Fault-Toleranat Broadcasts*

Fred B. Schneider
David Gries
Richard D. Schlichting

TR 83-519
August 1983

Department of Computer Science

Cornell University
Ithaca, New York 14853

* This work is supported by NSF Grants MCS 76-22360 and MCS 81-

03605.
* Department of Computer Science, University of Arizona, Tucscon,

Arizona 85721.

Fault-Tolerant Broadcasts*

Fred B. Schneider
David Gries
Richard D. Schlichting™

Department of Computer Science
Cornell University
Ithaca, New York 14853

August 31, 1980
Revision: September 3, 1982
Revision: August 2, 1983

ABSTRACT

A distributed program is presented that ensures delivery of a message to the functioning
processors in a computer network, despite the fact that processors may fail at any time.
All processor failures are assumed to be detected and to result in halting the offending
processor. A reliable communications network is assumed.

*This work is supported by NSF Grants MCS 78-22380 and MCS $1-03605.
+ Department of Computer Science, University of Arisona, Tucson, Arisona 85721.

1. Introduction

A fault-tolerant broadcast protocol is a distributed program that ensures delivery of a mes-
sage to the functioning processors in a computer network, despite the fact that processors may fail
at any time. Fault-tolerant broadcast protocols have application in a wide variety of distributed

programming problems [S80] [S82].

Broadcast networks—contention networks such as Ethernet [M76| and ring networks like
DCS [F73]—would appear to implement fault-tolerant broadcast protocols directly in hardware,
but do not [LL79]. In these networks, each processor is connected to a network interface unit.
This unit monitors the network and copies messages identified with its address code into a buffer
memory, which can be accessed by a connected processor. Unfortunately, there is no guarantee

that a processor will receive every message addressed to it. For example,

o the buffer memory might be full when a message is received by the interface unit,

e the interface unit might not be monitoring the network at the time the message is
delivered, or

e in a contention network, an undetected collision that affects only certain network
interface units could cause them to miss a message.

Thus, while current broadcast networks allow messages to be broadcast, they do not directly sup-

port fault-tolerant broadcasts.

In point-to-point networks, in which a message sent can be received by onmly one processor,
there are other impediments to implementing fault-tolerant broadcast protocols. If each processor
sends at most one message per broadcast, then time linear in the number of processors is required,
often an unacceptable delay for the completion of a broadcast. If each processor sends more than
one message per broadcast, broadcasting is not an atomic action with respect to failures. Conse-
quently, such protocols require a scheme in which processor failure causes another processor to

assume its duties. Such a scheme, which can be subtle, is presented in this paper.

The paper is organized as follows. In Section 2, assumptions about the communications net-
work and processor failures are discussed and the notion of a broadcast strategy is formalized. In

Section 3, a fault-tolerant broadcast protocol that will work with any broadcast strategy is

presented and proved correct. Section 4 discusses some implications of our work.
2. The Environment

2.1. Communications

Consider a network containing /N processors, named /, ..., N. We assume the

Reliable Communications Property:
Each functioning processor can always send messages to every other functioning processor.

Messages between every pair of functioning processors are delivered uncorrupted and in the
order sent.

Clearly, to withstand up to k failures, there must be k+ 1 independent paths between any two
processors. These paths may be direct or may involve relaying messages through other processors.
Thus, we are assuming the existence of an underlying routing protocol, such as the one in [MST79.
To ensure that messages are delivered uncorrupted and in the order sent, we assume the existence
of protocols to append sequence numbers and checksums to messages, and, if necessary, to
retransmit garbled or out-of-order messages. Although achieving the Reliable Communications
Property is likely to be expensive, it is impossible to distribute a message to a processor if there is

no way to communicate with it.

Processors communicate by exchanging messages and acknowledgements. Each message m

contains the following information:

m.sender the name of the processor that sent m.
m. info the information being broadcast.
m.seqno a sequence number assigned to the message by the processor b that initiates

the broadcast. The first message broadcast has sequence number 1.
Let m be a message. Execution of
p!!msg(m)

by processor ¢ sends a message m to p with m .sender=¢q, m.info=m.info and

m' .seqno == m.seqno. Execution does not delay g¢.

