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muxye‘s Simultaneously ComplEte for One-Way and Two-Way In this paper we study languages accepted by nondeterrin-
Xog-Tape Automata istic log m—tape automata which scan their input only once a=n2

relate their computational power to two-way, log n-tape auto-

J.. ‘Hargmandis* and &, Mahaney : mata. We show that for the ome-way, log n-tape autonmata the
Ppeapaytmernt of Conputer Science mﬁeteministic model {1-NL) is coemputationally much rore
Cornell University poverfal than the determimistic model (1-L); that urder one-way,
Ithaoa, 'New Xork 14853 log n—tape reductioams there exist natural complete langju:aces

for these automata and that the complete languages cannot be
sparse. Furthermore, we show that any lanquage cozczlete for
pondeterninistic ome-way log m-tape automata (uncder 1-L reduc-
tioms) is also complete for the computationally rore powerf:i
mondetermimistic two-way, log a-tape automata (NL), under two-
ﬁay, log m—tape reductioms. Therefore, for all bourds <Ti{n) .
T(m) 2 log m , the determimistic and nondeterministic T(n}-taze
bomnded computatioms collanse iff the nmondeter—inistic crne-way
log m-tape computatioms can be carried out by two-way deter—in-

istic log m—tape autocmata.
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1. Introduction

The work in.computational complexity theory has been strongly
influenced by the study of the familie% of languages accepted by
Turing machines in polynomial tape, nondeterministic polynomial
time, deterministic polynomial time, nondeterministic logarithmic

tape and deterministic logarithmic tape, denoted by
PTAPE, NP, P, NL and L,

resgectively [1,5].
Though the proper containment relations between these families

of languages are not yet known, they form a natural hierarchy to
.classify the complexity of many practical computational problems

by their membership in these families. Furthermore, each of these
fanmilies contain many natural complete problems which, in a sense,
characterize and represent their computécional complexity; Cur-
fently, arong the most challenging problems in the theory of com-

utation is to establish the proper containment relations between
these fanilies of languages and to gain a better understanding of
their structure. .

' In this paper we show that the above described "hierarchy" of
families cf languages, PTAPE, NP, P, NL and L, can be naturally
extended downward to one-way, log n-tape deterministic and nondeter-
ministic Turing machines. These are (nondeterministic) two-tape
Turing machines with a one-way input tape (with end marker) and for

an input of length n a two-way, read-write work tape of length

[logzn] (with end markers). We denote the families of languages
accepted by the nondeterministic and deterministic models by
1-NL and 1l-L, respectively.

The results in this paper show that these automata exhibit
some very interesting properties and that they capture our intui-
tive idea of what can be achieved "by guessing and polynomial
bounded counting in one scan of the input.”

Their importance is further enhanced by their relations to
nondeterministic two-way, log n-tape automata. We prove that
every complete 1-NL language, under one-way, log n-tape reductions,
is also complete for NL languages, under two-way, log n-tape
reductions. Thus, these two different families of languages
share many complete sets. From this follows that for all tape
bounds T(n), T(n)2log n, the deterministic and nondeterministic
T(n)-tape bounded computations collapse iff the nondeterministic
one-way, log n-tape computations can be performecd by two-way,
deterministic log n-tape machines. Thus, we see that the basic
question about eliminating nondeterminism in tape bourded
cemputations is equivalent to the question whether we can replace
‘nondcterminism in one-way, log n-tape computations by determin-
istic two-way computations.

Finally, we show that if NL}L then there exist ratural
incomplete langauges in 1=NL - 1-L. Recall that the incomplete
langauges in NP-P, under the assumption that P#XP, are obtained
by delayed diagonalization and that no natural incomplete languages

are known for NP[ 9 ].



2. 1-NL Languages

First, we aobserve that, though we do not yet know whether
P#$ NP and L $ NL

we can easily show that for one-way, log n-tape computations the
nondeterministic computations are more powerful than the deterministic
ones, i.e.,

(=4
1-L # 1-NL

Actually, we prove that the gap between deterministic and nondeter-
ministic one-way, leg n-tape computations is exponential. This
shows that the one-way computations with small amounts of work tape
behave differently than two-way, tape-bounded éomputations (with
1leg n or more tape) which going from nondeterministic to deterministic
compu;étions needs no more than to square the amount of tape used
[11]. -

Let l-fAPE(T(n)] denote the family of languages accepted by

deterministic, one-way Turing machines with T(n) work tape.

Theorem 1:
If T(n) is such that

lim

n-—+e

T(n) _ 0
n

then

1-8L § 1-TAPE(T(n)].

-4=

Proof: The language
A={utv]u velI*, ¢ ¢ and u # v}

is in 1-NL but not in 1-TAPE[T(n)), if the above limit condition
holds for T(n). To see this, note that A can be recocnized by a
nondeterministic, one-way, log n-tape machine whiéh cuesses whether
ful 4 |v] or |Jul = |v] and u 4 v; in the first case the guess is
easily verified on log n-tape, in the second case the rmachine
guesses in which digit the two strings differ and then counts up
to the position in u and v, respectively, using its work tage to
verify its gquess. '

On the other hend, if

1im T8 _ o
neeo n

then for any q, q9 > 0, and sufficiently -large n

qT(n) < 2"

- Therefore for sufficiently long sequences u, and uy, Uy + Cy thre

machine must be in the same total configuration after scanning

. ull and uzt .

But then

u, uy and u, ¢

2 'Y
are either both accepted or both rejected, showing that A is not

in 1-TAPE(T(n)]). | |



Kext we show that there exist natural complete problems for
the 1-XL family of languages. To do this we use deterministic one-
way, log n-tape reductions that were introduced and studied in [6]).
A 1-L transducer is a deterministic, one-way, log n-tape machine
with a one-way output tape. From Theorem 1 we know that the 1-L
transducers are not computationally strong enough to recognize the
languages in 1-XML.

Recall that it is not yet known whether P 4# NP and/or L # NL,
and therefore we do not know whether the polynomial time reductions
used to study NP problems are not sufficiently powerful computa-
tionally to recognize directly all the languages in NP; the related

-question abcut two-way, log n-tape reductions also remains open.

On the other hand, from [6] we know that the well known "classic"
corplete problems for PTAPE, NP, P, NL and L, respectively, al;
rerain corplete for these families under one-way, log n-tape reduc-
tions and that these transducers are not capable of.recognizing the
languages in L. At the same time, it was also shown that there

are corplete problems, say, in NP under polynomial time reductions

which are not complete under one-way, log-n tape reductions [6].

We recall that there is a nice hierarchy of "graph connecti-
vity problems® which form complete sets for PTAPE, P, NL, and L.
The complete probleﬁ that we will define below for 1-NL fits in
naturally in this hierarchy, extending it downward. For the sake
of comparison we describe the other complete "graph connectivity"

problens.

A complete language for PTAPE is formed by all directed grazkhs
with an IN and OUT node for which there éxists a winning strateszy
for the first player of the game of hex on this graph [1]. .

A complete language for P is formed by all directed graphs
whose nodes are labelled with either AND or OR and are such that
the IN and OUT nodes are connected by a path system which mus: take
all possible edges out of an AND node and some edge out of an OR
noée. ’

A complete language for NL is formed by the set of all direc*teéd
graphs with an IN and OUT node, which have a directed path frox= ihe
IN to the OUT node [7].

A complete language for L is formed by all directed grachs cf
outdegree one for which there is a path from the IN to the OUT node

[3,71.

We will say that the representation of a directed, acycliic cragh,

G, is topologically sorted if for any pair of edges (a,b) and (b,c)

. in G, edge (a,b) is listed before (b,c).

Next we show that the problem of determining whether the
topologically sorted reprcsentations of acyclic graphs have a
directed path from the IN to an OUT node is a complete 1-NL

problem. Denote the set of these graph representations by TAGAP

It is seen that TAGAP fits in naturally in the hierarchy of the

other complete "graph connectivity problems," for PTAPE, P, NL
and L, where the acyclic nature of the graphs direétly mirrors

the limited ability of reading the input only once. Similarly,
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For any fixed M we can construct a one-way, deterministic,

the difference between the complete graph problems for NL and L log n-tape transducer which for input w enumerates in topolcgical
is captured in the difference between the outdegree of the graphs: order on its output tape all pairs of nodes
for NL- we can use graphs with outdegree k 2 2, whereas for L we ((nl, ny, x),(nl', nz', x'))

are restricted to outdegree one.
such that in one move the machine M goes from the total configura-
tion described by (n;jr n,, x) to the one described by (n;’, n,', x').
Theorem 2: The set of topologically sorted representations of

If the input head is moved, then
directed, acyclic graphs with a directed path from the IN to an

’ = ’
OUT node is a complete language for 1-NL. . n no+ 1 and ny' =0

otherwise, if the machine performs an operation and n, <q,
Proof: TAGAP is contained in 1-NL since a one-way, nondetermin-

: n' o= ny and n,' =n+1.
istic device can successively guess on its log ‘'n tape the sequence

of ncdes which form a path from IN to OUT. Since the representation We denote the pair
of the graph is topologically sorted the correctness of these ((nl, nz,x),(nl',nz', x')) by ((nl, n,y. x), Succ (nl, n,y, x)).

uesses can be verified in one scan of the input. .
g . - N The enumeration is described by the following program:

To see that TAGAP is complete for 1-NL, we show that for every

. begin

one-way, log n-tape, nondeterministic machine M, we can reduce every
. . . For each n; = 1,2,...,|w| do
input string w (by a 1-L transducer) to an acyclic graph in which - X
begin
IN is connected to OUT iff w is accepted by M. The nodes of the
- : For each n, = 0,1,2,...,|w| do
graph Gw, corresponding to the input w, consist of triplets -
begin
n
(nyr npe X, For each x, [x| s [log|w]] do

where n), 1 s n) < lw| = n, indicates the head position of M on begin.
the input tape, Ny, 0 s n, < q“, indicates the number of opera- print all pairs ((nl,nz,x),Succ(nl,nz,x))
tions performed since the last head move on the input, and x end
describes the configuration of M (input symbol scanned, state, end
worktape content and head position on work tape). end

end



The resulting graph is topologically sorted and the IN node,
the initial configuration, is connected by a directed path to an
OUT node, a node whose configuration contains the halt state, iff
w is accepted by M.

Thus we see that TAGAP is complete for 1-NL. - | |

3. Pelations Between One-Way and Two-Way Computations

We know that the nondeterministic two-way log n-tape computa-
tions are computationally much more powerful than the nondetermin-
istic one-way log n-tape computations, i.e., 1-NL # NL. Neverthe-
less, we will show in this section that there are sets which are

" simultaneously complete for both families of languages. More

precisely, we know that TAGAP is complete for 1-NL under one-way,

log n-tage reductions and we prove below that TAGAP is also complete

for KL under two-way, log n-tape reductions. Later we will see that

this result has some very interesting implications.

Theorenm 3: TAGAP is a complete language in NL under two-way,

log n-tape reductions.

Proof: Since TAGAP is in 1-NL it is also contained in NL.

To show that TAGAP is complete for NL, let A be a language
in NL. ¥%e know that A is accepted by a nondeterministic two-way,
los n-tape automaton M. This automaton can be easily converted to
an oblivious automaton, M', that moves its input hecad in complete
swecps from (left) end marker to (right) end marker (and back) .

In other words, the hcad movements on the input tape are oblivious

of the input and machine configuration. Furthermore, we xnow thzat
for M' there ex@sts a k such that if any input w is accepted tren
w is accepted by M' within k+n® operations, n=|w].

We will now show that a deterministic two-way, log n-tage
transducer can reduce any set A in NL, using an oblivious accegior
M' of A, to topologically sorted representations of acyclic graéhs,
Gw' such that an OUT node of qw can be reached from the IN node iff
w is in A,

For input w, |w|=n, the graph Gw has nodes of the form

(nl,nz,n3,x)
where: nl, 15n15k+nk, counts the sweeps on in?ut w,

ny. 15n25n, indicates the head position on the input tape,

(ad
iy
m

ns, 05n3sk+nk, counts the operations performed since
last head motion on the input tape,
x, xeT*, |[x|<slog n, represents a configuration of ¥M'.
The gr;ph G, has an edge of the form
((nl,nz,n3,x),(ni,ni,ns,x'))
iff in one possible operation M' transforms the state describdes

by (nl,nz,n3,x) to (ni,né,né,x'). The IN node is again the initial

‘configuration of M' on w and the OUT nodes are the nodes with an

accepting state in x.

For input w the two-way, log n-tape transducer enumerates al:i
the nodes of G, in sequence for sweeps, head position, how long it
has computed without moving the head and the machine configuration
and lists the possible edges of Gw' if there is a one step transition

‘(nl"nZ'n:}'x) . (nilnilnélx' ))
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This can be done by an algorithm similar to the one used in the From the study of NP complete problems we know that if P#}?,

proof of Theorem 2. then there exist incomplete languages in NP-P[9]. ©On the other
It is easily seen that G, has the desired property that IN is hand, the known incomplete languages are constructed by cdelayed

conaected to an OUT iff weA and that G, is an acyclic graph, diagonalization and so far no natural languages are known to be

printed in a topologically sorted form. Thus TAGAP is complete incomplete.

for NL, as was to be shown. [ | For 1-NL languages the situation is quite different. Let

A be given by
From the previous result we can see that for all tape bounds
. A={ugv[u,vcz*,ltt and u$v}.
T(n), T(n)2log n, the deterministic and nondeterministic T(n)-tape

bounded computations collapse, i.e., Theorem 5:
TAPE[T(n)] = NTAPE[T(n)], If L{NL then the language A is not complete for 1-NL and is in
if and only if nondeterminism in one-way, log n-tape computations 1-NL but not in 1l-L.

can be eliminated by using deterministic two-way computations. )
. Proof: The language A is seen to be in 1-NL and also in L, bu%,

Corollary 4: 1-NLcL iff NL=L. by Theorem 1, A is not in 1l-L. If A is complete for 1-NL then,
Prcof: NL=L implies that l1-NLgL. by Theorem 2, it is also complete for NL, but then NL=L. ]

Conversely, 1-NLgL implies that TAGAP is in L. Since TAGAP
Non Existence of Sparse Complete Sets

1 corplete for ML we see £hat LENL. ' In this section we show that there cannot exist sparse comciete
The above corollary puts a premium on understanding the power of sets for 1-NL and compare this result with the not yet completely
two-way computations and their relation to one-way, nondeterminist resolved question for NP complete languages. In the last section
computations. It is interesting to recall that the related quesg we discuss the corresponding problem for complete NL problems
about one-way, nondeterministic pushdown aﬁtomata and two-way under two-way, log n-tape reductions.

‘detefninis:ic pushdown automata also remains unsolved: we know A set B, Bel*, is said to be sparse iff there exists a ¥k such
that deterministic two-way pushdown automata can accept languages that for all n

which are not context-frce, but we do not know whether they can IBaf™| s k + n*

accept all context-free languages.



It has been shown [2,5] that the known complete sets in NP

{2nd similarly in PTAPE) are isomorphic under polynomial time
mapzings and therefore the known complete languages are similar

in a very strong technical sense. The existence of sparse complete
languages for NP would prove that not all complete languages for

NP are pelyronmial time isomorphic and therefore there would exist
(as yet undiscovered) radically different types of complete lang-
uvages. Furthermore, it would prove that the necessary information
to solve NP cormplete problems can be condensed into a sparse oracle
tage (which cculd be computed once up to sufficiently long strings
and then used to solve NP problems in deterministic polynomial
.time) [2,5].

At the present we do not know if there exist sparse complete
sets in NP uncer polynomial time reductions. Recently it has been
shown that if a language A over a single letter alphabet, A < a*,
is complete for NP then P = NP [3]. similarly, if there exists a
sparse complete language for CO-NP then P = NP [4]1. Furthermore,
the existence of a sparse complecte language in PTAPE implies that
? = PTAPE ané therefore P = NP = PTAPE {10}. Unfortunately, the
rain problen, whether there can exist sparse NP complete sets
uncder polynorial time reductions without forcing P = NP, remains

nsolved.
. The situation is different for one-way, log n-tape reduc-
tions, for which we show next that there cannot exist sparse

corplete sets in

1-NL, L, NL, P, NP and PTAPE.

Theorem 6: There are no sparse complete sets in 1-NL, L, NL, P,

NP and PTAPE under l-L reductions.

Proof: We will prove that there exist sets in 1-NL which
cannot be reduced to any sparse sets by 1-L reductions. Suppcse,
to the contrary, that TAGAP is reduced to a sparsé set A.‘

For a 1-L transducer let CONFIG be the total configuration
consisting of: the input tape square scanned, the machine state,
work-tape.content and head positipn, and output tape content.

Consider as inputs topologically sorted representations of
dags which consist of nodes labelled IN, 1, 2, ..., n, and OUT.

The edges will be (IN, i) for all i in some set and (j, OUT) for
some j.

After reading the prefix T = {(IN,1) : i e REACH)} the set RTACH
is exactly the set of nodes that can connect IN to OUT. If
REACH # ¢ , then a suitable choice of (j,OUT) can put the grach
into TAGAP. Thus, after reading a string in prefix T, the 1-L reduzet
for TAGAP to A must print a string from prefixes of A on its output
tape.

Since A and PREFIX(A) are sparse sets we sec that any time during
the reduction of a directed tree of size n the reducer is in one
of polynomially many different CONFIG (including the content of the
output tape). On the other hand, there are exponentially many
graphs with descriptions of length n and different REACH sets.
Therefore, there exist two graphs Tl and Tz, with REACH[Tll +

REACH[Tzl, which are mapped by the 1-L transducer onto the same
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total configdration. But then, by adjoining the same appropriate
edge to both of them, connecting some j to the OUT node in Tl and
Tz, we place Tl in TAGAP and Tz not in TAGAP. Since the l-L trans-
ducer naps Tl and T2 onto the same element we see that TAGAP cannot

be reduced to a sparse set. | |

Two-Way Reductions and An Open Problem

It is interesting to note that for 1-L reductions we cannot
have sparse complete sets in 1-NL, L, NL, etc., nor can we have a
complete set A over a single letter, A c a* for NP under polynomial
rc&uctions, if NP # P. On the other hand, so far we have not been
able to show that the existence of a complete set over a single

letter alphabet for NL would imply that
L = NL.

The assumption that there exists a complete set A, A c a* for NL
leads to some strange implications.

We know that if L = NL then the deterministic and nondeter-
‘ ministic computations for larger amounts of tape are also equal.
In particular, NL = L implies that the deterministic and nondeter-
ministic context-sensitive languages are the same, DCSL = NDCSL.

‘On the other hand, we get the following result.
Fact 6: If A, A c a*, is complete for NL, then
DCSL = NDCSL implies that L = NL.
Furthermore, if A, A ¢ a*, is complete for NL then every lang-

uvage in NL can be recognized by a log n-tape automaton which uses

its nondecterminism only after it has scanned the input tape.

-16-

We refer to a two-way, log n-tape automaton which operates
deterministicalfy while it scans its input tape and only uses nca-
deterministic operations (on its log n work tape) after the inzut
has been completely scanned, as a restricted nondeterministic, log
n-tape automaton and designate the family of languages accez+ed Lty

these automata by RNL.

Theorem 7: There exists a complete NL language A, A c a*
iff

RNL = NL.

Proof: If RNL = NL then we can construct from any complete lang-
uage A for NL a complete language A' for NL such that A’ c a*. To
do this, let M be the restricted recognizer fof A. For each ingut
w let w' be the content of the work tapé after M has finished

scanning the input w in a deterministic mode. Let the corzlete

set A', A' c a*, be the set obtained from A by expressing in unary
form all the deterministically computed work tape contents, w',
which we can view as binary representation of integers.

Cleatiy, there is an L reducer of A to A' and since A is a

complete set for NL, it is easily seen that A', A’ c at*, is a

~complete set for NL.

Conversely, let A, A € a*, be a complete set for NL. Then ary
. 4
other set B in NL can be reduced to A and the resulting elerent 27 can

be represented on the transducer's log n tape as a birnary nurber.
After that we simulate on a scparate track of the log n tane the ac-

ceptor of A'(the input ak is simulated by counting up to k) and acceze



iff the simulate; acceptor accepts. Since the above device uses
nonceterminism only after it has finished scanning the input (com-
puting ak), we see that any set in NL is accepted by a restricted
machine. Thus

RNL = LN,

as was to be shown. ]
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