
FAST SEMISTOCHASTIC HEAT-BATH
CONFIGURATION INTERACTION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Junhao Li

August 2019

c© 2019 Junhao Li

ALL RIGHTS RESERVED

FAST SEMISTOCHASTIC HEAT-BATH CONFIGURATION INTERACTION

Junhao Li, Ph.D.

Cornell University 2019

In this thesis, I present my work on the fast semistochastic heatbath configura-

tion interaction (Fast SHCI), which is an efficient algorithm for doing essentially

exact electronic structure calculations within a finite basis.

There are Hamiltonians for which the entire Hilbert space is enormous, but

the important part of Hilbert space is of manageable size, say 1012. Quantum

chemistry Hamiltonians, for reasonably small systems, have this property. For

such Hamiltonians, selected configuration interaction plus perturbation theory

(SCI+PT) methods can be useful. The most important part of the Hilbert space

is treated variationally, and the resulting energy is improved by using pertur-

bation theory. Fast SHCI is more than an order of magnitude faster than other

SCI+PT algorithms, and also much faster than other essentially exact algorithms

for many chemical systems. This thesis provides an in-depth description of the

Fast SHCI algorithm and its implementation. I use SHCI to compute the elec-

tronic structure of several chemical systems and the homogeneous electron gas.

Some of these calculations are more accurate than those achieved by other high-

order quantum chemistry methods. Others treat systems larger than those that

can be treated by other equally accurate methods.

My implementation of SHCI uses a modular design, which not only makes

the library highly extensible but also contributes several generic distributed

computing building blocks to the open-source community. In this thesis, I also

describe my design and implementation of these generic components.

Finally, I also provide a brief discussion of the usability of general software

engineering best practices for the development of medium-scale scientific soft-

ware packages with lessons learned from designing, developing, and leading

the development of our SHCI package. Medium-scale scientific software pack-

ages are common in scientific research where a small group of researchers works

on the same code base. Due to the differences in the requirements, some best

practices that are common in the industry need to be adjusted to be useful for

these projects.

BIOGRAPHICAL SKETCH

Junhao Li was born and grew up in Shanghai, China. From a young age, he had

a strong interest in science and engineering and enjoyed disassembling all kinds

of home appliances.

Junhao attended Shanghai Jiao Tong University from 2009, graduating with

a B.S. in physics and a B.S.E in computer science in 2013. While an undergradu-

ate, he did research in various fields, including semiconductor fabrication, pho-

tovoltaics, finite element analysis of the electromagnetic field, density functional

theory, and social networks.

In the fall of 2013, Junhao came to Cornell University to pursue a Ph.D. in

physics. During his Ph.D., he mainly worked with professor Cyrus Umrigar on

the development and application of highly accurate quantum chemistry meth-

ods. He developed the fast heatbath configuration interaction method, which

is more than an order of magnitude faster than other methods in its category,

and achieved significantly higher accuracy than other well-developed methods,

such as DMRG and FCIQMC, on many systems. He also did research in molec-

ular dynamics and defects with professor James Sethna.

After obtaining a master’s degree at Cornell, Junhao spent a summer as an

intern at Google in California in 2016. He then returned to Ithaca, brought

back the softeware engineering skills he learned from Google, and developed

a highly efficient and extensible quantum chemistry package, Arrow, as well as

several open-sourced generic high-performance computing libraries.

iii

This document is dedicated to all Cornell graduate students.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Professor Cyrus Umrigar. His

commitment to physics research is exemplary and inspiring. He led me into

the field of quantum chemistry, which is an indispensable foundation of highly

accurate quantum simulations. All my knowledge of quantum Monte Carlo

are inherited from him, and my work on heatbath configuration interaction is

impossible without his guidance and support. He taught me valuable research

skills and helped me go through the process of publishing my first first-author

paper in a top academic journal. I am also extremely grateful to him for always

being supportive of the decisions I made, the ideas I wanted to try, and being

tolerant and direct when I made mistakes. He made my six years of Ph.D. life a

truly rewarding experience.

I would also like to thank Professor James Sethna. It was a pleasure to work

with Jim on defects and molecular dynamics. His enthusiasm and optimism

inspire me whenever I face challenging problems. I also learned a lot from his

tremendous insights into physics and data analysis.

I also thank all the graduate students I worked with, especially Adam

Holmes, Matt Otten, and Matt Bierbaum. They helped me get started in my

research, patiently answered all my questions, and gave me valuable advice on

my projects. I cannot imagine how much longer it would have taken me to get

started and how many detours I might have taken without their help.

I would like to give special thanks to my parents for giving me birth and rais-

ing me. They gave me a warm family as I grew up and consistently supported

me as I pursued my degree at Cornell. Thanks also to my elementary school,

middle school, high school, and undergraduate teachers and friends back in

China for all the invaluable lessons I learned from them, the wonderful memo-

v

ries I have of the time I spent with them, and all the help and encouragement I

received from them.

Finally, I acknowledge the financial support from Cornell University physics

department, National Science Foundation and the Air Force Office of Scientific

Research, and the computing resources support from Pittsburg Computing Cen-

ter, the Argonne National Lab, NERSC, and Google Cloud. Thank you, and I

hope you are proud.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . ix
List of Figures . xi

1 Introduction 1

2 Fast Heat-Bath Configuration Interaction 5
2.1 Introduction . 5
2.2 SHCI Review . 8

2.2.1 Variational Stage . 8
2.2.2 Perturbative Stage . 10
2.2.3 Other features of SHCI . 14

2.3 Fast Hamiltonian Construction . 15
2.4 3-step Perturbation Energy . 21
2.5 Key Data Structures . 29

2.5.1 Determinants . 29
2.5.2 Hamiltonian Matrix . 30
2.5.3 Partial Sums . 31

2.6 Parallelization . 32
2.7 Conclusion . 34

3 Homogeneous Electron Gas Simulation with Fast SHCI 37
3.1 Introduction . 37
3.2 Homogeneous Electron Gas Hamiltonian 40
3.3 Revising SHCI for Homogeneous Electron Gas 41

3.3.1 Large Basis Set . 42
3.3.2 Orbital Momentum Conservation 42

3.4 Results . 45
3.4.1 14-Electron Supercell . 45
3.4.2 54-Electron Supercell . 46

3.5 Conclusions . 48

4 Chromium Dimer Simulation with Fast SHCI 53
4.1 Introduction . 53
4.2 Equilibrium Geometry . 54
4.3 Potential Energy Surface . 59

vii

5 Transition Metal Systems Benchmark 65
5.1 Introduction . 65
5.2 Methods . 65
5.3 Results . 69

6 Simplified High Performance Cluster Computing 72
6.1 Introduction . 73
6.2 The Blaze Library . 76

6.2.1 Distributed Containers . 76
6.2.2 MapReduce . 77
6.2.3 Optimization . 78

6.3 Applications . 81
6.3.1 Task Description and Implementation 82
6.3.2 Performance Analysis . 86
6.3.3 Memory Consumption . 87
6.3.4 Cognitive Load . 90

6.4 Conclusion . 91
6.5 Examples . 92

6.5.1 Word frequency count . 92
6.5.2 Monte Carlo Pi Estimation 94

7 Scientific Software Engineering in Small Research Groups 96
7.1 Differences Between Industrial and Scientific Software 97

7.1.1 Feature Requirements . 97
7.1.2 Users . 98
7.1.3 Lifecycle . 98

7.2 Applicability of Industrial Software Engineering Practices 99
7.2.1 Object Oriented Design . 99
7.2.2 Unit Tests . 100
7.2.3 Code Review . 101
7.2.4 Refactoring . 101
7.2.5 Continuous Integration . 102

8 Conclusion 104

Bibliography 106

viii

LIST OF TABLES

2.1 The notation for the data structures in our current algorithm for
efficiently constructing the Hamiltonian matrix. Analogous data
structures with the alpha and beta roles reversed are also used.
The text gives details of how they are constructed efficiently. . . . 16

2.2 Computational cost of perturbative correction for a copper atom
in a cc-pVTZ basis. The variational space has 19 million determi-
nants for ε1 = 5×10−5 Ha and the perturbative space has 35 billion
determinants for ε2 = 10−7 Ha. HCI uses the deterministic pertur-
bation of Ref. [52]. SHCI uses the 2-step semistochastic perturba-
tion algorithm of Ref. [93]. Improved SHCI introduces the 3-step
batch perturbation that significantly improves the efficiency of
SHCI, especially for memory constrained cases. The timings for
the 32GB machine are obtained by running on the same 128GB
large memory machine but intentionally tuning the parameters
so that the memory usage is kept below 32GB throughout the
run. We also provide the timing to reach a 1.8 µHa uncertainty
to illustrate that our statistical error goes down much faster than
1/
√

T since we use smaller εdtm
2 and ε

psto
2 values for smaller target

errors. 22

3.1 Summary of the HEG Total Correlation Energies (Ha).
CCMC [79] uses quantum Monte Carlo to evaluate coupled clus-
ter wavefunctions with up to 1030 orbitals and 5th order exci-
tation (CCSDTQ5). FCIQMC [95] and its recent improvement
FCIQMC-TC [70] use up to 2368 orbitals. SHCI uses up to 39886
orbitals, which give shorter extrapolation distances and much
more accurate results than CCMC and FCIQMC. 50

3.2 Summary of the HEG Total Correlation Energies (Ha) with 54-
Electron Supercells. DMC [87] uses real space basis and back-
flow wave function. FCIQMC [95] and its recent improvement
FCIQMC-TC [70] use up to 1850 orbitals. SHCI uses up to 23506
orbitals, which give much shorter extrapolation distances than
FCIQMC and thus more accurate results. 50

4.1 Results for Cr2 at r=1.68 in the cc-pVDZ-DK basis. The active
space is (28e, 76o). NV is the number of variational determinants.
ε2 = 10−6ε1. We use weighted quadratic extrapolation, shown in
Fig. 4.1, to obtain the FCI limit corresponding to ∆E = 0. 56

5.1 A list of abbreviations used in this benchmark. In Column A,
the maximum basis set performed by that method for the tran-
sition metal atoms is listed, and in Column B the same for the
monoxide molecules. 66

ix

6.1 Monte Carlo Pi Estimation Performance. We can see that
Blaze MapReduce has almost the same speed as hand-optimized
MPI+OpenMP parallel for loops while requires much fewer
source lines of code (SLOC). 81

x

LIST OF FIGURES

2.1 Hamiltonian matrix construction time for a copper atom in a cc-
pVTZ basis. Hamiltonian construction is the performance bot-
tleneck in the variational stage. Hamiltonian construction in our
improved SHCI algorithm is an order of magnitude faster than
in our original SHCI algorithm, and several orders of magnitude
faster than the faster of the two brute force approaches (loop over
each pair of determinants). Also shown is the number of nonzero
elements in the Hamiltonian, scaled so that the first point coin-
cides with the first point of the improved SHCI CPU time. 20

2.2 Parallel speedup of the variational stage for a copper atom in a
cc-pVTZ basis. There is almost perfect scaling for up to 4 nodes
and 75% parallel efficiency at 16 nodes. 34

2.3 Parallel speedup for improved SHCI compared to the original
SHCI for the perturbative stage of the calculation for a copper
atom in a cc-pVTZ basis. From 1 node to 4 nodes, we see a signif-
icant deviation from linear speedup due to the additional com-
munication from shuffling the perturbative determinants across
nodes. Starting from 8 nodes, the number of shuffles approaches
a constant and we can see an almost linear speedup from us-
ing more processors. The estimate of the speedup of the original
SHCI is based on the assumption that the total memory of 10
nodes is enough to support the optimal choice of εdtm

2 and Nd, in
Eqs. 2.8 and 2.9. The “Original” curves are scaled to reflect the
relative speed of original SHCI algorithm to that of the improved
algorithm. 35

3.1 Hybrid Representation for Determinants. The occupancy of the
most important orbitals is represented with bit-packing. The in-
dices of the other occupied orbitals, which are 456, 1234, 2345,
and 33333 in this case, are stored in a self-balancing binary search
tree [112]. 43

3.2 SHCI Helper Lists for HEG. For each kpq, we generate a list of
〈kpr, |Hpqrs|〉 pairs and sort them in descending order of |Hpqrs|.
When trying to find connected determinants from a given
spawning determinant, we go through each occupied pair of or-
bitals p and q, calculate their momentum difference kpq, and go
through the corresponding list until |Hpqrs| falls below a certain
threshold. For each entry that we go through in the list, we can
obtain r and s by using kpr and momentum conservation. 44

3.3 Complete basis set extrapolation for HEG 14-electron super-
cell with rs = 0.5. The extrapolated correlation energy is
−0.594748(12) Ha. 46

xi

3.4 Complete basis set extrapolation for HEG 14-electron super-
cell with rs = 1.0. The extrapolated correlation energy is
−0.530536(18) Ha. 47

3.5 Complete basis set extrapolation for HEG 14-electron super-
cell with rs = 2.0. The extrapolated correlation energy is
−0.443007(12) Ha. 48

3.6 Complete basis set extrapolation for HEG 14-electron supercell
with rs = 5.0. Since the correlation energy is already converged
after 2000 orbitals, we use the average of the last 3 points in this
case. The extrapolated correlation energy is −0.30642(5) Ha. . . . 49

3.7 Comparison between SHCI results and FCIQMC results for rs =

0.5. Note that all the points have error bars smaller than the size
of the points themselves except for the FCIQMC point on the
zoomed-in view. SHCI goes much closer to the infinite basis set
and thus achieves more accurate and reliable extrapolated re-
sults. 51

3.8 Complete basis set extrapolation for HEG 54-electron super-
cell with rs = 0.5. The extrapolated correlation energy is
−2.4313(11) Ha. 52

4.1 Weighted quadratic extrapolation of the Cr2 ground state en-
ergy. The weight of each point is (Evar − Etot)−2. The extrapolated
energy is −2099.9224(6), where the uncertainty comes from the
difference between linear extrapolation and quadratic extrapo-
lation. The p-DMRG extrapolation and the CCSD(T) value are
also shown. 57

4.2 Contribution from each excitation level to the variational wave-
function for Cr2 with 2 × 109 determinants. Determinants with
up to 15 excitations are present in the variational wavefunction. 58

4.3 Comparison of SHCI potential energy curves of Cr2, correlating
12 or 28 electrons, with experiment. The shape of the experi-
mental data is deduced from measuring 29 vibrational states us-
ing negative-ion photoelectron spectroscopy [19]. The potential
energy curves from the 12-correlated-electron calculations agree
poorly with experiment, though the agreement improves upon
increasing the basis size. The 28-correlated-electron calculation
agrees much better with experiment. 60

4.4 Comparison of SHCI potential energy curves of Cr2 with 12 cor-
related electrons and a cc-pVTZ basis, using either HF-core or-
bitals or CAS-core orbitals. The CAS-core curve gives a lower
potential energy, closer to experiment, but the HF-core calcula-
tion results in a potential energy curve whose shape (in particu-
lar the location of the minimum) is closer to experiment. 61

xii

4.5 Raw data and extrapolation for Cr2 with 28 correlated electrons
and a cc-pVDZ basis. 62

4.6 Potential energy curve of Cr2 with 28 electrons in a cc-pVDZ
basis calculated from various methods. The experimental data
come from negative-ion photoelectron spectroscopy [19]. The
UHF curve bears no resemblance to the experimental curve. The
UCCSD and UCCSD(T) curves are better, especially at long bond
lengths, but even UCCSD(T), which is considered to be the “gold
standard” for single-reference systems, agrees poorly with ex-
periment. In contrast, the SHCI curve is in reasonable agreement
with experiment. 63

5.1 Cluster analysis of electronic structure methods in this work.
The matrix values are the logarithm of the RMS deviation of the
total energy in Hartrees (Eqn 5.1) between the two methods. . . . 67

5.2 Kernel density estimation of the percent of the SHCI-computed
correlation energy within each basis obtained by each of the
methods in the benchmark set. All basis sets available are plot-
ted; individual data points are indicated by small lines. 69

5.3 Kernel density estimation plot of binding energy and ionization
potential of molecules and atoms to SHCI complete basis refer-
ence calculations. Each technique is listed with the largest basis
set available, so long as the basis set is triple-ζ or larger. Methods
are ordered according to the clustering in Fig 5.1. 70

6.1 MapReduce Programming Model. The map function generates
a set of intermediate key/value pairs for each input. The re-
duce function merges the values associated with the same key.
Numerous data mining and machine learning algorithms are ex-
pressible with this model. 73

6.2 Blaze Architecture. 76
6.3 Eager Reduction in Blaze MapReduce. 79
6.4 Performance of the word frequency count measured in the num-

ber of words processed per second. 87
6.5 Performance of the PageRank algorithm measured in number of

links processed per second per iteration. 88
6.6 Performance of the K-Means algorithm measured in the number

of points processed per second per iteration. 88
6.7 Performance of the Expectation Maximization algorithm for the

Gaussian Mixture Model measured in the number of points pro-
cessed per second per iteration. 89

6.8 Performance of the Nearest 100 Neighbors search measured in
the number of total points processed per second. 89

6.9 Peak memory usage on a single node. 90

xiii

6.10 Cognitive load comparison between Blaze and Spark. 91

xiv

CHAPTER 1

INTRODUCTION

A major problem in the electronic structure theory is solving the many-body

Schrödinger’s equation accurately and efficiently since there is usually a trade-

off between accuracy and efficiency. Density functional theory (DFT) [81, 36, 60]

is the most popular method, and it is very efficient, but it uses approximate

density functionals, and thus it is often not sufficiently accurate. Coupled clus-

ter with single, double, and perturbative triple excitations CCSD(T) [85] is often

considered as the gold standard of quantum chemistry. It is very accurate for

single reference systems where a single determinant in the many-body wave-

function has a large amplitude, such as many organic molecules, but not for

multireference or strongly-correlated systems. Density matrix renormalization

group (DMRG) [109, 110, 22, 23, 92, 80, 90, 48] and full configuration interaction

quantum Monte Carlo (FCIQMC) [16, 28, 82, 15, 53] are systematically improv-

able and give nearly exact solutions for small systems, but rapidly get expensive

with the number of electrons and the size of the basis set.

Fast heatbath configuration interaction (SHCI) [52, 93, 54, 97, 77, 25, 65] is an-

other systematically improvable method capable of providing essentially exact

energies for small chemical systems. In common with FCIQMC, the computa-

tional cost of the method scales exponentially in the number of electrons, but

SHCI is much faster than FCIQMC. The comparison with DMRG is more in-

volved. SHCI is much faster than DMRG for small, moderately correlated sys-

tems. SHCI scales exponentially with system size with a prefactor that is typi-

cally small, but the prefactor grows with the strength of the correlation. DMRG

scales exponentially with the (D − 1)/D-th power of the system size (where D

1

is the system dimension) with a prefactor that is typically larger, but the pref-

actor is not very sensitive to the strength of the correlation. Hence it is usually

the method of choice for 1- and 2-dimensional systems, and also for some 3-

dimensional systems.

SHCI is an example of selected configuration interaction plus perturbation

theory (SCI+PT) methods [55, 17, 40, 27, 50, 18, 58, 29, 39, 89, 44, 68, 105]. SCI+PT

methods have two stages. In the first stage, a variational wavefunction is con-

structed iteratively, starting from a determinant that is expected to have a signif-

icant amplitude in the final wavefunction, e.g., the Hartree-Fock determinant.

Each iteration of the variational stage has three steps: the selection of important

determinants, construction of the Hamiltonian matrix, and iterative diagonal-

ization of the Hamiltonian matrix. In the second stage, 2nd-order perturbation

theory is used to improve upon the variational energy.

The Fast SHCI algorithm has greatly improved the efficiency of both stages

of SCI+PT calculations. First, it greatly speeds up the determinant selection and

Hamiltonian construction by using the heat-bath selection criterion and the fast

Hamiltonian construction algorithm, and, second, it drastically reduces the cen-

tral processing unit (CPU) cost as well as the memory cost of performing the

perturbation step by using a 3-step perturbation algorithm. With fast SHCI,

we can employ two orders of magnitude larger variational wavefunctions than

other SCI+PT methods and can incorporate the entire Hilbert space in the per-

turbative correction calculation.

I apply fast SHCI to the homogeneous electron gas (HEG). HEG is one of

the most fundamental models in condensed-matter physics and is often used

for benchmarking new methods. With a tunable parameter controlling the den-

2

sity of the electrons, HEG provides a wide range of interacting fermion systems

from weakly correlated to strongly correlated. HEG is also the foundation of

density functional theory (DFT). In this thesis, I focus on the HEG systems in

the mid to high-density region. In this region, the basis set incompleteness er-

ror is the dominant error for most quantum chemistry methods. SHCI works

well with large basis sets and thus naturally solves the basis set incompleteness

problem. In our calculation, we use up to 4×104 orbitals, which is over an order

of magnitude more than the number of orbitals used in previous calculations

with other methods, such as FCIQMC.