-2

Execution of
7?msg(m)

by a processor delays that processor until a message is delivered; then that message is stored in

variable m.

Execution of p!lack(m) and ??ack(m) are used to send and receive acknowledgements.
Their operation is similar to that of p!!msg(m) and ??msg(m), the only difference being the iden-
tifying ack instead of msg.' Thus, a message sent using p!'msg(...) can be received only using

?¥msg(...), and a message sent using p!!ack(...) can be received only using ??ack(...).

This notation is inspired‘by the input and output commands of CSP [H78|. As in CSP, we
" allow receive commands (?7) to appear in the guards of guarded commands. Such a guard is
never false; it is true only if execution of the receive would not cause a delay. In our notation,
two shrieks (!!) and queries (77) are used, instead of one, to indicate that messages are buffered
and therefore a sender is never delayed. Also, in contrast to CSP, the sender names the receiver

but the receiver does not name the sender.

2.2. Processor Failures
We assume a restricted type of processor failure.
Processor Failure: A processor that has failed stops executing.

Thus, we do not consider the case where a malfunctioning processbr'continues executing, although
not in a manner defined by its program. The validity of our processor failure assumption is argu-
able because processor failures can result in arbitrary behavior. However, most processor failures
will cause the offending processor to cease sending messages, so to tﬁe other processors in a com-
puter network such a malfunctioning processor will appear to have stopped. Processor failures
that cause a malfunctioning processor to generate arbitrary messages are also easily handled—the
messages are ignored and thus the failed processor has effectively stopped. Discussions of the

implementation of true ““fail-stop processors” and their cost appear in [S83] and [SS83].

In our proofs, we use the predicate failed(p):
failed(p) = ‘‘processor p has failed”’

Each processor is assumed to have a local variable FAILED, which is a set of names of the pro-
cessors that it has recognized as having failed. Failure of a processor p automatically causes
FAILED:= FAILED u{p} to be executed in each functioning processor after some finite, but
undetermined, amount of time. This can take place at different times for the different processors.

Local variable FAILED satisfies the following:

p e FAILED => failed/p)
failed/p) => eventually p will be added to FAILED
FAILED models an idealized failure-detection mechanism. The proof of our broadcast pro-
tocol assumes that the implementation of FAILED is consistent with the properties and meaning
of failed stated above. Thus, an implementation that only approximates FAILED will yield a
broadcast protocol that runs correctly only as long as the implementation behaves as stipulated
above. One way to approximate FAILED is to use time-outs with synchronized clocks. Then,
provided the time-out period is sufficiently long and network delays are not significant, FAILED

will behave as required.

2.3. Broadcast Strategies

A broadcast strategy describes how a message bei;:g broadcast is to be disseminated to the
processors in the network. We represent a broadcast strategy by a rooted, ordered tree in which
the root corresponds to the processor originating the broadcast, other nodes correspond to the
other processors, and there is an edge from p to ¢ if processor p should forward to processor ¢
the message being broadcast.! When a node has more than one successor in the tree, the message

is forwarded to each of the successors in a predefined order, also specified by the broadcast stra-

tegy.

'Restriction to trees is not a limitation when considering broadcast strategies that ensure minimum time to comple-
tion. A broadcast strategy that cannot be represented as a tree must include a processor that receives the same message
more than once.

Generally speaking, the successors of a node in the broadcast strategy will be neighbors of
the node in the network, but this is not necessary. The broadcast strategy defines how a message
is to be broadcast; it is the duty of a lower-level protocol to ensure delivery of messages to their

destinations, as postulated in the Reliable Communications Property.
Given a broadcast strategy represented by graph (V, E), we define the relation
p SUCC q = pq<cE
SUCC™ and SUCC* denote the conventional transitive closure and reflexive transitive closure of

relation SUCC. We also use the name of a relation to denote a set: SUCC(P) is the set of suc-

cessors of the elements of set P, and similarly for SUCC* and SUCC".

A broadcast strategy describes a preferred method of broadcasting: as long as no processors
fail, messages are disseminated as prescribed by the broadcast strategy. Processor failure may
require deviation from the strategy. Clearly, the broadcast strategy to employ 'in a given situa-
tion depends on what is to be optimized. However, use of broadcast strategies that can be
represented by a subgraph of the processor interconnection graph seems reasonable, since it

minimizes message relaying.

