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Abstract

In solving large sparse linear least squares problems Ax=b, several different
numeric methods involve computing the same upper triangular factor R of A. It
is of interest to be able to compute the nonzero structure of R, given only the
structure of A. The solution to this problem comes from the theory of matchings
in bipartite graphs. The structure of A is modeled with a bipartite graph and it
is shown how the rows and columns of A can be rearranged into a structure from
which the structure of its upper triangular factor can be correctly computed.
Also, a new method for solving sparse least squares problems, called block back-
substitution, is presented. This method assures that no unnecessary space is allo-
cated for fill, and that no space is needed for intermediate fill.
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1. Introduction

Consider solving a system of linear equations

Ax>b

where A is an mXn, m>n, large, sparse matrix. In the following we will
always assume that A has full column rank. When A is rectangular the system
is overdetermined, and we seek the least squares solution—i.e., the solution that
minimizes
: | |[Ax-b] |2 .

There are several different methods to find this solution [18]. We will take a brief

look at two of them, orthogonalization and the normal equations method.

In orthogonalization we factor A into

ol

where Q is an m X m orthogonal matrix, and R is an nXn upper triangular

matrix, and then solve the upper triangular system

(I;)x= QTpb .

Numerically, we can compute @ and R using Householder reflections [14] or
Givens rotations.

With the normal equations approach, we multiply by AT and solve the
square system
ATAx=ATb.
If A is of full rank, then ATA is symmetric and positive definite, and we can

factor AT A into its Cholesky factors LLT.



From the following equations, and the uniqueness of L,
LLT=ATA=(QR)T(QR)=RTR
we see that LT is equal to R except for possible sign differences in some rows.
Hence, in both of the methods described above we seek to compute the same
upper triangular matrix R. Since we are dealing with large, sparse systems, it is
desirable to be able to determine the nonzero structure of R, working only from
the structure of A. In the following we shall describe two different methods th:;t;“
have been suggested, and we shall show that both can overestimate the number

of nonzeros in R.

The first method we look at is based on the numeric method of factoring A

by Givens rotations. We call it the Local Givens Rule.

One Givens rotation is usually thought to result in fill (i.e., the creating of

new nonzeros) in the following way (see Figure 1.1):
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Figure 1.1.

Here row ¢ is used as a pivot row to zero the entry in column ¢ of row 5. The
Local Givens Rule for determining the fill says that entry (j,c¢) becomes zero,
entry (¢,c) remains nonzero, and in the other columns we take the union of the
nonzeros for both rows. In our example, the result would be as shown in Figure

1.2.



%

.0 0 % *03x*0=x*0=x*x0
.000**0=*x0=*x0=*0
c

0.
Ia 0.
Figure 1.2.

However, as was pointed out in [10], the Local Givens Rule as a way of com-
puting the fill is not fully correct and might predict too much fill. We illustrate

this in the example in Figure 1.3.

Figure 1.3.

In this example the triangularization is in reality completed after step 3,
because both nonzeros in the last row will be zeroed simultaneously in step 3.
The Local Givens Rule does not take this into account and we might predict a
fill of Q(n?), although the actual fill is only O(1), and the matrix should remain
sparse.

The second method we will look at is the George-Heath algorithm [11].
They use the normal equations to predict the structure of R, and then do the

numeric computation by orthogonalization.



1) Starting with the structure of A, compute the structure of A T4,

2) From the structure of AT A, compute the structure of L T __using
a symbolic Gaussian elimination algorithm.

George and Heath proved that the structure that results from the algorithm

above will have room for all the nonzeros of R.

Lemma 1.1: [11] If we predict position R;;70 when we do symbolic Givens
factoring using the Local Givens Rule, then we also predict R;;70 when we com-
" pute the structure of R doing symbolic Gaussian Elimination on the structure of

ATA. O

However, this method also may be too generous in allocating space for

nonzeros in R, as is shown in the example in Figure 1.4.

Figure 1.4.

Here A is already in upper triangular form, so R=A. But, since A has one full

row, ATA is full and R will be predicted to be full.



We have thus seen that both of the previously suggested methods for com-
puting the structure of R may predict too much fill. It should be emphasized
that for both of the methods described above the occurrence of so called ‘“‘bogus
fill” is purely a consequence of the nonzero structure of the matrix, and does not

depend on the actual numeric values of the nonzero entries.

Rather than coming up with a new rule for computing fill, we have asked

the following questions: first, can we exhibit a class of matrix structures for

which the George-Heath algorithm gives the correct result? Second, can we

reorder the columns and rows of A so that the Local Givens Rule is guaranteed
to give the correct result when applied to this rearranged matrix? We answer

these questions in the affirmative.

Since the nonzero structure of a matrix is a combinatoric rather than a
numeric property, it is convenient to represent this structure by a graph—in our
case a bipartite graph—and to model the operations performed on the matrix
with operations performed on the vertices and edges of the graph. In Section 2 of
this paper we give some basic graph-theoretic definitions, and introduce a struc-
tural concept called “the strong Hall property”. In Section 3 we analyze the
computation of the structure of R using the George-Heath algorithm, and show
that this gives the correct result if A has the strong Hall property. This fact can
be exploited to provide an algorithm for computing the structure of R using the
Local Givens Rule for an arbitrary matrix A, as is shown in Section 4. We also
give an algorithm for solving the original system of equations without using the

whole structure of R. Finally, Section 5 contains a summary of our results.



