
EFFICIENTLY EXPLORING ARCHITECTURAL

DESIGN SPACES VIA PREDICTIVE MODELING

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Engin İpek

August 2007

c© 2007 Engin İpek

ALL RIGHTS RESERVED

ABSTRACT

Computer architects rely on cycle-by-cycle simulation to evaluate the impact of de-

sign choices and to understand tradeoffs and interactions among design parameters. Al-

though several techniques reduce time per individual simulation, efficiently exploring

exponential-size design spaces spanned by several interacting parameters remains an

open problem: the sheer number of experiments renders detailed simulation intractable.

We attack this via an automated approach for building highly accurate and confident

predictive models of design spaces. We collect simulation data incrementally, giving

reliable estimates of model error on the full parameter space at each step of the building

process. As validation, we perform sensitivity studies on memory system and micropro-

cessor design spaces (conducting over 300K detailed simulations). Our models gener-

ally predict IPC with less than 1-2% error, even when trained on as little as 2% of the full

design space. Further, our mechanism is orthogonal to techniques that reduce simulation

runtimes. SimPoint [23] reduces the number of simulated instructions per experiment

by 8-62×. We reduce the total number of simulated instructions by 50-200×. Combin-

ing our approach with SimPoint reduces the number of simulated instructions required

to complete thorough design-space explorations by 1000-13,000×. Our approach has

potential to quantitatively and qualitatively transform computer architecture research,

enabling studies heretofore beyond our computational abilities.

BIOGRAPHICAL SKETCH

Engin Ipek received his B.S. in Elecetrical and Computer Engineering from Cornell

University in May 2003. He is currently a Ph.D. student at Cornell’s Computer Systems

Laboratory.

iii

To my lovely wife, Zeynep

iv

ACKNOWLEDGEMENTS

I would like to acknowledge the contribution of several individuals to the completion

of this thesis. First, I thank my advisor Sally McKee for being the best advisor I could

hope for, for teaching me how to do research in computer architecture and guiding my

academic career. In the two years that I have been a graduate student at Cornell, she has

made me truly feel like a family member within our research group. This thesis would

certainly not be possible without her dedication and hard work, and I will never forget

her influence on my career.

I thank Professor Rich Caruana for guiding me in my exploration to apply machine

learning techniques to problems in computer architecture, and for teaching me how to

reason pragmatically about complex problems. In the two years that I have known him,

he and I have spent countless hours engaging in technical discussions, devising research

ideas and analyzing results. I consider myself very fortunate to have the opportunity of

working with him on this project.

I thank my mentor Bronis de Supinski at Lawrence Livermore National Laboratory

for his technical contributions to the project, for encouraging me to pursue this idea from

the day I proposed it to him, and for showing me problems faced by practitioners and

researchers in high performance computing. I thank Martin Schulz for his contributions

to the project, especially for his help on running the simulations at the laboratory.

I thank professor José F. Martı́nez for useful comments and discussions on the topic,

and for not minding me constantly taking his time with technical discussions on this

and other projects. I thank professor David Albonesi for his useful feedback on this

work, and Professor Martin Burtscher for introducing me to computer architecture and

for being an excellent teacher.

I thank my colleagues Pete Schzwed, Brian White, Vince Weaver, Jian Li, Meyrem

and Nevin Kırman and Amy Henning for useful discussions and comments.

v

I thank my father and mother for their constant support throughout my academic

career, and for pushing me to pursue my ambitions. Finally, I thank my wife Zeynep

for her love and support. She is the best person I have ever met, and the reason behind

everything I do. This thesis is dedicated to her.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . viii
List of Figures . ix

1 Introduction 1

2 Design Space Exploration 3

3 Modeling Parameter Spaces with Artificial Neural Networks 6
3.1 Training Artifical Neural Networks . 8
3.2 Cross Validation . 9
3.3 Modeling Architectural Design Spaces 11

4 Experimental Setup 15

5 Evaluation 18
5.1 Learning Curves . 19
5.2 Error Estimation . 21
5.3 Integration with Existing Schemes . 24
5.4 Training Times . 30

6 Related Work 32

7 Conclusions and Future Work 36

A 39

Bibliography 43

vii

LIST OF TABLES

4.1 Variable (left) and constant (right) simulation parameters and their values in
the memory system study. 16

4.2 Variable (left) and constant (right) simulation parameters and their values in
the processor study. 16

5.1 Results for all studies. 19

viii

LIST OF FIGURES

3.1 Simplified diagrams of fully connected, feed-forward neural networks. 7
3.2 Example of a hidden unit with a sigmoid activation function (borrowed from

Mitchell [19]). 7
3.3 Example of a 10-fold cross-validation ensemble on 1K training points. The

top bar shows the distribution of data to folds. Train/ES/Test indicate training,
early-stopping and test sets, respectively. 11

3.4 Example for encoding nominal and cardinal parameters. 12

5.1 Error rates of the models on the design space. The columns on the left and
right show results for the memory system and processor studies, respectively. 20

5.2 Estimated and true means and standard deviations for percentage error on the
memory system study. 22

5.3 Estimated and true means and standard deviations for percentage error on the
processor study. 23

5.4 Error rates when ANN modeling and SimPoint are combined. 27
5.5 Estimated and true means and standard deviations for percentage error when

ANN modeling is combined with SimPoint. 28
5.6 Gains from combining ANN+SimPoint. 29
5.7 Contributions of SimPoint and ANN to total gains. 29
5.8 Training times. 30

A.1 Error rates of the models on the design space. The columns on the left and
right show results for the memory system and processor studies, respectively. 40

A.2 Estimated and true means and standard deviations for percentage error on the
memory system study. 41

A.3 Estimated and true means and standard deviations for percentage error on the
processor study. 42

ix

Chapter 1

Introduction
Quantifying the impact of design parameters on evaluation metrics and understanding

tradeoffs and interactions among such parameters permeates the foundation of com-

puter architecture. Architects rely on this understanding to perform cost-benefit analyses

among alternative design options and to propose solutions to open research problems.

We usually study tradeoffs and interactions via cycle-by-cycle simulation of a target ma-

chine. Several factors have unacceptably increased the time and resources required for

this approach, including the desire to model more demanding, realistic workloads; the

ever increasing complexity of the architectures we model; and the exponential size of the

design spaces spanned by many independent parameters. Thorough study of even rela-

tively modest design spaces —even with substantial, dedicated computing resources—

becomes challenging, if not infeasible.

Research on reducing time per experiment or identifying the most important sub-

spaces to explore within a full parameter space has made significant advances that im-

prove our ability to conduct more thorough studies. Nonetheless, simulation times for

full design space exploration remain infeasible for most researchers. Managing the

exponential increase in simulation space size with an appropriate number of sig-

nificant parameters in the general case remains an open problem, the solutions of

which are fundamental to advancements in computer architecture.

We attack this problem by applying machine learning techniques to train ensem-

bles of artificial neural networks (ANNs) from relatively few sample simulation results.

Once trained, the ANN ensemble provides estimates for simulation results on the entire

parameter space under consideration. At each step of the training process the model pro-

vides an accurate estimate of its average error and variance on the full parameter space,

allowing us to incrementally collect simulation results until we reach an acceptably low

1

error rate. Our approach is fully automatic, and makes no assumptions regarding the

general form of the target function describing relationships among parameters and tar-

get metrics under study. Furthermore, our models deliver accurate results (including

reliable estimates of the model’s error on the full space) with only a very sparse sam-

pling of the entire simulation design space. We make several contributions:

• a general mechanism to build highly accurate and confident models of design

spaces in computer architecture;

• a framework to incorporate additional simulation (training) results incrementally;

• demonstrations that our mechanism and framework are orthogonal and comple-

mentary to existing techniques that reduce simulation time for sensitivity studies;

and

• evaluations of the overhead of our approach demonstrating that its training times

are negligible compared to even individual architectural simulations, and that it

can reduce simulation times required for sensitivity studies by several orders of

magnitude with almost no loss in accuracy.

Combining our models with orthogonal techniques can yield multiplicative reductions

in the number of instructions simulated in an architectural design space exploration—

up to factors of tens of thousands for the cases we study. Likewise, such combined

mechanisms enable the detailed study of design spaces that would otherwise be outside

the reach of current simulation technology.

The rest of this thesis addresses design space exploration in Chapter 2, and gives a

high level overview of our approach; discusses artificial neural networks and their ap-

plication to modeling architectural design spaces in Chapter 3; presents our simulation

infrastructure and the design spaces we explore in Chapter 4; evaluates our mechanism

in Chapter 5; details related work in Chapter 6; and presents our conclusions in Chap-

ter 7.

2

Chapter 2

Design Space Exploration
Sensitivity studies evaluate the effects of a set of design parameters, where these param-

eter values are varied in combination through a set of simulation experiments. As such,

they constitute an essential tool for computer architects. Researchers and practitioners

use sensitivity studies to verify that apparent performance gains of novel architectural

features are not just artifacts of the specific configuration of basic architectural char-

acteristics (such as cache sizes, number of ROB entries or pipeline depth) or to study

effects of parameter values specific to a novel feature. Since sensitivity studies compare

detailed simulated performance for a range of design parameters and applications, they

consume enormous amounts of CPU time: the total number of simulations required is

exponential in the number of parameters explored, and a single, detailed simulation ex-

periment may take days or even weeks. For instance, Jacob [14] reports over six months

of simulation time just to study a small portion of the memory system design space.

We have therefore developed an approach that can reduce the number of simulations

required for a full sensitivity study of M parameters by 50-200× with almost no loss

in accuracy. We view the simulator as a (potentially) highly nonlinear function of its

parameter configuration and the input application A: SIM(p0, p1, ...pM , A). Instead

of sampling this function at every point (i.e., parameter vector) of interest, we employ

powerful, non-linear regression to approximate it.

We use an ensemble of artificial neural networks (ANNs) as our non-linear regres-

sion technique. Our approach requires that we first sample a small number of parameter

configurations (chosen at random) through simulation, on which we train the ANN en-

semble to generate an initial approximation of the simulator function. We use cross

validation (discussed in Section 3) to obtain highly accurate estimates of the error of

this approximation for the full parameter space. We refine our approximation by further

3

sampling the parameter space until the error estimate is sufficiently low. Our results

demonstrate that in almost all cases this technique provides highly accurate approxima-

tions (errors of less than 2%) when sampling only 2-5% (or less) of the full parameter

space.

A more thorough treatment of related work is presented in Chapter 6. Here we

briefly introduce prior research upon which we build. Partial simulation techniques,

in which only certain application intervals or “simulation points” are modeled, address

time required per experiment. Generating accurate statistics requires that these simula-

tion points be chosen carefully: Sherwood et al. [23] find that simulating the first million

instructions yields 85% average error for SPEC CINT 2000, and fast-forwarding one

billion and then simulating 100 million yields 51% average error. To address this error,

they develop SimPoint, which uses Basic Block Distribution Analysis combined with

clustering to summarize the behavior of an arbitrary section of program execution. This

information is used to select representative samples to simulate in detail, greatly reduc-

ing simulation time without sacrificing significant statistical accuracy. Combining our

approach with theirs yields multiplicative reductions in instructions simulated without

significantly increasing modeling error: for our applications and workloads, we observe

savings by factors of 1,000 to 13,000.

Yi et al. [29] use Plackett and Burman fractional factorial design to prioritize design

parameters for sensitivity studies. We employ their method to verify our choice of design

parameters to vary in our studies.

Architectural simulations using the SPEC CPU2000 suite [24] generally execute

much faster using MinneSPEC reduced input sets [16]. SPEC codes exhibit different

behaviors with the different input sets, but MinneSPEC permits exploring large pa-

rameter spaces more efficiently, aiding architects in choosing configurations to simu-

late in detail with official SPEC workloads. Given that we run 300K simulations, we

4

choose MinneSPEC to validate our approach. Results for official SPEC reference inputs

would be even more impressive with respect to time saved, and combining native fast-

forwarding [25], SimPoint, and our modeling approach constitutes an interesting future

study. Likewise, combining our approach with the SMARTS framework is another in-

teresting future work.

5

Chapter 3

Modeling Parameter Spaces with Artificial

Neural Networks
An artificial neural network (ANN) is a machine learning model that automatically

learns to predict targets (here, simulation results) from a set of input values. ANNs

can be considered a powerful form of non-linear regression. Figure 3.1 shows the basic

organization of simple fully connected, feed-forward ANNs. The network consists of

an input layer, output layer, and one or more hidden layers. Input values are presented

at the input layer, and predictions are obtained from the output layer. Layers contain

processing units (nodes), each of which operates on its inputs to produce an output that

is passed to units in the next layer. The ANN in Figure 3.1(a) has a single hidden layer

with four hidden units and a single output unit; the ANN in Figure 3.1(b) has two hidden

layers with four hidden units each and two output units.

In fully connected feed-forward ANNs, weighted edges connect every unit in each

layer to all units in the next layer. Edges communicate a unit’s computed value to other

units downstream. Every edge has a weight. To compute its output, a unit calculates the

weighted sum (based on edge weights) of all its inputs, applies its activation function

to this sum, and passes the result to the next network layer through the outgoing edges.

Figure 3.2 depicts the basic computation performed by a hidden unit using a sigmoid

activation function. Other activation functions are possible. The main requirements for

an activation function are that it be non-linear, monotonic, and differentiable.

Although there are other predictive modeling methods (such as linear or polyno-

mial regression, Support Vector Machines [SVMs], and decision trees), several qualities

make ANNs a better choice for modeling parameter spaces in computer architecture.

Specifically, ANNs:

• represent a mature and already commercialized technology;

6

Output

Input1 Input2 Input3

Hidden Layer

Input Layer

Output Layer

Output1 Output2

Input1 Input2

Hidden Layer 1

Hidden Layer 2

Output Layer

Input Layer

(a) (b)

Figure 3.1: Simplified diagrams of fully connected, feed-forward neural networks.

w1

w2

wn

w0

x1

x2

xn

x0 = 1

�
�
�
�

.

.

.
Σ

net = Σ wi xii=0

n
1

1 + e
-neto = σ(net) =

Figure 3.2: Example of a hidden unit with a sigmoid activation function (borrowed from
Mitchell [19]).

• do not require that the form of the functional relationship between inputs and

target values be known;

• handle real-, discrete-, cardinal-, and boolean-valued inputs and outputs, and thus

are capable of representing the different parameters of interest to an architect;

• work well with noisy data, and thus can be combined successfully with existing

mechanisms that reduce the time for a single simulation experiment at the expense

of introducing noise.

ANNs represent one of the most powerful, flexible methods known for performing

generalized nonlinear regression. Their representational power is rich enough to ex-

press complex, non-linear interactions among multiple variables. Any function can be

7

approximated to arbitrary precision by an ANN with three layers [5].

3.1 Training Artifical Neural Networks

The weights associated with each edge in an ANN define the functional relationship

between input and output values. Training an ANN involves learning the edge weights

from a set of sample data points (tuples of input and output values, corresponding to

design space parameters and simulation results in our case). For example, to learn to

predict IPC from L1 and L2 cache sizes and front-side bus bandwidth, the architect runs

a number of cycle-by-cycle simulations for various combinations of these architectural

parameters, and collects the parameters and resulting IPCs into a training set. This data

is then used to adjust the weights in the ANN until it accurately predicts IPC from the in-

put parameters. A good model must accurately predict IPC for parameter combinations

on which it was not trained.

We use the backpropagation algorithm to train edge weights. Backpropagation uses

gradient descent in the weight space to minimize the squared error between simulation

results and model predictions. Edge weights are initialized near zero, causing the net-

work initially to act like a simple linear model. During training, examples are repeatedly

presented at the inputs, differences between network outputs and target values are calcu-

lated, and backpropagation updates all weights by taking a small step in the direction of

steepest decrease in error. Every network weight wi,j (where i and j correspond to pro-

cessing units) is updated according to Equation 3.1, where E stands for squared-error

and η is a small learning rate constant (effectively the gradient descent step size). As

the weights grow, the ANN becomes increasingly non-linear.

wi,j ← wi,j − η
∂E

∂wi,j

(3.1)

8

wi,j ← wi,j − (η
∂E

∂wi,j

+ α∆wi,j(n− 1)) (3.2)

Like all gradient descent methods on complex surfaces, backpropagation can get

“stuck” in local minima. To combat this, a momentum term α is often added to the up-

date rule, as shown in Equation 3.2. With momentum, updates to the weights during the

current iteration of gradient descent partially depend on updates during the previous it-

eration. This allows the search to continue “rolling downhill” past inferior local minima

by giving the search sufficient momentum to overcome “small hills.” Momentum also

speeds convergence by accelerating gradient descent in regions with a low gradient and

by damping oscillations in highly non-linear regions.

Main parameters affecting ANN learning are the number of hidden layers, number

of hidden units in each layer, learning rate, momentum, and distribution of the initial

weights. Tuning these may be necessary for some problems, but typically it is not diffi-

cult to find reasonable settings that yield good performance. We use networks with one

hidden layer consisting of 16 hidden units, a learning rate of 0.001, momentum equal to

0.5, and initialize weights uniformly on [-0.01,+0.01]. These parameters can be set au-

tomatically by gauging the adequacy of different settings through our error estimation,

which we discuss next.

3.2 Cross Validation

An ANN with a large enough hidden layer can approximate any continuous function.

As in polynomial curve fitting, where using a polynomial of high degree results in mod-

els that have excellent fit to the training samples yet interpolate poorly, ANNs also

may overfit to the training samples. However, unlike polynomial curve fitting, where

model complexity is reduced by decreasing the degree of the polynomial, experience

9

with ANNs has shown that better predictions usually are made by large networks with

excess capacity where training is halted before gradient descent reaches the minimum

error on the training set [19, 2]. For this purpose, a portion of the training set (called the

early stopping set) is held aside; gradient descent is stopped when the model’s squared

error on this unbiased sample stops improving.

Holding aside a fraction of the training data to determine when to halt training is an

effective way of preventing overfitting in ANNs. Unfortunately, if 25% of the data is

used as the early stopping set, the training set used for gradient descent is 25% smaller.

As with other regression methods, ANNs learn less accurate models if the training sam-

ple is reduced. Cross validation is a method that permits the use of early stopping sets

with minimal impact on model performance due to this reduction in training set size. As

we show in Section 5.2, cross validation also allows us to estimate model accuracy.

In cross validation, the training sample is split into multiple subsets, or folds. For

example, 10-fold cross validation splits the training sample into 10 equal-sized folds,

each containing 10% of the training data. An ANN is then trained on the samples in

folds 1-8 (80% of the data); fold 9 (10% of the data) is used for early stopping; and fold

10 (also 10% of the data) is used to estimate the performance of the trained model. A

second ANN is then trained on folds 2-9; fold 10 is used for early stopping; and fold

1 is used to estimate accuracy. This process is repeated 10 times, with the data in each

fold being used successively as early stopping sets and test sets (see Figure 3.3).

The 10 networks that result from 10-fold cross validation are then combined into

an ensemble by averaging the predictions made by each ANN. Although each ANN is

trained on only 80% of the training data, all data are eventually used to train some mod-

els in the final ensemble. As a result, the ensemble performs similarly to a model trained

on all data, yet held-aside data is always available for early stopping and unbiased error

estimation. Further, experience has shown that averaging multiple models (an approach

10

Model 1

Model 3

Model 4

Model 2

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

ESTest

ES

ES

ES

ES

ES

ES

ES

ES

Test

Test

Test

Test

Test

Test

Test

Test

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

1−100

Train Train Train Train Train Train Train Train ES Test

101−200 201−300 301−400 401−500 501−600 601−700 901−1000701−800 801−900

Figure 3.3: Example of a 10-fold cross-validation ensemble on 1K training points. The top bar
shows the distribution of data to folds. Train/ES/Test indicate training, early-stopping and test
sets, respectively.

frequently used in weather forecasting) often yields better performance than training

just one model: averaging the 10 ANNs trained with cross validation often yields better

accuracy than a single network trained on all the data.

The mean and standard deviation of the model errors made across the 10 test folds

are used to estimate the accuracy of the cross validation ensemble across the design

space. This estimate allows the architect to determine when the models are accurate

enough to be useful. In general, partitioning the data into more folds results in lower

error rates and better estimates of the network’s accuracy, at the expense of a higher

computational cost to train more models. In this thesis we use 10-fold cross validation

for all of our experiments.

3.3 Modeling Architectural Design Spaces

Parameters of interest in architectural design spaces can be grouped into a few broad

categories. Cardinal parameters indicate quantitative relationships (e.g., cache sizes,

11

WT WB Size

10

IPC

0.33

0.72

Figure 3.4: Example for encoding nominal and cardinal parameters.

or number of ROB entries). Nominal parameters identify choices but lack quantifiable

properties among their values (e.g., front-end fetch policy in SMTs, or type of coher-

ence protocol in CMPs). Continuous (e.g., frequency) and boolean (e.g., on/off states

of power-saving optimizations) parameters are also possible. The encoding of these pa-

rameters and the way they are presented to ANNs as inputs significantly impact model

accuracy.

We follow a systematic approach when representing these parameter types. We en-

code each cardinal or continuous design parameter as a single real number in the [0,1]

range. We normalize these parameters by using their minimum and maximum values

over the design space with minimax scaling. Using a single input facilitates the learning

of functional relationships involving different regions in the parameter’s range, while

normalization prevents placing more emphasis on parameters with a broader range than

others. On the other hand, we do not encode nominal parameters in this manner, since

they do not represent quantitative properties. Rather, we represent them using one-hot

encoding by allocating a separate input unit for each setting of the parameter. For every

12

possible setting, the corresponding ANN input is set to 1 while those corresponding to

other settings of the same parameter are 0. This avoids erroneous encoding of range in-

formation where none exists. Boolean parameters are represented as single inputs with

0-1 values. As an example, Figure 3.4 shows how an 8KB, write-back L1 cache config-

uration is presented to the network, where the possible settings for the write-policy and

size are (WT,WB) and (4KB,8KB,16KB), respectively.

Target values (simulation results) used for training the models are encoded in the

same way as inputs. In this study, we focus on predicting performance (IPC), and fol-

low the approach described above for continuous parameters when encoding it. After

the ANN ensemble provides predictions for a design point, we scale the normalized pre-

diction back to the actual range. When reporting percentage error rates, we do all of our

calculations based on these actual (not normalized) values.

One architecture-specific issue when building ANNs is training for percentage error

instead of absolute or squared error. When exploring a design space with our proposed

mechanism, the absolute value of the error that the model makes on any given design

point has little value—rather, one is typically interested in the model’s error represented

as a percentage of the actual simulation result. For instance, when predicting the exe-

cution time of an application, erring by one second is negligible if the actual runtime

is 60 minutes, but is significant if the true execution time is two seconds. When train-

ing ANNs, gradient descent by default takes steps in the direction of steepest decrease

in absolute squared error, and considers these two error rates equal. This can result in

poor percentage error across the design space, since the ANN is not trained to optimize

the correct metric. A common way of training ANNs when absolute errors on different

samples have differing costs is to present points with higher costs to the ANN more

often during training than those with lower costs. In the case of percentage error, data

points are presented at a frequency based on their target values. This effectively focuses

13

backpropagation’s attention on different data points based on percentage error, training

the ANN for the correct metric. In addition, early stopping is based on percentage error

as opposed to absolute error.

The following procedure summarizes our overall modeling mechanism:

1. Identify important design parameters.

2. Perform a set of simulations for N random combinations of parameter settings,

possibly reducing the time for each simulation by using statistical simulation tech-

niques (e.g., SimPoint).

3. Normalize inputs and outputs. Encode nominal parameters with one-hot encod-

ing, booleans as 0-1, and others as real values in the normalized 0-1 range. Collect

the results in a data set.

4. Divide data set into k folds.

5. Train k neural nets with k-fold cross validation. During training, present each data

point to the ANNs at a frequency proportional to the inverse of its IPC (we assume

the target to be predicted is IPC; other targets are similar). Perform early-stopping

based on percentage error.

6. Estimate the average and standard deviation of error from cross validation.

7. If estimated error is too high, repeat 2-6 with N additional simulations.

8. Predict any point in the parameter space by placing the parameters at the input

layers of all ANNs in the ensemble, and averaging the predictions of all models.

14

Chapter 4

Experimental Setup
We evaluate our proposal by conducting performance (IPC) prediction sensitivity stud-

ies on memory system and microprocessor parameters. Our infrastructure is based on

detailed execution-driven simulation of an out-of-order processor and its memory sub-

system [22]. Contention and latency are modeled in detail at all levels. For each study,

we run our simulations on four SPEC CINT2000 (gzip, mcf, crafty, and twolf) and four

SPEC CFP2000 (mgrid, applu, mesa, equake) benchmarks. As stated earlier, we use

the reference versions of the MinneSPEC reduced input sets. In both studies, we vali-

date the significance of the parameters we vary through Plackett and Burman fractional

factorial designs with foldover, as in Yi et al. [29].

Table 4.1 shows parameters in the memory system performance study and their cor-

responding values. The right side lists fixed parameters; the left half shows the parame-

ters we vary. The resulting design space spans the cross product of all parameter values,

yielding 23,040 simulations per benchmark, for a total of 184,320. We fix core clock

frequency at 4GHz, assume a 90nm technology, and derive latencies of all cache config-

urations through CACTI3.2 [26]. The L2 bus runs at core frequency (as in the Pentium

4 R©), and the front-side bus is 64 bits (typical in several current-generation systems).

Table 4.2 shows parameters in the processor study and their corresponding values.

Fixed parameters again appear on the right side of the table; the parameters that we

vary are on the left. We again assume a 90nm technology and derive latencies of caches

through CACTI 3.2. We vary core frequency between 2GHz and 4GHz, and calculate

cache and SDRAM latencies as well as branch misprediction penalties based on these

values. When setting branch misprediction penalties, we use 11- and 20-cycle minimum

latencies for the 2GHz and 4GHz cases, respectively. When varying the size of the reg-

ister files, we choose two out of the four sizes shown in Table 4.2 based on the ROB size,

15

Table 4.1: Variable (left) and constant (right) simulation parameters and their values in
the memory system study.

Parameter Values

L1 DCache Size 8,16,32,64KB

L1 DCache Block Size 32,64B

L1 DCache Associativity 1,2,4,8 Way

L1 Write Policy WT,WB

L2 Cache Size 256,512,1024,2048KB

L2 Cache Block Size 64,128B

L2 Cache Associativity 1,2,4,8,16 Way

L2 Bus Width 8,16,32B

Front Side Bus Frequency 0.533,0.8,1.4 GHz

Parameter Value

Frequency 4GHz

Fetch/Issue/Commit Width 4

LD/ST Units 2/2

ROB Size 128 Entries

Register File 96 Integer/96 FP

LSQ Entries 48/48

SDRAM 100 ns/ 64 bit FSB

L1 Icache 32KB/2 cycles

Branch Predictor Tournament (A21264)

Table 4.2: Variable (left) and constant (right) simulation parameters and their values in
the processor study.

Parameter Values

Fetch/Issue/Commit Width 4,6,8 Instrs

Frequency 2,4 GHz

Max Branches 16,32

Branch Predictor 1K,2K,4K Entries (21264)

Branch Target Buffer 1K,2K Sets (2-way)

Functional Units 4,8

ROB Size 96,128,160

Register File 64,80,96,112 (2 choices per ROB Size)

LSQ 32/32,48/48,64/64

L1 ICache 8,32KB

L1 DCache 8,32KB

L2 Cache 256,1024KB

Parameter Value

L1 DCache Associativity 1,2 way (dependent on L1 DCache Size)

L1 DCache Block Size 32B

L1 Dcache Write Policy WB

L1 ICache Associativity 1,2 way (dependent on L1 ICache Size)

L1 ICache Block Size 32B

L2 Cache Associativity 4,8 way (dependent on L2 Cache Size)

L2 Cache Block Size 64B

L2 Cache Write Policy WB

Replacement Policies LRU

L2 Bus 32B/Core Frequency

FSB 64bits/800 MHz

SDRAM 100ns

16

instead of taking the cross product of all four register file sizes with all other parameters

(since, e.g., a 96 entry ROB+112 makes little sense with 112 integer/fp registers). We

set SDRAM latency at 100ns, and simulate a 64-bit front-side bus at 800MHz. The full

design space requires 20,736 simulation per benchmark, and a total of 165,888 simu-

lations. We perform all simulations and measure our error over this full design space

when validating our approach.

17

Chapter 5

Evaluation
Like other regression methods, ANNs typically make better predictions when they are

trained on more data. However, data collection in architectural design space exploration

is expensive, requiring cycle-by-cycle simulation for every data point in the training

set. A tradeoff thus exists between the number of simulations performed and model

accuracy. For both the memory system and processor studies, we evaluate this trade-

off by training ANN ensembles through 10-fold cross validation (as in Section 3.2) on

training sets containing results of 50-2000 simulations. This corresponds to 0.22-8.70%

and 0.24-9.60% of the full design spaces in the memory system and processor stud-

ies, respectively. We train the models on progressively larger sets (in increments of 50

simulations) by incorporating additional randomly sampled points from the parameter

space into the existing training sets. Once trained, we test the ANN ensembles on the

remaining points in the design space that were not used for training, and record average

percentage error and standard deviation of error on these points. In addition, we track

the cross-validation estimates for the mean and standard deviation of percentage error.

We present graphs for four representative applications (mesa, mcf, equake, and crafty).

Results for the remaining applications are similar, and are contained in Appendix A.

Table 5.1 summarizes results for all eight applications: for each application, the table

lists the average and standard deviation of error across the tested design space for train-

ing sets corresponding roughly to 1%, 2%, and 4% of the full space. Cross validation

estimates for both the average and standard deviation of error are listed under the “Esti-

mated” columns.

18

Table 5.1: Results for all studies.
Memory System Study

1.08% Sample 2.17% Sample 4.12% Sample
Mean Error SD of Error Mean Error SD of Error Mean Error SD of Error

Application True Est. True Est. True Est. True Est. True Est. True Est.
equake 2.32% 2.47% 3.28% 4.58% 1.40% 1.39% 1.81% 1.61% 0.92% 0.92% 0.97% 0.98%

applu 3.11% 2.97% 2.74% 2.79% 2.35% 2.57% 1.90% 2.32% 1.28% 1.31% 1.04% 1.21%

mcf 4.61% 4.53% 5.6% 5.73% 2.84% 3.06% 2.94% 3.61% 1.74% 1.77% 1.59% 1.68%

mesa 2.85% 2.8% 4.27% 5.24% 2.69% 2.73% 4.16% 4.77% 1.97% 2.15% 2.87% 3.79%

gzip 1.82% 1.63% 1.42% 1.56% 1.03% 1.17% 0.87% 0.95% 0.81% 0.83% 0.68% 0.68%

twolf 5.63% 5.40% 6.96% 6.94% 4.73% 5.07% 6.32% 6.39% 4.16% 4.41% 6.01% 6.65%

crafty 2.16% 2.45% 2.10% 2.38% 1.17% 1.29% 1.10% 1.33% 0.87% 0.96% 0.77% 0.91%

mgrid 4.96% 5.19% 6.12% 6.43% 1.53% 1.52% 1.40% 1.79% 0.83% 0.85% 0.74% 0.75%

Processor Study
0.96% Sample 1.93% Sample 4.10% Sample

Mean Error SD of Error Mean Error SD of Error Mean Error SD of Error
Application True Est. True Est. True Est. True Est. True Est. True Est.

equake 2.11% 3.21% 1.53% 2.19% 1.23% 1.38% 0.99% 1.04% 0.53% 0.54% 0.41% 0.43%

applu 3.13% 2.19% 2.34% 1.55% 0.93% 0.99% 0.80% 0.83% 0.62% 0.64% 0.59% 0.58%

mcf 2.11% 2.57% 1.57% 2.05% 1.29% 1.28% 1.06% 1.07% 0.94% 0.91% 0.87% 0.84%

mesa 1.50% 1.41% 1.24% 1.79% 0.81% 0.83% 0.61% 0.70% 0.35% 0.36% 0.27% 0.29%

gzip 1.42% 1.69% 1.23% 1.53% 1.07% 1.12% 0.89% 0.99% 0.76% 0.78% 0.62% 0.69%

twolf 6.48% 7.39% 6.94% 8.97% 5.81% 6.29% 6.42% 7.51% 4.94% 4.94% 6.49% 6.77%

crafty 2.43% 2.52% 1.82% 2.20% 1.11% 1.26% 0.87% 1.07% 0.44% 0.44% 0.37% 0.39%

mgrid 4.29% 4.25% 3.77% 4.24% 1.95% 2.09% 1.76% 2.40% 0.88% 0.96% 0.75% 0.82%

5.1 Learning Curves

Figure 5.1 shows learning curves illustrating how our models’ percentage error rates

on the parameter spaces decrease as training set sizes increase (by performing more

simulations). In each graph, the x axis shows the percentages of the full parameter space

simulated to form the training set, and the y axis shows the percentage error across the

design space of the models trained on that set. Solid lines show average percentage

error, with error bars placed at ±1 standard deviation of the averages. Results for the

memory system study are given in the left column; results for the processor study are

given in the right column.

For the memory system study, when training data are 0.22% of the full design space

(50 simulations), average error varies between 5-10%, while the standard deviation of

error is typically between 10-15%. This is unacceptably high error for computer archi-

tecture research. The training set is so small that it includes insufficient information to

capture the functional relationship between design parameters and performance. Stan-

19

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Processor)

Mean
StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Processor)

Mean
StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Processor)

Mean
StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Processor)

Mean
StDev

Figure 5.1: Error rates of the models on the design space. The columns on the left
and right show results for the memory system and processor studies, respectively.

dard deviation of error is high, and the accuracy of the models varies significantly from

one region of the design space to another, indicating that sampling is too sparse. Error

rates improve dramatically as more data are added to the training sets. When the train-

20

ing set contains roughly 1% of the full design space, both the average errors and the

standard deviations drop to 2-5%. Sampling an additional 1% brings error rates down

to 1-3%. Error rates start to reach an asymptote at a sample size of 4%, at which point

models for all four applications exhibit less than 2% average error.

Learning curves for the processor parameter study follow similar trends. When only

0.24% (50 simulations) of the full design space is simulated, the data contain too lit-

tle information to train accurate models. In this regime, depending on the application,

average error rates across all benchmarks vary between 2-15%, while the standard de-

viations fall in the 3-10% range. As more data are sampled from the parameter space

via simulation, accuracy of the ANN ensembles improves rapidly. When training set

size reaches 0.96% of the full space, models for the four applications in Figure 5.1

reach average error rates below 2.5% and standard deviations below 2%. However, as

Table 5.1 indicates, models for three applications (applu, twolf, and mgrid) maintain

average error rates in the 3-6.5% with standard deviations between 2-7% at this point.

When training set size increases to 1.93% of the full space, models for all applications

except twolf and mgrid achieve error rates lower than 1%. At this point, the model for

mgrid yields roughly 2% average error. The model for twolf yields higher error rates

than the other models, and its error rates drop more slowly with increasing training set

size. At a 4% sample size, the twolf model’s error rate drops to 4.9% on average, and

at an approximately 16% sample size, to roughly 3%. This difference in behavior is

not problematic: cross validation yields excellent error estimates, and the architect can

continue simulations until acceptable error rates are attained, as we show next.

5.2 Error Estimation

Figure 5.2 and Figure 5.3 illustrate the estimated and true mean errors and standard

deviations on the design spaces as a function of the training set size for the memory

21

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Memory System)

StDev
Estimated StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Memory System)

StDev
Estimated StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Memory System)

StDev
Estimated StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Memory System)

StDev
Estimated StDev

Figure 5.2: Estimated and true means and standard deviations for percentage error on
the memory system study.

system and processor studies. For each graph, the x axis shows the size of the training

set as a percentage of the full design space, and the y axis shows percentage error. For

most applications, the estimates provided by cross validation are within 0.5% of the

22

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Processor)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Processor)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Processor)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Processor)

StDev
Estimated StDev

Figure 5.3: Estimated and true means and standard deviations for percentage error on
the processor study.

actual values once sample sizes exceed 1%. When the sample size is smaller than 1%,

differences between estimated and actual error values are higher and vary between 0.5-

4%. Note that in this regime the estimates are conservative. Cross validation estimates

23

error from the error rates of individual models in the ANN ensemble on the test folds.

Final predictions, however, are made by averaging the predictions of all models, which

typically yields lower error rates. Because of this, cross validation slightly overestimates

actual error (especially when sampling is too sparse and error rates are high), providing a

conservative estimate of the average prediction accuracy and standard deviation. When

the sample size is larger than 1%, the differences between true and estimated error rates

are negligible. The accuracy of the estimates allows the architect to stop collecting

simulation results as soon as the error rates become acceptable. In our experiments,

cross validation almost never underestimates error when trained on actual simulation

results.

5.3 Integration with Existing Schemes

Our predictive modeling approach directly targets the problem of large parameter spaces

and is orthogonal to techniques that reduce the running times of single simulations.

Note, however, that this orthogonality does not necessarily imply that multiple tech-

niques can be combined successfully. For instance, statistical simulation techniques that

reduce the runtime of simulations typically do so at the expense of loss in accuracy.

Error rates induced by these techniques vary from one point in the parameter space

to another. As a result, during training, the ANN ensemble never sees the true out-

comes of predictions, but rather sees noisy simulation results where the precise amount

of noise (error) depends on the statistical simulation technique, its parameters, and the

parameters of the design space. Hence, if the two approaches are to be combined and a

predictive model is to be built based on such noisy samples, it is crucial for the predic-

tive model to handle output noise well and not amplify this inherent error. Fortunately,

ANNs work well in the presence of noise and can be combined with these techniques

successfully.

24

To explore the efficacy of ANN learning in the presence of noisy — but faster —

simulation results, we combine our proposed approach with SimPoint [23]. The sheer

number of simulations we run prevents us from using SPEC reference input sets, apply-

ing SimPoint to them, and measuring the results of combining our approach with respect

to those reference inputs. Instead, we select the four longest-running applications in our

study (mesa, mcf, crafty, equake), and use SimPoint to find representative simulation

points for these applications, scaling the default interval from 100 million dynamic in-

structions to 10 million. This adjusts for shorter running times with MinneSPEC inputs

and allows SimPoint to reduce simulation times of individual applications significantly.

Aside from this change, we run SimPoint out-of-the-box. After finding simulation points

and their corresponding weights, we perform the processor study a second time, this

time collecting per-interval performance results for each application on every point in

the full parameter space, and calculating SimPoint’s estimate for the performance of

each run. We train our ANN ensembles on these noisy data sets, and measure accu-

racy with respect to the actual design space in the absence of SimPoint. Figure 5.4 and

Figure 5.5 show the results.

Figure 5.4 shows learning curves obtained when SimPoint and ANN modeling are

combined. When only 0.24% of the full parameter space is simulated (50 simulations),

average error rates and standard deviations vary between 3.7-13% and 2.9-7.7%, respec-

tively. As in the initial processor sensitivity study (without SimPoint), these training sets

contain insufficient information to build accurate models. Error rates steadily decrease

as more simulation results are added to the training sets. When 0.96% of the full space is

simulated using SimPoint and models are trained on this data, average error rates drop

to less than 2.5%, while standard deviations are in the 1.2-1.6% range. At this point,

the models are both accurate and perform consistently well in all regions of the design

space, as indicated by the lower standard deviations. When an additional 1% of the

25

design space is sampled, training sets contain 1.92% of the full space, and average er-

ror falls between 0.6-1.5%. In this regime, standard deviation varies between 0.5-1.5%.

Error rates start to decrease asymptotically beyond a 4% sample size. When compared

to training on full simulation runs, learning models from SimPoint results give slightly

higher error, but in all cases the differences are negligible.

Figure 5.5 plots the estimated and average error and its standard deviation as a func-

tion of the training set size when ANN modeling is combined with SimPoint. As in

the original processor study, the estimates are accurate, and are conservative when the

sampling of the design space is too sparse. One difference between these results and the

original ones is that outside of the conservative error estimation regime described ear-

lier, the estimates provided by cross validation are slightly lower than actual (differences

are small in all cases). When cross validation calculates error estimates, it performs its

calculations with respect to the SimPoint results, unaware of the noise in those results.

Note, however, that the estimates are never off by more than 1% in this regime.

Our results indicate that ANN ensembles handle the inherent inaccuracies induced

by SimPoint well. Typically, average error rates less than 2% are maintained below a

1% sampling of the full design space, and a 1% error rate is obtained by sampling about

2% of the space (50-100× fewer simulations).

Figure 5.6 shows factors of reduction in number of simulated instructions at three

different values of average error between 1% and 4% when ANN modeling and Sim-

Point are combined. The ANN+SimPoint approach yields orders of magnitude reduc-

tions in the number of simulated instructions. Even when error rates as low as 1% are

required, the ANN+SimPoint approach reduces the number of simulated instructions by

172-906×. For error rates of roughly 2%, reductions reach 671-8681×. If 3.5% error

can be tolerated, reductions reach 1129-13018×. Of these gains, 41-208× come from

ANN modeling, while SimPoint contributes an additional 8-63× (Figure 5.7).

26

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Processor/ANN+SimPoint)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Processor/ANN+SimPoint)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Processor/ANN+SimPoint)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Processor/ANN+SimPoint)

Mean
StDev

Figure 5.4: Error rates when ANN modeling and SimPoint are combined.

27

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Processor/ANN+SimPoint)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MESA (Processor/ANN+SimPoint)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Processor/ANN+SimPoint)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

EQUAKE (Processor/ANN+SimPoint)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Processor/ANN+SimPoint)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MCF (Processor/ANN+SimPoint)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Processor/ANN+SimPoint)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

CRAFTY (Processor/ANN+SimPoint)

StDev
Estimated StDev

Figure 5.5: Estimated and true means and standard deviations for percentage error
when ANN modeling is combined with SimPoint.

28

 1

 10

 100

 1000

 10000

 100000

2.41.41.02.32.11.43.51.91.03.12.11.0

F
ac

to
r

of
 R

ed
uc

tio
n

in
 S

im
ul

at
ed

 In
st

rs

Mean Percentage Error Accross Design Space

CRAFTY
EQUAKE

MCF
MESA

Figure 5.6: Gains from combining ANN+SimPoint.

 1

 10

 100

 1000

 10000

3.12.11.0

F
ac

to
r

of
 R

ed
uc

tio
n

in
 S

im
ul

at
ed

 In
st

rs

Mean Percentage Error Accross Design Space

CRAFTY

SimPoint
ANN

ANN+SimPoint

 1

 10

 100

 1000

 10000

3.51.91.0

F
ac

to
r

of
 R

ed
uc

tio
n

in
 S

im
ul

at
ed

 In
st

rs

Mean Percentage Error Accross Design Space

EQUAKE

SimPoint
ANN

ANN+SimPoint

 1

 10

 100

 1000

 10000

2.32.11.4

F
ac

to
r

of
 R

ed
uc

tio
n

in
 S

im
ul

at
ed

 In
st

rs

Mean Percentage Error Accross Design Space

MCF

SimPoint
ANN

ANN+SimPoint

 1

 10

 100

 1000

 10000

 100000

2.41.41.0

F
ac

to
r

of
 R

ed
uc

tio
n

in
 S

im
ul

at
ed

 In
st

rs

Mean Percentage Error Accross Design Space

MESA

SimPoint
ANN

ANN+SimPoint

Figure 5.7: Contributions of SimPoint and ANN to total gains.

29

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9

T
ra

in
in

g
T

im
e

(M
in

ut
es

)

Percentage of Full Space Sampled

Processor Study
Memory-System Study

Figure 5.8: Training times.

5.4 Training Times

Our results show that the amount of simulation required to build accurate ANN models

of a design space is orders of magnitude smaller than what would be required for per-

forming a full simulation-based sensitivity study. If ANN models of large design spaces

are to enable exploration of such spaces in reasonable time with reasonable computa-

tional resources, it is also critical that the time required to train the ANN models be

much smaller than architectural simulation time.

Figure 5.8 shows the amount of time required to train the models for both the mem-

ory system and processor studies as a function of training set size. The networks in

the 10-fold cross validation ensemble are trained in parallel on a standard cluster with

10 nodes of 3GHz Intel Pentium 4 R© CPUs with 1GB of DRAM. Every point in the

plot represents the average of three measurements. As training set size increases from

1% to 9% of the full parameter space, training times scale linearly from 30 seconds

to roughly four minutes. 1 Time required to train the models is negligible compared

to architectural simulation time. Furthermore, as described in Section 3.3, simulation

1This result is expected, since the algorithmic complexity of training a neural network with a single
hidden layer, H hidden units, I inputs, and O outputs on D data points for P passes through the training
set is O(H(I + O)PD).

30

results are collected in batches, and each round of training is amortized over multiple

rounds of simulation (50 in these experiments). Learning curves presented in these stud-

ies typically level off between training set sizes corresponding to 2-4% of the full space,

requiring less than two minutes’ training time per every 50 simulations.

31

Chapter 6

Related Work
Prior work most relevant to ours includes methods to reduce input size when simulating

applications; partial simulation techniques that model only a portion of an application

in detail; and analytic and statistical approaches to model application behavior. These

are not mutually exclusive: many techniques fall into more than one category, and tech-

niques may be combined to reduce time spent per simulation experiment, to explore a

large design space quickly, to choose design parameters of greatest importance, and to

identify design bottlenecks. The ideal approach will provide performance projections

for a given architecture or application and insight into the relationships among design

parameters or inputs, and will be efficient to use. Unfortunately, no combination of

approaches to date delivers this “holy grail.”

Karkhanis and Smith [15] review work in analytical models of microprocessors, in-

cluding methods for analyzing in-order pipelines [9], analytical models for determining

the optimal front-end pipeline depth [11] and analytical models for expressing ILP as a

function of the window size [17]. Yi et al. [28] give a thorough treatment of common

approaches to architectural simulation issues, including workload design [8] and design

parameter prioritization [29]. We briefly discuss approaches most relevant to ours.

Noonberg and Shen [20] take a statistical approach, using probability vectors to

compose a set of components as linked Markov chain models solved using an iterative

technique. Their approach yields accuracies between 2-10%, but is sufficiently compli-

cated that modeling complex machines and large applications has not been thoroughly

studied. Karkhanis and Smith [15] construct a first-order analytic model of superscalar

microprocessors. Their approach is intuitive, affords insight, and delivers performance

estimates with error between 5-13% with respect to detailed simulation. While intu-

itive, the approach is somewhat ad hoc and currently limited in the features it models. It

32

nonetheless provides valuable insights into both behavior of current superscalar proces-

sors and effects of long-term microarchitecture design trends.

The observation that machine structures or events may interact in at most one of

two ways—serially or in parallel—leads Fields et al. [10] to define interaction costs

(icosts) to capture interactions quantitatively. Their model provides insight into the set

of events that affect an event of interest (and thus may have contributed to the triggering

of that event). To measure icosts efficiently, they propose a hardware shotgun profiler,

an augmentation to event counting registers that enables sampling execution in sufficient

detail to construct a statistically representative microarchitecture graph. In the absence

of appropriate hardware sampling infrastructure, computing icosts for N different sets of

events requires 2N simulations. Only computing pairwise icosts still requires a quadratic

number of simulations. Nonetheless, given efficient means for gathering the required

information, the technique gives new insight into (perhaps obscure) bottlenecks.

The statistical simulation approach developed by Eeckhout, et al [7] represents an

attractive alternative to full simulation for many purposes. The technique first derives

application characteristics (e.g., from program traces), generates a synthetic trace ex-

hibiting those characteristics, and then simulates that trace. Statistically generated syn-

thetic traces are orders of magnitude smaller than whole-program traces, speeding simu-

lation time significantly. Oskin et al. [21] develop a hybrid simulator (HLS) that uses an

application’s statistical profiles to model instruction and data streams. HLS dynamically

generates a code base and symbolically executes it on a superscalar microprocessor core,

resulting in much faster experiments than possible with detailed simulation. Its average

error falls within 5-7% of cycle-by-cycle simulation for a MIPS R10000 [18] proces-

sor model. Iyengar et al. [13] introduce the R-metric to evaluate representativeness of

sampled, reduced traces (with respect to actual application workloads) applied to a wide

class of processors. They develop a novel, graph-based heuristic to generate better syn-

33

thetic traces. Eeckhout et al. [6] build on this to generate statistical control flow graphs

characterizing program execution, attaining better accuracy (1.8% average error on 10

SPEC CINT 2000 benchmarks) than HLS. In the SMARTS framework, Wunderlich et

al. [27] select minimal subsets from instruction execution streams such that modeling

those subsets yields results within desired confidence intervals. The approach can de-

liver high accuracies, even with small sampling intervals.

Conte et al. [4] and Haskins and Skadron [12] sample portions of application exe-

cution, performing warmup functional simulation before beginning detailed simulation.

This attempts to create correct cache and branch predictor states for portions of the ap-

plication being simulated in detail. For the large simulation intervals used in Sherwood

et al.’s SimPoint [23], state warmup becomes insignificant, but is significant for other

statistical techniques (e.g, SMARTS [27]) that sample detailed simulation at finer gran-

ularities.

Yi et al. demonstrate Plackett and Burman fractional factorial design [29] in pri-

oritizing parameters for sensitivity studies. This requires 2N simulations to rank N

parameters (they model a high and low value for each, varying parameters indepen-

dently). Once the ranking between the parameters is found, a sensitivity study can be

performed on the most important parameters that can be afforded with available com-

putational resource. The approach cannot provide information on absolute parameter

importance, and cannot account for many potential interactions between parameters. In-

stead, it provides a relative ranking between the parameters without clearly indicating

the importance of less significant parameters. Nonetheless, it may profitably be used to

expend computational resources on design spaces commensurately with the significance

of the parameters under consideration. This approach is orthogonal to our work since a

sensitivity study on the selected design parameters is still required.

Chow and Ding [3] and Cai et al. [1] apply principal component analysis and mul-

34

tivariate analysis to identify the most important parameters and their correlations for

processor design. The energy/performance correlation analysis of Cai et al. focuses on

relationships among variations of performance and energy consumption. Such analyses

complement our approach and Yi et al.’s, helping choose which parameters to vary over

what ranges of interest.

35

Chapter 7

Conclusions and Future Work
Computer architects rely on design space exploration to evaluate the impact of varying

architectural parameters. Many factors have increased the time required to complete

thorough design space studies, placing many such studies beyond our computational

abilities. Techniques that reduce time required for individual simulations do not target

the exponential number of simulations required to explore a complete design space. To

attack this problem, we developed a predictive modeling approach based on artificial

neural networks.

We have presented a fully automated and general mechanism to build accurate mod-

els of architectural design spaces from limited simulation results, finding that our models

can predict IPC with 1-2% error, even when trained on as little as 2% of entire design

spaces. Our framework allows simulation data to be collected incrementally, and esti-

mates model accuracy reliably. Our approach is orthogonal to statistical techniques that

reduce single simulation times, and we have shown that combining our approach with

one particular such technique leads to 1000-13,000× reductions in the total number of

simulated instructions to explore two example architectural design spaces. Furthermore,

overhead for building these models is negligible compared to architectural simulation

time.

We predict IPC in the studies presented here, but our approach is sufficiently general

to predict other architectural statistics of interest. Our mechanism enables much faster

exploration of design spaces of currently feasible sizes, and makes possible the explo-

ration of massive design spaces outside the reach of current simulation infrastructures.

Ultimately, we provide the computer architect with another tool to assist in the design

of new systems and the evaluation of existing ones. In so doing, we hope to increase

understanding of design choices and tradeoffs in a world of ever increasing system com-

36

plexity.

Several future research directions related to predictive modeling of architectural de-

sign spaces remain to be explored. One potentially promising area of research is cross-

application predictive modeling. The work presented in this thesis treats the design

space exploration process on distinct benchmarks as independent problems, where sep-

arate models are trained on simulation results collected on different applications. In

cases where the are similarities between the benchmarks such that the same functional

relationship between design parameters and metrics are observed across several applica-

tions, it could be possible to decrease sampling requirements by making the application

name an input into the models and training one large model for all of the benchmarks.

Another future direction for research is the use of active learning for further reduc-

ing sampling requirements. In active learning, rather than sampling the design space

randomly and training the model on these samples, one allows the model to identify

which data points it would benefit most from if those data were given to it. This often

increases the quality of the sampling and cuts down on the required training set sizes.

Other sophisticated methods of reducing the training set size requirements exist.

Multi-task learning is one such technique that is especially well suited to architectural

design spaces. At the end of a cycle-by-cycle simulation, simulators typically output

several statistics in addition to the main metric of interest. For instance, an architect

could be interested in studying the effect of processor parameters on IPC, and the simu-

lator could report cache miss rates, front-side bus occupancy and branch misprediction

rates in addition IPC. Although strong correlations exist between IPC and these other

metrics, they cannot be used as inputs for the model because they are are unavailable

prior to simulation and cannot be presented to the ANNs when a prediction needs to

be obtained on a design point that is not simulated. Multi-task learning allows these

correlations to be exploited without requiring the additional metrics to be available at

37

the time predictions are made. To do this, a large ANN with several output units is used,

where the additional outputs are allocated to these correlated metrics. This ANN is then

trained on sample simulation results, and correlations between the additional metrics

and the main metric of interest are exploited through the sharing of the weights in the

hidden layers.

Finally, a promising direction for future research involves optimizing statistical sim-

ulation techniques and ANN modeling simultaneously. The combined ANN+SimPoint

results presented in this thesis are based on collecting training sets by SimPoint, where

SimPoint is run out-of-the-box. It is possible to go beyond this framework by optimiz-

ing the accuracy vs. simulation-time tradeoff presented by SimPoint and the accuracy

vs. number of simulations tradeoff offered by ANN modeling simultaneously.

38

Appendix A
The learning curves and error estimates for the remaining applications (Applu, Mgrid,

Gzip, Twolf) are shown below. The results are qualitatively similar to the other applica-

tions that are discussed in Section 5.

When the training sets contain less than 1% of the full design space, the sampling

is too sparse and both error rates and standard deviations are high. In this regime, the

training sets do not contain enough information to capture the functional relationships

between the design parameters and performance. As more data are added to the training

sets through simulation, error rates and standard deviations decrease dramatically and

reach asymptotes when roughly 4% of the design space is sampled. Error estimates are

accurate in all cases, and are often conservative when less than 1% of the full design

space is sampled. As explained in Section 5, this is due to the fact that cross-validation

estimates error from the error rates of individual models in the ensemble, whereas final

predictions are made by averaging the predictions of all models. Averaging typically

reduces the variance in the predictions and leads to lowers the error rates, especially in

cases where the sampling is sparse and variance in the predictions is significant.

As discussed in Section 5, Twolf’s error rates and standard deviation fall more slowly

than the other applications. Twolf also has higher variance as indicated by the slight per-

turbations on the learning curves. To verify that this was not an anomaly due to the spe-

cific training sets chosen through random sampling, we repeated the Twolf experiments

a second time. In both cases, we got qualitatively similar results, corroborating that the

observed behavior is not a consequence of the randomly sampled training points. This

different in behavior is not problematic since cross-validation yields highly reliable er-

ror estimates, which allows the architect to continue simulations until acceptable error

rates are obtained.

39

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

APPLU (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

APPLU (Processor)

Mean
StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MGRID (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MGRID (Processor)

Mean
StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

GZIP (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

GZIP (Processor)

Mean
StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

TWOLF (Memory System)

Mean
StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

TWOLF (Processor)

Mean
StDev

Figure A.1: Error rates of the models on the design space. The columns on the left
and right show results for the memory system and processor studies, respectively.

40

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

APPLU (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

APPLU (Memory System)

StDev
Estimated StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MGRID (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MGRID (Memory System)

StDev
Estimated StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

GZIP (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

GZIP (Memory System)

StDev
Estimated StDev

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

TWOLF (Memory System)

Mean
Estimated Mean

 0
 2
 4
 6
 8

 10
 12
 14

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

TWOLF (Memory System)

StDev
Estimated StDev

Figure A.2: Estimated and true means and standard deviations for percentage error
on the memory system study.

41

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

APPLU (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

APPLU (Processor)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MGRID (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

MGRID (Processor)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

GZIP (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

GZIP (Processor)

StDev
Estimated StDev

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

TWOLF (Processor)

Mean
Estimated Mean

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

E
rr

or

Percentage of Full Space Sampled

TWOLF (Processor)

StDev
Estimated StDev

Figure A.3: Estimated and true means and standard deviations for percentage error
on the processor study.

42

BIBLIOGRAPHY

[1] G. Cai, K. Chow, T. Nakanishi, J. Hall, and M. Barany. Multivariate power/performance analysis
for high performance mobile microprocessor design. In Power Driven Microarchitecture Workshop,
June 1998.

[2] R. Caruana, S. Lawrence, and C. Giles. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Neural Information Processing Systems, pages 402–408, Nov.
2000.

[3] K. Chow and J. Ding. Multivariate analysis of pentium pro processor. In Intel Software Developers
Conference, pages 84–91, Oct. 1997.

[4] T. Conte, M. Hirsch, and K. Menezes. Reducing state loss for effective trace sampling of superscalar
processors. In IEEE International Conference on Computer Design, pages 468–477, Oct. 1996.

[5] G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Techni-
cal Report 935, University of Illinois Urbana-Champaign Department of Electrical and Computer
Engineering, Mar. 1988.

[6] L. Eeckhout, R. Bell, Jr., B. Stougie, K. De Bosschere, and L. John. Control flow modeling in
statistical simulation for accurate and efficient processor design studies. In 31st Annual International
Symposium on Computer Architecture, pages 350–361, June 2004.

[7] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere. Statistical simulation: Adding efficiency
to the computer designer’s toolbox. IEEE Micro, 23(5):26–38.

[8] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload design: Selecting representa-
tive program-input pairs. In International Conference on Parallel Architectures and Compilation
Techniques, pages 83–94, Sept. 2002.

[9] P. Emma and E. Davidson. Characterization of branch and data dependencies on programs for
evaluating pipeline performance. IEEE Transactions on Computers, 36(1):859–875, Mar. 1987.

[10] B. Fields, R. Bodick, M. Hill, and C. Newburn. Interaction cost and shotgun profiling. ACM
Transactions on Architecture and Code Optimization, 1(3):272–304, 2004.

[11] A. Hartstein and T. Puzak. Optimum pipeline depth for a microprocessor. In 29th Annual Interna-
tional Symposium on Computer Architecture, pages 7–13, May 2002.

[12] J. Haskins, Jr. and K. Skadron. Minimal subset evaluation: Rapid warm-up for simulated hardware
state. In IEEE International Conference on Computer Design, pages 195–203, Sept. 2001.

[13] V. Iyengar, L. Trevillyan, and P. Bose. Representative traces for processor models with infinite
cache. In 2nd Annual Symposium on High Performance Computer Architecture, pages 62–73, Feb.
1996.

[14] B. Jacob. A case for studying DRAM issues at the system level. IEEE Micro, 23(4):44–56, 2003.

43

[15] T. Karkhanis and J. Smith. A first-order superscalar processor model. In 31st Annual International
Symposium on Computer Architecture, pages 338–349, June 2004.

[16] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC benchmark workload for simulation-
based computer architecture research. Computer Architecture Letters, 1, June 2002.

[17] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch bandwidth requirement in wide
issue superscalar processors. In International Conference on Parallel Architectures and Compilation
Techniques, pages 2–10, 1999.

[18] MIPS Technologies, Inc. MIPS R10000 Microprocessor User’s Manual, Version 2.0, Dec. 1996.

[19] T. Mitchell. Machine Learning. WCB/McGraw Hill, Boston, MA, 1997.

[20] D. Noonburg and J. Shen. Theoretical modeling of superscalar processor performance. In
IEEE/ACM 27th International Symposium on Microarchitecture, pages 53–62, Nov. 1994.

[21] M. Oskin, F. Chong, and M. Farrens. HLS: Combining statistical and symbolic simulation to guide
microprocessor design. In 27th Annual International Symposium on Computer Architecture, pages
71–82, June 2000.

[22] J. Renau. SESC. http://sesc.sourceforge.net/index.html, 2002.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large scale
program behavior. In 10th Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 45–57, Oct. 2002.

[24] Standard Performance Evaluation Corporation. SPEC CPU benchmark suite.
http://www.specbench.org/osg/cpu2000/, 2000.

[25] P. Szwed, D. Marques, R. Buels, S. McKee, and M. Schulz. SimSnap: Fast-forwarding via native
execution and application-level checkpointing. In the 8th IEEE Workshop on Interaction between
Compilers and Computer Architectures, Feb. 2004.

[26] S. Wilton and N. Jouppi. CACTI: An enhanced cache access and cycle time model. IEEE Journal
of Solid-State Circuits, 31(5):677–688, May 1996.

[27] R. Wunderlich, T. Wenish, B. Falsafi, and J. Hoe. SMARTS: Accelerating microarchitecture sim-
ulation via rigorous statistical sampling. In 30th Annual International Symposium on Computer
Architecture, pages 84–95, June 2003.

[28] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characterizing and comparing prevailing
simulation techniques. In 11th Annual Symposium on High Performance Computer Architecture,
pages 266–277, Feb. 2005.

[29] J. Yi, D. Lilja, and D. Hawkins. A statistically-rigorous approach for improving simulation method-
ology. In 9th Annual Symposium on High Performance Computer Architecture, pages 281–291,
June 2003.

44