Two common broadcast strategies are the “‘bush’’ of Figure 2.1a and the “chain” of Figure
2.1b. In some sense, these are the limiting cases of the continuum of broadcast strategies. A

more complex broadcast strategy is shown in Figure 2.1c.

3. Fault-tolerant Broadcasts with Unrellable Processors

We now present a fault-tolerant broadcast protocol for any broadcast strategy represented
by an ordered tree with root 4. A copy of the protocol runs at each processor; the copy for pro-

cessor b is slightly different because broadcasts are initiated there.

Throughout, 7 denotes the value of the message currently being broadcast by 5. The

broadcast of 7 is completed when the following holds.

Fault-Tolerant Broadcast: If any functioning processor has a copy of M then every func-
tioning processor has a copy of .

5=

(a) (b) (e)

Figure 2.1 -~ Some Broadcast Strategies
" This means that one way to complete a broadcast is for every processor that has received the

message to fail.
Let m, be a local variable in process p that contains the last message delivered to it and let
eg(ml, m2) = ml.seqno = m2.5eqno A ml.info= m2.info
A fault-tolerant broadcast protocol establishes the truth of FTB(7), where
FTB(m) = (3p: p < SUCC*({b}): ~failed(p) A eq(m,m,)) = B(b,)
and
B(j,m) = (VY p: p €SUCC*({j}): failed(p) v eq(m, m,))

Restarting a failed processor can falsify FTB(#). To avoid this problem, we postulate tem-

porarily that once a processor has failed it remains failed. We return to this problem in Section

3.3, where we devise a processor-restart protocol.

3.1. Assuming b does not Fail

We begin by assuming that 6 does not fail, but other processors may. Thus, at least one
functioning processor—b—has received 7, so in order to make FTB(7) true, B(b,/) must be
established. To do this, when a processor i receives M and stores it in its local variable m,, its
duty is to establish B(i,m;}—to make sure that all functioning members of its subtree receive
m—and then to acknowledge it. Upon receipt of #, i relays it to every processor p in
SUCC({i}). Each of these establishes B(p,m) and then returns an acknowledgement to i. When
" (and if) all these acknowledgements are received by ¢, B(i,m) has been established and an ack-

nowledgement can be sent to m;.sender.

When a processor p from which i is expecting an acknowledgement for 7 fails, there is no
guarantee that processors in p's subtree have received . Therefore, upon detecting that p has
failed, i sends 7 to all processors in SUCC({p}) and waits for acknowledgements from these pro-

cessors instead of from p.

3.2. Assuming b may Fail

We now investigate the complications that arise when 5 may fail. Upon receiving a message
m ,l processor i operates as described in Section 3.1 and, provided 5 does not fail, B(b,7) will be
established by . If b fails and no other functioning processor has received , FTB() is true
(the antecedent is false), so the broadcast is completed. Otherwise, some functioning processor
that received 77 must establish B(b,/). Since no harm is done if B(5,/) is established by more
than one processor, we allow more than one to establish it. However, this means that i may
receive more than oné copy of M, each corresponding to a request for i to establish B(i,”) and
respond with an acknowledgement. In order to send these acknowledgements, processor i main-

tains a set of processors to which acknowledgements must be sent. Thus, three set-valued vari-

ables are used by each processor:?

sendto = the set of processors to which m; must be sent;
ackfrom = the set of processors from which acknowledgements for m; are awaited:

ackto = the set of processors that sent m; to i for which acknowledgements
must be returned.

After receiving 7, process i monitors b until it recognizes that b has failed or that F TB(m)
is true. Therefore, some means must be found to notify processes that FTB(7) is true. Unfor-
tunately, performing this notification is equivalent to performing a reliable broadcast! The way

out of this dilemma is to use the sequence number m.seqno in each message m and require the

Broadcast Sequencing Restriction: Processor b does not initiate a broadcast until its pre-
vious broadcast has been completed.?

Now, receipt by process i of a message m’ with m’ .seqno > m;.seqno means that the broadcast
of m; is completed. Thus, 5 can notify processes of completion of a broadcast simply by initiat-
ing the next onme. Unfortunately, this means that the completion of the “last’’ broadcast carries

with it some uncertainty.

Upon receipt of a message M, processor i establishes B(i,M) and acknowledges .
Thereafter, i monitors b and, if b fails, i attempts to establish B(b,#). Variable r (for root) .

contains either i or 5, depending on whether i is attempting to establish B(s,m) or B(b,m).
With this initial discussion, we can now describe the invariant of the loop of the protocol for

process i given in Fig. 3.1.* This invariant will be used to argue about the partial correctness of
the protocol, that progress is made during execution of the protocol, and that no deadlock occurs.
As each conjunct of the invariant is given, the reader should verify that it is indeed invariant,
using the discussion following it and the previously established coniuncts of the invariant. Note
that, when necessary, a subscript on a variabie is used to denote the processor to which it belongs.

For example, ackto, is the instance of ackto on processor p.

lAgain, local variable m; of processor i contains the message W being broadcast.

3This is not really a restriction. A root 4 can have several identities and can concurrently run a separate instance
of the protocol for each identity. This allows 4 to concurrently perform mulitiple broadcasts.

“There, operation choose(sendto, dest) stores an arbitrary element of set sendto into dest. The selection of the ele-
ment depends on the ordering on the selection of the successor of a given node. This is defined by the broadcast strategy

-8

P1: my.seqno > m;.seqno
Initially, each processor sets m.seqno to 0, so that P! is true. (By convention, we assume every
process has received the empty initial message with sequence number 0). Since process b changes
my.seqno only to a higher number, execution of b cannot falsify PI. Process i changes m; only
when executing m:= new, where new is a message received using ??msg(new). Since this mes-
sage was sent using the statement dest!!msg(m,) by some other process p and p also maintains

Pl—ie. my.seqno > m,.seqno—this assignment cannot falsify PI.

P2: (r=1 A sendtouackfromc SUCC*({i})) v
(r==5 A sendtouackfromc SUCC*({b})-SUCC™ ({i}))

" P2 is initially true because sendto and ackfrom are empty. Sets sendto and ackfrom are always
subsets of the set of nodes of the subtree rooted at r for which processor i is attempting to estab-
lish B(r,m). Initially r =1, but after i establishes B(i,m), detecting the failure of 5 causes it to

set r to b and to attempt to establish B(b,m).
PS8 no descendant or ancestor of a node in sendto U ackfrom is in sendto U ackfrom
P8 follows from the nature of a tree and the operations performed on the two sets.
P4: (Vm' : m broadcast by b A m'.seqno < m.seqno: B(b,m))

P4 is initially true because no message has a sequence number less than 0. It remains true
because of the Broadcast Sequencing Restriction. Later, in describing the protocol at 5, we must

be sure that B(b,m) is true before b broadcasts another message.

PS5 indicates that any successor p of node i is in one of four categories: i should send m to
p,or i has sent m to p but has not yet received an acknowledgement, or i has sent m to p and

received an acknowledgement, or p has failed.
P5: (Yp: pe SUCC™ ({i}): p € SUCC*(sendto U ackfrom) v B(p,m) v failed(p))

P5 is initially true since, by convention, every processor has received the empty message with

sequence number 0. Verifying that each guarded command leaves P5 true is fairly ea.sy-, except

being used.

for the command with guard ??ack(a). Here, the sender of the acknowledgement is deleted from
ackfrom. In order to maintain PS5, we require that B(p,m) be a precondition for p to send an
acknowledgement for m. In Figure 3.1, B(s,m) is explicitly given as the precondition of each

acknowledgement sent by 3.
P6: r=1i v (B(i,m) A failed(b))

P6 is true initially because r =1. The first conjunct may be falsified by changing r to b, but this
is done only when ackfrom=& A sendto = &, which together with P5 and the fact that ¢ has not
failed implies B(i,m). The second conjunct can be falsified by falsifying B(i,m), but this is done
only by setting m to a new message, and when this is done r is changed to i.

Whenever r 3 i, processor i must attempt to establish B(b,m). To do so, i ensures that
every processor p either (1) is in SUCC*(sendto), (2) is in SUCC*(ackfrom), (3) has established
B(p,m), or (4) has failed. This information is given in P7:

PT. r=i v (Vp:peSUCC*({b}): p € SUCC*(sendto u ackfrom) v B(p,m) v failed(p))

P7 is initially true because, by convention, all processes have received the empty message with
sequence number 0. The one tricky case concerns the first guarded command of the loop, where :
is deleted from sendto. This does not falsify P7, for if r 7£ i then, by P6, B(i,m) holds, and thus

B(p.m) holds for all p in the subtree rooted by s.
In P8 we describe the set ackfrom a bit more precisely:

P8 q€ackfrom, = misin transit from p to ¢ v
p € ackto, v
an acknowledgement for m is in transit from ¢ to p

Note that ackto for processor b is always empty, because no processor ever sends a message to 5.

Total Correctness

Suppose processor b sets its local variable m to a new message M to be broadcast and stores

SUCC({b}) in sendto. We want to argue that, after a finite amount of time, FTB () holds.

First, note that the loop of the protocol never terminates: because some of the guards delay

until a message is received, they are never false. Secondly, note that each processor p sends 7 to

-10-

;= (sender: b, info:nil, seqno:0);
ackto, sendto, ackfrom:= &, ¢, o;

ri=1;

do sendto#® — choose(sendto, dest);
sendto:= sendto - {dest};
If dest=1 — skip
[dest#i — ackfrom:= ackfromu {dest};
dest!!msg(m)
fi

| sckfromn FAILED #® — t:= ackfromn FAILED;
sendto:= gendto U SUCC(t);
ackfrom:= ackfrom-t;

| ??ack(a) — if a.seqgno=m.seqno — {B(as.sender,m)}

ackfrom:= ackfrom- {a.sender}
[s.segno <m.seqno — skip
fi

0 b€ FAILED A r3b A ackfrom=>® A sendto=®% — {B(i,m)}
r, sendto:= b, SUCC({b});

| ??msg(new) — If new.seqno=m.seqno — ackto:= ackto U {new.sender)}
| new.seqgno <m.seqno — {B(i,new)} new.sender! ack(new)
| new.seqgno>m.seqno — {B(b,m), hence B(i,m)}
(Vp: peackto: p!tack(m));
m, ri= new, i;
ackto:= {m.sender};
sendto:= SUCC({i});
ackfrom:= &
fi

[ackto7#d A (r=b v(sendto=3% A ackfrom=d)) — {B(i,m)}
(Vp: peackto: pltack(m));
ackto:=
od

For processor b, the guarded command beginning with 5 € FAILED is replaced by the following
guarded command:

ackfrom=>® A sendto =& — {B(b,m)}
Delay until a new message is ready to be broadcast;
Initiate a new broadcast:

m:= (gender: b, seqno: nezt sequence number, info: new message);
gendto:= SUCC({b})

Figure 3.1 — Reliable Broadcast Protocol

-11-

each other processor ¢ at most once and receives at most one acknowledgement from each proces-
sor for it. This is due to invariant PS and the way sendto and ackfrom are changed: 7 is sent to
g only if g € sendto, and upon sending 7 to g it is deleted from sendto, never to be placed there
again. This places an upper bound of 2N(N-1) on the number of messages and acknowledge-

ments sent to accomplish the broadcast of .

Define

Rmsg(m) = total number of times m has been received;
Sack(m)

Rack(m) = total number of times an acknowledgement for m has been received.

total number of times an acknowledgement for m has been sent;

Remark. The need for such history variables in order to complete the proof might be disturbing
to some. If the algorithm terminates, then it does so because some function of the actual state
keeps decreasing. However, the state of the system includes the contents of network buffers and
the values of program counters in the various processors. Rather than reason abput these—which

could be quite messy—we have chosen to introduce history variables. O
Now consider the following 8-tuple, whose values are always non-negative and bounded from
above:

<3N(N-1)(M.segno-1) - (Em: m.seqno < M.seqno: Rmsg(m)+ Sack(m)+ Rack(m)),

(Np: —failed(p)), ’

(Np: ~failed(p): ~eq(7, m,)),

(Np: ~failed(p): ~eq(7, m,) v (eq(M, my) A r, =p)),

(Ep: ~failed(p) A eq(m, m,): | SUCC*(sendto,)u SUCC* (ackfrom,)|),

Zp: ~failed(p) A eq(7, m,): | SUCC*(ackfrom,)]),

(Nm: m.segno=.seqno: m a message in transit),

(Ep: ~failed(p): | ackto, |) >
Consider the value of this 8-tuple just after b has set its local variables m and sendto to 7 and
SUCC({b}), respectively. By inspection, with one exception, each processor failure and each
iteration of the loop by any processor lexicographically decreases the 8-tuple. For example,

receipt of @ by p leaves the first two components the same but decreases either the third or sixth

component.

«]12-

The one exception to decreasing the 8-tuple is initiation of a new broadcast by b, which will
occur only when B(6,7) is true. Assume that 5 performs no broadcast after #. Then, since the
8-tuple is bounded below and decreases with each iteration, after a finite amount of time all mes-
sages will have been delivered and all processor failures will have been recognized. Thus, no
further iteration can occur and each processor is delayed. By the lemma below, in this state

sendto = ¢ and ackfrom=9 for each processor. If no functioning processor has 7 then F TB(m)

is true. We now show that if at.least one functioning processor has 7, they all do. Suppose 5
has not failed. b has 7, so by PS5 all processors have received M or have failed. Suppose b has
failed and another processor i has /7. By the lemma below, r, =0 3£ i. By P7 and the lemma,

all processors have failed or have received .

Lemma. Assume that all messages in transit have reached their destination, that no further
failure occurs, that all failures have been recognized by all processors, and that all pro-
cessors are delayed. Then sendto =& and ackfrom = ¢ for all functioning processors.
Further, for each processor i, - failed(b) v r; = b holds.

Proof. Inspection of the guards of the loop of the protocol in the state mentioned in the lemma
yields the following for each functioning processor:

(1) sendto =&

(2) ackfromn FAILED = &

(3) no acknowledgement is in transit

(4) ~failed(b) v r = b v ackfromzd

(5) no message is in transit

(6) ackto =& v (r 72 b A ackfrom# ®)

Suppose some processor p has ackfromz£ &, i.e. some ¢ is in ackfrom,. By PS8, (3) and (5),
p € ackto,. Since ackto, 7% @, this means that ¢ 5€ 5, and from (6) we conclude that r, % b and
ackfrom, 7 &. Further, by P2 we conclude that '

re=¢ and & 3 ackfrom, < SUCC™ ({q})

Repeating this argument, some descendent g1 of ¢ satisfies ® 5 ackfrom,, CSUCC*({q}), some
descendant ¢2 of ¢l satisfies the same property, and so forth, indefinitely. This leads to a con-
tradiction because the broadcast strategy is a finite tree. Hence, all sets ackfrom are empty. Ap-
pealing to (4) above yields - failed(b) v r; = b for all processors i. Q.E.D.

An Optimization

As it now stands, each processor monitors . However, if b fails before B(b,M) is esta-
blished, then some functioning processor must have received the message from a processor that

has failed. Thus,

be FAILED = FTB(m) v (3p: ~failed(p) A eq(7,m,)): failed(m,.sender))

This allows b € FAILED to be replaced by m.sender € FAILED in the above protocol. Thus, each
processor need monitor only a processor with which it is communicating (e.g. its predecessor).

However, now more than one processor may attempt to establish B(b,7), even if b does not fail.

3.3. Processor Restarts

The restriction that a failed processor remains halted can now be relaxed. A processor is
restarted after the cause of its failure has been identified and corrected. Once a processor i has
been resvarted, it executes a restart protocol, during which

(V. m: m broadcast by b: (3p: p € SUCC*({b}): ~ fasled(p)A rec(p,m)) => rec(i,m))
is established, where:
rec(p,m) = ‘processor p has received message m"
We suggest a two-step restart protocol:
(1) Some functioning processor p relays to i a copy of every message p has received that i

did/will not. Naturally, these messages must have been stored by processor p.

(2) Processor i initiates a broadcast of each message m it has received that was not forwarded
to 1 during step (1). This is necessary because all the processors that originally received m
might have faiied; if 1 is the first of these to be restarted, it must broadcast m.

4. Discussion

Chains and Bushes
Define

D: the delay associated with delivery of a2 message between two processors, and

E: the time that must elapse after a message is sent by a given processor as part of the
broadcast, before that processor can send another message as part of the same broadcast.

D is detel:mined by the performance characteristics of the communications network; E is related
to processor execution speed, the processing allocated for dealing with broadcasts, and the number

of broadcasts in which the processor can participate at any given time.

If D> (N=1)E then a bush broadcast strategy (Figure 2.1a) minimizes the length of time

necessary to complete a broadcast. On the other hand, if £ > (N-1)D then the chain broadcast

-14-

strategy (Figure 2.1b) is optimal. This corresponds to our intuition that in practice the bush stra-
tegy results in faster broadcasts—a processor is usually faster than the communications network,

so D > (N-1)E is a closer approximation to reality than £ > (N-1)D.

Recall that in the optimized version of our fault-tolerant broadcast protocol, a processor
failure can result in B(b,m) being established by each processor that has directly received a mes-
sage from a failed processor. If there are f of these processors, then f-1 of these attempts are
unnecessary. [t would seem, then, that to minimize the duplication of work resulting from a pro-
cessor failure, the number of direct successors of each node in the broadcast strategy tree should
be small. The chain broadcast strategy has just this property. But, surprisingly, if each processor
has the same probability of failure, then the amount of duplication of work that could result from
a processor failure is about the same in both the chain and bush broadcast strategies. This is
because in a bush, the failure of only one processor—the root—could cause duplication of effort,
while in the chain, failure of any of N-2 processors (the internal nodes of the chain) could resuit
in this undesirable duplication of effort. With knowledge of the probabilities of failure for each
processor, it is possible to construct a tree that minimizes the amount of duplication of work

resulting from processor failures.

Related Work

Much of the work concerning the development of fault-tolerant broadcast protocols has been
done in connection with designing fault-tolerant distributed systems and computer networks.
There, it is often necessary to communicate state information to all sites and to be certain that
the states of these sites converge; i.e. either all functioning sites ins;all the new state information
or none do. SAFETALK is an example of such a protocol [MPM80]. It employs a bush-like
broadcast strategy (Figure 2.1a), but unlike our protocol, a broadcast may not complete if the ori-
ginating site fails. This is sufficient for the applications for which the prot.ocol was intended. The
transaction management facilities in Deita [LL81] employs a bush-like broadcast in conjunction
with a two-phase commit protocol to implement fault-tolerant broadcasts even if the originating

site fails in certain restricted ways.

-15-

Ellis develops a chain-like (Figure 2.1b) fault-tolerant broadcast protocol and proves it
correct using L-Systems [E77|. The protocol is intended for use in updating redundantly stored
entities in a distributed database system. Unfortunately, the linear time delay of the protocol

makes its use impractical in many situations. In [AD76| another chain-like protocol is proposed.

[PL79| describes ‘‘best-effort-to-deliver” and ‘‘guarantee-to-deliver”” protocols. These proto-
cols are based on broadcast strategies that do not allow minimum-time broadcasts; the strategies

do not fully exploit parallelism inherent in a network.

In [SA83|, Segall and Awerbuch describe a reliable broadcast protocol. Their work is based
on a fault-tolerant protocol to compute spanning trees in a computer network [MS79]. A message
is disseminated along the spanning tree in effect at the time its broadcast is initiated. New span-
ning trees are computed in.response to events such as failure of a site or failure of a link. A pro-
tocol, which employs logical clocks in a manner similar to the “Restart Protocol” in [S82], is used

to change the spanning tree in eflect without aflecting messages already in transit.

Byzantine Agreement Protocols [LSP80| and their variants (interactive consistency [PSL79),
Crusaders Agreement [D82] and Weak Byzantine Generals [L81|) support broadcasts in networks
in which no assumptions are made about processor failures, relative clock speeds, or thé communi-
cations network. The cost of broadcasting in such a harsh environment is very high: a total of
t+ 1 rounds of message exchange are required to withstand up to ¢ failures and the number of

bits exchanged is bounded by a polynomial [DS81].

Broadcast protocols that are not robust with respect to processor failures are described in
[DM78| and [W80]. They can be viewed as broadcast strategies and used in conjunction with the

protocol developed in Section 3 to implement reliable broadcasts.

Acknowledgments

Discussions with Gary Levin have been helpful. This paper was inspired by and results from a
challenge made by Gerard LeLann. We are indebted to LeLann, Nissim Francez, Howard
Sturgis, and Leslie Lamport for constructive criticisms of earlier drafts of this paper.

-16-

References

[AD76]

[DMs|

D82
[Ds81]

[E77)

F73]
[H78|
[L78|
L81]
[LSP8o|

[LL79|

[LL81]
[MPMs0]
[MST9)

- [M76]
.[PL7M
[PSL 79|
[s80]
[582]
[S83]
[sS83]

[SA83]

Alsberg, P.A., and J.D. Day. A principle for resilient sharing of distributed resources.
Proceedings of Second International Conference on Software Engineering, San Fran-
sisco, 1976, 562-570.

Dalal, Y.K., and R. M. Metcalfe. Reverse path forwarding of broadcast packets.
CACM 21, 12 (Dec. 1978), 1040-1048.

Dolev, D. The byzantine generals strike again. Journal of Algorithms 3, 1, (1982).

Dolev, D. and H.R. Strong. Polynomial algorithms for multiple processor agreement.
IBM Research Report R J3342, 1981.

Ellis, C.A. Consistency and correctness of duplicate database systems. Proceedings of
the Sizth Symposium on Operating Systems Principles, Purdue University, Nov. 1977,
57-84.

Farber, D.J., et al. The distributed computing system. Proceedings of CompCon 78,
Feb. 1973.

Hoare, C.A.R. Communicating sequential processes. CACM 21, 8 (August 1978),
666-677.

Lamport, L. Time, clocks and the ordering of events in a distributed system. CACM
21,7 (July 1978), 558-565.

Lamport, L. The weak byzantine generals problem. Opus 58, Computer Science
Laboratory, SRI International, Sept. 1981.

Lamport, L., R. Shostak and M. Pease. The byzantine generals problem. TOPLAS 4,
3 (July 198") pp. 382-401.

LeLann, G. An analysis of different approaches to distributed computing. Proceed-
ings of the First International Conference on Distributed Computing Systems, Alabama,
Oct. 1979, 222-232.

LeLann, G. A distributed system for real-time transaction processing. /EEE Com-
puter, Feb. 1981, 43-48.

Menasce, D.A., G.J. Popek and R.R. Muntz. A locking protocol for resource coordi-
nation in distributed databases. TODS 5, 2, 103-138.

Merlin, P.M. and A. Segall. A failsafe distributed routing protocol. /EEE Trans. on
Communications COM-27, 9 (Sept. 1979), 1280-1287.

Metcalf, R.M. ETHERNET: Distributed packet switching for local computer net-
works. CACM 19, 7 (July 1976), 395-403.

Pardo, R., and M.T. Liu. Multi-destination protocols for distributed systems.
Proceedings Computer Networking Symposium, Gaithersburg, Maryland, Dec. 1979.

Pease, M., R. Shostak and L. Lamport. Reaching agreement in the presence of faults.
JACM 27, 2 (April 1980).

Schneider, F.B. Broadcasts: A paradigm for distributed programs. Department of
Computer Science, Cornell University, Technical Report TR 80-440, Oct. 1980.

Schoeider, F.B. Synchronization in distributéd programs. TOPLAS 4, 2 (April 1982),
125-148.

Schneider, F.B. Fail-stop processors. Digest of Papers Spring Compcon '83, IEEE
Computer Society, March 1983, San Fransisco, CA, 66-70.

Schlichting, R.D. and F.B. Schneider. Fail-stop processors: An approach to designing
fault-tolerant computing systems. To appear TOCS I, 3 (August 1983).

Segall, A. and B. Awerbuch. A reliable broadcast protocol. /[EEE Trans. on Com-
munications COM-381, 7 (July 1983), 896-901.

-17-

[W80] Wall, D.W. Mechanisms for broadcasts and selective broadcast. PhD Thesis, Com-
puter Science Department, Stanford University, June 1980.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif

