questions and related issues will be addressed in future work.
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