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1. Introduction. A sparse matrix algorithm is an algorithm that performs a matrix
computation in such a way as to take advantage of the zero/nonzero structure of the
matrices involved, by not explicitly storing or manipulating some or all of the zero elements.
Sparse matrix algorithms often need to determine the nonzero structure of the result of a
computation before doing the computation, using only the nonzero structure of the input.
This paper is a catalog of the effects on nonzero structure of several common matrix
computations. It includes arithmetic, linear systems, various factorizations, and some
eigenvector problems.

Some of these results are not new, or at least not difficult. They are collected here
because many of them are hard to dig out of papers on various topics in linear algebra and
algorithms, and I wanted to put them all down in one framework. Sections 3 through 6
contain the results of the paper: roughly speaking, the results in Section 3 are immediate;
those in Section 4 are known; most of those in Section 5 are consequences of known results;
and those in Section 6 are new. Throughout, I have given the earliest reference I am aware
of for each result.

2. Definitions.
Structure. Let A be an n by n matrix with nonzero diagonal. The structure of A is

structure(A) = { (3,7) : A;; # 0}.

The directed graph of A is the graph whose vertices are the integers from 1 to n and whose
edges are { (t,7) : A;; # 0}. Therefore the structure of a matrix is the set of edges of its
directed graph. (This includes a loop at each vertex for the nonzero diagonal element.)
The structure of a vector z is
{‘ txp # 0},

which can be interpreted as a set of vertices in the directed graph of A. Where ambiguity
cannot arise, we will not distinguish between a matrix, its structure, and its directed graph,
or between a vector and its structure.

In a few places we will use an undirected bipartite graph to represent the structure of
a matrix that need not be square. If A is m by n, the bipartite graph of A is the graph
whose vertices are rq,rs,...,m and c1,C2,. .., s, and whose edges are { (r;,¢c;) : A;; # O}.
We will be careful to distinguish the bipartite graph of A from the directed graph of A.

To say more precisely what we mean by the structural effect of a computation, we make
some remarks based on those of Brayton, Gustavson, and Willoughby [1] and Edenbrandt
[6]. Let f be a function from one or more matrices or vectors to a matrix or vector. The
structure of A may not determine the structure of f(A); for example, in general the sum of
two full vectors is full, but (1,1)7 + (1, —1)T is not full. We wish to ignore zeros created by
coincidence in the numerical values of A. We are really interested in the smallest structure
that is “big enough” for the result of f with any input of the given structure, which is

U{structure(f(B)) : structure(B) C structure(A4)}.

Brayton, Gustavson, and Willoughby called an algorithm “s-minimal” if it computes this
structure from structure(A).

The functions we consider in this paper all have the property that for each structure S,
there is a worst-case value A with structure(4) = S such that structure(B) C S implies
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structure(f(B)) C structure(f(A)). A function that does not have this property is f(4) =
U, the upper triangular factor of A in Gaussian elimination with partial pivoting. Suppose

the structure of A is
X

X X
X X

Depending on the relative magnitudes of the elements in the first column, the structure of
f(A) may be

X X X X X X

X
X
X
X
]
—
X
X X X

X X X

The smallest structure big enough for f(A) is a full upper triangular matrix, even though
f(A) cannot be full.

Graph terminology. Recall that, informally, we are not distinguishing between a
graph and the structure of a matrix (which is really a set of edges). Let A be an undirected
graph and let z be a subset of the vertices of A. We say z is closed (with respect to A) if
there is no edge of A from a vertex not in z to a vertex in z; that is, if z; # 0 and A;; #0
implies z; # 0. The closure of z (with respect to A) is the smallest closed set containing
z,

closure(z) = ﬂ{ y:z C y and y is closed},

which is the set of vertices of A from which there are paths to vertices of z.
The transitive closure of A is the graph whose edges correspond to paths in A,

transitive closure(A4) = { (s,7) : 3 a path in A from ¢ to j}.