I also apply fast SHCI to the chromium dimer system. The chromium dimer

is a challenging strongly-correlated system that has been used as a benchmark

molecule for a variety of methods [91, 62, 84, 71, 106, 49]. I calculate both the en-

ergy at the Cr2 equilibrium geometry and its entire potential energy curve. For

the equilibrium geometry, with 2 billion variational determinants, we achieve

extremely high accuracy, which beats the accuracy of well-developed methods,

such as the density matrix renormalization group (DMRG). For the potential

energy curve, we include in our Hilbert space up to 28 active electrons with a

cc-pVDZ basis. This Hilbert space is several orders of magnitude larger than

the Hilbert space used in other systematically improvable methods.

One of the core components of our SHCI software is a generic cluster com-

puting library, which consists of a high-performance implementation of MapRe-

duce and several parallel data containers. MapReduce [33, 34] provides users

a high-level abstraction for defining their parallel computation and takes care

of the intricate low-level execution steps internally. Each MapReduce operation

consists of two phases: a map phase where each input is mapped to a set of inter-

3

mediate key/value pairs, and a reduce phase where the pairs with the same key

are reduced to a single key/value pair according to a user-specified reduce func-

tion. Many algorithms are expressible with this model, including the algorithm

for finding important determinants and evaluating the perturbative correction

in our SHCI method. MapReduce implementations can automatically allocate

resources and execute these algorithms in parallel. Most industrial implementa-

tions focus on handling big data rather than achieving higher performance. Our

library focuses on high performance, which is achieved by introducing three

major improvements to the MapReduce algorithm: eager reduction, fast serial-

ization, and special treatment for a small fixed key range. Our library achieves

an order of magnitude faster performance than the popular cluster computing

library, Spark, on several compute-intensive MapReduce tasks.

The use of software engineering techniques is essential to the successful de-

velopment and maintenance of the SHCI software. Software engineering stud-

ies the management of the software development process in a scientific and

systematic way. It helps to make the software development faster, easier, and

the software is more robust and extensible. Software engineering is especially

important to scientific software development because if the software has poor

quality, the results may be unreliable, which can lead to wrong conclusions and

mislead future research. There are many software engineering practices in the

industry. I examine the most common ones and discuss their applicability in the

setting of scientific software development.

4

CHAPTER 2

FAST HEAT-BATH CONFIGURATION INTERACTION

This chapter1 presents in detail our fast semistochastic heat-bath configuration

interaction (SHCI) method for solving the many-body Schrödinger equation.

We identify and eliminate computational bottlenecks in both the variational and

perturbative steps of the SHCI algorithm. We also describe the parallelization

and the key data structures in our implementation, such as the distributed hash

table.

2.1 Introduction

The choice of quantum chemistry methods requires a trade-off between accu-

racy and efficiency. Density functional theory (DFT) [81, 36, 60] methods with

approximate density functionals are popular and efficient, but are often not suf-

ficiently accurate. Coupled cluster with single, double, and perturbative triple

excitations CCSD(T) [85] is very accurate for single reference systems, but not

for strongly-correlated systems, such as systems with stretched bonds. Density

matrix renormalization group (DMRG) [109, 110, 22, 23, 92, 80, 90, 48] and full

configuration interaction quantum Monte Carlo (FCIQMC) [16, 28, 82, 15, 53]

are systematically improvable but rapidly get expensive with the number of

electrons and the size of the basis set.

The recently developed semistochastic heat-bath configuration interaction

(SHCI) [52, 93, 54, 97, 77, 25] is another systematically improvable method capa-

ble of providing essentially exact energies for small systems. In common with
1This chapter was published in Ref. [66]

5

FCIQMC, the computational cost of the method scales exponentially in the num-

ber of electrons but with a much smaller exponent than in full configuration in-

teration (FCI). However, SHCI is much faster than FCIQMC. The comparison

with DMRG is more involved. While SHCI is much faster than DMRG for small

moderately correlated systems, the ratio of costs changes in DMRG’s favor as

the system size increases and as the correlation strength increases, because the

methods have different scaling with these parameters. In particular SHCI scales

exponentially with system size with a prefactor that is typically small, but which

grows with the strength of the correlation. DMRG scales exponentially with the

(D − 1)/D-th power of the system size (where D is the system dimension) with

a prefactor that is typically larger, but is not very sensitive to the strength of the

correlation.

SHCI is an example of the selected configuration interaction plus perturba-

tion theory (SCI+PT) methods [55, 17, 40, 27, 50, 18, 58, 29, 39, 89, 44, 68, 105], the

earliest of which being the configuration interaction by perturbatively selecting

iteratively (CIPSI) method [55, 40] of Malrieu and collaborators. SCI+PT meth-

ods have two stages. In the first stage a variational wavefunction is constructed

iteratively, starting from a determinant that is expected to have a significant

amplitude in the final wavefunction, e.g., the Hartree-Fock determinant. Each

iteration of the variational stage has three steps: selection of important deter-

minants, construction of the Hamiltonian matrix, and iterative diagonalization

of the Hamiltonian matrix. In the second stage, 2nd-order perturbation theory is

used to improve upon the variational energy.

The SHCI algorithm has greatly improved the efficiency of both stages. First,

as discussed in Section 2.2.1, it greatly speeds up the determinant selection, and,

6

second, as discussed in Section 2.2.2, it drastically reduces the central process-

ing unit (CPU) cost as well as the memory cost of performing the perturba-

tion step by using a semistochastic algorithm. These two modifications have

allowed SHCI to be used for systems as large as hexatriene in an ANO-L-pVDZ

basis (32 correlated electrons in 118 orbitals) which has a Hilbert space of 1038

determinants [25]. SHCI has also recently been extended to (a) calculate not

just the ground state but also the low-lying excited states [54], (b) perform self-

consistent field orbital optimization in very large active spaces [97], and (c) in-

clude relativistic effects including the spin-orbit coupling using “one-step” cal-

culations with two-component Hamiltonians [77]. Since SHCI has greatly re-

duced the time required to select determinants, we find, for large systems, that

Hamiltonian construction is the most time-consuming step of the variational

stage. For around 108 variational determinants, it takes two orders of magni-

tude more time to construct the Hamiltonian matrix than to select the determi-

nants for most molecules. In addition, if a small stochastic error is required,

the perturbative stage can be expensive, particularly on computer systems that

do not have enough memory. Hence, in this paper, we present an improved

SHCI algorithm that greatly speeds up these two steps. For the variational

stage, we introduce a fast Hamiltonian construction algorithm that allows us

to use two orders of magnitude more determinants in the wavefunction. For

the perturbative stage, we introduce the 3-step batch perturbation method that

further speeds up the calculation and reduces the memory requirement. We also

describe important implementation details of the algorithm, including the key

data structures and parallelization.

We organize the paper as follows: In section 2.2, we review the SHCI

method. In section 2.3, we introduce our faster Hamiltonian construction al-

7

gorithm. In section 2.4, we introduce our 3-step batch perturbation algorithm.

In section 2.5, we describe the key data structures in our implementation. In sec-

tion 2.6, we describe the parallelization strategy and demonstrate its scalability.

Section 2.7 concludes the paper.

2.2 SHCI Review

In this section, we review the semistochastic heat-bath configuration interaction

method (SHCI) [52, 93, 54], emphasizing the two important ways it differs from

other SCI+PT methods.

In the following, we use V for the set of variational determinants, and P

for the set of perturbative determinants, that is, the set of determinants that are

connected to the variational determinants by at least one non-zero Hamiltonian

matrix element but are not present inV.

2.2.1 Variational Stage

SHCI starts from an initial determinant and generates the variational wave func-

tion through an iterative process. At each iteration, the variational wavefunc-

tion, ΨV , is written as a linear combination of the determinants in the spaceV

ΨV =
∑
Di∈V

ci |Di〉 (2.1)

and new determinants, Da, from the space P that satisfy the criterion

∃ Di ∈ V, such that |Haici| ≥ ε1 (2.2)

8

are added to theV space, where Hai is the Hamiltonian matrix element between

determinants Da and Di, and ε1 is a user-defined parameter that controls the

accuracy of the variational stage 2. (When ε1 = 0, the method becomes equiva-

lent to FCI.) After adding the new determinants to V, the Hamiltonian matrix

is constructed, and diagonalized using the diagonally preconditioned Davidson

method [32], to obtain an improved estimate of the lowest eigenvalue, EV , and

eigenvector, ΨV . This process is repeated until the change in EV falls below a

certain threshold, e.g., 1 µHa.

Other SCI methods, such as CIPSI [55, 40] use different criteria, usually based

on either the first-order perturbative coefficient of the wavefunction,

∣∣∣c(1)
a

∣∣∣ =

∣∣∣∣∣∑i Haici

E0 − Ea

∣∣∣∣∣ > ε1 (2.3)

or the second-order perturbative correction to the energy.

−∆E2 = −
(
∑

i Haici)2

E0 − Ea
> ε1. (2.4)

The reason we choose instead the selection criterion in Eq. 2.2 is that it can be

implemented very efficiently without checking the vast majority of the determi-

nants that do not meet the criterion, by taking advantage of the fact that most

of the Hamiltonian matrix elements correspond to double excitations, and their

values do not depend on the determinants themselves but only on the four or-

bitals whose occupancies change during the double excitation. Therefore, before

performing an HCI run, for each pair of spin-orbitals, the absolute values of the

2Since the absolute values of ci for the most important determinants tends to go down as

more determinants are included in the wavefunction, a somewhat better selection of determi-

nants is obtained by using a larger value of ε1 in the initial iterations.

9

Hamiltonian matrix elements obtained by doubly exciting from that pair of or-

bitals is computed and stored in decreasing order by magnitude, along with the

corresponding pairs of orbitals the electrons would excite to. Then the double

excitations that meet the criterion in Eq. 2.2 can be generated by looping over all

pairs of occupied orbitals in the reference determinant, and traversing the array

of sorted double-excitation matrix elements for each pair. As soon as the cutoff

is reached, the loop for that pair of occupied orbitals is exited. Although the

criterion in Eq. 2.2 does not include information from the diagonal elements,

the HCI selection criterion is not significantly different from either of the two

CIPSI-like criteria because the terms in the numerator of Eq. 2.3 span many or-

ders of magnitude, so the sum is highly correlated with the largest-magnitude

term in the sum in Eq. 2.3. It was demonstrated in Ref. [52] that the selected

determinants give only slightly inferior convergence to those selected using the

criterion in Eq. 2.3. This is greatly outweighed by the improved selection speed.

Moreover, one could use the HCI criterion in Eq. 2.2 with a smaller value of ε1

as a preselection criterion, and then select determinants using the criterion in

Eq. 2.4, thereby having the benefit of both a fast selection method and a close to

optimal choice of determinants.

2.2.2 Perturbative Stage

In common with most other SCI+PT methods, the perturbative correction is

computed using Epstein-Nesbet perturbation theory [38, 78]. The variational

wavefunction is used to define the zeroth-order Hamiltonian, H0 and the per-

10

turbation, V ,

H0 =
∑
i, j∈V

Hi j|Di〉〈D j| +
∑
a<V

Haa|Da〉〈Da|.

V = H − H0. (2.5)

The first-order energy correction is zero, and the second-order energy correction

∆E2 is

∆E2 = 〈Ψ0|V |Ψ1〉 =
∑
a∈P

(∑
i∈V Haici

)2

E0 − Ea
, (2.6)

where Ea = Haa.

It is expensive to evaluate the expression in Eq. 2.6 because the outer sum-

mation includes all determinants in the space P and their number is O(n2v2NV),

where NV is the number of variational determinants, n is the number of electrons

and v is the number of virtual orbitals. For the calculation on Cr2, described in

Section 4.2, n = 28, v = 62 and NV = 2 × 109, so the number of determinants

in P is huge. The straightforward and time-efficient approach to computing

the perturbative correction requires storing the partial sum
∑

i∈V Haici for each

a, while looping over all the determinants i ∈ V. This creates a severe memory

bottleneck.

Various schemes for improving the efficiency have been implemented, in-

cluding only exciting from a rediagonalized array of the largest-weight deter-

minants [40], and its efficient approximation using diagrammatic perturbation

theory [27]. However, this is both more complicated than necessary (requiring a

double extrapolation with respect to the two variational spaces to reach the Full

CI limit) and is more computationally expensive than necessary since even the

largest weight determinants have many connections that make only small con-

11

tributions to the energy. The SHCI algorithm instead uses two other strategies

to reduce both the computational time and the storage requirement.

First, SHCI screens the sum [52] using a second threshold, ε2 (where ε2 < ε1)

as the criterion for selecting perturbative determinants P,

∆E2 (ε2) =
∑

a

(∑(ε2)
Di∈V

Haici

)2

EV − Haa
(2.7)

where
∑(ε2) indicates that only terms in the sum for which |Haici| ≥ ε2 are in-

cluded. Similar to the variational stage, we find the connected determinants

efficiently with precomputed arrays of double excitations sorted by the magni-

tude of their Hamiltonian matrix elements [52]. Note that the vast number of

terms that do not meet this criterion are never evaluated.

Even with this screening, the simultaneous storage of all terms indexed by

a in Eq. 2.7 can exceed computer memory when ε2 is chosen small enough to

obtain essentially the exact perturbation energy. The second innovation in the

calculation of the SHCI perturbative correction is to overcome this memory bot-

tleneck by evaluating this perturbative correction semistochastically [93]. The

most important contributions are evaluated deterministically and the rest are

sampled stochastically. The total perturbative correction is

∆E2 (ε2) =
[
∆Es

2 (ε2) − ∆Es
2

(
εd

2

)]
+ ∆Ed

2

(
εd

2

)
(2.8)

where ∆Ed
2 is the deterministic perturbative correction obtained by using a

larger threshold εd
2 ≥ ε2 in Eq. 2.7. ∆Es

2 is the stochastic perturbative correction

from randomly selected samples of the variational determinants, and is given

12

by

∆Es
2(ε2) =

1
Nd (Nd − 1)

〈∑
Da∈P




Nuniq
d ,(ε2)∑
Di∈V

wiciHai

pi


2

+

Nuniq
d ,(ε2)∑
Di∈V

(
wi (Nd − 1)

pi
−

w2
i

p2
i

)
c2

i H2
ai

 1
E0 − Ea

〉
(2.9)

where Nd is the number of variational determinants per sample and Nuniq
d is the

number different determinants in a sample. pi and wi are the probability of se-

lecting determinant Di and the number of copies of that determinant in a sam-

ple, respectively. The Nd determinants are sampled from the discrete probability

distribution

pi =
|ci|∑NV
j

∣∣∣c j

∣∣∣ , (2.10)

using the Alias method [108, 61], which allows samples to be drawn in O(1)

time. (The more commonly used heatbath method requires O(log(n)) time to do

a binary search of an array of cumulative probabilities.) ∆Es
2[ε2] and ∆Es

2[εd
2] are

calculated using the same set of samples, and thus there is significant cancella-

tion of stochastic error. Furthermore, because these two energies are calculated

simultaneously, the additional cost of performing this calculation, compared to

a purely stochastic summation, is very small. Clearly, in the limit that εd
2 = ε2,

the entire perturbative calculation becomes deterministic.

The perturbative stage of the SHCI algorithm has the interesting feature

that it achieves super-linear speedup with the number of computer nodes used.

There are two reasons for this, both having to do with the increase in the total

computer memory. First, a larger fraction of the perturbative energy can be com-

puted deterministically, using a smaller value of εd
2 in Eq. 2.8. Second, a larger

value of Nd in Eq. 2.9 can be used. For a given total number of samples, the

13

statistical error is smaller for a small number of large samples, than for a large

number of small samples, because the number of sampled contributions to the

energy correction is a quadratic function of the number of sampled variational

determinants. For example, Ns samples, each of size Nd, will have NsN2
d contri-

butions to the energy, whereas Ns/2 samples, each of size 2Nd, will have 2NsN2
d

contributions. Consequently, this too contributes to a super-linear speedup.

2.2.3 Other features of SHCI

We note that although SHCI has a stochastic component, it has the advantages

compared to quantum Monte Carlo algorithms that there is no sign problem,

and that each sample is independent. Another feature of the method is that if

the calculation is done for various values of the variational threshold ε1, a plot

of the total energy (variational plus perturbative correction) plotted versus the

perturbative correction yields a smooth curve that can be used to assess the

convergence and extrapolate to the Full CI limit, ∆E = 0 [54]. We typically use a

quadratic fit, with the points weighted by (∆E)−2 [25].

As is typical in many quantum chemistry methods, we note that the con-

vergence of both the variational energy and the total (variational plus pertur-

bative) energy depends on the choice of orbitals. Natural orbitals, calculated

within HCI, are typically a better choice than Hartree Fock orbitals, and opti-

mized orbitals [97] are a yet better choice. For systems with more than a few

atoms, split-localized optimized orbitals lead to yet better convergence [25].

We describe, in Sections 2.3 and 2.4, improvements we have made to the

variational and the perturbative stages of the SHCI algorithm, which speed up

14

the calculations by an order of magnitude or more for large systems.

2.3 Fast Hamiltonian Construction

The Hamiltonian matrix is stored in upper-triangular sparse matrix form. At

each variational iteration, we have a set of old determinants, and a set of new

determinants. We have already calculated the Hamiltonian matrix for the old

determinants, and need to calculate the old-new and the new-new matrix ele-

ments.

The SHCI algorithm greatly speeds up the step of finding the important de-

terminants and one can very quickly generate hundreds of millions or more.

With this many determinants, the construction of the Hamiltonian matrix is ex-

pensive. Most of the matrix elements are zero, but finding the non-zero Hamil-

tonian elements quickly is challenging because the determinants in the varia-

tional wavefunction do not exhibit any pattern. (Efficient construction of the

Hamiltonian matrix of the same size in FCI is much more straightforward than

in SCI.) There are two straightforward “brute force” approaches to building the

Hamiltonian matrix: a) looping over all pairs of determinants to find those pairs

that are related by single or double excitations, and, b) generating all connec-

tions of each determinant in V and searching for the connections in the sorted

array of variational determinants. When the number of determinants is not very

large, the former is more efficient. Both of these are much too expensive for the

very large number of variational determinants that we use.

The original SHCI algorithm introduced auxiliary arrays [93] to speed up the

Hamiltonian construction, but it still spends considerable time on elements that

15

Table 2.1: The notation for the data structures in our current algorithm for
efficiently constructing the Hamiltonian matrix. Analogous data
structures with the alpha and beta roles reversed are also used.
The text gives details of how they are constructed efficiently.

Notation Description

~D The array of determinants inV, in the order they were generated.

~α The array of all alpha strings, without repeats that are present in

at least one determinant inV, in the order they were generated.

iα(α) Hash map that takes an alpha string, α, and returns its index, iα,

in ~α.

~iDα(iα) The array of determinant indices in ~D such that the alpha strings

of those determinants have index iα in ~α. The elements of ~iDα(iα)

are sorted either by their values, or by the indices of their beta

strings in ~β. (See text for details.)

~iβα(iα) The array of all beta string indices in β that appear with αiα in a

determinant. It is sorted so that the elements of~iDα(iα) and~iβα(iα)

are always in correspondence.

~iα(α(−1)) Hash map that takes an alpha string with one less electron, α(−1),

and returns an array of indices of alpha strings in ~α that can give

α(−1) upon removing an electron. These are generated only for the

α’s present in the new determinants.

~iαα(jα) The array of indices of alpha strings in the array ~α, connected by

a single excitation to the jth
α alpha string of array ~α, sorted in as-

cending order. These are generated only for the jα’s present in the

new determinants.

iD, jD, · · · Indices of ~D.

iα, jα, · · · Indices of ~α.

α(Di) Alpha string of determinant Di.

16

ALGORITHM 2.1: Hamiltonian matrix update for determinants con-
nected by single or double alpha excitations. The algo-
rithm for single or double beta excitations is very simi-
lar.

for Di in ~D do

Use hash map iβ(β) to find iβ, the index of β(Di)

s is the index of the first new determinant with s > i.

for j in~iDβ(iβ) do

if j ≥ s and Di,D j are connected then

Compute and add Hi j to the Hamiltonian

end if

end for

end for

are zero. In our improved SHCI algorithm, we use a larger number of auxiliary

arrays to further reduce the time. All the relevant data structures are shown in

Table 2.1. Some of these are appended to at each variational iteration because

they contain information about all the variational determinants currently in-

cluded in the wavefunction, whereas others are constructed from scratch since

part of their information content pertains to only the new determinants.

The auxiliary arrays are constructed by looping over just the new determi-

nants. First, each new α encountered is appended to array ~α and hash map

iα(α). Also, each new determinant is appended to the arrays ~iDα(iα) and ~iβα(iα).

In order to speed up the generation of the Hamiltonian matrix (described later)

these are sorted by iD when the number of new determinants is much smaller

than the number of old determinants, and by iβ otherwise. Then, the hash map

17

ALGORITHM 2.2: Hamiltonian matrix update for determinants con-
nected by an opposite-spin double excitation.

for Di in ~D do

Use hash maps iα(α) and iβ(β) to find iα, iβ,

the indices of α(Di) and β(Di).

s is the index of the first new determinant with s > i.

for kα in~iαα(iα) do

if number of new determinants is small then

for j ≥ s in~iDα(kα) (reverse loop) do

if iβ(β(D j)) ∈~iββ(iβ) (binary search) then

Compute and add Hi j to the Hamiltonian

end if

end for

else

Find the intersection ~jβ of sorted arrays

~iβα(kα) and~iββ(iβ) in O(n) time.

Since~iβα(kα) and~iDα(kα) are in

1-to-1 correspondence, this provides the

corresponding determinants ~jD

for j in ~jD do

if j ≥ s then

Compute and add Hi j to the Hamiltonian

end if

end for

end if

end for

end for

18

~iα(α(−1)) is constructed, and finally the array ~iαα(jα). The purpose of ~iα(α(−1)) is

simply to speed up the construction of ~iαα(jα). Note that if two α strings are a

single excitation apart, they will be simultaneously present under one, and only

one key of the hash map~iα(α(−1)).

Then, we update the Hamiltonian matrix using these auxiliary arrays and a

loop over all the determinants. Algorithms 2.1 and 2.2 describe the algorithm

using pseudocode. The Hamiltonian matrix elements are nonzero only for de-

terminants that are at most two excitations apart, namely diagonal elements,

same-spin single excitations, same-spin double excitations and opposite-spin

double excitations. For finding the same-spin connections, we use a method

closely related to that in Ref. [89]. Finding the opposite-spin connections is more

computationally expensive and our algorithm speeds this up significantly.

Same-spin excitations: For determinants connected by single or double alpha

excitations to a given determinant Di, the beta strings must be the same as β(Di).

Hence, we simply loop over the determinants in the~iDβ(iβ) array and check if the

alpha strings are related by a single or a double excitation, and if they are, we

compute that Hamiltonian matrix element. Similarly, we can find the single and

double beta excitations by looping over the determinants in the~iDα(iα) array.

Opposite-spin excitations: For the opposite-spin double excitations, we first

loop over all kα in the~iαα(iα) array, i.e., the indices of ~α connected by single ex-

citations to α(Di). The determinants that have alpha string kα are in~iDα(kα), but

since only some of these have beta strings that are single excitations of β(Di),

we need to filter~iDα(kα) to find the connected determinants. This is done in two

different ways as described in Algorithm 2.2 depending on the number of new

determinants. When the number of new determinants is less than 20% of the to-

19

0 5 10 15 20 25 30 35 40
Number of Determinants (in millions)

0

20

40

60

80

100

120

140

160

180

CP
U
Ti
m
e
(in

 c
or
e
ho

ur
s)

Hamiltonian Matrix Construction Time
Brute Force
Original SHCI
Improved SHCI
Non-Zero Elements (Scaled)

Figure 2.1: Hamiltonian matrix construction time for a copper atom in a
cc-pVTZ basis. Hamiltonian construction is the performance
bottleneck in the variational stage. Hamiltonian construction
in our improved SHCI algorithm is an order of magnitude
faster than in our original SHCI algorithm, and several orders
of magnitude faster than the faster of the two brute force ap-
proaches (loop over each pair of determinants). Also shown is
the number of nonzero elements in the Hamiltonian, scaled so
that the first point coincides with the first point of the improved
SHCI CPU time.

tal number of determinants (e.g. in the later iterations of a given ε1),~iDα(iα) and

~iβα(iα) are sorted by iD, otherwise, they are sorted by iβ. The remaining deter-

minants after filtering are the determinants connected to the given determinant

through opposite-spin double excitations. Each connection is visited only once

during this process, which was not the case in the original SHCI method.

20

In Fig 2.1, we use a copper atom with a pseudopotential [103] 3 and the

cc-pVTZ basis to compare the improved SHCI algorithm to the original SHCI

algorithm, and to the brute force algorithm where we loop over each pair of

determinants. The improved algorithm is about an order of magnitude faster

than the original SHCI for medium size calculations. For large calculations, e.g.

the Cr2 calculation described in Section 4.2 where we use billions of variational

determinants, the speedup is even greater.

2.4 3-step Perturbation Energy

As described in Section 2.2, our original SHCI algorithm [93] solves the mem-

ory bottleneck problem of SCI+PT methods by introducing a semistochastic al-

gorithm for computing the perturbative correction to the energy. In Section 2.2

we have emphasized that the statistical error can be dramatically reduced by

decreasing the value of εd
2 in Eq. 2.8, and by increasing the size of the stochas-

tic samples, Nd in Eq. 2.9. However, decreasing εd
2 or increasing Nd can quickly

lead to very large memory requirements, making the calculations impractical

even on large computers. In this situation, one is left with no choice but to run

relatively inefficient calculations with larger εd
2 and smaller Nd. For example, in

Table 2.4 rows 3 and 4 show a comparison of the total CPU time of the perturba-

tion stage for a copper atom in a cc-pVTZ basis on a machine with large memory

versus on a machine with small memory. When we decrease the memory by a

factor of four, the total CPU time of the original SHCI algorithm increases by

almost a factor of 8.
3We employ the Trail-Needs pseudopotential [103], but the conclusions of this paper would

be the same for an all-electron calculation.

21

Method Memory
CPU Time

(core hours) Error (µHa)

HCI (deterministic) 3TB 145.0 0

Original SHCI 32GB 116.6 10
128GB 14.5 10

Improved SHCI
32GB 4.2 9

128GB 3.7 9
128GB 5.9 1.8

Table 2.2: Computational cost of perturbative correction for a copper atom
in a cc-pVTZ basis. The variational space has 19 million deter-
minants for ε1 = 5 × 10−5 Ha and the perturbative space has 35
billion determinants for ε2 = 10−7 Ha. HCI uses the determinis-
tic perturbation of Ref. [52]. SHCI uses the 2-step semistochas-
tic perturbation algorithm of Ref. [93]. Improved SHCI intro-
duces the 3-step batch perturbation that significantly improves
the efficiency of SHCI, especially for memory constrained cases.
The timings for the 32GB machine are obtained by running on
the same 128GB large memory machine but intentionally tun-
ing the parameters so that the memory usage is kept below
32GB throughout the run. We also provide the timing to reach
a 1.8 µHa uncertainty to illustrate that our statistical error goes
down much faster than 1/

√
T since we use smaller εdtm

2 and ε
psto
2

values for smaller target errors.

For a given target error, assuming we have infinite computer memory, there

is an optimal choice of εd
2 and Nd for reaching that target error using the least

computer time. Our improved algorithm is designed to have an efficiency that

depends only weakly on the available computer memory. It is always more ef-

ficient than the original algorithm, especially when running on computers with

small memory, in which case the gain in efficiency can be orders of magnitude.

To achieve that we replace the original 2-step SHCI algorithm with a 3-step al-

gorithm. In each of the three steps, the perturbative determinants are divided

into batches using a hash function [3, 1], and the energy correction is computed

either by adding, in succession, the contribution from each batch, or by estimat-

22

ing their sum by evaluating only a subset of these batches. The hash function

maps a determinant to a 64-bit integer h. A batch contains all the determinants

that satisfy h mod n = i, where i is the batch index and n is the number of

batches. We use a high-quality hash function which ensures a highly-uniform

mapping, so each batch has about the same number of determinants, i.e., the

fluctuations in the number of determinants in the various batches is the square

root of the average number of determinants in each batch. The contributions of

the various batches fluctuate both because the contributions of the perturbative

determinants within a batch fluctuate and the number of perturbative determi-

nants in a batch fluctuate. For both contributions, the ratio of the fluctuation to

the expected value is ∼
√

N/N → 0 for large N, where N is the average number

of determinants in a batch.

In brief, our improved SHCI algorithm has the following 3 steps:

1. A deterministic step with cutoff εdtm
2 (< ε1), wherein all the variational de-

terminants are used, and all the perturbative batches are summed over.

2. A “pseudo-stochastic” step, with cutoff εpsto
2 (< εdtm

2), wherein all the varia-

tional determinants are used, and typically only a small fraction of the per-

turbative batches need be summed over to achieve an error much smaller

than the target error.

3. A stochastic step, with cutoff ε2(< ε
psto
2), wherein a few stochastic samples

of variational determinants, each consisting of Nd determinants, are sam-

pled using Eq. 2.10 and only one of the perturbative batches is randomly

selected per variational sample.

23

The total perturbative correction is

∆E2 (ε2) =
[
∆Esto

2 (ε2) − ∆Esto
2

(
ε

psto
2

)]
+

[
∆Epsto

2

(
ε

psto
2

)
− ∆Epsto

2

(
εdtm

2

)]
+ ∆Edtm

2

(
εdtm

2

)
(2.11)

The choice of these parameters depends on the system and the desired statis-

tical error, but reaonable choices for a target error around 10−5 Ha are εdtm
2 =

2 × 10−6 Ha, εpsto
2 = 10−7 Ha, and, ε2 = ε1/106. Of course, if ε1 ≤ ε

dtm
2 the determin-

istic step is skipped. We next describe each of the 3 steps in detail.

The first step is a deterministic step similar to the original SHCI’s determinis-

tic step, except that when there is not enough memory to afford the chosen εdtm
2 ,

we divide the perturbative space into batches according to the hash value of the

perturbative determinants and evaluate their contributions batch by batch. The

total deterministic correction is simply the sum of the corrections from all the

batches

∆E2

(
εdtm

2

)
=

∑
B

∑
Da∈P

h(Da)∈B

(∑(εdtm
2)

Di∈V
Haici

)2

EV − Haa
(2.12)

where h(D) is the hash function and B is the hash value space for a batch. This

method solves the memory bottleneck in a different way than the original SHCI

algorithm. We could do the full calculation in this way, i.e., use a very small

value for εdtm
2 and a large number of batches, but it is much more efficient to

only evaluate the large contributions here and leave the huge number of small

contributions to the later stochastic steps.

The second step is a pseudo-stochastic step. It is similar to the deterministic

step, except for the following differences: a) we use an ε
psto
2 much smaller than

24

εdtm
2 as the selection criterion, b) we divide the perturbative space into as many

batches as is needed in order for one batch to fit in memory, with the constraint

that there are at least 16 batches, c) we use the corrections from the perturbative

determinants in a small subset of the batches (often one is enough) to estimate

the total correction from all the perturbative determinants, as well as its stan-

dard error. Looping over batches, for each batch, we calculate the correction

from each unique perturbative determinant in that batch. We accumulate the

number of unique determinants, the sum and the sum of squares of the correc-

tions from these determinants. At the end of each batch iteration, we calculate

the mean and standard deviation of the corrections from all the evaluated per-

turbative determinants and use these to estimate the total correction from all the

perturbative determinants. Note that the standard deviation of the total correc-

tion is the standard deviation of the sum of only the unevaluated determinants.

If we process all the batches, the pseudo-stochastic step becomes deterministic

and has zero standard deviation. When the standard deviation of the total cor-

rection is smaller than 40% of the target error, we exit the loop over batches.

However, a single batch is often sufficient to reach a statistical error below that

threshold, for the smallest ε1 values that we typically use.

The third step is a stochastic step that is similar to the stochastic step of the

original SHCI algorithm, except that instead of keeping all the perturbative de-

terminants that satisfy the ε2 criterion we keep only one randomly selected batch

out of several. The available computer memory constrains the number of per-

turbative determinants, and one can obtain the same number sampling a cer-

tain number of variational determinants and all the perturbative determinants

that satisfy the ε2 criterion (the original SHCI algorithm), or, by using a larger

number of variational determinants and selecting just one batch of the pertur-

25

bative determinants. The latter allows us to use much larger variational sam-

ples. Using larger variational samples is advantageous because we find that the

additional fluctuations due to sampling the perturbative determinants is much

smaller than the reduction in the fluctuations due to having larger variational

samples. Typically, we use ε2 = 10−6ε1. Since the smallest ε1 that we use is

typically around 10−5 Ha, this value is in fact much smaller than is needed to

ensure that the perturbative correction is fully converged. For a statistical error

of 10−5 Ha, 128 batches is usually a good choice to start with. The size of the

variational sample is chosen so that a single perturbative batch fits in the avail-

able memory. We use a minimum of 10 samples in our stochastic step in order

to get a meaningful estimate of the uncertainty. On large memory machines, we

often achieve a much smaller statistical error than the target with 10 samples.

In that case, we can decrease the size of the variational sample in later runs for

similar systems.

In Table 2.4, the last four rows compare the original SHCI to the improved

version with 3-step batch perturbation. In the memory-constrained case, the

improved SHCI runs more than an order of magnitude faster than the original

SHCI. Even when memory is abundant, the improved SHCI is still a few times

faster.

The main reasons that the improved SHCI is much faster are: (1) It computes

a larger fraction of the perturbative correction in the deterministic step. (2) A

small fraction of the batches in the pseudo-stochastic step is usually sufficient to

give an accurate estimate of the total correction. (3) It uses much larger samples

of variational determinants in the stochastic step.

We now comment on a couple of aspects of our algorithm that may not be

26

obvious:

1) The value of the perturbative correction depends only on ε2 and not εdtm
2

and εpsto
2 . The latter two quantities affect only the efficiency of the calculation. By

using batches in the stochastic step, we can use a much smaller εsto
2 and thereby

include almost the entire perturbative space. In our calculations, we usually set

εsto
2 = 10−6ε1, which is much smaller than is possible using our previous 2-step

perturbation method, and much smaller than necessary to keep the systematic

error within the target statistical error.

2) In the pseudo-stochastic step, we estimate the fluctuations of the uneval-

uated perturbative determinants from the fluctuation of the evaluated pertur-

bative determinants. This relies on having a sufficiently uniform hash function.

Note that since we are using all the variational determinants in this step, the

fluctuations come just from the perturbative determinants. In contrast, in the

stochastic step, the fluctuations come both from the choice of variational deter-

minants and the choice of batches. In that case, one cannot simply use the stan-

dard deviation of the corrections from the evaluated perturbative determinants

to estimate the standard deviation of the total correction. So, in the stochastic

step we use a minimum of 10 samples, calculate the correction from each of

these samples, and use the standard deviation of these sample corrections to

estimate the standard deviation of the total correction.

3) In the stochastic step, the fluctuation between batches of perturbative de-

terminants is much smaller than the fluctuation between samples of variational

determinants. The reason for this is that there are many more perturbative de-

terminants in a batch (each making only a small contribution) than there are

variational determinants in a sample. Further, the variational determinants

27

vary greatly in importance. This is why we use importance sampling as de-

scribed by Eq. 2.10 when selecting variational determinants, and why we pre-

cede the stochastic step with the deterministic and pseudo-stochastic steps, but

even with these improvements the fluctuations from the choice of variational

samples is much larger than the fluctuation from the choice of batches. Hence,

we use only one randomly selected batch of perturbative determinants (typi-

cally out of 128 batches) per variational sample.

4) The use of batches carries a small computational overhead of having to

regenerate the perturbative determinants for each batch. Using our method,

generating determinants is sufficiently fast that the increase in computational

cost would be substantial only if this is done many times. If we employed a

purely deterministic algorithm, the number of batches would be very large, but

with our 3-step semistochastic algorithm the number of batches actually com-

puted is sufficiently small in each of the three steps that there is never a large

computational overhead.

Finally, we comment on two other algorithms that have been recently been

proposed for calculating the perturbative correction. First, another very efficient

semistochastic algorithm has been proposed by Garniron et al. [44]. However,

that algorithm has, for each perturbative determinant, a loop over the varia-

tional determinants to find those that are connected. For the very large number

of variational determinants that we employ here (up to 2 × 109) this is imprac-

tical. To avoid confusion, we should mention that the reason that their energy

for Cr2 is very different from ours is that they used a nonrelativistic Hamilto-

nian. Second, another algorithm that uses batches of perturbative determinants

to overcome the memory bottleneck has been proposed very recently [105]. It

28

is an efficient deterministic algorithm for memory constrained environments,

but for a reasonable statistical error tolerance, e.g., 10−5 Ha, a semistochastic ap-

proach is usually much faster, as we can see from Table 2.4. Also, in our Cr2

calculation, we stochastically estimate the perturbative correction from at least

trillions of perturbative determinants, for ε2 = 3 × 10−12 Ha, which probably in-

volves quadrillions of contributions (n2v2NV = 9× 1015), which is infeasible with

a deterministic algorithm.

2.5 Key Data Structures

In this section, we discuss three key data structures used to store the determi-

nants, the distributed Hamiltonian matrix, and, the distributed partial sums in

the perturbative stage of the calculation.

2.5.1 Determinants

We use two different representations of determinants. For storing and accessing

determinants locally in memory, we use arrays of bit-packed 64-bit unsigned

integers. Each bit represents a spin-orbital. The n-th orbital is represented by

the (n mod 64)-th bit of the (n / 64)-th integer, where “/” means integer (Eu-

clidean) division and the counting starts from zero. (n mod 64) can be imple-

mented as (n & 63), and (n / 64) can be implemented as (n >> 6), where

“&” is the bitwise “and” and “>>” is the bitwise right shift. Both operations cost

only one clock cycle on modern CPUs.

For transferring the determinants to other nodes or saving them to disk, we

29

use base-128 variable-length integers (VarInts) [98] to compress the 64-bit inte-

gers. VarInts take only a few bit operations to compute and reduce the memory

footprint by up to 87.5% for small integers, which reduces the network traffic

and the size of the wavefunction files considerably, especially for large basis

sets.

2.5.2 Hamiltonian Matrix

We store only the upper triangle of the Hamiltonian matrix. The rows are dis-

tributed to each node in a round-robin fashion: the first row goes to the first

node, the second row goes to the second node, and when we reach the end of

the node array, we loop back and start from the first node again. Each row is a

sparse vector, represented by two arrays, one stores the indices of the nonzero

elements and the other stores the values.

During the matrix-vector multiplication, each node will apply its own por-

tion of the Hamiltonian to the vector to get a partial resulting vector. The partial

results are then merged together using a binomial tree reduction. The work

on each node is distributed to the cores with dynamic load balancing. To save

space, we store only one copy of the partial resulting vector on each node and

each thread updates that vector with hardware atomic operations. In addition,

we cache the diagonal of the matrix on each node to speed up the Davidson

diagonalization [32].

30

2.5.3 Partial Sums

In the perturbative stage, we loop over the variational determinants {Di} to com-

pute the partial sum
∑

i Haici for each perturbative determinant Da. The map

from Da to
∑

i Haici, is stored in a distributed hash table [2]. This choice is dic-

tated by the enormous number of perturbative determinants we employ. The

time complexity of inserting one element into the hash table is O(1), while for a

sorted array it is O(log(n)). For large calculations, the prefactor from using hash

tables is small compared to the log(n) cost from using a sorted array.

The distributed hash table is based on lock-free [5] open-addressing [6]

linear-probing [4] concurrent hash tables [24] specifically designed for intensive

commutative insertion and update operations. The linear-probing technique

for conflict resolution has better efficiency than separate chaining during paral-

lel insertion, and the lock-free implementation allows all the threads to almost

always operate at their full speed.

On each node, we have n of these concurrent hash tables, where n is the

number of nodes. One of them stores the entries belonging to that node, and

the other (n − 1) tables store the entries belonging to other nodes pending syn-

chronization. Each concurrent hash table is implemented as lots of segments

(at least four times the number of hardware threads) and each segment can be

modified by only one thread at a time. When a thread wants to insert or update

a (key, value) pair, it first checks whether the segment that the key belongs to

is being used by other threads. If the segment is being used, the thread will

insert or update the entry to a thread-local hash table, which will be merged to

the main table later periodically. We can do this because the insertion and the

update operations of the partial sums are commutative. Hence, each insertion

31

and update is guaranteed to finish within O(1) time without getting blocked,

even for perturbative determinants with lots of connections to the reference de-

terminants. The inter-node synchronization runs periodically so that most of

the perturbative determinants will have only one copy during the entire run

on the entire cluster, except for those with lots of connections to the reference

determinants.

2.6 Parallelization

All the critical parts of SHCI are parallelized with MPI+OpenMP. This section

describes the parallelization and the scalability of each part.

When finding the connected determinants, performing the matrix-vector

multiplication during the diagonalization, and constructing the Hamiltonian

matrix from the auxiliary arrays, we use the round-robin scheme to distribute

the load across the nodes and use dynamic load balancing for all the cores on

the same node.

We parallelize the construction of the α-singles,~iαα(jα), and β-singles,~iββ(jβ),

arrays on each node, which is the most time-consuming part of constructing

the auxiliary arrays. For each entry of~iαα and~iββ, we initialize a lock to ensure

exclusive modification. We loop over all the~iα(α(−1)) arrays and for each (iα, jα)

pair (which are one excitation away) inside a particular ~iα(α(−1)) array, we lock

and append jα to ~iαα(iα), and we lock and append iα to ~iαα(jα). When both iα

and jα occur only in the new determinants, the smaller of the two does both

appends.

32

In Figs. 2.2 and 2.3, we demonstrate the parallel scalability of our SHCI im-

plementation when applied to a copper atom in a cc-pVTZ basis. We use up to

16 nodes, and each node has 6 cores.

For the variational part, our implementation scales almost linearly up to 4

nodes. At 16 nodes we have 75% parallel efficiency.

For the perturbative stage, two major factors determine the speedup. One is

the additional communication associated with shuffling perturbative determi-

nants across the nodes, which increases with the number of nodes. The other

is the speedup from having more cores. We can see from Fig. 2.3 that from

1 to 4 nodes, the first factor dominates and there is significant deviation from

ideal speedup. Starting from 8 nodes, we have to shuffle almost all the per-

turbative determinants from the spawning node to the storage node that each

determinant belongs to, so there is little change in the first factor and the second

factor starts to dominate, pushing the speedup curve upward and producing

almost perfect scaling. Note that in the original SHCI algorithm [93], there is a

superlinear speedup from using more nodes because many stochastic samples

are needed when running in a memory-constrained environment. Here we have

solved this problem with the 3-step batch perturbation, for which the number of

stochastic samples is almost always 10. (We require a minimum of 10 samples

in order to have a reasonable estimate of the stochastic error.) Consequently,

on memory constrained environments, we achieve a few orders of magnitude

speedup.

33

0 2 4 6 8 10 12 14 16
Number of nodes

0

2

4

6

8

10

12

14

16
Sp

ee
du

p

Parallel Speedup for the Variational Stage
Speedup
Ideal

Figure 2.2: Parallel speedup of the variational stage for a copper atom in a
cc-pVTZ basis. There is almost perfect scaling for up to 4 nodes
and 75% parallel efficiency at 16 nodes.

2.7 Conclusion

In this paper, we introduced our fast semistochastic heat-bath configuration in-

teraction algorithm, an efficient and essentially exact algorithm for estimating

the Full-CI energy. We introduced a new Hamiltonian generation algorithm

and a 3-step batch perturbation algorithm to overcome the bottlenecks in the

original SHCI algorithm. We also presented the key data structures and paral-

lelization strategy, which are also crucial to the performance. These improve-

ments allowed us to use 2 × 109 variational determinants, which is more than

one order of magnitude larger than the 9 × 107 determinants used in our earlier

34

0 2 4 6 8 10 12 14 16
Number of nodes

0

2

4

6

8

10

12

14

16

Sp
ee
du

p
Parallel Speedup for the Perturbative Stage

Improved Speedup
Improved Linear Speedup
Original Speedup
Original Linear Speedup (scaled)

Figure 2.3: Parallel speedup for improved SHCI compared to the original
SHCI for the perturbative stage of the calculation for a copper
atom in a cc-pVTZ basis. From 1 node to 4 nodes, we see a
significant deviation from linear speedup due to the additional
communication from shuffling the perturbative determinants
across nodes. Starting from 8 nodes, the number of shuffles ap-
proaches a constant and we can see an almost linear speedup
from using more processors. The estimate of the speedup of the
original SHCI is based on the assumption that the total mem-
ory of 10 nodes is enough to support the optimal choice of εdtm

2
and Nd, in Eqs. 2.8 and 2.9. The “Original” curves are scaled to
reflect the relative speed of original SHCI algorithm to that of
the improved algorithm.

35

SHCI calculation [25], and two orders of magnitude larger than the largest vari-

ational space of 2 × 107 determinants employed to date in any other selected CI

method [44].

Future extensions of the method include going to yet larger variational

spaces using a direct method [59, 56], wherein the Hamiltonian matrix is recal-

culated at each Davidson iteration and therefore need not be stored. Although

this increases the computational cost, the increase is not overwhelming because

of the use of the auxiliary arrays introduced in this paper. Other extensions in-

clude increasing the range of applicability of the method to larger systems by

combining SHCI with range-separated density functional theory [88], and the

use of SHCI as an impurity solver in embedding theories. Recently, a selected

coupled cluster method has been developed [115]. Although the current version

has only been used with small basis sets, it is possible that with further devel-

opment this will become a highly competitive method, especially for weakly

correlated systems.

Possible applications of the SHCI method include providing benchmark en-

ergies for a variety of organic molecules, as well as for transition metal atoms,

dimers, and monoxides, and calibration or training data for large scale methods,

e.g., to calibrate interatomic potentials for molecular dynamics and exchange-

correlation functionals for density functional theory, and to train machine learn-

ing based quantum chemistry solvers. Calculations on the homogeneous elec-

tron gas are also underway.

36

CHAPTER 3

HOMOGENEOUS ELECTRON GAS SIMULATION WITH FAST SHCI

We apply the recently developed semistochastic heatbath configuration interac-

tion (SHCI) method to the homogeneous electron gas (HEG) in the mid-to-high

density regime. In this regime, the basis-set incompleteness error is the domi-

nant error for basis set methods so we extend the SHCI method to handle large

basis sets. To obtain highly accurate results, we use up to 39,886 orbitals, which

is more than an order of magnitude larger than the number used in previous

state-of-the-art calculations using methods that yield essentially exact results

within a basis set. This enables accurate extrapolation to the complete basis set

limit. We calculate HEG correlation energies for the 14-electron supercell with

Wigner-Seitz radius rs ranging from 0.5 to 5.0, and for the 54-electron supercell

with rs = 0.5 and compare our results with earlier calculations.

3.1 Introduction

The homogeneous electron gas (HEG) is one of the most fundamental mod-

els in condensed-matter physics. With a tunable parameter, the Wigner-Seitz

radius rs, controlling the density of the electrons, the HEG provides a simple

paradigm for studying interacting fermion problems ranging from weakly cor-

related to strongly correlated. In addition, the HEG is a cornerstone of density

functional theory (DFT). The exchange-correlation energy of the HEG is the en-

tire exchange-correlation energy in the local density approximation (LDA) of

DFT, and it is an important component of more accurate exchange-correlation

functionals [81, 36].

37

The LDA is usually obtained from a fit to the diffusion Monte Carlo (DMC)

exchange-correlation energy per electron, εxc, of the HEG with various rs val-

ues [20]. The DMC random walk is performed in real space (the coordi-

nates of the electrons) and consequently the computed energies are directly in

the infinite-basis limit. However, in order to control the Fermion sign prob-

lem, DMC is usually performed with the fixed-node approximation and conse-

quently, the energies have a fixed-node error which depends on the quality of

the trial wavefunctions. Backflow wavefunctions have been used to reduce the

error [63, 86] but the magnitude of the remaining error is unclear.

In order to assess the magnitude of the DMC fixed-node error, other quan-

tum Monte Carlo (QMC) methods have been applied to the HEG. In contrast

to DMC, the random walk in the full configuration interaction quantum Monte

Carlo (FCIQMC) method [16, 28, 94, 94] is in the space of occupation numbers of

a finite number of orbitals. The finite basis set energies need to be extrapolated

to obtain the complete basis set (CBS) energies. The Fermion sign problem in

FCIQMC is controlled by having walker cancellations and by making an initia-

tor approximation. The initiator error disappears in the infinite walker population

limit, and for many systems it is practical to use a sufficiently large population to

make the initiator error negligible. In the mid-to-high density regime, the basis

set incompleteness error is the dominant error. For example, for the HEG with

rs = 0.5 and 14 electrons in each periodic cell, the two largest FCIQMC calcula-

tions, which use 778 and 1850 orbitals yield correlation energies −0.5893(3) Ha

and −0.5936(3) Ha respectively, a 4.3 mHa difference, which is larger than the

estimated initiator and statistical errors.

The coupled cluster Monte Carlo (CCMC) method [79] is closely related to

38

FCIQMC but yields coupled cluster energies in the infinite walker limit. It has

been used [79] to compute the correlation energy of the HEG with a 14-electron

periodic cell for rs in the range 0.5 − 5.0 a0 with excitation orders up to five, i.e.,

CCSDTQ5, and 358 orbitals. As expected, high excitation orders are necessary

to get an agreement with FCIQMC at the larger rs values.

The method used in this paper is a modified version of the recently pro-

posed heat-bath configuration interaction (SHCI) method [52, 93, 65]. SHCI is a

selected configuration interaction plus perturbation method (SCI+PT) method.

It differs from SCI+PT methods in that it uses precomputed double excitation

lists to avoid ever looking at determinants that do not satisfy the threshold for

contributing to the variational wavefunction or the perturbative correction [52],

and it evaluates the perturbative correction semistochastically to avoid a mem-

ory bottleneck [93]. Recently, SHCI has been sped up by another order of mag-

nitude by introducing a fast Hamiltonian generation algorithm and replacing

the 2-step semistochastic perturbative correction by a 3-step algorithm [66].

This paper adapts the SHCI algorithm to the homogeneous electron gas

problem (HEG). We introduce a more space-efficient data structure for repre-

senting determinants when using very large basis sets. In addition, we optimize

the storage and the usage of the double excitation lists, taking into considera-

tion the momentum conservation property of the plane-wave orbitals. Finally,

we apply the revised algorithm to the HEG with up to 39,886 orbitals, which is

more than an order of magnitude larger than previously used in methods that

yield essentially exact energies within a basis, in order to get accurate extrapo-

lated energies in the complete basis limit.

We organize this chapter as follows: In section 3.2, we formulate the HEG

39

problem and give the Hamiltonian of HEG in a periodic boundary condition

with a plane wave basis. In section 3.3, we revise SHCI for the homogeneous

electron gas problem (HEG). In section 3.4, we use the revised algorithm to ob-

tain accurate HEG results in the mid-to-high density regime. Section 3.5 con-

cludes the paper.

3.2 Homogeneous Electron Gas Hamiltonian

We consider a system of N↑ spin-up electrons and N↓ spin-down electrons in a

d-dimensional hypercube of side length L with periodic boundary conditions in

all directions and a uniform positive background such that the whole system is

neutral.

The Hamiltonian of this system can be expressed in terms of the Yukawa

potential V (r; κ) = e−κr
r

Ĥ =

N∑
i=1

−
1
2
∇2

i +
1
2

N∑
i, j

1
Ld

∑
q,0

V(q)eiq·(ri−r j)

where N = N↑+N↓, q = 2π
L (n1, n2, · · · , nd), ni ∈ Z. And V(q) is the Fourier transform

of the Yukawa potential at κ → 0. For d = 3, V(q) = 4π
q2 . [45]

To convert the Hamiltonian into its second quantization form

Ĥ =
∑
PQ

fPQa†PaQ +
1
2

∑
PQRS

gPQRS a†Pa†QaRaS (3.1)

we use the planewave basis set

φP(x) =
1
√

Ld
e−ikP·rσP(ms) (3.2)

where σP(ms) is the spin eigenfunction and kP = 2π
L (nP1 , nP2 , · · · , nPd), nPi ∈ Z.

40

After simplification, we can get the coefficients of the second quantization

terms

fPQ =
k2

Q

2
δσPσQδkPkQ

gPQRS =
1
Ld δσPσRδσQσS V(kPR)

(1 − δkRkP)δkR+kS ,kP+kQ

Hence, the Hamiltonian matrix elements between a pair of Slater determi-

nants are

〈i|Ĥ|i〉 =
∑

P

iP
k2

P

2
−

1
2Ld

∑
P,Q

iPiQδσPσQV(kQP)

〈i1|Ĥ|i2〉 =Γ
i1
I Γ

i1
J Γ

i2
KΓ

i2
LδkK+kL,kI+kJ

1
Ld

[δσIσKδσJσLV(kIK) − δσIσLδσJσK V(kIL)]

where iP = 1 if and only if orbital P is occupied, Γi
P =

∑P−1
l=1 (−1)il . |i1〉 has orbitals

I, J occupied while |i2〉 has orbitals K, L occupied, I < J, K < L, and all the other

orbitals of |i1〉 and |i2〉 are the same.

3.3 Revising SHCI for Homogeneous Electron Gas

In this section, we describe how we adapt our SHCI algorithm (previously used

for chemical systems) to treat the HEG at mid to high densities. The adapta-

tions are necessitated by the use of a plane wave basis and the large number

of orbitals required for an accurate extrapolation to the complete basis limit.

Appendix 3.2 gives the Hamiltonian matrix elements of HEG.

41

3.3.1 Large Basis Set

The usual representation of determinants involves using bit-packing, i.e., one

bits denote occupied orbitals and zero bits denote unoccupied orbitals. This

becomes inefficient when the number of orbitals is much larger than the number

of electrons. To reduce memory and time requirements when using a large basis

set, we introduce a hybrid representation of the determinants. First, the orbitals

are sorted into descending order of importance (occupancy). Then, bit-packing

is used to represent the occupancy of the first few orbitals, and a self-balancing

binary search tree [111], namely a red-black tree [112], is used to store the indices

of the remaining orbitals. Fig. 3.1 illustrates this hybrid structure.

The red-black tree is a common data structure for storing a set of distinct

objects, which in our case are the indices of the occupied orbitals. An excita-

tion corresponds to a deletion of one or two occupied orbitals and insertion of

one or two unoccupied orbitals. The worst case time complexity for this oper-

ation on a red-black tree (including the cost of rebalancing the tree) is O(log N).

Another common operation on determinants is going through the occupied or-

bitals in order, which corresponds to an inorder traversal [113] of the tree. The

time complexity of this traversal is O(N). This hybrid structure gives us high

performance and compact storage when there are a small number of important

orbitals and a large number of unimportant orbitals.

3.3.2 Orbital Momentum Conservation

We employ a plane-wave basis set and periodic boundary conditions. Since

the orbitals are momentum eigenstates, momentum conservation can be used

42

11111101 11100111 …... 10110000

1234

456

33333

2345

Figure 3.1: Hybrid Representation for Determinants. The occupancy of
the most important orbitals is represented with bit-packing.
The indices of the other occupied orbitals, which are 456, 1234,
2345, and 33333 in this case, are stored in a self-balancing bi-
nary search tree [112].

to reduce the storage of the HCI double excitation helper lists.

First, we find all the possible differences between the momenta of two or-

bitals. Let M be the number of orbitals (k points), then the number of distinct

differences between them is also of order O(M). For an orbital i, we denote the

momentum of that orbital to be ki. We use p and q to denote the pair of occupied

orbitals during excitation, and r and s to denote the pair of unoccupied orbitals

to which the electrons are excited. Then we have kp + kq = kr + ks. For HEG, as

shown in Appendix 3.2, kp−kq and kp−kr uniquely determines the magnitude of

the Hamiltonian matrix element associated with excitation pq → rs. Hence, for

each possible momentum difference kpq, we associate with it a list of 〈kpr, |Hpqrs|〉

pairs in descending order of |Hpqrs|. Fig. 3.2 illustrates the structure of these

helper lists. Finally, when using these helper lists to find important connected

43

kpq

0, 0, 1

0, 0, 2

0, 0, 3

. . .

rs

0, 0, 1

0, 0, 2

. . .

rs

0, 0, 1

0, 0, 2

. . .

kpr pqrs|H |

-1, 0, 0

-1, 1, 0 0.422

0.633

.

Figure 3.2: SHCI Helper Lists for HEG. For each kpq, we generate a list of
〈kpr, |Hpqrs|〉 pairs and sort them in descending order of |Hpqrs|.
When trying to find connected determinants from a given
spawning determinant, we go through each occupied pair of
orbitals p and q, calculate their momentum difference kpq, and
go through the corresponding list until |Hpqrs| falls below a cer-
tain threshold. For each entry that we go through in the list, we
can obtain r and s by using kpr and momentum conservation.

determinants to a given reference determinant, we perform the following for

each pair of occupied orbitals p and q: we go through the list associated with

kpq = kp − kq to get kpr until the corresponding |Hpqrs| falls below a given thresh-

old. Using kpr and momentum conservation, we can easily get r and s, and thus

the connected determinant which satisfies the SHCI criteria.

The storage complexity of these helper lists is O(M2), as opposed to O(M4)

for chemistry systems. The time complexity of finding determinants connected

to a given determinant in descending order of importance is the same as in

chemistry, which is O(n2
e + nD), where ne is the number of electrons and nD is the

number of new determinants found.

44

3.4 Results

We apply our revised algorithm to HEG of several different rs values in the mid-

to high-density region and both 14-electron and 54-electron supercells. In each

case, we calculate the correlation energies in several basis sets with different

momentum cutoffs, and perform a complete basis set (CBS) extrapolation.

When the electron density is high, the correlation energies depend signifi-

cantly on the momentum cutoff. Hence, in order to obtain more accurate results,

we use up to 39,886 orbitals in our calculations. In the high-density region, this

decreases the CBS extrapolation distance in the previous literature by more than

an order of magnitude, and thus gives us much shorter extrapolation distances

and more accurate results.

3.4.1 14-Electron Supercell

Fig. 3.3 to 3.6 show our CBS extrapolation curves and Table 3.1 reports our ex-

trapolated correlation energies. Here M is the number of spin orbitals included

in a plane-wave basis set.

We use quadratic extrapolations weighted by 1/M for rs from 0.5 to 2.0. For

rs = 5.0, since it is already converged at the size of the basis sets that we use, we

take the average of the last three points.

We can see from this table that the results from SHCI are significantly more

accurate than previous results. This is mainly because SHCI can use large basis

sets, enabling us to go much closer to the infinite basis set limit. Fig. 3.7 which

45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
M−1 (10−3)

−0.5948

−0.5946

−0.5944

−0.5942

−0.5940

−0.5938

−0.5936

−0.5934

−0.5932
E c

or
re
la
tio

n (
Ha

)

HEG CBS E trapolation (rs=0.5)

Figure 3.3: Complete basis set extrapolation for HEG 14-electron super-
cell with rs = 0.5. The extrapolated correlation energy is
−0.594748(12) Ha.

plots the raw data points from FCIQMC [95] and SHCI, illustrates this.

3.4.2 54-Electron Supercell

We also apply SHCI to the 54-electron supercell case. Fig. 3.8 shows the CBS

extrapolation and Table 3.2 compares the SHCI results with FCIQMC and DMC.

We can see that our SHCI result agrees well with FCIQMC, but slighly lower

than FCIQMC-TC, and all of them are much higher then BF-DMC, which proba-

bly used a poor trial wavefunction. In these SHCI calculations, we use an order

46

0.0 0.1 0.2 0.3 0.4 0.5 0.6
M−1 (10−3)

−0.53050

−0.53025

−0.53000

−0.52975

−0.52950

−0.52925

−0.52900

−0.52875

−0.52850
E c

or
re

la
 io

n (
Ha

)

HEG CBS Ex rapola ion (rs =1.0)

Figure 3.4: Complete basis set extrapolation for HEG 14-electron super-
cell with rs = 1.0. The extrapolated correlation energy is
−0.530536(18) Ha.

of magnitude more orbitals than FCIQMC and FCIQMC-TC, and the extrapo-

lation distance of SHCI is about an order of magnitude smaller than FCIQMC

and four times smaller than FCIQMC-TC. Hence, we believe the extrapolated

value from SHCI is likely to be more accurate and reliable than from FCIQMC

or FCIQMC-TC.

47

0.0 0.2 0.4 0.6 0.8 1.0
M−1 (10 3)

 0.4430

 0.4425

 0.4420

 0.4415

 0.4410

 0.4405
E c
or
re
la
tio
n (
Ha
)

HEG CBS Extrapolation (rs=2.0)

Figure 3.5: Complete basis set extrapolation for HEG 14-electron super-
cell with rs = 2.0. The extrapolated correlation energy is
−0.443007(12) Ha.

3.5 Conclusions

In this paper, we applied our fast semistochastic heat-bath configuration inter-

action algorithm (SHCI) to the homogeneous electron gas (HEG) problem in the

mid to high density regime. In this regime, the basis set extrapolation is the

primary source of uncertainty in the energy. By using SHCI with up to 39886

orbitals, we reduced the extrapolation distance significantly and achieved more

accurate results than other state-of-the-art methods.

48

0.0 0.2 0.4 0.6 0.8 1.0
M−1 (10 3)

 0.3064

 0.3063

 0.3062

 0.3061

 0.3060

E c
or
re
la
tio
n (
Ha
)

HEG CBS Extrapolation (rs=5.0)

Figure 3.6: Complete basis set extrapolation for HEG 14-electron supercell
with rs = 5.0. Since the correlation energy is already converged
after 2000 orbitals, we use the average of the last 3 points in this
case. The extrapolated correlation energy is −0.30642(5) Ha.

49

Table 3.1: Summary of the HEG Total Correlation Energies (Ha).
CCMC [79] uses quantum Monte Carlo to evaluate coupled clus-
ter wavefunctions with up to 1030 orbitals and 5th order exci-
tation (CCSDTQ5). FCIQMC [95] and its recent improvement
FCIQMC-TC [70] use up to 2368 orbitals. SHCI uses up to 39886
orbitals, which give shorter extrapolation distances and much
more accurate results than CCMC and FCIQMC.

rs SHCI CCMC FCIQMC FCIQMC-TC

0.5 -0.594748(12) -0.5947(2) -0.5959(7) -0.5948(2)

1.0 -0.530536(18) -0.5311(2) -0.5316(4) -0.5309(2)

2.0 -0.443007(12) -0.4434(10) -0.444(1) -0.4440(3)

5.0 -0.30642(5) -0.3025(4) -0.307(1) -0.3078(3)

Table 3.2: Summary of the HEG Total Correlation Energies (Ha) with 54-
Electron Supercells. DMC [87] uses real space basis and back-
flow wave function. FCIQMC [95] and its recent improvement
FCIQMC-TC [70] use up to 1850 orbitals. SHCI uses up to 23506
orbitals, which give much shorter extrapolation distances than
FCIQMC and thus more accurate results.

rs SHCI FCIQMC FCIQMC-TC BF-DMC

0.5 -2.4313(11) -2.435(7) -2.425(1) -2.387(2)

50

0 1 2 3 4 5 6 7 8 9
M−1 (10−3)

−0.59

−0.58

−0.57

−0.56

−0.55

−0.54

−0.53

−0.52

E c
o

 e
la

tio
n (

Ha
)

SHCI FCIQMC Compa ison (s =0.5)

SHCI
FCIQMC

0.0 0.1 0.2 0.3 0.4

−0.595

−0.594

−0.593

Figure 3.7: Comparison between SHCI results and FCIQMC results for
rs = 0.5. Note that all the points have error bars smaller than
the size of the points themselves except for the FCIQMC point
on the zoomed-in view. SHCI goes much closer to the infinite
basis set and thus achieves more accurate and reliable extrapo-
lated results.

51

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
M−1 (10−3)

−2.430

−2.425

−2.420

−2.415

−2.410

−2.405

E c
or

re
la

tio
n (

Ha
)

HEG CBS Extrapolation (ne = 54, rs = 0.5)

Figure 3.8: Complete basis set extrapolation for HEG 54-electron super-
cell with rs = 0.5. The extrapolated correlation energy is
−2.4313(11) Ha.

52

CHAPTER 4

CHROMIUM DIMER SIMULATION WITH FAST SHCI

In this chapter, I apply the fast SHCI method to the chromium dimer. I first

perform an accurate calculation at the equilibrium geometry, and then perform

a slightly less accurate calculation for several squeezed or stretched geometries

and obtain the entire potential energy curve.

4.1 Introduction

The chromium dimer is a challenging strongly-correlated system that has been

used as a benchmark molecule for a variety of methods [91, 62, 84, 71, 106, 49].

In this chapter, we use the fast heat-bath configuration interaction method to

calculate both the energy at the equilibrium geometry and entire potential en-

ergy curve.

For the equilibrium geometry, we include in our variational wavefunction

two billion most important determinants, which are two orders of magnitudes

more than ever done in other selected-CI based methods. This allows us to

achieve significantly higher accuracy, which even beats the accuracy of well-

developed methods, such as the density matrix renormalization group (DMRG).

Section 4.2 presents the results.

For the entire potential energy curve calculation, we correlate up to 28 elec-

trons in a cc-pVDZ basis. The resulting Hilbert space of 5 × 1029 determinants

is several orders of magnitude larger than that used in other systematically im-

provable methods. Our results match well with the experiments at and near the

53

equilibrium geometry. Section 4.3 presents the results.

4.2 Equilibrium Geometry

In this section1, we examine the chromium dimer at the equilibrium bond length

of 1.68 Å.

We use a relativistic exact two-component (X2C) Hamiltonian, the cc-pVDZ-

DK basis, and we correlate the valence and the semi-core electrons. This gives

an active space of (28e, 76o) and a Hilbert space of 5 × 1029 determinants, which

is far beyond the reach of FCI. We show how we obtain an accurate estimate of

the FCI energy in this large active space with our improved SHCI algorithm.

We use PySCF [99] to generate the molecular orbital integrals for orbitals that

minimize the HCI variational energy for ε1 = 2 × 10−4 Ha, using the method of

Ref. [97]. We perform SHCI with several ε1 values from 5×10−5 to 3×10−6 Ha. The

Hamiltonian matrix is stored in memory distributed over computer nodes, and

so needs to be constructed only once. We use very small values of ε2 = 10−6ε1

to ensure that the perturbative correction is exceedingly well converged, and

choose the target error for the stochastic perturbation energy to be 10−5 Ha.

The improved SHCI is fast enough that we can use over two billion varia-

tional determinants, and stochastically include the contributions of at least tril-

lions of perturbative determinants. The largest variational calculation, where

we iteratively find and diagonalize 2 billion determinants for ε1 = 3.0× 10−6 Ha,

takes only one day on 8 nodes, each of which has 4 Intel Xeon E7-8870 v4 CPUs.

1This section was published in Ref. [66]

54

The corresponding perturbative calculation takes only 6 hours using only one

of these nodes. During that perturbative calculation, we skip the deterministic

step, perform a pseudo-stochastic step with ε
psto
2 = 1 × 10−7 Ha, and a stochas-

tic step with ε2 = 3 × 10−12 Ha. We skip the deterministic step here because

ε1 = 3× 10−6 is already close to our default εdtm
2 of 2× 10−6 so skipping this won’t

affect the efficiency of subsequent steps much. The pseudo-stochastic step uses

25 batches, each of which has about 8.9 billion determinants. We evaluate only

one of them, from which we obtain an estimate of the total correction for all the

25 batches (223 billion determinants) to be -0.011681(1) Ha. Since the estimated

error is already much smaller than our target error, we skip the remaining 24

batches. The pseudo-stochastic step takes 1.6 hours. The stochastic step uses

128 batches and 6 million variational determinants in each sample, which re-

sults in about 3.7 billion determinants per batch. We use 10 samples and obtain

the additional correction from ε2 = 3.0 × 10−12 Ha to be -0.001203(6) Ha. The

combined uncertainty of the entire semistochastic perturbation stage is 6 µHa.

It is hard to estimate how many determinants are stochastically included for

ε2 = 3×10−12 Ha, so we estimate a lower bound with εpsto
2 = 1.4×10−8 Ha and ob-

tain 1.8 trillion unique perturbative determinants. Hence, with ε2 = 3× 10−12 Ha

(the value we are actually using) we stochastically estimate contributions from

at least trillions of unique perturbative determinants and obtain better than

10−5 Ha statistical uncertainty in 6 hours using only one node.

These large calculations enable us to obtain an estimate of the FCI energy

with sub-millihartree uncertainty in this large active space. Table 4.1 reports the

results.

We extrapolate our results using a weighted quadratic fit and obtain for the

55

ε1 (Ha) NV Evar (Ha) Etotal (Ha)
5.0 × 10−5 24M -2099.863816 -2099.909741(7)
3.0 × 10−5 53M -2099.875327 -2099.912356(7)
2.0 × 10−5 102M -2099.883027 -2099.914132(8)
1.0 × 10−5 309M -2099.893761 -2099.916595(1)
7.0 × 10−6 539M -2099.898165 -2099.917540(1)
5.0 × 10−6 911M -2099.901781 -2099.918306(3)
3.0 × 10−6 2.00B -2099.906322 -2099.919205(6)

0.0 (Extrap.) - -2099.9224(6)

Table 4.1: Results for Cr2 at r=1.68 in the cc-pVDZ-DK basis. The active
space is (28e, 76o). NV is the number of variational determinants.
ε2 = 10−6ε1. We use weighted quadratic extrapolation, shown in
Fig. 4.1, to obtain the FCI limit corresponding to ∆E = 0.

ground state energy, −2099.9224 Ha as ∆E → 0. The weight of each point is

(Evar − Etot)−2. Fig. 4.1 shows the computed energies and the extrapolation. We

also perform a weighted linear fit and use the difference of the extrapolated

values from the quadratic and the linear fits (0.6 mHa) as the uncertainty. In

summary, the estimated FCI energy of Cr2 in the cc-pVDZ-DK basis with 28

correlated electrons and the relativistic X2C Hamiltonian is −2099.9224(6) Ha.

We compare our result with DMRG and p-DMRG, which are the only es-

sentially exact methods that have been applied to this large active space of the

chromium dimer. The DMRG calculations use up to bond dimension M = 16000

and obtain an extrapolated energy of −2099.9195(27) Ha (default schedule) and

−2099.9192(24) (reverse schedule) [48]. These two values are close to the SHCI

energy obtained with the smallest ε1, but higher than the extrapolated SHCI en-

ergy by 3 mH, which is about the estimated error of the DMRG results. The p-

DMRG calculations used up to M = 4000 and extrapolated energy obtained from

a linear fit is −2099.9201 Ha [48]. If instead, we perform a weighted quadratic

fit (shown in Fig. 4.1), the extrapolated energy is −2099.9225 Ha, in perhaps for-

56

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Evar−Etot (Ha)

−2099.920

−2099.915

−2099.910

−2099.905

−2099.900

−2099.895

−2099.890
E t

ot
 (H

a)
 CCSD(T)

Extrapolatio to Full CI e erg(limit (ε1→0)

SHCI
p-DMRG

Figure 4.1: Weighted quadratic extrapolation of the Cr2 ground state en-
ergy. The weight of each point is (Evar−Etot)−2. The extrapolated
energy is −2099.9224(6), where the uncertainty comes from the
difference between linear extrapolation and quadratic extrapo-
lation. The p-DMRG extrapolation and the CCSD(T) value are
also shown.

tuitously good agreement with our result of −2099.9224(6) Ha. However, the

extrapolation uncertainty is larger than the SHCI extrapolation uncertainty. In

contrast, the CCSD(T) energy is considerably higher and DMRG and SHCI.

One of the merits of selected-CI methods is the ability to include all excita-

tions, regardless of excitation level. To see the contribution from each excitation

level we plot the number of selected determinants and the
∑

i |ci|
2 versus excita-

tion level in Fig. 4.2. Determinants with excitation levels up to 15 excitations are

57

0
2
4
6
8

lo
g 1

0(

De
te
rm

in
an

t
) Contribution from each excitation le#el in ΨV

0 2 4 6 8 10 12 14
Excitation Le#el from HF

−10.0

−7.5

−5.0

−2.5

0.0

lo
g 1

0(
Σ i
c2 i

)

Figure 4.2: Contribution from each excitation level to the variational wave-
function for Cr2 with 2 × 109 determinants. Determinants with
up to 15 excitations are present in the variational wavefunction.

present in the variational wavefunction even though we are using optimized

orbitals. (Using Hartree-Fock orbitals, we expect that determinants with even

higher excitation levels will be present.) This implies that truncating the CI ex-

pansion at the double, triple or quadruple excitation levels (which is the most

that is usually done in systematic CI expansions), will give poor energies for

such strongly correlated systems.

58

4.3 Potential Energy Surface

In addition to the energy at equilibrium geometry, I also obtain the entire po-

tential energy curve of the chromium dimer.

We calculate the potential energy curves, first correlating just the 12 valence

(3d, 4s) electrons, and then correlating also the semi-core (3s, 3p) electrons, mak-

ing a total of 28 correlated electrons. For 12 correlated electrons, we study the

basis set dependence by calculating the curves for cc-pVDZ, cc-pVTZ, and cc-

pVQZ basis sets. The largest active space in our calculations is (28e, 76o), which

gives a Hilbert space of 5 × 1029 determinants, far beyond the reach of FCI.

We use both PySCF [99] and our program to generate the molecular or-

bital integrals for orbitals that minimize the HCI variational energy for ε1 =

2 × 10−4 Ha, using an improved version of the method of Ref. [97]. For 12 cor-

related electrons, we use CAS-core orbitals, and for 28 correlated electrons, we

use the HF-core orbitals. For the former, the potential energy curves obtained

from HF-core and CAS-core orbitals differ greatly, whereas for the latter there

is essentially no difference between HF-core and CAS-core curves. We perform

SHCI with several ε1 values from 2×10−4 to 5×10−6 Ha. The sparse Hamiltonian

matrix is stored in memory and so needs to be constructed only once for each

geometry and each active space. For the perturbative correction calculation, we

set ε2 = 0 to include the entire Hilbert space.

The improved SHCI is fast enough that we can use more than one billion

variational determinants and stochastically include the corrections from at least

trillions of perturbative determinants for each geometry.

59

Figure 4.3: Comparison of SHCI potential energy curves of Cr2, correlating
12 or 28 electrons, with experiment. The shape of the exper-
imental data is deduced from measuring 29 vibrational states
using negative-ion photoelectron spectroscopy [19]. The poten-
tial energy curves from the 12-correlated-electron calculations
agree poorly with experiment, though the agreement improves
upon increasing the basis size. The 28-correlated-electron cal-
culation agrees much better with experiment.

We extrapolate the energies for each geometry with a weighted quadratic fit

and obtain for the ground state energy as ∆E → 0. The weight of each point is

(Evar − Etot)−2. Then we interpolate the points for each active space with cubic

spline interpolation. Fig. 4.5 presents the most accurate raw data points and the

extrapolated curve for the 28 correlated electrons case.

Fig. 4.3 compares the energies calculated with different active spaces to the

experimental data. There is some uncertainty in the experimental curve due to

60

Figure 4.4: Comparison of SHCI potential energy curves of Cr2 with 12
correlated electrons and a cc-pVTZ basis, using either HF-core
orbitals or CAS-core orbitals. The CAS-core curve gives a lower
potential energy, closer to experiment, but the HF-core calcula-
tion results in a potential energy curve whose shape (in partic-
ular the location of the minimum) is closer to experiment.

uncertainty in the assignment of the higher vibrational levels as well as due to

uncertainty in the depth of the potential. The shape of the experimental curve

is deduced from 29 vibrational states using negative-ion photoelectron spec-

troscopy [19]. The measured 29 vibrational states were assigned to ν = 1− 9 and

ν = 24 − 43. There is uncertainty in the shape of the experimental curve because

of the missing vibrational levels as well as uncertainty about the assignment of

the observed peaks to the higher vibrational levels. The depth of the experi-

mental curve is estimated from adding an estimate of the zero-point energy to

experimentally determined bond dissociation energies. Unfortunately, there is

61

Figure 4.5: Raw data and extrapolation for Cr2 with 28 correlated electrons
and a cc-pVDZ basis.

a considerable spread in the estimates of the latter. Here we use the well depth

estimate of 1.56 eV from Ref. [106], which is based on the bond dissociation en-

ergy of Ref. [96]. This well depth is deeper than the estimate of 1.47 eV used in

Ref. [49] based on the bond energy of 1.44 eV reported in Ref. [19].

Fig. 4.3 shows that the 12-active-electron curves do not agree well with ex-

periment. Using a larger basis sets helps bring the curve closer to the experi-

mental data, but is not enough to produce a good agreement. By including the

10 additional electrons from the semi-core in the active space, SHCI achieves

much better agreement, demonstrating that semi-core correlation plays an im-

portant role in the molecular bond of Cr2. At large bond lengths one would

expect that semi-core correlation is not important and in fact the 12 active elec-

62

Figure 4.6: Potential energy curve of Cr2 with 28 electrons in a cc-pVDZ
basis calculated from various methods. The experimental data
come from negative-ion photoelectron spectroscopy [19]. The
UHF curve bears no resemblance to the experimental curve.
The UCCSD and UCCSD(T) curves are better, especially at long
bond lengths, but even UCCSD(T), which is considered to be
the “gold standard” for single-reference systems, agrees poorly
with experiment. In contrast, the SHCI curve is in reasonable
agreement with experiment.

tron and the 28 active electron energies become nearly coincident there.

Fig. 4.4 shows the difference between using HF-core orbitals and using CAS-

core orbital, under the setting of 12 correlated electrons and cc-pVTZ basis sets.

We can see that the CAS-core curve gives a lower potential energy, closer to

experiment, but has the wrong minimum location. The HF-core calculation re-

sults in a potential energy curve whose overall shape and the location of the

minimum are much closer to the experiment.

63

In Fig. 4.6, we compare SHCI results to unrestricted Hartree-Fock (UHF) and

unrestricted coupled cluster methods, UCCSD and UCCSD(T). As expected, the

UHF curve bears no resemblance to the experimental curve. The UCCSD and

UCCSD(T) curves are better, but even UCCSD(T), which is considered to be the

“gold standard” for single-reference systems, agrees poorly with experiment. In

contrast, the SHCI curve is in reasonable agreement with experiment, perhaps

fortuitously so, since the cc-pVDZ basis used is expected to have a significant

finite-basis error. With our current computer resources, we cannot obtain a well-

converged curve with larger basis sets, but, with further improvements in the

method and larger computers, we hope to obtain basis set converged curves

that agree yet better with experiment, and perhaps even provide information

about experimental inaccuracies.

64

CHAPTER 5

TRANSITION METAL SYSTEMS BENCHMARK

5.1 Introduction

I participated in a large multi-institutional collaboration that used 21 different

electronic structure methods on 21 transition metal atoms, ions and oxides, each

of them for basis sets ranging from dζ to 5ζ. The goal of the project was to have

3 methods that provide essentially exact energies for these systems (within the

chosen basis sets) but at a cost that scales exponentially with system size, and

use these energies to assess the accuracy of 18 other methods that are approxi-

mate but exhibit better scaling. My role in the project was to provide the SHCI

energies (one of the 3 methods capable of providing the exact energies, and in

fact the only method that was able to compute all the systems for all the basis

sets).

5.2 Methods

We consider transition metal systems, with the core electrons removed using ef-

fective core potentials[102, 104]. These potentials are an accurate representation

of the core[12] for many-body simulations and allow all the methods considered

in this work to be directly comparable. These potentials are available for Sc, Ti,

V, Cr, Mn, Fe, and Cu, which defines our test set. We consider these transition

metal atoms, their ions, and their monoxide molecules. To simplify the compar-

ison, the molecules were computed at their equilibirium geometry with bond

65

Table 5.1: A list of abbreviations used in this benchmark. In Column A,
the maximum basis set performed by that method for the tran-
sition metal atoms is listed, and in Column B the same for the
monoxide molecules.

Abbreviation Method A B

AFQMC Auxilliary field quantum Monte Carlo 5 5

iFCIQMC Full configuration interaction quantum Monte Carlo q d

DMRG Density matrix renormalization group t d

SHCI Semistochastic heatbath configuration interaction 5 5

CCSD(T) Coupled cluster with singles, doubles, and perturba-

tive triples

5 5

SEET Self-energy embedding theory q q

CISD Configuration interaction with singles and doubles 5 5

QSGW quasiparticle self-consistent GW approximation t t

HF+RPA Hartree-Fock random phase approximation t t

SC-GW Self-consistent GW approximation d -

GF2 Second order Green function q q

CCSD Couple cluster with singles and doubles 5 5

MRLCC multireference localized coupled cluster 5 5

DMC Diffusion Monte Carlo (single determinant) c c

LDA DFT in the local density approximation 5 5

PBE DFT in the PBE approximation 5 5

HSE06 DFT with the HSE06 functional t t

B3LYP DFT with the B3LYP functional 5 5

SCAN DFT with SCAN functional 5 5

HF Hartree-Fock 5 5

66

A
F

Q
M

C
(M

D
)

iF
C

IQ
M

C

D
M

R
G

S
H

C
I

C
C

S
D

(T
)

S
E

E
T

(F
C

I/
G

F
2
)

C
IS

D

Q
S
G

W

H
F

+
R

P
A

S
C

-G
W

G
F

2

C
C

S
D

M
R

L
C

C

AFQMC(MD)

iFCIQMC

DMRG

SHCI

CCSD(T)

SEET(FCI/GF2)

CISD

QSGW

HF+RPA

SC-GW

GF2

CCSD

MRLCC

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5

Log(RMS)

Figure 5.1: Cluster analysis of electronic structure methods in this work.
The matrix values are the logarithm of the RMS deviation of the
total energy in Hartrees (Eqn 5.1) between the two methods.

lengths in as follows: ScO: 1.668, TiO: 1.623,VO: 1.591, CrO: 1.621, MnO: 1.648,

FeO: 1.616, CuO: 1.725.

Almost every electronic structure method works in a finite basis. Here, we

follow the chemistry convention of defining an ascending basis set denoted by

the ζ value, ranging from 2 to 5; i.e., dζ, tζ, qζ, and 5ζ. For each system, we

consider the first principles Hamiltonian projected onto that basis. While these

results are only comparable to experiment in the complete basis set limit (cbs),

for each basis set there corresponds a projected Hamiltonian, which also has an

exact solution. We thus can compare methods within a basis since the Hamilto-

nian is defined precisely.

67

The deviation in the total energy between two methods m and n is computed

as

σ(m, n) =

√∑
i∈systems(Ei(n) − Ei(m))2

N
. (5.1)

This is a measure of how well the output total energies between two methods

agree; it is possible for two methods with large σ to agree on energy differences.

To compare total energy between methods and systems in a consistent way,

we use the concept of percent of correlation energy, commonly used in quantum

chemistry:

% correlation energy(m) = 100 ×
EHF − Em

EHF − ES HCI
, (5.2)

where EHF is the Hartree-Fock energy, m stands for the method under consider-

ation, and ES HCI is the total energy computed in the basis by the SHCI method.

Energy differences are assessed by considering the ionization potential of

a transition metal M: IP = E(M+) − E(M) and the dissociation energy of

a metal oxide molecule MO: DE = E(M) + E(O) − E(MO). These quanti-

ties have been studied in detail for these systems in the past, for example

Refs [11, 43, 35, 107, 116, 14, 74, 76, 101, 100, 57], among others. However, none

of these previous studies have attained reference results as well-converged as

the ones in this paper, and none compare a large number of techniques on the

same Hamiltonian.

In Table 5.1, we classify the methods tested in this work. The ensemble of

techniques includes many of the most common techniques to address the many-

electron problem, as well as some emerging methods. We also include a few

methods such as CISD which are no longer commonly used in calculations, but

have historical relevance. The methods in this benchmark vary dramatically in

their computational cost; the density functional theory methods required only

68

50 60 70 80 90 100 110 120 130
% SHCI correlation energy in basis

AFQMC(MD)
iFCIQMC

DMRG
SHCI

CCSD(T)
SEET(FCI/GF2)

CISD
QSGW

HF+RPA
SC-GW

GF2
CCSD

MRLCC
DMC(SD)

LDA
PBE

HSE06
B3LYP
SCAN

System type
atom
monoxide

96 98 100 102 104
% SHCI correlation energy in basis

Figure 5.2: Kernel density estimation of the percent of the SHCI-computed
correlation energy within each basis obtained by each of the
methods in the benchmark set. All basis sets available are plot-
ted; individual data points are indicated by small lines.

a few minutes to complete the test set, while some of the more advanced tech-

niques were not able to treat every basis for every system with the available

amount of computer time. The methods also scale very differently, ranging from

O(N3
e) to exponential in the number of electrons.

5.3 Results

In Fig 5.1, we show a cluster analysis of the total energy results using Eqn 5.1

as the distance metric. Three methods agree to better than 1 mHa on all at-

tained basis sets and systems: DMRG, iFCIQMC, and SHCI. The iFCIQMC and

DMRG techniques were not optimal for these systems, and so could only be

completed to high accuracy for small basis sets. These three methods each have

single parameters that, when converged, theoretically should result in exact re-

69

−3 −2 −1 0 1 2
Deviation from SHCI reference (eV)

AFQMC(MD)
iFCIQMC

DMRG
SHCI

CCSD(T)
SEET(FCI/GF2)

CISD
QSGW

HF+RPA
GF2

CCSD
MRLCC

DMC(SD)
LDA
PBE

HSE06
B3LYP
SCAN

Ionization potential
Dissociation energy

−0.25 0.00 0.25

Figure 5.3: Kernel density estimation plot of binding energy and ioniza-
tion potential of molecules and atoms to SHCI complete basis
reference calculations. Each technique is listed with the largest
basis set available, so long as the basis set is triple-ζ or larger.
Methods are ordered according to the clustering in Fig 5.1.

sults. Because of this 3-fold agreement, we can take any of these results as the

exact ground state energy in a given basis set to within about 1 mHa, which is

approximately what is termed “chemical accuracy.” Among these three, only

SHCI was performed for all basis sets and all systems and so we use that as the

reference total energy.

Using this reference, one can compute the percent of correlation energy ob-

tained by a given method, shown in Fig 5.2. At 100% of the correlation energy,

the exact result is obtained.

We can see that all the systematic methods, including FCIQMC, DMRG, and

SHCI, agree exceptionally well with each other, for those basis sets where the

FCIQMC and DMRG calculations were feasible. This is as expected since they

use the same Hamiltonian and all of these methods should give the full-CI en-

ergies without systematic errors.

70

However, systematic methods like these can only be applied to relatively

small systems due to their high computational cost, so it is also important to

study the errors in other more efficient methods. These errors are often canceled

out in previous studies when comparing to experimental data, and the results

from our study make these errors directly accessible.

From these figures, we can see that both AFQMC and CCSD(T) give rea-

sonably good agreement to the reference values and their computational costs

increase much slower with the system size than the three essentially exact meth-

ods. Other methods are much less accurate and thus may not produce reliable

results for the energies. However, they may still provide sufficient accuracy for

some systems.

In many cases, using less accurate methods can be the only option due to

the high computational cost of more accurate methods. In such cases, bench-

mark results from some sample systems of a similar kind can provide useful

information on which approximate method to choose.

71

CHAPTER 6

SIMPLIFIED HIGH PERFORMANCE CLUSTER COMPUTING

MapReduce and its variants have significantly simplified and accelerated the

process of developing parallel programs. However, most MapReduce imple-

mentations focus on data-intensive tasks while many real-world tasks are com-

pute intensive and their data can fit distributedly into the memory. For these

tasks, MapReduce programs can be much slower than hand-optimized ones.

We have developed Blaze, a C++ library that makes it easy to develop high per-

formance parallel programs for such compute intensive tasks. At the core of

Blaze is a highly-optimized in-memory MapReduce function, which has three

main improvements over conventional MapReduce implementations: eager re-

duction, fast serialization, and special treatment for a small fixed key range. We

also offer additional conveniences that make developing parallel programs sim-

ilar to developing serial programs. These improvements make Blaze an easy-to-

use cluster computing library that approaches the speed of hand-optimized par-

allel code. We apply Blaze to some common data mining tasks, including word

frequency count, PageRank, k-means, expectation maximization (Gaussian mix-

ture model), and k-nearest neighbors. Blaze outperforms Apache Spark by more

than 10 times on average for these tasks, and the speed of Blaze scales almost

linearly with the number of nodes. In addition, Blaze uses only the MapReduce

function and 3 utility functions in its implementation while Spark uses almost

30 different parallel primitives in its official implementation.

72

Input Data

Output Data

Mapper

ReducerReducer

<k1, v1> <k2, v2>

<k2, v2>

i2i1

<k1, v4>

<k1, v3>

Mapper

Figure 6.1: MapReduce Programming Model. The map function generates
a set of intermediate key/value pairs for each input. The re-
duce function merges the values associated with the same key.
Numerous data mining and machine learning algorithms are
expressible with this model.

6.1 Introduction

Cluster computing enables us to perform a huge amount of computations on

big data and get insights from them at a scale that a single machine can hardly

achieve. However, developing parallel programs to take advantage of a large

cluster can be very difficult.

MapReduce [33, 34] greatly simplified this task by providing users a high-

level abstraction for defining their computation, and taking care of the intri-

cate low-level execution steps internally. Fig. 6.1 illustrates the MapReduce pro-

gramming model. Logically, each MapReduce operation consists of two phases:

a map phase where each input is mapped to a set of intermediate key/value

73

pairs, and a reduce phase where the pairs with the same key are put together

and reduced to a single key/value pair according to a user specified reduce

function.

Many data mining algorithms are expressible with this model, such as

PageRank [10, 83, 37], k-means [123, 26, 31, 8, 47], Gaussian mixture model [26],

and k-nearest neighbors [9, 72, 69, 118].

Although logically expressible, achieving similar efficiency as a hand-

optimized parallel code is hard, especially when the data can be fit distributed

into the memory. In such cases, the file system is no longer the bottleneck and

the overhead from MapReduce can make the execution much slower than hand-

optimized code.

Google’s MapReduce [33, 34] and most of its variants [41, 21, 73, 7, 13, 30,

37, 46, 51, 67, 121, 117] save intermediate data and result to the file system even

when the data can be fit into the memory. Hence, its MapReduce performance

is severely limited by the performance of the file system.

Spark [42, 120, 122, 119] offers an in-memory implementation of MapReduce,

which is much faster than Google’s MapReduce. However, it uses a similar algo-

rithm as Google’s MapReduce, which is designed for disk-based data intensive

use cases and does not consider the computational overheads of MapReduce

seriously. Hence, the performance of Spark is often far from the performance of

hand-optimized code.

To achieve better performance while preserving the high-level MapReduce

abstraction, we develop Blaze, a C++ based cluster computing library that

focuses on in-memory high performance MapReduce and related operations.

74

Blaze introduces three main improvements to the MapReduce algorithm: eager

reduction, fast serialization, and special treatment for a small fixed key range.

Section 6.2.3 provides a detailed description of these improvements.

We apply Blaze to several common data mining tasks, including word fre-

quency count, PageRank, k-means, expectation maximization (Gaussian mix-

ture), and k-nearest neighbors. Our results show that Blaze is on average 10

times faster than Spark on these tasks.

The main contributions of this research are listed as follows:

1. We develop Blaze, a high performance cluster computing library that al-

lows users to write parallel programs with the high-level MapReduce ab-

straction while achieving similar performance as hand-optimized code for

compute intensive tasks.

2. We introduce three main performance improvements to the MapReduce

algorithm to make it more efficient: eager reduction, fast serialization, and

special treatment for a small fixed key range.

3. We apply Blaze to 5 common data mining tasks and demonstrate that

Blaze programs are easy to develop and can outperform Apache Spark

programs by more than 10 times on average for these tasks.

The remaining sections are organized as follows: Section 6.2 describes the

Blaze framework and the details of the optimization. Section 6.3 present the

details of how we implement several key data mining and machine learning

algorithms with Blaze and compare the performance with Apache Spark. Sec-

tion 6.4 concludes the paper.

75

User Program

Blaze Parallel Computing Kernel

Map
Blaze

MapReduce
Map

Distributed

Containers
Map
Utility

Functions

Figure 6.2: Blaze Architecture.

6.2 The Blaze Library

The Blaze library offers three sets of APIs: 1) a high-performance MapReduce

function, 2) distributed data containers, and 3) parallel computing utility func-

tions. These APIs are built based on the Blaze parallel computing kernel, which

provides common low-level parallel computing primitives.

6.2.1 Distributed Containers

Blaze provides three distributed data containers: DistRange, DistVector, and Dis-

tHashMap. DistRange does not store the whole data but only the start, the end,

and the step size of the data. DistVector distributedly stores an array of ele-

ments. DistHashMap distributedly stores key/value pairs.

All three containers support the foreach operation, where a custom func-

tion can be applied to each of its element in parallel. This function can either

change the value of the element, or use the value of the element to perform

76

external operations.

Both the DistVector and the DistHashMap can be converted to and from

C++ standard library containers with Blaze utility functions distribute and

collect. DistVector can also be created from the load_file utility function,

which can load text files from the file system in parallel into a distributed vector

of lines.

DistVector also has a topk method, which can return the top k elements from

the distributed vector in O(n + k log k) time and O(k) space. Users can provide a

custom comparison function to determine the priority of the elements.

6.2.2 MapReduce

The MapReduce function uses a functional style interface. It takes four param-

eters:

1. Input. One of the Blaze distributed containers.

2. Mapper. When the input is a DistRange, the mapper should be a function

that accepts two parameters: a value from the DistRange and a handler

function for emitting key/value pairs. When the input is a DistVector or a

DistHashMap, the mapper should be a function that accepts three param-

eters: a key from the input, the corresponding value, and an emit handler.

3. Reducer. The function that reduce two values to one value. Blaze pro-

vides several built-in reducers, including sum, prod, min, and max, which

can cover most use cases. These reducers can be used by providing the

77

reducer name as a string, for example, "sum". Users can also provide cus-

tom reduce functions, which should take two parameters, the first one is a

reference to the existing value which needs to be updated, and the second

one is a constant reference to the new value.

4. Target. One of the Blaze distributed containers or a vector from the stan-

dard library. The target container should be mutable and it is not cleared

before performing MapReduce. New results from the MapReduce opera-

tion are merged/reduced into the target container.

Blaze MapReduce also takes care of the serialization of common data types

so that the map function can emit non-string key/value pairs, and the reduce

function no longer requires additional logic for parsing the serialized data. Us-

ing custom data types as keys or values is also supported. For that, users only

need to provide the corresponding serialize/parse methods and a hash function

(for keys).

We provide two examples of using Blaze MapReduce in section 6.5.1 and

6.5.2.

6.2.3 Optimization

We introduce several optimizations to make the MapReduce function faster, in-

cluding eager reduction, fast serialization, and special treatment for cases where

the resulting key range is small and fixed.

78

MapMap

MapMap

MapShuffle

MapShuffle

MapReduce

MapReduce

Original MapReduce

Blaze MapReduce

thread cache

Figure 6.3: Eager Reduction in Blaze MapReduce.

Eager Reduction

Conventional MapReduce performs the map phase first and saves all the emit-

ted pairs from the mapper function. Then, it shuffles all the emitted pairs across

the networks directly, which could incur a large amount of network traffics.

In Blaze MapReduce, we perform machine-local reduce right after the map-

per function emits a key/value pair. For popular keys, Blaze automatically re-

duces new values to a thread-local cache instead of the machine-local copy. The

cross-machine shuffle operates on the locally reduced data which substantially

reduces the network communication burden. During the shuffle operations,

reduce functions are also operating asynchronously to maximize the through-

put. Fig. 6.3 illustrates the difference between the conventional MapReduce and

Blaze MapReduce with eager reduction.

79

Fast Serialization

During the shuffle/reduce phase, we serialize the messages into a compact bi-

nary format before casting them across the network.

Although these two fields allow missing fields and support serializing the

fields in arbitrary order, this additional flexibility is not needed in MapReduce.

On the other hand, these two fields can have a significant impact on both the

performance and the serialized message size, especially when the content size

of a field is small, which is common for MapReduce key/value pairs. For ex-

ample, when both the key and value are small integers, the serialized message

size of each pair from Protocol Buffers will be 4 bytes while the message from

Blaze fast serialization will be only 2 bytes, which is 50% smaller than the one

from Protocol Buffers. Removing the fields tags and wire types does not cause

ambiguity as long as we always serialize the fields in the same order, which

is easy to achieve in MapReduce. The smaller size in the serialized message

means less network traffics, so that Blaze can scale better on large clusters when

the cross-rack bandwidth becomes the bottleneck.

Optimization for Small Key Range

For small key range, we create a thread-local cache for each key at the beginning

and set that as the reduce target during the local map/reduce phase. After the

local map/reduce phase finishes, we perform parallel tree based reduce opera-

tions: first locally and then across multiple machines. The resulting execution

plan is essentially the same as hand-optimized parallel for loops with thread-

local intermediate results.

80

Table 6.1: Monte Carlo Pi Estimation Performance. We can see that
Blaze MapReduce has almost the same speed as hand-optimized
MPI+OpenMP parallel for loops while requires much fewer
source lines of code (SLOC).

Samples Blaze MapReduce MPI+OpenMP

107 0.14 ± 0.01 s 0.14 ± 0.01 s

108 1.44 ± 0.07 s 1.42 ± 0.09 s

109 14.2 ± 1.3 s 14.6 ± 1.7 s

SLOC 8 24

We benchmark the performance of Blaze MapReduce against hand-

optimized parallel for-loop on the Monte Carlo Pi estimation task. In this task,

the mapper function first generates two random numbers x and y in the range

[0, 1], and then emits 1 to key 0 when x2 + y2 < 1. Cases like this where we re-

duce big data to a small number of keys are commonly seen in data mining and

are not efficient with the original MapReduce algorithm. However, by using a

thread-local copy as the default reduce target for each thread, Blaze MapReduce

can achieve similar performance as hand-optimized code based on raw MPI and

OpenMP. Table 6.1 reports the result and Section 6.5.2 lists our implementation.

The tests are performed on a local machine with Ubuntu 16.04, GCC 5.4 -O3,

and an Intel i7-8550U processor.

6.3 Applications

In this section, we benchmark Blaze against a popular data mining package

Spark, on common data mining tasks, including word frequency count, PageR-

81

ank, k-means, expectation maximization (with the Gaussian Mixture model),

and k-nearest neighbors search.

6.3.1 Task Description and Implementation

In this section, we describe the data mining tasks and how we implement them

in Blaze and Spark. All the source code of our implementation is included in

our GitHub repository [64].

Word Frequency Count

This task counts the number of occurrences of each unique English word in a

text file. We use the Bible and Shakespeare’s works as the testing text. Since

Spark has significant overhead in starting the MapReduce tasks, we repeat the

Bible and the Shakespeare 200 times, so that the input file contains about 0.4

billion words.

We use MapReduce in both Blaze and Spark. The mapper function takes a

single line and emits multiple (word, 1) pairs. The reducer function sums the

values. Section 6.5.1 contains the full Blaze implementation for this example.

PageRank

This task calculates the PageRank score, which is defined as the stationary value

of the following equation:

PR(pi) =
1 − d

N
+ d

∑
p j∈M(pi)

PR(p j)
L(p j)

(6.1)

82

where M(pi) is the set of pages that link to pi, L(p j) is the number of outbound

links from page p j, N is the total number of pages, and d = 0.15. When a page

has no outbound links, it is called a sink and is assumed to connect to all the

pages. We use the graph500 generator to generate the input graph which con-

tains 10 million links. We set the convergence criterion to 10−5, which results

in 27 iterations for our input. The links are stored distributedly across multiple

machines.

For Blaze, we use 3 MapReduce operations per iteration to implement this

task. The first one calculates the total score of all the sinks. The second one

calculates the new PageRank scores according to Eq. 6.1. The third one calcu-

lates the maximum change in the scores of all the pages. For Spark, we use the

built-in PageRank module from the Spark GraphX library [114].

K-Means

K-Means is a popular clustering algorithm. The algorithm proceeds by alternat-

ing two steps until the convergence. The first step is the assignment step where

each point is assigned to the nearest clustering center. The second step is the re-

finement step where each clustering center is updated based on the new mean

of the points assigned to the clustering center.

We generate 100 million random points around 5 clustering centers as the

testing data, and use the same initial model and convergence criteria for Spark

and Blaze. The points are stored distributedly across multiple machines.

For Blaze, we use a single MapReduce operation to perform the assignment

step. The update step is implemented in serial. For Spark, we use the built-in

83

implementation from the Spark MLlib library [75].

Expectation Maximization

This task uses the expectation maximization method to train the Gaussian Mix-

ture clustering model (GMM). Starting from an initial model, we first calculate

the Gaussian probability density of each point for each Gaussian component

pk
(
~x|θk

)
=

1
(2π)d/2

|Σk|
1/2 e−

1
2 (~x−~µk)T

Σ−1
k (~x−~µk) (6.2)

where µ1 to µK are the centers of these Gaussian components and Σ1 to ΣK are

the covariance matrices. Then we calculate the membership of each point for

each Gaussian component

wik =
pk

(
~xi|θk

)
· αk∑K

m=1 pm
(
~xi|θm

)
· αm

(6.3)

where αk is the weights of the Gaussian component. Next, we calculate the sum

of membership weights for each Gaussian component Nk = ΣK
i=1wik. After that,

we update the parameters of the Gaussian mixtures

αk =
Nk

N
(6.4)

~µk =

(
1
Nk

) N∑
i=1

wik~xi (6.5)

Σk =

(
1
Nk

) K∑
i=1

wik
(
~x − ~µk

)T (
~x − ~µk

)
(6.6)

Finally, we calculate the log-likelihood of the current model for these points to

determine whether the process is converged.

N∑
i=1

log p
(
~xi|Θ

)
=

N∑
i=1

log
K∑

k=1

αk pk
(
~xi|θk

) (6.7)

84

We generate 1 million random points around 5 clustering centers as the test-

ing data and use the same initial model and convergence criteria for Spark and

Blaze. The points are stored distributedly across multiple machines.

For Blaze, we implement this algorithm with 6 MapReduce operations per

iteration. The first MapReduce calculates the probability density according to

Eq. 6.2. The second MapReduce calculates the membership according to Eq. 6.3.

The third MapReduce accumulates the sum of memberships for each Gaussian

component Nk. The next two MapReduce perform the summations in Eq. 6.5

and Eq. 6.6. The last MapReduce calculates the log-likelihood according to

Eq. 6.7. For Spark, we use the built-in implementation from the Spark MLlib

library [75].

Nearest 100 Neighbors

In this task, we find the 100-nearest neighbors of a point from a huge set of

other points. This is a common procedure in data analysis and recommendation

systems. We use 200 million random points for this test.

For both Spark and Blaze, we implement this task with the top k function of

the corresponding distributed containers and provide custom comparison func-

tions to determine the relative priority of two points based on the Euclidean-

distance.

85

6.3.2 Performance Analysis

We test the performance of both Spark and Blaze for the above tasks on Ama-

zon Web Services (AWS). The time for loading data from the file system is not

included in our measurements. Spark is explicitly set to use the MEMORY_ONLY

mode and we choose memory-optimized instances r5.xlarge as our testing en-

vironments which have large enough memory for Spark to complete our tasks.

Each r5.xlarge has 4 logical cores, 32GB memory, and up to 10 Gbps network

performance.

For Spark, we use the AWS Elastic MapReduce (EMR) service version 5.20.0,

which comes with Spark 2.4.0. Since, in the default setting, Spark changes the

number of executors on the fly, which may obscure the results, we set the envi-

ronment variable for maximizing resource allocation to true to avoid the change.

We also manually specify the number of partitions to 100 to force the cross-

executor shuffle on the entire cluster. For Blaze, we use GCC 7.3 with -O3 opti-

mization and MPICH 3.2. For both Spark and Blaze, we perform warmup runs

before counting the timings. Timings are converted to more meaningful results

for each task.

The detailed performance comparison are shown in Fig. 6.4 to 6.8. “Spark”,

“Spark (MLlib)”, “Spark (GraphX)”, “Blaze”, “Blaze TCM” denote the original

Spark implementation, the MLlib library in Spark, the GraphX library in Spark,

original Blaze, and Blaze linked with Thread-Caching Malloc (TCMalloc), re-

spectively.

As shown in Fig. 6.4 to 6.8, Blaze outperforms Spark significantly on all five

data mining applications. On average, Blaze is more than 10 times faster than

86

2 4 8 16
number of nodes

0

50

100

150

200

250

300

350

wo
rd

s /
 se

co
nd

 (i
n

m
illi

on
s)

Wordcount Performance
Spark
Blaze
Blaze TCM

Figure 6.4: Performance of the word frequency count measured in the
number of words processed per second.

Spark. The superior performance of Blaze shows that our highly-optimized im-

plementation suits these data mining applications well. The performance dif-

ference between Blaze and Blaze TCM is negligible. However, without using

TCMalloc, the performance has more fluctuations and can occasionally experi-

ence a significant drop of up to 30%.

6.3.3 Memory Consumption

We measure the memory consumption for running these tasks on a single lo-

cal machine of 12 logical cores, using the same versions for all the software as

the tests on AWS. As shown in Fig 6.9, we can see that both Blaze and Blaze

TCM consume much less memory than Spark during the runs, especially for

PageRank, K-Means, and expectation maximization (GMM), where Spark uses

10 times more memory than Blaze. The only case where the memory consump-

87

2 4 8 16
number of nodes

0

20

40

60

80

100

lin
ks
 /
se
co
nd
 /
ite

ra
tio

n
(in

 m
illi
on
s)

Pagerank Performance
Spark (GraphX)
Blaze
Blaze TCM

Figure 6.5: Performance of the PageRank algorithm measured in number
of links processed per second per iteration.

2 4 8 16
number of nodes

0

50

100

150

200

250

300

po
in
ts
 /
se
co
nd

 /
ite

ra
tio

n
(in

 m
illi
on

s)

K-Means Performance
Spark (MLlib)
Blaze
Blaze TCM

Figure 6.6: Performance of the K-Means algorithm measured in the num-
ber of points processed per second per iteration.

88

2 4 8 16
number of nodes

0

5

10

15

20

25

po
in
ts
 /
se
co
nd
 /
ite

ra
tio

n
(in

 m
illi
on
s)

Expectation Maximization (GMM) Performance
Spark (MLlib)
Blaze
Blaze TCM

Figure 6.7: Performance of the Expectation Maximization algorithm for
the Gaussian Mixture Model measured in the number of points
processed per second per iteration.

2 4 8 16
number of nodes

0

250

500

750

1000

1250

1500

1750

2000

po
in
ts
 /
se
co
nd

 (i
n
m
illi
on

s)

Nearest 100 Neighbors Performance
Spark
Blaze
Blaze TCM

Figure 6.8: Performance of the Nearest 100 Neighbors search measured in
the number of total points processed per second.

89

Wordcount Pagerank K-Means EM GMM NN100
0

5

10

15

20

25

M
em

or
y
(G

B)

Peak Memory Usage
Spark
Blaze
Blaze TCM

Figure 6.9: Peak memory usage on a single node.

tion between Spark and Blaze is close is the k-nearest neighbors search, which

does not involve intermediate key/value pairs.

The memory consumption between Blaze and Blaze TCM are always on

the same order of magnitude, although in one case, Blaze consumes 40% more

memory when linked against TCMalloc.

6.3.4 Cognitive Load

Cognitive load refers to the effort needed to develop or understand the code.

Minimizing the cognitive load is the ultimate goal that MapReduce and its vari-

ants try to achieve.

There are lots of different measures for cognitive effort. Source lines of code

is not a good measure here as Spark/Scala supports chaining functions and can

put several consecutive operations on a single line. Hence, a line of Spark/Scala

90

Wordcount Pagerank K-Means EM GMM NN100
0

2

4

6

8

10

12

14

16

Di
st

in
ct

 A
PI

s U
se

d

Cognitive Load (Less is Better)
Spark
Blaze

Figure 6.10: Cognitive load comparison between Blaze and Spark.

may be much more difficult to understand than a line of C++. Here we use the

number of distinct APIs used as the indicator for cognitive load. It is a legitimate

indicator because people will have to do more searches and remember more

APIs when a library requires more distinct API calls to accomplish a task.

Spark’s built-in implementation uses about 30 different parallel primitives

for different tasks, while Blaze only uses the MapReduce function and less than

5 utility functions. We can see from Fig. 6.10 that the cognitive load of using

Blaze is much smaller than using Spark.

6.4 Conclusion

Blaze provides a high performance implementation of MapReduce. Users can

write parallel programs with Blaze’s high-level MapReduce abstraction and

achieve similar performance as the hand-optimized parallel code.

91

We use Blaze to implement 5 common data mining algorithms. By writing

only a few lines of serial code and applying the Blaze MapReduce function, we

achieve over 10 times higher performance than Spark on these compute inten-

sive tasks, even though we only use the MapReduce function and 3 utility func-

tions in our Blaze implementation while Spark uses almost 30 different parallel

primitives for different tasks in its official implementation.

The high-level abstraction and the high performance makes Blaze an appeal-

ing choice for compute intensive tasks in data mining and related fields.

6.5 Examples

In this section, we provide two examples to illustrate the usage of Blaze. All the

source code of our implementation is included in our GitHub repository [64].

6.5.1 Word frequency count

In this example, we count the number of occurrences of each unique word in

an input file with Blaze MapReduce. We save the results in a distributed hash

map, which can be used for further processing.

To compile this example, you can clone our repository [64], go to the

example folder and type make wordcount.

#include <blaze/blaze.h>

#include <iostream>

92

int main(int argc, char** argv) {

blaze::util::init(argc, argv);

// Load file into distributed container.

auto lines =

blaze::util::load_file("filepath...");

// Define mapper function.

const auto& mapper = [&](

const size_t, // Line id.

const std::string& line,

const auto& emit) {

// Split line into words.

std::stringstream ss(line);

std::string word;

while (getline(ss, word, ’ ’)) {

emit(word, 1);

}

};

// Define target hash map.

blaze::DistHashMap<std::string, size_t> words;

// Perform mapreduce.

blaze::mapreduce<

std::string, std::string, size_t>(

lines, mapper, "sum", words);

// Output number of unique words.

93

std::cout << words.size() << std::endl;

return 0;

}

6.5.2 Monte Carlo Pi Estimation

In this example, we present a MapReduce implementation of the Monte Carlo π

estimation.

To compile this example, you can clone our repository [64], go to the

example folder and type make pi.

#include <blaze/blaze.h>

#include <iostream>

int main(int argc, char** argv) {

blaze::util::init(argc, argv);

const size_t N_SAMPLES = 1000000;

// Define source.

blaze::DistRange<size_t> samples(0, N_SAMPLES);

// Define mapper.

const auto& mapper =

[&](const size_t, const auto& emit) {

// Random function in std is not thread safe.

double x = blaze::random::uniform();

94

double y = blaze::random::uniform();

// Map points within circle to key 0.

if (x * x + y * y < 1) emit(0, 1);

};

// Define target.

std::vector<size_t> count(1); // {0}

// Perform MapReduce.

blaze::mapreduce<size_t, size_t>(

samples, mapper, "sum", count);

std::cout << 4.0 * count[0] / N_SAMPLES

<< std::endl;

return 0;

}

In conventional MapReduce implementations, mapping big data onto a sin-

gle key is usually slow and consumes a large amount of memory during the

map phase. Hence, in practice, people usually hand-code parallel for loops in

such situations. However, by using Blaze, the above code has similar mem-

ory consumption and performance as the hand-optimized parallel for loops. In

short, Blaze frees users from dealing with low-level data communications while

ensuring high performance.

95

CHAPTER 7

SCIENTIFIC SOFTWARE ENGINEERING IN SMALL RESEARCH

GROUPS

With the development of computer technology, more and more scientific re-

search involves developing and using scientific software. From the natural sci-

ences, such as physics and chemistry, to the social sciences, such as economics

and finance, software opens new fields for researchers and provides new results

and insights that are impossible or too costly with conventional theoretical and

experimental approaches. Therefore, many researchers are devoting increas-

ingly more time and resources to software development, and this scientific soft-

ware is becoming more and more complicated.

Software engineering is a computer science subject that studies how to man-

age complicated software development in a systematic and structured way so

that software is easier to develop, maintain, and extend, and the software devel-

opers can cooperate more efficiently. Software engineering is especially crucial

to scientific software development, because if the software has poor quality, the

results may be wrong, which can lead to wrong conclusions and mislead future

research.

In this chapter, I look back on my experience of developing quantum chem-

istry software for my PhD research and my experiences of working at Google,

a software company famous for its excellent engineering practices, to provide a

brief discussion of the differences between industrial software engineering and

scientific software engineering, common industrial software engineering tools

and practices, and their applicability in scientific software engineering.

96

7.1 Differences Between Industrial and Scientific Software

There are many differences between industrial and scientific software develop-

ment. This section tries to discuss the ones that matter the most to the software

engineering practices.

7.1.1 Feature Requirements

The clarity of the feature requirements is one of the biggest difference between

industrial and scientific software development. In industrial software engineer-

ing, before writing the first line of code, project managers or user experience

teams first come up with detailed designs through market research, and the

software requirements for implementing the design are clearly documented in a

design document written by professional managers and technical leaders. This

is completely different from scientific research, where the input and output of

the software often evolve during the research, developers have to make feature

decisions when writing the code, and the algorithms involved are constantly

changing to improve the accuracy and speed of the calculations.

In some rare cases, features in the industrial software also change during

the development process. However, additional features can usually be incorpo-

rated without changing the overall architecture. In contrast, during the devel-

opment of scientific software, as researchers dive deeper into the problem they

are solving, it is common that they may use their existing code as a component

to explore more general problems or related problems, which can require an

overall restructuring of the program.

97

7.1.2 Users

We focus on software development in small research groups. For these groups,

the software being developed is usually used internally. The users know each

other, and the communication cost between developers and users is extremely

low. Developers often focus on implementing new algorithms and using them

to answer new scientific problems that have not been solved before and pay less

attention to the user experience. However, in industrial software engineering,

the communication cost between users and developers is extremely high and

sometimes even impossible. Therefore, many industrial software engineering

practices focus a lot on creating a smooth user experience, both for common

use cases and edge cases. Many companies may even sacrifice new features or

technologies until they become mature in order to avoid unexpected behaviors.

7.1.3 Lifecycle

In industry, the lifecycle of software is usually from several months to several

years.

However, in scientific software engineering, depending on the nature of the

research, some software developed in small research groups is used only during

the period of a specific research project, while other software based on mature

algorithms serve as basics tools for application-based research and may be used

for much longer. It is worthwhile for researchers to determine the likely lifecycle

of the software under development and apply software engineering techniques

accordingly.

98

7.2 Applicability of Industrial Software Engineering Practices

7.2.1 Object Oriented Design

Object-oriented design groups related data and methods together into objects

so that the software can have a modular structure, which makes the code easier

to read, maintain, and extend. Many successful industrial products use object-

oriented design, such as the Windows operating system and the Google internet

services.

In scientific software engineering, there are also many related data and func-

tions, and by grouping them into higher-level logical units with object-oriented

programming, we can get a similar benefit as in the industrial cases.

Most object-oriented languages allow granular access control of each mem-

ber variable and each member function of the objects. From my experience of

developing SHCI, it is usually more convenient and efficient to relax the access

control of data related objects in scientific programming. There are two rea-

sons for this: 1) the nature of scientific research imposes lots of uncertainty as to

whether some member variables in an object may be related to another object

or not and making the access control more relaxed can make it much easier to

experiment with new algorithms and speed up the research. 2) most software

in scientific programming is only for internal users, and thus, there are many

fewer risks associated with accessing private variables.

99

7.2.2 Unit Tests

Unit tests are common practices in industrial software engineering. Upon sub-

mitting new functions or classes, many software companies require each edge

case of each function in each class to be addressed by a separate test case. Unit

tests seem to slow down the development process in the short run, but can even-

tually speed up the entire product development process in the long run and

increase the robustness of the products.

However, many codes in scientific software are often for experimental pro-

poses and are likely to be used only once. Unit tests are mainly for preventing

errors in the future when using that unit as a component, so there is no need to

write unit tests for units that are not likely to be used in the future or used in

other components.

For utility classes that are used as components in other classes, whether unit

tests are beneficial depends mainly on the background of the group members.

In many engineering research groups, members are proficient in programming,

and students in these groups may frequently write unit tests after they grad-

uate and enter the industrial world. In this case, enforcing unit tests on these

utility components will not take much time, and can be a good opportunity for

students to practice the skills of writing unit tests. For natural science or so-

cial science research groups, due to the lack of comprehensive computer science

training, enforcing unit tests even just on the utility classes may be too costly,

and it may be more efficient not to use them but instead put in the option to

generate verbose outputs in each component.

100

7.2.3 Code Review

Code review is the practice of letting other team members review changes to

a software system before merging these changes. It can help teams to identify

defects and hard to read parts in the code earlier, and improve the quality of

software significantly. It also makes sure that each line of code is known to

several team members so that in the absence of some team members, the team

can still make changes to the code quickly.

The main drawback of code review is that it takes some time to understand

other’s code, but for industrial software engineering, it almost always saves

time in the long run due to the increased quality and high knowledge coverage

of the code.

For scientific software engineering, code review is also helpful for the same

reasons as for industrial software engineering. However, for some codes which

involve fancy algorithms or specialized knowledge of a certain team member,

other team members may need to spend a significant amount of time to ac-

quire the background knowledge. Code review, in this case, can slow down the

overall progress of the research significantly, but sometimes it is may still be

beneficial to keep doing code review in such case for educational purposes.

7.2.4 Refactoring

Software development is usually an iterative process, and during incremental

development, software changes drastically. These changes often cause the qual-

ity of the code to decrease. In order to improve the quality, many large software

101

companies, including Google, perform periodic refactoring of their codebase.

During the refactoring periods, engineers focus on implement existing func-

tions and features in a more readable, more maintainable way, and more robust

way. Although they seem to stop making progress during these periods, long

term productivity is improved.

Refactoring is especially important to scientific software engineering be-

cause when doing scientific programming, we are often not sure whether a new

change is useful or not, so we tend to care less about the quality of the code and

focus more on implementing and testing new ideas as soon as possible. How-

ever, this will result in a poor code quality, which makes software less main-

tainable. Hence, by keeping and refactoring what has been tested to be useful,

the entire code base can become much more readable and reusable in the future.

Even in the case when we are developing production components rather than

experimental functions, it may still be more efficient to first focus on implemen-

tation to produce the correct results, and then refactor the implementation to

make it easier to read and extend in the future.

7.2.5 Continuous Integration

Continuous integration automatically builds and tests the codebase before a

change from a developer can be integrated into the codebase. This allows devel-

opers to detect errors in the code quickly before it causes trouble to end-users

or other developers working on the same repository.

In scientific software engineering, many researchers focus on moving fast

and getting results out as soon as possible. While efficiency is important to

102

small research groups, chasing efficiency too much may have an adverse effect

and slow down the speed in the long run. Continuous integration is an easy

way to make sure that after applying the new changes, the entire software can

still build successfully, and the basic tests produce expected results. Depending

on how stable and mature an algorithm is, developers can decide how many

tests to include in the continuous integration so that they can achieve a balance

between not breaking mature functions and testing new ideas quickly. In addi-

tion, the continuous integration configuration file can also be used as a guideline

for setting up the software on a new computing environment, and a successful

integration status ensures users that the software can be built successfully on a

clean environment.

103

CHAPTER 8

CONCLUSION

Fast semistochastic heatbath configuration interaction (Fast SHCI) is an effi-

cient algorithm for electronic structure calculations. It is more than an order of

magnitude faster than other selected configuration interaction plus perturbation

theory algorithms, and also much faster than other essentially exact quantum

chemistry methods, such as DMRG or FCIQMC, in many cases.

The key reasons that fast SHCI is fast are:

• The heatbath criterion is easy to evaluate, and important determinants that

meet this criterion can be found efficiently by using precomputed double

excitation lists.

• The fast Hamiltonian construction algorithm significantly speeds up the

Hamiltonian construction process by using helper arrays.

• The 3-step perturbation algorithm speeds up the perturbation correction

calculation regardless of the memory of the system.

SHCI achieves accurate results on homogeneous electron gas in the mid to

high-density region due to its high efficiency and ability to work with large basis

sets. SHCI also successfully produces accurate results on huge Hilbert spaces of

Chromium dimers.

Modular design makes the SHCI code easy to maintain and extend, and also

produces several generic distributed computing building blocks, which makes

writing high-performance parallel software much easier than using raw MPI

routines directly.

104

Finally, regarding scientific software engineering, since scientific software is

becoming more and more complex, it is crucial to keep the quality of the code

high so that the scientific results from this software are reliable and the process

of extending the software in order to experiment on new scientific ideas is effi-

cient. We can borrow the experience from industrial software engineering, but

due to the differences between industrial and scientific research, some common

practices which are generally believed to be beneficial to industrial software

engineering will have to be adjusted to really benefit scientific software devel-

opment.

105

BIBLIOGRAPHY

[1] Boost C++ Libraries, https://www.boost.org/doc/libs/, (2012).

[2] Distributed hash table. https://en.wikipedia.org/wiki/
Distributed_hash_table. Accessed: 2018-10-12.

[3] Hash functions. http://collaboration.cmc.ec.gc.ca/
science/rpn/biblio/ddj/Website/articles/DDJ/1997/
9709/9709n/9709n.htm. Accessed: 2019-05-20.

[4] Linear probing. https://en.wikipedia.org/wiki/Linear_
probing. Accessed: 2018-10-12.

[5] Non-blocking algorithm. https://en.wikipedia.org/wiki/
Non-blocking_algorithm. Accessed: 2018-10-12.

[6] Open addressing. https://en.wikipedia.org/wiki/Open_
addressing. Accessed: 2018-10-12.

[7] Foto N Afrati and Jeffrey D Ullman. Optimizing joins in a map-reduce
environment. In Proceedings of the 13th International Conference on Extending
Database Technology, pages 99–110. ACM, 2010.

[8] Prajesh P Anchalia, Anjan K Koundinya, and NK Srinath. Mapreduce
design of k-means clustering algorithm. In Information Science and Appli-
cations (ICISA), 2013 International Conference on, pages 1–5. IEEE, 2013.

[9] Prajesh P Anchalia and Kaushik Roy. The k-nearest neighbor algorithm
using mapreduce paradigm. In Intelligent Systems, Modelling and Simula-
tion (ISMS), 2014 5th International Conference on, pages 513–518. IEEE, 2014.

[10] Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin. Fast personal-
ized pagerank on mapreduce. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 973–984. ACM, 2011.

[11] Charles W. Bauschlicher and Phillippe Maitre. Theoretical study of the
first transition row oxides and sulfides. Theoretica chimica acta, 90(2):189–
203, January 1995.

[12] M. Chandler Bennett, Cody A. Melton, Abdulgani Annaberdiyev, Guang-
ming Wang, Luke Shulenburger, and Lubos Mitas. A new generation of

106

effective core potentials for correlated calculations. The Journal of Chemical
Physics, 147(22):224106, December 2017.

[13] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A Acar,
and Rafael Pasquin. Incoop: Mapreduce for incremental computations. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, page 7. ACM,
2011.

[14] Thomas Bligaard, R. Morris Bullock, Charles T. Campbell, Jingguang G.
Chen, Bruce C. Gates, Raymond J. Gorte, Christopher W. Jones, William D.
Jones, John R. Kitchin, and Susannah L. Scott. Toward Benchmarking in
Catalysis Science: Best Practices, Challenges, and Opportunities. ACS
Catalysis, 6(4):2590–2602, April 2016.

[15] G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi. Towards an exact de-
scription of electronic wavefunctions in real solids. Nature, 493:365, 2013.

[16] George H Booth, Alex JW Thom, and Ali Alavi. Fermion monte carlo
without fixed nodes: A game of life, death, and annihilation in slater de-
terminant space. J. Chem. Phys., 131(5):054106, 2009.

[17] Robert J Buenker and Sigrid D Peyerimhoff. Individualized configuration
selection in ci calculations with subsequent energy extrapolation. Theor.
Chim. Acta, 35(1):33–58, 1974.

[18] L. Bytautas and K. Ruedenberg. A priori identification of configurational
deadwood. Chem. Phys., 356:64–75, 2009.

[19] Sean M Casey and Doreen G Leopold. Negative ion photoelectron spec-
troscopy of chromium dimer. The Journal of Physical Chemistry, 97(4):816–
830, 1993.

[20] D. M. Ceperley and B. J. Alder. Phys. Rev. Lett., 45:566, 1980.

[21] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R Henry, Robert Bradshaw, and Nathan Weizenbaum. Flumejava:
easy, efficient data-parallel pipelines. In ACM Sigplan Notices, volume 45,
pages 363–375. ACM, 2010.

[22] Garnet Kin-Lic Chan and Martin Head-Gordon. Highly correlated calcu-
lations with a polynomial cost algorithm: A study of the density matrix
renormalization group. J. Chem. Phys., 116(11):4462–4476, 2002.

107

[23] Garnet Kin-Lic Chan and Sandeep Sharma. The density matrix renormal-
ization group in quantum chemistry. Annu. Rev. Phys. Chem., 62:465–481,
2011.

[24] Zhiwen Chen, Xin He, Jianhua Sun, Hao Chen, and Ligang He. Con-
current hash tables on multicore machines: Comparison, evaluation and
implications. Future Generation Computer Systems, 82:127–141, 2018.

[25] Alan D. Chien, Adam A. Holmes, Matthew Otten, C. J. Umrigar, Sandeep
Sharma, and Paul M. Zimmerman. Excited states of methylene, polyenes,
and ozone from heat-bath configuration interaction. J. Phys. Chem. A,
122:2714, 2018.

[26] Cheng-Tao Chu, Sang K Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Kunle Olukotun, and Andrew Y Ng. Map-reduce for machine learning
on multicore. In Advances in neural information processing systems, pages
281–288, 2007.

[27] Renzo Cimiraglia and Maurizio Persico. Recent advances in multirefer-
ence second order perturbation ci: The cipsi method revisited. J. Comp.
Chem., 8(1):39–47, 1987.

[28] Deidre Cleland, George H Booth, and Ali Alavi. Communications:
Survival of the fittest: Accelerating convergence in full configuration-
interaction quantum monte carlo. J. Chem. Phys., 132(4):041103, 2010.

[29] J.P. Coe, P. Murphy, and M.J. Paterson. Applying Monte Carlo configura-
tion interaction to transition metal dimers: Exploring the balance between
static and dynamic correlation. Chem. Phys. Lett., 604:46, 2014.

[30] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled
Elmeleegy, and Russell Sears. Mapreduce online. In Nsdi, volume 10,
page 20, 2010.

[31] Xiaoli Cui, Pingfei Zhu, Xin Yang, Keqiu Li, and Changqing Ji. Optimized
big data k-means clustering using mapreduce. The Journal of Supercomput-
ing, 70(3):1249–1259, 2014.

[32] Ernest R Davidson. Super-matrix methods. Computer Physics Communica-
tions, 53(1-3):49–60, 1989.

108

[33] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[34] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data process-
ing tool. Communications of the ACM, 53(1):72–77, 2010.

[35] Katharina Doblhoff-Dier, Jörg Meyer, Philip E. Hoggan, Geert-Jan Kroes,
and Lucas K. Wagner. Diffusion Monte Carlo for Accurate Dissociation
Energies of 3d Transition Metal Containing Molecules. Journal of Chemical
Theory and Computation, 12(6):2583–2597, June 2016.

[36] R. M. Dreizler and E. K. U. Gross. Density Functional Theory. Springer-
Verlag, Berlin, 1990.

[37] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative
mapreduce. In Proceedings of the 19th ACM international symposium on high
performance distributed computing, pages 810–818. ACM, 2010.

[38] P. S. Epstein. Phys. Rev., 28:695, 1926.

[39] F. A. Evangelista. Adaptive multiconfigurational wave functions. J. Chem.
Phys., 140:124114, 2014.

[40] Stefano Evangelisti, Jean-Pierre Daudey, and Jean-Paul Malrieu. Conver-
gence of an improved cipsi algorithm. Chem. Phys., 75(1):91–102, 1983.

[41] Apache Software Foundation. Apache hadoop.
https://hadoop.apache.org/, 2019. Accessed: 2019-02-01.

[42] Apache Software Foundation. Apache spark - unified analytics engine for
big data. https://spark.apache.org/, 2019. Accessed: 2019-02-01.

[43] Filipp Furche and John P. Perdew. The performance of semilocal and hy-
brid density functionals in 3d transition-metal chemistry. The Journal of
Chemical Physics, 124(4):044103, January 2006.

[44] Yann Garniron, Anthony Scemama, Pierre-François Loos, and Michel Caf-
farel. Hybrid stochastic-deterministic calculation of the second-order per-
turbative contribution of multireference perturbation theory. J. Chem.
Phys., 147:034101, 2017.

109

[45] Gabriele Giuliani and Giovanni Vignale. Quantum theory of the electron
liquid. Cambridge university press, 2005.

[46] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen.
Approxhadoop: Bringing approximations to mapreduce frameworks. In
ACM SIGARCH Computer Architecture News, volume 43, pages 383–397.
ACM, 2015.

[47] Satish Gopalani and Rohan Arora. Comparing apache spark and map
reduce with performance analysis using k-means. International journal of
computer applications, 113(1), 2015.

[48] Sheng Guo, Zhendong Li, and Garnet Kin-Lic Chan. A perturbative den-
sity matrix renormalization group algorithm for large active spaces. J.
Chem. Theory Comput., 2018.

[49] Sheng Guo, Mark A. Watson, Weifeng Hu, Qiming Sun, and Garnet Kin-
Lic Chan. N-electron valence state perturbation theory based on a density
matrix renormalization group reference function, with applications to the
chromium dimer and a trimer model of poly(p-phenylenevinylene). J.
Chem. Theory Comput., 12(4):1583–1591, 2016.

[50] R. J. Harrison. Approximating full configuration interaction with selected
configuration interaction and perturbation theory. J. Chem. Phys., 94:5021–
5031, 1991.

[51] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and Tuy-
ong Wang. Mars: a mapreduce framework on graphics processors. In
Parallel Architectures and Compilation Techniques (PACT), 2008 International
Conference on, pages 260–269. IEEE, 2008.

[52] A. A. Holmes, Norm M. Tubman, and C. J. Umrigar. Heat-bath configu-
ration interaction: An efficient selected ci algorithm inspired by heat-bath
sampling. J. Chem. Theory Comput., 12:3674, 2016.

[53] Adam A. Holmes, Hitesh J. Changlani, and C. J. Umrigar. Efficient heat-
bath sampling in fock space. J. Chem. Theory Comput., 2016.

[54] Adam A. Holmes, C. J. Umrigar, and Sandeep Sharma. Excited states
using semistochastic heat-bath configuration interaction. J. Chem. Phys.,
147(16):164111, 2017.

110

[55] B Huron, JP Malrieu, and P Rancurel. Iterative perturbation calculations
of ground and excited state energies from multiconfigurational zeroth-
order wavefunctions. J. Chem. Phys., 58(12):5745–5759, 1973.

[56] Joseph Ivanic and Klaus Ruedenberg. Identification of deadwood in con-
figuration spaces through general direct configuration interaction. Theor
Chem Acc, 106:339, 2001.

[57] Erin R. Johnson and Axel D. Becke. Communication: DFT treatment of
strong correlation in 3d transition-metal diatomics. The Journal of Chemical
Physics, 146(21):211105, June 2017.

[58] Thomas P. Kelly, Ajith Perera, Rodney J. Bartlett, and James C. Greer.
Monte Carlo configuration interaction with perturbation corrections for
dissociation energies of first row diatomic molecules: C2, N2, O2, CO. J.
Chem. Phys., 140:084114, 2014.

[59] P.J. Knowles and N.C. Handy. A new determinant-based full configura-
tion interaction method. Chem. Phys. Lett., 111(4-5):315–321, 1984.

[60] Walter Kohn. Nobel lecture: Electronic structure of matterwave functions
and density functionals. Rev. Mod. Phys., 71(5):1253, 1999.

[61] Richard A Kronmal and Arthur V Peterson Jr. On the alias method for
generating random variables from a discrete distribution. Amer. Statist.,
33(4):214–218, 1979.

[62] Y Kurashige and T Yanai. Second-order perturbation theory with a den-
sity matrix renormalization group self-consistent field reference function:
Theory and application to the study of chromium dimer. J. Chem. Phys.,
135(9):094104, 2011.

[63] Yongkyung Kwon, DM Ceperley, and Richard M Martin. Effects of back-
flow correlation in the three-dimensional electron gas: Quantum monte
carlo study. Physical Review B, 58(11):6800, 1998.

[64] Junhao Li. Blaze. https://github.com/junhao12131/blaze, 2019. Ac-
cessed: 2019-02-01.

[65] Junhao Li, Matthew Otten, Adam A. Holmes, Sandeep Sharma, and C. J.
Umrigar. Fast semistochastic heat-bath configuration interaction. J. Chem.
Phys., 148:214110, 2018.

111

[66] Junhao Li, Matthew Otten, Adam A Holmes, Sandeep Sharma, and
Cyrus J Umrigar. Fast semistochastic heat-bath configuration interaction.
The Journal of chemical physics, 149(21):214110, 2018.

[67] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr.
Coded mapreduce. In Communication, Control, and Computing (Allerton),
2015 53rd Annual Allerton Conference on, pages 964–971. IEEE, 2015.

[68] Pierre-François Loos, Anthony Scemama, Aymeric Blondel, Yann Garn-
iron, Michel Caffarel, and Denis Jacquemin. A mountaineering strategy
to excited states: Highly accurate reference energies and benchmarks. J.
Chem. Theory Comput., 14:43604379, 2018.

[69] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient process-
ing of k nearest neighbor joins using mapreduce. Proceedings of the VLDB
Endowment, 5(10):1016–1027, 2012.

[70] Hongjun Luo and Ali Alavi. Combining the transcorrelated method with
full configuration interaction quantum monte carlo: application to the
homogeneous electron gas. Journal of chemical theory and computation,
14(3):1403–1411, 2018.

[71] Dongxia Ma, Giovanni Li Manni, Jeppe Olsen, and Laura Gagliardi.
Second-Order Perturbation Theory for Generalized Active Space Self-
Consistent-Field Wave Functions. J. Chem. Theory Comput., 12:3208, 2016.

[72] Jesús Maillo, Isaac Triguero, and Francisco Herrera. A mapreduce-based
k-nearest neighbor approach for big data classification. In Trustcom/Big-
DataSE/ISPA, 2015 IEEE, volume 2, pages 167–172. IEEE, 2015.

[73] Cascading maintainers. Cascading. https://www.cascading.org/, 2019.
Accessed: 2019-02-01.

[74] Narbe Mardirossian and Martin Head-Gordon. Thirty years of density
functional theory in computational chemistry: an overview and extensive
assessment of 200 density functionals. Molecular Physics, 115(19):2315–
2372, October 2017.

[75] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean
Owen, et al. Mllib: Machine learning in apache spark. The Journal of Ma-
chine Learning Research, 17(1):1235–1241, 2016.

112

[76] Yury Minenkov, Edrisse Chermak, and Luigi Cavallo. Troubles in the Sys-
tematic Prediction of Transition Metal Thermochemistry with Contempo-
rary Out-of-the-Box Methods. Journal of Chemical Theory and Computation,
12(4):1542–1560, April 2016.

[77] Bastien Mussard and Sandeep Sharma. One-step treatment of spin–orbit
coupling and electron correlation in large active spaces. J. Chem. Theory
Comput., 14(1):154–165, 2017.

[78] R. K. Nesbet. Proc. R. Soc. London, Ser. A., 230:312, 1955.

[79] Verena A Neufeld and Alex JW Thom. A study of the dense uni-
form electron gas with high orders of coupled cluster. arXiv preprint
arXiv:1706.09923, 2017.

[80] Roberto Olivares-Amaya, Weifeng Hu, Naoki Nakatani, Sandeep Sharma,
Jun Yang, and Garnet Kin-Lic Chan. The ab-initio density matrix renor-
malization group in practice. J. Chem. Phys., 142(3):034102, 2015.

[81] R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules.
Oxford University Press, New York, 1989.

[82] F. R. Petruzielo, A. A. Holmes, Hitesh J. Changlani, M. P. Nightingale,
and C. J. Umrigar. Semistochastic projector monte carlo method. Phys.
Rev. Lett., 109(23):230201, 2012.

[83] Steven J Plimpton and Karen D Devine. Mapreduce in mpi for large-scale
graph algorithms. Parallel Computing, 37(9):610–632, 2011.

[84] Wirawan Purwanto, Shiwei Zhang, and Henry Krakauer. An auxiliary-
field quantum monte carlo study of the chromium dimer. J. Chem. Phys.,
142:064302, 2015.

[85] Krishnan Raghavachari, Gary W Trucks, John A Pople, and Martin Head-
Gordon. A fifth-order perturbation comparison of electron correlation
theories. Chemical Physics Letters, 157(6):479–483, 1989.

[86] P. Lopez Rios, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs.
Inhomogeneous backflow transformations in quantum Monte Carlo cal-
culations. Phys. Rev. E, 74, Dec 2006.

113

[87] P López Rı́os, A Ma, ND Drummond, MD Towler, and RJ Needs. Inhomo-
geneous backflow transformations in quantum monte carlo calculations.
Physical Review E, 74(6):066701, 2006.

[88] A. Savin. On degeneracy, near degeneracy and density functional theory.
In J. M. Seminario, editor, Recent Developments of Modern Density Functional
Theory, pages 327–357. Elsevier, Amsterdam, 1996.

[89] Anthony Scemama, Thomas Applencourt, Emmanuel Giner, and Michel
Caffarel. Quantum monte carlo with very large multideterminant wave-
functions. J. Comp. Chem., 37(20):1866–1875, 2016.

[90] Ulrich Schollwöck. The density-matrix renormalization group. Rev. Mod.
Phys., 77(1):259, 2005.

[91] Gustavo E. Scuseria. Analytic evaluation of energy gradients for the sin-
gles and doubles coupled cluster method including perturbative triple ex-
citations: Theory and applications to FOOF and Cr2. J. Chem. Phys., 94:442,
1991.

[92] Sandeep Sharma and Garnet Kin-Lic Chan. Spin-adapted density matrix
renormalization group algorithms for quantum chemistry. J. Chem. Phys.,
136(12), Mar 28 2012.

[93] Sandeep Sharma, Adam A. Holmes, Guillaume Jeanmairet, Ali Alavi, and
C. J. Umrigar. Semistochastic heat-bath configuration interaction method:
Selected configuration interaction with semistochastic perturbation the-
ory. J. Chem. Theory Comput., 13(4):1595–1604, 2017.

[94] James J. Shepherd, George Booth, Andreas Grueneis, and Ali Alavi. Full
configuration interaction perspective on the homogeneous electron gas.
Phys. Rev. B, 85(8), 2012.

[95] James J Shepherd, George Booth, Andreas Grüneis, and Ali Alavi. Full
configuration interaction perspective on the homogeneous electron gas.
Physical Review B, 85(8):081103, 2012.

[96] Benoit Simard, Marie-Ange Lebeault-Dorget, Adrian Marijnissen, and
JJ Ter Meulen. Photoionization spectroscopy of dichromium and di-
molybdenum: Ionization potentials and bond energies. J. Chem. Phys.,
108(23):9668–9674, 1998.

114

[97] James ET Smith, Bastien Mussard, Adam A Holmes, and Sandeep
Sharma. Cheap and near exact casscf with large active spaces. J. Chem.
Theory Comput., 13(11):5468–5478, 2017.

[98] Stephen Stuart and Rex Fernando. Encoding rules and mime type for
protocol buffers. https://tools.ietf.org/html/draft-rfernando-protocol-buffers-00,
2012.

[99] Qiming Sun, Timothy C Berkelbach, Nick S Blunt, George H Booth, Sheng
Guo, Zhendong Li, Junzi Liu, James McClain, Sandeep Sharma, Sebastian
Wouters, and Garnet Kin-Lic Chan. Pyscf: The python-based simulations
of chemistry framework. WIREs Comput. Mol. Sci., 8:e1340, 2018.

[100] David P. Tew. Explicitly correlated coupled-cluster theory with Brueckner
orbitals. The Journal of Chemical Physics, 145(7):074103, August 2016.

[101] Robert E. Thomas, George H. Booth, and Ali Alavi. Accurate Ab Ini-
tio Calculation of Ionization Potentials of the First-Row Transition Met-
als with the Configuration-Interaction Quantum Monte Carlo Technique.
Physical Review Letters, 114(3):033001, January 2015.

[102] J. R. Trail and R. J. Needs. Pseudopotentials for correlated electron sys-
tems. The Journal of Chemical Physics, 139(1):014101, July 2013.

[103] J. R. Trail and R. J. Needs. Correlated electron pseudopotentials for 3d-
transition metals. J. Chem. Phys., 142:064110, 2015.

[104] J. R. Trail and R. J. Needs. Correlated electron pseudopotentials for 3d-
transition metals. The Journal of Chemical Physics, 142(6):064110, February
2015.

[105] Norm M. Tubman, Daniel S. Levine, Diptarka Hait, Martin Head-
Gordon, and K. Birgitta Whaley. An efficient deterministic per-
turbation theory for selected configuration interaction methods.
https://arxiv.org/pdf/1808.02049.pdf.

[106] Steven Vancoillie, Per Ake Malmqvist, and Valera Veryazov. Potential
energy surface of the chromium dimer re-re-revisited with multiconfigu-
rational perturbation theory. J. Chem. Theory Comput., 12:1647, 2016.

[107] Pragya Verma, Zoltan Varga, Johannes E. M. N. Klein, Christopher J.
Cramer, Lawrence Que Jr, and Donald G. Truhlar. Assessment of Elec-

115

tronic Structure Methods for the Determination of the Ground Spin
States of Fe(II), Fe(III) and Fe(IV) Complexes. Physical Chemistry Chemi-
cal Physics, May 2017.

[108] Alastair J Walker. An efficient method for generating discrete ran-
dom variables with general distributions. ACM Trans. on Math. Software
(TOMS), 3(3):253–256, 1977.

[109] Steven R White. Density-matrix algorithms for quantum renormalization
groups. Physical Review B, 48(14):10345, 1993.

[110] Steven R White and Richard L Martin. Ab initio quantum chemistry using
the density matrix renormalization group. J. Chem. Phys., 110(9):4127–
4130, 1999.

[111] Wikipedia contributors. Binary search tree — wikipedia, the free encyclo-
pedia, 2019. [Online; accessed 23-April-2019].

[112] Wikipedia contributors. Redblack tree — wikipedia, the free encyclope-
dia, 2019. [Online; accessed 23-April-2019].

[113] Wikipedia contributors. Tree traversal — wikipedia, the free encyclope-
dia, 2019. [Online; accessed 23-April-2019].

[114] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First Interna-
tional Workshop on Graph Data Management Experiences and Systems, page 2.
ACM, 2013.

[115] Enhua Xu, Motoyuki Uejima, and Seiichiro Lenka Ten-no. Full Coupled-
Cluster Reduction for Accurate Description of Strong Electron Correla-
tion. Phys. Rev. Lett., 121:113001, 2018.

[116] Xuefei Xu, Wenjing Zhang, Mingsheng Tang, and Donald G. Truhlar.
Do Practical Standard Coupled Cluster Calculations Agree Better than
Kohn–Sham Calculations with Currently Available Functionals When
Compared to the Best Available Experimental Data for Dissociation En-
ergies of Bonds to 3d Transition Metals? Journal of Chemical Theory and
Computation, 11(5):2036–2052, May 2015.

[117] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D Stott Parker. Map-
reduce-merge: simplified relational data processing on large clusters. In

116

Proceedings of the 2007 ACM SIGMOD international conference on Manage-
ment of data, pages 1029–1040. ACM, 2007.

[118] Takuya Yokoyama, Yoshiharu Ishikawa, and Yu Suzuki. Processing all k-
nearest neighbor queries in hadoop. In International Conference on Web-Age
Information Management, pages 346–351. Springer, 2012.

[119] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2–2. USENIX Association,
2012.

[120] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[121] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and
Ion Stoica. Improving mapreduce performance in heterogeneous environ-
ments. In Osdi, volume 8, page 7, 2008.

[122] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J Franklin, et al. Apache spark: a unified engine for big data
processing. Communications of the ACM, 59(11):56–65, 2016.

[123] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering
based on mapreduce. In IEEE International Conference on Cloud Computing,
pages 674–679. Springer, 2009.

117

