GRAPH COLORING USING EIGENVALUE
DECONPOSITION*

Bengt Aspvall1

John R. Gilber:t.H

TR 83-545
February 1983

Department of Computer Science
Cornell University
Ithaca, NY 14853

*A preliminary version of this report was presented at the SIAM Conference
on Applied Linear Algebra in Raleigh, NC on April 26, 1982

1The work of this author was supported in part by National Science Foundation
grant MCS-81-05556
11The work of this author was supported in part by National Science Foundation
grant MCS-82-02948



Graph Coloring Using Eigenvalue Decomposition®

Bengt Aspva.llT
John R. Gilbert}
Computer Science Department
Cornell University

Ithaca, New York

February 1983

Abstract

Determining whether the vertices of a graph can be colored using k different colors so that no two adjacent
vertices receive the same color is a well-known NP-complete problem. Graph coloring is also of practical
interest (for example, in estimating sparse Jacobians and in scheduling), and many heuristic algorithms have
been developed. We present a heuristic algorithm based on the eigenvalue decomposition of the adjacency
matrix of a graph. Eigenvectors point out “bipartite-looking” subgraphs that are used to refine the coloring
to a valid coloring. The algorithm optimally colors complete k-partite graphs and certain other classes of

graphs with regular structure.

* A preliminary version of this report was presented at the SIAM Conference on Applied Linear Algebra
in Raleigh, NC, on April 26, 1982.
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I. Introduction

Discrete mathematics and combinatorial algorithms have made considerable contributions to numerical
methods in recent years. Many of these contributions have come from graph theory; for example, graphs can
be used to model sparse Gaussian elimination [Rose, 1972; George, 1977], and graph coloring gives efficient
ways to estimate sparse Jacobian matrices [Coleman and Moré, 1983].

In this report we will turn this around and apply some numerical analysis to a problem in graph theory,
namely coloring graphs. We will present two coloring heuristics based on the eigenvalues and eigenvectors of
a graph’s adjacency matrix. For the present, we do not claim that these heuristics are effective or efficient
enough to compete with the various purely combinatorial coloring heuristics that exist. They do, however,
offer a new view of the area where numerical and discrete computation overlap. Hence we believe that they
are worth investigating further.

These heuristics are novel in that they use global information about the graph rather than local infor-
mation; indeed, a small enough change in the graph does not change the behavior of the heuristics. We
will discuss this point further in Section V. As might be expected, therefore, the heuristics perform best on
graphs with very regular structures; Section IV goes into more detail.

The organization of the rest of this report is as follows. The next section reviews some necessary
background in graph theory and linear algebra. Section III presents the basic ideas of the report and uses
them in an algorithm to find an approximately correct two-coloring of a graph. Section IV presents an
algorithm to find a correct coloring that may use more colors than necessary; it also describes some classes
of graphs for which this algorithm finds a minimum coloring. The last section considers questions of stability:
what happens if the graph changes slightly, and how accurate must the numerical calculations be to get the

correct discrete answer? In this section we also discuss open problems and directions for further work.

II. Background

We begin with some standard definitions.

A graph G = (V,E) consists of a set V of vertices and a set E of edges. An edge is an unordered pair
{v,w} of distinct vertices. If {v,w} is an edge, vertices v and w are adjacent. Edge {v,w} is incident on
vertices v and w, which are its endposnts. The number of edges incident on a vertex is its degree. If all the

vertices in a graph have the same degree d, the graph is regular of degree d.
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Figure 1. An approximate two-coloring.

A path of length k between vertices v and w is a sequence of vertices v = vy, vy, ..., vy = w such that
{vi—1,v;} is an edge for 1 < i < k and all the vertices vy, ..., vx are distinct. If every pair of vertices in G
is joined by a path, G is connected.

A coloring of a graph is an assignment of a color to each vertex. It is a correct coloring if every edge has
different colors on its endpoints. We say that an edge violates or satisfics the coloring condition according
to whether its endpoints have the same or different colors. A minimum coloring is a correct coloring with
as few colors as possible; the number of colors in a minimum coloring of a graph G is its chromatic number,
written x(G).

If 2 minimum coloring can be found in polynomial time for every graph, then P = NP. We will be
interested in polynomial time algorithms that find approximations to a minimum coloring. There are two
kinds of approximations. An approzimate coloring is a coloring that may not be correct; the fewer edges
that violate the coloring condition, the better the approximation. In Figure 1, for example, eleven edges
satisfy the coloring condition and four edges violate it. Any graph with m edges can be two-colored so that
more than m/2 edges satisfy the coloring condition [Erdds and Kleitman, 1968], and such a coloring can be
found in polynomial time. If the graph is regular, the coloring can be chosen so that half the vertices are of
each color.

The other kind of approximation is an approzimately minimum correct coloring, which is a correct
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Figure 2. A correct but non-minimum coloring.

coloring; the fewer colors it uses, the better the approximation. In Figure 2, for example, we have used four
colors to color a 3-colorable grapﬁ. Many heuristics of this sort have been proposed [Welsh and Powell, 1967;
Matula, Marble, and Isaacson, 1972; Johnson, 1874; Brélaz, 1979]. Garey and Johnson [1976] showed that if
a polynomial algorithm exists that always uses less than 2 — € times the minimum number of colors, for any
positive ¢, then P = NP. Wigderson (1982] gave a polynomial algorithm that colors any n-vertex k-colorable
graph with no more than

kn(k=2/(k=1)

colors.

Another way to say that a graph has a correct k-coloring is that its vertices can be partitioned into k
sets Vi, ..., Vi such that no edge has both endpoints in the same set. Then the graph is called k-partite,
the sets are called parts, and the graph is sometimes written (Vy, Vz,..., Vi, E). A complete k-partite graph
is a k-partite graph in which every pair of vertices in different parts is joined by an edge.

If we number the vertices of graph G from 1 to n, the adjacency matriz of G is the n by n matrix
A = A(G) whose entry a;; is 1 if vertices 5 and j are adjacent, 0 otherwise. Finding a correct k-coloring of
G is equivalent to finding a permutation matrix P such that PAPT has a k by k block structure in which

the k diagonal blocks contain only zeroes.



The adjacency matrix is real, symmetric, and non-negative. Therefore it has n real eigenvectors u,,
...,un. (We shall use italic uppercase for matrices, italic lowercase for scalars, and boldface lowercase for
vectors. The components of the vector x are z,, ..., z,.) Furthermore, the eigenvectors can be chosen to
be orthonormal, that is, so that the inner product uluy is zero if § # j (u; and u; are orthogonal), and so
that u;-ru.- = 1 (u; has unit length). The eigenvectors can also be chosen so the first component of each is
nonnegative. With each eigenvector u; is associated an eigenvalue \; such that Au; = A\;u;. An eigenvalue
is simple if it occurs only once. Since A is real and symmetric, its eigenvalues are real. The eigenvalues are
the roots of the characteristic equation det(A — \I) = 0, which is a polynomial of degree n in \.

The spectral radius p(A) of A is max;|)\;|, the largest magnitude of an eigenvalue. We shall number the
eigenvalues and eigenvectors so that Ay < Ap—3 < -+- < A\;. The sum of the diagonal elements of A is its
trace, and is equal to the sum of the eigenvalues. Since the diagonal elements of an adjacency matrix are all
zero, the sum of the eigenvalues is zero. Therefore X\; > 0 and A\, < 0.

A matrix A is reducible if its rows and columns can be permuted symmetrically to place a block of zeroes
in the lower left-hand corner, that is, if there is a permutation matrix P such that

PAPT=(C D).
0 E

The adjacency matrix of G is irreducible if and only if G is a connected graph with at least two vertices.
There is a rich theory of non-negative matrices; Varga [1962, Chapter 2| gives a good exposition. The
results we need are due to Perron, Frobenius, and Gerschgorin, and we summarize them here along with the

results mentioned above.

Theorem 1. Let G be a connected graph with n > 1 vertices and let A be G’s adjacency matrix. Then
1. The eigenvalues Ay > -+ > X\, of A are real.
The eigenvectors uy, ..., U, can be chosen to be orthonormal.
LA =0.
. A1 > |\g| for all k; that is, A, is the spectral radius of A.
. A1 > \g; that is, the largest positive eigenvalue is simple.
. u; can be chosen to have positive components (we write u; > 0).

. A1 increases when any entry a;; of A increases.

. Either X\, = Zj a;; for all ¢ or min; E; a;; < A1 < max; Ej a;j.
All of these except (3) hold for any real, non-negative, symmetric, irreducible matrix.
Remark. Inequality (8) says that the spectral radius (and the largest positive eigenvalue) of G’s

adjacency matrix is bounded by the maximum and minimum degree of G’s vertices. 1§
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We can represent A in terms of its eigenvalues and eigenvectors as
A= Z Aruguy,
)

where the outer product uxuy is an n by n matrix of rank one. If the sum is in decreasing order of [Nkl
then the m-th partial sum A(™ minimizes || A — A(™||p over all rank-m matrices, where ||B|r = m
is the Frobenius norm of the matrix B. In this case [JA — A(™||p is equal to /3 A2, where the sum is over
the n — m eigenvalues of smallest magnitude. Stewart [1973] gives details.

The spectrum of a graph is the multiset {\,..., X} of eigenvalues of its adjacency matrix. Cvetcovié,
Doob, and Sachs [1980] survey some known relationships between a graph’s spectrum and chromatic number.
Perhaps the most elegant is the following inequality, in which the lower bound is due to Hoffman [1970] and

the upper bound to Wilf [1967].

Theorem 2. Let G be a graph with n > 1 vertices and iet X\; and A\, be its most positive and most

negative eigenvalues. Then its chromatic number x(G) satisfies

ﬁ-+15x(G)sx.+1.
...x'

The proof of this theorem is not constructive, and does not seem to lead to an efficient algorithm to

color G with A\; + 1 colors.

Barnes and Hoffman [Barnes, 1982; Barnes and Hoffman, 1982] have used the eigenvalues and eigenvec-
tors of a graph’s adjacency matrix to partition the vertices into sets that have few edges between them. This
is in a sense the dual of the coloring problem. Gould and other geographers [Straffin, 1980] have used the
eigenvectors corresponding to positive eigenvalues to measure the “accessibility” of cities in trade networks;
again, this is in a sense dual to the coloring problem.

Our investigation of spectral coloring heuristics was suggested by an algorithm due to Moler and Mor-
rison [1983] that divides the letters of a cipher into vowels and consonants based on the singular values
and singular vectors of the matrix of digram frequencies. They observed that, in English and several other
languages, pairs of adjacent letters (digrams) are more likely to consist of a vowel and a consonant than two
vowels or two consonants, so the weighted directed graph corresponding to the matrix of digram frequencies

is approximately bipartite.



IIl. Two-colorings

The basic idea behind our coloring algorithm is best described in terms of bipartite graphs. In this
section, we show how to color any bipartite graph correctly by examining the eigenvalue decomposition of
its adjacency matrix. (Of course, bipartite graphs can be colored correctly in linear time using a simple
depth-first search.) We then show how to use the ideas for approximate two-colorings.

Let G = (V, E) be a bipartite graph with parts V; and V3. By a suitable numbering of the vertices, the

adjacency matrix A(G) can be written in the form

0 B
(29
BT o
X

Let u be an eigenvector of A with eigenvalue \. If we write u = (y), we have

(5 9 6)=C)

We claim that ( _xy) is also an eigenvector of A and its corresponding eigenvalue is —\. Indeed, we have

(5 )G) ()

Thus the spectrum of a bipartite graph is symmetric around zero. In fact, Sachs [Cvetkovié¢, Doob, and
Sachs, 1980, Theorems 3.4, 3.11] proved a stronger result.

Theorem 3. The graph G is bipartite if and only if its eigenvalue spectrum is symmetric about the
origin, and this happens if and only if A\; = —X,. 1§

From the Perron-Frobenius theorem, we know u; = (;) > 0. Thus the signs of the components of
u, = ( _xy) correctly partition the vertices of G into the sets V; and V2. We have the following algorithm
for coloring bipartite graphs.

Algorithm 1 (Two-coloring).  Color the vertices according to the signs of the components of the
eigenvector u, corresponding to the most negative eigenvalue Ap. 1l

If the graph G is not bipartite, we can still partition its vertices by the signs of the components of u,.
In the remainder of this section we give some intuition about why this might help find good colorings for
arbitrary graphs. In the following section we will present an algorithm based on this idea and analyze its

behavior on some classes of graphs.

Recall that the adjacency matrix A can be written in the form
A= Z )‘kukuz,
k
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and that if the sum is in decreasing order of |[\x| then the m-th partial sum A(™) is the best rank-m approx-
imation to A in the Frobenius norm. Now suppose that A\, is the second largest eigenvalue in magnitude
(i.e., A1 > —Xn 2 X3), and let us take a look at the best rank-1 and rank-2 approximations to the adjacency
matrix A. The matrix uju] has all positive elements, so AM = \;u,u] has all positive elements.

Since u, is orthogonal to the positive vector u,, it must have both positive and negative components.
Let (f) denote a vector whose first components are positive and whose remaining ones are negative. (We will
arbitrarily consider zero to be positive.) Let V; be the set of vertices corresponding to positive components

and let V; correspond to negative components. By a suitable numbering of the vertices, we can write u, =

(%), so _ _
)‘,.u,,uz = Ap (t +) = (+ t) .

When adding the second update Ayuaul to A(), obtaining the best rank-2 approximation A®) we have
A® = \juju] +A\gupup = (+ +) + (- +) . (3.1)
+ + + -
The elements in the off-diagonal blocks in the two rank-1 matrices have the same signs and reenforce each
other when added. In the diagonal blocks the elements added are of opposite signs and cancel each other.
Thus, roughly speaking, we expect more edges between V; and V; than within ¥} and Vz, so we may view
A®?) as the adjacency matrix for a “bipartite-looking” graph.

How good is this approximate two-coloring? Recall that every graph has an approximate two-coloring in
which more than half the edges satisfy the coloring condition. The coloring above may not be this good. The
following fairly weak result says that, for a class of graphs in which the most negative eigenvector partitions
the vertices strongly enough, the approximate two-coloring cannot be too bad.

Theorem 4. Let G be connected and regular of degree n/2, and let its adjacency matrix A have
eigenvalues A\ < -+ < \; and eigenvectors u,,...,u;. Let up be the j-th component of eigenvector u,. If
[\n] 2 Az and there is a constant 0 < n < v/3 such that |uss/ujn] < 9 for all i and j, then the number of
edges that satisfy the coloring condition is more than (3 — %)/(2 + 2n?) times the total number of edges.

Proof. By Theorem 1(8) the principal eigenvalue is \; = n/2, and then u; = (1/\/n,..., 1/{/n)T.

The best rank-1 approximation to A is )qulu'lr = ‘}J, where J is the matrix of all ones. Let
S = (Oij) = 2(A b Xluluf).

Then s;; is 1 if vertices ¢ and j are adjacent, —1 if not. Since A\, is the eigenvalue of A of second largest
magnitude, the best rank-1 approximation to S is 2X,u,.u',f. Let s = /—2\, u,. Then 2)‘,‘u,.u',{ = —ssT,

so 88T is the best rank-1 approximation to —S. That is, 3°,.(s;8; + 8;;)? is minimum over all choices of s.
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Now
Z(O,‘Oj + lgj)z = Zafj + Z 0?0; + 22: 8;858;;. (3.2)
3] i iy if

The first sum on the right hand side above is n®. The second is ||s||*, which is 4\3. Thus the third sum,

t= Z 8:858:1,
iy

is minimum over all choices of s with ||s|]] = /=2Xx. In fact, we can evaluate ¢: the sum on the left in
equation (3.2) is 4]|A — A®||3, which is 43, ;s M — 47} — 4X}. The latter sum is the square of the
Frobenius norm of A, which is n2/2. Since G is regular, \, is n/2. Plugging this all into equation (3.2) gives
t = —4)\2. We will use only the fact that ¢ is negative.

We divide the sum ¢ into four parts. Let
6= I{(i,j) . 885 < 0,0;,' =1 }l,
b= |{(t',j): 8:85 > O,ag = l}l,
c=|{(3,5): 0585 < 0,85 =—1}],
and d= |{(§,5): 8;8; > 0,8;; = —1}|.
Then a is twice the number of edges that satisfy the coloring condition, b is twice the number of edges that
violate the coloring condition, c is twice the number of nonedges that satisfy the coloring condition, and d is
twice the number of nonedges that violate the coloring condition. (Each edge and nonedge is counted once

as (i, 7) and once as (j, i), except that d counts each nonedge (3, §) just once.) Our goal is a lower bound on

a. Since the graph is regular of degree n/2, we have

n?
a+b=c+d=—2—. (3.3)

Recall that the sum ¢ above is negative. This sum has b+ ¢ positive terms and & + d negative terms.

The ratio of the magnitudes of any two terms is less than n?, so
b+c < n*(a+d) (3.4)

Now Z:'. 8; = 0 because 8 is parallel to u, and hence orthogonal to u,. Therefore E.-,' 8;8; = 0. This

sum has b+ d positive terms and a + ¢ negative terms. Thus
b+d < n*(a+o) (3.5)

Adding inequalities (3.4) and (3.5) and substituting a+ b for ¢+ d (by (3.3)) in the result yields 3b+a <

n%(3a + b). Rearranging terms gives

a>3—n’ (a+0b) (3.8)
2+ 22 ) ’

Since a is twice the number of edges that satisfy the coloring condition and a + b is twice the number of

edges, this completes the proof. §
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Figure 3. Partitioning vertices by sign pattern.

IV. A heurlstic coloring algorithm

We can use the ideas of the last section in an algorithm to find an approximately minimum correct
coloring of an arbitrary connected graph. The sign pattern of one eigenvector partitions the vertices into
two sets. This gives an approximate two-coloring, which we refine to a valid coloring by partitioning the
vertices according to additional eigenvectors.

Algorithm 2 (Correct coloring). Begin with all vertices the same color. Repeatedly select an eigenvec-
tor and use the signs of its components (with zero considered positive) to refine the coloring, until a correct
coloring is obtained. §

For example, if the eigenvectors ug, uz, and ug of an 8-vertex graph have the sign patterns shown in
Figure 3, the vertex partition they induce has 5 parts as shown.

The algorithm does not specify which eigenvectors to use. The discussion of low rank approximations
above suggests that we select eigenvectors in increasing order of their eigenvalues, beginning with u,. It
turns out that, if we use enough eigenvectors, we eventually do get a correct coloring; indeed, we eventually

color every vertex a different color.

Theorem 5. If the algorithm above is continued until it has used all the eigenvectors of A = A(G),

then every vertex is assigned a different color.
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Proof. Consider the n by n matrix U = (u,,...,u,) whose columns are the eigenvectors of A. The
color of vertex i is the sign pattern of row i of U. Since the columns of U are orthonormal, U is an orthogonal
matrix and the rows rJ, ..., rI of U are also orthogonal; that is, r',-rr,- = 0 if § # 5. Eigenvector u; has
positive components, so the first components of r"r and r}' are both positive. Hence their inner product can
be zero only if some other component is positive in one of them and negative in the other. Thus no two rows

have the same sign pattern, so no two vertices have the same color. §

The discussion in the last section suggests that eigenvectors with negative eigenvalues should partition
the vertices so that many edges satisfy the coloring condition, and eigenvectors with positive eigenvalues
should partition the vertices so that few edges satisfy the coloring condition. That is, a negative eigenvalue
divides the vertices into approximately independent sets, and a positive eigenvalue divides the vertices into
approximately complete subgraphs. We conjecture that Algorithm 2 always finds a correct coloring after

considering only the eigenvectors with negative eigenvalues.

Of course, a correct coloring that gives each vertex a different color is not very surprising. We now show
that this algorithm finds minimum correct colorings for a class of graphs for which we know of no purely
combinatorial polynomial-time coloring algorithm. To simplify the presentation, we first consider tripartite
graphs.

Let G be a tripartite graph with parts V}, V3, and V5. Let the parts have r, s, and ¢ vertices respectively.

Partition the adjacency matrix of G as

0 Az A
A= A'lrz 0 Azs
A.lrl AE‘ 0

We call G block regular if in each block the row sum is constant and the column sum is constant. That is,
A;;1 = b;;1 and A;-IJ'-I = bj;1, where 1 is the vector of all ones. In a block regular matrix, the number of

edges between a given vertex v in V; and vertices in V; depends only on i and j (and this number is b;;).

Theorem 6. Let G be a block regular tripartite graph. Then the adjacency matrix A has two eigen-
vectors with negative eigenvalues whose sign patterns correctly 3-color G.

Proof. The theorem follows from the following two lemmas. Let

0 b2 bis
B=|]by 0 bxs],
bsy bz O

where b;; is defined above. We call B the block degree matrix.
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Lemma 1. Let A be the adjacency matrix of a block regular tripartite graph and let B be the
corresponding block degree matrix. Then (a1, 81,71)7T is an eigenvector of A with eigenvalue X if and only
if (a, B, ,1)'1‘ is an eigenvector of B with eigenvalue \.

Proof. Assume (al, #1,71)T is an eigenvector of A with eigenvalue X. We have

0 A2 A al (ﬂbu + ‘Ibu)l al
AL, 0 A | |B1]=](abn+1bs)1|=X]51
Ay A5, 0/ \n (absy + Bbs2)1 2

Looking at the right equality componentwise, we see that the first r equations are identical; so are the next

s equations and the last ¢ equations. Selecting one equation from each group, we have

0 bia bis\ (2 a
by 0 bu||B|=)\|F
bsy b2 O v 7

Lemma 2. Let B be the block degree matrix for a block regular tripartite graph G. The sign patterns
of two of the eigenvectors (with negative eigenvalues) of B partition the rows of B into singleton sets.
Proof. Since B is not necessarily symmetric, we cannot apply the Perron-Frobenius theorem directly to
show that the eigenvectors partition the rows. However, we can use a similarity transform to get the desired
result.
Counting the total number of edges between vertices in V; and V3 in two ways, we see that rbyz = 8b;;.
Similarly, rb;s = tbs; and abyg = tbss. Let
yr 0 0
D=]o0 s 0
0 0

0 Vrfabis \/r[ths
B'=DBD™' = | \/r[ab;2 0 Ve[t bzs
Vrfths Veftbss 0

is a symmetric nonnegative matrix with zero trace. Furthermore D(a, 8, 7)T is an eigenvector of B’ with

Then

eigenvalue X if and only if (a, ﬂ,'y)T is an eigenvector of B with eigenvalue A\. Since D is diagonal with
positive elements, the sign patterns of the eigenvectors of B are the same as the sign patterns of those of B'.
Now the same argument as in the proof of Theorem 5 shows that these sign patterns partition the rows of

B' (and those of B) into singletons. §
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Theorem 6 says that the adjacency matrix A has two eigenvectors (with negative eigenvalues) whose
sign patterns correctly partition the vertices, but it does not say which ones they are. We can find the
right eigenvectors in polynomial time, unless one of B's negative eigenvalues A has higher multiplicity as an
eigenvalue of A than as an eigenvalue of B. In this case we may not be able to tell which of A’s A-eigenvectors
correspond to B’s A-eigenvector(s).

Assuming no eigenvalue of B has higher multiplicity as an eigenvalue of A, however, we do not have to
try all pairs of eigenvectors. We know that the negative sum of the corresponding eigenvalues is equal to the
spectral radius p(A). Thus we can find a minimum coloring of a block regular tripartite graph by trying at
most half as many colorings as there are negative eigenvalues of its adjacency matrix.

The result generalizes straightforwardly to block regular k-partite graphs, but we may no longer be able

to restrict our attention to eigenvectors with negative eigenvalues.

Theorem 7. Let G be a block regular k-partite graph. Then there is a set of at most k— 1 eigenvectors
whose sign patterns correctly partition the vertices of the graph. Furthermore, the negative sum of the

corresponding eigenvalues is equal to the spectral radius p(A(G)). §

We now turn our attention to a restricted class of graphs for which we can show more precisely which
eigenvectors partition the vertices correctly. Let G be a block regular k-partite graph for which b;; depends
only on j; that is, the off-diagonal elements in a column of the block degree matrix are all equal. We call
such a graph strongly block regular. One example is a grid graph on a torus; see Figure 4.

Let the k parts have n, nga, ..., ny vertices, where ny > ng > --- > ny. Let a = b1x. Counting the
number of edges between different partitions as we did in the proof of Lemma 2, we see that the block degree

matrix B can be written as

nyny... 0
Except for the factor a/ny, B looks like the block degree matrix B’ for the complete k-partite graph
with the same vertex partition. The eigenvectors of B and B’ are thus the same, and their eigenvalues are
related by the factor a/n,. We therefore restrict our attention to complete k-partite graphs. We have the

following theorem [Smith, 1970].

Theorem 8. A graph has exactly one positive eigenvalue if and only if its non-isolated vertices form a

complete k-partite graph for some k. @
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Figure 4. A strongly block regular graph (vertices with the same number are identical).

In fact, for complete k-partite graphs the characteristic equation is known [Cvetkovié, Doob, and Sachs,

1980, Section 2.6.8]:

p(A) = A"* (1— > X:‘n;) II O +ny).

1<i<h 1<5<k
From this equation, it follows that p(—n;) X p(—n;+1) < 0 with equality if and only if n; = n;y ;. Thus the

nonzero eigenvalues of a complete k-partite graph satisfy
N SA N3 <A1 Sm k42 S KO <A

(Note that for strongly block regular graphs that are not complete k-partite graphs, the remainingn—k—1
eigenvalues of the adjacency matrix A might not be zero; in fact, they may be interleaved with the eigenvalues
that are common with B.)

What can we say about the corresponding eigenvectors? Assume that A # —ny, for all1 < i < k. Let
u be an eigenvector of the block degree matrix B’ of a complete k-partite graph. Then (B' — A)Ju = 0.
By subtracting the first equation of (B’ — Al)u = O from the j-th equation, it follows that (ny + Xy, =

(n,- + X)‘Uj. Thus
l/()‘ + n;)

u=u(\+n,) Y + n2)

l/(x + nk)
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So for complete k-partite graphs the eigenvectors corresponding to negative eigenvalues have no zero com-

ponents, and their blocks have the following sign patterns:

Uy =(+,_)",---,‘)T,un—l =(+y+y"1°-'1_)Tv'~-aul—k+3 = (+’+’+"“’_)T'

(If n; = niyy for some 1 < § < k, then Ap—¢41 = ny¢. In this case, there exists an eigenvector with zero
components corresponding to vertices in certain block(s) in the partition.) From Theorem 7, we know that
the sign patterns of k — 1 of the eigenvectors correctly partition the vertices of any block regular graph.

Therefore, for strongly block regular graphs, we now know exactly how the eigenvectors partion the vertices.

V. Conclusions

We have presented a new heuristic for coloring graphs. The approach is unusual in that it uses continuous
mathematics for solving a combinatorial problem, and in this section we will discuss some of the implications.
How accurately must the numerical computations be performed? Is our algorithm sensitive to perturbations
in the input? That is, if the graph changes slightly, how does this affect the coloring? We will also sketch
a way to improve a non-minimum coloring by “recycling” colors. Finally, we conclude with some open
problems.

How accurately must the numerical computations be performed in finite precision arithmetic? That is,
can we determine whether two eigenvalues X\ and p are equal, or whether a component of an eigenvector is
positive, in time polynomial in the size of the graph? The eigenvalues are the zeroes of the characteristic
polynomial det(A —\I), which is a polynomial of degree n with coefficents bounded by n! in magnitude. The
eigenvalues are thus algebraic numbers of degree n. It follows from Theorem 1 of [Mignotte, 1982] that X # p
implies |\ — p| 2 exp(—O(n® logn)). To test whether two eigenvalues are equal, we therefore need only to
examine a polynomial number of bits. A similar argument holds for the components; that is, if u; # 0, then
u; has at most a polynomial number of leading zeros. In theory, we can use any algorithm that is at least
linearly convergent to compute the eigenvalue decomposition of a matrix. In practice, one might use the
power method, for example, to obtain a few eigenvectors. For more details on computing the eigenvectors
see [Stewart, 1973, Chapter 7; Parlett, 1980].

Our heuristic is based on global information about the graph in the sense that each eigenvector contains
information about the entire adjacency matrix A. Changing the graph slightly will thus change all or
almost all eigenvectors. The important point is that we expect the changes to be small. We present some

experimental and some theoretical evidence for this.
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First, we showed in Section IV that we obtain correct colorings of strongly block regular graphs. The
strongly block regular graph in Figure 4 differs from a planar grid graph by only O(\/n) edges. Our
experiments show that various sorts of planar grid graphs are typically colored by Algorithm 2 in the
minimum number of colors. Our experiments also indicate that Algorithm 1 gives, for many graphs, much
better approximate two-colorings than Theorem 4 would lead us to believe. We plan to report on more

extensive experiments in a future paper.

Second, the eigenvalue decomposition of a symmetric matrix is stable. That is, if a cluster of eigenvalues
is well separated from the other eigenvalues, the subspace spanned by the eigenvectors corresponding to the
cluster of eigenvalues is stable with respect to perturbation of A. (We refer the interested reader to [Davis
and Kahan, 1970; Stewart, 1971; Stewart, 1973, Chapter 6] for a detailed discussion.) Thus, if the distinct
eigenvalues of A are sufficiently well separated, then the subspace spanned by all the eigenvectors corre-
sponding to an eigenvalue X is insensitive to a perturbation. (If X is a multiple eigenvalue, the eigenvectors
corresponding to A are not unique, but the subspace they span is unique.) Therefore, if a particular set of
eigenvectors of A(G) partitions the vertices of G correctly, we expect that the vertices of a slightly perturbed

G will be correctly or almost correctly partitioned by a corresponding set of eigenvectors of A(G').

We know from Theorem 5 that Algorithm 2 will eventually find a correct coloring (although it might
use n colors for some graphs). Suppose the algorithm returns a valid but non-minimum coloring. Then we
can try to “recycle” colors as follows. Associate all vertices of the same color (they are all nonadjacent) with
a supervertez. Join two supervertices by an edge if there is a vertex associated with one of the supervertices
that is adjacent to a vertex associated with the other supervertex. We then color the resulting graph. (If the
resulting graph is small enough, an exhaustive algorithm might be feasible.) If two nonadjacent supervertices
are colored with the same color, we can reduce the number of colors in the original coloring. This idea can

be used recursively, and it does not depend on the particular coloring heuristic used.

As mentioned above, we conjecture that Algorithm 2 always colors a graph correctly (though not nec-
essarily minimally) after considering only the eigenvectors with negative eigenvalues. If eigenvectors with
negative eigenvalues partition the graph into pieces having few edges within them, then eigenvectors with
positive eigenvalues can be viewed as partitioning the graph into pieces having few edges between them.
(Notice what happens to Equation (3.1) when X, is replaced by A\ > 0.) Can this idea be used to find small

separators in graphs, or perhaps to find large cliques?

In summary, we believe we have demonstrated that a numerical approach can sometimes give algorithms
for purely combinatorial problems. Our main hope is to stimulate further research in the broad area of

intersection between continuous and discrete mathematics.
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