2. Definitions and notation

2.1. Basic graph-theoretic notation

An undirected graph, G=(V,E), consists of a set V of vertices and a set E
of edges. An edge (v,w) is an unordered pair of distinct vertices. If (v,w) is an
edge the vertices v and w are adjacent. The edge (v,w) is incident on vertices v
and w, which are its endpoints. The degree of a vertex, written deg(v), is the
number of edges incident on v. Given a vertex v, the set I'(v)={z: (v,z)EE} is
- called the adjacency set of v. Similarly, for a set of vertices, XC V, we say that

I'(X)={y: (z,y)€EE for some z€X} is the adjacency set of X.

A matching in a graph G is a set of edges, F CE, such that no two edges in
F have an endpoint in common. A vertex that is the endpoint of some edge in F’
is covered; otherwise it is ezposed. If every vertex is covered by F then F is a

perfect matching.

A path between v and w in G is a sequence of distinct edges
(v0,v1),(v1,02),--,(¥5_1, %), Where v=1v4 and w=v; and all the vertices are distinct
except possibly vy=v,. If F is a matching in G, an alternating path is a path in
which every other edge is in F.

A subgraph, G'=(V',E'), of G=(V,E) is a graph where V'CV and
E'CE. If V'=YV then G' is a spenning subgraph. The set of edges with both
endpoints in V' is written as E(V'). If E'=E(V') then G’ is the subgraph of

G induced by the vertex set V'.



For an n X n symmetric matrix A that has only nonzeros on its diagonal, we
can use an undirected graph, G(A), to represent the zero/nonzero structure of A.
The graph G(A) has n vertices and (v;,v;) is an edge if and only if A;;7#0. The
changes in the structure of A during Gaussian elimination can be modeled as a
process working on the graph: when column ¢ is zeroed out in the matrix, we
mark v; “old” and add enough new edges to turn all of v;’s unmarked neighbors

into a complete graph. The final result of this process is called the filled graph,

G*, and we refer to this process as symbolic Gaussian elimination. The following

characterization of fill in terms of an undirected graph is very useful.

Lemma 2.1: [23] The edge (v,w) is an edge in the filled graph G* if and
only if there is a path in G from v to w going only through vertices marked ear-

lier than both v and w. O

2.2. Bipartite graphs and the Hall property

An undirected graph whose vertex set can be divided into two disjoint sets
V, and V,, such that every edge in E has one endpoint in V, and the other in
V,, is called a bipartite graph. This graph is sometimes written G=(V,V,,E) to
stress the partition of V.

Let G=(V,W,E) be a bipartite graph with | V| >| W|. I, for every set of
vertices, XC W, X is adjacent to at least | X | vertices in V, then we say that
the bipartite graph G has the Hall property. If every X is adjacent to more than

| X| vertices, we say that G has the strong Hall property, or, for more precise



definitions:

Definition 2.1: A bipartite graph G=(V,W,E) with |V |>| W| has the
Hall property if
VXCW, X#8: IT(X)|2|X]|.
Definition 2.2: A bipartite graph G=(V,W,E) with |V |>| W| has the
strong Hall property if

VXC W, X#£0: |T(X)]>]|X].

We list some basic and useful facts about matchings in bipartite graphs.

Lemma 2.2: [16] Let G=(V,W,E) be a bipartite graph. There is a match-

ing in G of cardinality | W| if and only if G has the Hall property. O

Corollary 2.3: Let G=(V,W,E) be a bipartite graph with |V |=| W].

Then G has a perfect matching if and only if G has the Hall property. O

A directed graph D=(V,A) is a graph whose edges are ordered pairs of dis-
tinct vertices, <wv;,v;>, called arcs. A directed path from v to w in D is a
sequence of distinct arcs <vg,v;>,<v;,v5>,...,<v_;,v >, where v=v, and
w=uv, and all the vertices are distinct except possibly voy=uv,. If for every two
vertices v and w in D there is a directed path from v to w, then D is strongly

connected.

With any directed graph D of n vertices we can associate a bipartite graph,

G(D), as follows: G(D)=(X,Y,E), with |X|=|Y |=n, and (z,y;) is an edge



in E if <v;,v;> is an arc in A. In addition, all the edges (2;,y;) for 1<s<n are
inE.
The following observation, due to Johnson, Dulmage, and Mendelsohn [21],

is also proved in [20].

Lemma 2.4: [21] D is strongly connected if and only if G(D) has the strong

Hall property. O

Note that this correspondence between the strong Hall property and strong
connectedness is well defined only when the bipartite graph is ‘‘square”, that is,
has the same number of vertices in each part. Indeed, it is possible for a rec-
tangular bipartite graph that has the strong Hall property not to be connected,
as in Figure 2.1. However, for every bipartite graph there exists a canonical
decomposition of G into subgraphs, each of which has the strong Hall property.

This topic will be pursued further in Section 4.

Figure 2.1.
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2.3. Representing the structure of a matrix with a bipartite graph

Let A be an m X n real matrix, with m>n. We represent the zero/nonzero
structure of A with a graph, G(A). G=(V,W,E) is a bipartite graph with
V={vy...,¥9 }, W={w,,...,w,}, and (v;,w;)EE if and only if A;;5%0. We refer
to the vertices of W as column-vertices, and to the vertices of V as row-vertices.

Given any two sets W, W,C W of column-vertices, we can define a new
bipartite graph H=(X,Y,S) where | X |=|W,|, | Y |=| W,|, and (z,y;)ES if
~and only if w,cW, and w;€W, and w;€ET(I(w;)). We write this as
H=®(G,W,,W,). See Figure 2.2 for an example.

If U, is the matrix containing only the columns of A represented by W,,
and U, is the matrix containing the columns of W,, then H=G((U )T U,), pro-
vided that no two columns that have some nonzeros in the same rows are orthog-

onal. This is true, for example, if all the entries are nonnegative. In particular,

under this assumption ®(G(A),W,W)=G(ATA).

Figure 2.2.
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By N(G) we denote the set of m Xn real matrices A such that A,;;=0 if
(v;,w;) is not an edge in G.

For a matrix A, we define the structural rank of A to be the size of a max-
imum matching in G(A). The numeric rank of A is the number of linearly
independent columns of A. The structural rank of A is at least as large as its

numeric rank.

To make it easier to remember all this notation we summarize it in a table

_below.
Symbol(s) Denotes

G=(V,E) Undirected graph

G=(V,W,E) Bipartite graph

D=(V,A) Directed graph

I'(X) Adjacency set of X

&(G,W,,W,) Product graph

<G,r,p,q> The special product graph ®(G,W,,W,)
where W ={w,,..,w, }U{w, }
and Wo={w;,...,w, }U{w,}.

AorM Matrix

M=<A,r,p,q> Special submatrix of A TA

N(G) Matrices whose structure fits into G

G(A) Bipartite graph that represents the structure of A

3. Matrices for which the George-Heath algorithm works

A matrix A has an orthogonal factorization A=QR, and we are interested
in determining the structure of the upper triangular factor R. This R is numeri-
cally the same as the triangular factor in the Cholesky factorization LL T_AT4Q.
When A has full column rank, AT A is positive definite, and the Cholesky factor-

ization can be computed using Gaussian elimination with pivots from the main
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diagonal. There are well-known and efficient algorithms for determining the
structure of the matrix that results from Gaussian elimination [12]. However,
any such algorithm produces the correct structure only under the assumption

that no cancellation occurs during the Gaussian elimination.

It is worthwhile at this point to say what we mean by cancellation. Gaus-
sian elimination (for our purposes) is an algorithm that zeros the subdiagonal ele-
ments of one column at a time, meanwhile replacing some of the elements in
other columns to its right. Cancellation occurs when a nonzero is replaced by a

zero outside the column being eliminated.

There are two kinds of cancellation. Lucky cancellation is cancellation that
occurs only for certain values of the nonzeros in the given matrix. We shall
disregard lucky cancellation because it cannot be predicted from the structure
alone, and because lucky zeros are not likely to be computed as exact floating-

point zeros. Essential cancellation occurs no matter what the nonzero values are.

It can be shown [8] that if we are given the structure of a positive definite
matrix M, then there is no essential cancellation when computing its Cholesky
factorization RTR=M. Here, however, we begin not with the structure of
ATA, the matrix whose Cholesky factor we want, but with the structure of A.
The entries of ATA are not independent: the structure of A may be such that
cancellation will occur when we do Gaussian elimination on AT A, regardless of
the values of the nonzeros in A. This essential cancellation is the reason why the
George-Heath algorithm may predict too much fill. In the following we will show

that, provided A has the strong Hall property, no essential cancellation will occur

13



when we perform Gaussian elimination on ATA. From this we can conclude
that the George-Heath algorithm gives the correct result for matrices that have

the strong Hall property.

Our way to the main theorem of this section is via three important lemmas.
The first of these lemmas says that we need only consider certain special subma-
trices of ATA. The second lemma talks about bipartite graphs, and shows how
we can use the strong Hall property to make sure that each special submatrix has

the property we desire. The third lemma tells us that it is enough to look at just

one special submatrix at a time, rather than all of them simultaneously.

8.1. A special sort of submatrix

The following lemma shows that if cancellation occurs at position (p,q) in
ATA during Gaussian elimination, then this position is in the lower right-hand

corner of a singular submatrix of A T A of a special form described below.

Figure 3.1.
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Consider the square matrix M consisting of the principal r X r submatrix of
ATA, plus the first r entries of row p and column ¢, plus entry (p,q), where
1<r<p<g<n. See Figure 3.1. As a shorthand notation we will write

M=<A)r1pvq>'

Lemma 3.1: If cancellation occurs in ATA at entry (p,g) during the r—th
stage of the Gaussian elimination, when row r is used to zero out entry (p,r),

then M=<A,r,p,¢> has full structural rank and is singular.

Proof: To show that M has full structural rank, let C=G(M) be the bipar-
tite graph that represents the structure of M, and let H=(X,Y,S)=G(ATA) be
the bipartite graph that represents the structure of ATA. Clearly, C is a sub-
graph of H.

Since ATA is a symmetric matrix with a nonzero diagonal,
F={(24,91),--(2a,¥.)} is a perfect matching in H. By Lemma 2.1 it then fol-
lows that position (p,q) in AT A fills in if and only if there is an alternating path
in H from vertex z, to vertex y, going only through lower-numbered vertices.
Hence, if we have cancellation at position (p,gq), such a path exists, and by inter-
changing the matching and non-matching edges of this path we can construct a
perfect matching in C.

To see that M is singular, note that performing Gaussian elimination on a
square matrix does not change the value of its determinant; and since the result-
ing matrix is upper triangular and has one diagonal entry equal to zero, it must

be singular. O

16



3.2. A structural lemma

In this section we show that if A’s bipartite graph has the strong Hall pro-
perty, then we can make any one of the special submatrices of A T A nonsingular

by choosing appropriate values for the nonzeros of A.

As before, G=(V,W,E) is a bipartite graph with the strong Hall property.
Let W,={w,,...,w,}U{w,} and Wy={w,,..,w, JU{w,}. Let C=%&(G,W,,W,).
We also use the shorthand notation C=<G,r,p,q> for this graph.

If G=G(A), and M=<A,r,p,g>, then MEN(C); and if, e.g., all entries

in A are nonnegative, then C=G(M).

Now, we are given the structure of a matrix, i.e., a bipartite graph G. We
want to show that provided that G has the strong Hall property, we can find a
matrix A that fits into the given structure, and is such that for each subgraph
C=<G,r,p,g> that has a perfect matching, the corresponding submatrix
M=<A,r,p,q> is nonsingular. If we can show this, then by Lemma 3.1 we can
say that there will be no essential cancellation during Gaussian elimination in
ATA.

We will take on a somewhat easier task, though, namely showing that for-
any single subgraph C=<G,r,p,qg> that has a perfect matching, we can find a

matrix that fits into G and has M=<A,r,p,¢> nonsingular.

Each nonzero term in the determinant of a square matrix corresponds to a
different perfect matching in its bipartite graph. Hence, if C has exactly one per-

fect matching, then the determinant must be nonzero—i.e., M is nonsingular.

16



On the other hand, if C has no perfect matching at all, this means that all terms

in the determinant of M are zero, and the matrix is singular.

Lemma 3.2: Let G=(V,W,E) be a bipartite graph, and let W, and W, be
subsets of W such that | W,|=| W,|=k, and | WNW,| >k-1. If G has the
strong Hall property, and if C=®(G,W,,W,) has a perfect matching, then there
is a spanning subgraph G of G such that C=®(G , W1, W) has exactly one per-
fect matching.

Proof: Let C=(S,T,U), with S={s,,...,.8;} and T={¢,,...,.4;}. It is con-
venient to distinguish between two cases:

Case 1, | W,NW,| =k, ie, W ,=W,.

Let G,=(V,W,E). Since G, has the Hall property, we know there is a

matching F, in G, that covers W,. Let G=(V,W,F,). It is easy to see that
any vertex s; in C is adjacent only to #;. Therefore, C has precisely one perfect :
matching, namely {(8,,¢;),---,(8x,4 )}
Case 2, | WiNWy|=k-1, i.e. there is a vertex w,E€ W), such that w, ¢W,, and a
vertex w €W, such that w, ¢ W,. Without loss of generality, we may assume
that Wy={w,,...,w, JU{w,}, Wo={wy,..,w_}U{w,}. For the proof of this
second case, we need two more lemmas.

The following lemma is due to Ford and Fulkerson.

Lemma 3.3: [9, Corollary 10.9] Let G,=(V,W,E,) and Go=(V,W,,E,) be

two bipartite graphs with one vertex set in common, and | W,|=| W,|=k.

17



There is a set PCV of k vertices, with a matching F'; in G, covering P, and a

matching F, in G, also covering P, if and only if:

VXCW,VYCWy |X]|+|Y|<k+ |T(X)NI(Y)] . (1)

Lemma 3.4: Let G,=(V,W,E(VUW,)) and G,=(V,W,,E(VUW,)). I
C=%®(G,W,,W,) has a perfect matching, then there is a matching F'; in G, and
a matching F, in G,, both of cardinality ¥ and both covering the same set
" V'CV, where | V! |=k.

Proof: By Lemma 3.3, it is enough to show that condition (1) holds for G,
and G,.

Let XCW, and YCW,. If |X|+ |Y|<k then the inequality in (1) is
immediate. Assume that |X|+ | Y |=k+ 8, where 6>1. We must prove that
|IN(X)NI(Y)]| >6. Let Z=XNY. Clearly, I'(Z)CT(X)NI'(Y).

Since X and Y are chosen from sets of size k that have k-1 elements in
common, we can conclude that |Z|>8-1. We consider separately the cases
Z==0 and Z#9.

If Z=@ then 6=1. By assumption C has a perfect matching, which by
Corollary 2.3 implies that |I'o(X)|=|T((X))NW3|>|X|. Since I'¢(X)C W,

and

ITe(X)|+ 1Y 2]|X|+|Y][=k+1,

I'o(X) and Y must have at least one vertex in common. That is, there must be

at least one vertex w€Y such that w€el ;(X), and thus

18



IDX)NI(Y)]| >1=6.
Next, assume that Z5#£0. By the strong Hall property |I'(Z)|>|Z|>6-1.

Then
ITX)NI(Y)| 2|T(Z)] 26 .
We have thus shown that condition (1) is satisfied, and Lemma 3.4 now fol-

lows from Lemma 3.3. O

We continue case 2 of the proof of Lemma 3.2.

Among the matchings F, in G, and F, in G, that satisfy the conclusion of
Lemma 3.4, choose that pair F,, F, that maximizes |F;NF,|. Let
G=(V,W,FUF,) be the graph with the vertices of the original graph G and the
edges of the two matchings F'; and F;. We will show that C=&(G,W;,W,) has
exactly one perfect matching. In fact, we will see that C consists of a path of

odd length plus some isolated edges.

First note that every vertex in G has degree at most 2, and that

deg(w,)=deg(w,)=1, since w, and w, are only covered by one matching each.

Let s; be any vertex in C. If deg(w;)=1 and §i5#p and i5q, then w; was
matched to the same vertex v; in both F'; and Fp. This implies that deg(v;)=1
in G and that (s;,t;) is the only edge incident on s; and also the only edge
incident on ¢;, in C. In other words, s; can be matched with exactly one other
vertex, ¢;.
If deg(w;)=1 and i=p, so that s; corresponds to w,, then some edge

ey=(w,,v,) is in F;. Some other edge e;=(v,,wg) must be in 3. Thus, s; in ¢

19



is adjacent to exactly one vertex, namely ¢z It follows that (s;,{5) must be a
matching edge in C.

If we delete e; and e, from G, then we can repeat the argument above,
beginning at wg, to find another edge that must be in the matching on C. This
procedure will continue until deg(tg)=1. Since the only other vertex of degree 1

that we have not dealt with is w,, this will happen precisely when we reach w,.

Finally, if deg(w;)=2, and if w; is not on the path between w, and w,, then
. w; must lie on a cycle in G. The cycle edges alternate between F; and F,. We
can increase | F;NF,| by putting every other cycle edge into both F'; and F,.
This contradicts the assumption that the matchings were chosen to maximize
| FiNF,].

This completes the proof that there is only one perfect matching in C. O

3.3. An exercise in field theory

Lemma 3.2 in the previous section implies that if the graph <G,r,p,¢> has
a perfect matching, then the special submatrix <A,r,p,¢> of ATA is made
nonsingular by some assignment of values to A—that is, by some AEN(G). In
this section we show that there is a single assignment of values to A that makes
all these special submatrices nonsingular at once. For more details on notation

and background in field theory, the reader is referred to (3].
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Lemma 3.5: Let A be a matrix with ¢ nonzeros, where in place of each
nonzero we have put a variable, z,,z,,...,2,. Let M},M,,.... M, be submatrices of
ATA. Suppose that for each ¢ with 1<¢<k there is an assignment of value_g:
a{‘),aé‘) ,...,a,(‘) to the nonzero entries of A such that M; is nonsingular. Then

there is a single assignment a,...,a, such that every M;, 1<¢<k, is nonsingular.

Proof: The proof is from the following lemmas.

Lemma 3.6: There is a sequence ay,...,a, of real numbers such that if the

fields F 0 F 1,---,F¢_; are defined by

Fo=0Q (i.e., the rationals)
Fry1=Filayy) (ie., Fp is the smallest field
containing F; and ¢, ,)

then a,, , is not a zero of any nonzero polynomial in Fj[z] (i.e. of any polynomial

with coefficients from F}).

Proof: Every element of F , is equal to p(a;, ;)/g(az, ;) for some polyno-
mials p and ¢ in F,[z]. By induction on k, then, each F; is countable. Thus
F;[2] has only countably many polynomials, each with only finitely many zeros.
Thus there are only countably many zeros of polynomials over F}; let a,, , be

one of the uncountably many other real numbers. O

Lemma 3.7: Let ay,.,q, be the sequence from Lemma 3.6. Then
a—(a,,...,a;) is not a zero of any nonzero polynomial in ¢ variables over Q, the

rationals.
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Proof: By induction on ¢. Suppose a is a zero of p(zy,..,%)=
p(3) € Q[zy,-,2)- Then a, is a zero of the one-variable polynomial
q(2)=p(ay,...,8,_,2) EF;_4[2]. By Lemma 3.6, ¢ is the zero polynomial, so all
the coefficients of ¢ are zero. Each coefficient of ¢ is a polynomial in ¢-1 vari-
ables over Q, evaluated at (ay,...,a,_;). Thus by the inductive hypothesis each of

these is the zero polynomial. Thus p is the zero polynomial. O

Proof of Lemma 3.5: Let a,...,a, be as in Lemma 3.6. For each ¢, det(M;) is a
- polynomial with integer coefficients in the variables =z,,.,%, so
det(M;)=p;(2y,...,%;). Since p;(a))7%0, p is not the zero polynomial. Thus

p;(8)7#0, so M; is nonsingular for x=a. 0O

3.4. Main theorem

With all the necessary lemmas in hand, we are ready for the main theorem
of this section. Our theorem below is stated twice: once informally, and once in

more formal terms. The formal version deserves a few words of explanation.

When we say that a computed structure Hp is ‘‘correct”, we do not neces-
sarily mean that the factor R of the matrix we started with fits exactly into Hp.
Recall that we are computing Hp not from A, but from the structure of A.
What we require of a ‘‘correct’ structure is rather

a) that it is sufficiently large; i.e., for every matrix A of the given struc-
ture, its factor R fits into Hp

b) that it is not too large; i.e., there is some matrix A of the given struc-
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ture whose factor R needs all of Hp.

Theorem 3.8: Let A be an m X n matrix, m >n, with the strong Hall pro-
perty, and an orthogonal factorization A=QR. The following algorithm will
correctly compute the nonzero structure of the upper triangular factor R, disre-

garding lucky cancellation.
1) Determine the structure of A T4,

2) Apply symbolic Gaussian elimination to the structure of A T A, yielding

the structure of R.

We can state the theorem more precisely as follows: Let G=(V,W,E) be a
bipartite graph with the strong Hall property, with | V|=m and | W|=n. Let
H=®(G,W,W) be as defined above. Use symbolic Gaussian elimination on H,

to form Hp. The theorem now states that

1) If AEN(G) has an orthogonal factorization A=Q@R, then G(R) is a

subgraph of Hp.

2) There exists a matrix AEN(G), with an orthogonal factorization

A=QR, such that G(R) is equal to Hp.

Proof: The first part of the theorem is just Lemma 1.1, and was proved by

George and Heath [11].
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For the second part of the theorem, recall that the George-Heath algorithm
gives an incorrect result when the symbolic Gaussian elimination does not pro-
duce the same structure as that from the actual Gaussian elimination. Further-
more, this happens when cancellation occurs during the actual Gaussian elimina-
tion. Hence, we want to show that there is a matrix AEN(G) in which no can-
cellation occurs during Gaussian elimination in ATA. By Lemma 3., it is
enough if we can show that there is a matrix AEN(G) such that for each sub-
graph C=<G,r,p,¢> that has a perfect matching, M=<A,r,p,¢> is non-

singular.

Let C=<G,r,p,g>, 1<r<p<qg<n, be a subgraph of H that has a per-
fect matching. By Lemma 3.2, for every such C there is a subgraph G’ of G,

such that C' =< G',r,p,q> has precisely one perfect matching.
Form A' by setting A';;=1 if (w;,w;) is an edge in G', and setting
A’ ;=0 otherwise. Clearly, A'€N(G), and M'=<A',r,p,q> is nonsingular—

since C=G(M'), and hence its determinant has exactly one nonzero term.

Thus, for each subgraph C=<G,r,p,¢> with a perfect matching, there is
a matrix A’ EN(G) such that M'=<A',r,p,q> is nonsingular. Finally, by
Lemma 3.5, we conclude that there is one matrix, A, such that for all subgraphs
C=<G,r,p,q> with a perfect matching, M=<A,r,p,¢> is nonsingular. For
this matrix A, no essential cancellation will occur during Gaussian elimination in

ATA, and the theorem follows. O
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4. Finding the structure of R

Section 3 showed us that, provided A has the strong Hall property, we can
determine the structure of R correctly with the George-Heath algorithm. But
what if we want to use the Local Givens Rule? Or, most important, what can we
do when A does not have the strong Hall property? We answer these questions
below. First, we show that the Local Givens Rule also works correctly on

matrices with the strong Hall property.

Theorem 4.1: Let A be an m X n matrix, m >n, with the strong Hall pro-
perty. If we compute the nonzero structure of R by doing symbolic Givens rota-

tions using the Local Givens Rule, then the result is correct.

Proof: Let Hp be the structure that results from using the George-Heath
algorithm on the structure of A. As was shown in Section 3, Hp is the correct
structure. Lemma 1.1 says that the Local Givens Rule gives at most the fill
present in Hp. The Local Givens Rule never gives too little fill, so it must give

all the fill in Hp. O

In the general case—when the structure of A does not necessarily have the
strong Hall property—we can permute A into parts, each of which has the
desired property. This canonical reordering scheme was first studied by Dulmage

and Mendelsohn [5], [6], 7], [21].

The reordering we want is what is known as ‘‘block upper triangular form™

[15]. It is a permutation of the columns and rows of A that leaves square subma-
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trices on the diagonal, and a rectangular submatrix in the lower right-hand
corner. See Figure 4.1. The area below and to the left of these submatrices has
only zeros in it, whereas the area above and to the right may have nonzeros. All
the submatrices on the main diagonal have the strong Hall property. The diago-

nal elements are all nonzero.

As we pointed out in Section 2, the strong Hall property is closely related to
the strong connectedness of a directed graph. In particular, if A is a square
matrix we can do our reordering by finding the strongly connected components in

the directed graph that corresponds to A [15], [24]:

1) Find a perfect matching in A and, with this matching fixed, construct

the directed graph D(A).

2) Find the strongly connected components of D.

Regardless of which perfect matching we choose in Step 1, we will always get the

same number of components in Step 2.

Figure 4.1.



If A is not square, we can proceed as follows. First find a matching in A
that covers all the columns. Then the last, rectangular, component of A consists
of every column and row that can be reached from an uncovered row via an
alternating path. The remaining rows and columns are a square submatrix that

can be reordered into strongly connected components as above.

The time to find a maximum matching is O(¢vm+ n) [19], [22]. The rec-
tangular component can be found by depth-first search in O(¢) time. The strong
components can also be found in O(t) time [24], [1]. (In fact, the same depth-
first search can be used to find the rectangular component and the strong com-
ponents.) Thus, the worst-case time for the reordering is bounded by
O(tVm+ n). Duff's experiments with a heuristic maximum-matching algorithm
[4] indicate that in practice a maximum matching can often be found in O(t)

time; in such cases, the entire reordering takes O(t) time.

Theorem 4.2: Let A be an m X n rectangular matrix with a factorization
A=QR. If we use the algorithm above to permute A into A’', and use the

Local Givens Rule on A’ to find the structure of R, then the result is correct.

Proof: Let M be any of the square submatrices on the diagonal. If there
are none, A itself has the strong Hall property, and the theorem follows from

Theorem 4.1.

Let ¢;,...,c; be the columns that are in M, and let ¢, be any other column
in A’ to the right of M. If ¢; has only zeros in rows i,...,5, then clearly the fac-

toring of M cannot affect the structure of ¢, in these rows.
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If ¢, has at least one nonzero in rows i,...,5, consider the rectangular subma-
trix, U, made up from columns ¢;,...,¢;_j,€;. Since column ¢, has a nonzero in
row k, U has the strong Hall property. Hence, by Theorem 4.1, the Local Givens
Rule works on this matrix, and it follows that the Local Givens Rule works

correctly on the wholeof A. O

Although the result in the theorem above is interesting in its own right, it
turns out that in practice it is probably better to solve the system by ‘‘block
" back-substitution”—and never compute the structure of R. This is done as fol-

lows. (Refer to Figure 4.2 for notation.)

Figure 4.2.



Algorithm 4.1:

1) Reorder A as shown in Figure 4.2, with square diagonal blocks
M,,M,,...M, and a rectangular diagonal block M, ,.

2) Solve the rectangular least-squares system
My 1 Xy 1=2byy 1

3) For i=k,k-1,...,1 do:
Update the vector b, by setting

(bl,...,b")"—(bl,...,b")_U"+ lx"_*_ l.
Solve the square system M;x;=b;.

Theorem 4.3: Algorithm 4.1 correctly computes the solution to the least-

squares system Ax=b.

Proof: Refer to Figure 4.3 for notation. To find the least squares solution
we want to minimize | |r| |5, where r=Ax-b. In Algorithm 4.1 we split r into
two parts, r=(r;,0)+ (0,r;). Here, r;=Ax;+ U;xy-b,, and ry=A,x,-b,. Since
(r;,0) and (0,ry) never have nonzeros in the same coordinates,

el 13=11r] 13+ | I 15,

Figure 4.3.



Algorithm 4.1 finds a solution that minimizes | |r,| |, and makes | |ry] |,
equal to zero. It follows that this solution must also minimize | |r| |, and hence
that Algorithm 4.1 computes the correct solution to the least squares problem.

O

This way of solving the system has several advantages. First, in step (2), we
know that M, ; has the strong Hall property, so by Theorem 4.1 we will not use
any unnecessary space—whether we use the George-Heath algorithm or the Local
AGivens Rule. In case we use the George-Heath algorithm, note that the strong
Hall property is preserved under column and row permutations. This means we
can use a heuristic, like minimum degree, on the structure of ATA to find a
column ordering that gives small fill, and still be guaranteed that we are not allo-

cating any extra space for R.

Second, all the systems we solve in step (3) are square, which means that we
can use any standard algorithm to solve these, and to find orderings that give lit-
tle fill. Of course, one way to solve the square system M;x;=Db; is by a @R fac-
torization of M; [17]. If we do this, Theorem 3.8 says that the George-Heath

algorithm correctly predicts the structure of M;’s triangular factor.

Third, by updating the vector b every time we have determined new values
for some variables in x, we avoid having to store any fill at all in U, the part of

A above the diagonal blocks.



5. Summary

We described the nonzero structure of matrices and singled out a class of
structures, namely those with the strong Hall property. For matrices with this
property we showed that the George-Heath algorithm correctly predicts the struc-
ture of the upper triangular factor R. We also showed that this condition is
sufficient to say that the Local Givens Rule will correctly predict the structure of
R. However, in neither case is it a necessary condition: there are matrices that

do not have the strong Hall property, and in which no bogus fill occurs.

We gave a way of reordering a matrix of arbitrary structure into blocks for
which the George-Heath algorithm correctly predicts fill. We outlined an algo-
rithm that uses this reordering to solve a least squares problem block by block,
storing no unnecessary fill within each block and storing no fill at all between
blocks. The reordering also gave a way to permute columns so that the Local
Givens Rule would correctly predict the structure of the triangular factor of the

whole matrix.

Our analysis suggests that the fill from a Givens rotation cannot be charac-
terized by a local rule—i.e., a rule based on the structure of only a fixed number
of rows—as opposed to Gaussian elimination. We have found it necessary to use
both a local rule—the Local Givens Rule—and a concept that summarizes the
structure of the whole matrix—the strong Hall property. On the other hand, the
fill in Gaussian elimination can be given a precise static characterization: we can
predict which positions will be filled in terms of paths in the initial structure, as

in Lemma 2.1. This characterization has been a valuable theoretic tool. For this
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reason it might be interesting to find a similar static characterization for Givens

rotations. George and Ng explore this theme in [13].

6. References

1. Aso, A.V., Horcrort, J.E., ULMaN, J.D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

9. Bunch, J.R., Rosg, D.J., (Eds.). Sparse Matriz Computations. Academic Press,
New York, 1976.

3. DeaN, R.A. Elements of Abstract Algebra. John Wiley & Sons, New York,
1966.

4. Durr, LS. On algorithms for obtaining a maximum transversal. ACM Trans.
Math. Software 7, (Sept. 1981), 315-330.

5. Dutmace, A.L., Menpeusonn, N.S. Coverings of bipartite graphs. Can. J.
Math. 10, (1958), 517-534.

6. Dutmace, A.L., MenpeLsonn, N.S. A structure theory of bipartite graphs of
finite exterior dimension. Trans. Roy. Soc. Canada Sect III 53, (1959), 1-13.

7. Dutmace, A.L., Menpetsonn, N.S. Two algorithms for bipartite graphs. J. Soc.
Indust. Appl. Math. 11, (1963), 183-194.

32



8. Epensranot, A., Gueert, J.R. Predicting fill in Gaussian elimination. Tech.
Report (in preparation), Dept. of Comp. Sci., Cornell University, Ithaca, N.Y.,
(1983).

9. Forp, L.R., FuLkersoN, D.R. Flows in Networks. Princeton University Press,
Princeton, N.J., 1962.

10. GentLeMaN, W.M. Row elimination for solving sparse linear systems and least
squares problems. In Proceedings Dundee Conf. on Numerical Analysis, Lecture
Notes in Math. 508, Watson, G.A. (Ed.), 1975.

"11. GeoraE, A., Heatn, M.T. Solution of sparse linear least squares problems us-
ing Givens rotations. Lin. Alg. and Appl. 34, (1980), 69-83.

12. Georce, A., Ly, JW. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, N.J., 1981.

13. GeorGe, A., Ng, E. On row and column orderings for sparse least squares
problems. Res. Rep. CS-81-09, Dept. of Comp. Sci., Univ. of Waterloo, Water-
loo, Ontario, Canada, 1981.

14. Gowvs, G.H., Businger, P.A. Linear least squares solutions by Householder
transformations. Numer. Math. 7, H.B. Series Linear Algebra, (1965), 269-276.

15. Gustavson, F. Finding the block lower triangular form of a sparse matrix. In
[2], 275-289.

16. Hate, P. On representations of subsets. J. London Math. Soc. 10, (1935),
26-30.

33



17. Heats, M.T. Some extensions of an algorithm for sparse linear least squares
problems. SIAM J. Sei. Stat. Comput. 3, (1982), 223-237.

18. Heats, M.T. Numerical methods for large sparse linear least squares prob-
lems. Rep. no. ORNL/CSD-114, Oak Ridge National Laboratory, (1983).

19. Hopcrort, J.E., Karr, R. An nd/2 algorithm for maximum matchings in bi-
partite graphs. SIAM J. of Comp. 2, (1973), 225-231.

20. Howei, T.D. Partitioning using PAQ. In [2], 23-38.

21. Jounson, D.M., Dutmace, A.L., MenpeLsonN, N.S. Connectivity and reducibili-
ty of graphs. Canad. J. Math. 14, (1962), 529-539.

22. Papapitriou, C.H., Steicurz, K. Combinatorial Optimization, Prentice Hall,
Englewood Cliffs, N.J., 1982.

23. Rosg, D.J., TariaN, R.E., Luexker, G.S. Algorithmic aspects of vertex elimina-
tion on graphs. SIAM J. Comp. 5, (1976), 266-283.

24. TariaN, R.E. Depth-first search and linear graph algorithms. SIAM J. Comp.
1, (1972), 146-160.

34



O

O

Figure 2.1

Q~<

Q @2&4

H=8(G, W}, Wy)

A product-bipartite graph where W ={w,w,,wy,w,} and Wo={w,,w,,w3 ws}.

Figure 2.2



XXX X
XX X
X XXX

XXX

XXX

XXX X
X X X
XXXX

XXX

XX

Figure 1.3

XXX X XXX X

X X X X X
XXXX XXXX
X X
X X
X X X X X
9 3.
XXX X
X X X
XXXX
X XX
X X
X
6.



XXXxxx

XXXXXX XXXXXX -
X XXXXXX X XxXxx
< XXXXXX Xxxx
X XXXXXX Xxx
X XXXXXX XX
X XXXXXX X

A ATA R

Figure 1.4



2/0
z/o

Figure 2.1



O

G H‘:d’( G7 Wh LVZ)

A product-bipartite graph where W ={w,,w,,w3,w,} and Wo={w,,w,,w;,w;}.

Figure 2.2



1 ]
r | [_i
C ]
p J ]
M=<A,rp,9>
ATA

A special submatrix.

Figure 3.1



The Dulmage-Mendelsohn reordering of a matrix.
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