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DISCUSSION OF THE PAPER
"Optimal Designs for Comparing Treatments with Controls"
by A.S. Hedayat, Mike Jacroux and Dibyen Majumdar

by

*
Robert E. Bechhofer and Ajit C. Tamhane

Cornell University Northwestern University

We had little imagined that BTIB designs for comparing test treatments
with a control treatment would generate such a wide research interest among
the design theorist community when we first proposed this new class of
designs in Bechhofer and Tamhane (1981). Naturally we are very pleased and
gratified to note the tremendous progress that has been made in the last
seven years in the study of these designs and their extensions, with
particular emphasis on the optimality question. The authors (HJM), who have
been at the forefront of this research, are to be congratulated for
providing a fine survey of the results. We thank the Editor for giving us an
opportunity to discuss this survey.

The authors focus their attention on A- and MV-optimal designs. Both of
these optimality criteria refer to minimizing suitable functions of the

variances of the t.-t,. but do not take their correlations into account. (We

0 i’

follow the same notation as in the HJM paper.) Thus the optimal designs

derived would seem to be appropriate when the results of the experiment are
to be reported in terms of the above point estimates accompanied by their
estimated standard errors or in terms of separate confidence interval

estimates of the t0~ti (i=1,...,v). However, the usefulness of the
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conclusions drawn from these estimates will generally depend on their

simultaneous correctness, and therefore a suitable simultaneocus inference

(multiple comparisons) procedure is called for; see Hochberg and Tamhane
(1987, Chapter 1) for examples. Under normal theory, operating
cnaracteristics of simultaneous inference procedures are generally functions
of not only the variances of the Eo—gi but also their correlations. It is

true that, for example, A-optimality 1is equivalent to minimizing the sum of

the lengths of the axes of the simultaneous confidence ellipsoid (assuming

the usual normal theory model) for the given contrasts of interest. But
curiously, D-optimality, which corresponds to minimizing the volume of the
confidence ellipsoid, and which does take into account the variances as
well as the correlations, is not a useful optimality criterion for the
present problem, as the authors rightly point out.

We believe that the use of these standard optimality criteria due to
Kiefer (1958) is questionable in experiments involving multiple comparisons
of test treatments with a control treatment, because they do not address the
typical inferential goals in such experiments. The authors state that "To
begin with we need to postulate a model ..." In the same vein, it is also
true that, to decide on a design (optimal or efficient), we need to
postulate the types of inferences that will be made based on the data
collected from the experiment. The authors make a brief reference to this
point when they state that "...our primary goal is to determine which among
the test treatments might be better than the control..." However, we do not
think that this goal necessarily translates into "... to estimate the
magnitude of each to—ti with as much precision as possible" without
reference to how the resulting estimates will be used to determine the

apparently better test treatments. In fact, as we explain below, there are



two types of inferential goals commonly used in these experiments, and both
involve taking into account the variances of the Eo-Ei as well as their
correlations.

Often, in exploratory stages of an investigation there are a large
number of new candidate test treatments, and the goal is to screen out those
that are inferior to the control treatment; this is the case, e.g., in drug
secreening. For this goal the subset selection formulation of Gupta and Sobel
(1958) would appear to be appropriate. The test treatments that are selected
in this initial experiment can then be studied more intensively in the
confirmatory stage. Moreover, it usually is required (e.g., by a regulatory
agency such as FDA) that the control also be included in this stage. The
goal of this second experiment is to obtain more precise estimates of the
control versus test treatment contrasts (and also possibly pairwise
treatment contrasts). For this goal the simultaneous confidence estimation
approach proposed by Dunnett (1955) would appear to be appropriate.

It is important to note that the simultaneous confidence region
provided by Dunnett's procedure is "rectangular" in shape, not ellipsoidal.
The rectangular confidence region is more useful and relevant in practice
for the present problem because (a) it is easier to interpret, and (b) the
ellipsoidal confidence region gives much longer confidence intervals when it
is projected onto the to'ti axes. This is so because an ellipsoidal
confidence region is optimal when all linear functions of the to—ti for
i=1,...,v are a priori of interest; thus it performs conservatively for the
specific simple functions, namely, the to-ti, which are the only ones of
interest in the present problem. The second point to note is that the
operating characteristics of the Gupta-Sobel subset selection procedure
(e.g., its probability of correct selection) and the Dunnett simultaneous

confidence estimation procedure (e.g., its joint coverage probabilty) depend



~

on the variances of the to- as well as on their correlations. In fact, the

i
Gupta-Sobel subset selection procedure and the Dunnett procedure for one-
sided simultaneous confidence intervals are very closely related, both being
based on the same one-sided multivariate Student t percentage point; the
two-sided Dunnett's procedure is based on the corresponding two-sided
percentage point.