If the vertices of A are numbered 1,2, ...,n, an interesting subgraph of transitive closure(A)
is the filled graph of A, which describes paths whose highest-numbered vertices are their

endpoints,

fill(A) = {(4,7) : 3 a path in A from 1 to j whose vertices are all less than min(s, j)}.

A graph A is strongly connected if there is a path from every vertex to every other
vertex. A matrix A is called srreducible if structure( A) is strongly connected. The strongly
connected components (briefly, just strong components) of an arbitrary graph A are its
maximal strongly connected subgraphs. Every vertex of a graph is in exactly one strong
component, and every edge is in at most one strong component. If a square matrix A
is permuted into block triangular form with as many diagonal blocks as possible, the
diagonal blocks partition the rows and columns of A into sets corresponding to the strong
components of structure(A). (This partition is independent of the choice of a nonzero
diagonal for A; see [2] for discussion and references to several different proofs of this fact.)

If matrix A is symmetric, its directed graph contains edge (¢, 7) if and only if it contains
edge (7,1). Informally, we shall not distinguish between this graph and the undirected graph
of A, which has an undirected edge {3,5} if A;; # 0. An interesting class of undirected
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graphs is the chordal graphs: An undirected graph is chordal if every cycle of length at
least four has a chord, that is, if for every cycle vy, vg,. .., v, vy with k > 4 there is some
edge {v;,v;} for which s #j£1 (mod k).

If A is an m by n matrix with no zero columns, AT A is a symmetric matrix with
nonzero diagonal. We use the notation AS A to denote an arbitrary n by n matrix with a
nonzero in position (s,7) if and only if there is a row in which columns ¢ and j of A are
both nonzero. Then structure(ATxg) C structure(AS A); the structures are equal unless
there is numerical cancellation in A" A.

Let A be an m by n matrix with m > n. We say that A has the Hall property if, for
every k with 0 < k < n, every set of k columns of A contains nonzeros in at least k rows.
(That is, every set of k column vertices of the bipartite graph of A is adjacent to at least
k row vertices.) We say that A has the strong Hall property if, for every k with 0 < k < n,
every set of k columns of A contains nonzeros in at least k + 1 rows. These properties are
related to matchings in the bipartite graph of A. The graph has a matching that covers
all its columns if and only if A has the Hall property. If A4 is square, it is irreducible if and
only if its bipartite graph has the strong Hall property. (See Papadimitriou and Steiglitz
[15] for background on bipartite matching. Our terminology is from Coleman, Edenbrandt,
and Gilbert [2].)

Other definitions. A finite set {z;,...,z,} of complex numbers is algebrascally
independent if the point (zy,. .., Z,) is not a zero of any nonzero n-variable polynomial with
integer coefficients. Then z; is transcendental over the field Q(z1, ..., Zi—1, Zit+1, .- -, Zn) of
the rationals extended by all the z’s except z;. There exist arbitrarily large algebraically
independent sets, even of real numbers, by a simple countability argument.

8. Products. The following trivial result is used in the proof of Theorem 6.1. The
structure is the bipartite graph of the matrix in question.

Theorem 3.1. Let the structure of an m by n matrix A and an n-vector z be given.
(i) Whatever values A and z have, structure(Az) is a subset of the row vertices of A
adjacent to column vertices whose indices are in structure(z).
(ii) There exist values for the nonzeros of A and z such that structure(Az) is equal to the
set of row vertices described above. §

The generalization of the theorem to products of matrices is immediate, since each
column of AB is A times a column of B.

Recall that ASA denotes a square matrix whose (3,5) position is nonzero if there
is a row in which columns ¢ and j of A are both nonzero. Theorem 3.1 implies that
structure(AT A) C structure(AS A).

4. Factorisations. In this section we describe the structural effect of several matrix
factorizations. The necessary definitions are in Section 2.

LU factorisation. For the factorization A = LU where L is lower triangular with unit
diagonal and U is upper triangular, we consider square matrices A with nonzero diagonal,
and the graph in question is the directed graph of A. The square matrix L+ U — I
represents the entire factorization. (Not all nonsingular matrices have LU factorizations
without pivoting [12]. In a later subsection we consider factorization with partial pivoting.)
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Theorem 4.1 [17]. Let a structure for A be given, with nonzero diagonal elements.
(i) If values are chosen for which A has an LU factorization as above, then structure(L +
U - I) C fill(A).
(ii) There exist values for the nonzeros of A such that structure(L + U — I) = fill(4). &

Rose and Tarjan [17] gave an algorithm for computing fill(A) from A in O(nm) time,
where A is n by n with m nonzeros. They also showed that transitive closure(A) can be
computed in time asymptotically the same as that to compute fill(A), so a faster algorithm
to compute fill( A) would give a faster algorithm to compute transitive closure(A) than the
best currently known.

Remark 4.1. A nonsingular square matrix may have an LU factorization even though
it has zeros on the diagonal. In this case, Theorem 4.1(i) still holds; but the converse,
part (ii), is false. Brayton, Gustavson, and Willoughby [1] gave a counterexample. Let

structure(A4) =

X X X X
X
X

Then the (4,3) entry in fill(A) is nonzero, but Ly3 = O regardless of the nonzero values
of A.

Cholesky factorisation. Here we consider the factorization 4 = LLT, where Ais a
symmetric, positive definite matrix. Then A has a nonzero diagonal because it is positive
definite, and the directed graph of A corresponds to an undirected graph because A is
symmetric.

Theorem 4.2 [18]. Let a symmetric structure for A be given, with nonzero diagonal

elements.

(i) No matter what values A has, if A has a Cholesky factorization A = LLT then
structure(L) C fill(A).

(ii) There exist symmetric values for the nonzeros of A such that structure(L + LT) =
fill(4). »

Rose, Lueker, and Tarjan [18] gave an O(n + m + f) algorithm to compute fill(A) for
symmetric A.

Rose showed that the graphs of Cholesky factors of symmetric matrices are exactly the
chordal graphs; or, equivalently, that a structure can be reordered to have no fill if and
only if it is chordal.

Theorem 4.3 [16]. Let a symmetric structure for A be given, with nonzero diagonal
elements.
(i) fill(A) is a chordal graph.
(ii) Conversely, if structure(A) is a chordal graph, then its vertices can be renumbered so
that fill(A) = structure(A4). »

Rose, Leuker, and Tarjan [18] gave an O(n + m) algorithm to determine whether a graph
A is chordal and, if so, to reorder its vertices so that fill(A4) = structure(A).
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Partial pivoting. The example in Section 2 showed that a result of the form of
Theorem 4.2 is not possible for LU factorization with partial pivoting. George and Ng [10]
gave an upper bound. A few remarks are necessary to understand the bound.

There are two ways to write the LU factorization, with partial pivoting, of a square
matrix A. One is as A = PLU, where L is unit lower triangular, U is upper triangular,
and P is a permutation matrix. The other is as A = PyLP;L;--- P,_1L,—1U, where P;
is a permutation that just transposes row ¢ and a higher-numbered row, and L; is a Gauss
transform (a unit lower triangular matrix with nonzeros only in column ). To get the first
factorization, use the standard outer product form of Gaussian elimination to replace A by
its triangular factors, pivoting by interchanging two rows of the matrix at the beginning
of each major step; at major step k, each row thus interchanged contains entries of L in
the first k — 1 positions and entries of the partially factored A in the remaining positions.
To get the second factorization, pivot by interchanging, at the beginning of major step k,
only columns k through n of the two rows in question. In this case an entry of the lower
triangle is never moved once it is computed, and only the rows of the partially factored
matrix are interchanged.

The factorizations are equivalent in the sense that the same arithmetic is performed
in each case, the two U’s are the same, and the values of the nonzeros in L — I and
L = Y, <;<,(L;—1I) are the same; only the positions of the nonzeros in the lower triangular

factors are different. The George-Ng theorem describes the structures of LandU.

