FAST COMPACT PRIME NUMBER SIEVES
(AMONG OTHERS)

Paul Pritchard

TR 81-473
October 1981

Department of Computer Science
Cornell University
Ithaca, New York 14853

1. Introduction

The problem of finding all prime numbers up to a given limit N has
received extensive attention from computer scientists (as well as from the
librérian at Ptolemy's library at Alexandria in the third century B.C.!).
Dijkstra [4], Gries and Misra [6] and Pritchard [17] have tackled the problem
as an exercise in programming methodology; Mairson [14] studied its algo-
rithmic complexity; Bays and Hudson [2] and Brent [3] presented practical com-

putational techniques for its solution for large N.

Recently, Pritchard [18] discovered the first sublinear solutiom, i.e.
one that requires only o(N) arithmetic operationsl (and additioms, at that).
However, it uses too much storage to compete in practical applications with
versions of the librarian Eratosthenes' solution, which are compact in the
sense of using only O(Qk) bits of storage [2,17]. It is natural to ask
whether there are faster compact algorithms, and [18] answered "yes™ by
promising "a new practical algorithm, which rums in B(\Iﬁ) bits with an arith-

metic complexity of ©(N) additions".

This paper delivers the promised algorithm, and a little more. First, a
parameterized family of algorithms is presented which includes Eratosthemes'
classical algorithm and several others [2,4,11,12]. Then it is shown how a
particular choice of parameters leads to a compact, linear, additive algo-
rithm, and finally that the latter's storage requirement can be reduced to
o(ﬂk) bits. This last optimization utilizes a provably compact method of

storing all the primes up to some limit,

lour notation for functiomal relationships is given under "Nota-
tion and Definitions™ below.

2. Presenting the Family

In [19], the sublinear sieve (as we shall refer to it) is presented in
terms of wheels. The k'th wheel W, is a particular reduced residue class (see

[13]) of the product of the tirst k primes.
N :on and Definiti

¢ : the empty set;

IS| : the cardinality of set S;

next(S,x) : min{y|yeS amd y>x};

a..b : {x|asx<b};

(x,y) : the greatest common divisor of x and y;
xly : x divides y;

p; ¢ the i'th prime number;

Primes(S) : {x|xeS amd x prime};

o(n) : |Primes(2..n)l;

d :max{pi-pi_1 I piSn};

n

k
mo: O op» (m, = 1);

i=1
W {xl1 < x < o, amd (x.]Ik)=1} (k20) -- the k'th wheel;
Wl(‘l): the i'th greatest member of Wk;
*
Wk : {x]1 £ x and x mod IIkeWk}.

* *

g * max{next(Wk.x)-xlx € Wk} -- the maximum gap on the k'th wheel.

Our notation for various functional relationships is standard:

0(£f(n)) : order at most £(n);
0(f(n)) : order at least £(n);

6(£(n)) : order exactly f(n);

-4 -

o(f(n)) : order less than f(n);

~ f(n) : asymptotic to £(m).

W:, said to be the result of "rolling® Weo is the set of all positive numbers
* .y
not divisible by omne of the first k primes. Wo is the set of all positive

numbers.

The sublinear sieve, in the abstract, consists of a single loop which

keeps invariant W = W n 1..N and p = Pr+1 while increasing k until p2 > N.

Thus the loop terminates with W=W _ nl..N, and the primes can be found
(\|N)
because
* —
Primes(2..N) = (W _ n 2..N) u Primes(2..\|N) (1)
x(\|N)

The sublinear sieve is a dynamic wheel sieve, meaning the wheel changes in
that at each iteration a new wheel Wk is used. In contrast, the following
family of algorithms uses a fixed wheel W, where k is a parameter of the fam-

ily. The mathematical motivation is that

* * * .
W= W - {pi'flfeWk amd k<i<h}, (0<k<h) (2)

Choosing h = n'(\rN) in (2), and substituting in (1), leads to

. * * . ‘AT
Primes(2..N) = (Wk n2..N) - {p‘flfewk and pePrmes(pk+1..\|N)}
U Primes(2..\|N) (3)
(3) shows quite explicitly how Primes(1+\|N..N) is determined by

Primes(pk+1..\]_N) and Wk. Our family of algorithms is directly based on (3).

Compact versions of Eratosthenes' sieve [2,3,17] are obtained by operat-

ing on successive’segments a ..b of 1..N, where b = m*A and a_ =b_-A +1,
m m m m m

-5 -

for some integer constant A>0. Our family also uses this technique, with A as

the second parameter. Each member is thus a segmented fixed-wheel sieve

(SFWS) .

In order to avoid unimportant complications, the (parameterized) algo-
rithm uses operations on the sets Primes(pk+1..\|_N) and W:. We deal later with
the implementation of these operations. The task of the algorithm is to com-
pute Primes(1+\TN..N). Our presentation uses a history variable P to accumu-
late the primes. Storage for set P is not counted, as in practice the primes
would be printed or sent to some external storage device. We assume A|N and k

< u(\I-N) since the assertions need to be adjusted slightly otherwise. Our

algorithms are presented in guarded command notatiom [5].

SFWS(k,A):
{N>0,4>0,0%k<np=a(\N), AN}
initialise;

{invariant: a=(m-1)* A +1, b = m*A, P = Primes(1+\rN..a-1)}
do a S N + §:= a..b;

sift S;

{w:ns = W:pna..b}

"accumulate the primes in S™:

= P u (W;ns- {1bH;

a,bym:= b+l, b+A, m+l

od

{P = Primes(1+\|N..N)} .
In order to do the sifting efficiently, it is helpful to introduce

var factor: array[k+1..n(\|—N)] of 1..1I,

-6 -
and to extend the main invariant above with the following clause:
(Vi:k<isnp: factor[i] = min{fe W: I p; £ 2a}) (4)

(4) states that the factor f of the next multiple pi'f of P, to be
deleted from S is in factor[i]. Our refinement uses this information to imple-

ment an induction on the h of (2).

"sift S'":
i,p:= k+1.pk;
i jant: W.nS = W, b}
{invariant: KNS = i_lna..
do i S np -+
"sift with pi":
pef:= next(Primes(pk+1..\IN).p). factor[il;
mult:= pef;
do mult £ b + S,f:= S - {mult}, next(WE.f):
mult:= p°f
od;
factor[il],is= £,i+l

od

In order to show how the primes that are left in a..b after sifting may
be explicitly found, we give a lower-level refinement. Here it is helpful to

extend our invariant with

*
nexty = mext(W, -{1},a-1) . (5)
(5) means that the next member of a..b to be examined for primality is nexty.

This and (1) lead to:

-7 -

"accumulate the primes in S":
"pP:= Py (W:f1s-{l})":
{p = PO}
y:= nexty;
{invariant: P = Py U (W;rIa..y-l - {11}
doy<b + ifyeS+P:=Pu{y} 0 y#éS+skip £fi;
y:= next(W:-y)
od;

nexty:=y
Finally, the (now extended) main invariant must be established:

initialise:
a,b,m,P:= 1,4,1,%;
i:= k+l; do i S np » factor[i]:= 1; i:= i+l od;
nexty:= p, .,
The correctness of this family of abstract algorithms is apparent fr&m
the invariants and equations (1-5). Minor optimizations are possible; for

instance, the initial segment a..b could be taken as 1+\|N..A+\|N; also, it is

not necessary to sift with P; if p% > b.

Particular instantiations of the parameters k,A give the abstract algo-

rithms underlying several different solutiomns:
(i) (A,k) = (N,0): Eratosthenes' sieve.

(ii) (A,k) = (N,1): A common variation of Eratosthenes! sieve that

avoids the even numbers (e.g. [11, p.394]).

- 8 -

(iii) (A.k) = (N,2): A version of Eratosthenes' sieve that avoids multi-
pPles of 2 and 3. The version in [12, p.617] does this, but it is imple-
mented with a priority queue and has inferior time and space complexi-

tieSO

(iv) (4a,k) = (\I—N.O) ¢ The segmented sieve of Eratosthenes [2,17].
A = .Q(\!—N) is needed in order not to degrade the arithmetic complexity
(but see §4); SFWS(S(\‘—N).c). for any constant c¢20, has the same

time/space complexities (up to constant factors).

(v) (A,k) = (2,1): Dijkstra's algorithm [4] (after transforming the

loop for M"sift S™ so that it terminates if b is found to be nonprime).

(vi) (A,k) = (\I—N. max{kHIkS\l_N}): A compact linear sieve; its

space/time complexity is analysed in §3.

(vii) (A,k) = (N, max{k|IL, sN}): Interestingly, this does not give the
sublinear sieve, but only a linear sieve. The sublinear sieve obtains
its extra etficiency by merging S and Wk in a single dynamic data struc-

ture.

A large wheel has been employed in a previous sieve algorithm -- Brent
[3] used W, in a clever way (see [19]) to speed up a segmented sieve when
sifting with PysecesPqye. Although useful in practice, this technique does not
improve on the asymptotic complexity of Eratosthemes' sieve and, in any case,
the effect is very simply obtained by our code for M"accumulate the primes in

sm.,

-9 -
3. An Implementation and its Complexity

In implementing SFWS, we try to minimize the storage requirement and to
avoid multiplications. The details are as follows. S always represents a

subset of a..b. So we declare

var S: array[0..A-1] of Boolean

such that

(Vj:0<j<a: s[j] = (a+jeS))
*
- The only operation on Wk is of the form x:= next(W;,x). For k>0, this can be

done in 6(1l) additions given an array

var WG: array[l..nW] of 2..8)

of wheel gaps:

(1)_.(

i-1)
e)

We[1]=2 amd (Vi:l<isaW: WG[i] = W,
The operation p:= next(Primes(pk+1..\jN).p) can be similarly implemented given
an array

var PG: array(k+l..np] of 2..d<r
N

of prime gaps:
(Visk<i<np: PG[i] = P;"P;-1)

To avoid multiplications in the code for "sift S™, notice that each new

value mult = p°f is related to the previous value mult' = p°f' by

mult = mult'4'p‘(next(W:.f')-f')

In order to exploit this recurrence, array factor is eliminated in favour of

- 10 -

var offset: arrayl[k+l..np] of 0..gk\l-N
var pWG: array(k+l..np] of l..nW

such that

*

(Vi:k<isnp: atoffset[i] = min{p; *f|feW, amd p; ‘f2a}
- . _ (pWGLil)
= p; f where fnodIIk = W)

That is, atoffset[i] is the initial value given to mult and pWG[i] is the

index of factor[i] in WG. As in the first technique of [18,§6], we use

var m: arrayll..g /2] of 0..gk\]—N

var pm: arrayll..g /2] of 1..g,/2
such that each new multiple p°WG[j] replaces the initial zero value in
m[WG[j1/2], and the previously computed multiples are simply looked up in m.
Array pm is used to contain the indexes WG[j]/2 of the non-zero elements of m,

in order to permit fast reinitialization of m.
The space requirement of this implementation is as follows:

S: A bits
WG: ~ nW-e logzgk bits

PG: ~ np-* log2 d bits

\IN
offset: ~ np°* logz(gk\lN) bits
pWG: ~ np‘logznw bits
m:

1 T .
zgklogz(gk\l N) bits

. l s
pm: 2gklogzgk bits

Strictly, use of the asymptotic indicator ™" is justified only when

Ak +- 00 as N + oo and IIRSN.

- 11 -

In order to establish the arithmetic complexity of our implementation, we
need to appeal to the following number-theoretic facts. (In sums and pro-

ducts, p ranges over primes.)

Fact 1: w(n) ~ n/log n -- the prime number theorem [7, thm. 6]
Fact 2: py,q < 2p; -- Bertrand's Postulate [7, thm. 418]
Fact 3: 2 1/p ~ 1loglog x -- [7, thm. 427]
psx
Fact 4: I (1-1/p) ~ e-yllog x -- Merten's theorem [7, thm. 429]
pPsx
Fact 5:¢ 2 logp ~ x -- [7, thms. 420,434]
psSx
Fact 6: (i) g, 2 2p, -- [191]

(ii) g = o(p) -- [9]

k

Since, as is easy to show, nW = 1T (pi-l). an immediate .corollary of fact 4 is
i=1

.. - _y
Fact 4': nW/]Ik e ‘/log Py

We now determine the total cost of all executions of the high-level

statements in SFWS.
(a) "™initialise".
S: 6(A/1logN) additions, i.e. A bit operatioms.

WG: o(nW) additions, in situ, using the methods of [18,19].

-12 -

PG: 9(\|—Nlloglog\l—N) additions, in 9(\|—N/10glog\|_N) bits, using the sublinear .

- 1/4
sieve [18]. Alternatively, it can be done in 8(\|N) additions and O(N /)
bits by using the present algorithm recursively. These space/time bounds

are used when reducing the overall space requirement in §4.
offset: 6(np) additionms.
pWG: 8(np) additionms.
m: e(gk) additions.
(b) ™S:= a..b".

Except for an initial assigmment S:= l..A, this can be incorporated in the
code for "accumulate the primes in S™ by changing the second guarded com-

mand in the if-statement to

y£S + S :=su {y}

When implemented, the effect is simply to reset each false bit to true.
(c) msift sm.

This abstract statement is performed N/A times. Operations referencing the
arrays offset and pWG take O(N/A°np) additions. The remaining operations
involve deletions. There are 6(1l) additions per deletion, plus a total
number of multiplications to be determined. The number of deletiomns is
that done by Eratosthenes' sieve, reduced by a factor of G(nW/Di) since

factors are taken from W;. So the number of deletions

np
e(Ne 2 1/p;)+ €(aW/I,)
i=k+l

G(NloglogN/logpk) by facts 3,4'

- 13 -

Since no more than gk/2 different multiples can occur for a given prime on
each interval a..b, and at most O0(l) multiplications are done per deletiom,
the number of multiplications

< N/A » s g/2 + N- s 1/p ° e(nw/nk)

pS\l—N/ 1og3N \I—N/ log3N<ps\|—N

The first term in this sumZ

N/A* g /2 * a(\[N/1log N)
32 2

I l

P

Ol—f‘l by facts 1,6(ii)
|A°log N|

The second term

~ N'(loglog\TN - loglog(\I—Nllog3N))’ e-yllog Py by facts 3,4

Y

~ N°log(l - BIOglogN/log\]_N)-l'e- /logpk

: el NeloglogN !

I1ogp, * Lognl since log(l-€) 1 + € as € + 0
"k l

(d) "™accumulate the primes in a..b"™.

. * .
This abstract statement is also done N/A times. Since each member of Wk is

examined in 6(1) additions, the total cost

N e(nW/]Ik) additions

0(N/log pk) additions by fact 4!

We can now establish the claim that choosing (A,k) = (\I—N.max{klnkS\l—N})

gives a compact linear sieve. We have
np ~ \I_Nllog\'—N by fact 1

P, = 6(logN) by facts 2,5

. . . T- 3 co s
21f the second technique in [18,86] is used for ps\IN/1log™N, it is
only necessary to do this many additions.

- 14 -
oW = 0(\IﬁlloglogN) by fact 4'

log,g, = 6(loglogN) by fact 6

Since d\‘_ = 0(\]_N). the storage requirement of SFWS(A,k) is seen to be 9(\I—N)
N \

bits, with the storage for array offset being critical. The arithmetic com-
plexity breaks down as follows. Note that the operations required for all

executions of the abstract statements are given.
®initialise™: G(VNlloglogN) additions.
"S:= a..b™ and Maccumulate the primes in S™: O(N/loglogN) additioms.

"sift S": manipulating offset and pWG: O(N/logN) additions; performing

deletions: ©(N) additions and ©(N/logN) multiplications.

Since a multiplication can be simulated in ©(logN) additive operatiomns by the
well-known "shift and add™ method, the arithmetic complexity amounts to 6(N)

additions.

A similar calculation shows that the ségmented sieve of Eratosthenes
[2,17], i.e. SFWS with (A,k) = (\|N,0), requires 6(\|N) bits and 6(N°loglogN)

additions.

4. Further Reducimg the Storage Requirement

The extra factor of ©(loglogN) in the complexity of the segmented sieve
of Eratosthenes actually allows A to be reduced to 9(\|—N/10glog\TN). without
increasing the complexity. Also, the array offset can be dispemnsed with by
recalculating instead of saving. This involves ©(N/A°np) = O(N°loglogN/logN)

multiplications, easily simulated with 8(N°loglogN) additions. So the storage

- 15 -

requirement reduces to 6(\|[N/loglogN) bits if the prime gaps in PG require no
more than that. This is certainly the case if dn = e(logzn). as is strongly

0.55+€

conjectured. However, the best result to date is dn = 0(n) for any €>0

[8], which is not nearly strong enough.

Consider instead the following scheme. Rather .than storing a prime gap
P;"Pi-1 in an integer array element PG[i], store the Binary representation of
P;"Pji_1* without leading zeros, in a bit array; also use an integer array
nbits such that nbits[i] = the number of bits stored for that gap. Since the
primes are taken in sequence, the next prime can still be calculated in 6(1)
additive operations. Since, by fact 1, the gverage prime gap is logN, the bit
array requires O(np°loglogN) = 0(\Jk°loglogN/10gN) bits, and array nbits

requires O(np°loglog d‘r) = quk'loglogNllogN) bits. So this method provably
N

does the job3.

By resorting to the (asymptotically) fast multiplication scheme of
Schonhage and Strassen (see [1]), A can be reduced to G(Q&'logloglogNllogN)
and the segmented sieve SFWS(A,0) still implemented in 6(N-loglogN) additionms
without using array offset. The reason is that the ©(N/A * np) multiplications
required amount to ©(N°loglogN) additions when each multiplication is counted
as 6(loglogN*logloglogN) additions. However, the compacted prime gaps now

dominate the storage requirement, which is O(\|N°loglogN/logN) bits.

Dispensing with the arrays offset and pWG in the compact linear sieve

involves O(N/A°np) calculations of the minimum f such that

312 4 = 6(log n) then array nbits needs only
G(VN logloglogN/logN) bits. We do not know if the bit array uses
only o(\JN°loglogN/logN) bits.

- 16 -

f mod o eW, and pi'f 2 a,

whence the required offset is just pi'f - a, and the corresponding index in WG

is that i such that

- (i)
f mod IIIk = Wk

Each calculation can be done in ©(1) multiplications by first setting v =
I'a/pi'l and v = v mod T, . Then f=v+ (next(W:.w-l) - w) and the index in

WG is that of next(W:.w-l). To handle these new kinds of operatioms omn Wk in

0(1) additions, we can use

var WGto: array[O..I[k-ll of 2..gk
var Windex: array[l..]lk] of 0..nW

such that

(Vi:0Si<IL : WGto[il = next(W,,i)-i) amd
(Vj:1<jsnW: Windex[Wl(‘J)] = j)
Note that array WGto obviates the need for array WG, and that both WGto and

Windex can be created in e(nk) additions by adapting the sublinear sieve.

The information in these new arrays also permits a compaction in S,
because the SFWS algorithm only refers to S n W;:. So the storage for S can be
reduced to ~A'e-y/logpk without increasing the order of complexity. Let
SFWSC(A,k) denote such a Segmented Fixed-Wheel Sieve with Compaction. Since
I[k = 8(N®) for any ¢ > 0 suffices to give a linear algorithm, arrays WGto and
Windex need take no more space than S. Thus SFWSC with (4,k) = (\|_N.
max{klﬁkS\I—NllogzN}). for instance, can be implemented in 6(\|_N/10glogN) bits

to take O(N) additions. Similarly, using fast multiplication, SFWSC with (A,k)

= (\TN'loglogN‘logloglogN/logN. max{kllT.kS\l—N/logzN}). can be implemented to

- 17 -

take O(N) additions and run in O(\|N°loglogN/logN) bits (the storage required

for the prime gaps).

5. Some Actual Figures

With N = 106. an optimized version of SFWS with (A,k) = (103.6) performed
177765 deletions, saved values in array offset 113734 times, and used 126907
muitiplications. Using Pascal's packed arrays [10], the storage required for
all arrays on a 36 bit machine was 181 words. With (A,k) = (103.1) -- the
usual version of the segmented sieve of Eratosthenes [2] -- 849047 deletions
were performed. This clearly shows the efficacy of our exploitation of a

12 6

fixed wheel. With N = 10°° and (A,k) = (10 ,7) the storage requirement would

be 149829 words, a practical proposition.

6. Comclusions

The ideas of sifting the integers in segments, and of using a wheel, have
been shown to underly many of the published algorithms for finding the primes
up to N (albeit implicitly in the case of the latter idea). Even Dijkstra's
algorithm can be seen to stem from a (pathological) version of a segmented
sieve, making sense of his claim to have "made our computation close to an
implementation of the Sieve of Eratosthenes!™ [4, p.38]. (This despite the

huge difference in complexity; see [17].)

The construction of linear, additive, prime number sieves running in
OCHN) bits shows very clearly the power of wheels -- compare the very compli-
cated storage reduction for a linear multiplicative sieve in [15], which still

does not obtain a space requirement of O(N) bits!

- 18 -

Without using fast multiplication, prime number sieves are now known with

the following time and space requirements:

. 6(N/loglogN) additions in O(N/loglogN) bits =-- [18]
. 6(N) additions in ©(\|N/loglogN) bits

-- SFWSC(\|N, max{k| nks\j—nl log2N})
Permitting fast multiplication, we have:

"« 8(N) additions in Oﬂqk-loglogNllogN) bits

- SFWSC(\Iﬁ‘loglogN‘logloglogNllogN, max{klIIks\Tk/logzN})

Notice the large differemce in the space requirements of the sublinear
linear sieves; it would be interesting to know whether or not the former
be reduced. Reducing the latter would seem to require fresh insights, as

implementations are very finely tuned.

We close with two observations. The first is that parallelization of

SFWS sieves is straightforward -- the idea is simply to assign each of

and
can

our

the

N/A

processors to a segment of length A. See [16] for a methodical expositionm.

The second is that the fact that no fixed wheel sieve is as efficient as

sublinear sieve further highlights the elegance of the latter.

Acknowvledgements

the

This paper may not have been written but for the stimulating enthusiasm

of Ian Parberry. I also profited from discussions with Richard Brent.

paper profited from the scrupulous scrutiny of David Gries.

The

- 19 -

References

[1]

[2]

[3]

[4]

(101

(111

[12]

[13J

[14]

[15]

[16]

Aho, A., J. Hopcroft and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

Bays, C. and R. H. Hudson. The segmented sieve of Eratosthenes

12

and primes in arithmetic progression to 10 B.I.I. 17 (1977), 121-127.

Brent, R.P. The first occurrence of large gaps between successive primes.
Math. Comp. 27, 124 (October 1973), 959-963.

Dijkstra, E.W. Notes on structured programming. In Dahl, 0.J., C.A.R.

Hoare and E.W. Dijkstra: Structured Programming. Academic Press, New
York, 1972, 1-82.

Dijkstra, E.W. Guarded commands, nondeterminacy and formal derivation of
programs. Comm. ACM 18, 8 (August 1975), 453-457,

Gries, D. and J. Misra. A linear sieve algorithm for finding prime
numbers. Comm. ACM 21, 12 (December 1978), 999-1003.

Hardy, G.H. and E.M. Wright. An Introduction to the Theory of Numbers.
5th Ed., Oxford University Press, Oxford, England, 1979.

Heath-Brown, D.R. and H. Iwaniec. On the difference between consecutive

primes. Inventiones Mathematicae 55, 1 (December 1979), 49-69.

Iwaniec, H. On the problem of Jacobsthal. Demonstratio Math. 1ll,
(1978), 225-231.

Jensen, K. and N. Wirth. Pascal - User Manual and Report. Springer-
Verlag, Berlin and New York, 1974.

Kouth, D.E. The Art of Computer Programming, vol. 2: Seminumerical
Algorithms. 2nd Ed., Addison-Wesley, Reading, Massachusetts, 198l.

Kouth, D.E. The Art of Computer Programming, veol. 3: Sorting and
Searching. Addison-Wesley, Reading, Massachusetts, 1973.

LeVeque, W.J. Elementary ITheory of Numbers. Addison-Wesley, Reading,
Massachusetts, 1965.

Mairson, H.G. Some new upper bounds on the generation of pfime numbers.
Comm. ACM 20, 9 (September 1977), 664-669.

Misra, J. Space-time tradeoff in implementing certain set operations.

Inf. Proc. Letters 8, 2 (February 1979), 81-85.

Parberry, I. Unpublished manuscript on fast parallel prime-number
sieves. Dept. of Computer Science, University of Queensland, 198l.

- 20 -

[17] Pritchard, P. On the prime example of programming. In Language Design
and Programming Methodology: Lecture Notes in Computer Science 79,
Springer-Verlag, Berlin Heidelberg and New York, 1980, 85-94.

[18] Pritchard, P. A sublinear additive sieve for finding prime numbers.
Comm. ACM 24, 1 (January 1981), 18-23.

[19] Pritchard, P. Explaining the wheel sieve. Submitted.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif

