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ABSTRACT

In this paper we propose a new local quasi-Newton method to solve the equality constrained non-
linear programming problem. The pivotal feature of the algorithm is that a projection of the
Hessian of the Lagrangian is approximated by a sequence of symmetric positive definite matrices.
The matrix approximation is updated at every iteration by a projected version of the DFP or
BFGS formula. We establish that the method is locally convergent and the sequence of x-values

converges to the solution at a 2-step Q-superlinear rate.






1. Introduction

Quasi-Newton methods have had a large measure of success in the minimization of smooth
nonlinear functions
f(z): R* - R.
In particular, the Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BF GS)
updating formulae have given solid numerical performances over the past decade and are gen-
erally accepted as the best rank-2 updating formulae (for dense problems). In addition to their
numerical record, these methods have two significant theoretical properties: they are locally Q-

superlinearly convergent and their Hessian approximations remain positive definite.

It is difficult to fully explain the superior numerical performance of the DFP/BFGS method
relative to other updates however the maintenance of positive definite Hessian approximations
seems crucial - it is also a 'natural’ property since the true Hessian at the solution will likely be
positive definite (and will certainly be at least positive semi-definite). In addition, positive
definiteness allows for a stable implementation (Gill & Murray [1974]) and ensures that search

directions are also descent directions.

The situation for minimization in the presence of nonlinear constraints is less satisfactory.
Successive quadratic programming (SQP) and projection approaches have recently been in vogue:
however, a true Q-superlinear quasi-Newton method for the non-convex case is unknown to the
authors. Powell [1978] has adapted the BFGS formula to the nonlinearly constrained case - Powell
gives sufficient conditions under which a successive quadratic programming approach will yield a
2-step Q-superlinear convergence rate (assuming convergence) but does not show that his modified
BFGS method satisfies these conditions. Instead R-superlinear convergence is proven. Interest-
ingly, the sufficiency conditions given by Powell necessitate that only a projection of the
Lagrangian Hessian approximations be suitably accurate. We also note that Han [1976] has pro-

ven that this SQP/BFGS method exhibits Q-superlinear convergence for the convex case.

Other authors, Boggs,Tolle and Wang [1982], have given sufficiency (and necessary) condi-

tions for Q-superlinear convergence, for the constrained problem, however we are unaware of an
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updating method which satisfies these conditions. Tanabe [1981] has proposed various projected

updating schemes but, to our knowledge, has not established convergence properties.

In our opinion, a major difficulty with most of these approaches is that a full (n by n) posi-
tive definite Hessian approximation is required by each of the methods but only a projection of
the Hessian of the Lagrangian need be positive definite at the solution. Therefore we feel that a
more natural approach is to recur a positive definite approximation to the projection of the Hes-
sian of the Lagrangian. Gill & Murray [1974] have followed such a strategy in the case where all
constraints are linear however there has been little work along these lines for the nonlinearly con-

strained problem.

Coleman and Conn [1982a,b] have suggested Newton and discrete-Newton methods for non-
linearly constrained problems, which require only a projected Hessian approximation. The method
we describe here is a direct extension of the local Newton method given by Coleman and Conn
[1982a,b).

The motivating remarks given in these previous papers are applicable here also, however

here we present an alternate view. Consider the problem

minimize f(z), subject to

ci(z) =0, i=1,...t,

where all function are twice continuously differentiable. Suppose that our current estimate to the
solution is z and let C be the n by ¢ matrix of constraint gradients, evaluated at z. Let Z be a
n by (n-t) matrix, whose columns form an orthonormal basis for the null space of CT (assume
that C has rank ¢). Finally, let the correction to z, §, be defined as the solution to the following

quadratic program:

(1) minimize wf(z)76 + —;—5TZBZT¢S,

subject to CT6+ ¢(z) =0
where B is an (n—t) by (n-t) positive definite matrix. The solution to (1.1) is given by

(1.2) é=h+v

where



(1.3) h=-ZB'Z7yf(z), and

(1.4) v=-C(CTC) ().

Note that B can be considered to be a positive definite apnroximation to

(L5)  ZIw/ (2" ENV ez Z,

where CfZ, =0, 2]2, = I, C, = (vey(z°),...v(z%), v/ (2*) = C.)*, and ¢(z*) = 0.
Under second-order sufficiency conditions, the (n-t) by (n-t) matrix (1.5) is positive

definite. The method we propose in section 3 uses a projected form of the DFP(BF GS) update to

recur a positive definite approximation to (1.5). The correction to z that we analyze differs

slightly from (1.2) in that (1.4) is replaced with

(1.6) v=-C(CTC)c(z+h).

We emphasize that all results given in section 3 are valid if (1.4) replaces (1.8). We have

carried out the analysis using (1.6) because of a result given in Coleman and Conn [1982b] which

states that (1.3) + (1.6) guarantee that a certain exact penalty function will decrease, provided z

is sufficiently close to z°. The result is valid in the discrete-Newton case and is not true if (1.4) is

used instead of (1.6). We have not yet proven that a similar result is true for the case when B is a

quasi-Newton approximation but it is this possibility which prompted the use of (1.6).

In section 2 we present conditions which are sufficient to give a 2-step Q-superlinear conver-
gence rate (assuming convergence). These conditions are slightly more general than those given by
Powell [1978] in that they do not presuppose a particular algorithm class. These conditions are in
the spirit of the superlinearity characterization, for unconstrained optimization, given by Dembo,

Eisenstat and Steihaug [1982].

In section 3 we describe the algorithm and then establish that the method is locally 2-step
Q-superlinearly convergent. The method of proof is similar to that used by Broyden, Dennis, and

More [1973] and Dennis and More [1974] for the unconstrained case.

In section 4 we give our concluding observations and discuss future work.
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2. Sufficient Conditions For 2-Step Q-Superlinear Convergence

Consider the following equality constrained nonlinear programming problem:
minimize f(z)
subject to
ci(z) =0, i=1,.,t

where all functions are twice continuously differentiable on an open convex set D of R*
and map D — R!. Let z° ¢ D be a local solution to the equality constrained nonlinear pro-
gramming problem. The question we address in this section is this: given that a sequence of
points {z”} converges to z°, when can we be assured that a 2-step Q-superlinear convergence rate

is achieved? That is, what reasonable conditions ensure that

[l ot = o] 2" 2" |2

Definitions and Assumptions

Unless stated otherwise, the results given in this paper will all be subject to the following

assumptions.

Let C(z) denote the n by t matrix (ve¢y(z),...,.vc(z)) and let ¢(z) denote the vector
(ci(2),...,ct(z))T. Define C, and c* to be C(z*) and c(z*) respectively. For any z in D, define
X = X\(z) to be the vector [C(z)TC(z)]C(z)T v/ (z). We will assume that there is an open
convex set D containing z’ such that for all z in D, the singular values of C(z) are uniformly

bounded on D, above and below, by positive scalars.
An n by (n-t) matrix Z(z) is defined to be a Lipschitz continuous function of x satisfy-
ing

(2.1) Z(2)T2(z)=1

and



(22) C(z)Tz(z) =0,

where I represents the identity matrix. (See Coleman and Sorensen [1982] for remarks concerning
the computation of Z(x).) Uniquely define vectors u(z), and w(z) by
(23) z-2'= C(z)w(z) + Z(z)u(z).

Since z°* is a solution, it follows that the gradient of f can be expressed as a linear combi-
nation of the gradients of the constraint functions. That is, there exists a vector \* ¢ R!, such
that
(24) wf(z®)= C*.

Define L(z) to be the Lagrangian function f(z)-c(z)"\’. Kt will be assumed that the
second-order sufficlency conditions hold at z°. Thus the matrix

H(z*,z*) = Z(2")T|9% (z°) - ENWiei(2*))Z(2?),
Is positive definite. We note that this implies that the the eigenvalues of the (n-t) by (n-t)
matrix H(x,y), defined by

H(z,y) = Z(2)7[V*/ () - EN'Vei(y))2(2),
are uniformly bounded below by a positive scalar on a open convex region ((D,D), say) containing
(z*,2°). The above implication is a consequence of the following: The eigenvalues of the matrix
H(z,y) are continuous functions of the elements of the matrix (see Ortega[1972] page 45, for
example). The elements of H(z,y) vary continuously with (z,y) due to Z and @?f, w?c; being
continuous functions of z and y respectively. Finally, the result follows from observing that
H(z',z') is positive definite. We assume that the radius of D is sufficiently small so that
the eigenvalues of the Hessian matrices

V*f (2), Viei(z), i=1,...,t
are uniformly bounded above on D by a positive scalar and that the Hesslan matrices

satisfy a Lipschitz condition on D.

When the above quantities are evaluated at a particular point z*, then the argument z* will
be abbreviated to a simple subscript or superscript. For example, C(z" ) will be written Cp and

w(z¥) becomes w*. We will denote H(z*,z*) by Hy. The symbol '*’ will be used to denote a
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function evaluated at z°: for example, v f * represents v f (z°).

k+1

Let &* represent z¥*1- z* and define

rt = ZIvf(z*) + H,Z{¢, and

r=ct + cfét.

Unless noted otherwise, the symbol | ||| will denote the vector or matrix 2-norm. One final

assumption: we assume that finite convergence does not occur - z* # z°, for all k.

Theorem 2.1

If z* convergesto z°, | |2**'-2z*|| = 0| |z*-2’| |, and
28) £l + [leel ] = o(l1Z59f* ] + |1<*]])
then

[1a* 2| = o]z~ 2*]].
Proof:

The proof is divided into three parts: In the first part it is established that
| Jw** || = o||2z* - 2°||; in part two, it is proven that ||u**!|| = o||2*1-2*||;

finally, in part three, the desired result is obtained.
Part 1

Clearly we can write

(26) Cf(e**-z') = Cf(z* - z*)- ¢t + F + Cfs.

If we add CJF, | (2**'-z*) to both sides of (2.6) , re-arrange, and then take norms, we obtain

@7) [ | € THGE A Coan 1 | CF(a -2+ (Co-C) T (F-2")-c* | |
+ | eF+ CFF | + | [(Cerr=-C) T (2* -2") | |].
By Taylor’s Theorem, and ¢* = 0,

et = Clizb-2*)+ o||z*-2*]],
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and therefore the first term in (2.7)is o | | z*-z°||. By (2.5),

(28) [1rdll = o(l1Z"f* ] + |1t ])-

Since wL(z) and c(z) are Lipschitz continuous, ¢* = 0, ZTvf* = ZTyL* and vL' =0, it
follows that

(28.1) [1Zfwst ]+ |t =o0]]s*-2"]],

and therefore, combining (2.8.1) with (2.8) it follows that the second term of (2.7)is o | | z¥-z°| |.
But clearly by assumption, | |z**'-z*|| = O||z*-z°| |, and by Lipschitz continuity of C(z)

we have | | C4.1-Ci| | = O |z**1-z*||. However,

[la** gt || < [t 2] + | ]2*-2*] ]

and hence | | C, =Cy|| = O||z*-z"||. It follows that the third term of (2.7) is o] | z¥-2°| |
and Part 1 is established: | |w**!|| = o||2*-2*]|.
Part 2

Clearly we can write

(29) ZI(z**'-z*) = H{\|H 2 (z*-2*) - ZX(wf*-vfF) + H ZT8).

If we add Z/%, | (z**1-z°) to both sides, re-arrange and take norms, we obtain

(2.10) ||| < Ty+ To+ T3+ T,

where

T, = | |H'[-Zff* + H(z*,2*)Z(z*-2")]| |,
T, = | |-Hi(H(z%,2°) - Hy)Z{(s*-2")| |,

Ty = | lHt—I[ZkTka + H,ZT¢*]||, and

To= | |(Zss1-Z)7 (" -2°) | |.

By Taylor’s Theorem, and 7L * = 0,

vL* = GL*(z*-2°) + o||2z*-2°|],
and thus, using (2.3),

ZIgft = H(z*,2°) 2] (z*-2°) + ZIGPL'Crw* + o |2tz ].

But | |v?L*Cy|| and | |H;i'|| are bounded above and | |w*|| is o] |z*'-z*| |, by Part 1;
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therefore, T, is o||z*-z*||. By convergence, | | H(z*,z*)-H;| | — 0, and this along with the
fact that ||H;'|| is bounded above implies that T, is o||z*-z*||, and thus T, is
ol |z¥1-z*]].

Assumption (2.5) implies that

(211) || Z7wf* + HZ7 || = o([1 Z8sH ]| + 1))

By (2.8.1) and the boundedness of H;?, it follows that T3 is o ||z¥-z*|| which implies that T,
is o||z¥'-z*||. Finally, since | |z**1-z*|| is O |z*-2z*||, and || Zs;1-Z|| = O, T, is
o|]z*'-z*||. We have established that T; = o | |z*¥'-2*|| for i=1,2,3,4, which, in light of

(2.10), implies that | |u**!|| = o | |z¥-2*|].
Part 3

By definition,

z"+l~z' — Ck+1wk+l + Zb+1uk+1’

which implies

ez [T < Gl T L+ T Zead -0
But | |z*-z*|| is O||2*'-z*||, and therefore, by Part 1, | |w**!|| = o||2z¥'-2z*||. Part
2 establishes that ||u**!|| = o||2z*?-z*|| and since ||Cy|| and ||Z;|| are bounded
above, it follows that | |z**'-z*|| = o | |2z*'-z*||. O

The conditions given here are closely related to those given by Powell [1978]: however, the
above conditions do not presuppose a paricular algorithm class. In the next section we employ

Theorem 2.1 to establish the local convergence rate property.

3. The Algorithm and Its’ Properties

In this section we develop and analyze, in detail, a projected DFP updating procedure. We
have chosen to focus on the DFP updating scheme, instead of the BFGS update, in order to fol-

low more closely the results of Broyden, Dennis and More [1973] and Dennis and More [1974]. It
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is not difficult to see, as Dennis and More [1974, section 4] indicate for the unconstrained case,

that the results are equally true for the projected BF GS update specified below by 3.5’.

The method we are concerned with is defined by

(381) t «-Z,B'ZTgrt
(32) z*tezF 4+ it
If (k¥ = 0) go to (3.6)
(3.3) st « ZJ(z*t-2*)
(34)  ¢* — Z(vr*-Ce M )-vrF)
[v*-Bes*|(v*)" + y*ly*-Bis*|”
(s*)Ty*
(s*)T(v*-Bes*)y* (v5)T
((s¥)Ty*Y

(36) v" - —Ck(CkTCk)-lck+

(35) By B +

(3.7) 2ttt 4 ot

(38) LIRS (o MY oY il o/ AR V] Al

Update (3.5) is just a projected version of the DFP formula. The corresponding projected

BF GS formula is

') Biet(sN)'B,
()7s*  (M)TBst

Note that if A* = v* = 0, then z¥ = z’. Once again we remark that (3.6) could be replaced

(35’) Bg+1 - Bg +

with (1.4) and all results in this paper remain valid. In the next three lemmas we establish some

useful bounds.

Lemma 3.0

Provided z* € D there exists a positive scalar K, such that

LN < Kol 282" || + [12*=2*[ |7+ |]2*-2"] %}
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Proof:

|| = [ [(CFe) elwf* - (cFe ) clor | |
< |l(cFeyeqvrt-vsll |

+ [l(cTey'ef-chvrtl ]

+ | l(cfe)icle, - arelcley | | | efv st

But

|| crc, - CIc] |

| [(Ce~C)T(Ce=C,) - CH(Ci=C,) - (Ck=C)T Ci | |
S IC=Col 12+ 2] | Cel |- | C=Co] |-

Hence, by considering that C(x) and v/ (z) are Lipschitz continuous on D, | [(c(z)TC(z))] ]

and | | C(z)| | are bounded above on D, and

Hws* 1 < 1wftl ]+ offa*-2*]]

we obtain the required result. O

Lemma 3.1

For some positive constant K, and any Z(z), z ¢ D, z* ¢ D,

|12(z)"(9*1* - ENNe)Z(z) - H(z,2°) | |
<

K{ll*=2*|] + 125" |*+ |]*-2*] "}

Proof:
Clearly, by using | |Z || = 1, the Lipschitz continuity of the Hessian matrices, and the

upper boundedness of v’¢;, v2f,

| 12(z)T (9% - ENNPehZ(z) - H(z,2")] |
<

| (F** - DX e) - (9% - ENVPe) |
<

nllzt=z'1] + ] NN

for some positive scalars r; and 7,. Hence, by considering Lemma 3.0, the result follows. O
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Lemma 3.2

For some positive constant K, and all z in D, z¥ ¢ D,

| | ZA92f (2)-EXi(2)VPeil2)| 2 - ZAPf (2)-ENi(2)Peil2)] Z, | |
<

K{| 125z ||+ | [e* 2| |2+ [ |22 [ 1P+ [ 1 2b=2" | [+ ] |22 ] %)

Proof:
Let A denote the matrix w2f (z)-EX\;(z)v*ci(z). Clearly,
| | Z27AZ, - 2TAZ,| |
= | [(ZF-2.)A(Z-2.) - 22TAZ, + ZTAZ, + 2TAZ: ||

< HZ-Z )11 1A]] + 2] 12201 || |A]].

But, by assumption, Z(x) is Lipschitz continuous and since

A(z) = V°L(z) + O] M=)\,
the result follows from the boundedness of | | 7?L(z)| | on D, and Lemma 3.0. O

The following result utilizes the bounds established in the previous three lemmas and, in

conjunction with Lemma 3.4, will yield the convergence rate result.

Lemma 3.3

Assuming that | |z¥*1-z*|| = O||z*-z"| |, there exists a positive scalar ¢ such that if
|| z*-2* || < &, then
- 1 -
[ IMy*-M7st || < [ M7t ],

where M = H.’l/z.

Proof:

Clearly,

(39) | [My*-M7s*|| < [IM||||y*-Hos*|].
By Taylor’s Theorem, and Lipschitz continuity of v2f, v’¢;,

(3.9.2) (wf* -Ci M) = (wf*-Ce\f) + (VPrH-DNIGP ) -2%)
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+ Ek(z”—z"),
where | |E;| | = O||z**-z*||. But,

(393) 3k+ —z" = ZkaT(2k+ ’—z") = stk

and therefore, combining (3.9.2) and (3.9.3) and multiplying by Z;T yields

(3.10) y* = ZJviE-EaN2Z st + ZTE Z, 8t

But (h*)Tv* = 0 implies | | z¥*-z*|| < | |z¥*'-z*||. Hence,

1B || = 0|2 1-2* || = O(maz{||z**'-2"|],| |2*-2"| |}).

Therefore using (3.10) there exists a positive constant K3 such that

| 1y*-H,s*] |
< (11209 *-ENPellZ, - Ho | | + Kgmax{| | 2*-z* [ || | 2*-2*| |})-| | s*] ],
< |1 Zwrt-an? el 2, - 2Dt -Exo el Z, | || | o* | |
+ 120 -ENI e Z, - Ho | -] | ]
+ Komax{| |z** 2| || |z*-2"| | }-| | s*]].

Hence, in light of Lemmas 3.1, 3.2 and provided ¢ is sufficiently small,

(3.10.1) | |y*-H,s*|| < (2Ky+ 2K+ Kgmax{| | 2** 2z | || [s*-2" | |}-] | *] |.

Since | | z**'-z*|| = 0| |z*-z*| | (by assumption) it follows that for ¢ sufficiently small,

|| kll
|ka—H,8k|I S t 2
3[1M]|

which implies, by (3.9)

; 1,
|IMy*-M7st || < o] |M7s*]]. O

Dennis and More [1974, Lemma 3.1] established the following 'bounded deterioration’ result.

For completeness, we reproduce it here.

Lemma 3.4

Le¢ M be a nonsingular symmetric matrix of order n-tf such that

| | My*-M1s% || < %—] |M's*|| for some vectors y* and s* in R"™' with s* £ 0. Then
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(y*¥)Ts* > 0 and thus By, , is well-defined by the update formula (3.5). Moreover, there are posi-
tive constants ag,,, and a, (depending only on M and n-t) such that for any symmetric matrix

A of order n-t,

o | | My*t-M1st | |
Biii-A| | u < [(1-eof?)/? + — | | Bi-A
1B A I < [(1-208) o 1BA ]
|”!k_A8kll
+ a
F M|
where | | Q| |y = | |IM@M| | r (F denotes the Frobenius norm), a, € (0,1] and
M|B,-A|]s*
MBAL

T IBeA |l M|
=0 otherwise . O

We are now ready to prove, in Theorem 3.5, Lemma 3.6, and Theorem 3.7, that a 2-step
Q-superlinear convergence rate is exhibited, provided we assume that the sequence converges.

These results follow almost directly from the results of Dennis and More [1974] and Theorem 2.1.

Theorem 3.5
Assuming that £||z*¥-z°|| < oo, ||2¥*1-2°|| = O||z*-z°||, and that B, is sym-
metric positive definite, then the algorithm defined by (3.1)-(3.8) produces a sequence of matrices

B; and vectors z* which satisfy

| [[Be—H,] 2 (=" 1-2%) | |

l lzk+1_zk| I

(3.11)

Proof:

Initially, asssume that s* # 0 for all k. Clearly for k sufficiently large, Lemma 3.3 is appli-

cable and therefore the assumptions of Lemma 3.4 are valid. But, for M?=H,,

|| My*-M7s8 ) < [ UM |yt -Hos* ],
and using (3.10.1) and | |2¥*-z*|| = O] |z*-z*|| ( by assumption),
||y*-Heo* || < Kol |2*=2"] || ]s*] ]

for some positive K4 Therefore, taking A = M~ in Lemma 3.4,
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|| Bes1-Hel | < [(1—%9?)‘/2 + 0] | | Bi-H, | |y + 0%,

where 0, = O | |z*-z']| |,

| | M(Bi-H,)s*| |
|| Bi-H, | |a| |M7s*] |

and 6, = for B; # H,,

=0 otherwise,

and o, € (0,1].
It is clear that Lemma 3.3 and Theorem 3.4 in Dennis and More [1974] can now be directly

applied to establish that (3.11) is true if ¥ £ O for all k. However, if s* = 0 and z* 5 z°, then

| (Be-H)ZH 2t | _

0,
| | zk+ l_zk l I
and the result is established. O
Lemma 3.8
Under the assumption that £||z¥-z°|| < oo, ||2¥*'-2*|| = 0| |z*-2z°| |, and that

B, is positive definite, the algorithm given by (3.1) - (3.8) produces a sequence of iterates with the
property
b1+ [ Ledl = ol Z0f 1+ et
Proof:
By definition,

wh = (Cf C) ' Cf(s4-2")

and by Taylor’s theorem and ¢* = 0,

et = Cf(z*-z*) + o] |2*-2"|].

Considering that | | (CC)™| | is bounded above, it follows that

(312) ||wt]| = O[lc*[] + of|2*-2"]].
Furthermore, by Taylor’s theorem and using yL* = 0,
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vl = —-*L¥(z*-2%) + o||2F-2*]],
which implies, using (2.3),

ZkTka = H,,u" + ZkTVZLkawk + 0 l ]z"—z’l I
But | |Hi'| | and || ZT?L*C,|| are bounded above and therefore,

(3.13) ||uk| | =o(1Zwrt | + [1w*| )+ o] |2*-2*]].
Combining (3.12) and (3.13) produces, for k sufficiently large,

(3.14) [|*=z*[| = o( ||| + [1Ziwr* ),
since | | Cy| | is bounded above. By definition,
rf = Zivf*t + HZ{(z*'-2)
= Z{vf*+ H,s* - (H,-H)s*

=-B,s* + H,s* + (H,-H,)s*.

Therefore, taking norms,

[ef 1] < VHBe-Hus* || + | [ Hi-H, ||| ]s*]].
But | |s¥|| = O||z*-2z"|| and H; — H,, which along with Theorem 3.5 and (3.14) gives
(315) | [rfl| =o(l1ZI@s* ] + [lc*]])

Finally, by definition,

rb=ct + Of(z*1-2%) = c* + Cf(ht+ vF).
But CJh* =0 and v* = -C(CFCy) c(z¥+ h*). Tt is now easy to verify, using Taylor’s
theorem, that

[1rél ] = o] |a*-2"]],

which implies, by (3.14),

(316) | [réll =o(l1Zws* |1+ |1 ])
Clearly, by (3.15) and (3.16) the result is established. O

¥ converges at a 2-step Q-

By Theorem 2.1 we have now established that the sequence z
superlinear rate (assuming T||z*-2z’|| < oo and | |z**1-z’|| = O||z*-2’|| ). We state

this formally in the following theorem.



-17-

Theorem 3.7

Under the assumptions that £| |z*-z*|| < oo, | |z**1-z*|| = O| |z*-2"||, and B, is
symmetric positive definite, algorithm (3.1)-(3.8) produces a sequence of iterates {z*}, with the
property

gt

| 252" |

Proof:

The result follows immediately from Lemma 3.6 and Theorem 2.1. O

The remaining results are needed to establish the local convergence properties:
T||2*-2*|| < o, and | |z**'-z*|| = O||z*-z"||. Firstly we establish two useful bounds

in Lemmas 3.8 and 3.9.

Lemma 3.8
Assuming that the smallest eigenvalue of By is greater than a positive scalar K5 and that z*
¢ D, then there exists a positive scalar K¢ such that

| 1A*]] < Kol |2*-2"]].

Proof:

By definition, h* = ~Z,B;'ZIgL*, and since L * = 0, it follows that

1B < | 2B 2oL - L ]| |.
But since L is Lipschitz continuous on D, | | Bi'|| is bounded above, and || Z;|| = 1, the

result follows. O

Lemma 3.9

Under the assumptions of Lemma 3.8, there exists a positive constant K; such that
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o' | < Kq||2*-2°]].
Proof:
By definition,

v} = —C(CFCy) te(zF+ hF),

and since CJh* =0,

c(zF+h¥) = c* + o| |B*]].
Clearly then,

eI < TG TIETa) LT+ ol TB*] 1}
By the boundedness of ||Ci||,| |(CFC:)||, ¢® =0, the Lipschitz continuity of c(z), and

Lemma 3.8, the result follows. O

Corollary 3.10

Under the assumptions of Lemma 3.8, there exists a positive constant Kg such that
| |2* 2| | < K| |2*-2"|].
Proof:

The result is an immediate consequence of Lemmas 3.8 and 3.9. O

We are now ready to show, in Lemmas 3.11, 3.12 and Corollary 3.13, that provided two

consecutive points are sufficiently close to z*, then a (2-step) contraction is exhibited.

Lemma 3.11

Under the assumptions of Lemma 3.8 and provided | |z¥-z*|| is sufficiently small, there

exisits a positive constant Ky such that
| w1 < Kol |2*-2"]]%

Proof:

By Corollary 3.10 we can assume that | | z¥-z*|| is sufficiently small so that z**' e D. It

is easy to verify that, using ¢* = 0 and cIht = o,
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Zk+l = Zk - Ck(CkTCk)_ICkT(Zk—I’) + hk + Pk,
where p* is a vector satisfying | |p*|| = O||2z*-z*||% Therefore, Cf(z**1-2") = C{p*.

But, by definition,

wh ! = (Cf 1 Cep 1) O 1 (24 1-27),

which implies that

wht ! = (CF  Co) M [CFPF + (C&1-CO) (=" 1-2")].
But, | |(CZ 1Ces 1)t |,]] CF| | are bounded above, | |p*| | is O] |2*-2"||% ||2** -2z ] is

0| |z*-z*|| by Corollary 3.10, and C(z) is Lipschitz continuous on D. The result follows

immediately. O

Lemma 3.12
Provided the smallest eigenvalue of B;_, and B; is greater than a positive scalar K then
there exist positive scalars € and A such that if
| |25 1-2*|| <& ||2¥-2*]| <% and
|| Be*-H' | < B,

then

e < ] latee )

Proof:
Initially choose € so that | |z-z*|| < € implies that z is in D. By Corollary 3.10 we can

reduce F, if necessary, so that

||z 1-2*|| < T => z%eD and z**'eD.

By (3.1}(3.8)

= F - ZLH'ZILY + Z[H-BiYZEgLF + oF.

However, subtracting z* from both sides, multiplying by ZT and using Lemma 3.2 yields, for €

sufficiently small,

ut V= At + Z0pt + [HP-BP)ZIVLY + (2 1-2)T (24 1-2"),



-20-

where Ay = -H;'ZT9?L*Cy, and p* is a vector satisfying ||p*|| = o||2*-2"||. But
| | Ag| | is bounded above, | | ZFwL*|| = O] |z*-z*| |, and
|1 Zer =26 | | = O(maz{] |2** 12" |,] | 2*-2"]|})-

Therefore, by Corollary 3.10 and Lemma 3.11, there exists a positive constant K, such that

|1t ] < Kol | |25z ||+ | [HZ-B |]] 252 ] ]

Therefore, if max{g,A} < —-l—, then
8K

1,k
[uf ] < =21

which is the required result. O

Corollary 3.13
Provided the smallest eigenvalue of B;_; and By is greater than a positive scalar K5 then
there exist positive scalars € and A such that if
12512 | <% ||2*-2'] | <% and
|1Be-H'| | < B,

then

R
|22t | < o122

Proof:

Initially let 7 and A be as defined in Lemma 3.12. Lemma 3.11 and the boundedness of

|| C¢| | allow ¥ to be further restricted, if necessary, until
1
1) Gl 11| < gl 12211
Combining (3.17) with Lemma 3.12 and Corollary 3.10 produces the desired inequality. O

Borrowing heavily from Broyden, Dennis and More [1973], we now establish the local con-

vergence property.
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Theorem 3.14

Suppose that the sequence {z*,B;} is generated by Algorithm (3.1)-(3.8) with starting pair
{z°,B0}, and with the matrix B, being symmetric positive definite. Then, there exist positive

scalars €, and A such that if | |2°-z°|| < €, and | | Bo-H,| |y < A, then

) |zF-2*| | < .

Proof:

Choose positive scalars €y and A so that ¢ < Tand A < A, where © and A are defined in

the statement of Corollary 3.13. Further restrict A, if necessary, so that

(3.18) 2087 < 7,
where for any matrix A, ||A|] < p|]A||x and 7= ||H:'||. But, by hypothesis,
| |B-H.|| < pA < 2pA, and by (3.18), the Banach Perturbation Lemma (Ortega & Rhein-

boldt [1970, p45]) can be applied to give

-1 < S A < .

Since | | Bg' || is bounded, Corollary 3.10 can be used, for k=0, to give

(3:20) |]2'-2*]| = Ofe).

Let ¢, = ||z'-z*|| and set ¢ = max{epe;} . Further restrict € , if necessary, so that
¢ < min{¢,¢}. ( &is defined in Lemma 3.3.) If s° = 0 then B, = By and (3.21) is trivially true.

Otherwise, the assumptions of Lemma 3.4 are valid here and

LI My*-M1s%] |
|1 M7s%] |

(320.0) | |By-H||u - | 1Bo-H| | < 24

o ||yo—Ht30”
M|

0
where M? = H;'. But | |My®M50| | < | |M]||-||s°-H,s°]|, and | |[M%°] | > —HSHH—

Hence, if we define

Qg = all |M| I2 [2(K1+ K2)+ K3], and
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ag = ap| | M| | [2(K1+ Ko+ Ko
then (3.10.1) and (3.20.1) imply

(321) ||Br-Ho||n~ | 1BoHe| |y < 2058+ ag)e.

Further restrict ¢,, if necessary, so that

(3.22)  4(2a3A+ ay)e < A,
which implies by (3.21) that

(323) ||BrH.||u <24
Clearly, by (3.18) and (3.23) the Banach Perturbation Lemma can be applied again, to give

(3-24) [IB:' || <27
Now considering Corollary 3.13 we obtain
(325) ||2*2"]] < 5l1a™2"]1.
We complete the proof with an induction step. Assume that
| |Be-H, | |s < 24, || B | € 27, and | |25 12" || < %l |z*1-z*|], for k=1,.,m-1

Clearly, for each k either Lemma 3.4 is applicable or s* = 0. In either case we obtain

k
1,151
(3.26) || Brsr-Hol |m— | | Be-Hs| | < (2030+ C'4)'f'('5) 2,

where |x| represents the largest integer less than or equal to x. Therefore, summing both sides of
(3.26) from k=0 to k=m-1 yields

(327) | |Bn-Ho||u < ||Bo-H| [y + 2058+ ag) e,

which, by (3.22) gives ||Bn—H,||u < 2A. Therefore the Banach Perturbation Lemma will

again give 1B | <27, and Corollary 3.10 will guarantee that
[]zm* -z < —;—I |z™-z*||. It follows that £| | z¥-2"|| < c0. O
Theorem 3.7, Corollary 3.13, and Theorem 3.14 imply that algorithm (3.1)-(3.8) generates

z-values which converge to z° and do so at a 2-step Q-superlinear rate. We state this formally in

the following theorem.
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Theorem 3.15

Suppose that the sequence {z*,B,} is generated by Algorithm (3.1)-(3.8) with starting pair
{z°B,}, and with the matrix B, being symmetric positive definite. Then, there exist positive
scalars ¢, and A such that if ||2%-2°|| < €, and | |Bo-H,| |y < A, then {z*} converges to

z' and does so at a 2-step Q-superlinear rate.

Proof:

The result follows immediately from Theorem 3.7, Corollary 3.10 and Theorem 3.14. O

4. Conclusions

We have proposed an adaptation of the DFP/BFGS formula to the nonlinearly constrained
problem. The central feature of our approach is that a positive definite approximation to a pro-
Jected Hessian is maintained. We have established, without assuming convexity, that the method
is locally 2-step Q-superlinearly convergent. The performance of this method in practise is unk-
nown and will be the subject of future work. A detailed discussion of implementation techniques
is also postponed: we only remark that the conditions placed on Z(x) can be realized in practise
by using a careful implementation of the QR decomposition - details are given in Coleman and

Sorensen [1982].

For the inequality constrained problem, it is clear that once the active solution set (of con-
straints) is identified, either implicitly or explicitly, the results given here are directly applicable.
However, the best way to modify projected approximations when the active set is changing is not
presently known. Another subject of future work is how to adapt a line search algorithm and gen-

erally globalize the local procedure given here.
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