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CHAPTER 1

INTRODUCTION AND SUMMARY

§1.0 A brief historical background:

In many practical situations an experimenter is faced with the pro-
blem of selecting one (or more) out of k > 2 possible categories. Typi-
cally the categories under study are characterized by a certain (numeri-
cal) parameter and the experimenter is interested in choosing the cate-
gory associated with the largest (or smallest) parameter. Thus, e.g., in
agricultural field trials, an experimenter may be interested in choosing
that variety of grain which has the highest mean yield. Or in a scien-
tific laboratory, an experimenter may wish to choose that measuring in-
strument which has the least variability.

In spite of the fact that the experimenter may ultimately be seeking
to make a selection decision in the above types of experimental situations,
conventionally the test of homogeneity approach had usually been employed.
In this latter approach one tests the null hypothesis that all of the
categories are the same (with respect to the characterizing parameter)
using some appropriate test such as the F test for homogeneity of means
or Bartlett's test for homogeneity of variances. Whether the test em-
ployed yields statistically significant results or not, it is clear that
it does not supply the information that the experimenter truly séeks.

The inappropriateness of tests of homogeneity for the problems which
are inherently selection problems, was realized by some early writers

1t

such as Mosteller [1948] who treated so called 'slippage'" problem and



Paulson [1949, 1952a, 1952b] who treated problems relating to classifi-
cation schemes, comparison with a control category and slippage tests.
But Bechhofer [1954] was the first writer to precisely formulate certain
possible objectives of the experimenter viz. a complete ranking of the
categories or selection of the category having the largest parameter
value etc. He proposed the so-called "indifference-zone approach" to the
ranking and selection problem. Since Bechhofer's paper this area of
statistical research has received considerable attention. As we study a
specific problem in the subsequent chapters of the thesis, we shall at
that time review in some detail the literature pertinent to that problem.
The interested reader may find a complete bibliography of the research
work in this field until 1968 in the excellent monograph by Bechhofer,
Kiefer and Sobel [1968].

Another approach to the selection problem,the so-called "subset
approach," was proposed by Gupta [1956, 1965]. Here the objective of the
experimenter is to select a (preferably small) subset of the populations
which contains the category with (say) the largest parameter value. It
is implicitely presumed that the selected subset of the populations would
be subjected to further intensive study. Thus the subset selection rules
may be regarded as "screening' rules. TFor the most recent survey of the
literature dealing with the subset selection approach the reader may re-—
fer to Gupta and Panchapakesan [1972]. Recently Santner [1973] developed
a "restricted subset approach" to the selection problem. His formulation
provides a unifying theory to the two approaches proposed by Bechhofer
and Gupta.

When employing either the indifference~zone approach or the subset

approach, the experimenter requires a rule which makes a correct decision



with at least a certain preassigned probability. This latter quantity is
analogous to the ''power'" of the test in hypothesis testing. Instead of
setting a preassigned lower bound on the probability of making a correct
decision, Somerville [1954] treated the selection problem by introducing
a loss function which took into account the loss incurred due to a wrong
decision and the cost due to sampling. He proposed using a rule which
minimizes the maximum of the total expected loss.

In the above we have mentioned only a few of the important papers in
the development of the ranking and selection theory. Preliminary to
motivating the main theme of the present thesis, we next describe a
specific problem associated with selecting the population (category)
having the largest population mean from k normal populations. We shall
also state some single-stage (fixed-sample size) and fully sequential
rules that have been proposed to solve this problem and mention their

merits and demerits.

§1.1 The normal means problem:

§1.1.1 Assumptions and notation:

Let II., 1

1> Tppeeenll

K be k > 2 normal populations with unknown popula-

tion means ul,uz,...,uk (- = < ui <ew, 1 < i f_k) and a common known popu-
2

lation variance 02 (0 < 07 < ®). Let @ denote the space of all parameter
t
= ces . < oo
vectors yu (ul,uz, ,uk) Further let u[l] —-U[Z] < u[k] denote
the ordered values of the My We assume that the experimenter has no
prior knowledge regarding the correct pairing of the Hi with the

(1 <1i,j < k). We denote by I the population associated with

(i
If the r largest means u[k]’“[k—l]""’“[k—r+l] are equal then

M3l

M
o _ '3 1 it

any one of the populations H(k)’n(k—l)""’n(k—r+l) is regarded as 'best.



The experimenter's goal is to select the best population. Throughout
the present thesis we denote by ®(:) the standard normal cdf and by ¢(-)

the corresponding density function.

§1.1.2 The indifference-zone approach and some associated rules:

In the following indifference~zone approach due to Bechhofer [1954],
it is assumed that the experimenter specifies two constants {§%,P*},
§% > 0 and 1/k < P* < 1 prior to the start of experimentation. Let

Q(8*) = {ugﬂlu[k] = Vg-1] > 8%}, Q(8%*) is called the preference zone;

the indifference zone being Qo(d*) = 0 - Q(&%).

In this formulation the goal of the experimenter is to select any
one of the populations associated with “[k]’“[k-l]”“’“[k—r+1] if the
r largest means are equal. The event of selecting any one of the popu-~
lations H(k)’n(k—l)""’n(k~r+l) when u[k] = u{k—r+l] is called a

correct selection w.r.t. this goal and is denoted by CS. The experi-

menter restricts attention to only those rules R which satisfy the

probability requirement

(1.1.1) PH(CS{R) > Px Vpe Q(8%).

The intuitive meaning of the indifference zone now becomes clear.
Since the probability requirement need not be guaranteed over the indif-
ference zone 90(6*), the experimenter is, in a sense, indifferent to
which population is selected when y lies in QO(G*).

We shall now describe three rules proposed for the above problem
which are relevant to our thesis. Each rule tells how to sample, when

to stop sampling and what terminal decision to make. Each rule is de-



signed to guarantee the probability requirement (1.1.1).

Bechhofer [1954] proposed the following single-stage rule.

Bechhofer rule (RO): Observe the sample means ii (1 < i < k) based on

o, mutually independent observations from each Hi and assert that the

population associated with X = max X, is best. Here n, is the
[kl qegqp 0

smallest positive integer which guarantees (1.1.1).

Let dO = do(k,P*) be the solution to the equation

O

(1.1.2) i o hx + dj)de(x) = P*.

)

Then o, is given by

d05>2.]
(1.1.3) ng = [(—@; + 1,

where [x] denotes the largest integer < x. Bechhofer [1954] has pro-
vided tables of do(k,P*) for selected values of k and P#*.
Bechhofer, Kiefer and Sobel [1968] proposed the following open-

ended, non-eliminating type of fully sequential rule.

Bechhofer, Kiefer and Sobel rule (BKS): Observe at each stage of the

experiment a single random variable (r.v.) Xij from each Hi(l < i<k
where j 1is the stage index (j = 1,2,... ad. inf.). Let
(1 <1i<k)

v m
(1.1.4) Y, o= inj
j=1



denote the cumulative sums at the mth stage. Let

Y[l]m i-Y[Z]m < e i—Y[k]m denote the corresponding ordered values of
the Y., . Define
im
k-1 55
(1.1.5) z_ = igl exp{- ;’E (Y[k}m - Y[i]m) }.

Terminate the sampling at the first value of m such that

(1.1.6) VA < .

and assert that the population associated with Y[ is best. Sampling

kim
is continued if (1.1.6) is not satisfied.
Since there is no finite preassigned upper bound on the number of

stages, the BKS rule is referred to as an open—ended rule. Further it is

a non-eliminating type of rule since all populations are carried through

the entire experiment.

Paulson rule (P): Paulson [1964] proposed a class of closed, eliminating

type fully sequential rules é?b For any fixed A, 0 < A < 8%, define

Ve
2
R S k=1
(1.1.7) ‘ a)\ - (6*"')\) loge <1_P7'<> b
and let
(1.1.8) WA = [ak/k].



At the first stage observe Xil(l < i< k) and let X[k]l = l?ifk Xil' Re™

tain the population Hi for further sampling if Xil i'X[k]l - a, + A
(L < i< k). If there is only one population retained then stop
sampling and assert that, that population is best. Otherwise take
another observation from each retained population and repeat the pro-
cess. In general, if at the mth stage (m g_wl), Sm is the subset of

the populations still retained with at least two populations in Sm then

define
i
(1.1.9) Sm+l = {1€Sm[Yim zumax Y‘m - a, + mit.
jes
m
If Sm+l consists of a single population then stop sampling and assert

that, that population is best; otherwise continue sampling. If more
than one population remains after the Wxth stage then take one more ob-
servation from each of these remaining populations and then terminate
the experiment by choosing that one of the remaining populations
associated with the largest cumulative sum.

It is seen that Paulson rule can eliminate 'noncontending popula-
tions as the experiment proceeds and if it does, these populations are
eliminated permanently. Therefore it is said to have a screening feature

with permanent elimination. Further, there is a preassigned finite

upper bound (WX + 1) on the total number of stages to terminate experi-

mentation. Therefore it is referred to as a closed or a truncated rule.
Tn addition to the rules described above, a two-stage rule pro-

posed by Alam [1970] is central to our thesis. We shall describe it in

detail in Chapter 2.



§1.1.3 The subset approach and Gupta rule:

In the followiﬁg subset approach due to Gupta [1956, 1965], it is
assumed that the experimenter specifies one constant {P*}, 1/k < P%* < 1,
prior to the start of experimentation. The goal of the experimenter is
to choose a non-empty subset of the populations which contains the best
population. He restricts attention to those rules which guarantee

the probability requirement

(1.1.10) PE(CS[R) > p* ¥ peq

where the event CS (correct selection) refers to the selection of any

subset of the populations which contains the best population.

In may be noted that (1.1.10) can be guaranteed without taking any
observations by choosing the set of all k populations as the selected
subset. However one would not use such a rule since clearly the experi-
menter would like the selected subset size (which in general is a r.v.)
to be small in a certain sense. Another important point to be noted is
that (1.1.10) must be guaranteed over the entire parameter space {2
(in constrast to the situation in (1.1.1)),and there is no indifference

zone.
Gupta rule: Observe the sample means Ei(l < i< k) based on n mutually
independent observations from each population. Include the population

Hi in the subset iff

(1.1.11)

el
[N
Vv

> max X, - h
I



where h > O and n are decided on prior to the experiment in such a way
that (1.1.10) is guaranteed. Gupta showed that this can be accomplished

by letting

(1.1.12) — = d

where do = do(k,P*) is given by (1.1.2).

Note that an infinite number of choices are possible for the values
of h and n. Therefore further criteria might be introduced to choose
a "best' pair (h,n).

Before we proceed to the next section we point out that a central
problem concerned with the construction of rules using either the indif-
ference-zone approach to guarantee (1.1.1) or the subset approach to
guarantee (1.1.10) is that of finding the infimum of the probability of
a correct selection (PCS) over the appropriate region of the parameter
space £, the region being the preference zone Q(8*) for the indif-
ference-zone approach and the entire parameter space { for the subset
approach. If these infima are equated to P*, the constant dO of (1.1.2)
can be determined and the corresponding probability requirements (1.1.1)

and (1.1.10) will then be guaranteed. A parameter configuration for

which such an infimum occurs is known as a least favorable configuration

(LFC) of the parameters for the rule under study.

§1.2 Motivation for developing two-stage screening rules:

In single-stage rules there is no opportunity to learn from data as
they are observed, in order to modify the sampling procedure. For

example, single-stage rules used for the indifference-zone approach re-
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quire, in general, a large amount of sampling relative to rules which
"react'" to the data. This becomes an important consideration when k,
the number of populations is large and/or the experimenter's require-
ments are very stringent (small &* and/or large P*.)

The BKS sequential rule does react to favorable parameter con-
figurations. Thus if one population mean is much larger than all of the
others, then the BKS rule terminates in very few stages. However, the
BKS rule possesses the disadvantages that no screening is performed and
that it is open ended. Paulson's rule possesses the desirable features
of reacting to favorable parameter configurations and of screening and
truncation. Monte Carlo (MC) studies by Ramberg [1966] have demon-
strated that Paulson's rule is highly efficient (in terms of reducing
the expected total sample size) relative to the single-stage rule RO
and the sequential rule BKS which guarantee the same probability re-— i’
quirement (1.1.1).

However, the administration of any sequential experiment is more
difficult than that of a single-stage experiment. Sequential rules be-
come impractical when the time period that must elapse between the
successive stages of the experiment is very large. For example, in
agricultural field trials one must wait until the next planting season
to conduct the next stage of the experiment.

The Gupta rule for subset selection also has a practical drawback.

It does not explicitely take into account a possible ultimate goal of

the experimenter namely that of selecting a single population which is

best. Santner's restricted subset size approach makes an important

contribution in this direction by placing a preassigned upper bound on -

the size of the subset.
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Therefore what appears to be needed is a two- oY a three-~stage rule
which has the property that it screens out the non—-contending popula-
tions in the preliminary stages. Cohen [1959] and Alam [1970] have
proposed such two-stage rules. We shall review their work in greater
detail in the next chapter. Our objective in the present thesis is to
develop two-stage (in one instance three-stage) eliminating type rules
for certain selection problems. (The normal means problem described in
§1.1.1 is one of the problems considered in the present thesis.)

In the following section we give an overview of the main results

of the thesis,

§1.3 An outline and summary of the thesis:

We adopt the indifference-zone approach throughout the present
thesis. Chapters 2, 3 and 4 are devoted to the consideration of the
normal means problem described in §1.1.1 and §1.1.2.

In Chapter 2 we consider the two-stage permanent elimination type of
rule (Rl) proposed by Alam [1970]. Alam proposes implementing the
rule Rl by choosing constants to minimize the maximum of the expected
total sample size over a restricted region of the parameter space Q(&%),

i.e. he proposes using a restricted minimax design criterion (R-mini-

max criterion). We indicate certain disadvantages associated with the

use of such a criterion and propose instead that the rule Rl be imple-
mented by choosing constants to minimize the maximum of the expected
total sample size over the entire parameter space Q, i.e. we propose

using an unrestricted minimax design criterion (U-minimax criterion).

We also extend Alam's work in many ways for the case of k > 2 popula-

tions, the major portion of Alam's work being concerned with the case
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of 2 populations. We derive general exact expression for the PCS and

the expected total sample size for rule R, for k > 2. We obtain a par-

1

tial result concerning the infimum of the PCS of rule R, namely that the

1

PCS is non-decreasing in the largest mean. Though we could not prove
Alam's general (k > 2) conjecture regarding the LFC for rule Rl’ we
were able to prove his conjecture regarding the supremum of the expected

total sample size for rule R We next state certain constrained

1
optimization problems associated with finding the constants necessary to

implement rule R, using the R-minimax criterion and the U-minimax

1

criterion. We close the second chapter by providing extensive tables

of the constants required to implement rule R, for the case k = 2 for

1
both criteria.
In Chapter 3 we propose a useful lower bound for the PCS of rule

R The lower bound is helpful because it has an easily computable -

1°
infimum over Q(6%*). Using this lower bound we have constructed tables
of constants for implementing our two-stage rule with the U-minimax

criterion for k = 3(1)5, 10 and 25. These constants form the basis of

a conservative rule (which overprotects the experimenter) relative to

the probability requirement (1.1.1), the overprotection being purchased
at the expense of an increase in the expected total sample size. Em-
ploying MC techniques we study the relative performance of this lower

bound on the PCS of rule Rl and the exact PCS of rule Rl' We next con-

gsider the asymptotic (P* - 1) performance of these rules and derive the
values of the asymptotic relative efficiencies of the single-stage rule

R, w.r.t the two-stage rule R

0 using U-minimax and R-minimax criteria.

1

We then propose a modification of our basic permanent elimination type

two-stage rule R,; the modification consists in allowing the "eliminated"

1’



i3

populations in the first stage to be eligible for selection after the
second stage. We refer to this as the "come-back" modification of rule
Rl and study its properties using MC methods. We propose another come-
back modification of rule Rl and derive its properties for k = 2.

In Chapter 4 we consider the question of optimality (in the sense
of minimizing the maximum of the total expected sample size over Q) of
our rule Rl; the optimality is with respect to a restricted class of
two-stage permanent elimination type rules. We show that the desired
U-minimax rule is a Bayes rule with positive prior probabilities on the
LFC and the parameter point where the maximum of the total expected
sample size occurs. For k = 2 we derive the exact structure of the
Bayes rule. We show that our natural selection U-minimax rule Rl is
Bayes with the above prior and hence U-minimax in the class of two-stage
rules under consideration. For k > 2 our tentative results indicate

that the rule R, is not U-minimax in the same class of two-stage rules.

1
In Chapter 5 we consider the normal means problem when the common
variance is unknown. Our objective here is to provide a screening rule
without any attempt at optimization. We give a three-stage rule and a
two-stage rule which guarantee the experimenter's probability require-
ment (1.1.1). Expressions for the expected total sample sizes for these
rules are derived. Using MC sampling techniques we compare the perfor-
mance characteristics of both of these rules with the two-stage rule
proposed by Bechhofer, Dunnett and Sobel [1954] which is used when the
common variance is unknown. In general the three-stage rule is indicated

as being superior whereas our two-stage rule is inferior.

We conclude in Chapter 6 with some suggestions for future research.






CHAPTER 2

A TWO-STAGE PERMANENT ELIMINATION RULE FOR THE NORMAL MEANS

PROBLEM (COMMON KNOWN VARIANCE).

§2.0 Introduction:

In the present and the next chapter we consider the problem of
selecting the population having the largest mean from k mnormal popu-
lations with a common known variance. This problem has been described
in §1.1. We propose and study in detail certain two-stage screening
type rules. The motivation for developing such rules was provided in
§1.2.

We consider two £ypes of rules: (1) the first type of rule per-
manently eliminates the "non-contending" populations after the first
stage and permits the final selection to be made from among only those
populations which enter the second stage. (2) the second type of rule
temporarily eliminates the non—contending populations after the first
stage and permits the final selection to be made from all of the popu-
lations i.e. the ones that were "eliminated" after the first stage and
the ones that entered the second stage. We now briefly sketch the con~
rents of the present chapter.

In §2.1 we describe the problem and propose our two-stage rule Rl'
The rule is characterized by certain constants used to implement it. We
recommend the U-minimax criterion (explained in §1.3) for the choice of
these constants and provide a rationale for doing so. In §2.2 we derive
the expression for the PCS of rule Rl and study its infimum. We show

that it is non-decreasing in the largest population mean but we have not

14
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been able to obtain the LFC of rule Rl.

In §2.3 we derive an expression
for the expected total sample size and show that its suﬁremum takes place
when all the population means are equal. 1In §2.4 we state the optimiza-
tion problems which one must solve to obtain the constants necessary to

implement rule R, using either the U-minimax criterion or the R-minimax

1
criterion (explained in §1.3). 1In §2.5 we define a measure of relative

efficiency of two competing rules and give the associated expressions .
for the relative efficiency of the single~stage rule RO with respect to

our rule Rl' In §2.6 we give tables necessary to implement rule Rl for

k = 2 using the U-minimax criterion. For the purposes of comparison we

also give corresponding tables for the R-minimax criterion. Finally we

give some numerical comparisons of the discrete optimal and the con-

tinuous optimal solutions to the optimization problem associated with

the U-minimax criterion.

§2.1 Preliminaries:

§2.1.1 Statement of the problem amd the proposed rule Rl:

Consider the set up described in §1.1. We seek a two-stage rule
which guarantees the probability requirement (1.1.1). The rule is to be
one which employs a common non-random number of observations from each
population in the first stage, takes another common non-random number of

observations from each non-eliminated population in the second stage and

makes the final selection only from the populations which entered the
second stage. Clearly if only a single population enters the second
stage then any reasonable rule would terminate sampling and assert that
population as best,

The class of rules described in the previous section has the feature
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of permanent elimination. Using a permanent elimination type rule it

could happen in an experiment that the largest first stage sample mean
of those populations which are eliminated turns out to be bigger than

the largest cumulative sample mean of those populations which are not

eliminated. To avoid such undesirable contingencies we shall, in the

next chapter, propose and study certain "come-back" type rules.

Another somewhat restrictive feature of the above class of rules is
the non-random nature of the second stage sample size. Leaving aside
the serious analytical difficulties associated with making the second
stage sample size random, there is a practical advantage to be gained
from makiﬁg it non-random. This restriction allows the experimenter to
know in advance an upper limit on the total number of observations to
be taken and thus budget for them adequately. Clearly the same advan-
tage can be gained by having a random but bounded second stage sample
size.

We now propose our rule Rl.

Rule R Let non-negative integers 5, n, and a non-negative real con-

1
stant h be specified prior to the start of experimentation. The fol-

lowing are the steps in rule Rl utilizing (nl, n,» h) which are chosen

to guarantee (1.1.1).

1. 1In the first stage, from each Hi take n; independent observations

n
_ 1
Xg%)(l < j < n.) and compute Xgl) = E: XF%)/n (1< i< k). Let
ij -~ =1 i j=1 ij i -
—(1) (1)
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2. Choose a subset I of {1,2,...,k} where

XD L 5O
W,

(k] h}.

(2.1.1) I={il

3a. If I consists of a single population, stop sampling after the

first stage and assert that, that single population is best.

3b. If not, go onto the second stage and take n, additional independent

observations X§§) (1< j g_nz) from each Hi for ieI. Compute the over-

- T e
all means X, = { E X3+ E, X %’y/(n, + n,) for iel and assert that
i =1 ij j=1 ij 1 2

the population associated with max X, 1is best. (We ignore the pos-
iel

sibility of ties since the probability of an event involving tied means

is zero.)

This rule had been proposed previously by Cohen [1959] and Alam
[1970]. Due to the analytical difficulties involved, most of their work
was limited to the special case k = 2. It will be our objective to ex-
tend this work to the general case k > 2, and choose the constants
necessary to implement the rule using the U-minimax criteriomn.

Note that the limiting cases of h = 0 and h = = yield Bechhofer's
single-stage rule RO with o, and n, + n, as the single—stage sample
sizes, respectively. Also note that the retention rule in the second

step is of the type proposed by Gupta [1956, 65] in his subset selection

rule (1.1.11).



18

§2.1.2 The design criterion:

There are an infinite number of combinations of (nl, Nys h) which
will guarantee (1.1.1). To help us choose among them, we propose to
study the expected total sample size at a certain parameter vector U
of interest. We shall use that combination (nl, n,, h) which guarantees
(1.1.1) and yields the minimum expected total sample size at the u of
interest. The choice of the u at which the experimenter would like
to minimize the expected total sample size subject to (1.1.1) leads to

a choice of the optimal (nl, 0, h).
The total sample size N required by rule R1 with the associated

constants (nl, n,, h) is given by

(2.1.2) N =kn, + Tn

1 )
where T is defined by (2.3.2). Note that T (and hence N) is a r.v.
Let Ep(N;Rl) denote the expected total sample size for rule Rl when the
underlying parameter vector is u. The design criterion proposed by

Alam [1970] can be stated as follows:

1. R-minimax criterion: For specified { §*, P*} choose the three con-

stants (nl, h) necessary to implement rule R1 so as to

D.2,

minimize sup E (NlRl)a

Q(s%)
subject to P (CS[Rl) > P* TueQ(8%),
(2.1.3) 4 £
o, n, non-negative integers,

and h > 0.
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We denote by (ﬁl, 52, ﬁ) a solution to the above optimization prob-

lem and the corresponding rule R, by R

1 1°

Alam's approach ignores what can happen to the expected total
sample size if, unknown to the experimenter, u lies in Qo(é*). Thus
suppose n, is the sample size per population required by rule R.0 which
is known to be "most-economical' in the sense of Hall [1958] in the
class of all single-stage rules. Then Alam's formulation insures that
kno Z,EE(Nlﬁl) for all pefi(8*). But for Eﬁ90(6*), it is possible to have
kno < EEKNfﬁl). Indeed, intuitively one would expect that the ratio
(N]ﬁl)/kno where EMC represents the equal means configuration

Eamc
= #))» may grov large (> 1) as P* > 1 for fixed §*.

(“[1} = -
Bechhofer [1960] has shown a similar undesirable feature of the Wald's
sequential probability ratio test (WSPRT). It is to guard against this
possibility that we propose a design criterion which will insure that
the rule based on that criterion will have an expected total sample size
uniformly (in p) smaller than the fixed sample size required by rule RO

which guarantees the same probability requirement (1.1.1) for any

{8*, P*}. We now propose such a design criterion.
p

2. U-minimax criterion: For specified {8*, P*} choose the three con-

stants (nl, n,, h) necessary to implement rule R1 so as to

ST
minimize sgp Eu(NIRl)’
subject to P (CS|R,) > P* ¥ ueQ(s*),
Ty 17 -
(2.1.4) b,
n;, 0, non-negative integers,

and h > 0.

.
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We denote by (ﬁl, ﬁz, fi) a solution to the above optimization

problem and the corresponding rule Rl by Rl'

£ n, is the sample size per population required to guarantee the
same probability requirement using rule RO then rule ﬁl has the de-
sirable property that Eu(Nlﬁl) i_kno for all ue® for any specified

{8*, P*}. Now we proceed with the derivation of various properties of

rule Rl'

§2.2 PCS of rule Rl, andyits behavior:

§2.2.1 A general expression for Pu(CSIRl):
We first derive a general expression for Pu(CSIRl)' Qur result

is summarized in the following theorem.

Theorem 2.2.1: For aﬁy uefl we have

(2.2.1)

om 5] ]

—w —o jes x+(6 ~h)n

1/2
x+6kln1 /o

8. .
®[y+(x—2) (p/q)l/2 + —%-Zi(nlq)l/2
1/2/G

[ee]

do(z)| x Hd{x+(6 —h)nl/zlo}dé(y)dé(x)+zz ff

j=1 sggp 00 w0

X Skjnilz/c © x—@ijnilz/c
5. . 1
x—(6k3+h)nl/2/0 g+ Ce-u) (/) % - -l;i(n/q)l/2 ses |7-(s, +h)n1/2/0
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)
2 [v+<u—z> e/t
ies'

do(v)do(u) | do(y)de(x),

where = collection of all subsets from {1,2,...,k=1},

it

Z
n =n; + n,, p = nl/n, q = nz/n =1 -p,

dS.. =1u..; = Hr., (L< i, < k).
and 054 = Mpyp ~Hpyy Aeiick)

(1)

2 o+ —%i(n/q)l/z]d¢(2) : x Q[%+(6ji—h)

collection of all subsets from{1,...,j-1,j+1,...

ni/zla]

k=11,

Proof: We denote by X( ) and X ( )? respectively, the first stage and

the cumulative mean from two stages from population %i)
Then

< i< k).

] 2 _ 5@ 5@ | (D @
(2.2.2) PP_(CS]Rl) ZP (X = X X(q) 2 X Vies, X3
sggp
—(1) L= T _ 5@
< X[) b Vids, Xg > Xy, Vies) *ZZ PLXGY = X s
i=1 829?
—(1) | =) . =D | =(D) 7@ . 21 _ -
Koo 2 X) ~ ™ XG) Z X[ b Ves, XGy< Xpg - h Vigs; X

X(j)’ X(k) > X Vies}

(1)

>
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k-1

D22 e

se j=1 s¢ ¢

We shall now evaluate the probabilities A and Bs e Throughout

Chapters 2 and 3 we denote the r.v. [(Xgl; [ ]) nl/z
1/2

(X(i) ~ u[i])n /o] by (Xi,Yi). Note that for 1< i< k, the r.v.

/o,

(Xi’Yi) has a standard bivariate normal distribution with correlation
1/2

coefficient = p = (nl/n)l/z. In what follows we shall have occasion

to use the relation

a

(2.2.3) o (a,b|p) = J[.@ [—49395~—~] o (z2),
2 J. La-eHt?

[+ 0]

where @0(','fp) represents the standard bivariate normal cdf with
s
correlation coefficient = P.

We first consider

_ 1/2 . 1/2 .
{(2.2.43a) AS P {X + 6k ] /o > Xy E‘Xk + (6k h)n /o Yies,

Xi < Xk + (ék - h)nl/2

. 1/2 .
/o Vi¢s, Y + Gkin /o > Y, Vies}

= i 2{%+5k ni/ /o, u+6kinl/2/0]pl/2] - @2[x+(6k - h)nl/z/c,

—o -~ jeg

u + Skinllz/glpl/z} x 1 @[%+(6k - h)nl/z/%]d® (=, u!pl/z
it s

This expression was obtained by conditioning on O{k;Yk) = (x,u) and
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then integrating w.r.t. the joint density function of (Xk’Yk)' Applying

{(2.2.3) and (2.2.4a) we obtain

(2.2.4b)
w X+6kini’/2/0’ S, . )
As=ff S ¢[u/q1/2—z<p/q>l’2+—3i‘—”f—<n/q>l’2]d®<z> x
<o ~x igs x+(6ki—h)ni/2/c
' T [x +'(6ki - h)ni/z/c] d@z(x,ulpl/z).
14:8
1/2
7 om0 1/2 . Swi 1/2
= J/’ 1 é[% + (x-2z)(p/q) + —g~(n/q) ]d@(z) x
o Ze igs x+(6ki—h)ni/2/0 )
I @I[x + (8 - h)nilz/c] do (y)do (x).

iés :

The last equality was obtained by making the orthogonal transformation

1/2
y = u- x x = x
1/2° :
(1-p) /
We next consider
(2.2.5a) B, =P {X, -8 nl/z/a > X, >X. - (8 .+ h)nl/z/c
sj B ] kil k — 73 kj 1 ?
1/2 1/2 ,
Xj - sijnl /o > X; 2 Xy - (Sij + h)nj /o Vies;
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_ 1/2 Sl 1/2 o1/2
Ky < % = (8, vm Yo Vigs; yy + S my o > Tio Y T 0®

g Vo™ f0 Yy

o w [ x-§ 1711/2

/o ®
kil
Yies}., = ff f [ 11 @2 [x - 513 i/zlo,
/2/0 t-6 nl/z/c

—0 —o x~(6 +h) L ki ies

w+ 8 .nl/z/cfpl/z] - 2, [x - (6i + h)nj /2/0, w+ 8

. 1/2’,0*91/2} y

ki

i ¢»[x - (éi + h)nl/2/6] de (u w]pl/2 do (x tlp /2 .
iés

This latter expression was obtained by conditioning on (Xj’Yj) = (x,t)
and (Xk’Yk) = (u,w) and then integrating w.r.t. the joint density fumc-
tions of (Xj,Yj) and (Xk,Yk). In this expression the integration is
first w.r.t. (u,w) and then w.r.t. (x,t). Applying (2.2.3) to (2.2.5a)
we obtain

1/2

o, o© "X—(Skjnl /0’ © .
(2.2.56) B, = f i
S,] / | x~ (8 +h)nl/2/0 t-8 nl/z/c i
ki K €S
x—Sijni/z/G - 5.
o lwiat’? - 2 @i+ —}:i(n/qﬂ/z] a8 (2) |
x-(8, +) l/2/ -

T [% - (6 +h) l/z/c] d@z(u,w/pllz) de ( tlpl/2

iés

pia 6 n /2/0 o
s / :
1i/2 1/2 1/2 .

oo oo x— 6 +h)n /o y+(x~ -u) (p/q) k l /o \ ies
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1/2

x—éijnl /o 5.
@[ v+ () e/t A 1;‘L(n/col’z] 42 (2) i x
X—(S +h) 1/2/
1/2
To [x - (Sij + h)nl /o ] do(v)de(u) | do(y)de(x).
i#s

The last equality was obtained by making the orthogonal transformation

o 1/2 w— 1/2u
y = ——-—R—-———il/{-—z—, x = x and v = 1/2, u = u. Combining (2-2-2),
(1-p) (1-p)

(2.2.4b) and (2.2.5b) we obtain the desired result (2.2.1).

Corollary 2.2.1: Let u(S8) denote any u such that

u[l} = U[Z] = eee = u[k—l] = u[k} - § where § > 0 (u(8) is known as a
slippage configuration). Then we have

1/2

/o
(2.2.6) P (6)(CS[R) = //3 x + (5-h)nl/2/c] + f
oo Yoo x+(<5—-h)n%/2/0

k-1

: [y + (o) o/t 4 §<n/q>”2] a@(z) | ap(x)ae) + (k1) x

(o]

1/2

@(x—hn

w0, x—5n1/2/0
[o) +
1/2 _ 8

—[ —[ <= (s+n)ny/ S(ala)
X
/ : [v+ (w-2) (/)2 + O(n/q)“z} x
1/2

x-—hnl /o

215 y+{x-u) (p/q) 1/2

k-2

de(z) do(v)de(u) | de(y)do(x).
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Proof: The proof is straightforward and is omitted.

Remark 2.2.1: Alam [1970] did not give any expression corresponding to

our (2.2.1). For k = 2, (2.2.1) simplifies a great deal and we obtain

for any uef

_ s-n\ (1) Y/?
o ey () ()

(éiﬁ) (El) 1/2
+ Gf 21/2 o [-u(ﬁ-}l/z + -Q(E—)l/z] o (u).

(52 ()

This result was given by Alam as his equation (3.5).
Alam also gave an expression for Pu(&)(CSlRl) for k > 2;
see his equation (3.24). However, we were not able to verify his

general result and suspect that it is in error,

Remark 2.2.2: It is easy to check that letting h - 0 in (2.2.1) yields

o k-1
. _ 1/2
(2.2.8) 1im P (CS|R,) = n &(x + 6, .n; “/o)dd(x).
U 1 kil
0 = o =1

It is straightforward but tedious to check that letting h - « in (2.2.1)

yields

w k-1
(2.2.9) lim Pu(CSIRl) = f m o(x + Gkinl/zlo)d‘w‘)'

e = Yoo i=1
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Note that (2.2.8) and (2.2.9) are the expressions for Pu(CSiRO) i.e. the

PCS associated with rule RO’ with respectively ny and n as the common

sample sizes per population.

§2.2.2 Determination of the infimum of Pp(CSIRl):
It is now our objective to determine the set of parameter points

in the preference zone 2(8*) where the infimum of Pu(CSIRI) occurs. Our

reasons for doing so will be given later.

eQ(6%) such that P (CS|R) = inf P (CS|R) is

Definition 2.2.1: Any
o Cagsx) B

I

referred to as a least favorable configuration (LFC) of the parameters

for rule R.

If we know the LFC of the o then we can formally set

(2.2.10) (cs]Rl) = P*

PLFC

Any values of (nl,nz,h) which make the 1l.h.s. of (2.2.10) equal to P*
will guarantee the probability requirement (1.1.1).

As a step toward finding the LFC of the uy for rule R1 we shall

now study the behavior of Pu(cisl) and in particular its monotonicity

w.r.t. “[i](l < i<k).

Lemma 2.2.1: TFor fixed u{i](l <i<k-1) and for fixed n ,n, ,h ¢ and

172

k, Pp(CSIRl) is non~decreasing in u

[k’
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Proof:

(2.2.11a) PBFCSIRI) = PEJ U {?S{W (X(k) > X(i) ¥ ies)] %

se¥

s @) - 7@ x(1) :
X(k) E-X[k] h, X(i) ix[kl h Vies,

<§Eig <4§§i§ - h Vié%]and &= the collection of all subsets from

{1,2,...,k-1}. Thus (2.2.11a) becomes

Here the event BS = [

_ _ 1/2
(2.2.11b) PHFCS}Rl) = Pg U U [}xj + (“[j] u[i])nl

SE jes
i

[o >

A h)nilz/o Vies, i = k, i # i;
1/2 . '
X, < Xj + (u[j] - Mgy T h)nl /o Vids)

(Yk + (u[k] - u[i])nl/z/g > Yi Viz—:s)] ‘ = P{A(B_)}-

The event A(y) is in the sigma algebra generated by the r.v.(Xi,Yi) for

1 <1i<k.
1] 1] 7 1
' Now consider a vector'E_ = (“[1]’“{2]""’“[k]) where
u{i] = u[i] for 1 <i <k -1 and u[k] > u[k]. Then
H
(2.2.12) Pu.(CSIRl) = P{A(p )}.

¥
Now we shall show that A(p) € A(u ). For the sake of clarity we

shall indicate in this section, the dependence of a r.v. X on the sample
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point w by X{(w).

Pick weA(u). Then thée event

(2.2.13) [X.k(w) + (“[k] Mg + h)ni/z/o > Xi(“’) Vi # k]

?

o> X 0) + Gy =g+ 0o 2 X @) Vi A K]

¥ ¥ 1/2 7 H
==> [Xj(w) + (u[j] - u[i])nl /o >Xi(w) ZXj(w) + (u[j] T Mgy T h) x

ni/?_/c Vies', i=k,1 # j;Xi(m) < Xj(w) + (U[j] - U[i] - h)ni/z/c

\
Vies ]

] |
for some set s ¢4/ j = k or jes .

L

To study the set s consider the following two cases.

Case 1: —}Zg{'; (w) = i&% (w) and the set sey is selected. Thus the

following event occurs:

1/2
(X @)+ Qupyey = wpgping /o > % () 2 X @)+ Qugey = wpgg - B

1/2

o, /o Vies, Xi(m) < Xk(w) + (”[k] - 1/2

U{i] - h)nl /G Vié:S].

Hence an increase in p can only reduce the set s, and thus s C s.
k] =

Case 2: igi () = i&% (w) for j # k and the set sgQf is selected.
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Thus the following event occurs:

1/2
(X @)+ Gupgy = upgePey /0 > X (@) 2 X0) + Gy = gy = B

1/2 1/2
ny /G,Xj(w) + (u[j] - u[i])nl o > X, (W) _>_Xj(m) + (u[j] T Mgy T h) x

1/2

0l/2/0 Vies, X, () < X, @) + Guyq - Hpy - mn’ /o Vigs].

An increase in u[k] can at the most violate the first inequality in the

above event. In that case we have the event

@) + (g = v e 2o > X @ T 14k X @) < X )

+ (]—l[k] - U[i] - h)ni/z/o’ Y i%:S].

1
Thus the new set s C s.
From Case 1 and Case 2 we obtain

(2.2.14) (Y, @) + Gipgg - u[i])ni/z/c > ¥, () Vies]

==> [Yk(w) + (“[k] - u'[i])ni/z/c > Yi(w) Vies ].

T v
From (2.2.13) and (2.2.14) we find that weA(u ) and A(W C A(u ).
1
Hence P{A(u )} > P{A(wW)}, and Pu'(CSlRl) 3_PU(CS|R1) which completes the

proof.
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Corollary 2.2.2: For s >0, Pu(&)(CSIRl) is non-decreasing in &, the
other parameters‘being kept fixed. 1In particular for k = 2, Pu(cisl)

achieves its infimum over the preference zone (8*) at any B satisfying
- = §%,
"l21 T Mg
Proof: The proof is immediate upon noting that because of the trans-~
lation invariant nature of Rl’ Pu(CS‘Rl) depends on u only through the
differences Ski(l <1i <k -1) and then applying Lemma 2.2.1.
We have not been able to use the previous method of proof to prove
our intuitive conjecture that PU(CS!Rl) is decreasing in “[i] for 1 # k.

Alternative methods of proof also failed to arrive at this result. Thus

the monotonicity of Pu(CS!Rl) iﬂ'dki(l < i<k =-1) remains an open

question. We believe that the following conjecture made by Alam [1970]

is correct.

Conjecture 2.2.1 (Alam): For k > 2, the infimum (w.r.t.u) of Pu(CS[Rl)

over Q(8%*) is achieved at any u satisfying u[l] = ees = u{k-l] =
u{k] - 8%. Thus the slippage configuration u[l] = 0 o= u{k—l} =
p{k] - 6% is a LFC for rule Rl.

In §3.1 we derive a conservative lower bound for Pu(CSlRl)’ and we
prove that the bound achieves its infimum over Q(8*) at the conjectured
LFC. For k > 2 we use this lower bound as a basis for computing tables
from which (nl,nz,h) can be determined to guarantee (1.1.1). The

- computational advantages associated with this lower bound are also dis—

cussed in §3.1.



32

Remark 2.2.3: Suppose that the ui are location (scale) parameters (no

assumption of normality being made). If we have available at each

1y

stage of the experiment real sufficient statistics, say, Zi and Zi

for My which is a location (scale) parameter in the induced marginal

ey

distributions of Zi and Zi (1 < i < k) then for selecting the popu~

lation associated with u[k] we can state two-stage rules analogous to
Rl (see e.g. Gupta [1965]). The method of proof of Lemma 2.2.1 would
also apply in this general case. Further if the induced distributions
have the property of monotone likelihood ration (MLR) then Theorem
2.3.1 (to be proved in the next section) would also apply in this
general case. We have restricted consideration to the case of nor-
mality both for the purpose of specificity, and also becausefof the
importance of this special case.

We shall note a few more properties of the PCS expression before
closing this section.

1. If (n h) guarantee the probability requirement (1.1.1) when

1°%9°

used with rule Rl and if n, is the corresponding single stage sample

size, then we have
(2.2.15) n=mn, +n,>n

This follows by considering a modified rule Rl which includes all k
1
populations in the second stage. Let P* be the infimum of the PCS over

1
Q(8%) for the modified rule. Then clearly P* > P%*. But the modified

rule ig simply a single-stage rule with n = n, + n, as the common sample

size per population. Hence n, +n, > n

1 2 =0
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» N, and h we

2. It is intuitively clear that for any values of n 9

1

have

; -1
(2.2.16) lim Pu(cisl)— .

N k
Ml 7 Mk

We were able to obtain special proofs of (2.2.16) for k = 2 and 3. But

we were unable to obtain a general proof for k > 2.

§2.3 Expected total sample size of rule Rl and its behavior:

§2.3.1 A general expression for Eu(NIRl):

In order to employ the U-minimax criterion that was proposed in
§2.1.2, it is necessary to know the set of parameter points in & at
which the supremum of Eu(NIRl) occurs, and the corresponding expres-—

sion for EU(N!Rl). The general expression for Eu(NlRl) would also be

useful. We derive it in the following lemma.

Lemma 2.3.1: For any uef

kK =k
(2.3.1) B, ®[R) = kn) + nZZf T elx+ (5, + h)ni/z/o] -
i=1 - J=1sj#i
K
1 olx + (Sij - h)ni/z/o] do(x).
j=1,j#i

Proof: Let T denote the (random) size of the subset I where the set

1

I is defined by (2.1.1). Define a new r.v. T such that
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0 if T = 1.
(2.3.2) T =
T if T > 1.

Then

]

?
E}L(NERl) kn, + anP_(T )

il

kn, + nZ{EB(TIRl) - B (T = 1R}

k
- (1) _ (D . ,
—-knl+n2 ZP (X(i)>X()-—h Yj # i) -
i=1
k
(1) (1) P
ZP(X()>X()+h vy # i)
i=1
k -
= kn; +n2%ZP[Xi + (sij + h) 1/2/0 > XJ ¥i# i] -
i=1
k
1/2 . .
j{:'P[Xi + (6ij - Wn. /o > XJ vi # il
i=1

k
= kn, + n, z 3 it o[x + (51 + h)nl/z/o‘] -
i=1 %o '3=1,3#1

i ofx + (aij - h) l/‘2/0] % de(x) .
j=l9j7él

This completes the proof.



35

§2.3.2 Determination of the supremum of EU(NIRl):
We now derive the main result of this section in the following

theorem.

Theorem 2.3.1: TFor fixed 0y, N, h, o and k, the supremum of Eu(NlRl)

over (I occurs at any u satisfying u[l] = U[Z} = see = u[k] (EMC).

Further

12

(2.3-3) Sgp EB_(NIR]_) = knl + knz / 3®k"l(x 1/2/ y -

00

@k—l(x /2/c)$ ad(x).

Proof: We must show that {Eu(TIRl) - PU(T=lle)} achieves its supremum
over ) at the EMC. Gupta [1965] has shown this for EU(T]Rl). Thus
it only remains for us to show that PU(T=1[R1) achieves its infimum at
the EMC. We use the method due to Gupta [1965].
Set = = eee = = < for some &
Ml T M) Prar 7 M T M)

(1 <2 <k =1) and define Gi = u[i] - for ¢ +1 < i < k. Define

(2.3.4) Qu) = PEfT=11Rl; M) T = Mgy T u}
o k
- z/@““l(x - hni/z/c) T olx - (5, + h)nllz/c]d@(x)
/ o j=2+1
k

Z /@ [x + (5, - Wn 1/2/01 Toelx + (8, - ) 1/2/c]d®( ).

i=g+1 %o =+l
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After differentiating w.r.t.p and then interchanging the order
of integration and summation in the first term and making appropriate

substitutions we obtain

2 ko k
(2.3.5) dgi“) = i Z f@’z"l[x + (8, - h)ni/zlc] 1
i=041 Yoo ’ j=2+1,i#1
o[x + (8., - h)nl/z/c]{¢(x - hnl/Z/G) (x + 8§ nl/zlc) -
ij 1 1 ¢ iM

s + (5, - momy 2/a)0 o) dex.

< 0.

The last result is obtained by noting that the quantity inside the
braces in (2.3.5) is non-negative for every X and i for

2 +1 <1<k due to the MLR property of the normal density function.
Now it follows that Q is non-increasing in u and is in fact

strictly decreasing in u if h and n, are positive. Thus subject

we see that Pp(T=llRl) is minimized by in-

to “[1} = e = U{g’}:

creasing the common value u until p = Since this is true

Hrg411°

for each 2 < k - 1, it follows that PEFT=1!R1) is minimized and hence

1]
Eu(NlRl) is maximized over § by setting all the u[i]s equal in

(2.3.1).

Corollary 2.3.1: The supremum of Eu(NiRl) over Q2(8%) occurs at the

slippage configuration u{l] = e = u[k~l] = u[k] - 8% and

0

k-1 1/2
(2.3.6) sup E (N{R ) = kn, + n [ §® [x + (8% + h)nl “/ol =
aiory M1 17 !{ 1
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o

@k‘l[x + (5% - h)ni/z/o} de (x) + (k-1) /3@1‘"20{ + hni/z/c)

00

k-2

nl/z/c] -9 (x - hni/2/0)®[x - (8% + h)nl/z/o}% d@(x)} .

o[x - (6% - h) 1

1
Thus we have achieved the objective of determining the supremum
of the expected total sample size function over £ and Q(S%®), re-
spectively. We now can state the optimization problems associated
with the U-minimax criterion and the R-minimax criterion. This is done

in the following section.

§2.4 Optimization problems:

§2.4.1 Discrete optimization problems:

For the sake of convenience, in this section we state the optimi-
zation problems associated with the two design criteria for the general

k > 2 case assuming the Conjecture 2.2.1 regarding the LFC to be true

for k > 2.
We denote by w(nl,nz,h; §*%,0,k) the value of Pu(CS}Rl) at the
conjectured LFC; the value of w(nl,nz,h; §*,0,k) is obtained by sub-

stituting § = 8% in (2.2.6). For the U-minimax criterion we have

Discrete optimization problem (U-minimax criterion):

For specified {6*,P*} and given o and k, choose the three con-

stants (nl,nz,h) necessary to implement rule Rl SO as to
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(o]

’. —- —
minimize knl + knz “/azék l(x + hnilz/a) - @k l(x—hni/z/c) x
dé (x),
<
(2.4.1) subject to w(nl,nz,h; 8§*,0, k) > P*,
0,50, non—negative integers
Land h > 0.

As in (2.1.4) we denote by (ﬁl,ﬁz,ﬁ) a solution to the above optimiza=-
tion problem and the corresponding rule Rl by ﬁl'

For the R-minimax criterion, one only need replace the objective
function in (2.4.1) by the expression (2.3.6). As in (2.1.3) we denote
by (ﬁl,ﬁz,ﬁ) a solution to the corresponding optimization problem and

the corresponding rule R, by R

1 1’

The problem (2.4.1) is an extremely complicated integer programming
problem with a non-linear objective function. Ignoring the computational
difficulties involved in the evaluation of w(nl,nz,h; 8%, 0,k) expres—
sion, we remark here that (2.4.1) can be solved in principle by
enumeration although the search is likely to be a costly one. More
importantly, since the solution depends on 6%, one requires a separate
solution not just for each k and P*-value but also for each d*-value.
In view of these difficulties we shall (temporarily) abandon the re-
quirement that E n2 must be integers; we reparametrize the problem
and regard the new design parameters (which are functions of nl,nzyand h)

as continuous. We use this continuous version as a large sample

approximation. This continuous version is given in the following section.
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§2.4.2 Continuous optimization problems:

We define the new design variables

/2 /2

(2.4.2) c = ,d o =—21 4 -2

g

We regard c, dl and d2 as non—-negative continuous variables and note
that the value of Pu(cisl) at the conjectured LFC depends on
§*%,0, n,,n, and h only through c, dl and d2' If we denote the

corresponding value of the PCS by w(c,dldz; k) then from (2.2.6) we

have
. o x+d1 dl
(2.4.3) w(c,dldz; k) =ff 3@(}{ + d1 - c) +f oly +€—-(x-z) +
=0 x+dl—c 2

2, .2 k-1 e
(d] + d5)/d,lde(z) do(y)de(x) + (k-1) f

—0 "= x—dl—c

< . y .
j %@(x—c) + f ofv +—a—l-(u—z) +
y+(x=u) (d; /dy)- (d+d2) /d, x=c 2
2 9 k=2
@y * d;)/d,1de(z) de (v)de (u) | de(y)de(x).
N

Clearly the optimization problem remains unaltered if we multiply
the objective function by a constant (6*/6)2. By this device we obtain

the objective function in terms of the new design variables. Then for

the U-minimax criterion we have
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Continuous coptimization problem (U-minimax criterion):

For specified P* and given k find (c,dl,dz) so as to

r . — —
minimize kdi + kdg./[%Qk 1(x + ¢) - @k l(x—c) de(x),

- 00

(2.4.4) § subject to w(c,dld k) > P*,

23

and c,d. ,d 0.

-

1% 2

We denote by (E,al,az) a solution to (2.4.4).

Correspondingly for the R-minimax criterion we have

Continuous optimization problem (R-minimax criterion):

For specified P* and given k find (c,d dz) so as to

l)

[22]

-
minimize kd2 + d2 @k_l(x +d. +¢) - @k l(x—& + ¢)
1 2 1 1
k-2
de(x) + (k-1) o} (x + c)@(x—d1 + c) -
(2.4.5) <

@k—z(x—c)®(x—dl—c)$ do(x) i ,

subject to ¥(c,d k) > P*,

l,dz;

,d, > 0.

\?nd c,d 9 2

1
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We denote by (5,51,52) a solution to (2.4.5).

An experimenter would use these values as follows: Suppose he has
adopted the U-minimax criterion. Then for given k and P* he would
read the corresponding (6,31,32) values from an appropriate table. He

would compute an approximately optimal integer solution (approximate

H ¥

1°%p2

¢ 3 [s] 2 ¥ 3 g 2 H
AT 1 ~T 2 s A at12
(2.4.6) n, = [('é‘;‘) ] + 1, n, = [(ﬁ) :l + 1, h = CG/nl

v [

He would use rule Rl with (ﬁl,ﬁz,h ).

In §2.6.2 we make a study of the expected total sample sizes

~ AT
solution) denoted by (n h ) as follows:

A A A FL |
associated with (nl,nz,h) and (nl,nz,h ). One would clearly expect

that for small §*-values and/or large P*-values there would be little
change in the expected total sample size by using the approximate

result obtained from the continuous solution.

§2.5 Relative effiéiency of RO W.r.t. ﬁl and Rl:

As a measure of relative performance of two competing rules R

0

and R1 guaranteeing the same probability requirement (1.1.1) we con-

sider the ratio of the expected total sample size of rule R1 to the

single—-stage total sample size kn We shall consider only the con-

0
tinuous versions of rules ﬁl’ ﬁl and RO. Although such rules are
really approximations to the exact discrete solutions we use the same

notation to denote these rules. We define the relative efficiency (RE)

of rule RO w.r.t. rule ﬁl as follows
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k o k
. -2 “2
r ) * Y R =
(2.5.1) RE (6%, P*, ks Ry /RS = [kd] + d) / n
i=1vw lj=1,5#1
Si dl R k si.al R 2
O(x + —gp + c) - 1 o(x + “*%;“ - c) d®(X)]/kdO,
j=1,3#1

where dO is given by (1.1.2) and (6,31,32) is given by (2.4.4).

Remark 2.5.1: ©Note that the above definition of RE differs from the

conventional definition where the quantity defined in (2.5.1) would be

regarded as RE of rule ﬁl w.r.t. rule RO. We feel that our definition

agrees with the intuitive meaning of efficiency.

Remark 2.5.2: RE depends on 6% only through the ratios éijlé*
(1 <i# 3j <k). For the EMC all the ratios equal 0 and for the

conjectured LFC all the ratios equal 0 or 1. Thus RE and RELF

EMC C

are independent of 8%, Further since rule RO will always be used for

1° ﬁl and some other rules, we

~

the purpose of comparison with rules R
shall omit the dependence of the corresponding RE's on RO from the

notation. Thus we write

[o¢)

: ~2 ~2 k-1 ~
* . = —
(2.5.2) REEMC(P ks Rl) [dl + d2 /%@ (x +¢)

w00

o Tx - o) % a0 () 1/d],
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% ke R USEk Pk L. B
We note that 1 z_REEMC(P .k Rl) 3'REHF6 P,k Rl) for all uef.

Yor rule il we can define quantities analogous to (2.5.1) and

(2.5.2). 1In particular we give the expression for REu(@*) for rule R

SR P I ¥/ k-1 Ly
(2.5.3) RE 50y (B3 Ry) = \:kdl + d, /gé (x +d, + )

% 00

o0,

do(x) + (k~1) / [@k—z(x + E)@(x - &l +c) -

it

@k-l(x -d. + E)

1

®k—2(x - c)o(x - 51 - E)] do (x) ] /kdg

where (E,al,az) is given by (2.4.5). Note that
* L+ R % Pk L+ B %
1 Z~REE(6*)(P Lk Rl) z_REEKS ,P* ks Rl) for all peQ(d%).
In the next section we give tables of constants necessary to im-
plement rules ﬁl and il for k = 2 and illustrate their use with a

numerical example.

§2.6 Tables to implement rules ﬁl and il (k = 2):

§2.6.1 Use of the tables:

We have used the computer to solve the continuous versions of the
optimization problems for the U-minimax criterion (2.4.4) and the
R-minimax criterion (2.4.5) for k = 2 and for P* = (0.55(0.05)0.95,
0.99, 0.999, 0.9995, 0.9999. Our results for the two criteria are
given in Tables 2.6.1 and 2.6.2, respectively. These tables are
exact in the sense that there is no overprotection in the PCS if the

values given in the tables are used. Computational details regarding
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the construction of the tables are given in Appendix Al.

We give the tollowing auametical crample to illustrate the use of
the tables: Suppose that an experimenter wishes to decide which one of
two normal populations has the larger mean. The two populations have
a common g = 2 units. The experimenter wishes to make a correct
selection with probability atleast (.99 whenever U[Z] - u[l] > 0.50

units.

1.‘ U-minimax criterion (ﬁl): For k = 2, P¥ = 0.99 we find from

It

Table 2.6.1 that al = 2.71894, 82 = 2.09056 and ¢

using (2.4.6) we find that

0.91913. Hence

— 2_.
At 2.71894 x 2 ) _
n, = “ﬂ“""fi?if"”" | +1=12
.t 7/2.09056 x 2 \°T
n, = _( 0.50 ) |
~ 1
h = 942;2%%55—2 = 0.1735.
(112)
EEMC(NIRl) = 304.289

From Table 1 in Bechhofer [1954] and using (1.1.3) we find that

] +1 % = 348

Thus the experimenter would take 112 observations from each popu—~

2
- 3.29 x 2
ng = 2 X % [( 0.50 )

lation in the first stage. If the difference between the observed
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first-stage means is more than 0.1735 units, he would stop sampling

and assert that the population associated with the larger mean is better.
Otherwise he would take 70 additional observations from each of the

two populations and assert that the population producing the overall
larger mean is better. By operating in this manner, the expected total
sample size in the EMC would be somewhat greater than 304. The corre-
sponding single-stage total sample size is 348 and the efficiency of
rule RO relative to rule ﬁl would be slightly greater than 87.85% when
(unknown to the experimenter) My =T uZ; clearly the efficiency decreases

strictly as “[2] - u increases.

[1]

2. R-minimax criterion (ﬁl): For k = 2, P* = 0,99 we find from

Table 2.6.2 that dl = 2.29313, 82 = 2.73708 and ¢ = 1.28026. Hence

using (2.4.6) we find that

=t [K2.29313 x 2 ] .1

0.50 85

2

~?
= [»2.73708 x 2) ] ‘1

0.50 120

1

Y
5= 1.28026 x 2 = 0.278

(85)1 2

ELFC(N}Rl) = 223.691
EEMC(Nfal) = 321.90

The explanation of the various quantities is similar to the one given

for rule él'
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In the next section we give some numerical results which can be

used to compare the total expected sample size obtained by using

PN I B
Table 2.6.1 to give (nl,nz,h ) for the continuous version rather than

~

using (nl,nzh), the true discrete optimal solution.

§2.6.2 A comparison of discrete and approximate solutions:

The proposed comparison depends on the sample sizes involved
(which in turn depend on {8%,P*}). We shall comsider five values of
P*; for each P* we fix five values of 0y the single-stage sample size
and find the respective §*-values. We choose n0~values in three sample
ranges 10-20, 105-125 and 255-275. For each {8%,P*} combination, the
discrete optimal solution (;l,ﬁz,ﬁﬁi/z/c) is found by direct search.
The approximate solution (ﬁl,ﬁz,ﬁ) is obtained by first finding the
continuous solution (6,&,&2) using the method given in Appendix Al and
then using (2.4.6). All of the three solutions and the associated ex—
pected total sample sizes are given in Table 2.6.3.

The last two columns of the table which show the percentage
deviation between the expected total sample sizes associated with the
approximate solution and the discrete solution and the percentage
deviation between the expected total sample sizes associated with the

discrete solution and the continuous solution are of particular

interest. We see that the difference between the discrete optimum

(the expected total sample size associated with the discrete solution)
and the continuous optimum is quite small even for small nO—values
and it decreases further as the sample size is increased. This be-

havior is not strictly monotone for the obvious reasons. The deviation
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of the approximate optimum from the discrete optimum is substantial for
the small sample size range but it decreases rapidly as the sample size
is increased. For the range of P*-values studied, the approximate
optimum is always less than Y the corresponding single stage sample
size. However for P*-values close to 1 and for very small sample sizes,
the approximate optimum may in fact exceed nye
In Table 2.6.4 for a particular {6%,P*} combination we give an

indication of how the expected total sample size function behaves as

n, and n, are varied systematically.

Table 2.6.4

Some (nl,nz,c) values in the vicinity of the optimum

(6% = .27103, P* = .999, k =2, 0 =1, n, = 260)

0

nopng o, c kOZEEMC(N)
185/91] .98570 | 17.02678
186/ 90| .97320| 17.02577
276 | 187/89| .96069| 17.02536 "
188] 88| .94819| 17.02555

189{ 89| .93569| 17.02636

185{92| .97300| 17.02645
186{91] .96058 | 17.02548
277 187/90| .94817| 17.02511 *%
188{ 89! .93576 17.02535
189] 88| .92355 | 17.02622

185193 .96118 | 17.02774
186{92 | .94884 | 17.02679
2781 187|91| .93651 | 17.02645 *
188/ 90| .92419 | 17.02672
189189 | .91186 17.02762

(* indicates the minimum for a fixed n;
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*% indicates the global minimum)

Thus for each fixed n a minimum is achieved for a certain combi-
nation of (nl,nz,c) values; c being chosen to satisfy the P*-require-
ment for the given (nl,nz) values., This minimum first decreases and
then increases as n is increased. No occurrence of multiple local

minima was observed.






CHAPTER 3

FURTHER TOPICS IN TWO-STAGE RULES FOR THE NORMAL

MEANS PROBLEM (COMMON KNOWN VARIANCE)

§3.0 Introduction:

In the present chapter we continue the studies of the previous
chapter and extend them in several directions. 1In §83.1 we derive a
lower bound on the PCS associated with rule Rl and obtain the LFC
associated with that bound. In §3.2 we indicate the computational
advantages derived from using the lower bound, and construct tables
of constants necessary to implement rule Rl based on the conservative

lower bound for k > 2. We denote the corresponding conservative two—

stage rule by'ﬁ . We study the gains achieved by R

1 over the single-

1

stage rule R0 and also the losses incurred due to not using the exact

rule Rl' In §3.3 we study the asymptotic (P* - 1) behavior of our

two-stage rule with the U~-minimax criterion (ﬁl) and the R-minimax cri-
terion (ﬁl). We show that the asymptotic relative efficiency (ARE) in
the EMC of single-stage rule R0 w.r.t. rule ﬁl is 1 and the ARE in the

LFC of rule R_ w.r.t. rule R, is 1/4 for every k > 2. In $3.3 we pro-

0 1
pose a "come-back"” type modification R2 of our basic rule R1 and give
the expression for the asoociated PCS. We give extensive MC sampling
results comparing the PCS achieved by the conservative rule R s the
exact rule Rl and the modified rule R2 when the u;s are in the conjectured

LFC. 1In §3.5 we propose another come-back type rule R3 and derive its

properties for k = 2. Some avenues for further research on this problem

53
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are described in §3.6.

§3.1 Some useful bounds on PCS of rule R

1

§3.1.1 Derivation of the bounds:

In this section we derive an upper and a lower bound on PU(CS!Rl).
The lower bound is particularly useful since we can prove that the
value of the lower bound achieves its infimum over Q(8*) at the con-
jectured LFC. Thus if we set the value of this lower bound equal to P#*
at any u such that u[l] = “[k-l] = u[k] - &%, then any values of
nl,nz,h which guarantee this equality will also guarantee the probability
requirement (1.1.1) for rule Rl' We shall denote by4§ , the conserva-
tive rule based on (nl,nz,h) arrived at through the use of the lower
bound.

A secondary advantage of the above mentioned lower bound is that
since it is in the form of a sum of two univariate iterated integrals,
its value can be calculated at a very fast speed on a digital computer.
This advantage is very meaningful since for the exact rule determination
of (nl,nz,h) to meet a certain design criterion would require a large
number of computations of the expression (2.4.3) which involves four-

variate integrals-

The following theorem provides desired bounds on PU(CSIRl)'

Theorem 3.1.1: TFor any pef we have

oo, k-1 1/2 o k-1

(§,. + h)n
(3.1.1) /H @}:x+ klc L ]d@(x)+[n

oo {i=]1 i=1
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1/2 o k-1 1/2

8§, .n (6., + h)n
o [x + —1‘—1-5————] de(x)-1 < PH(CSiRl) < me [x . o L

]d@(x).
- i=]

Proof: First consider the lower bound.

1-P P i .
E‘CSiRl) u(Incorrect Selectloanl)

<P (Xgi; < XE ; - h for some i # k)
+ P (X(k) ( ) for some i # k).

—P(X(l)>X(1) h Vi#k) +1

fi
[y

(k) (1)
PE(X(k) > x(i) Vi # k).
1/2
(8, . + h)n
=5 ki 1 .
= 2 P(Xk+ = > X, Vi # k)
‘Skinl/z
~P(Yk+ > ¥, Vi # k).
o, k=1 sk.nl/?f
=2 - i @[x%———-}—c———-]d@(x)
Lo i=1
o, k~1 ‘Skinl/z
- i} @[x+——-5———-]d®(x) .
.00 izl .

A rearrangement of the terms gives the desired lower bound. For the

upper bound simply note that
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P (CS[R ) <P (H is included in the set I‘Rl).

(k)

i

P(X(l)>X§;—h Vi 4 k).

(k)
= k-1 (5, + h)ni/z
= m & jx+ S do (x).

-0 i=]
Corollary 3.1.1: For all ueQ(8*)
(3.1.2)

o0 i/2 @
- (6% + h)n ol s 172

P (cS|R)) 3_/@k l[x + ]d@(x) +f¢k l[x + ‘5—“5——-]@@) -1

Proof: The proof follows immediately upon noting that the lower bound

given in (3.1.1) is non-decreasing in each 6 (1 <i<k-1).

§3.1.2 Some properties of the lower bound:

1. If we let h » «» in the expression for the lower bound in (3.1.1) we

o k-1 1/2
.n

6k:L
obtain T o (x + —————

S >d®(x) which is the expression for

Yoo =1
PU(CS{RO) using sample size n per population. Thus Bechhofer's

single-stage rule RO is a special case of the conservative rule ﬁi.

2. The lower bound is increasing in h for h > 0, for n, > 0 and for

any yeft. Thus if (nl,nz,h) are chosen to guarantee the probability re-
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quirement using the r.h.s. of (3.1.2), and if n, is the corresponding
single-stage sample size, then by letting h + « in the r.h.s. of (3.1.2)

we find that
(3.1.3) n, +n, >n

for rule §i.

<0

3. At the EMC the value of the lower bound is l/‘éknl(x + ¢)do(x) +

Lo}

1/k - 1 which tends to 1l/k iff ¢ = hni/z/c » o, Similarly for 6% > 0
fixed, if the r.h.s. of (3.1.2) is set equal to P* and if P* - 1/k

then either ny +~ 0, ¢ » 0 and n, + ® Or n, -+ 0, n2 +~ 0 and ¢ =+ .

Therefore as P* - 1/k, the two-stage conservative rulei1 behaves as a

single-stage rule RO'

§3.1.3 An Optimization problem:

We shall consider only the continuous optimization problem in the
context of the conservative ruleiﬁl. Let c,dl,d2 be as defined by
(2.4.2). Then the continuous optimization problem for the U-minimax
criterion becomes:

For specified P* and given k find (C’dl’dz) so as to

(2]

(3.1.4) minimize di + dg‘//‘[§k~l(x +e) - Qk—l(x _ c)] 49 (x)

- OO
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foe]

subject to f@k'l(x +d + dee) +

(K3

o]

f®k'1{x + @+ aH a6 - 15 P

00

and c,dl,d2 > 0.

A A ~

We shall denote by (E;E ) a solution to the above optimization

l’d2
problem. One may analogously state the optimization problem for the

rule_}il using the R-minimax criterion. The definition of

REU(6*,P*,k;‘§i) can be obtained by replacing (E,al,az) by (E;Ei,ﬁé) in

A A ~

(2.5.1). Since ‘Ei is based on the conservative lower bound on the

* k: R * k: R
PCS of rule Rl we have REEMC(P sk Rl) z'REEMC(P o k3 Rl) for all k > 2

and P*g(knl,l). Moreover, since the single-stage rule R, is a special

0
R # ks R : % P*.k: R
case of rule R1 we have 1 3_REEMC(P , ki Rl) i_R?E(G ,P* .k Rl) for all

ueR, % > 0, k > 2 and Pe(k *,1). Thus rule K, is uniformly (in )

atleast as good as rule R However as an implication of Property 3

0
in §3.1.2 we might expect that for the range of P*-values close to 1/k

~

and perhaps even somewhat higher, rulehﬁl will be equivalent to

rule RO. This is in fact borne out by the numerical results.

§3.2 Tables to implement rule §i (k > 2):

§3.2.1 - Discussion of the tables:

We have computed the continuous optimum solution for the opti-

mization problem (3.1.4) for k = 3, 4,5, 10 and 25 and for selected
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Table 3.2.1
Rule‘il(U—minimax criterion)
A o 2. 2 a_]z_ 5*2 2 2
k | P* d; d, c |p =75 ——EEmC(NlRl) REqy o (P%,K3R,)
d1+ 9 ko

.99 .93258 | 2.40832{ 1.24583 .59722 12.20554 .93280

+95 .08926 | 1.89737{1.63028 .54802 7.06860 .96242
31.90 .66988 | 1.54913] 2.18145 .53746 4.89325 .98381

.75 .049188] .97980| 3.93352 .53416 2.05562 .99992

60 & < Use single—-stage rule RO > 1.00000

below

.99 .04319 | 2.58052}1.25962 .58172 13.17619 .91392

.95 .24000 | 2.11055| 1.48060 .52973 7.98685 .93916
4 1.90 .82625 | 1.78588] 1.82453 .511173 5.78861 .96311

.75 .22030 | 1.1712413.23650 . 52050 2.82038 .99667

.60 & < Use single-stage rule RO > 1.00000

below

.99 .10350 | 2.73007{1.27117 .56375 13.75575 .89537

.95 .31844 |2.26222]1.46036 .51227 8.55503 .91652
51.90 .92094 11.97864}1.64030 48521 6.35481 . 94028

.75 .31909 |1.33042}2.72804 .49432 3.37047 .98875

.60 . 96047 .91856(4.30382 . 52229 1.76261 .99839

.50 & < Use single~stage rule RO > 1.00000

below
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Table 3.2.1 (contd.)

=2
o > =~ S dl 6*2 e &
* = ] * N
kI P 4 45 P = 5525 ahmae (IR | REg (B, 1GR)
d +d_ | ko
172
<99 13.23639{3.16198|1.34527| .51163 14.96143 .83003
.95 12.50946(2.77500{1.35292| .44988 9.77464 .83658
.90 12.14663(2.53488]1.38302| .41763 7.57880 .85177
10 | .75 |1.57123(1.97247|1.69804| .38821 4.69933 .91706
.60 11.22475]1.34907|2.76484] .45181 3.07226 .98064
.45 -95459 | .9277014.34334] .51429 1.76494 .99941
A0 & < Use single~stage rule RO > 1.00000
below
.99  13.36341 13.65718]1.47829| .45823 15.84894 74715
.95  |2.66460 {3.32039|1.44012| .39173 10.70065 .73720
25
.90 12.32701 |3.13932|1.39717] .35461 8.49593 .73879
.75 {1.80000 [2.85394(1.32342| .28458 5.59541 .76826

<— No computations were made for lower P*-values.
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FIGURE 3.2.1

RE values of RO w.rit. _il in the EMC plotteci against Px for k = 3(1)5, 10 and 25.
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ranges of P*-values. Our results are given in Table 3.2.1. The
method of solutiorn of the optimization problem, the details of com-
putations, and the use of the table are the same as described in
Appendix Al, and §2.6.1 respectively.

Figure 3.2.1 shows the variation of REEMC(P*,k;‘ﬁl) with P*
for different values of k. For each fixed P*-value we see that
REEMC(P*,k;4§l) decreases with k. This is to be expected since as k
increases,the savings resulting from the screening aspect of our
two-stage rule become more pronounced. In §3.2 we study the limiting
behavior of REEMC(P*,k; ﬁl) as P* > 1 for fixed k.

Figure 3.2.1 also indicates that for fixed k, we have that
RE (P*,k; ﬁi) achieves a minimum at a certain intermediate value of P*,

EMC

A more detailed picture of the behavior of RE (P*,k;‘ﬁl) in the

EMC
range P* > ,99 will be presented in the next section for k = 2. It
should be noted that for each k, REEMC(P*,k;'il) becomes 1 as
ﬁl becomes equivalent to single-stage rule RO (i.e. €A+ ») for some
value of P*, say ?ﬁ, between 1/k and 1. From Figure 3.2.1 it would
appear that P* decreases as k increases.

In the next section we study for k = 2, the loss in relative
efficiency due to using the conservative lower bound. To do so we

will compare the exact continuous optimum (Table 2.6.1) and the con~

servative continuous optimum.

-~

§3.2.2 A performance comparison of rules ﬁl and Rl (k = 2):

The solution of the optimization problem (3.1.5) for k = 2 with

selected values of P* is given in Table 3.2.2 below. These computations

were made solely for the purpose of compariscon with our results in
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FIGURE 3.2.2

]

RE values of RO w.r.t. ﬁl and il in the EMC plotted against P* for k = 2.
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FIGURE 3.2.3

RF. values of RD w.r.t. ﬁl in the EMC and the LFC plotted against P* for k = 2.

.9999

.9995

.999

.99

.95

.90

.50

0T'T. 00°1 06° 08° 0L° 09 0s°

« (Y s me



66

Table 2.6.1 in order to study the loss in relative efficiency. Since

Table 2.6.1 is based on the exact expression for P (CSlRl), it is the

~

one to be used in practice. The REEMC - values for rules ﬁl and'ﬁl for

LFC

k = 2 are plotted against P* in Figure 3.2.2. It is seen that

RE,.. > 1 for both ﬁl and 'ﬁl as P* > 1. This result will be proved

analytically in 83.3. The loss in efficiency due to using conservative

rule ﬁi instead of the exact rule Rl is significant for low P*~-values;

the difference in relative efficiencies between rules ﬁl and §i de-

creases rapidly as P* increases. Thus significant gains can be
achieved in terms of the expected total sample size if the exact rule
Rl is used for small to moderate values of P* and large values of k.

Thus a great incentive exists for attempting the proof of the con-

jectured LFC for rule R

1"
In Figure 3.2.3 we have plotted REEMC - and RELFC - values for -

rule il for k = 2. We note that REEMC(P*,k; ﬁl) increases with P* and

is greater than 1 for P* = ,9999, RELFC(P*,k; ﬁl) decreases with

increasing P*. We shall prove in §3.3 that RE (P*,k; ﬁl) + 1/4 as

LFC
P%¥ > 1 for all k > 2.

§3.2.3 A brief comparison of rule R, with two sequential rules:

1

Ramberg [1966] made a MC sampling study of the sequential rules
BKS and P both for the normal means problem. We shall compare the

performance of our conservative rule R, with that of BKS and P, rules

1 A A
by comparing the relative efficiencies in the EMC of rule RO relative
to rules BKS, and P,. Here the subscript A means that the original

A A

sequential rules are adjusted to eliminate the overprotection in PCS. -

We shall use Tables 16 and 19 from Ramberg [1966]. It might be
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mentioned that the comparisons with the Paulson rule given by Ramberg
do not depict the Paulsomn rule when it is bperating in its most
efficient way. Fabian [1973] has recently shown that to minimize the
expected total sample size in the EMC as P* - 1, the Paulson rule
should be used with A = §%/2; Ramberg's results are for A = 8%/4.
Fabian, in the same paper, also gives an improved lower bound on the
PCS of Paulson rule. Since Ramberg makes an empirical adjustment for
the overprotection in PCS, we may assume that the results would not
change much if one were to use Fabian's improved bound. The results

are given in the following table.

Table 3.2.3

A comparison of rule R1 with sequential rules

(k = 10)

% *

ok REEMC(P ,PA) REEMC(P ,BKSA) . (P*‘ﬁ )

a=8%/4 EMC 1

MC estimate MC estimate

.75 .56250 1.12500 .91706
.90 .55631 1.22072 .85177
.95 . 56815 1.38699 .83658
.99 .61622 1.80444 .83003

We see that Paulson's adjusted rule (with A = 6*/4) minimizes the



68

expected total sample size in the EMC among the three rules for all

the values of P* under consideration. It is possible that even the

~

exact Rl is uniformly (in P*) dominated by the Paulson rule. Thus the

gains achievable by a fully sequential rule allowing for elimination

at each stage, appear to be significantly more than the gains achievable
by our two-stage rule which allows elimination only at one stage. How-
ever, we have to trade off this advantage of the fully sequential rule
against the administrative difficulties associated with its implemen-
tation.

Rule §i, in turn, dominates rule BKSA for the P#%*-values under con-

sideration; for small P*-values since rule R1 becomes equivalent to

single-stage rule RO’ it will be in general dominated by BKSA atleast

for small values of k. We must, however, point out that to obtain a
true picture of the relative performances of the sequential and the

two-stage rules, one must use the exact rule R, in any future comparison.

1

§3.3 Asymptotic (P* - 1) behavior of rules ﬁl and él

In what follows we shall keep &%, o and k fixed throughout and
only allow P* to vary. We shall assume that the conjectured LFC for
rule R, is correct. We shall also assume that the solutions
(8,&1,&2> and (5,&1,32) to the optimization problems (2.4.4) and
(2.4.5) approach limiting values which may be finite or + » as P* » 1,

Definition 3.3.1: TFor any fixed P*, let ¢ = o(P*), d, = él(P*) and

1

dy
dy

asymptotic relative efficiency as P* » 1 of rule RO relative to rule Rl

az(P*) denote a solution to the optimization problem (2.4.4). Let

It

dO(P*) denote the solution to equation (1.1.2). Then the
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at any parameter configuration ue® is defined by

(3.3.1) AREE‘SK,R; Rl)

i

1lim RE (8%,P*,k; R )

Pk>1 15
1 LA 6,4, .

=lim-—é~kd +d Ef x+——}%—*——+c:|~
*

P#>1 kdo im1 Ze | 3=1

j#i

5 6.4,

i @[x-i-*——%;——c:l de (x)

j=1

j#

In particular recalling Remark 2.5.1 we have,

(3.3.2) AREEMC(k; Rl) =

£ ] s b o

lim —c0

7
4y

We can similarly define AREH(S*,k; ﬁl). Here we give only the

expression for ARELFC(k; ﬁl).

fe ]

(3.3.3) ARE ..(k; R)) = Lim ’}‘5 kéi + &‘Z f [@k_l(x +d; +e) -
P¥>l kd

-—C0

[=]

ot + 4 - E)] de(x) + (k-1) f [®k‘2(x FOex - d, + o) -

-0
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@k*z(x - E)@(x - 51 - E)] do (x)

We now state two basic lemmas which are useful in proving the main

theorems of this section.

Lemma 3.3.1: As P*% - 1 we have dl + ¢ + « and di -+ d§ -+ o,

Proof: We have using (3.1.1)

o]

_ k-1
P% = P oo (CS[R)) if‘b (x +dy +c)de(x) < 1.

©

Therefore P* -+ 1 implies dl + ¢ >, Next as P¥ > 1, n = ng + n, > «.
2

Hence di + d2 > oo, -
We shall need the following special case of a lemma due to
Bechhofer, Kiefer and Sobel [1968]. 1In the following we use the nota-

tion a ~ b to mean that a/b > 1 in the limit and by log we denote the

natural logarithm.

Lemma 3.3.2 (Bechhofer, Kiefer and Sobel):

fee]

Let H(u) = 1 - f@k—l(x + u)d®(x). Then as u > =

Rl

2
-u“/4
H(u - lle
u/m
Coreollary: As P* - 1, the solution do to equation (1.1.2) is N

given by
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(3.3.4) dé = 4 1og (1) — 2 1og log(EE) - 2 log 47 + o (1)
1-P* 1-P*

or dg - 4 log(l - P¥)"L,

Now we state and prove the main result concerning the ARE of rule

bl

Theorem 3.3.1: For the U-minimax rule ﬁl we have,

AR ki Ry) =1 for all k > 2.

Eac

Proof: From (3.1.1) we have

«©

k-1 Sa -
1- J/ﬂ¢ (x +d, +)ae(x) <1~ B o (CS|R))

00

[s] [o o]

|
5_}1 -.}fék"1<x +d, + a6 | +{1 - @k‘l[g +@l+ 3;)1/2]d®(x) .

N 00

Therefore,

oo

1- y/ﬁ@k“l(x +d, + 000 |+

— O

[}

(3.3.5) 1 (cs{ﬁl)

“Prrc

o]

yl1- f@k"l[x + (éi + 85)1/2]d@(x) ,

o OO
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where 0 <y < 1 and vy = Y(k,P*,Rl). We set P (CSlﬁl) = P* and use

LFC
Lemmas 3.3.1 and 3.3.2 to obtain as P* » 1,

-(al + )4 —(éi + ég)/a
(3.3.6) 1 - px . LD ) e " - +y S 2 ~2.1/2
Ve , + (31 +d5)

Now we consider the following two possibilities for the limiting values

~

of c.

Case (i) 1lim ¢ = w:
P#>1

{ee)

In this case.//‘{Qk_l(x + E) - @k-l(x - E)}d@(x) + 1 as P*¥ > 1. There-

-— (0

fore we obtain, -

&i + 32}/~{®k‘l(x + 8) - @k_l(x—g)}dQ(x)
(3.3.7) ARE__(k; R.) = lim ==
EMC 1 P>l d2
0
a2 4+ g2
. 1 2
= Jim )
*-
P>l dg
> 1.

The last step follows since éi + &g z_dg for all P* from (2.2.15).

Case (ii) 1im ¢ < o:
Px->1

~ ~

Since dl + ¢ > o ag P* > 1 from Lemma 3.3.1, in this case we have
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. » o, (6/&1) > 0 and

~a%/4 @+ i/
1 1 2
1 - px - (k=1) le +y e
- 2. ~2.1/2
e dy (d] + d,)
—3§/4
_(k-1)A e
v d;

where 1 < A < ©, Hence &2 ~ 4 log(l - ]P*)”l ~ d2 using Lemma 3.3.2.

1 0
Thus we obtain -
a2+ égizf.{@k’l(x + &) - o T x-0)}ae ()
(3.3.8) ARE_. (k; R.) = lim i
EMC 1 i )
0
> 1.

From (3.3.7) and (3.3.8) we have that ARE_ . (k; ﬁl) > 1 for all k > 2.

*. = * ° I3 . -
But REEMC(k,P 3 Rl) < 1 for all P* implies that AREEMC(k, Rl) < 1.

Therefore AREEMC(k; ﬁl) = 1 for all k > 2. Hence the theorem 1is proved.

This theorem tells us that the limiting relative efficiency (as

P* -+ 1) of rule R, w.r.t. any two-stage rule R, in the EMC must be atleast

0 1

as large as 1. In particular,

(3.3.9) ARE_ (ks R)) > L.

In the next theorem we study ARELFC(k; Rl).
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Theorem 3.3.2: For the R-minimax rule ﬁl we have,

R §
(3.3.10) ARELFC(k, Rl) 4 for all k > 2.
Also as P* - 1, 51 -c= O(al) ~ « and lim (52/81)23_3-
P¥*>1
Proof: As P* > 1 we have,
~ ~.2 Y ~.2
-(¢, + ) /4 -(dy + d))/4
sy e 1 1T %
(3.3.11) 1 - P*x . + v s
/e _ B (32 + 32)1/2
(d1 + c) 1 2

where 0 <y < 1 and v = y(k,P%; Rl). The following proof proceeds by

considering all the possible limiting values that &1 and ¢ can take

~

so that dl + ¢ > @ and evaluating ARE

actual limiting behavior of dl and ¢ would be dictated by the re-

quirement that ARELFC(k; Rl) be minimized.

LFC(k; Rl) in each case. The

Case (i) 1lim (&l - ;) < o3

PA>1

In this case from (3.3.11) we obtain as P* » 1

-5§ —(éi + ég)/a
(3.3.12) 1-px . D e &g 173
e 2d, (d] +d3)

Subcase (ia) 1lim (&2/d1>2 < 3:
P&>]

For this subcase, we have éi > (di + dg)/4 for P* arbitrarily close to
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1. Therefore we can write

2 =2
-(d- + d0)/4
Ck=Da)e 12

Vr (d +d)

- P%
(3.3.13) 1-P 172 (

where 0 < A < =, unless y ~ 0 at a rate rapid enough so that we have,

(3.3.14) 1] - px - kDB e ©

where 1 < B < «. Suppose (3.3.14) holds. Then ai ~ log(l - P*)—l ~ dg/A

using Lemma (3.3.2) and lim (d2/d ) %-. Therefore

P#>1
=~ al 2 &; 1 k-1 ~ ~
AREEMC(I{; Rl) = Jim i + —3 {® (x + dl + c) -
P#*>1 0 kdo A

=]

o5 ik + i, - 9N + (k- 1) /{@k—z(x F D0 - d +O) -

-0

P
+
~jw
]
}._1

@k—z(x - Q)o(x - 51 - E)}d@(x)] <

This contradicts (3.3.9). Hence (3.3.13) holds and we have

(d2 +d } 4 log(l - P*)—l ~ dg using Lemma 3.3.2. Now since
lim (d /dl) < 3,it follows that lim (d /d ) > l‘and consequently
P#+1 P#>1

LFC 1
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Subcase (ib) lim (d
PE>1

-~ 2 .
2/dl) > 3:

In this case, as P* - 1, we have from (3.3.12)

~2
...dl
(3.3.15) 1 - px .~ Sk=DAe ©

VT zél

where 1 < A < », Therefore &i ~ log(l - P*)gl ~ dé/A and

lim (él/do)2 ZJ%' Now lim (d, - E) < o implies that él > o, ¢ >
P> PH>1

and,

o]

(3.3.16) 0 < lim (05 Tx +d. + o) - o5 Tix + d, - ) do(x) +
. 1 1

-0

(k-1) f{@k“z(x + Do xdy + =052 (x-0) 0 (x - i - E)}d@(x)] < k.

Eaaved

Therefore we have,

o]

~2 ~2

x dl dl k-1 ~ ~

(3.3.17) ARE (ks R,) = 1lim { —5 + =5 f{@ (x + dl + c) -
Px>117 d

LFC 1

2
0 -0
o5 Lix + a - Y }do(x) + (k=) f{@k’z(x + )0 (x - a +e -

@kﬁz(x - )o(x - d

= E)}d@(x)]

v
b
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Case (ii): lim (d, - ¢) = @, d_ » o, ¢ + , 4, - Z:)/dl > 0

In this case also (3.3.12) holds and we have subcases (a) and (b) as in
Case (1). The analysis in each subcase is the same as before except in

Subcase (b) instead of (3.3.16) we have

fee]

(3.3.18) 1lim v/ﬂ{@k—l(x + & +c) - ®k~l(x +d. - ;)}dé(x) +
PHs>1 1 1

(o]

(k=-1) f{@k‘z(x + ¢)o(x ~ &1 + o) - 05 2(x - o(x - él - E)}d@(x)]

OO

Further lim (Ell/do)2 = %-and lim (&2/d0)2 iﬁ% . In view of (3.3.18) we
Ph>] P>l '

may assume that

~7 o)

d (o]
Lin 2 f{@k"l(x A 0 - o5 L(x + i, - OldeG) + (k-l)f
P>l kdZ | J J

0

165 2(x + &)o(x - a, + o) - o5 % (x - &o(x - a - E)}d@(x)] = 0.
Therefore,
: @
(3.3.19) ARE. _ (k; R.) = 1lim — + 0 = =
LFC 1 - d(?} 4
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Case (iii) 1lim (d. - ¢) = ® and (d. - E)/é does not approach 0 . as
=R S 1 1

P* > 1:

Therefore «:_/d1 + B where 0 < B < 1. Also denote the limiting value of

(d /d )2 by D. Then as P*¥ » 1 we have
2771

—Eii(l + B)%/4 —&i(l +D)/4
(3.3.20) 1 - px . Lkz1) e - +y < 73
VT d; (1 + B) d; (1 + D)

Subcase (iiia) (1 + B)? < (1 + D):

Then we have

—éi(l + B)2
1 - px . (DA e ,
ves (1 + B)

where 1 < A < », Using Lemma 3.3.2 we have,

ai ~ ~——£?~—§'log(1 - P*)ml ~ dg/(l + B)z. Therefore we obtain,
(L +B)

(3.3.21) ARE. _ (k; R.) > —a 5> 1

LFC 1 “'(1 + B)Z 4
Subcase (iiib) (1 + B)2 > 1+ D:
From (3.3.20) we have,

~2
—dl(l + D)/4

Pk - (kDA e

(3.3.22) 1- -
e d; (1 + D)
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where 0 < A < », Using Lemma 3.3.2 we have,

S R PO dé/(l + D). ButD< (1L+B)%-1c<3.

a§~
(1 + D)

Hence we obtain,

c:-lmu
O o N

(3.3.23) ARE, . (k3 R;) > lim

LFC P&>1 1+0D

Case (iv) 1im (& - ¢) = = o
1
P#->1
In this case we have,

oo

lim [ (o5 T + i+ - o Lix + i, - 9N + (k-1) J/f

s OO

Px>1

{@k"z(x + )o(x - d, + ¢) - @k’z(x - o)o(x - ?il ~ E)}d@(x)i} = k.

1

Hence we obtain,

@r 7
+ —-——22[ (o5 Tx + 4, +0) -
4
ki L/,

<D0

o5 Lix + i, - Moo + (k-l)J/” T

s OO

m“ [wTg)
O N N

(3.3.24) ARE _ (k; R,) = lim
LFC T ok

Z(x + 3)o(x - i, + 0 -

o5 % (x - &o(x - i - E)}d@(x)]
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it + 2
1 2
= 1im 5
*
P*>1 do
> 1.

From Cases (i), (ii), (iii) and (iv) we find that subcase (iib) yields

minimum ARE (k; R

1 s
LFC ) = . Hence the theorem is proved.

1 4
From Bechhofer, Kiefer and Sobel [1968] we know that for their se-

quential rule BKS,

. =1
(3.3.25) ARE; . (k3 BKS/R)) = 7 .

Thus the ratio of the expected total sample sizes in the LFC re-

quired by rules BKS and R to guarantee the same probability require-

1

ment (1.1.1) goes to 1 as P* > 1. 1In particular, Wald's sequential

probability ratio test (WSPRT) to test H > 8% against

of M1 T ¥
le ul - “2 < - 8% is a special case of BKS for k = 2. WSPRT is known

to have the optimum property of requiring the least expected total
number of observations at the parameter configuration u[z] - u[l} = §%
among all tests with the same probabilities of Type T aﬁd Type 11
errors. If the error probabilities are set equal to 1 - P#* and if

P* > 1 then the ARE in LFC of the best single-stage rule (which is RO)
w.r.t. WSPRT is known to be-l. Thus for k = 2, we find that as P* » 1,

b

the two-stage rule R performs as well as WSPRT which is the optimum

1

rule for the given testing problem. This is a somewhat surprising but

a very important result.
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Another quantity of interest might be ARE (k; R We know that

EMC 1)'

AR (k; R ) > 1. However we have not been able to obtain an exact

EEMC 1
expression for AREEMC(k; Rl)' We conjecture that 1 < AREEMC(k; Rl) <

§3.4 A come~back modification of rule R1 and some MC results:

§3.4.1 A come-back type rule R2:

In 82.1.1 we noted that the permanent-elimination feature of rule

Rl might result in outcomes in which all of the populations entering the
second stage would yield cumulative sample means that are smaller than
the first stage sample mean of a population which was eliminated after
the first stage. Although the first stage sample mean is based on a
smaller number of observations, it would appear that for any parameter
configuration ue@ one can increase the PCS if rule R1 is modified to
ﬁﬁl)
i

allow the selection of the population associated with max X as best

i¢1
in case of the above type of outcome. A general family of such rules

will be called come-back type rules. We now propose a rule R, in this

2
family.
Rule RZ: The first two steps in rule R2 are the same as in the case of
rule Rl' Thus if only a single population enters the second stage then

we terminate sampling and assert that, that population is best. How-

ever, if more than one population enters the second stage then we assert

(1)

that the population associated with max[ii, iel; iﬁ s i#I] is best.

For k = 2, rules Rl and R2 are identical. Further, if both the

rules use the same values of nl,n

for any ueft. The analysis of the PCS associated with R

, and h then EP_(N[Rl) = EB(Nle)

2 is extremely
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involved for k > 2. 1In the following theorem we give without proof
a general expression for Pu(CSIRZ) for any ueft for k > 2. The proof

is omitted since it is very lengthy and tedious.

Theorem 3.4.1: TFor any uef and for k > 2

(3.4.1) P (CS|Ry) = T + T, + T3+ 1,
o, k-1
where Tl =‘//. 1 @[ﬁ + (Gki - h)n l/z/c]dé(x)
Lo 3=1
® oo x+6kini/2/c
T2==:E u/ﬁ I ‘/"
sggpp =0 x(q/p)l/2 h(n/ ) 1/2 €8 x+(6ki— )] l/2/0
172 Ski, 172
oy + G2 /)T + /) Jee|
i iz%:s
w x(a/p) % = 2ajgy
@[g ¥ (6, - h)ni/z/c]dQ(y)dQ(x)-+‘/"v/p 1
-0 - ies
172
x+8 Wit /o

S, .
oy + Geon o/ M2 + ~§i<n/q>1/2]d@<z> «
58, ny! %/

g

i ®[Pl/2(xpl/2 + vty + 64 1/2/c]d@(y)d¢(x)

i¢s -

) © x-8 ,nl/z/c

e [ S [

j=1 se G, "= X(q/p)l/z— b-'(n‘/q)l/z x=(6, +h) l/2/0

3 [¢]
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1/2
® x—éijnl /o
“/‘ 1/2 6k’ 1/2 ! 1/2
y+ =) (p/a) - =) des |- (8y oy’ Yo

§, .
@[V.+ (u-z)(p/q)l/z + ~—15—1-(11/q)Ur’{]d@(z) 1 ®E§ - (5, + h)nl/Z/O]-
o 1]
iis
w0 x(q/p)1/2~ %(n/q)l/2 x—ijnijz/G
4o (v)de (u)de (y)de(x) + '
)L x=(8,_+h)n V2
. "y 1/2/0

L,

x/(pq)

i
(5 ,+h)
2—u(§)l/2 ““;fL‘——( ) 1/2 I (6 +h)nl/2/0

i

iés

©»  x(q/p)
/c]dcp(v)d@(u)d@(y)d@(x) +f f

00 0O

S, .
ol + w2 @/t + L@V 2]as(2)

1/2_ h /q)l/Z

@[% - (Si + h)nl/2

172 Gyt

ag

1/

x=8 - n, /c x/gpq)l/2

1/2

-u(p/q) (n/q)

2 6k'
/o y+@x-u) (/@) “~ —=L(n/q)

ies

x=-§ .. n
ij
} f @[v + (w2 o/t Kl /q)”?‘]d@(z)f x
1/2
K= (6 +h) /o

/ 1/2_ 1/2 1

x—(& +h)n1

L1/2

I @[Pl/z(upl/z 1/2 kit /G]d@(V)dQ(u)dQ(y)d®(x%

+vqg )+ S
iés
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1/2 (Xpl/zlryquz)“éka‘i/ 24

Zsey -~ x(q/p) 1/2 %(n/q)l/2 - (6 +h) 1/2/0

$, .
n / @[—z(p/cn”z + u/ )+ -?m/q)”z}d@(z) x
l 2
/o

M o+ 6 n 1/2/c)dq>(u)dq>(y)d@(x)
iés

In the above,

collection of all non-empty subsets from{1,2,...,k-1}.

K

BN

collection of all subsets from {1,...,j-1,j+1,...,k=1}.

collection of all non-empty subsets from{1,...,3-1,j+1,...,

b

The other notation is the same as in Theorem 2.2.1.

The complexity of the above result indicates the difficulties
associated with an analysis of the simplest come-back type rule. In
particular we were not able to prove that for the same values of
ny,n, and h we have PHFCSIRZ) E.PEFCSIRl) for any peQl. However in
the MC results which we describe in the next section, we found that the
estimates of Pg{&*)(CSlRZ) > the estimates of Pgﬂ6*)(CSiRl) for the
same choice of (nl,nz,h) for all the cases that we studied.

We can define a U-minimax rule R2 analogous to the definition of
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Rl in §2.4.1. Tf our conjecture that PEFCS[RZ) E_PU(CSiRl) for the
same choice of (n1,n2,h) for any peQ is true, then for the same

probability requirement (1.1.1) we would have min max E (Nle) =

R2 § =

(NIRZ) g_EEMC(NlRl) = min max EBFN[Rl). This would be an im-

R, &

Ermc
' 1

provement over Rl.

§3.4.2 MC sampling results for rules Rl and R2

Let the probability requirement (1.1.1) be preassigned and sup-

pose (nl,nz,h) satisfy

= 1/2 o)
(6% + h)n _ 1/2
(3.4.3) f & hix + —L )ae(w) +f o x + LBy de) -1 > P

Then we know that rule Rl using the same values of (nl,nz,h)

satisfies the probability requirement (1.1.1). In particular

PEﬁS*)(CS[Rl) > Pk,

€ = — * i 3

Let l(nl’n2’h’k) Pgﬂﬁ*)(CS'Rl) P*, i.e. the overprotection
afforded by rule R1 using the same values of (nl,nz,h) and when the
underlying parameter configuration is p(8*). Also let gz(nl,nz,h,k) =

)(CSIRZ) - P )(CSIRl) where R. and R, both use the same values

Pg(ﬁ* p(s* 1 2

of (nl,nz,h).
We conducted MC sampling studies by simulating the operations of

rules Rl and R2 to obtain estimates of the quantities al(nl,nz,h,k) and

SZ(nl,nZ,h,k) for various values of k and P*. To obtain (nl,nz,h) we

operated as follows: For given Kk and P*, we fixed a &% > 0 and

c = 1. We then chose n, = (Ei/&*)z, n, = (52/6*)2 and h = E]ni/z
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~ A

where (c,d,,d.) were obtained from Table 3.2.1. Note n, and n,. are taken

1’72 1 2
as continuous variables to insure exact equality in (3.4.3). For simu-
lation purposes it does not matter if ny and n, are not integer valued
since we only need to generate'iil) andS{-i (1 < i < k) which depend on
ny and n, through their variances. For this reason, our re;ults do not
depend on the value of &% chosen.

The simulation results are given in Tables 3.4.1 through 3.4.5 for
k = 3,4,5,10 and 25. The tables also give many other related quantities
such as estimates of the expected total sample sizes (in a reparametrized
form) in the EMC and in the conjectured LFC, the corresponding expected
subset sizes etc. The notation is mostly familiar except for the
following three quantities.

-

gl = probability under u(é*) configuration that Rl

terminates after the first stage.

EZ = probability under u(8*) configuration that Rl
(3.4.4) terminates after the first stage with correct

selection.

£y = probability under u(§*) configuration that the
best population enters the 2nd stage when using

rule R, .
g 1

Note that we have used the same notation to denote the quantities

to be estimated and their estimates. In Figure 3.4.1 we have plotted
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FIGURE 3.4.1.

L]

Overprotection in the PCS afforded by R1 in the LFC plotted against
P% for k = 3(1)5, 10 and 25.

i
h
n O N ot ™M i
N

¥

|

]

|

it i [} i} ] . ‘
v

51 ] i) 1 i
i
{
i
i

(=X
{15

(108 - 3

+

*
Py

/f
o) @) = g

[Ta)
BN @ - P:
\\ N //
\\\\ \\ 4
\\\ X\XE
\\\ /q;
- A v
S~ /
Y vy
s s \_i:
0T 00T 08 09 oY 0T 0
< 01 2 (q‘q‘zu‘Tu)Ts

€



88
FIGURE 3.4.2

L]

Excess PCS afforded by R2 over that of Rl in the LFC plotted against
P* for k = 3(1)5, 10 and 25.

25

e S O
@@ k= 10

i 4 ' | b

ozt . 00T 08 09 0% 0t 0

<= EO’[ X (}i‘q‘zu‘Tu)Z3



89

- (sejewrlse Burpuodseiiod Byl IPPUN SIV}JBIQ PUNOL U UsATS @ie SelewIls? 2yl JO SIolIl pivpuelds IYL)

(62000°) | (56000°) |(66000°) |(8€%00°) | (0¥100°) [(8SZ00") | (£8000° ) (92200°) - | (yZL00°)| (¥ZL00°) |SL”
TL666° | vIE00° | €¥E00" | ¥I166°C L1S%0°C | TL646°C| TEYSO°T 00000° 62800° 678SL" 628SL"
(v2100°) | (16900°) |(56900°) [(8€6T0) | (0S5T0*) |(02ZT0") | (T9600° ) (9£%00°) (%00} (94%00°) |06°
LSve6° | TLTTZ | €9STT" | 00220°C L6S0% % | €¥6¥9°C | L8L06°% 62000° yT1E10° £v€16” y1€16°
(7€100°) | (7%800°) |(S7800°) |(8£020°) | (¥6¥20*) |(£99T0°) | (000ZO" ) (11€007) (y1€00°)| (L1£00°)|S6"
TL€66° | €9SLyT | 6T08%° | 989¢T°1 €7L€8°C | #168T T | LTLOT"L 98000° £YE10" 6T796° £Y€96°
(06000°) | (67900°) [(99900°) [(8T7T10°) | (T¥L20) |[(926T0") | (€TLEO" ) (6£100°) (L£100°) | (6£T00")
%TL66° | 000T8* | LSTTB" | 9878E’ 6TOYE 6 | 00968°T| 6559221 62000° yT1€00" £YE66" YI€66° |66°
GOT | 9T _ot| o oRd 0N ) (x9)T (x0)T
¢ g Ty 1ulw a (el mmmm.ﬁﬂm—wv a |t mmwm,ﬁx,;.Nc.Hcvmw erusCuToy s | (Py|s0) al(Mu|so) alxa
z z
*Q0SE = UnI yoese ur sijuswixadxs Jo °"ON
(€ =) Nm pue Hm s9TIn1 103 s3Tnsea Juridues OR

T°v'¢ 219e]




90

*(s93eWilsd Burpuodsaiiod BY3 IOPUN SIVOBIG PUNOX UT UDATS 9B SOIBWIISS 2YJ JO SI0IID wumwQWMw a4L)

¢'htE ®IqeL

(9£000°) {(5£100°) | (08T00") | (Z80T0") (12£00°) |(8€900°) (61200°) (1v£00°) (17L00°) | (I%L00°)|&¢L
00866° 98010° ERTI0" EveTLE 9£99L°¢C 00%88°¢ LARNA YA 00000 00010°~ 000%L" ooowL”
(€6T00°) |(€€£00°) | (6£L00°) [{SEWTO") (T%6T0°) {(16£10°)| (Z8Z%10°) (28%00") (54%00°) | (Z8%00°)|06°
98986° VAR T VAYATA 98961°¢ €6%50°6 | 62CIT ¢ ¥.L918°¢ €6200° L50T0° EVET6” LS0T6°
{08T00") [(£%800°) | (¥¥800°) | (LEEZO") (£09¢0°) {(5€020°) (99220°) (s¥€00°) (£€€00°) | (5¥€00°)|S6°
£5886° TLL9%° 00%Ly: Evese” T LL%TS°9 LS8TL°CT) 00S%0°8 98¢00° £6900° £7666° 15966°
($6000°) |(00£00°) | (86900°) [(¥9910") (69£20°) |(0Y120*) | (£95€0° ) (6€100") (£27100°) | (6£100°)|66°
98966 ° 0008 TLT8L L6208 €76L0°0T| 9801%°'C 629G62°€1 ST100° %#TE00° 6C4%66° 71€66°
()T | _(x9)T o3 oW oWa o (x9)T (x0)T
by 3 T 1ufn g |Cao bl Culn a|Celo #lorutaTnls orulututs |(Cajso) a|(Tafso) afsa
- C 4
00SE = uni Yows Ul sjuLWIIadXa JO °ON
(7 =) Nm pue ﬂm seTni1 103 sipnsaa Jurrdues IR



- (5938WIISY Gurpuodsaiiod 9yl I1opun s390E

1q punox ufl uUSATS 9B SOIBWTISD VY] JO $10113 PIBPUEIS 2ulL)

91

(62000°) {(00000°) (00000°) [(9%700°) (52000° ) |(1T€00°) | (£5000° ) (0£800°) (0£800°)| (0£800°)
1.666° | 00000° | 00000° | €76%6°% TZ09L°T | 00%L6° %] 9E¥9L’T 62900" - TLE6G° TLE6S°
(z7100°) |(9%200°) |(8%200°) (LE8TO") (%$900° ) |(76210°) | (19%00° ) (€7L00°) (Z7L00°) | (€TL007)
98766° TLT20° 00¢20’ TLEETTY 6TLRC°€ | TLS8S 7| TSTLE'E 98800° TL66L° 9886<L°
(05200°) |{(05£00°) {(85£00°) (¥0820°) (s6120° ) |(08220°) | (S8LT0" ) (54%00°) (£9%00°) | (SL%00°)
TLLL6° £Ev69¢C° LS8LT” 98%92°1 8CL9Y°G | 000K% €| TGEQE’S eveT1o” 67816" RN
(98100°) |(8€800°) |(6£800°) (06920°) (21420 ) |(68€20") | (S¥%T0" ) (1€£00°) (L1£00°) | (TE€€007)
TLL86° IGEY” TLTYY” LSRLST 819869 | 6CYY1"L £VE6S°8 00010° £7£96° 00096°
(66000°) [(L£L00") |(SEL00") (0zZ610") (29820 ) |(T7ve0") | (6£9€0° ) (85700°) (8%100°) | (8ST00°)
£5966° 98%Y9L” 989%L" 98%¢9" 81€96°0T | T/€08°C | OTTI8'ET %T100° 6T766° %1166°

GO | (x0T 4| o OWd o ‘ (x) T (x)T
¢ ¢q Ty AHMrHv q Hm_zv mmmm,ﬁam~wv q Aﬂm_zv mwmm GreylusTuyls Axﬁz.mc.ﬂmvau Amm_mov d Aam_mov d
4 4

(s

00GE = Unx (oes ur sjuewriedxd jJo °‘ON

%) y pue 1

€% 9TqelL

Y soinia xo3j siynsax guridwes DN




92

*(s9iewrls® Jurpuods®aiod 9yl AVPUN SIVWOBIAG PUNOI UL ULATSE dae

S93BWIISD 9UJ JO SI0IID PIEPUBRIS BYL)

(0v000°) {(62000°) | (62000°)|(66800°) ] (££000° )[(59500°) 1 (6%000° ) (24800°) (z%800°) | (2%800°) |6%*
£7666° | 620007 | 62000° | %1198°6 766SL°T | ¥IGZ6'6 €969.° 1 00000" 67800° 6285% " 6286%°
(0€£Z00°) [(TZT00°) | (L2100 )| (T92c0°)| (¥6S00" ) |(T11920°) | (SL%00" ) (£2800°) (Tz800°) | (€2800°) 109°
vI186° | %#IS00° | TLS00° | 988%1°8 80€86°C | TLL59°8 0.5L0°€ TLT00" cETo” 71519° £vET9”
(66€00°) [(€4%00") | (56%00°) | (€€TH0") (Lw910° )| (TL8€0°) (90610° ) (99900°) (£€900°) | (99900°) |6L°
980%6° | TL580° | £S%60° | 000C9°Y% 72992°% | ¥1L9L°6 €SCTL Y 60820" LL0S0° 98828" L1008
(8€£00°) |(8%£00°) | (85£L00°) | (1€8E0°) (29%20" )| (8SL£0°) (s1%20° ) (1$%00°) (90%00°) | (I5%00°) [06"
628S6° | TLL9T° | €w6LT" | €%6LL°T S6£6£°9 | LSOE9'Y vE8s L TL6T0° 98220° 1S8E6° 98776"
(0%200°) {(SZ800°) | (£Lz800") | (LT9€0") (€6L20° )| (€9L£0°) (L6820 ) (1%£00°) (50€00°) | (T%€00°) |S6°
€h6L6° | LSO6E" | 6786E° | LSTHTI'T TELY6°L | 62225°% ¥86LL'6 98800 ° €%7100" 62996° EvL56”
(%T100°) |(ST800°) | (¥T1800°) | (9€820") (9€820° )| (LTLE0") | (9TL£0° ) (99100°) (8%100°) | (997100°) |66°
LSY66° | 6TCE9° | LSwE9" | 0080T'T 6618S°TT| 6206%'Y £9€96° %1 00200° 62000° 62266° 62066°
— - oWH OWE oY (xo) (x9)T
Au\.@vn A%@VJ oY T T 4 ¢ «N a.H Z § uN uH T Z H
£, Zq T, Aﬁmwav 3 Aﬂm~zv mm«@ a1 2| (e[ mmwm.Ax yetuttuytaOopfyctuc tu) "3 (e s0) a|( y|so) d|=d
13
A
006¢ = unli yoea UT sjuswWriadxs JO °Of
(0T = %) Nm pue "y €2Tna1 103J s3[ns21 guitdwes R

°%°¢ d1qel




93

(85£00°)] €15900°)| (50200°) |(Le%80°) | (6%L20°) |(L9%80°)| (85L20° ) (89800°) (T2L00°) | (89800°)| SL”
05298° | 0SE£60° | 00TTIT" | 0STT9°S 8YTL0°G | 0S6SZ°L] 4TS09°¢ 00£90° 00590° 00288° 00618°
(62500°)] (5£800°)| (26800°) {(61580°) | (8SEE0*) |(TTL80°)| (BEHEQ" ) (52900°) (08%00°) | (52900°)| 06"
0S0%6° | 0SBST" | 0S86T° | 056%9°Y 88LYT L | 0S928°L| 6Z00S°8 00L£0° 0S%10° 05156° 05Y16°
(69£00°) (£8600°) (¥6600°) |(Z£€80°) | (6£9€0°) [(€Z680°)| (S€6E0° ) (65%00°) (65€00°) | (65%00°)} ¢6°
00ZL6° | 00597 | OSTLZ* | 05TT6°¢€ £6678°8 | 00891°8| 61Z0L°01 06410 00900" 0$€L6° 00956
($9100°)| (BITTO")| (BTTT0") [(18590°) | (TZSE0") [(L6060°)| (L98%0° ) (82200°) (66100°) | (82200°)] 66°
05%66° | 00L6%° | 0000S° | 00%LT°T 6SSLY TT| 0SLLY°8] 96L¥8°ST 06200° 05000° - 00266°* 05686 °
(x9)T (x9)T o3 ORd OWE 0% (x9)7 (x9)T
by ¢y Ty Aﬁmymv 1|t mmwm.AHm_mv al sl orufuTw®s ey Cutmy ta | (“ufso) af(Tu|so) d xa
Z z
0007 = uni yoes ur sjuswiaadxs JO °ON
(62 = ) Nm pue Hm s9TN1 103J s3Tnsax Juridues N

S'%°E ITqel




94

estimated overprotection el(nl,nz,h,k) as a function of P* for dif-
ferent values of k. TFor a fixed k, we notice that el(nl,nz,h,k) goes
to 0 for very high and low values of P* and achieves a maximum at a
certain intermediate value of P*., Since P* + el(nl,nz,h,k) < 1 and
e.(n,,n ,h,k) > 0 it is clear that ¢, (n,,n,,h,k) - 0 as P* -~ 1. The
1717 - 1iv71°72
explanation for the observed behavior of el(nl,nz,h,k) over the lower
range of P* is as follows: Since for givem k and P*, we choose

(nl,nz,h) from the optimal solution for the conservative rule ﬁi, and

since ¢ (and hence h) increases as P* decreases, rule Rl operates as if

it is a single-stage rule R, with (nl + n2) as the common sample size

4]
per population. Hence PEKS*)(CSIRI) approaches Pgﬁﬁ*)(CS]RO) and also

2.h.s. of (3.4.3) approaches P (CS]RO). Thus eventually €l(nl,n2,h)

u(6*)
starts decreasing and approaches zero as P* is decreased. TFor fixed P#

the behavior of El(n h,k) w.r.t. k is not very clear for small

1’72’
values of k and extreme values of P*. But for k = 10 and 25, the
overprotection appears to be substantially higher at intermediate P*
values. It is expected that for fixed P* the overprotection would in-
crease with k. For few extreme values of P* we observed 'megative"
overprotection. However these results are not significantly negative
and may be ascribed to the statistical error of simulation. In

Figure 3.4.2 we have also plotted estimated Ez(nl,nz,h,k) as a function
of P% for different values of k. The behavior of ez(nl,nz,h,k) with
respect to P* and k is quite similar to the behavior of El(ni’nZ’h’k)
and for similar reasons. The estimated total expected sample sizes in

the EMC compare well with the ones computed numerically and given in

Table 3.2.1. For fixed k, the variation in gl,gz and 33, w.r.t. P*®
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~

can be explained on the basis of variation in ¢ w.r.t. P*.

In closing, we note that the overprotection el(nl,nz,h,k) depends
crucially on the (nl,nz,h)—values under consideration. Thus although
the overprotection afforded by rule Rl using the optimum values for
rule % goes to zero in the lower range of P*-values, this does not

1

imply that rule ﬁi performs as well as rule Rl.

~ ~

In fact, potentially
large gains in terms of relative efficiency are possible in the lower
range of P*-values if we use the exact rule Rl. More research needs
to be conducted in this direction, although for high P*-values, which
a practitioner uses as a matter of habit, our present lower bound is
found to be satisfactory.

The MC studies also indicate the superiority of rule R2 over Rl'

However, it should be pointed out that since the increase of additional

PCS achieved by rule R, over rule Rl’ namely ez(nl,nz,h,k),depends on

2
the (nl,nz,h)—values selected; the MC results do not give a true indi-

cation of the extent of potential gain in terms of relative efficiency,

that is possible‘if we use rule R2.

§3.5 Some further extensions of come-back type rules:

We consider the same setup as described in §1.1. The possibility
of sampling from a single population in the second stage is ruled out
in the most elementary come-back type rule RZ' Although, it appears
reasonable that if the largest first stage sample mean is sufficiently
bigger than all the others then we should stop sampling, a single "yard-
stick" of h may not be sufficient. For example, if the largest first
stage sample mean is only 'moderately" larger than the remaining first

stage sample means, then we may want to perform more sampling on the
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population associated with that mean before we make our final selec~

tion. The following rule R, responds to such contingencies.

3

We now propose our rule R3.

§3.5.1. Rule R, and its properties:

3

Rule R Let non—-negative integers n,,n and non-negative real con-

3:

stants hl >h

2

2 be specified prior to the start of experimentation. The

following are the steps in rule R, specified by (nl,nz,h ,h,) which

3 1’2

are chosen to guarantee (1.1.1).

1. In the first stage, from each Hi take n, independent observations

1
(1) . (1) _ L (D) .
Xij (1 <j E.nl) and compute X ;;% Xij /n1 (1 <1i<k). Let
qg(l) <'§(1) < eee < ﬂi(l) be the corresponding ordered values.

(1] =721 — = [kl

=(1) _ =) , .
2. If X[k] X[k~l] > hl’ stop sampling at the first stage, and assert
% (1)

that the population associated with X[k] is best.

3. 1If notschoose a subset I of {1,2,...,k} where

(3.5.1) I= {iliél) ififi% - by}

(Note I may consist of a single population.)

4. Proceed to the second stage and take n, additional independent ob-

2

servations X§§) (1 <] E.nz) from each Hi for ieI. Compute the

n n;
. T 1 (1) {23 -
cumulative sample means Xi (;Ll Xij + ;;1 Xij )/(n1 + nz) for del



97

and assert that the population associated with max{gi,iel;'igl),iel}
is best.

Note for k = 2, rule RS is the same as rule Rl (and R2) iff hl = hz.
The analysis of rule R3 is quite involved and tedious. We present here
the results concerning the PCS and the expected total sample size of R3

for k = 2. For reasons of conciseness, we omit the proofs of the

following results.

Theorem 3.5.1: For k = 2 and for any ueQ

A (6-h,)
2
(3.5.2) B, (C5[Ry) = ola  (5-hp)] + v/‘ b= Ayx + A8)d8(x) +
a, (6-h))
Al(6+h2) Al(6+hl)
o (-~ A4X + ASS)dQ(X) + v/ﬁ o (- A2X + A35)d¢(x),
A, (6-h,) a, (8+n,)
1/2 on. TL/2 1/2
_1h1/e (L _1™ _ [P
where A) = 53070 Ay = (1—p> > A3 7 c[l_PZ} > By T (1—p> ’

[ M2
A5 ='E{§ETI:E§] and § = U[Z] - u[l]. The other notation is as defined

in Theorem 2.2.1.

Theorem 3.5.2: For k = 2, Pu(CS‘RB) is non—-decreasing in § for § > O

and hence § = &% is a LFC for rule R3.

Theorem 3.5.3: (i) For k = 2 and for any pefl

(3.5.3) EEFN]R3) = 20, + n,{0[A; (8 + h))] + o[A (8 + h)] -
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@[Al(s - hl)] - @[Al(s - hz)]}.

(ii) EU(NiRS) is non-increasing in § for 6 > 0. Hence

sup EgﬁNIR3) - EEFN|R3)i6=O and sup EU(N1R3) = EEFNIR3)‘6=6* .

Q Q{8*%) =
We may define a U-minimax rule §3 analogous to ﬁl and also the
relative efficiency of RO W.T.t, §3' Since ﬁl is a special case of R3
when hl = h2 we have the following set of inequalities for k = 2.

* k: R % L. R * P%_ k: R
(3.5.4) 1 Z_REEMC(P sk Rl) z_REEMC(P sk R3) z'REE‘S ,P% ks R3)

for all uef and §* > O,

We do not plan a detailed study of rule R, at this point. In the

3
following section we shall mske some comments about a two-stage rule

of a very general nature which one may eventually want to analyze.

§3.5.2 Concluding remarks:

In the elimination type two-stage rules, whether of a permanent
elimination nature {(like rule Rl) or of a come-back nature (like rules
R2 and R3}, we assign a probability of zero or one to each population
for it to be retained in the second stage. In general, one may assign
probability Py that the population Hi (1 <1 < k) is retained in the
second stage (n2 is still non-random); pi's will be some functions of
the first stage sample means. Possibly 1 may be made to depend only

on the difference between the largest first stage sample mean and

(1) . _ (1) _ (1) .
Xi » l.eey by pi(X[k] Xi Y. One such rule has been mentioned by
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Bessler [1960]. 1In the special case of rule R1 we have
oo () ()
1 if X[k] Xi < h.

(3.5.5) p, =
e 7 _ 7@
£ - .
0 i X[k] Xi > h
A basic difficulty in analyzing any such rule will be to identify
the LFC of the exact rule. For this and the computational reasons,
the task of computing an optimum rule of the above general nature may
turn out to be a formidable one. However even the development of a
"reasonable" rule of the above type, which guarantees the probability
requirement, will be a significant contribution to the field of

ranking and selection procedures.






CHAPTER 4

OPTIMALITY OF RULE %1 IN A CLASS OF

TWO-STAGE PERMANENT ELIMINATION TYPE RULES

§4.0 Introduction:

In the present chapter we investigate the nature of U-minimax two-
stage permanent elimination type rules for selecting the largest mean
from k normal populations when the common variance is known. Our
main conclusion is that,in a restricted class of rules as described in

~

§2.1.1, our natural selection rule Rl is U-minimax for k = 2. Although
we were not able to draw any concrete conclusions for k > 2 due to the
analytical complexities of the problem, our calculations indicate that
the rule ﬁl is not U-minimax in the class of rules under study for

k > 2. Our analysis also throws some light on the nature of U-minimax
rules viz. how the populations to be retained in the second stage are
selected by the U-minimax rule. A brief review of the contents of the
present chapter feollows.

In §4.1 we describe a very general set up inclﬁding the underlying
loss function for a k-decision identification problem. The design crif
terion is to minimize the expected total number of observations at some
parameter point other than the parameter points specified by the k
identification hypotheses, subject to guaranteeing a specified pro-
bability of making a correct decision. By imposing certain natural sym~

metry restrictions, we show in 84.2 that such rules are Bayes rules

against a symmetric prior (defined in 84.2). We also give sufficient

100



101

conditions under which the Bayes rule solves the underlying ranking
problem and is U-minimax i.e. minimizes the maximum iover the parameter
space) of the total expected sample size among all the symmetric rules
which guarantee the specified probability requirement for the ranking
problem.

In §4.3 we apply this theory to the normai means problem of §2.1.4
and characterize the Bayes two-stage rules for the identification pro-
blem. 1In 84.4 we consider the special case k = 2 and show that the
Bayes rule solves the ranking problem and is U~minimax in the class
of rules under consideration. Further, it has the same structure as
rule R, and therefore rule ﬁl is U-minimax for k = 2 being the Bayes

1

rule.

§4.1 Preliminaries:

§4.1.1 Assumptions and notation:

Let Hl,H .,Hk be k > 2 populations with probability densities

PIRR

g(x,ei,g) w.r.t. some o-finite measure vy. In the above eie@

(1 <1 < k) is the parameter of interest and Y 1is a vector of
nuisance parameters which we shall ignore in the sequel. Let the
parameter space { be the collection of all parameter vectors

b= (61,82,...,8k)t. We assume that the following symmetry condition

is satisfied by the joint density function.

t
X = X X o s qX
Let x; = (%;15% 050005 ini)

g(Xl,...,Xk; el,...,ek) be the joint density function of the corre-
k
sponding :E:ni dimensional random variable (gi,...,gk). Then

i=1

for 1 < i < k and let
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(4.1.1) (X seeenX, 5 0500038, ) = (X 5e0esX 3 0 40..,0 )
1 k 1 k Tl Ty Tl Tk

for every permutation t: (1,2,...,k) > (r .,Tk) and for every

1’2

possible vector (Xl"'°’xk)'

§4.1.2 An identification problem:

Let o, (0 <i<k) be k completely specified states of nature.
In particular, let Wysee sl be k slippage configurations with
w, = (8,...,8,...,6),6 # 6 (L < i< k) where 8 is in the ith place.
Let W be some other parameter configuration. We assume that no two
g(xl,...,xk;vgi) and g(xl,...,xk; Qj) are identical a.e. Vv for
0<i#j<k.

We assume that there are exactly k possible terminal decisions
dl’d2’°"’dk one of which must be made. Here the decision di corre-
sponds to deciding that w; is the true state of nature (1 < i < k).

We consider a general class of randomized decision rules with a sym—

metry restriction as follows.

Definition 4.1.1: A symmetric decision rule is a decision rule which

is invariant w.r.t. the group operations of permutations
T (1,2,...,k) = (Tl,Tz,.-.,Tk). That is, if at any stage of experi-
mentation,after having observed (Xl""’xk) it assigns probability

P(n 0 )(Xl""’xk) to taking the vector of observations
100y

l,nz,...,nk)t in the next stage where ni is the number of ob-

servations from Hi (1 <i < k), then

o= (n
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(4.1.2a) Pml“.”%gﬁﬁ,”.mk)=Pﬁ% - )@T,.“Q% Y.

Further if it assigns probability Pi(xl,...,xk) to taking the terminal

decision di (1 < i < k) then

(4.1.2b) P.(X,3:005% ) =P (X ,...,8 )
il k Ty T

for all permutations t: (1,2,...,k) - (Tl,TZ,...,Tk).

1 < P* < 1, be specified. Let T''(P*) denote the class

Let P*, k
of all symmetric rules vy which terminate with probability 1 and which

satisfy

it

(4.1.3) P (v makes decision d,) = P_ (diiy) > P%x for i =1,...,k.

Ly ~i

Our objective is to choose y*el' (P*) such that

(4.1.4) E (N|y*) = inf E_ (N|y)
%o yel'' (P%) o

where Ew (le) is the expected value under @5 of the total random num-
@y .

ber of observations required by rule <vy. Such a yv* will be re-

garded as "optimum".

§4.1.3 The underlying loss function:

Loss due to a terminal decision is given by
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(4.1.5) L(w,,d.) =

Thus if the true state of nature is Wy it does not matter which ter-
minal decision is made. In addition, C{(N), the cost of sampling N ob-

servations is given by

N if Q=90
(4.1.6) C(N) =

0 otherwise

This results in the following risk function r(8,Y).

1- Pm‘(dily) for 6
-1

Qi(liiik)

(4.1.7)  r(8,) =

h
o]
[a
<D
L

E, (1)

Wy o
W, Lo

For a similar loss function see, e.g., Weiss [1964].

We characterize the optimum rules in the next section.

§4.2 Characterization of optimum rules:

§4.2.1 U-minimax rules for the identification problem

We first state a few basic definitions and lemmas before con-

sidering the main result of this section which is given in Theorem 4.2.1.

Definition 4.2.1: A decision rule YO is said to be a Bayes rule

against a prior B(8) if it minimizes the integrated risk
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R(B,Y) =}{ r(8,y)dB(8) in the class of all decision rules.
Q

We shall need only finite priors (i.e:/’dB(Q) < w) which may be
Q

taken as probability measures on . Here we are concerned only with
a finite subset of the parameter space namely (90’91""’9k)' Let

.,bk) be the prior on (QO,Q_,...,w ) with biz_ 0 and

B = (bo,bl,.. 1
k
E b, =1
i
i=1

Definition 4.2.2: We call B = (bO,bl,...,bk) a symmetric prior if

= - e ® e o= — 1 —l £ — —
bl = b2 = bk b with 0 <b <k = and bO 1 - kb. We shall de

note this prior simply by b.

Lemma 4.2.1: For every symmetric decision rule y for the loss and
the sampling cost functions given by (4.1.5) and (4.1.6), the risk
function r(8,y) is invariant w.r.t. the group operations of permuta-

tions T: (1,2,...,k) = (Tl,rz,...,rk).

Proof: Follows from the invariance of the loss function, the joint

density function, and the decision rule.

Lemma 4.2.2: Every symmetric Bayes rule for the loss and the sampling
cost functions given by (4.1.5) and (4.1.6), is Bayes against a sym-

metric prior.
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Proof: The proof is similar to the proof of Theorem 3.1 of Karlin
and Traux [1960] and is omitted.

Now we state the main theorem of this section.

Theorem 4.2.1: (i) TFor a given P*e(k—l,l) every symmetric optimum

. . . X -1, . s
procedure is Bayes against a symmetric prior for some be(0,k ") i.e. it

minimizes the expression,

k
(4.2.1) R(b,y) = (1-kb)E (N|y) + b {1-7 (a.|n.

(ii) Conversely if any v* minimizes R(b,y) for some be(O,k-l), then

Y* is a symmetric optimum procedure for some P*e(kﬁl,l).

Proof: (i) Let ai(Y) =1 - Pw (dily) for 1 < i < k. Consider a
—i
(k + 1)~dimensional risk set A = { (o, (Y),...5a, (y); E (le))lyef'}
1 k _(,90

where T' = the collection of all symmetric decision rules (not just
I''(P*)). Clearly A is convex. For symmetric rules we have
ul(y) = ees o= ak(y). Hence we need only consider

is
1

A, = {(o,(y); E (le))!ygf'}, the projection of A. Note that A
1 1 W
__O
also convex.
The rest of the proof of part (i) of the theorem is similar to the

proof of Lemma 4.1 of Kiefer and Weiss [1957] and the reader is re-

ferred to that paper for the completion of the proof.

(ii) Let Y* be a Bayes procedure against a symmetric prior be(O,k—l)
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and let al(y*) = g% = 1 - P%, Then
R(b,v*) < R(b,y) V¥ yel'

<==> (1-kb)E (N|y*) + kbal(y*) < (1-kb)E (N|y) + kba.,(y) Vyel'

9y
<==> E (]y*) - B (N|y) < (o, (y) - o%) Vyel'
w w — 1-kb 1

2o %9

| A

0 Vyel'(P*).

Theretore y* is optimum for some P*e(k—l,l). This completes the proof.
It should be noted that the above theorem does not give us a

functional relationship between P* and b. Thus we do not have a

mechanism for constructing an optimal procedure for any given P*. The

above is simply a characterization theorem. Note that b increases

with P* and b - k T as P% » 1.

§4.2.2 The underlying ranking problem and the corresponding U-minimax

rules:
Suppose QI,QZ,...,Qk are k symmetric disjoint non-empty subsets
of @ where (61,82,...,6k)€Qi == (erl,eTz,...,GTk)eQTi for 1 <i <k

and for all permutations t: (1,2,...,k) > (rl,rz,...,rk) and for all
k

fe. Let QO =Q - U Qi be a non-empty subset of Q. Then a typical

i=1

ranking problem can be reformulated as follows:
There are exactly k terminal decisions Dl’DZ"'°’Dk where the

decision Di corresponds to deciding that E?Qi' The probability re-
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quirement is
(4.2.2) Pgwﬁy)iP*ngi(liiik)

where P* (k‘l,l) is preassigned. Note that QO is the usual indif-
k

ference zone and U Qi is the usual preference zone.
i=1

Let T'(P*) be the class of all symmetric rules which terminate with
probability 1 and which satisfy (4.2.2). Let gieQi (0 < i < k) be de-
fined in §4.1.2 and let I''(P%*) be the class of symmetric rules which
satisfy (4.1.3). Then the following theorem gives the sufficient con-—
ditions for a Bayes rule (against a certain symmetric prior b) to be U
minimax, first in the class of rules T''(P*) and then in a smaller class

of rules T(P%*).

Theorem 4.2.2: (i) Let y* be a Bayes rule against a symmetric prior

-1
*) = * = - * i
be(0,k ) on (w:,gi,...,w]). Let al(y ) =a 1-P*% (1 <i<Kk).

Suppose
(4.2.3a) E, (N]y*) = sup Ee(Niy*).
-0 6efl —
Then,
(4.2.3b) E (N|Y*) = inf sup Ee(N]y).
20 vel'' (P*) 6efd —

(ii) Further suppose that Wy (1 < i < k) are LF-configurations for y*
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in the sense that

(4.2.4a) Pw.(Dify*) = inf Pe(Di[y*) for 1 <1 < k.
—i gel, —
- 1
Then,
(4.2.4b) E (N|y*) = inf sup Ee(le).
29 Yel' (P*) BeQ —

Proof: (i) The idea of the following proof is taken from Weiss [1962].

Suppose Ew (le*) = gup Ee(le*) but there exists some yel' (P*)

=0 6eft —
such that
sup Ee(ny) < sup Ee(NIy*).
et — fell =
==> E (N|y) < E (N]y*) = sup E (]y¥).
=0 -0 8e@d —

==> (1-kb)E (N|y) + kba,(y) < (1~kb)E (N|y*) + kba. (y¥).
W 1 w 1
-0 ~0
==> y* is not a Bayes rule against the prior b which is a
contradiction. In the above we have used the fact that al(y) <

al(y*) = a*, This completes the proof.
(ii) The proof of part (ii) is straightforward.
The import of Theorems 4.2.1 and 4.2.2 is the following. 1In

order to find a U-minimax ranking procedure, we need to know the least

favorable parameter configurations (both from the point of view of
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making a correct decision and the expected total sample size) for the
Bayes rule. Then if one constructs a Bayes rule by putting a symmetric
prior (See Definition 4.2.2) on these parameter points, it will corre—
spond to a U-minimax ranking rule for a certain P*e(k~l,l).

Clearly this does not provide us with a good recipe for the con-

struction of the desired rules. However by making use of the previous

theorems we may be able to characterize the U-minimax ranking rules in

the folléwing manner.

We first guess least favorable parameter configurations for the
Bayes rule. By assuming a certain symmetric prior on these parameter
points we construct a Bayes rule of the desired nature (viz. two-stage,
fully sequential etc.). Then we check to see if the initial guesses
regarding the least favorable configuration are correct. If not, then
the whole procedure is to be repeated with new guesses. If our initial
guesses are correct then we have a U-minimax ranking rule, although,
often it may not be implementable because we do not know the P#*-value
guaranteed by it. In any case, we shall know the structure of the
U~-minimax ranking rule.

We shall follow this method for the normal means problem of

§2.1.4 in the following two sections.

§4.3 The normal means problem:

§4.3.1 A preview:

Consider the setup described in §2.1.1, 2.1.2 and 2.1.4. We con-
sider the class of two-stage permanent elimination type rules de-

scribed in §2.1.4 with the added invariance restrictions of symmetry
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(w.r.t. permutétion of the labels of the population) and translation
invariance. Note that rule Rl satisfies both of these invariance con-
ditions. We denote this class bngﬁ We denote by Q?(S*,P*)aa subset of
% which meets the probability requirement (1.1.1).

In the present case Qi = {Eﬁﬂlui Z—“j + 8% ¥ji#i}. We shall con-

struct a two-stage Bayes rule by putting a prior probability b on

le

= (Wyseeesdy + 8%, . .,0 ) where u, + 8% is in the ith place, for
1 0 0 0 0
1 <i <k and a prior probability (1-kb) on @

UO is arbitrary but fixed and may be taken to be zero in view of the

= (UO’UO""’UO) where

translation invariant nature of the rule. In other words, our initial

guesses regarding the least favorable configuratiens are slippage con-—

figurations for the probability of making a correct decision and equal

means configuration for the expected total sample size.

After the construction of the Bayes rule we shall check to de-
termine whether or not the conditions of Theorem 4.2.1 are satisfied.
If they are, then we shall have succeeded in characterizing the U-mini-
max rules in the class%?. In the following we have been able to do
this for k = 2; for k > 2 we have been able to-obtain only a partial

characterization of the Bayes rule.

§4.3.2 Reduction by translation invariance:

Let oy and n, be the first and the second stage sample sizes per
population respectively and let n = n, + n,. By the usual backward
induction method ny and n, for the Bayes rule will be determined at
the end so as to minimize the integrated (w.r.t. the prior chosen)

risk. If we restrict attention to translation invariant symmetric rules

then the terminal decision after the second stage must be a function
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of the maximal invariant sufficient statistic (ii -X, X —Xi 5o as
1 t 2 t

viit_IQQit) where 1 = (il,iz,...,it) = the set of populations that

entered the second stage (2 < t < k). Similarly sampling/terminal

decision after the first stage must be a function of the maximal in-

variant sufficient statistic (X(l) Xél) Xéi) iﬁl)),a conse~

quence of Theorems 1 and 3, p. 216 and 220 of Lehmann [1959].

Let Ygl)

='§§l) - iﬁl) for 1 < i <k - 1. Then the joint density
of (Y(l) (1)) under different Qi s is given by (for the deriva-

tion see p. 304 of Fergusson [1967])

_ k-1
(4.3.1) ey s w) = K20 my P«
K
n1 W2 —m? W _ 5w 5% (k-1) .
exp -———Z‘Eyj - ky - 28%(y4 ) F (1 <1<k
k1
(4.3.2) g(y(l), ,yéli; 9_0> = k_l/z(Zmz/n ) 2 &
n k 2
1 ¢D) (L
exp - y.
202{;;;; J }
where
K
(4.3.3) 7 - %Zyj(l) and yl((l) = 0.

Similarly let Yj =‘§i —.ii for 1 < j <t - 1. Then
j t
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.t §
, -1/2,, 2 7
(4.3.4) "'('71""’7:1*1' {g),ly) =t (2n5"/n) ”
. )
— — * — y
exp {- E;§~ E y?—tyz—Zd*(y ~-y) + Q__éE_ll for ijel (1 <2<t
207 1%
| i=1
and
el
-1/2 2 2
(4.3.5) g(yl,...,yt_l; go) =t / (2ro“/n) x
t
n 2 -
exp { = —3 E y., - ty
20° | 4 J
i=1
where
t
(4.3.6) =31 y. and y, = O.
t j t
j=1

Having reduced the problem by translation invariance, we proceed to

construct the Bayes rule by the backward induction method.

§4.3.3 Construction of the Bayes rule:

Terminal decision rule after the second stage:

Suppose using the Bayes rule, the set I =(il,iz,...,it) (2 <t <k)
entered the second stage. In order to compute the terminal decision, we

renormalize the priors such that
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t N _____b__‘______ T _
(4.3.7) by = ooy el by = 0Vi¢I, b

' _1-kb
0 1-(k~t)b

We take the decision Di if iel and

1 1]
(4.3.8) big(yi seees¥y 3 w;) > bjg(yi

weeosy. 3 w.) Yi# i, jel.
1 t i 7d

1 t

<==> y, >y, Vi#i, jel.

<==>  x, > ;j Vi#i, jel.
Thus the Bayes rule chooses the population i as "best' (takes de-
cision Di) if it enters the second stage and produces the highest over-

all sample mean among all the populations that entered the second stage.

Sampling/terminal decision rule after the first stage:

7
Let the decision dI correspond to selecting the subset

Ic{1,2,...,k} to be retained for sampling in the second stage. The

)
Bayes rule selects that decision dI which has the minimum conditional

1
posterior expected loss CPEL(dI) associated with it. Clearly if

I = {i} for some i, then we stop sampling and make the terminal de-

cision Di' Thus

(4.3.9)  CPEL(d;;) = bél)knl-+:E:: b§l) (1<i<k
3=1,3#1

1)

where bi = the posterior on Wy after observing the first stage out-
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come (0 < i < k). Similarly,

(4.3.10) cPEL(dp) = b1 (kny + 1]n,) +

Zbi(l) 31 - Pgi(di]gl)z +;b§1) for |I] > 2
it

iel

1

o —(1) (1) -
where éga sigma algebra generated by (Xl ,...,Xk ) and |I]
cardinality of the set I, We shall now derive the Bayes first stage
elimination rule through the following lemmas.
¥
Lemma 4.3.1: For |I| = t fixed (2 < t < k), to minimize CPEL(dI) it is

necessary and sufficient to maximize the expression

c ;{‘(1) ®
(4.3.11) E e 1 1 i @[x + c2(§§l) - }ijl)) + c3]dq>(x)
iel Zoo jel
j#i
over all sets I such that !I] = t. Here Cl = G*nl/cz,
__1/2, 1/2 o 1/2 _ _
C2 =pn “/foq ", C3 = § n, lo, p = nl/(nl + nz) and ¢ = 1 - p.

Proof: Note first that the conditional distribution of ii given égg

under w, is normal with mean = pgél) + q8* and variance = qu/n. The

conditional distribution of §5 for j # i, given'QZi under w; is nor-

—(1)

mal with mean 2 and variance = qcz/n. Now fix a set I with }Ii =t

and note that
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(4.3.12) Pﬁi(di}gi)

= = . R v
Pﬁi(x(i) > X5y Viel, 3 # il F)

= —(1) —(1) ( ) = “(1)

_ X gy Px(3)=a8%  pOeg Gt a8® Xy L

P 12t 1/2 1/2 Viel,i#i|

=i o(q/n) o(q/n) o(q/n)

o —(1) _ (1)
= [ ne [x L@ ) qﬁ*] do (x)

172 :
doo jel o(q/n)
j#i

Substituting (4.3.12) in (4.3.10) we note that since !Ii is fixed,

1
CPEL(dI) is minimized iff

v —(1) _ 7(1),
p(x;.{ - x,,J+ q*
- b j;\ g(y(l),...,yéli, i)d/[ o ¢ {x + (1) (1) ]d@(x)

iel -o jel ovq/n
J#i

is minimized,Substituting for g(y(l),...,yéli, wi) from (4.3.1) .and
cancelling the common terms (for all sets I s.t. {II = t) we find

]
that CPEL(dI) is minimized iff

—(1)

C.x,
_5_ i / i @[x +C (x(l) §1)) + CB]dqa(x)
iel o jel,j#i
is maximized over all sets 1 s.t. lIl = t. This completes the proof

of the lemma.
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Lemma 4.3.2: Suppose that if lI! = t is fixed with 1 < t < k, then

the Bayes rule chooses that set of t populations which are associated

L) (D)
with X[k]"' [k t-1] with ties (1f any) broken by randomization.

) 1
Proof: Case (i) t = 1: Here CPEL({d,.,) = b(l)kn + bgl)
{i} 0 1 i

j=1
j#

is clearly minimized by choosing i associated with max bgl), i.e.
1<j<k

the one associated with max x(l) ~§i§

1<jzk
Case (dii) t > 1: Fix a set I with [Il = t > 1. Let ael and de~
1 — 1
note I = I-{a}. Regard xil) for iel as fixed and denote

—(1)
C.x,
(4.3.13) ‘P(x(l)) ~Z 1 / 1 q» x+C (x(l) (1)) +C ]d@(x).

jel
j#i

iel

Our objective is to study how W(gél)) is maximized. In the following

we shall denote by

(4.3.14) @t(ai, ieIl; {p}) = P{Xi < ay Viel}

where (Xl,...,Xt) have a t-variate standard normal distribution with

common correlation = p. Now consider,

—(1) (1) =
V(x> C.x
(4.3.15) ““f:%iy— = Ce Ta .//. I @[x + C (x(l) (l)) + C3]d®(x) +
3x !
a
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e ‘1 /Cz E ' I @[x +C (x(l) (1)) + 03]4){:( + 02(3251)—}2;1))
Zoo el jel
j#i

C x(l)

CB]d@(x)«Z‘ cre Tt f n @[ c,(x e (1)) + 03]¢[ +

iel Zo jel
j#i

cz(Eél) - Qél)) + Cé]d@(x).

We interchange the order of summation and integration in the second

term and combine it with the last term. We also use the identity

4
[ ’ [(c2 + 1)1/2]
(4.3.16) I e(a;x+ bi)¢(cx + d)do(x) = 73 %
. (c + 1)
-0 =]
b.(c2 + 1) - a,cd —
¢ = = (1 <i<mn); s

n {(c2 + 1)(a§ + CZ + 1)1/2} - = 4

where
1 1if i =3
ij= s a (lf_i:jin)
ii . . .
if i # 3
(ai + c2 )l/z(a + cz + 1)1/2
We thus obtain from (4.3.15)
a‘”—’Z(l)) cx? T —@) _ (D
(4.3.17) —=v—— = C.e 1 @[g + C (x Y+ C ]d@(x) +
o - jel
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(=]

o Sl IR ST

iel - jel
j#i
=(D
cb[x +C (32(1)-%'(1)) + cjd@(x) - eclxl i @[x +C (55(1)—32(1)) +
2, j ' 27 k|
- jel
j#i

c3]¢[x +c, (x(l) él)) + C3]d®(x)£

ez = C ?5(1)

= Cje Lo il ' @[x + C (x(l) (l)) + C ]d@(x) +—-Z X

-—C0 ng iel

¢, (x(l) (1)) + Cy c2(§(1) + x Dz My, C, ,
¢ ® _, . ] Vel ; {1/3}
V2 /6 3

o [ eGPz e ]@ [(czggn P D) c3>
/2 t-2 3

VjeI'; {1/3}}

j#i
C1§; ) —(1)  —(1) <)
= Cl f 1 @[x -+ C2(xa - Xj ) + C3:|d<1>(x) + 7—52'
—» jel iel
—(1) | —(1) —(1)
Cz(xa +x7 - 2xj ) + C, R -1
° viel 3 {1/3}] .(2m) — x
/6 j#i

1 —(1) _ (l) 2 2 —(1) , —(1)
exp) 4[0 (x x; Y7+ C_3 2C2C3(xu + X, )]i X

1]
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exp{ﬁcl - C2C3)§§li] - exp BCI - CZC3);§1)]
—(1) =
- C eclxo‘ j 1 olx +c.a® -z 4 ¢ asx)
1 , X 2 X(X Xj 3] X

- jel

In the above we have used the fact that Cl - C2C3 = (0. Thus (4.3.11)

is nondecreasing in Eél) for every acl. Therefore given

;él),...’gél), and subject to !I[ =t > 1 fixed, (4.3.11) is maximized
by choosing the subset I to be the set of populations associated with

—=(1) —(1) . .
X[k]""’x[k—t+l]' Using Lemma 4.3.1 the proof of the lemma is now

Vcomplete.

Now let us suppose that the populations are labelled so that

Py e A Ax:
1 -2 - -k
-7z _ (D) :
(4.3.18) a; = % x; (1<1i<k)
so that 0 = a; < a, < *°" < a,. Then the following lemma tells us how

the Bayes rule chooses t, the size of the subset I.

Lemma 4.3.3: The Bayes rule chooses t, the size of the subset to
be retained for sampling in the second stage (1 < t < k), so as to

maximize a function ¥ (t) where
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e for t = 1

rt

(4.3.19) \y(t) = { i=1 -0 j:l

i

@[x + Cz(aj-ai) + CB]d<I>(x),

C

n 6*2

k
- _ _l_} : - <l—-kb> 1 (k——l)
where a = X a; and C4 b /Py X exp 5 R e

i=1 20

Proof: Using the previous lemma we have

k

7~ .
(L (1)
bO kn:L + Z bi

i=2

(4.3.20) CPEL(d;) = <Lbél)(knl + tny) +Z bV

et

j=1
j#i

for |I] =t > 2.

T
We want to choose I so that CPEL(dI) is minimized.

sult is obtained by substituting

for lII =

t

- bgl) X
: : i
i=1

f I <I>x+C(a—a)+C3]d®(x)
9

The desired re-
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(1) @,

b.og(y, s Y 75 W)
(4.3.21) S kel
i k
2 : (1) (1),
bjg(yl )"'ka_l’ _q)_j)
j=0
where b0 = 1-kb and bi =b for 1 < i < k, substituting for g from

(4.3.1) and (4.3.2), cancelling the common terms and rearranging the
resulting ones. This completes the proof of the lemma.

The previous lemma indicates that the structure of the Bayes rule
is quite complex. Therefore we could not prove that for the Bayes rule,
for k > 2, the slippage configuration is a LFC and that the maximum
of the total expected sample size occurs at the EMC. For k = 2, the
structure of the Bayes rule is simple and the corresponding proofs can

be derived easily. This is done in the next section.

§4.4 Special case k = 2:

For k = 2, we have only two possible decisions after the first

stage.

(i) Stop sampling and take decision dl or randomize between dl

Eél) = ;él). (Recall our labelling of the populations is
such that Eil) z;gél)')

and d2 if

(ii) Enter the second stage with I = {1,2}.

Let a ='§£1) _';él)' Then using Lemma 4.3.3, we stop sampling
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<==> ¥(1) > ¥(2),

C.a C.a C.a
—%~ ; Cza + 03 - ; —Cza + C3
(4.4.1) <==> e > —2C4 + e "X p\——-=/ + e % @( ) s
V2 V2
B Cla Cla
2 ] ¥ 2 H ¢
== X — - X — —
<==> 2C4 > e 3 Cza + C3) e o ( C2a C3),
1 Ci
where Ci = —= for i = 2,3.
V2

Theorem 4.4.1: TFor k = 2 and for 1/2 < P* < 1, after the first stage

the Bayes rule y#* decides to stop sampling and chooses dl if a > a%,

9
decides to continue sampling i.e. makes decision d{1 2} if a < a*, and
b

randomizes in any manner between the above two decisions if a = a*.

Here a* is the unique positive solution in a of the equation

_ Cla Cla
2

U 2 U
a + C3) - e x &(- C2

7

1
(4.4.2) e x o (- C2 a - C3) = 2C

x
Proof: First assume that a positive solution to the equation (4.4.2)
exists. We shall show that then such a solution is unique. Denote

the 2.h.s. of (4.4.2) by h(a). Then

) 3 Cla Cla
sh(a) _ 1 2 ! ! 2 ! _ !
a 5 )e x & ( C2a + C3) + e “x o Cza C3) +
Cla Cla
1 2 1 1 - 2 1 N 1
CZ e " x¢(~ C2a - C3) - e x ¢ (- Cza C3)
Cla Cla
Cl - 2 1 L] 2 ¥ 7
= —‘E~ e x & (- Cza + C3) + e xo(~ Cza - C3)
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1

1
C - 2(C

¥ 2 % 2 a ¥ 14 a % %
2 a2 +Cq) 5(C1=2C,Cq) 5(€172C,C)
+ —— e X e - e

V2

Cla Cla
Cl 2 1 % 2 1
=-5 e X & (= Cza + C3) + e “x O(~ C2

?
a - C3) + 0

_<_0and<0ifcl>0.

In the above we have used the fact
t ]

that Cl - 202C3 =

(i.e. ny > 0) and hence if a solution exists to (4.4.2) that solution

0. Thus h(a) is strictly decreasing in a if Cl > 0

is then unique.
Now we shall show that a positive solution always exists to
(4.4.2). Note lim h(a) = 0 < 2C,. Therefore a positive solution will

a-rw 4
not exist to (4.4.2) if at a = 0 we have,

(4.4.3) @(C3) - o(~ CB) < 2C4.

Since h(a) is decreasing in a, this implies that ¥(1) > ¥(2) for all
a > 0 and hence the Bayes rule y* always terminates after the first
stage. Therefore y* becomes equivalent to the single-stage rule

RO. Hence for any 6% > 0 and 1/2 < P* < 1; if v¥%, RO and ﬁl are de—

signed to guarantee the same probability requirement (1.1.1) then

(4.4.4) Eoc MY =0, =0y > EEMC<Nfﬁ1>

(We here regard nl,no as non-negative continuous variables.) But

(4.4.4) contradicts Theorem 4.2.1. Hence a positive solution always

exists to (4.4.2) for 1/2 < P* < 1 and the theorem is proved.
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Corollary 4.4.1: For k = 2, the Bayes rule Y* is U-minimax in the class

E(s*,p%),

Proof: Note y* has the same structure as rule Rl' But for k = 2, the
LF~-configuration for rule Rl is ﬁ[Z] = M1 = §% and its expected total
sample size is maximized at the EM;configuration. Hence the same is
true for Y*. ' Therefore Y* satisfies the conditions of Theorem 4.2.2 and
v* is U-minimax in the class @(5%,P*).

PN

Corollary: Rule Rl is U-minimax in the class %?(6*,?*) for k = 2,

~

Proof: Rules y* and Rl

© (i.e. U-minimax) in a wider class of rules.

is a Bayes rule for k = 2 and is hence optimal

We cannot make a similar conclusion about rule Rl for k > 2. But .
it appears from Lemma 4.3.3 that the structure of the U-minimax rule is
quite complex. Lemmas 4.3.2 and 4.3.3 also indicate that ''good" fules
(from the point of view of the U-minimax criterion) in the class &
choose the size of the subset based on the first stage outcome and do
not preassign it as in the case of certain two-stage rules proposed by
Somerville [ 1954] and Fairweather [1968]. These lemmas also indicate

that "good" rules include in the regained subset the populations .

associated with the largest first stage sample means.



CHAPTER 5

A THREE-STAGE PERMANENT ELIMINATION RULE FOR THE

NORMAL MEANS PROBLEM (COMMON UNKNOWN VARIANCE)

§5.0 Introduction:

In the present chapter we consider the problem of selecting the
largest mean from k normal populations when the common variance is
unknown. A two-stage non-screening type of rule (RSO) had been pro-
posed by Bechhofer, Dunnett and Sobel [1954] for this problem. We
propose a three-stage rule which has the desirable feature of screening.

In 55.1 we describe the problem and review the previous work
done. We propose our three-stage rule (RSl) in §5.2 and show that it
guarantees the probability requirement (5.1.1). We also derive an ex-
pression for the expected total sample size of RSl. In §5.3 we show
that a two-stage rule with the screening feature (RSZ) can also be con~
structed for this problem. We also derive an expression for the ex-
pected total sample size of RSZ' In §5.4 using MC sampling techniques,
we compare the performances of rules RSl and R82 with RSO. it is ob-
served that, even in the absence of any formal optimization, and only
with a limited heuristic choice of the design constants, RS1 performs
better than RSO in terms of the expected total sample size needed to

guarantee the same probability requirement. However rule R82 is found

to perform rather poorely in comparison to RSO.

§5.1 Preliminaries:

126
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§5.1.1 Assumptions and notation:

Let Hl,Hz,...,Hk be k > 2 normal populations with unknown means

HysHgsenesly ( -= < My < s 1 < i< k) and a common unknown variance

02(0 < 02

< w0}, Let Q denote the space of all parameter vectors
2.t
= con : < < ees <
w (ul, sHy s ) and let u[l] __u[Z] < __u[k] denote the ordered
values of the fi,. Let §,. = R ., for 1 <i, j <k. It is not
1 i3 = a1 T Mg =3z
known which population is associated with u[i] (1 < i< k). The experi-
menter's goal is to select the 'best" population where any of the popu-
lations associated with u[k]’u[k—l]""’u[k—r+l] is regarded as best if
the r largest population means are equal (1 < r < k). Any such
selection is regarded as a correct selection (CS). The experimenter

restricts consideration to only those rules R which satisfy the

probability requirement

(5.1.1) Pw(CSlR) > P* YweR(S*)

where P*¥ (1/k < P* < 1) and 6% > 0 are preassigned constants and

Q(6%) = {Qgﬂlu[k] - “[k-l} > 8%},

§5.1.2 Previous work:

Bechhofer, Dunnett and Sobel [1954] solved this problem using a
generalization of a two-stage test of Student's hypothesis due to
Stein [1945]. A brief history of the development of two-stage rules
for the case of unknown variance follows. Dantzig [1940] showed the
non-existence of a single-stage test of Student's hypothesis whose power

is independent of the variance. Stein developed a two-stage test with
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his property. Dudewicz [1971] later extended Dantzig's idea to show
that for the problem of ranking normal means,a single-stage rule, whose
PCS is independent of the variance, does not exist. Paulson [1964] has
given a truncated sequential rule for the present problem. His rule has
the desirable feature of screening at each stage. But the performance
of this rule has not been studied so far. Srivastava [1966] and
Robbins, Sobel and Starr [1968] have proposed fully sequential rules;
however, their rules are shown to satisfy the probability requirement
(5.1.1) only asymptotically as &* - 0.

A more general problem of unknown and unequal variances remained
unsolved for a long time. Recently Ofosu [1973] claimed to have solved
this problem. But Bechhofer [1974] has pointed out some crucial errors
in Ofosu's main proof and Rinott [1974] has shown that Ofosu's final
result is incorrect. Dudewicz and Dalal [1971] have provided a solu-
tion to this problem, but the performance of their rule remains to be
studied.

For the reasons discussed .in §1.1 it would be desirable to have
a screening type two-or three-stage rule. We propose in the following
section a three-stage rule which allows for elimination of the "non-
contenders' at the end of the second stage and makes the final selec~
tion only from the non-eliminated populations at the end of the third
stage. The first stage is simply used to obtain a preliminary esti-
mate of the common variance.

The question of optimality in terms of developing a U-minimax

rule analogous to rule R, is not addressed in the present work. Minimax

1

considerations would be extremely involved since the expected total
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sample size depends on the underlying variance which is unknown.

Thus an "optimal" choice of the constants to implement the rule, which
guarantees the specified probability requirement, would be a function of
the unknown common variance. In the present work, we restrict our—
selves to providing a screening-type of rule which guarantees the speci-

fied probability requirement.

§5.2 Three-stage rule RSl and its properties:

§5.2.1 Proposed rule RS

l:

The steps in rule RSl are as follows:

1. Take ng > 2 independent observations X§§) from each Hi
(1 <1<k, 1< f_nl). Compute the sample means §§1) (1 <1i<k) and

a pooled estimate of the variance
k n
2 _ 1 § : (1 _ w2
(5.2.1) Sl' oDy (Xij Xi )o.
1 = :Ei:
i=1 j=

2. Take additional N2 independent observations Xi§) from each Hi

(1<i<k, 1<J<N,) vhere N, =N, - n,

S h.o\ 2
n, + 2, [2<1l> ]+1
&%

[x] is the largest integer < x and h1 is a positive constant defined in

(5.2.2) 'ﬁé = max

£

(5.2.7) below.

3. Compute
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D 4w x®

~ N n
(5.2.3) X x® x@ L1 21 (1<1i<k
i iJ i + N — -
s T
and the second stage pooled estimate of the variance
k N
2 E:i (2) _ $(2),2
(5.2.4) S2 k(N —l) (Xij X
i=1 j=1
4. Choose a subset I of populations where
(5.2.5) 1= {1]X(2) > max X2 - Asl(z/’ﬁz)l/z}

1<i<k

and A is a positive constant defined in (5.2.7) below.

sa. If I consists of a single population then stop sampling and

assert that, that population is best.

sb., If I consists of more than one population, then take N3 additional

, . (3) . ; = N.-n. -
independent observations Xij (1=<1] ﬁ_N3) for iel where Ny = Ny-n,~N,,

_ th 2
(5.2.6) N, = max(n, + 1N, [2 (—-——) ] £ 13,
! 6*

and conditioned on NZ’ h2 is a positive constant defined in (5.2.8)

below. Compute the overall sample means §§3) for iel and assert that

the population associated with max4§(3)
el

We now show how to choose hl,h2 and X to satisfy the probablllty

is best.
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requirement (5.1.1).

§5.2.2 PCS of rule RSl:

In the following Fv p(',°,...,',{p}) denotes the cdf of a p-
variate equicorrelated central t~-distribution with v degrees of
freedom (d.f.) and the common correlation = p; for tables see

Krishniah and Armitage [1966].

Theorem 5.2.1: If hl > 0, A > are chosen to satisfy

(5.2.7) F ,k_l(hl A, .. by A {1/2h) =8

H
1 1

and conditioned on N2 = nz,h2 > 0 is chosen to satisfy

(5.2.8) F (hz,...,hz; {1/2}) = 82,

where vl = k(nl—l) and Bl, 82 are preassigned constants such that

%
P* < 81,82 < 1 and
- = *
(5.2.9) Bl + 82 1= P*,

then rule Rl guarantees the probability requirement (5.1.1).

Proof: 1In the following we denote by'§§§;

to the f2th stage from the population having the mean u[i] (L= 2,3;

, the overall sample mean up-

1 <i <k). We have
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(5.2.10) 1- Pm(CSlel) = P (Incorrect Selection[RSl)

(2) =(2) =\ 1/2
< P [ ® X(i) - )\Sl(Z/NZ) for some 1 # k] +

P [Ei; g; for somei‘r‘k]

=2-7 [g{g -X§3 - Asl(zm‘z)l/z vi # kJ
(3 L x(3)
- P [ 0 > X5) Vi #k ]
(2) _ %(2) < e
X35 - X0+ s N, \1/2 6, . 1/2
- (1) (k) ki| | _2 ki T2
“‘“%L( 5, ><2> 381<2> ”Vi#k]
73 _x(3) N N
- Xy * 8, N,\1/2 & . /N_\1/2
- (() (k) )(_«1 <_E£<__31> Vi4k
w | S2 2 —-S2 2
N,\ 1/2
< 2 PQJ%§2) i,§§'<§g> + A Vi # k]
3 ﬂ(‘&) 1/2
P_[’I‘l < ,\2 Vi # k],

for all wef(d*). 1In the above

%2 _ x(2) 5
-8 e V(T \/2
(5.2.11) Ti” - ( ar @ )(—-&> (L<i<k-1;2=2,3).

-1

N

It is straightforward to check that (T(z) T(Z)) and

(3) (3)) each have a (k-1)-variate central t—distribution with

Ty Te1

equal correlation = %‘—; the former has k(nl-—l) d.f. and the laEter has

1/2
* N
k(Nz-—l) d.f. (random) associated with it. By using hl < %(T) .
1
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5%
2 250
2

and (5.2.11) that

EB 1/2
h <—*-> from (5.2.2) and (5.2.6), we obtain from (5.2.10)

2

I A

+ 2 (@A

I A

1—P£(cs | RS,) 1

2‘—P[Tj(h2) <h i<k- 1)]

VY

’.._l
|A
H
A

<k-Dw, = nz] x P (Ny=n,).

=2 - Fvl’k_l(hl + A ..0hy + g {1/2D)

- Z F\)z’k__l(hz,-oo,hz; {1/2}) X PQ(N2=n2).
n2=
=2-8, -8, ) PO, =n)
n2=2
=2 - 81 = 82.
= 1 - P*,

Therefore Pw(CSIRSl) > P* VYweQ(6*). This proves the theorem.

The design constants for this rule are n A (and thus Bl) and 82.

120y
We shall usually choose n; to be a small number > 2. If k is large

(when our rule would be most useful because of its screening feature)

then a small value of ny should be sufficient to yield a reasonably large

number of d.f. for Si. We shall make some comments regarding the choice
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of hl’ A and 82 in §5.4. We now derive an expression for the expected

total sample size for rule R1=

§5.2.3 Expected total sample size of rule RSl:
Lemma 5.2.1: (i) The probability distribution of N2 is given by
0 for n, < 2,
(5.2.12) P (N, =n,) = |6 {a (n, + 2%} for -2
i w2 T M2 v 171 2 = &
1/2 1 1/2
Gv {al(nl + nz) } - Gv {al(nl + n, 1) }
1 1
for n, > 2,
, 2, .1/2 =
where Gv(-) is the cdf of the random variable (xv/v) > vy = k(nl - 1

1/2
= §%
and a; §%/2 hlo.

(ii) The probability distribution of N3 conditioned on N, is given by

2
G {a,(n, +n )1/2} for n, = 0
2 171 2 3
(5.2.13) P (N, =n [N =n,) ={({ G {a,(n, +n, +n )1/2}
e w3 3172 2 v, 271 2 3
1/2
-sz{az(nl + n, + n, - 1) lfor n, > 0
_ 1/2 , .
where v, = k(n2 - 1), a, = 8§%/2 hzo and h2 is obtained from (5.2.8).

Proof: The proof is straightforward and is omitted.

If N denotes the total sample size using procedure RS1 then we

have
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(5.2.14) N = kn, + sz + TN

1 3

where T = III if |1} >2and T = 0 if [I[ = 1 where I is defined by

(5.2.5). The following theorem gives an expression for the expected

total sample size.

Theorem 5.2.2: For any wefl we have,

P .

- 1/2
(5.2.15) E MRS =y +k [z +Z (3 - 6, {ay(ay +ny) 1 ] +
n2=3

k C(n

w ® /
SIS []re(ee )

n = { = - 00 3=
9 2 i=1 C(n2 1) j=1

j#i
k ' 1/2 ®
§..(n, + n.)
n o (x + —=d 1 S 2 - ku) d@(x)dG\)l(u):l X[ Z_[l -
j=1 n3=0
j#i
¢ {a,(n, +n, +n )1/2}]]
v, 21 2 3 ?
where
0 for n, = 1
(5.2.16) C(nz) =
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Proof:

(5.2.17) EQ_(NIRSl) = kn, + Z nZPE(NZ =n,) +

n2=

tnP(N = t, N, = n,)
ZZZ 3=

—2 t=2 n -l

= kn., + kAl + kA

We shall now evaluate A, and A,. Using Lemma 5.2.1 and the formula for

1 2

expectation in terms of tail probabilities we have,

_ 1/2
(5.2.18) A, = ZG\)l{al(nl + 27" + z nz[le{al(nl + nz)
n2=3
1/2
Gv {al(n +n, - 1) 1
1
=2+ [1 -6 {a,(n l/2}]
s 1
n,=
We next consider,
© k

~ " R
(5.2.19) A, = 2 _S_ tPﬁ(Nz = n,,T = t) E nBP(A(NB = n3|N
n3=l

2~ "

2’

= nz).

T =

t)



137

© k o
B ‘; \ - - 1/2
= : tPQ’(N2 n,, T t) E n3[G\)2{a2(nl + n, + n3) }
n2=2 t= n3-
1/2
- sz{az(n1 +n, +n, - 1.
0 k
= EE: :E:?Qﬁni is included in subset I, Nz = nz)
n2=2
k
- jg:?@}ni is alone included in subset I, N2 = n2)
i=1
1/2
Z [ - sz{az(“l + 0, +ny) %Y
n3=0
<(2) =1/2 ey _
z ZP (X(l) > i )\Sl/N2 Vi#i, N2 = nz)
2
k .
—=(2) _ =(2) 1/2 ‘g _
-ji: P (X( ) > X( ) + AS /N Vi#i, N2 = n2) X
i=1
2{: 1 - Gv {az(nl + n, + n3)1/2}]
n3=0 2
w k (2) 1/2 1/2
T ZP S € S € L W A ¥ R W
L | o o
n2= i=1
=(2) 1/2
A R Bl R W % 5

- Vi#i, C(n2 - 1) hipeay
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K —(2) 1/2 1/2
X - u.. ) (o + ns) §,.(n, +1n,)
< C(nz) _ E :Pw (i) [i] 1 2 + —=J 1 2
i=1 y ’
—(2) 1/2
AS X5 = up,) (g +n,) S
E 61 > (1) [z] 1 2 Viti, C(n,-1) ﬁ_'g;L < C(ny)

X E 1- G\)l{az(n1 + n, + n3)l/2}]
=0

o k_C(n,) o | k 51-(n1+n2)1/2
= 0olx +—1 + x| -
n,=2 |'T=1 C(n,-1) == l3=1 c
j#i

k (Si.(n1 + nz)ll2

1 @[x + - - Au] do(x)dG  (u) | x

. Y1

j=1

j#i

1/2
E [1- sz{az(nl +n, + n3) 1
n3=0

In the above we have used Lemma 5.2.1, the fact that N2 =n, iff

C(n2 -1 f-sl/c < C(nz) and the formula for expectation in terms of

tail probabilities. The last step is obtained by conditioning on

_ =2 1/2, _ - .
X = (X(i) u[i})(nl + nz) /o = x and Sl/c u and integrating w.r.t

the density functions of X and Sl/c. Combining (5.2.17), (5.2.18)

and (5.2.19) we obtain the desired result.

Lemma 5.2.2: 1If 02 and all the design constants of rule RSl are re-

garded as kept fixed then sup Ew(N[RSl) occurs at the EMC(u[l] =
SZ — -
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o) T T T W) end i
_ 1/2
(5.2.20) sgp EEFN{RSl) = knl + k {2 +:§:: 1 - le{al(n1 + n2) 1)+
n2=3
C(nz) i
k 3@1"1(); + Au) - @k'l(x - Au) i de(x)dG (u) | x
1

=2 C(nz—l) —o | N

1/2
E [1 - sz{az(n1 + n, + n3) 1]
n3=0

)

Proof: The result of this lemma can be proved by using the method of
proof of Theorem 2.3.1. .
We now consider the two-stage rule RS

9

§5.3 Two-stage rule RS, and its properties:

2

Our purpose in this section is simply to illustrate that the

probability requirement (5.1.1) can be guaranteed using a two-stage
screening type of rule. We do not recommend its use in practice since

its performance is found to be poor when compared to rule RSO.

§5.3.1 Proposed rule RSZ:

The steps in rule R82 are as follows:

1. First step is the same as in case of RSl.

2. Choose a subset I of populations where
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(5.3.1) 1= GZ 5 max ¥ - as @mpt? e

and A is a positive constant defined in (5.3.4) below.

3a. If I consists of less than 2 populations then stop sampling and

7(1)

assert that the population associated with max . is best.
1<j<k

3b. If I consists of atleast 2 populations then take N2 additional
independent observations iéi) (1 <3 f_NZ) for iel where Nz =‘ﬁ2 -0

and

_ (Slh>2
(5.3.2) N2 = max 2 T + 1, ny o

h < X is a positive constant defined in (5.3.3) below.

4, Compute the overall sample means iéz) for iel and assert that the

7(2)

population associated with max Xi is best.
iel

We now show how to choose h and X to satisfy the probability
requirement (5.1.1) and also give an expression for the expected total

sample size for this rule.

§5.3.2 PCS and expected total sample size of -rule RSZ:

Theorem 5.3.1: If X > h > 0 are chosen to satisfy
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(5.3.3) F ,hy {1/2})

]
™w

vl,k—l(h"" 1’
(5.3.4) Fvl,k~l(x""’X; {1/2hH = Bys
where Vl = k(nl - 1), Bl and 82 are preassigned constants such that
P¥ < B, <B, <1 and
(5.3.5) Bl + 82 - 1 = P%,

then rule R52 guarantees the probability requirement (5.1.1).

Proof: We first note that if T denotes the cardinality of set I

defined by (5.3.1) then using A > h we have,

/2

]
U]
\

(5.3.6) T = 0 <==> )‘Sl(z/nl)l

(Slh)Z _
2 55 + 1 f_nl ==> N2 = nl.

Hence in the following probability calculations we may assume that if

2
% == *
<6 > 2(Slh/5 )T o< n,

sampling is terminated after the first stage because T = 0, the termi-
nation is really due to the fact that ﬁé = ng. We now proceed to

prove the main result of this section. We follow the same notation as

in Theorem 5.2.1.

(5.3.7) 1- Pw(CS!RSZ) = Pw(Incorrect SelectioanSz)
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< PJ}ZEB < 3{'8 - )\Sl(Z/nl)l/z + 8% for some i # k,

XSl(Z/nl)l/z > 6*}+P9?§gig <.§E§g for some i # k}

1) _ (1) | 5 _
. (X(i) X(k) + ki)(f_;)l/z . <6ki 6*><i)1/2 s for
- Sl 2 S1 2

@ _ @ ,

some i # k} + P ( 1) (k) 5k4)<§z>1/2 >
W 8, 72

8. .\/N_\1/2
(_§1)<~Z> for some 1 # k

S 2

1 ,

N, 1/2
(1) . (2) _ 8% "2 .
<2- PQ{Ti <AV # k} - P@_%’I‘i < s, 2 Vn‘ki

for all we(8%).

Now we note that (T§2)""’Té§i) have

t-distribution with common correlation
N

S*
and that h 5_—~“<—i;

1/2
. Thus we obtain from (5.3.7)
Sl 2

a (k - 1) - variate central

1/2 and the d.f. = k(n1 - 1)
for £ = 1,2

(5.3.8) 1- Pm(cissz) $2-F ) g Oueeniis {1/2H
= 1

= F g (Byeenshs (1/2D)
l’

=2-8, -8,

=1 - P%,
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Therefore Pw(CSfRSZ) > P* yweQ(8*) and the theorem is proved.

We may regard n.,h and A as the design constants for rule RS

1’ 2°

As discussed earlier, ny would be chosen to be a small number but
sufficiently large to yield a reasonably large number of d.f. for Si.
We now state without proof the following result concerning the

expected total sample size for rule RS

T
Theorem 5.3.2: For any wef we have
© k anl/2 ok
(5.3.9) E (N|RS,) = kn, + E (n-n, ) “/~ it @[g +
w2 1 1 1/2
: n=n.+1 i=1 a(n-1) -0 (=1
1 s 4
j#i
O 6*)n1/2 k .. - 6*)ni/2
s + Au] -1 @{% + —2d - Au ] de(x)dG. (u)
o o v
. 1
j=1
j#i

where a = 6*/21/2hc.v Further if 62 and all the other design constants
of rule RS2 are regarded as kept fixed then sup Ew(NIRSZ) occurs at

Q —
the EMC.

Next we shall discuss the MC sampling results for the three rules

RSO, RSl and RSZ'

§5.4 Monte Carlo sampling studies:

We shall use the expected total sample sizes of rules RS RS

0’ 1
and RS2 in the EMC as measures of their performances. Whereas Ew(NlRSO)

remains unaffected by a change in the ui~configuration, we have noted,

respectively in Lemma 5.3.2 and Theorem 5.2.2 that Ew(NfRSl) and
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Ew(NiRSZ) are maximized over Q at the EMC. Thus for rules RS, and R52
the comparison with rule RS0 is carried out in the "worst' parameter
configuration. We also study Em(NIRSl) and Em(N!RSZ) in the least

£ i ; i.e. = ses = = - &%
avorable configuration (LFC) i.e u[l] u[k—l] u[k]

The expression for the expected total sample size of rule RSO is given

by

(2]

- - 1/2, _
(5.4.1) EQ_(NlRSO) = kn, + 2 (n nl)[c;\) {agn™ "} - ¢,

{a (n—l)l/z}
n=n.+1 1 1 °
1

'

where ag = 6*/21/2h00, n, = the first stage sample size, vy = k(nl—l)
and hO solves the equation

: = P%
(5.4.2) Fvl,k—l(hO"°"hO’ {1/2}) P*,

Due to the complicated nature of expressions (5.2.15), {5.3.9) and
(5.4.1), a direct analytical comparison appears to be difficult.
Therefore we conducted MC sampling studies for the three rules for
k = 4(2) 10 and P* = 0.90 and 0.95. For each (k,P*) combination we
used two values of §*. The underlying value of 02 was kept fixed
throughout to be 1. In each case, the first stage sample size n, was
chosen to be the same for all the three rules.

The choice of design constants Bl and 82 for both the rules RS1
and RS2 was limited to 81 = 82 = (1 + P*)/2 because tables for multi-
variate t-distribution with arbitrary percentage points are not yet

available. Thus we had no flexibility in the choice of design con-

stants for rule RSZ' We had some flexibility in the choice of design
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constants for rule RS1 because we could choose hl and A subject to
the restriction that (5.2.7) is satisfied with Bl = (1 +P*)/2. 1If
optimality is defined in terms of (say) minimizing sup Ew(NlR), it
should be noted that the optimal choice of design coistants is unknown
to the experimenter since he does not know 0.

For rule RSl,‘we chose h, > A (hl = 2) to 3)\) since a small

1
A-value results in a small subset size T which is a major factor in
determining the total sample size. We would recommend higher values of
hl for larger values of k, P* and 8% and vice versa although no pre-
cise recommendation can be given at this stage.

Our results for the MC sampling studies are given in Table 5.4.1.
For each run 2000 experiments were conducted. The numbers inside the
round brackets are the standard errors of the corresponding estimates.
An inspection of the results reveals that in almost all cases ELFC(N)
and E (N) associated with rule RS

EMC
all weQ) associated with rule RS

are smaller than Ew(N) (same for

1
0 Thus RSl provides a distinct im-

provement over RS It should be noted that in practice the Ui-values

0
would be spaced somewhat far apart and for such configurations sub-

stantial gains are possible by using rule RS For the same reason,

1°

although rule RS, is found to perform poorly in the LFC and the EMC con-

2

performs better than RS, when the

figurations, it is possible that RS 0

2
ui-values are not close to each other.

Table 5.4.1 also gives estimates of probabilities of correct
selection in the LFC for all the three rules. These numbers give some

idea about the overprotection in P(CS), i.e. excess over the

guaranteed P*, afforded by each rule. In all the cases, rule RSl is
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found to provide the greatest overprotection and in most cases rule

R82 provides greater overprotection than RSO.

In conclusion, rule RS1 is somewhat complicated to implement but
provides a distinct improvement over rule RS0 with a reasonable choice
of the design constants hl and A. Rule R52 is more simple to imple-
ment and in the MC sampling studies it is found in most cases to be
inferior to RSO at the LFC and the EMC. 1Its use may be recommended in

practice only when there is a reason to believe apriori that the

ui—values are spaced far apart.






CHAPTER 6

SUGGESTIONS FOR FUTURE RESEARCH

In the present chapter we mention some important unsolved problems
in the area of two-stage ranking rules and offer certain suggestions
regarding the possible directions in which the present work can be

extended.

1. The most important unsolved problem is to show that the slippage

configuration u[l] = e 8% is a LF-configuration for

T V1) T M) T
the two-stage rule Rl for k > 2. We have been able to obtain only a

partial solution to this problem in Chapter 2.

2. More efficient algorithms are needed to evaluate the complicated
multivariate integral expressions associated with the PCS of different
types of screening rules and to obtain solutions to the constrained

optimization problems associated with different design criteria.

3. As we pointed out in §3.5.2, it would be desirable to develop a

generalized come-back type two-stage rule. This rule would assign a

probability Py (0 j_pi < 1) for the population Hi to be retained in the
subset which is sampled in the second stage; Py would be some function
of the first stage means. It appears that an exact analysis of such
rules would be extremely involved. Thus the research may have to be

directed towards the development of somewhat conservative rules based

149
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on certain efficient lower bounds on the PCS of the original rules.

4. We have carried out analytical studies of the asymptotic

(P% » 1; 8%,k fixed) behavior of our two-stage rule Rl with U-minimax
and R~minimax criteria. Since the screening type rules become more
effective compared to the single-stage rule RO as k 1is increased, it
would be interesting to study the asymptotic behavior of rules ﬁl and
ﬁl as k + « with §%,P% kept fixed.

5. The extension of the work done for the normal means problem to the
problem of normal variances is immediate and clear. We have completed

this work. Instead of including it as a part of the present thesis, we

plan to issue it as a separate report.

6. In the case of the normal means problem with a common unknown
variance, it would be desirable to conduct more extensive Monte Carlo
0° RSl and R82 to determine for which (6%,P#*,k)-

values one rule is preferable to the others.

studies on rules RS

7. Finally, the philosophy of two-stage screening rules may be
applied to the selection problems associated with other distributiomns,
e.g., selecting the Bernoulli population associated with the highest

probability of success.



APPENDIX Al

DETAILS OF CONSTRUCTION OF TABLES 2.6.1, 2.6.2 and 3.2.1

First we describe the method of solution of constrained continuous
optimization problems (2.4.4), (2.4.5) and (3.1.4). The first two
problems are associated with finding the constants necessary to im-

plement our two-stage rule R, using the U-minimax and the R-minimax

1

criterion for k = 2. The third problem is associated with finding the
constants necessary to implement the conservative two-stage rule Ei
using the U-minimax criterion for k > 2. The method of solution is

the same in all the cases.

First we find a '"reasonably good" discrete optimal solution. Then
we use that solution as an initial guess in the program using a modified
version of the steepest descent method to solve the continuous non-
linear programming (NLP) problem.

To find the discrete optimal solution we fix a 6* > 0 for any
specified P* and take o = 1. Using Table I in Bechhofer [1954] we then

compute n the single-stage sample size required. We use the in-

OS

equality n = ny + n, z_no to restrict the region of search in the

(nl,nz,h) space. We choose §* small enough and n, large enough so that

0
the discrete optimal solution in the region n, + n, 3.n0 would be
fairly close to the continuous optimal solution. For each fixed

(nl,nz) we solve for h setting the corresponding PCS expressions

equal to P* and compute the associated objective function. We syste-~

matically wvary n,ny and n, so as to move rapidly in the direction of

i51
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the minimum of the objective function. Let (al’HZ’h) be the mini-

mizing solution in the case of rule R1 (with obvious modifications in

the notation in case of rule §i). We then take dl = 8*ﬁi/2,
d = *“1/2 _rn1/2 .
5 = § n, and ¢ = hnl as the initial guesses for the NLP algorithm.

If the initial guesses are fairly close to the continuous optimum

solution (E,&l,&z), then the algorithm is found to converge in less than

15 iterations for the values of the step~size and the convergence cri- -
terion chosen. The convergence criterion is fixed throughout to be

1x 10

but the step—size is changed to suit each situation depending
on the rate of convergence of the solution. Although it may be possible
to specify an even smaller convergence criterion and thereby achieve

a better minimum, the possible improvement in the value of the objec-
tive function was deemed to be minimal and the additional computing cost
involved excessively large. Thus we do not claim that our solutiomns
represent the absolute optima but they are reasonably close to the
optima.

Now we describe the details of computations. All the computa-
tions were carried out in double precision arithmetic on Cormell
University's IBM 360/65 and IBM 370/168 machines. For computing the
standard normal cdfswe used the Algorithm 304 of Hill and Joyce
[1967]. The integrals are evaluated using the Romberg method with 210 .

being the upper limit on the number of subdivisions of the interval of

integration. For k > 2, we need to evaluate the integrals of the type

© 6

k-1 k-1

o) (x + a)d®(x). We replace this by ® (x + a)de(x). The
-0 "'6

error committed thus can easily seen to be bounded above by
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o Lx + a)de(x) < 2.0253 x 1077 for all a.
| x| >6

1 and d2 are chosen to satisfy the equality for P%*, the

above error is in the conservative direction. However the objective

since ¢,d

feo]

function di + dg X “/~{@k_l(x + c) - @k”l(x - ¢)}dd(x) may be under-

estimated by the corresponding amount.
The tabulated values are rounded off in the fifth decimal place
and are correct up to the fourth decimal place. All the relevant pro-

gram listings are given in Appendix A2.






APPENDIX A2

COMPUTER PROGRAMS

The computer programs written in FORTRAN IV, are displayed in the
present section. We describe below the tasks performed by each pro-
gram, along with an explanation of the input and the output variables.
The following symbols are common to most of the programs and hence are
explained only at the outset: PSTAR = P*, K = k, DEL = §*/qg,

R2PI = 1//5;, NUMSIG, NUM = the number of significant numerical digits,
MAXIT = the number of maximum divisions of the range of integration re-
quired for the Romberg method of numerical integration, MAX = the num-
ber of maximum iterations for solving a system of nonlinear simul-
taneous equations, A = the lower limit of integration and B = the

upper limit of integration.

Program 1: This program is used to identify, for k > 2, the discrete

optimal solution (Ei,Eé,E) to the optimization problem (3.1.4) where we

restrict n, and n, to take nonnegative integer values in the design

1 2

1/2 1/2
i = *- = *

variables dl § nl /o and d2 8 n2

~ ~ A

method of obtaining (Hl’ Eé, E) by a systematic enumeration, refer to

/o. For an explanation of the

Appendix Al. The meanings of the symbols used in the program for the
input and the output variables are as follows: NI and NF = the lower
and the upper limits, respectively, of the range of (nl + nz) values
over which the search for the optimum is to be made, Pl and P2 = the

lower and the upper limits, respectively, of the range of p-values (for

154



155

each,(nl + nz)) over which the search for the optimum is to be made,
X(1) = the initial guess for the solution in ¢ of the probability re-
quirement constraint in (3.1.4) regarded as an equality, AMBDA = the
corresponding solution in ¢ of the resulting equation, EN = the value

of the corresponding objective function, N1 = n, and N2 = n In

1 2°

addition PSTAR, K and DEL are also input variables.
The corresponding programs for k = 2 to find the exact discrete
optimal solutions associated with R1 and il have not been displayed

here.

Program 2 (SUBROUTINE CSD): This subroutine solves a nonlinear pro-

gramming problem by utilizing an algorithm based on a modified steepest
descent method. This subroutine requires the user to supply a calling
program where certain constants are specified and certain subroutines
are provided. We thank Professor Bartel of the Department of Mechanical

Engineering, Cornell University for providing us with this program.

Program 3: This program calls the subroutine CSD and provides it with
the necessary input data and the subroutines necessary to solve the NLP
problem (3.1.4). The corresponding programs to solve (2.4.4) and
(2.4.5) for k = 2 have not been displayed here. The following input
data are provided: N = the number of design variables, M = the number
of inequality constraints; K = max(M,N), NK = k, PSTAR, ETA = the

step size and EX = the convergence criterion. In addition, the

initial guesses U(1l), U(2) and U(3) for the final solution values dl’

and ¢’, respectively, are also input wvariables.

4
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The program also provides the following five subroutines.
1) OBJ: Returns the value of the objective function in (3.1.4) for
given values of the design variables.

2) PHI: Returns the values of the constraints in (3.1.4) where the

i

constraints are rewritten in the form P* + 1 - .ka_l(x + dl + ¢)de(x)

2,1/2

k-1 2
fcp (x + (4] + d3)

w00

)de(x) <0, — ¢ <0, - dj< O,—d2_<_0.

3) DPHI: Returns the matrix of values of the first derivatives of the
four constraints w.r.t. the three design variables.

4) DF: Returns the vector of values of the first derivatives of the
objective function w.r.t. the three design variables.

5) WII: Supplies the inverse of the weighting matrix which we have
taken to be the igentity matrix. In some cases, we also used the

hessian matrix of the objective function as a weighting matrix.

Program 4 (REAL FUNCTION NORMAL): This program computes the value of

the standard normal cdf for a given value of the argument. This pro-

gram is based on the Algorithm 304 of Hill & Joyce [1967].

Program 5 (SUBROUTINE DEFINT): This program is a part of the Cornell

Computing Library. It computes the value of the definite integral

B

.fF(x)dx by means of Romberg method of numerical integration. A separate
A

user written subroutine YFUN is needed to evaluate the value of the

integrand F(x).

Program 6 (SUBROUTINE SYSTEM): This program is also a part of the
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Cornell Computing Library and it solves a system of N simultaneous
nonlinear equations. A separate user written subroutine AUXFCN is

needed to evaluate the values of the g.h.s. of the N equations.

Program 7: This program simulates the operations of rule R1 and RZ'

~ ~

The input data consists of PSTAR, K, DEL, ANl = d_, AN, = éé, H=Cc,
N = the total number of experiments in one simulation run and
NR(I,J) = the seed for generating the pseudo-random variable, namely

the Jth stage sample mean from the Ith population (1 < I <K, J = 1,2).

the important part of the output consists of the following quantities:
PCS1 and PCS2 = the estimates of PEﬁG*)(CS‘Rl) and PEKG*)(CisZ)’ re—

spectively, EN and EN1 = the estimates of Eﬁﬂ@*)(NlRl) and EEMC(N[Rl),

respectively and ES and ES1 = the estimates of Eu(ﬁ*)

EEMC(T[Rl), respectively. The output also contains the estimates of

(T|R,) and
1
various other quantities and the standard errors of all the estimates.

Program 8: This program simulates the operations of rules RSO and RSZ'
For additional details regarding the choice of the design constants of

the rules, refer to §5.4. The input data consists of PSTAR, X, N1 = nl,

N = the total number of experiments in one simulation run, Hl = hO/JE

where h, is defined by (5.4.2), H2 = h/V/7 where h is defined by

(5.3.3), AMDA = A/V2 where X 1is defined by (5.3.4). The important

part of the output consists of the following quantities: Pl and P2 =
the estimates of PLFC(CS!RSO) and PLFC
estimate of E&(N]RSO), EN21 and EN22 = the estimates of E

(CS|RS.), respectively, EN1 = the
1

LFC(N!RSl) and

EEMC(N'RSZ), respectively, and ES21 and ES22 = the estimates of the ex~-
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pected sizes of the subsets retained in the second stage by RS2 in the
LFC and in the EMC respectively. The output also contains the estimates

of various other quantities and the standard errors of all the estimates.

Program 9: This program simulates the operation of rule RSl. For
additional details regarding the choice of the design constants of
RSl, refer to §5.4. The input data consists of PSTAR, DEL, K, Hl =
hl//f, and AMBDA = \/Y2 where hl and ) are defined by (5.2.7); H3 =
h, where h, solves the equation @k_l(h3/5,...,h3/§; {1/2}) = B, and

N = the total number of experiments in one simulation run. The per-
centage points of the (k - 1) - variate equally correlated t-distribu~-
tion with equal correlation = 1/2 corresponding to the percentage
point 82 = (1 + P*)/2 for various values of the d.f. are also read as
input data. H3 is used as a normal approximation to this percentage
point for large number of d.f. These percentage points are used in

solving the equation (5.2.8) for H2 = hZ' The important part of the

output consists of the following quantities: P = the estimate of

(cissl), EN and EN1 = the estimates of ELFC(Nlel) and EEMC(N[Rsl),

PLFC

respectively, ES and ES1 the estimates of the expected sizes of the
subsets retained in the third stage by RSl in the LFC and in the EMC,

respectively. The output also contains the estimates of various other

quantities and the standard errors of all the estimates.

Program 10 (SUBROUTINE ANORM, SUBROUTINE RAND): ANORM generates

standard normal random variables. RAND generates random variables which

are uniformly distributed over [0,1].
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the U-minimax criterion. For k > 2, because of the difficulty in computing
the infimum of the probability of correct selection (PCS) a simple lower
bound is proposed for the PCS and a table of constants necessary for im-
plementing a conservative rule based on this lower bound is constructed
using the U-minimax criterion. The relative performance of Bechhofer's
single~-stage rule Ry with respect to the two-stage rule Ry (with a given
design criterion) is studied numerically for small sample sizes and
analytically for large sample sizes., The question of optimality of U-minimax
rule Ry in terms of minimizing the maximum of the expected total sample
size subject to a specified probability requirement in a given class of
two-stage permanent elimination type rules is investigated in detail.

Two' "comeback' type modifications of Ry which allow a population
eliminated at the end of the first stage to become eligible for final
selection at the end of the second stage, are proposed and studied.
Monte Carlo sampling techniques are used to compare the performance of
one comeback type rule with the permanent elimination type rule Rl‘

Finally, the case of common unknown variance is considered. Two
permanent elimination type rules, a three-stage rule (RS,) and a two-
stage rule (RSZ)’ are proposed and shown to guarantee a Specified
probability requirement. Using Monte Carlo sampling techniques, their
relative performances in comparison with the two-stage non-elimination
type rule (RS,) due to Bechhofer et.al. [1954] is studied. The per-
formance of R is found to be superior, whereas the performance of
RS, is found to be inferior.
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