It was with the above background that one of us (Bechhofer) was
motivated to study the problem of optimal allocation of observations for O-
way elimination of heterogeneity designs (completely randomized designs).
Dunnett (1955) had shown numerically for his rectangular simultaneous
confidence region that the ¥V allocation rule, i.e., rdo=/$ rq and
rg1= =gy’ is approximately optimal (in the sense of maximizing the joint
confidence coefficient for a fixed total sample size n) for large values of
n, i.e., for large values of the joint confidence coefficient, 1-a.
Bechhofer (1969) also used the criterion of maximizing the joint confidence
coefficient for given n, and derived the optimal allocation (using a
continucus approximation to the sample sizes) for one-sided simultaneous
confidence intervals of the form {t0~ti S tpty ta (1 £ is v)} for
specified "allowance" a and for any value of 1-a. He also showed that
asymptotically (as n»=) the YV allocation rule is optimal. These results
were extended to two-sided simultaneous confidence intervals of the form

~

-t; € [eg-t; ¢ al] (1 £1i 5 v)} by Bechhofer and Nocturne (1972).

{t i

0
Now the asymptotically optimal /v allocation rule corresponds to the A-
and MV-optimality criteria (if the integer restrictions on the sample sizes

are ignored). Therefore these criteria would seem to apply to the

simultaneous conf idence estimation problem only for large sample sizes

(although it is true that the approach to the asymptotically optimal



allocation is fairly rapid as can be seen in the tables given in Bechhofer
and Tamhane (1983a)). However, most of the work in optimal designs is
concerned with small sample sizes. This is particularly true for the
elimination of heterogeneity designs (e.g., block designs) with which the
HJM paper is principally concerned. We now turn our discussion to these

designs.

In our studies we focused on 1-way elimination of heterogeneity where
the block size k is less than the total number of treatments, v+1. Based on
symmetry considerations, we proposed a new class of so-called BTIB designs,
which have the following statistical balance property:

var(EO—€1)=1202 (1 £1sv)

and

corr(t -t ,ty=t;e)=p (ixi',1 s i,i' £ v);

here the parameters 12 and p depend on the design and 02 denotes the common
error variance. We called these designs BTIB because they are balanced with
respect to the test treatments. This statistical balance property is equivalent
to the combinatorial balance property given in Definition 2.2 of the HJM paper
(see Theorem 3.1 in Bechhofer and Tamhane (1981)). We next addressed the
problem of finding an optimal BTIB design, which for given v and K, and for
specified standardized "allowance" a/g and joint (one-sided or two-sided)

confidence coefficient 1-a, requires the smallest possible b. In the search for

an optimal design we could eliminate any inadmissible design, which gives a
lower joint confidence coefficient for all values of a/¢ than another design
with a no larger b. A design that is not inadmissible is called admissible. We
characterized inadmissible designs by the following simple rule (see Theorem 5.1
in Bechhofer and Tamhane (1981)) : For given k and v, a BTIB design qa' with

\ % 1]
parameters b , 1 2 and p is inadmissible with respect to another BTIB design d



1
with parameters D, 12 and p if b £ b', 12 < 1'2 and p 2 o with at least one

strict inequality. This rule is pased on the fact that, under normality, the
joint confidence coefficient (one-sided or two-sided) is a decreasing function

of 12 and an increasing function of p.

Examples of A-optimal designs that are not optimal for our simultaneous

confidence interval estimation criterion are easy to find. For example, for

: ooo}
k=3, v=3 and b=18, the design consisting of 6 copies of is

1 2 3}

given as A-optimal among all designs in Table 1 of Hedayat and Majumdar
(1984) . From Table OPT1.3.3 of Bechhofer and Tamhane (1985) it is seen that
this design is not optimal even in the restricted class of BTIB designs for
1-a < 0.7653 (but is optimal for larger values of 1-a). Many more such
examples can be found. This is not very surprizing, of course, because the
two criteria are different. We recognize that different criteria can lead to
different optimal designs, and thus it is unfair to judge optimal designs
based on one criterion relative to the other. Furthermore, admittedly our
criterion is based on the normality assumption, while the authors' criteria
are not based on any particular distribution.

However, our admissibility criterion, although also derived from the
joint coverage probability calculation under the normality assumption,
is much weaker. In other words, if a BTIB design d requires no more blocks D,
and yet yields no larger variance 1202 and no smaller correlation
coefficient p than another BTIB design d' then, in general, the latter
should not be used. We were surprized to find that several of the A-optimal
BTIB designs given in Hedayat and Majumdar (1984) are inadmissible. In

Table 3 of their paper we point out three examples of A-optimal designs that

are inadmissible: For k=2 and v=3 let



0 0 0 11 2}
da= and d,= e
12 3 2 3 3]
Then for b=6 the design 2dO with 12=1 and p=0 is inadmissible with respect
to the design dylJ d; (i.e., dg union with d;) which has %=1 and p=0.5.
Similarly for b=18 the design SdOUd1 which has 12=0-3 and p=1/6 is
inadmissible with respect to the design LtdOUzd1 which has 12=0.3 and p=1/3.
One might say that in each of these two examples both of the competing
designs are A-optimal, and Hedayat and Majumdar's algorithm identified the
one that unfortunately had the smaller p-value. However, we next give an
example where this is not the case. For k=2, v=6 and b=30, the BTIB design
consisting of 5 copies of
0 0 0 0 0 O
T 23 4 5 6

with 12=o.u and p=0 is A-optimal among all BTIB designs. However the design

ZdOUd1 with b=27, 12=0.3750 and p=1/3 is superior on all three counts, and

hence the former is inadmissible; here

1 1 1 1 1 2 2 2 2 3 3 3 4 45

-

d,= '
Vi, 3 4 5 6 3 456 4 56 5 6 6

The design 2do(J d1 is given as A-optimal for p=27 in Hedayat and Majumdar's
(1984) Table 3. But because their algorithm did not compare designs for
different b's, it failed to note that this design is actually superior (even
in terms of the A-optimality criterion) to the A-optimal design for the next
higher b, namely b=30.

Our admissibility criterion has certain other desirable features,
which permit one to restrict consideration for given k and v to the

so-called minimal complete set of generator designs for constructing any

BTIB design for that (k,v). The members of the minimal complete set serve

as building blocks for larger BTIB designs. Such minimal complete sets were



constructed for selected (k,v)-combinations by Notz and Tamhane (1983) and
Ture (1982). For k=2, v22 and for k=3, v=3 it is easy to see that the

minimal complete set consists of just two generator designs. In this case

the analysis required to determine the admissible and optimal designs is
considerably less difficult and is given in Bechhofer and Tamhane (1983b). It
may be of interest to note that the result given in equation (3.11) of that
paper for characterizing admissible BTIB designs for k=2 is the same as that
given in Theorem 3.1 of Hedayat and Majumdar (1984) for characterizing A-
optimal BTIB designs.

We conclude our discussion by noting some of the problem areas that
need further work. The first on our list 1is the designs for 2-way
elimination of heterogeneity. Much remains to be done in this area,
particularly on the problem of constructing "balanced with respect to
test treatments row-column designs" (analogous to BTIB designs for 1-way
elimination of heterogeneity). The problem of determining the minimal
complete set of generator designs for this case is an important one, but
quite likely a fairly difficult one. Presumably these designs could be
derived from Latin squares, Youden squares and perhaps lattice designs (for
large v). Some ad-hoc construction methods have been given in a Ph.D.
dissertation at Virginia Polytechnic Institute by Rashed (1984).

The next problem on our list is that of finding good designs for
comparing test treatments with several controls. As noted by the authors, a
beginning has been made in this area of research. In future work it would be
desirable to keep some important practical features of the problem in mind.
One such feature is that the comparisons with different controls may not be
required to be of equal precision. For example, in a clinical trial for a
new drug it is not uncommon to include two controls, a placebo and an

existing active drug. For regulatory purposes, it often is necessary to



demonstrate the magnitude of the activity of the new drug, and therefore the
comparison with the placebo is the more important. It is not necessary to
demonstrate to the regulatory agency that the new drug is more effective
tnan the existing drug. But for the purposes of the pharmaceutical company's
marketing efforts, in fact, the second comparison is likely to be the more
important. This latter comparison would generally be two-sided. Such
considerations should be taken into account before determining how to
optimally allocate the available experimental resources to different
competing test treatments and the controls.

A final brief note concerning nomenclature: We suggest that the word
"control" should be used rather than "standard" because the latter usually
refers to a known penchmark value. Clearly, in the latter case one cannot
use blocking.

We again express our gratitude to the authors for this state-of-the art

survey, and to the Editor for giving us an opportunity to comment on it.
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