Theorem 4.4 [10]. Let the structure of A be given. Whatever values A has, if

Gaussian elimination with partial pivoting gives the factors L and U as above, then
structure(L + U) C fill(ASA). &

This theorem is not tight: There may be nonzeros in fill( A5 A) that cannot be nonzero
in L + U for any pivot sequence. For example, if A is tridiagonal then fill(AS A) is five-
diagonal, predicting that U could be upper tridiagonal; but, in fact, U must be upper
bidiagonal. George and Ng [11] suggest a way of predicting the structures of L and U
by efficiently simulating all possible pivoting steps. When combined with permutation to
block triangular form, this method may give a tight prediction, though George and Ng do
not claim that it does.

QR factorisation. Suppose A is an m by n matrix with m < n. Here we consider the
factorization A = QR, where @ is an orthogonal matrix and R is upper triangular with
nonnegative diagonal. George and Heath observed that, since this R is the same as the
Cholesky factor of AT A, the structure of R can be predicted by forming AS A and doing
structural Cholesky factorization.

Theorem 4.5 [8]. Let the structure be given for a rectangular matrix A with at
least as many rows as columns. Whatever values A has, if A has full column rank then its
orthogonal factorization A = QR satisfies structure(R) C fill(ASA). »

The converse of this theorem is false; for example, if A is square with a nonzero diagonal
and a full first row, then structure(AS A) = fill(A5 A) is full, but the orthogonal factor R
is equal to A. Coleman, Edenbrandt, and Gilbert supplied a partial converse.

Theorem 4.8 [2]. Let the structure be given for a rectangular matrix A with at least
as many rows as columns. If A has the strong Hall property, then there exist values for
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the nonzeros of A such that structure(R) = fill(A5 A), where R is the orthogonal factor
of A as above. 1§

If A does not have the strong Hall property, it can be permuted into a block triangular
form for which the structure of R can be predicted. See [2] for details. Heath and I
experimented with some typical matrices from geodetic least squares problems structural
analysis. Most of them had the strong Hall property; we concluded that in practice the
converse of Theorem 4.4 is often true.

5. Solutions of linear systems. In this section we determine the structure of the
solution z to the square system of linear equations Az = b. We solve the related problem
of determining the structure of A~!. These results have not appeared before in this form,
but the upper bounds in Theorem 5.1 and Corollary 5.1 are straightforward consequences
of Tarjan’s work on elimination methods for solving path problems in graphs [20]. The
proof here is somewhat different.

Throughout this section A is an n by n matrix with nonzero diagonal, and the graph
in question is the directed graph of A.

Theorem 5.1. Let the structures of A and b be given.
(i) Whatever the values of the nonzeros in A and b, if A is nonsingular then

structure(4A~'b) C closure(b).

(ii) There exist nonzero values for which structure(A~!b) = closure(b). (In fact, we can
take all the nonzeros in b to have the value 1.)

Proof of part (i). Let values be given for which A is nonsingular. Renumber the vertices
of A so that closure(b) = {1,2,...,k} for some k < n. Then Az = b can be partitioned as

B D yy _(d
C E)\z) \0o)’
where B is k by k. By the definition of closure(b), there is no edge (4, 7) with ¢ ¢ closure(b)

and j € closure(b). Therefore C = 0. Then Ez = 0. Since A is nonsingular and C = 0,
matrix E is nonsingular. Therefore z = 0. Thus structure(z) C {1,...,k} = closure(d).

Proof of part (ii). Choose algebraically independent values for the nonzeros of A,
and let b; = 1 if ¢+ € structure(b). Then A is nonsingular because det A is a nonzero
polynomial in the nonzeros of A. Let z = A~'b. Renumber the vertices of A so that
structure(z) = {1,2,...,k} for some k < n. Then Az =b can be partitioned as

B D\ (y\_(d
C EJ\0) \e)’
where B is k by k and all entries of y are nonzero. Consider row s of C. We have

3 cyi=e (5.1)

1<5<k



Now B is nonsingular, since det B is a nonzero polynomial. By Cramer’s rule, By =
d implies y; = det(B|})/ det B, where B|¢ is B with column j replaced by d. Then
equation 5.1 implies

Y cijdet(B|S) — e;det B =0. (5.2)

i<j<k

This is a polynomial with rational coefficients in the entries of A, so it is the zero polyno-
mial. Now y; # O implies that det(BIJd-) is not the zero polynomial, so c;; must be zero.
Thus C = 0. This implies that z = (¥) is closed. Furthermore, det B # 0, so equation 5.2
implies ¢;, = 0. Thus e = 0,s0 b = (g) and structure(b) C structure(z) = closure(z).
Therefore closure(b) C structure(z). With part (i), this gives closure(b) = structure(z). ®

Remark 5.1. The proof of part (i) never assumes that the “nonzero values” of A are
in fact different from 0. Thus we have the slightly stronger result that if structure(A) C
structure(A) and structure(i)) C structure(b) and A is nonsingular, then structure(A~16) C
closure(b).

Remark 5.2. It seems natural to conjecture in part (i) that if A is singular and
Az = b has a solution, then it has some solution with structure(z) C closure(b). Oddly

enough, this is false. Consider
1

1
1
~1 and b= 0
-1 0

A=

S O N
O O N
i O O

All solutions to Az = b are of the form (a,—a,1,1)7, none of which is a subset of
closure(b) = (x, x,0,0)T.

Corollary 6.1. Let the structure of A be given.
(i) Whatever values A has, if A is nonsingular then structure(A~') C transitive closure(A).
(ii) Values exist for the nonzeros of A such that structure(A~1) = transitive closure(A).

Proof. Note that column j of transitiveclosure(A) is closure(el?)), where el9) is the
4" unit vector. The corollary is immediate from Theorem 5.1, noting that part (ii) of the
theorem holds even if the right-hand side entries are all zeros and ones. g

Corollary 5.1 implies that if A is irreducible, then A™! is full unless numerical coinci-
dence occurs. Duff et al. [5] gave another proof of this.

The case where A is symmetric is simpler and less interesting, but the puzzling exam-
ples like that in Remark 5.2 do not arise. If A is symmetric and its graph is not connected,
then A is block diagonal, and a linear system divides into a separate problem for each
block. If A is connected, then it is strongly connected and the closure of every nonempty
set is the whole graph. Then the upper bound in part (i) of Theorem 5.1 is trivial, and
values exist to achieve it.

Theorem 5.2. Let a symmetric structure for A be given along with a nonzero struc-
ture for b. If the structure for A is connected (i.e. irreducible, or not block diagonal) then
there exist symmetric values for A such that structure(A~1b) = {1,2,...,n}; that is, z is
full. Also, in this case, A~! is full.



Proof. The proof is almost identical to that of Theorem 5.1 (ii), so this is just a sketch:
Choose algebraically independent values for the lower triangle of A and make the upper
triangle symmetric. Then A is nonsingular. The polynomial in equation 5.2 does not
contain c;;, so we can still conclude ¢;; = 0 from the fact that it occurs multiplied by a

nonzero polynomial. Therefore A~1b is closed. But if symmetric A is connected then it is
strongly connected, so the only nonempty closed set is {1,2,...,n}. 8

6. Eigenvectors. In this section we determine the structure of the eigenvectors of
a square matrix A. The results in this section are new. We deal only with the case of
distinct eigenvalues. As described at the end of the section, the reason we cannot handle

multiple eigenvalues is related to Remark 5.2 above.
Throughout this section A is an n by n matrix with nonzero diagonal, and the graph
in question is the directed graph of A.

Theorem 8.1. Let the structure of A be given.

(i) ‘Whatever the values of the nonzeros in A, if A hasn distinct eigenvalues Aj,...,A,
then the eigenvectors of A can be numbered uD, ..., u such that structure(u(")) C
closure(e?)). (Recall that ¢(®) is the b unit vector and closure(e*)) is the structure of
column ¢ of the transitive closure of A.)

(ii) There exist nonzero values for which A has n distinct eigenvalues, and the eigenvectors
satisfy structure(u(?)) = closure(e®).

Proof of part (i). Let values be given for A. Renumber the vertices of A to put A in
block upper triangular form—that is, to put the strongly connected components of A4 in
topological order. Then A is partitioned as

By Ciz ... Ci,
Y\ By 2 Coa |
0 B,

where each B, is square and strongly connected. Renumber the eigenvalues and eigenvec-
tors in nondecreasing order of the highest-numbered nonzero in the eigenvector. That is,

if uf:) = ufg_l = ---:ug) = 0, then ug—l) =ug_:ll) ==l =0,forl1<s<n.

Consider some eigenvector u(i)_. Suppose its highest-numbered nonzero is in a row that
runs through block B;. Then Aul = X;u() is partitioned as

D E F v v B, ... Cij-
0 B; G wl=MNlw], where D = : , etc.
o o HJ\o 0 0 B;_,

Then Bjw = A;w with w # 0, so A; is an eigenvalue of B;. In fact, each }; is an eigenvalue
of one B;, with j increasing as 1 increases. Since no Bj; has more eigenvalues than its
dimension, we conclude by counting rows that row ¢ and column ¢ of A run through B;.
Now B; is strongly connected, so closure(e®”) = closure(B;) (where closure(B;) denotes
the closure of the set of vertices of B; with respect to A).
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We have Dv + Ew = A;v, so
(D - XI)v = Fw.

Since the eigenvalues of A are simple, J; is not an eigenvalue of D and D—A; [ is nonsingular.

Thus, by Theorem 5.1,
structure(v) C closure(Ew).

Now if D is m by m and B; is ¢ by ¢, structure(w) C {m + 1,m +2,...,m + ¢} and
structure(Ew) C {1 < k < m : ag # O for some | € structure(w)} by Theorem 3.1, so
structure(Ew) C closure(w) (closure still with respect to A) and structure(v) C closure(w).
Therefore, structure(u(?)) = structure(v) U structure(w) C closure(w). Since w C B;, this
implies that structure(u(*)) C closure(B;) = closure(e(")).

Proof of part (ii). Choose algebraically independent values for A, choosing the diagonal
elements so far apart that no two are closer than 2max; Zi# la;;|. By Gerschgorin’s
theorem [12], this guarantees that there are n distinct, simple eigenvalues. (It would be
more elegant to conclude that the eigenvalues are simple from the algebraic independence
of the elements, and it seems that it ought to be possible, but I don’t know how to prove
it.)

First we will show that each eigenvector is closed. Let u be an eigenvector with
Au = \u. Renumber the vertices of A so that structure(u) = {1,2,...,t} for some ¢ < n.
Then Au = Au can be partitioned as

(2 8)(5)=2(); o

where Bist by t and v # 0 for 1 < k < t. We will show C = 0. Intuitively, it seems
clear that if C # 0 then v cannot be both an eigenvector of B and a null vector of C. The
details are field theoretic.

Since By = Av and the diagonal elements of B are far enough apart that their Ger-
schgorin discs do not overlap, A is in the Gerschgorin disc of exactly one bi;r. Renumber
vertices 1 through ¢ so that by is b;;. Choose v such that v; = 1. Then Bv = Av partitions
into

1 1
by ST v2 v2
g B)|: |7 |

U Vg

where f and g are ¢t — 1-vectors. Now we have

U2
(B-aD| : | =-g
Yt

By Gerschgorin’s theorem, X is not an eigenvalue of B, so B' — AI is nonsingular and

_det(B' - AD;*

= < k<Lt .
Vi det(B — ) for2<k<t (6.2)
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Now we fix ¢ and 7 and show that c,-_,-:O(forlSiSn-—tandlngt).

Let F be the field obtained by adjoining to Q (the rationals) all the nonzeros of B
and also all the nonzeros of row 1 of C except c;;. Now F|[z] is the ring of one-variable
polynomials with coefficients in F, and F(A) is the field obtained by adjoining A to F.
We know X is a zero of a nonzero polynomial in F|[z], namely det(B — zI). Therefore
A is algebraic over F, so every element of F(X) is a zero of some nonzero polynomial in
F[z]. (Incidentally, this is our only bit of nontrivial field theory: Every element of an
algebraic extension of a field is algebraic over the field. I find it amusing that this fact
from field theory, which we are applying to a problem in linear algebra, is ordinarily proven
by applying linear algebra to field theory.)

Since Cv = 0, we have

All the v are nonzero, so

Cij = —— CikVk. (6.3)

By equation 6.2, each v is a rational function of A and elements of F, so v € F(A). Each
¢; with k # 7 is in F. Therefore the whole right hand side of equation 6.3 is in F(A), so
¢;j € F()). This means that c;; is a zero of a nonzero polynomial in Flz]. But if ¢;; is
nonzero, then ¢;; was chosen to be transcendental over F. Thus ¢;; = 0; and, since 1 and
j were arbitrary, C = 0.

Recalling the partition of A in equation 6.1, C = 0 implies that the eigenvector u = (8)
is closed.

Now all the eigenvectors of A are closed. Renumber the eigenvectors so that A; is
in the Gerschgorin disc of a;. The argument following equation 6.1 shows that A; is
in a Gerschgorin disc whose index j corresponds to a nonzero ug.‘) of u(*); since ); is in

only one disc, this means ugi) # 0. Therefore, structure(e(¥)) C structure(u(")). Since
u() is closed, closure(e(®)) C structure(u()). Part (i) gives the opposite containment, so
structure(u(®)) = closure(e(*)). g

Corollary 6.1. Let the structure of A be given.

(i) No matter what nonzero values A has, if A has only simple eigenvalues then its eigen-
vectors can be ordered so that the matrix U whose columns are the eigenvectors has
structure(U) C transitive closure( 4).

(ii) There exist values for the nonzeros of A such that the eigenvectors can be ordered so
that structure(U) = transitive closure( A4).

Proof. Similar to Corollary 5.1. g

Remark 6.1. It is natural to conjecture that if A has multiple eigenvalues, then there
is some choice of a maximal set of eigenvectors whose structure is a subset of the transitive
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closure of A. Again, oddly, this is false. From the example in Remark 5.2 we can construct

310 1 -1 X X X X X

2 40 1 -1 X X X X X
A=]0 0 3 -1 0 |, so transitiveclosure(A) = X X

0 01 1 0 X X

0 00 O 2 X

The graph of A is

The characteristic equation of A is det(z] — A) = (z — 2)*(z — 5), so the eigenvalues are 2
and 5. The eigenspace of 5 is one-dimensional and consists of multiples of (1, 2,0,0,0)7T,
which is a column of the transitive closure. However, the eigenspace of 2 is also one-
dimensional and consists of multiples of (0,0,1,1,1)T, which is not a subset of any column
of the transitive closure.

I suspect that Theorem 6.1 holds for A with multiple eigenvalues, provided that no two
diagonal blocks of the block upper triangular form of A share an eigenvalue. I do not know
whether it would be enough to require that there be n linearly independent eigenvectors;
that is, that each eigenvalue have equal geometric and algebraic multiplicity.

For symmetric A, the situation for eigenvectors is the same as for symmetric linear
systems: If A is block diagonal then each block is a separate problem,; if A is not block
diagonal (i.e., A is irreducible or connected) then the upper bounds are both trivial and
tight.

Theorem 6.2. Let a symmetric structure for A be given. If the structure is connected,
then there exist symmetric values for A such that A has n distinct eigenvalues, and all its
eigenvectors are full.

Proof. Just as in Theorem 5.2, the proof of Theorem 6.1 part (ii) goes through even if
A is required to be symmetric. 8

7. Remarks, applications, and open problems. We have described several matrix
computations in which the nonzero structure of the result of the computation can be
inferred, partly or completely, from the nonzero structure of the input to the computation.
The language of graph theory seems most appropriate to state these results. One reason for
this is that the structural effect of a matrix computation often depends on path structure,
which is easier to describe in terms of graphs than in terms of matrices.

Matchings in bipartite graphs are important in Theorem 4.6 on orthogonal factoriza-
tion. Bipartite matching theory plays a central role in two other structural problems that
we have not described here: finding the sparsest basis for the range space (McCormick
[14]) and for the null space (Pothen and Coleman [4]) of a rectangular matrix with more
columns than rows. It turns out that the structural range space problem can be solved in
polynomial time, but the null space problem is NP-complete.
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Structure prediction has several applications in the design of sparse matrix algorithms.
Many such algorithms [8, 9, 10] have a phase that predicts the solution’s structure without
using the numbers in the problem, followed by a phase that does the numerical computation
in a static data structure. This saves space, because the space used by the pointers in a
dynamic data structure during the first phase can be reused by the numeric values in the
second phase. Also, in many applications a sequence of problems with the same nonzero
structure needs to be solved, so the structural phase can be done just once.

Sparse Gaussian elimination seems to require structure prediction if the time spent
manipulating data structures is not to dominate the time spent doing real arithmetic. The
asymptotically fastest algorithms to compute the Cholesky factorization of a symmetric
positive definite matrix are those of the Yale Sparse Matrix Package [7] and Waterloo
Sparspak [9], which predict the structure of the triangular factor by a version of Theorem
4.2. Coleman, Peierls, and I [3] used prediction of the structure of the solution of a
triangular system, a special case of Theorem 5.1, to develop an algorithm that performs
sparse LU factorization with partial pivoting in time proportional to the number of real
arithmetic operations needed.

Another application of structure prediction for triangular linear systems is in a practical
problem in reservoir analysis. Here a finite-element model of an underground reservoir of
hot water (to be tapped for power and heating for the city of Reykjavik) requires the
solution of hundreds of positive definite linear systems with the same coefficient matrix.
All the systems have very sparse right-hand sides, and in addition only a few of the unknown
values are required for each system. Ragnar Sigurdsson [19] has used structure prediction
with a simpler version of Theorem 5.1 to speed up the Sparspak triangular solver for this
problem.

A few open problems in structure prediction, some of which have already been men-
tioned, are as follows. Is it possible to give a tight bound on the nonzero structures of the
factors in Gaussian elimination with partial pivoting (Section 4)? What is the structure of
the factor R in the QR factorization of a rectangular matrix that does not have the strong
Hall property and has not been permuted to block triangular form (Section 4)? What can
be said about the structure of the orthogonal factor Q in QR factorization (Section 4)?
What can be said about solutions to singular linear systems in light of the counterexample
in Section 57 What can be said about eigenvector structures for matrices with multiple
eigenvalues (Section 6)?7 What can be said about the structure of the singular value de-
composition of a rectangular matrix [12]? The relationship between the singular values of
A and the eigenvalues of AT A, together with Theorem 6.2 on eigenvectors of symmetric
matrices, suggests that the SVD of a connected matrix is always full (ignoring numerical
cancellation). This would certainly confirm the conventional wisdom that there is no such
thing as a sparse SVD.

Acknowledgements. My thanks to Tom Coleman, Anders Edenbrandt, Mike Heath,
Ragnar Sigurdsson, and Sven Sigurdsson for interesting and useful discussions of these
problems. Earl Zmijewski gave this paper a careful and helpful critical reading.
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