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A common feature of many scalable parallel machines is non-uniform memory
access (NUMA) — data access to local memory is much faster than to non-local
memories. In addition, when a number of remote accesses must be made, it is
usually more efficient to use block transfers of data rather than to use many
small messages. Almost every modern processor is designed with a memory
hierarchy organized into several levels — each smaller and faster than the level
below. In general, the effective use of parallel machines requires careful attention
to the following issues: (1) exposing and exploiting parallelism; (2) accessing
local memory instead of remote memory; (3) using block transfers for remote
accesses; (4) reusing data in the cache; and (5) load balancing.

We have built a system called Pnuma for programming NUMA machines.
We make the following contributions: First, we propose a parallelization scheme
for both parallelism and data locality. Second, we develop a framework based on
non-singular matrices and integer lattice theory for the systematic development

of loop transformations. Program transformations, such as loop restructuring,



are critical to achieving high performance. The framework can be used in par-
allelizing compilers for both coarse-grain and fine-grain parallel architectures.
We have implemented a loop restructuring tool-kit called Lambda based on
this framework. Third, using this loop transformation framework, we develop
algorithms for improving memory locality. The memory locality algorithm re-
structures loop nests to expose opportunities for parallel execution and for block
transfers, while keeping data accesses local wherever possible. Fourth, for cache
locality, we introduce a new simple cache model based on reuse distances, which
is more precise than the existing reuse vector space model. We develop a new
loop transformation technique that optimizes directly on reuse distances, so
that no exhaustive search is necessary. Fifth, we use our loop transformation
framework to improve parallelism as well. We develop a unified algorithm for
parallelism, memory locality and cache locality.

System evaluations have been conducted on a multiprocessor machine with-
out cache (BBN GP1000), a uniprocessor workstation with cache (HP 9000/720)
and a multiprocessor machine with caches (KSR1), using programs from linear

algebra, NASA benchmarks and SIMPLE hydrodynamics benchmark.
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Chapter 1

Introduction

1.1 Motivation

There is a wide range of applications that may find parallel machines useful.
They come from areas such as linear programming, matrix algebra, compu-
tational physics, financial modeling, weather and climate modeling, electro-
magnetic fields simulation, and numerical aerodynamic simulation [CVL8S8,
EA87,MFL192].

Scalable parallel machines are often organized as networks of processor-
memory pairs; examples of such machines are the BBN Butterfly, the Kendall
Square Research KSR1, and multi-computers like the Intel iPSC/i860. These
machines are called non-uniform memory access (NUMA) machines because a
processor can access data in its local memory ten to a thousand times faster
than it can access non-local data. For example, in the Kendall Square Research
7all-cache” machine, accesses to local memory take 18 cycles, while accesses to
non-local memory take 175 cycles [Ken91]. Distributed memory machines like
the Intel iPSC/i860 have even greater non-uniformity in access times because
access to non-local data must be orchestrated through the exchange of mes-
sages [Int91]. If non-local accesses are on the critical path through a program,
making these accesses local through proper data management will speed up
program execution.

Almost every modern processor is designed with a memory hierarchy orga-
nized into several levels — each smaller, faster and more expensive than the level
below. Typically, a cache hit takes only one cycle, while a cache miss takes 8-32
cycles [HP90]. Therefore, for good performance, programs must possess cache
locality.

In general, the effective use of parallel machines requires careful attention
to the following issues.

e Parallelism: Unless the algorithm underlying a program has lots of par-
allelism, it is pointless to run the code on a parallel machine. Moreover,



the compiler must be able to expose and exploit this parallelism.

e Memory Locality: Scalable high-performance machines are built as inter-
connections of processor-memory pairs in which a processor can access
its local memory ten to a thousand times faster than non-local memory.
Therefore, proper data management to maximize local accesses is essen-
tial.

e Block transfers: Communication between processors can be viewed as a
pipelined process in which the start-up time is large compared to the time
to transfer a unit of data. Therefore, when non-local accesses must be
made, it is more efficient to use a single block transfer of data rather than
many individual transfers.

e Cache Locality: Each node of a multiprocessor may have data cache that
is much faster than memory. Cache locality techniques can be applied
to uniprocessors, since almost every modern uniprocessor has a cache.
Programs are required to have data locality to achieve high performance.

e Load balancing: It is important to avoid swamping a few processors with
work when other processors are idle.

1.2 Thesis Overview

We have built a system called Pnuma for programming NUMA machines. Pnuma
takes programs written in FORTRAN extended with data distribution informa-
tion and generates code for parallel machines such as the KSR1 and the BBN
Butterfly. The system can also produce uniprocessor code optimized for cache
locality.

In the traditional approach to parallelization (pioneered by the Cedar project
at lllinois), iterations of the loops in a loop nest are distributed among the pro-
cessors. Synchronization instructions are introduced to take care of dependences
between “iterations”. To reduce the amount of synchronization, transformations
like loop interchange are performed to move parallel loops outermost [MP87,
Pol89]. This ‘outside-in’ strategy is simple but it does not perform any data
management, and may result in many non-local accesses during the execution
of the loop nest.

A different approach to compiling is to generate code ‘inside-out’ using the
so-called ownership rule — the owner of the variable on the left-hand side of an
assignment statement is responsible for computing the expression on the right-
hand side. A processor executes a loop iteration if it has any work to do in
the body for that iteration. Although this strategy takes data mappings into
account, code generation is very complex, compared to the traditional approach,



and the code generated can be very inefficient if the structure of the loop nest
does not match the data distribution [RP89,HKTI1].

This thesis makes the following contributions:

e We propose a parallelization scheme based on both parallelism and data
locality. Loop iterations are distributed according to parallelism and local-
ity. We use data distribution information to drive our loop transformation
strategy. Once a loop nest has been transformed for parallelism and data
locality, we can generate code by distributing outermost parallel loop it-
erations among the processors. Data accesses in the resulting code are
local wherever possible, and non-local accesses are performed using block
transfers if possible.

e We develop a framework based on non-singular matrices and integer lattice
theory for the systematic development of loop transformations. Program
transformations, such as loop restructuring, are critical to achieving high
performance. The main benefit of this framework is that it provides an
approach to tackling the so-called ‘phase-ordering problem’ — for many
problems where there is no obvious order in which the transformations
should be performed, it is often possible to generate a non-singular matrix
from which the desired order of loop transformations can be determined
easily. This framework can be used in parallelizing compilers for MIMD
machines as well as in compilers for fine-grain parallel architectures such
as VLIW and superscalar machines. This framework is more general than
the unimodular loop transformation framework [Ban90,WL91b]. We have
implemented a loop restructuring toolkit called Lambda based on this
framework.

e Using this loop transformation framework, we develop algorithms for im-
proving both memory locality. The memory locality algorithm called ac-
cess normalization restructures loop nests to expose opportunities for par-
allel execution and for block transfers, while keeping data accesses local
wherever possible. Loop restructuring is followed by a code generation
phase that generates parallel code and makes use of block transfers.

e For cache locality, we introduce a new simple cache model based on
reuse distances, which is more precise than the existing reuse vector space
model [WL91a]. We develop a new loop transformation technique that
optimizes directly on reuse distances, so that no exhaustive search is nec-
essary.

e We use our loop transformation framework to improve parallelism as well.
Furthermore, we develop a unified algorithm for parallelism, memory lo-
cality and cache locality.
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Figure 1.1: Pnuma System Overview

Pnuma has been evaluated on a multiprocessor without cache, a uniprocessor
workstation with cache and a multiprocessor with caches. Experiments were
conducted on BBN GP1000, HP 9000/720 and KSR1 using programs from linear
algebra, the NASA benchmarks, and the SIMPLE hydrodynamics benchmark.

The individual modules in the Pnuma system are shown in Figure 1.1. A
front-end from SIGMA [GJG88] is used to generate abstract syntax trees with
data dependence information from FORTRAN programs. Access normalization
matches code and data distributions to exploit both parallelism and memory
locality. As an added bonus, access normalization exposes opportunities for
block transfers of data. For uniprocessor machines, programs are transformed
to improve data reuse. For NUMA architectures, programs are transformed to
improve parallelism and data locality. We generate parallel FORTRAN for the
KSRI1, parallel C code for the BBN Butterfly, and optimized FORTRAN for
uniprocessor, respectively.

The Lambda toolkit is the implementation of our loop transformation theory.



The toolkit has been integrated with Parascope, the parallelizing environment

from Rice University [BP93].

1.3 Organization

The rest of the thesis is organized as follows: in Chapter 2, we describe the
locality-driven code generation scheme. We introduce the loop transformation
theory in Chapter 3.

The transformation construction algorithms for memory locality are devel-
oped in Chapter 4 with the experimental results from a BBN GP1000, which
is a multiprocessor machine without caches. Then we develop a cache local-
ity model, and optimization algorithms in Chapter 5 with experimental results
from an HP 9000/720, which is a uniprocessor with data cache. The algorithm
to improve parallelism, memory and cache locality is presented in Chapter 6
with experimental results from a KSR1, which is a multiprocessor machine with
caches.

We conclude, and point out future work in Chapter 7. A brief description
of the Pnuma compiler is included in Appendix A, and the implementation
of the loop transformation framework called the Lambda toolkit is included in
Appendix B.



Chapter 2

Generation of Parallel Code

2.1 Introduction

There are two ways of generating parallel code from a sequential program. One
way is control-driven, i.e. distribute iterations of a loop among the processors.
If the loop is a DOALL loop, then no synchronization is needed. Otherwise,
synchronization instructions are introduced to take care of dependences carried
by this loop, called a DOACROSS loop [MP87,Pol89]. This approach is simple,
and has a clean process decomposition, but since it was designed for uniform
memory access machines, it does not take data locality into account.

A different approach is data-driven, i.e. generate code using the ownership
rule — the owner of the variable on the left-hand of an assignment statement
is responsible for computing the expression on the right-hand side. A processor
executes a loop iteration if it has any work to do in the body for that iteration.
Although this strategy takes data mappings into account, code generation is
very complex, compared to the traditional approach, and the code generated
can be very inefficient if the structure of the loop nest does not match the data
distribution [RP89,HKT91].

Our approach combines the simplicity of the control-driven approach and
the locality sensitivity of the data-driven approach.

2.2 Locality-driven Loop Parallelization

In this section, we first define the data distributions we support, then present
our parallelization scheme.

2.2.1 Data Distribution

Our compiler accepts programs written in FORTRAN extended with data dis-
tribution declarations that specify how arrays are to be distributed across the



local memories of the machine. We support most of the data distributions com-
monly used by programmers of NUMA machines, such as wrapped and blocked
column and row distributions. In a wrapped column distribution, the columns
of an array are distributed in a round-robin fashion to the processors. If P is
the number of processors, then processor 0 gets columns 0, P, 2P and so on,
while processor 1 gets columns 1, P+1, 2P+1, etc. Most of the examples in
this paper use a wrapped column distribution. Blocked column distribution is
similar, except that a processor gets a contiguous set of columns.
Data distributions can be specified precisely using a distribution function.

Definition 2.2.1 A distribution function is a function from array indices to
integers between 0 and P-1, where P is the number of processors in the machine.
An array dimension is a distribution dimension, if that dimension is used in the
distribution function for the array. The expression in a distribution dimension
is called distribution expression.

For example, the distribution function for the wrapped column distribution
of a two dimensional array is Wa(¢,j) = j mod P, the second dimension of the
array is a distribution dimension, and the expression in the second dimension
is the distribution expression.

2.2.2 Computing Distributed Loops
Our scheme parallelizes the outermost parallel loops that carry data locality.

Definition 2.2.2 A loop carries a distribution expression e, if € is a function
uniquely defined by the loop index variable.

For example, in a loop nest with loops ¢ and j, the distribution expression
2 + 7 is carried by loop 7 but not loop 7, since ¢ is a loop invariant in loop j.

A loop may carry multiple expressions. We use a heuristic to decide a unique
expression for a loop, and this expression is used in section 2.3 to generate the
parallel code if the loop is decided to be parallelized.

The algorithm in Figure 2.2 computes the distribution expressions carried
by loops in a loop nest. Let J be the loop index vector of the loop nest. The
Access set is a set of distribution expressions with three attributes: level, weight,
block. level is the nesting level of the loops; weight is the number of occurrences;
and block indicates whether this is a wrapped or blocked distribution. If ¢
is a distribution expression, then t.[,t.w and t.b to represent the attributes
level, weight and block respectively. Two expressions can be compared by the
lexicographical order of (¢.[,t.w). Two set operations, union (&) and intersection
(®), on access sets are defined in Figure 2.1.



S1W Sy ={t:te Sl,te Sytbl =tb2}.

t.b =1.bl;
o if (¢.11 >1t.02) tl=1tll,t.w=twl;
o if (¢.11 <t.2) t.l=1tI2,t.w=t.w2;

o if (t.11=1t.02)t.I=1tll,t.w=twl+tw2

S1® Sy ={t:teS,te Sy tbl =tb2}.
o t.b=t.bl;
o if (t.011>t.12) t.l=tIl,t.w=t.wl;
o if (¢.I1 < t.2) t.l=t12,t.w = t.w2;

o if (t.11 =1.02) t.I=1tll,t.w= maz(t.wl, t.w2);

Figure 2.1: Access Set Operators

Access(x) =

Access(Al..., f(J),...]) = { f(J) with level=0, weight=1 }
Access(Expl op Exp2) = Access(Expl) W Access(Exp2)
Access(Var := Exp) = Access(Exp) W Access(Var)

Access(S1; S2) = Access(S1) W Access(S2)

Access(if Exp then S1 else S2) = Access(Exp) W (Access(S1) @ Access(S2))
Access(for i=l,u do S) = choose the expression carried by i-loop

with the highest (¢.[,t.w) from Access(S);
return Access(S) deleting expressions
carried by the loop.

Figure 2.2: Computing Distribution Expressions




fori=1 u for i =1, u, step s
(a) unit step (d) non-unit step
fori:[l_Tp]*P—l—p, for i =1+ ng*s,
Uu, u,
step P step P/(P,s) * s

(b) task p for wrapped distribution (e) task p for wrapped distribution

for i = max(l, p* S), for i = max(l, p* S),
min(u, (p+1)*S —1) min(u, (p+1)*S —1),
step s

(c) task p for blocked distribution  (f) task p for blocked distribution

Figure 2.3: Distributing loops among processors

2.3 Localizing Data Accesses

After the distribution expressions are computed, we must generate the code
that will run on each processor. We generate the same code for each processor,
but this code is parameterized by the processor number so that each processor
does only the work for which it is responsible.

First, consider a loop with step size 1 (Figure 2.3(a)). For a wrapped dis-
tribution, processor p owns the data segments p, p+ P, p+ 2P, .. etc, where a
data segment is a column in the wrapped column distribution or a row in the
wrapped row distribution. Since the iterations that access the data segments
on processor p are assigned to processor p, it is easy to verify that the iterations
executed by processor p are the ones shown in Figure 2.3(b). The lower bound
[Z—pr * P + p is the first iteration between [ and u that belongs to process p. For
a blocked mapping, the corresponding iterations are shown in Figure 2.3(c).

When the step size is not 1 (Figure 2.3(d)), we must solve a linear congruence
for the wrapped distribution. Assume that the step size is positive, since the
solution can be easily extended to handle the case when the step size is negative.
The iterations can be represented by ¢« = [ 4+ n * s where n is a parameter with
integer values. The iterations that belong to process p are those satisfying the
equation [ + n*s =p (mod P). Using results from number theory, we know
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Input: An equationl+n*s=p (mod P).
Output: A special solution 0 < ng < P.

Algorithm Asolution(l, s, p, P : Integer) : Integer

begin
if ged(s, P) doesn’t divide (p-l) then no solution;

sp = smod P;
co = (p—1) mod P;
/% solve nx sp =cop (mod P) */
¢ = co;
while ( so doesn’t divide ¢ )
c=c+ F;
no = ¢/so;
return(ng);
end

Figure 2.4: Computing a special solution

that the when the g.c.d. of s and P, written as (s, P), divides ({ —p), there is an
infinite number of solutions in the form of n = ng+t* P/(s, P) for some integer
solution 0 < ng < P/(s, P) and integer free variable t. However, only certain
t’s are solutions for the iterations within the loop bounds. Since [ <17 < u and
i =14 (no+t*P/(s,P))*s, the range of ¢ is [ﬁ%ﬂ =0<t< L%{;—]@%J
Therefore the bounds of the loop for processor p are in Figure 2.3(e). The
remaining question is how to compute the special solution ng. This can be done
by the algorithm in Figure 2.4. The equation sogn = ¢p (mod P) has the same
solutions as [+ s*n = p (mod P). If there is any solution to the equation
son = ¢o (mod P) then there is unique solution within [0, P/(s, P)) [HWT79].
The algorithm finds that solution. For the blocked distribution, the resulting
bounds of the loop for processor p are shown in Figure 2.3(f).

For multi-dimensional block distribution, we need to distribute multiple
loops (loop tiling). For example, an n x n array A has a subblock distribu-
tion where each subblock is of size b x b. Imagine that the processor names are
also two dimensional. Then the element A[i, ] is owned by processor (i/b, j/b).
If A has more complicated subscripts or the subscripts are not the loop indices
of the two outermost loops, access normalization will attempt to normalize the
reference to Afu,v] with v and v as the outermost loops.
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Given this assignment of iterations to processors, we must generate synchro-
nization instructions to take care of dependences carried by the outermost loop,
and insert block transfers wherever possible. These steps are routine [ZC90],
and are omitted.

2.4 Discussion and Related Work

In this chapter, we have discussed the locality driven loop scheduling scheme.

Previous work has been focused on trying load balancing and reducing syn-
chronization. A simple scheduling scheme is the dynamic self scheduling scheme
proposed by Tang and Yew [TY86]. A central work queue of iterations is main-
tained. Idle processors will remove iterations from the work queue until it is
empty. This scheme achieves very good load balancing, since the granularity of
the work unit is one iteration. However, the overhead of maintaining the central
queue is high. Various other schemes have been proposed to improve upon it.
Guided self-scheduling by Polychonopoulos [Pol88] schedules a chuck of itera-
tions at a time, where the chuck size depends on the number of iterations left in
the queue and the total number of processors. Other scheduling algorithms in-
clude Adaptive guided scheduling by Eager and Zahorjan [EZ92]. Unfortunately,
none of the above algorithms address data locality. The tradeoff between load
balancing and locality has been studied by Markatos and LeBlanc [ML92], who
showed that locality is more important than load balancing.



Chapter 3

A Loop Transformation Theory

3.1 Introduction

The importance of loop transformations in generating good code for vector and
parallel machines is widely recognized [PW86,AK87,Wol89]. A recent advance
in this area is the use of unimodular matrices to model three important loop
transformations — permutation, skewing and reversal. Unimodular matrices
have integer entries and a determinant that is 1 or -1; therefore, they are closed
under matrix product. It follows that any sequence of these loop transformations
can also be represented as a unimodular matrix; conversely, any unimodular ma-
trix can be interpreted as representing a sequence of permutation, skewing and
reversal transformations. The main benefit of the unimodular abstraction is
that it provides an approach to tackling the so-called ‘phase-ordering problem’
— for many problems where there is no obvious order in which the transforma-
tions should be performed, it is often possible to generate a unimodular matrix
from which the desired order of loop transformations can be determined eas-
ily. Banerjee has used this framework to address the problem of generating
parallel loops [Ban90]; Wolf and Lam have used this framework extensively to
address both this problem and that of promoting data reuse for improving cache
performance [WL91a, WLI1D].

In this chapter, we propose to use non-singular matrices, rather than uni-
modular matrices, as a foundation for modeling loop transformations. Non-
singular matrices include unimodular matrices as a special case, and permit
us to include a new transformation called loop scaling in this framework. Sur-
prisingly, code generation is somewhat more intricate for non-singular matrices
than for unimodular matrices, and it is the main concern of this chapter.

Another advantage of our approach is that it is easier to generate non-
singular matrices than it is to generate unimodular matrices. A typical al-
gorithm that uses the matrix framework, such as the generation of parallel
outermost loops [Ban90] or the exploitation of locality in NUMA architec-

12
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tures [LP93a], determines the first few rows of the matrix, and then ‘pads out’
the remaining rows to generate a matrix that represents a legal transformation.
It is easier to generate a non-singular matrix than a unimodular matrix since
there are fewer constraints to be satisfied, and in Chapter 4, we give a comple-
tion procedure that produces a non-singular matrix, given the first few rows.
This completion procedure is non-trivial since we must ensure that the result
matrix respects the dependencies of the loop nest.

The rest of the chapter is organized as follows. In Section 3.2, we define
the problem formally, outline our loop restructuring framework and discuss the
difficulties in generating the transformed loop nest. In Section 3.3, we sketch
the code generation technique for the case of unimodular matrices, and discuss
why it cannot be used directly for non-singular matrices. In Section 3.4, we
solve the code generation problem for non-singular matrices. The key technical
result is that a non-singular matrix can be decomposed into the product of
a lower triangular matrix with positive diagonal elements and a unimodular
matrix. Using these two matrices, we generate the transformed loop nest. The
last section discusses related work.

3.2 Linear Loop Transformations

In this section, we introduce integer lattices as a model of the iteration space of
loops, and non-singular matrices as a model of loop transformations.

3.2.1 Iteration Spaces and Integer Lattices

Consider the loop nest in Figure 3.1(a) whose iteration space is shown in Fig-
ure 3.1(c). The points in the iteration space of this loop can be modeled as
integer vectors in the two dimensional space Z? , where Z is the set of integers.
For example, the iteration (i = 2, j = 3) can be represented by the vector (2, 3).
In general, points in the iteration space of a loop nest of depth n can be repre-
sented by integer vectors from the space Z" . It is convenient to use the theory
of integer lattices [Cash9] and view the points in the iteration space as being
generated by integral linear combinations of a set of basis vectors. For example,
it is easy to see that the points in the iteration space shown in Figure 3.1(c)

can be generated by integral linear combinations of two integer vectors ( (IJ )

and ( (1) ) Similarly, the iteration space in Figure 3.1(d) is generated by linear

combinations of the integer vectors ( _12 ) and ( 11 )

For future reference, we define these concepts more precisely.

Definition 3.2.1 Let ay,aq, ..., a,;, be a set of linearly independent integer vec-
tors. The set A = {Aja; + doas + ... + Apam | A1, ..., Ay € Z} is called an

integer lattice generated by the basis ay, a9, ..., ap.
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We will call an integer matrix a basis matriz, if its columns are a basis.

The loop nest in Figure 3.1(a) has the property that every integer point
within the loop bounds is a point in the iteration space of the loop nest. We
will call this a dense iteration space. By contrast, Figure 3.1(d) shows a sparse
iteration space because the integer point (2, 3), for example, is within the loop
bounds but does not represent a point in the iteration space of the loop. The
notion of dense and sparse can be formally defined as follows.

Definition 3.2.2 An iteration space is dense, if for any two integer vectors vy
and vy representing loop iterations, any integer vector vz = Avy + (1 — X)vy for
some 0 < A <1 also represents a loop iteration. An iteration space is sparse if
it is not dense.

The significance of this classification of iterations spaces is that it is consid-
erably more difficult to generate code for a loop nest if the iteration space is
sparse, than if it is dense, as we will show in Section 3.3.

Let €; be an n-dimensional vector with 1 in the ith entry and 0 elsewhere.

Theorem 3.2.1 The integer vectors from a n-dimensional dense iteration space
form an integer lattice with the basis €1, eg,... €y.

Proof: Obvious. O

3.2.2 Loop Transformations

We will focus on transformations that can be represented by linear, one-to-one
mappings from the iteration space of the source program to the iteration space of
the target program. This class of transformations includes permutation, skewing
and reversal, as well as a new transformation called scaling. Examples of these
transformations are shown in Figure 3.2. These transformations are standard
except for scaling which corresponds to replacing a loop iteration variable by
an integer multiple of it. Loop scaling gives the ability to transform sparse
iteration spaces, which is important in iteration space tiling. For example, if
a two dimensional iteration space is partitioned into 2 x 2 tiles, each tile can
be represented by its bottom-left corner. The space of these representatives is
a sparse space, and it can be viewed as the result of loop scaling by a factor
of 2. Loop scaling is also useful in access normalization [LP92] which is a loop
transformation for improving data locality.

Linear, one-to-one mappings between iteration spaces can be modeled using
integer, non-singular matrices. The reader can verify that the matrices shown
in Figure 3.2 perform the desired mappings from the source iteration space
to the target iteration space, and are integer and non-singular. Similarly, in
Figure 3.1(d), the points in the target iteration space are the image of the source

iteration space points under the integer, non-singular matrix 7' = ( 2 )
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for v = -2, 10 step 2

fori=1,3 for v =—5 + 3maz(1, [%;;U,
forj=1,3 _u 4 3min(3, | E22))
L o 2 N
A[43-2143, i+j] = j; step 3

Alu+3, v] = (u + 2v)/6;

(a) The original code (b) The target code
J
3
2 o
1
1 2 3 1

9211 12345678910u

(c) The original iteration space (d) The target iteration space

—2<u<10
1< ¢ <3 maz((u+6)/4,(6 —u)/2) <w
1< 57 <3 v < min((u+18)/4,(18 —u)/2)
(e) Loop Bounds (f) Image of Bounds

Figure 3.1: The working example
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fori=1,3
forg=1,3
Afi, 2] =j

The original loop nest

foru=1 3
0 1) forv=1 3
Afv, 2u] = u

(a) loop interchange

forv=-3 -1

1 0 ) foru=13
Alu, -2v] = -v

(b) loop reversal

Figure 3.2: Primitive Transformations

10 foru=1 3
11 ) for v =u+1, u+3
Alu, 2(v-u)] = v-u
(c) loop skewing
foru=1 3
ég) forv=2 6 2

Alu, v] = v/2

(d) loop scaling

Figure 3.3: Primitive Transformations (Cont.)
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Definition 3.2.3 A loop transformation is called a A-transformation if it can
be modeled by an integer non-singular matrix.

Performing a sequence of transformations corresponds to composing the
mappings between iteration spaces, which, in turn, can be modeled as the prod-
uct of the matrices representing the individual transformations. Since the prod-
uct of any number of integer, non-singular matrices is integer and non-singular,
it follows that the set of A-transformations is closed under composition.

Conversely, we can show that the transformation represented by any integer
non-singular matrix can be viewed as a composition of the four basic transfor-
mations. More precisely, we have the following result.

Theorem 3.2.2 The transformation represented by any integer non-singular
matriz can be viewed as a composition of permutation, skewing, reversal and
scaling.

Proof: By applying the appropriate elementary row and column operations,
an integer non-singular can be reduced to a diagonal matrix. The elementary
operations can be represented by multiplying interchange, reversal and skewing
matrices on the left hand side and on the right hand side the non-singular matrix.
The diagonal matrix can be further reduced to a product of scaling matrices. O

As mentioned earlier, unimodular transformations are the subset of non-
singular transformations without loop scaling. An important property of uni-
modular transformations is the following.

Theorem 3.2.3 Unimodular transformations map a dense (sparse) iteration
space to another dense (sparse) iteration space.

Proof: The lattice remains the same, since only the basis is changed. O

3.2.3 Generating Code

To generate code for the target loop nest, we must generate DO-loops that
scan the points of the target iteration space in lexicographic order, and replace
occurences in the loop body of the old loop indices with the new loop indices.
The first problem is non-trivial and is discussed in Sections 3.3 and 3.4. On the
other hand, the problem of transforming the loop body is relatively straight-
forward and we sketch a solution here for completeness. If vectors S; and S,
represent the source and target iteration variables, notice that S; = 7'-15;. This
is just a set of equations expressing the old subscripts in terms of the new ones,
and it can be used to eliminate occurrences of the source iteration variables in
the body of the loop in favor of the new ones. For our running example, this
set of equations is the following:
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()= ey ()

The transformed loop body is shown in Figure 3.1(b).

Note that 7715, will always be an integer point even though 7~! may be a
rational matrix; therefore, expressions like u/2 and (v + 2v)/6 in Figure 3.1(b)
should be strength reduced.

3.3 Difficulties in Generating Code

The difficulty in generating DO-loops to scan the target iteration space is that
a A-transformation, in general, does not preserve lexicographic order (two iter-
ations may be performed in one order in the source loop nest but in a different
order in the target loop nest), so there is no obvious way to use the source loop
nest to generate code. As a first attempt, we can find the image of the origi-
nal bounds (the four inclined lines in Figure 3.1(d) for the running example),
and then generate a loop nest that visits in lexicographical order all the integer
points in the area bounded by the image. In this section, we show that this
approach works well when the target iteration space is dense; sparse iteration
spaces will require additional machinery.

3.3.1 Computing Image of Bounds

There are many ways to compute the image of the original bounds; here, we
describe a simple method that uses Fourier-Motzkin elimination.

Given a non-singular matrix representing the transformation, the image
bounds for the target loop can be computed using the inverse of the transforma-
tion. Let S; = (i1,..,in)" and S; = (j1,.., jn)" be source and target loop indices
respectively under the non-singular transformation 7'. Let the loop bounds for
loop ix be an affine function of loop indices 11, ..¢4_1). Each lower bound is in
the form of ajit1 + .. + ajk_1)¢(k—1) T bj < 15. There may be many such lower
bounds whose maximum is the lower bound for 7. Similarly for upper bounds,
there may be many affine bounds whose minimum is the upper bound for .
The bounds in the loop nest can be written in the following matrix form:

LpSi + b < [;S; and  1,S; < UpS; + by

where Ly(Up) is an my X n (my X n) matrix, bj(by) is a vector of length my(my,).
I;(1y) is an identity matrix with some of its rows replicated to an m;xn (my xn)
matrix. Each row of Ly (Up) plus the corresponding row from by(b,) form one
lower(upper) bound.

Then the source iteration space is bounded by the following inequalities:
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AS; < b, where A:(Lb_[l ),b:(_bl)

The bounds for S; are found by replacing S; by 7'71S;.

AT™1S; <b (3.1)

These inequalities can not be used directly as loop bounds, since the bounds
for a loop can only be a function of outer loop indices. We use the Fourier-
Motzkin elimination algorithm [DET73] suggested in [AI91] to compute the suit-
able bounds. The Fourier-Motzkin algorithm may introduce redundant con-
straints, but these may be eliminated [AI91].

The Fourier-Motzkin algorithm is quite simple. Consider a system of linear
inequalities

Yi—raijry <bj, 1= (1,..,m).

This system can be partitioned into three sets of inequalities according to
the sign of the coefficient of z,,.

rn, < Di(T), 1=(1,..,p)
r, > EiT), 7=(1,..,9)
0 < F(m), k=(1,.,r

where Dj, Ej and Fj; are linear functions of T = (21, ..2(,,_1))-
Now, we can eliminate z, from the system to get the following reduced
system.

Ej(T)
0

IAIA

This process can be repeated until there is exactly one variable left. The
bounds for this variable can be determined from inspection of the reduced sys-
tem of equations.

Going back to our problem, consider the system of inequalities for S;. The
loop bounds for j,, can be computed by solving the inequalities for j,. The
bounds for ji can be computed by first eliminating j41), .-Jn from the system
using Fourier-Motzkin elimination, then solving for j; etc.

Consider the working example. The iteration space (Figure 3.1(c)) is rep-
resented by the integer vectors bounded by the system of linear inequalities in



20

T

—1<p<Hh
maz (1, [E1]) < ¢
g < min(3, [2F2])

(a) Image of Bounds (b) Exact Bounds

Figure 3.4: Dense Iteration Space
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Figure 3.1(e). By computing 7, j in terms of u,v, replacing ¢, by w,v in the
inequalities and using the Fourier-Motzkin elimination, we have the image of
the source bounds (Figure 3.1(f)). Unfortunately, we cannot use these inequal-
ities directly to generate code for the target loop nest. There are two problems.
First, the lower and upper bounds may not even be integers — for example,
when u = 4, the lower bound for v is % Furthermore, even though the source
iteration space is dense, the target iteration space is sparse. This means that
we must find some way to skip over points (like (2,3) in our example) that are
not in the iteration space of the target loop nest.

3.3.2 Dense Spaces

For the special case when the target iteration space is dense (such as when
a unimodular matrix is used to transform a loop nest with a dense iteration
space (Theorem 3.2.3)), both these problems can be solved easily. If the target
iteration space is dense, there is no need to skip over points that are not in
the iteration space of the target loop nest. Furthermore, we can use floor and
ceiling operations to get the nearest integers within the image bounds.

For example, consider the unimodular transformation U = ( -2 ) on the

()= 6)

For the source bounds in Figure 3.1(e), we can compute the image bounds
shown in Figure 3.4(a). Since the target space is dense, we can use the ceiling

working example.

and floor operations to compute the exact bounds shown in Figure 3.4(b).

3.3.3 Discussion

For sparse iterations spaces, the ceiling and floor operations cannot solve the
problem. For the example in Figure 3.1(d), (4, 3) is the closest integer point to
the boundary of v when u = 4, but the starting point of the target loop nest
is (4, 4). One possibility is to use conditional tests in the loop body to avoid
executing the loop body at points that do not correspond to points in the target
iteration space. This approach has been used by other researchers [Lu91], but it
involves visiting integer points that are not necessary; moreover, the conditional
tests are expensive.

3.4 Algorithm for Code Generation

The key insight to solving the general problem is that an integer non-singular
matrix T' can be decomposed into the product of a lower triangular matrix H
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with positive diagonal elements and a unimodular matrix . This decomposi-
tion is related to the Hermite normal form of the transformation matrix [Sch86].
We show that if U is used to transform the program, the resulting program ex-
ecutes iterations in the same lexicographic order as the program obtained by
using 7" as the transformation matrix. We also show that the diagonal elements
of H correspond to loop step sizes. Putting these observations together gives
an algorithm that generates efficient code for the general case of non-singular
matrices.

3.4.1 Auxiliary Iteration Space

By applying column operations to an integer non-singular matrix 7', we can
reduce it to an integer lower triangular matrix with positive diagonal elements.
This lower triangular matrix is related to the Hermite normal form [Sch86] of the
matrix 7. It follows that 7' can be written as the product of a lower triangular
matrix H with positive diagonal elements and a unimodular matrix U that
represents the composition of the column operations. This decomposition is not
unique, but for our purpose, any such decomposition is adequate; to avoid being
pedantic, we will abuse terminology and refer to any such H as the Hermite
form of the transformation matrix 7'. Figure 3.5 shows how to compute H and
U.

Let 7' = HU, and let the source space be \S;, and the target space be S;.
Define S, = US;. Then,

S;=T5=HUS; = HS,

Definition 3.4.1 The iteration space Sy is called the auziliary iteration space
of S; with respect to the decomposition HU.

Theorem 3.4.1 The auxiliary iteration space is a dense space if the source
space is dense.

Proof: Follows from Theorem 3.2.3 since U is unimodular. O

Therefore the exact loop bounds of the auxiliary space can be computed
using the algorithm in Section 3.3.

An important property of the auxiliary space is that it executes iterations in
the same lexicographic order as the target iteration space. To see this, consider
our running example.

r=( ) = (20) e=()
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Input: An n x n integer matriz T.
Output: The Hermite form H of T and a unimodular matriz U.

Algorithm Hermite

begin
U =1, where I is an n X n identity matriz.
Fori=1tondo
/* Consider the submatriz Tfi:n, i:n] */
While Tfi, i+1:n] # 0 do
Apply elementary column operations U. to make Ti, if
positive and T[i, i+1:n] zero.

U=U'U
End-While
End-For
H=T

end

Figure 3.5: Computing the Hermite form
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H is lower triangular with positive diagonal elements, and U is unimodular.
Consider using U to transform the source program.

(1))

This is the unimodular transformation considered in Figure 3.4 in Sec-
tion 3.3, and the bounds of the auxiliary iteration space are shown in Fig-
ure 3.4(b). To develop the readers insight into the relationship between the
source, auxiliary and target iteration spaces, the mappings between these spaces
are shown below — notice that both (p,q) and (u,v) are traversed in the
same lexicographical order, but that this order is different from that of the
source. This can also be seen by comparing the iteration space diagrams in

Figures 3.1(d) and 3.4.
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To show that this property is true in general, let < be the lexicographical
order.

Theorem 3.4.2 [f the auxiliary iteration space is traversed in the lexicograph-
ical order, then the target iteration space is also traversed in the lexicographical
order.

Proof: S; = HS, where H is a lower triangular matrix with positive diagonal.

Let k*—i =< k_; be two iterations in the auxiliary iteration space, and d_i = k_;—k_i be
the distance of the two vectors. Clearly d; > 0. To see that the lexicographical
order is preserved, consider the new distance ds.

dy = jy — j1 = Hky — Hky = Hd,

If d_i( ), the ith element of dl, is the leadmg nonzero, dl( ) must be positive,
since d1 > 0. Then the leadmg nonzero of dg is h”dl( ), which is also positive.
Therefore dy = 0, and j; < j2. O
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This result yields a technique for code generation - decompose T' into HU,
generate the DO-loops for traversing the auxiliary space using the technique of
Section 3.3 (or any other technique that works for unimodular matrices) and
compute the target iteration space variables in the loop body. Using the bounds
for the auxiliary space computed earlier, the target code for our running example
is the following:

forp=-1,5

for q = mfw(f [E34]), min(3, |252])
(%)
2v)/6;

Although this code avoids making conditional tests, it can be improved
considerably. Notice that the computation of u is invariant in the inner loop;
moreover, u is a linear function of the outer loop index and it can be strength
reduced. Similarly, v is a linear function of p and ¢ and it can be strength
reduced. Although such optimizations can be left to a later optimization phase,
it is preferable to use the induction variables u and v directly as the loop control

u

—1

A[u—/—S’ v] = ; +

variables instead of p and q. We show how to do this next.

3.4.2 Target Iteration Space

Since H is lower triangular, it is easy to convert the bounds in the auxiliary
space into bounds in the target space. For our example, the relation between
these two spaces is given by the following equation:

()=(25)0)

From the first equation, it follows that the bounds for u are the bounds of
p multiplied by 2. Therefore, the bounds for u are the following:

—2<u<10

The bounds for v are the bounds of ¢ multiplied by 3 with the offset —p
which is —5. Therefore, the bounds for v are the following:

<

. u u 3
5+ 3maa(1, [20—1) S v < —5 + 3min(3, [ 25))

These bounds on u are constant, and the bounds on v depend only on wu.
Therefore, these bounds can be used directly to construct the loop nest, as is

N

shown in Figure 3.1(b). The general algorithm is given in Figure 3.6.
The proof of correctness of this algorithm depends on the following lemma
and the fact that the diagonal elements of H are positive, and is omitted.
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Input: The Hermite form H, and the bounds of the auziliary space Sy
Output: The bounds of the target space S;.

Algorithm Bounds(l¥, u*) : (17, u?)

begin
Sk = H_ISJ'
Fori=1tondo
/* Compute the offset by replacing ki, .., ki—1) by j1, - Ji-1) ¥/
vi = hitkt + .+ hii_y k- = fi(i1s - da—1))

/* Compute lower bound with ki, .., ki_yy in [k
replaced by ji, .. ji—1) using Sk = H™LS;. */

l‘g =v; + hu’lf

/* Compute upper bound with ki, .., k_yy in ul
replaced by ji, .. jii—1) using Sk = H™1S;. */

w! = vj + hiuf

End-For
end

Figure 3.6: Computing the loop bounds
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Lemma 3.4.1 Let P1 = (j1,...,Jn) be a point in the target iteration space that
is the image of a point P2 = (k1,...,kn) in the auziliary space. Any co-ordinate
7i can be written as a function of ky,...,k;; similarly, k; can be written as a
function of j1, ..., Ji.

Proof: Follows from the observation that any leading principal sub-matrix
H[1l :2,1:1] of H is lower triangular and non-singular, and that the inverse of
a lower triangular matrix is also lower triangular [GVL89]. O

To complete the generation of code, we need to skip over points within the
bounds that are not in the target iteration space. This would be difficult to do
if these points appeared in some irregular pattern within the loop nest bounds;
fortunately, we can show that this is not the case. In fact, we show that it
suffices to use DO-loops with constant step sizes, and that these step sizes are
the integers in the diagonal of the Hermite form.

For the working example, H has the diagonal [2,3], which means that the
loop step is 2 for the outer loop, and 3 for the inner loop. More generally, we
have the following theorem.

Theorem 3.4.3 The positive integers on the diagonal of the Hermite form are
the gaps in each dimension.

Proof: Consider two points P1 = (ky, k2, ...k, k(¢+1)---kn) and P2 = (ky1, ko, .. .ki+
1, a(z’+1)---an) in the auxiliary space which have the same co-ordinates in the first
¢ — 1 dimensions. Let P3 and P4 be their images in the target space. From
Lemma 3.4.1, it follows that P3 and P4 have the same co-ordinate for the first
(¢ — 1) dimensions; moreover, their difference in the ith dimension is h;; since
H is lower triangular. O

Hence a loop nest can be constructed to traverse the target space directly.
For our running example, the target program is the following:

foruw = -2, 10 step 2
for v =—5 + 3maz(1, [%HU; —5 + Imin(3, L%%J) step 3
Afu+3,0] = (u+2v)/6;

Notice the auxiliary space is used only to compute the bounds for the target
space.

3.4.3 Sparse Source Iteration Space

So far, we have considered only the case when the source iteration space is dense.
Our technique also works when the source iteration S; is sparse as long as the
source space is reqular. A reqular sparse space is one that can be represented



28

by an integer lattice A;. The base space S is always dense. The lattice basis A;
can be thought of as a A-transformation from S to S;. The bounds for Sy can
be computed by the Fourier-Motzkin elimination. Then any A-transformation
T on S; can be considered as a new A-trasnformation T'A; on the base space Sy,
since A-transformations are closed under composition.

This observation lets us handle source loops in which lower bounds are affine
functions of loop indices, upper bounds are piece-wise affine functions of loop
indices and step sizes are constant, as shown below.

Theorem 3.4.4 The following loop nest with constant steps is reqular.

for 11 = 0 to ub; step s1
for 19 = ag111 to uby step s9

for 1,, = an1t1 + anoto + ... + an(n—1)’in—1 to uby, step sy

Proof: Without loss of generality, the loop nest can be shifted so that 0is a
loop point. This just changes the origin of the lattice. It is easy to show that
the triangular matrix S whose jth row comes from the coefficients of the lower
bound and the loop step of the jth loop forms a basis for the lattice of the loop

points.
S1 0 .0
g a2151 89 .0
Upl1sS1 An252 . Snp

3.5 Data Dependences

Not every A-transformation is valid with respect to the data dependencies in
the original loop nest. Data dependencies can be represented by distance or
direction vectors that are lexicographically positive. For example, a distance
vector d = ( : ) means that the iteration (¢, j) depends on the iteration (i — 3,

j—2)

3.5.1 A Dependence Algebra

In this section, we define an algebra on data dependence vectors.

There are three kinds of data dependences between statements. A data flow-
dependence occurs when a value computed in one statement is used in another
statement. A data anti-dependence occurs when a variable used in one statement
before being reassigned by another statement. A data output-dependence occurs
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Table for Addition Table for Multiplication
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Figure 3.7: Operators for Directions

when a variable is computed before being recomputed by another statement.
When the exact distance is unknown at compile-time, direction vectors provide
a conservative approximation.

Definition 3.5.1 A distance is an integer, and a direction can be one of “<”,
¢¢>)7 7)7:777 LL<:77’ L¢>:II7 L£<>77 and 44*77.

For instances, “<” means that the distance is positive; “>” negative, and
“x” unknown.

A data dependence in the loop nest of depth n is represented by a vector

of distances or directions. For example, the distance vector ( o | tell us that
1

the dependence is between successive iterations of the innermost loop. A de-
pendence vector has the property that its leading non-zero is always positive;
a legal transformation must preserve this property for each dependence, since
the source of the dependence must be executed before its destination. More
information on data dependences and techniques of dependence analysis can be
found in [Ban88]. A direction vector can be (< > =) or (= < %), as long as the
leading nonzero is positive.

Definition 3.5.2 A dependence matriz is a matrix whose columns are depen-
dence vectors.

In order to describe the computation over these direction symbols, we define
operations similar to addition and multiplication on integers. In Figure 3.7, let
¢ and a be any constant, p be a positive and n be a negative.
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3.5.2 Legality of A-transformations

Once we have the dependence algebra, the legality test for a given non-singular
transformation 7' is quite simple. For a dependence vector d in the original loop
nest, T'd is the dependence vector in the new iteration space, since T' is linear.
A transformation T'is legal if and only if 7'd is lexicographically positive.

3.6 Discussion and Related Work

We have introduced a loop transformation framework called A-transformations
based on integer non-singular matrices. FEfficient code can be generated for
target loop nests using integer lattice theory. We have also presented a sim-
ple completion algorithm that generates correct transformations from partial
transformations.

The use of compound loop transformations to parallelize loop nests goes
back to Lamport’s hyperplane method [Lam74]. These compound transforma-
tions can be viewed as compositions of loop interchange, skewing and reversal.
Unimodular matrices were used by Dowling to parallelize loop nests [Dow90].
The unimodular framework was further developed by Banerjee [Ban90], and
Wolf and Lam [WL91b]. Ancourt and Irigoin [AI91] have developed algorithms
for scanning polyhedra using loop nests. Other approaches to extending the uni-
modular framework can be found in Lu and Chen [Lu91], Ramanujam [Ram92],
and Barnett and Lengauer [BL92]. We are not aware of any prior work on
general completion procedures.



Chapter 4

Transformations for Memory
Locality

4.1 Introduction

Scalable parallel machines are often organized as networks of processor-memory
pairs; examples of such machines are the BBN TC 2000, the Kendall Square Re-
search ‘all-cache’ machine, and multi-computers like the Intel iPSC/i860. These
machines are called non-uniform memory access (NUMA) machines because a
processor can access data in its local memory ten to a thousand times faster
than it can access non-local data. For example, in the Kendall Square Research
‘all-cache” machine, accesses to local memory take 18 cycles while accesses to
non-local memory take 175 cycles [Ken91]. Distributed memory machines like
the Intel iPSC/i860 have even greater non-uniformity in access times because
access to non-local data must be orchestrated through the exchange of mes-
sages [Int91]. If non-local accesses are on the critical path through a program,
making these accesses local through proper data management will speed up
program execution.

A second feature of most NUMA architectures is that block transfer of data
between processors is more efficient than sending this data using many small
messages. Data transfer between processors can be viewed as a pipeline with
a large setup time compared to the time per stage. For example, on the Intel
iPSC/i860, it takes 70 microseconds to start up communication, but it takes
only 1 microsecond to transfer a double precision floating point number between
nearest neighbors once the communication has been setup [Rue]. Therefore,
when a number of data items must be sent from one processor to another, it is
preferable to use a single long message to amortize startup time.

Contention in the network has the effect of increasing the expected latency of
non-local references; therefore, data management to avoid non-local references
has the added benefit of reducing contention, thereby improving performance.

31
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Interestingly, analytical studies show that long messages can increase the latency
of non-local accesses [Aga91]. This is an argument against long messages, but
on current machines, this effect seems to be of secondary importance compared
to the benefits of amortizing start-up time, as we show in Section 4.7.

In this chapter, we present a systematic approach to loop restructuring for
parallel machines with a memory hierarchy. As in the ownership approach, our
starting point is a language like FORTRAN-D with user-specified data decompo-
sition. We use the data distribution information to drive access normalization.
The objective of the restructuring is to transform loop nests so that code can
be generated by distributing iterations of the outermost parallel loops among
the processors without compromising locality. The structure of inner loops is
chosen so that data can be transferred using block transfers wherever possible.

The rest of the chapter is organized as follows. In Section 4.2, we discuss
a simple example that gives an overview of our compiling strategy. We also
introduce the data access matriz, which plays a key role in the development.
For some programs, the data access matrix is non-singular and can be used
directly to transform the loop nest, as we show in Section 4.3. In general,
however, this matrix may not be non-singular, and the techniques of Section 4.4
must be used to produce a non-singular matrix for the transformation. The final
problem is guaranteeing that the transformation respects program dependences;
this is done in Section 4.5. We present experimental results in Section 4.7 that
demonstrate that our methods work well on programs of practical interest such
as routines from the BLAS (Basic Linear Algebra Subroutines) library [CVL8S].

Finally, we discuss related work in Section 4.8.

4.2 Data Access Matrix

In this section, we introduce a key data structure called the data access matriz.

To understand the need for loop restructuring, consider the program in Fig-
ure 4.1(a), which is a simplified version of the SYR2K code discussed in Sec-
tion 4.7. Assume that both A and B have a wrapped column distribution.
Distributing iterations of the outer loop among the processors (Figure 4.1(b))
results in processor p executing iterations p, p + P, etc. Consider accesses to el-
ements of array B. Each iteration of the outer loop makes Na(b—b/P) non-local
accesses, and the total number of non-local accesses is N1 Nab(1 — 1/P).

The ownership rule uses data decomposition information to generate code.
A processor is involved in the execution of an iteration (¢, j, k) if it owns any
of the elements referenced in the body of the loop in that iteration. Therefore,
processor p has work to do in iteration (i,7,k) if ( —¢) mod P = p (it must
update an element of B) or if (j + k) mod P = p (it must send an element of
A to whichever processor is updating B in that iteration). This is accomplished
by placing these conditional tests in front of the statement, and having all the
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fori=10 Ny —1 fori=p, Ny — 1, step P
for 3 =1, i+b-1 for g =1, i+b-1
fork =0 Ny—1 fork =10, Ny — 1
Bfi, j-i] = Bfi, j-i] + Afi, j+k] Bfi, j-i] = Bfi, j-i] + A[i, j+k]

(a) (b)

for v = p, b-1, step P
forv=u, u+ Ny + Ny — 2
read Af*,v];
forw =10 Ny —1
Blw, u] = Blw, u] + Alw, v]

() (d)

foru =0, b-1
forv=u, u+ Ny + Ny — 2
forw =10, N; — 1
Blw, u] = Blw, u] + Alw, v]

Figure 4.1: Transformation and Code Generation for a Simple Example

processors execute all iterations ‘looking for work to do’ [CK88,ZC90]. In simple
programs, these conditional tests can be optimized away, but in general they
must be executed at runtime, which is inefficient. Moreover, in our program,
the code cannot make use of block transfers of elements of A since the elements
of A referenced during one iteration of the j loop are referenced by different
Processors.

Now, consider the program of Figure 4.1(c). This program computes the
same function as Figure 4.1(a), but if we distribute the outermost loop among
the processors as before (Figure 4.1(d)), there are no non-local accesses to B.
There are non-local accesses to A but these can be performed using block trans-
fers. The loop transformations described in this paper transform the program
of Figure 4.1(a) to that of Figure 4.1(c). Given the transformed program, the
code generation techniques described in Chapter 2 generate the parallel code
shown in Figure 4.1(d).

Since the transformations are driven by the data access patterns, it is conve-
nient to define a data structure to represent array subscripts in a loop nest in a
convenient way. This data structure is called the data access matriz. It is used
by our loop restructuring system as the starting point for determining what
transformations to apply to the loop nest. For the loop nest in Figure 4.1(a),
the data access matrix is
-1 10
0 1 1

1 00



34

fori=10 Ny —1 foru =10, b-1
forj =1, i+b-1 forv=u, u+ Ny + Ny — 2
fork =0 Ny—1 forw =10 Ny —1
Bfi, j-i] = B[i, j-i] + A[i, j+k] Blw, ] = Blw, u] + Alw, v]
(a) Source Program (b) Restructured Program

Figure 4.2: The running example

This matrix represents the subscripts in the sense that the product of the data
access matrix with the column vector [z, j, k‘]T yields a column vector in which
each element is a subscript from the program. For our example, this product
is the column vector [j — 7,5 + k, ] which corresponds to the three subscripts
of the program. Constants in a subscript are omitted from the corresponding
entry in the data access matrix.

The order in which these subscripts are represented in the data access ma-
trix is important and corresponds to an estimate of their relative importance for
achieving good performance. A reasonable heuristic is to give highest impor-
tance to subscripts in the distribution dimension(s) of arrays; in our example,
the subscripts 7 — ¢ and j + k& dominate the subscript 7 since they occur in the
distribution dimensions of arrays B and A. Notice that 5 — 7 occurs twice, but
j + k occurs only once. Therefore, we let 7 — 7 dominate 5 + k. This yields the
data access matrix shown above.

The technical development in the rest of the paper is independent of how
subscripts were ordered to obtain the data access matrix. In addition, a sub-
script that is ‘overly complex’ for any reason (such as a non-linear function of
loop indices) may be omitted from the data access matrix without affecting
correctness.

4.3 Non-singular Data Access Matrices

In this section, we consider the simple case where the data access matrix is
non-singular. Consider the program of Figure 4.1 again, which is reproduced in
Figure 4.2(a,b) for convenience.

The data access matrix for the program is

1

-1 1
X = 0 1
1 0

o = O
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It is easy to verify that X is non-singular, and that the program shown
in Figure 4.2(b) is the result of transforming the source program using X as
the transformation matrix. Consider what happens when code is generated for
the new loop nest by distributing iterations of the outermost loop among the
processors in a round-robin manner. Since the outermost loop index is also the
the subscript of the distribution dimension of array B, all references to B will
be purely local. We cannot accomplish this for both A and B simultaneously
since the subscripts in the distribution dimensions of A and B are different;
therefore, there will be non-local accesses to A. However, since the subscript in
the distribution dimension of the reference to A was placed second in the data
access matrix, this subscript in the new loop nest corresponds to the second
loop index and we can perform block transfers for accesses to A, as was shown
in Figure 4.1(d).

For future reference, we define the following notion.

Definition 4.3.1 Given an array reference, an array subscript is normal with
respect to loop 1, if it is equal to the loop index variable 1.

In this example, the data access matrix yielded the transformation without
any complications. This is not the case in general. First, the data access matrix
may not be non-singular. We handle this case in Section 4.4. Second, the
transformation suggested by the data access matrix may violate one or more
data dependences. We take care of this problem in Section 4.5. In both cases,
the goal is to produce an non-singular matrix that retains as many rows of the
data access matrix as possible.

4.4 Singular Data Access Matrices

In general, the data access matrix is not non-singular, so it cannot be used
directly to transform the loop nest. The techniques in this section convert such
a matrix into a non-singular matrix that retains as many rows (subscripts) of
the data access matrix as possible. This is done in two stages — first, we
eliminate linearly dependent rows from the data access matrix using Algorithm
BasisMatriz, and second, we pad this reduced matrix with additional rows using
Algorithm Padding, to get a matrix that is non-singular.

4.4.1 Basis Matrix

It is easy to design an inefficient algorithm that takes a data access matrix and
selects as many linearly independent rows as possible: we simply go down the
rows of the matrix in sequence, discarding a row if it is linearly dependent on
the rows before it, and keeping it otherwise. It is important to traverse the rows
in sequence since it ensures that less important rows are discarded in favor of
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fori=... foru = ...
forj=.. forv = . 11 -1 0
fork = ... forw = ... 22 =2 0
forl = ... for z = ... 00 1 -1
Rfi+j-k, 20+25-2k, k-1] = ... R[u, 2u, v]
(a) Original (b) Transformed (c) X
11 -1 0 1 u
11 -1 0 0100 00 1 1 |[s] |[w
0 1 -1 0 0 01 01 0 0 E]l | w
00 0 1 [ z
(d) B (e) H (f) Invertible mapping

Figure 4.3: A loop nest with a singular data access matrix

more important ones. For future reference, let us call the resulting matrix the
basts matriz corresponding to the data access matrix.

Definition 4.4.1 The basis matriz of a data access matrix A is the first row

basis of A.

The algorithm described informally above is simple, but it is expensive to
keep checking rows for independence. A more efficient algorithm, which makes
use of a variation of computing the Hermite normal form, is given in Figure 4.4.
Given a data access matrix, Algorithm BasisMatriz returns a permutation ma-
trix P, and the rank d of the data access matrix (the number of linearly inde-
pendent rows). The first d rows of the permutation matrix P tell us which rows
of the data access matrix are in the basis matrix. The following example should
make this clear.

Consider the data access matrix X shown in Figure 4.3(c). This data access

matrix can arise from the program shown in Figure 4.3(a). Algorithm Basis-

Matriz(X) returns the permutation matrix P = o o 1 ) and rank d = 2.
0 1 0

The first two rows of the permutation matrix tell us which rows of A form a
linearly independent basis: the position of the non-zero entry in these rows of
P indicates which row of A is in the basis. In this example, the first and third
rows form the basis matrix B in Figure 4.3. The significance of this in terms
of transformations is that only the first and third subscripts can be normalized.
This is reasonable because the subscript 2: + 25 — 2k is just a multiple of the
subscript ¢ + 7 — k.
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Input: An m x n data access matriz A.
Output: An m x m permutation matriz and the rank of A.
Algorithm BasisMatriz(A : AccessMatriz) : (PermMatriz, Rank)
begin
P =1, where I is the m x m identity matriz.
done = false; 1 = 1;
While not done do
/% Consider the submatriz Afi:m, i:n] */
Search for the first j > i such that Afj, i:n] # 0;
If no such j exists Then done = true;
Else
If j # @ then Ezchange Afi, 1:n] and Afj, 1:n], Pfi, 1:n] and P[j, 1:n]
Apply the elementary column operations to make Afi, i] nonzero
and Afi, i+1:n] zero.
t=1+ 1
End-1f
End-While
return (P, i-1);
end

Figure 4.4: Computing a Basis Matrix
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Input: An m x n basis matriz B.
Output: An (n —m) x n padding matriz H.

Algorithm Padding(B : BasisMatriz) : PadMatriz

begin
H =1, where I is an n X n identity matriz.
Fori =1, mdo
/¥ Consider the submatriz Bfi:m, i:n] */
apply the elementary column operations to make B[i, i] nonzero
and B[i, i+1:n] zero.
If columns i and j have been exchanged Then
exchange rows t and j of H
End-1f
End-For
return (Hfm+1:n, 1:n]);

end

Figure 4.5: Computing a Padding Matrix

4.4.2 Padding Matrix

To extend the basis matrix to a non-singular matrix, we need to add additional
mutually independent rows which are also independent of the rows of the basis
matrix. There are many possible choices for these rows, and we will use this
flexibility when we take care of dependences in Section 4.5. Algorithm Padding,
described in Figure 4.5, shows one simple way to pad the basis matrix. For an
m x n full row rank matrix, we need to pad with an (n —m) x n matrix to form a
non-singular matrix. It is well known that for a full row rank matrix, there exist
m columns that are linearly independent. We simply need to pad these columns
with 0 and the rest of the columns with columns from the (n —m) x (n —m)
identity matrix /. For the program in Figure 4.3, since the first column and the
third column are linearly independent, the padding matrix is H in Figure 4.3(e).
The mapping between the old and new iteration spaces is in Figure 4.3(f). In
the transformed program, shown in Figure 4.3(b), the reference becomes R/u,
2u, v/, and second index is not normalized.

The correctness of Algorithm BasisMatriz and Algorithm Padding follows
from the following result.
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Theorem 4.4.1 Let A be an m X n integer matriz with rank d. There exists
an m x m permutation matriz P and an n X n non-singular matriz () such that
A= P( g 8 )Q, where B is d x d lower triangular and nonsingular.

Proof: Suppose at step k, by elementary column operations and permutation
By,

row operations, PLAQr = D, E
k k

) where By is k X k lower triangular.

e case 1: Ej is a zero matrix, then done.

e case 2: the first row of Ej, is 0, then by a row permutation on Ej, the first
row can be made non-zero, which falls into case 3.

e case 3: the first row of Ej is not 0. By a sequence of elementary column
operations, The top-left position of the first row can be made positive and
others zero.

Dg 0
P = Pd_l and Q) = Q;l, since both are non-singular matrices. Then A =

P(B O)Q,WhereB:BdandD:Dd. a

After step d, where the matrix Fg is zero, PjAQ. = ( Ba 0 ) Let

D 0

4.5 Data Dependences

The results of Section 4.4 showed that a basis matrix can always be padded to
yield an integer, non-singular matrix. However, there is no guarantee that the
transformation corresponding to this final matrix is legal, because this trans-
formation may violate data dependences. To understand the problem, consider
Figure 4.7 in which A is a basis matrix and D 4 is the dependence matrix. Fach
column of the dependence matrix represents the distance vector of a dependence
in the loop nest [Ban90]. In our example, there is just one dependence, and the
distance values tell us that the dependence is between successive iterations of
the innermost loop. A distance vector has the property that its leading non-zero
is always positive; a legal transformation must preserve this property for each
dependence, since the source of the dependence must be executed before its
destination. If 7" is a non-singular matrix representing a loop transformation, it
is easily shown that 7'D is the dependence matrix of the restructured loop nest;
therefore, the leading non-zero element in each column of T'D must be positive.

In Figure 4.7, A is the basis matrix; by looking at the product AD, =
( _01 ), we can see at once that A cannot be padded to give us a transformation

that respects data dependences. The intuition is that the first two rows of A
determine the two outermost loops of the transformed loop nest. In the original
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program, the dependence was carried by the innermost loop, but in the new
program, the dependence is ‘carried’ by the second loop. Unfortunately, the
negative value of the second dimension of AD 4 means that the source of the
dependence will be executed after the sink. Clearly, there is nothing we can do
in the inner loops that would remedy this situation, so it is impossible to pad
A to yield a legal transformation.

To get around this problem, we proceed in two steps. We start with the
basis matrix and use Algorithm LegalBasis to produce a new basis matrix that
does not violate dependences. Then, we pad this matrix using the Completion
Algorithm in Section 4.6 to yield the final transformation.

4.5.1 Generating a Legal Basis

Algorithm LegalBasts , shown in Figure 4.6, takes a basis matrix and checks
each row against the dependences. For example, consider the product of the
first row and D. This gives us a row vector in which entries can be positive, zero
or negative. If an entry is positive, it means that the corresponding dependence
will be carried by the new outermost loop. Therefore, the structure of the
inner loops does not matter as far as this dependence is concerned, and we may
delete it from the D matrix for the rest of the algorithm. If the entry is zero,
then the dependence will not be carried by the potential outermost loop, so we
leave the dependence in the D matrix. However, if we have a negative entry,
the dependence is ‘carried’ by the potential outer loop, but the order of the
iterations is wrong. Notice that if all of the entries of the row vector are 0 or
negative (intuitively, for all dependences, the potential outer loop either does
not carry the dependence or the source of the dependence is executed after the
sink), we can simply reverse the direction of the loop. Problems arise only if
some entries are positive and others negative — in that case, we cannot keep that
row of the basis matrix, and we delete it from the basis matrix' For the example
in Figure 4.7, LegalBasis (A) generates the basis A; shown in Figure 4.7.

4.5.2 Legal Padding Matrix

To pad a legal basis matrix, we need to satisfy two constraints. First, any row
added must be linearly independent of other rows, so that the final matrix is
non-singular. Second, the row must not violate dependence constraints. Once
a new row has been added during padding, all dependences carried by the loop
corresponding to this row may be dropped from consideration when filling in
the rest of the matrix. When there are no further dependences to be satisfied,

1A better scheme, which is more complex to implement, is to maintain a list of rows
that have been removed from the data access matrix, and reconsider these rows whenever
dependencies are deleted from the dependence matrix.
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Input: An m x n basis Matriz B and a dependence matriz D.
Output: A legal basis Matriz.
Algorithm LegalBasis (B : BasisMatriz, D : DepMatriz) : BasisMatriz
begin
Let B; be the ith row of B and d; be the ith column of D.
Fori=1m
ff=BD
If each element of f is non-negative then
D =D - d;, where f[jl] > 0
Elseif each element of f is non-positive then
Bi = (-1) Bi;
D =D -d;, where f[jl < 0
Else
B =B-B;;
End-1f
End-For
return B;

end

Figure 4.6: Algorithm LegalBasis: Computing a Legal Basis Matrix
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-1 1 0
0 -1 1

A Dy Ay

0 01
B B (-119)
00 -1 10
10 0 01
0 1 0 10
(001
D T

Figure 4.7: Legal basis and padding matrices
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we can apply Algorithm Padding of Section 4.4.2 to complete the generation of
a legal, non-singular matrix.

As an example, consider the basis matrix B which is legal with respect to
the dependence matrix D in Figure 4.7. The first dependence is carried by the
new outermost loop represented by the first row of B, and can be dropped from
consideration for the rest of the procedure. The inner product of the first row
with the second dependence is 0, meaning that this dependence is not carried by
the new outermost loop; therefore, it must be taken into account when padding
the matrix. To pad B, we need to find a row whose inner product with the
second dependence vector is non-negative.

It is not immediately clear that such a vector exists; fortunately, Algorithm
Legallnvt in Section 4.6 gives a positive answer by computing such a vector
using a standard result about projections [Sch86]. This vector can be written
as « = ¢(I — P(PTP)~1PT)ey for some positive scaling integer ¢ that makes all
of the entries integers, where eiT =[0,0,..,1,..,0], with the 1 in the ¢th position,
I is the identity matrix, and P is the partial transformation.

For our example, the remaining dependence to be satisfied is e3. The new
row vector for the padding is * = e3. Since the dependence is carried by the
loop corresponding to this new row vector, we can drop the dependence from
consideration now. The dependence matrix is empty at this point. The new
legal basis matrix is By in Figure 4.7. Then we can use the Algorithm Padding
to produce a linear, non-singular matrix. The final matrix 7" in Figure 4.7 is a
linear, non-singular matrix and the corresponding transformation satisfies all of
the dependences.

4.6 Completion Algorithm

One advantage of using integer non-singular matrices is that there is a simple
completion procedure that takes the first few rows of a desired transformation
matrix and generates a complete transformation matrix that respects depen-
dences. As we have seen from the previous section, it is quite useful to have
such completion algorithm. In the rest of the thesis, we will see that the com-
pletion algorithm makes the construction for parallelization and cache locality
much easier.

4.6.1 Completion Procedure

Our completion procedure requires that the following precondition be satisfied.
Precondition: The partial transformation must have full row rank, and should
not violate dependences.

These conditions are reasonable: if a row of the transformation matrix is
linearly dependent on the others, it is clearly impossible to generate a non-



44

singular matrix by adding additional rows. Similarly, if some row of the partial
transformation violates one or more dependences, this cannot be rectified by
extending the matrix with additional rows.

First, we delete all dependence vectors that are carried by the loops corre-
sponding to the rows of the partial transformation, since they do not have to
be considered when filling in the rest of the matrix. The completion procedure
works by finding a vector that is independent of the existing row vectors in the
partial transformation and within 90 degrees of each dependence vector. This
vector is appended a new row to the partial transformation and all dependencies
carried by the loop corresponding to this row are dropped from consideration.
This technique is repeatedly applied until there are no further dependencies to
be satisfied, at which point we can apply standard linear algebra techniques to
complete the generation of a non-singular matrix.

To find the desired rows, we make use of the following invariant:
Invariant: The dependence vectors are in the orthogonal complement of the
subspace spanned by the rows of the partial transformation.

We find a vector that is within 90 degrees of every dependence vector and
strictly within 90 degrees with at least one dependence vector. This vector can
be found by looking for the first row of the dependence matrix with nonzero
entries. Let £ be that row index.

Lemma 4.6.1 e is within 90 degrees of every dependence vector, and strictly
within 90 degrees of at least one dependence vector.

Proof: It is easy to check that e satisfy the condition, since for any depen-
dence vector d, e{d >0, and e%d > ( for at least one d. O

But e is not necessarily linearly independent of the rows in the partial
transformation. Therefore, we project e, to the orthogonal complement of the
subspace spanned by the rows of the partial transformation so that the pro-
jected vector is linearly independent of the existing rows. If PT is the partial
transformation, it is easy to see that the projector is Q = (I — P(PT P)~1PT),
The projected vector is y = Qe. Let © = cy for some positive scaling number ¢
that makes all of the entries integers and relative primes. For PT = (2 -3) and
D = ( 2 ) the projection is shown in Figure 4.8.

2

Theorem 4.6.1 The projected vector y is linearly independent of the rows and
within 90 degrees of every dependence vector.

Proof:

e Linear independence:

We can prove a even stronger result, i.e. y is orthogonal to the rows in

P,
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Ply=pPL(I—P(PTP) 1P e, =0

o Within 90 degrees:

For any dependence vector d, yTd = ezQTd. Q) is symmetric and d
is already in the orthogonal complement by the invariant. This means
QTd = Qd = d. Then y'd = e{d. Hence y is within 90 degrees of every
dependence vector by Lemma 4.6.1.

The complete algorithm is presented in Figure 4.9.
Theorem 4.6.2 The algorithm Completion generates a legal A-transformation.

Proof: immediately follows from Theorem 4.6.1. O

We now apply the algorithm to the example in Figure 4.8. It can be satisfied
by choosing 27 = 3 and ¢33 = 2. The new dependence vector is ( A ) , which

means that the new outer loop is a parallel loop. The matrix ( 2 3 ) satisfies

the conditions.

4.6.2 Discussion

The completion technique discussed here works even when dependences are
represented using direction vectors. There is considerable flexibility in the choice
of the projector, and we have shown just one possibility; the choice of the most
desirable projector will depend on the application.

4.7 Experiments on Multiprocessor without
Caches: BBN GP1000

In this section, we demonstrate the power of our techniques using routines from

the BLAS (Basic Linear Algebra Subprograms) library.

4.7.1 The Machine Architecture

The target machine is a BBN Butterfly GP-1000. On this machine, a processor
can access its local memory in about 0.6 microsecond, but a non-local access
takes about 6.6 microseconds even in the absence of contention in the network.
For block transfers, the startup time is about 8 microseconds, and after that,
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PJ_

€1

Figure 4.8: Extending Partial Transformation by Projection
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Input: An m x n partial transformation matriz PT
and a dependence matriz D.
Output: An n x n legal transformation matriz T.
Algorithm Completion(PT, D) : Matriz
begin
/* Let PT be row i of PT, and d; be column i of D */
Fori=1m
ff=rD
D =D - d;, where f[jl] > 0
End-For
r=m+ I;
While D is not empty do
let k be the first nonzero row of D;
z =c(l — P(PTP)"1PT)ey;
where ¢ s a positive number that makes
an integer vector and the entries relative primes.

D =D -d, if d is a dependence vector and dfk] > 0

PT — IT'
r=r+4+1;
End-While

Figure 4.9: Computing a Legal Full Transformation (first part)

R =1, where I is an n X n identity matriz.
Fori=1,rdo
/* Consider the submatriz PT [izm, im] */
apply the elementary column operations to make P [i, i] nonzero
and P [i, i+1:n] zero.
If columns i and j have been exchanged Then
exchange rows i and j of R
End-1f
End-For
return(append(PT, R[r+1:n, 1:n]));

end

Figure 4.10: Computing a Legal Full Transformation (second part)
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a byte is transferred every 0.31 microseconds [BBN89]. Our compiler takes
as input FORTRAN-77 programs with data distribution information, and it
generates C code for each processor; this node program is compiled into native
code using the Green Hills C compiler (Release 1.8.4). The C compiler performs
only conventional code optimizations, so our experimental results are not skewed
by any restructuring performed by this compiler. We will use pseudo-code in
discussing examples.

For the GEMM code, our techniques are successful in eliminating non-local
accesses significantly, so block transfers contribute just a small amount to over-
all performance. In the SYR2K code, the reduction of non-local accesses is less
significant, so block transfers of non-local data are important for good perfor-
mance. We develop a very simple performance model to explain these results.

4.7.2 GEMM

General matrix multiplication (GEMM) is one of the central subroutines in
BLAS. The sequential code for this routine is shown in Figure 4.11(a). All
arrays are of size 400 by 400 and are distributed in wrapped column manner.
By distributing the outermost loop among the processors without doing any
transformations, we obtain the graph labeled gemm in Figure 4.11(i).

The data access matrix and dependence matrix produced by our system are
shown in Figure 4.11(e) and (f). The non-singular matrix for the transformation
is shown in Figure 4.11(g). The transformed loop nest of Figure 4.11(b) yields
the code of Figure 4.11(c¢), and the corresponding execution times and speed-ups
are labeled gernm T in Figure 4.11(h,i). Inserting block transfers for accesses to
A, we get the code shown in Figure 4.11(d), and the performance of this program
is labeled gemmB in Figure 4.11(h,i).

After access normalization, accesses to C' and B are local, but there are
non-local accesses to A. Since three out of four data structure accesses in each
iteration have become local, the effect of block transfers is relatively small. To
understand the behavior of this program, a simple performance model can be
used. Since the outer loop of GEMM does not carry any dependences, the time
to execute GEMM can be expressed as follows:

_ nysty N nm(at; + (1 — a)t, (P))

Tple) == Iz

+ o(P)
where

e P: number of processors.

e «: the proportion of local memory accesses.

o I'p(a): time to execute program — a function of P and «
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fori=1, N foru=1 N
forj =1, N forv=1 N
for k=1, N forw =1, N
Cli il = Cli, j] Clw, u] = Clw, u]
+ Afi, k] x B[k, j] + Afw, v] x Bfv, u]
(a) original code (b) transformed code
for u =p, N, step P for u =p, N, step P
forv=1, N forv=1 N
forw =1, N read Afx, v;
Clw, u] = Clw, u/ forw=1, N
+ Afw, v] x Bfv, u] Clw, u] = Clw, u]

+ Afw, v] x Bfv, u]

(c) parallel code for node p (d) parallel code with block transfer

Figure 4.11: GEMM
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8 (1) (1) 8 Nodes/Prog | gemm | gemmT | gemmB
100 1 1 1,245.2 | 1,150.0 | 1,117.8
10 0 (f) D 2 1,072.5 | 704.3 630.6
01 0 4 784.4 387.5 328.1
10 0 010 8 462.5 206.2 169.3
01 0 00 1 16 283.1 116.8 92.5
00 1 10 0 20 230.6 100.0 78.7
(e) X (g) T (h) Execution Times (sec)
20 T T T T T T 14 T T T T T T
19 gemmP ——
15 - gemm B+ 10 gemmT —
gemmT |y eq
Speedup10 + - 100 8
sec 6}
5 gemm — 4 B
2 -
0 | ! ! ! ! ! 0 [T T TR
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24
Processors Processors
(i) Speedup (j) Projected times

Figure 4.12: GEMM (cont.)
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e ny: number of arithmetic operations.

o t;: effective time to execute an arithmetic operation.
® n,,: number of memory accesses.

e {;: time for a local access.

e {,(P): time for a remote access. For a given program, it is an increasing
function of P because of network contention.

e o( P): overhead to spawn processes etc.

Access normalization increases the proportion of local accesses. Let ag and
a be the proportions of local accesses before and after access normalization.
The reduction in execution time due to access normalization is given by this
equation:

n

Ty = Tp(ag) — Tp(a) = (o — ap) (1, (P) — tl)?m

GEMM has 4N3 memory accesses. The proportion of local accesses in the

original version is ap = %, and in the transformed version, it is a = %(3 + %)

Substituting these values, and assuming a non-local access time of 6 microsec-
onds, we would expect that the time to execute the program is

1200 1
Tp(ag) — Thy = Tp(ag) — ——(1 — )

P P
Since access normalization reduces network contention, and we have ignored
network contention in these calculations, the actual execution times will be less
than the prediction. The projected and realized times shown in Figure 4.11(j)
bear these calculations out.

4.7.3 SYR2K

When remote accesses are necessary due to the problem structure, it is beneficial
to use block data transfers to amortize the cost of the startup time. Consider
the rank 2k update SYR2K from BLAS (Basic Linear Algebra Subroutines)
[CVL88]. The subroutine computes C = AT B + aBTA + C. Suppose A and
B are banded matrices with band width b, then €' is symmetric and banded
with band width 26 — 1. The banded matrices A, B are stored in n x 2b — 1
arrays Ap, By such that the elements A[r, j], B[, j] are in Apli,j —1+b— 1] and
Byli,j—i+b—1]. C is symmetric so only the upper triangular matrix is stored
in an n x (2b — 1) array Cp such that C[i, j] is in Cy[i,j — t]. The program is
shown in Figure 4.13(a).
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fori=1, N
for j =i, min(i+2b-2, N)
for k = maz(i-b+1, j-b+1, 1),
min(i+b-1, j+b-1, N)
Cyfij-i+1] = Cyfi j-i+1]
+ aApf[k,i-k+bjx By [k,j-k+b]
+ aAyp[k,j-k+bJx By [k,i-k+b]

(a) original code

Jor v = p, 2b-1, step P
for v = 1-b, b-u

Jor w = mazx(1, u+v), min(N, N+v)
Cy[-u-v+w+1, u] = Cp[-u-v+w, uf
+ aApfw, -u-v+b/xBy [w, -v+b]

+ aAp[w, -v+b/xBy[w, -u-v+b]

(c) parallel code for node p

Joruw =1, 2b-1
for v = 1-b, b-u
Jor w = maz(1, u+v), min(N, N+v)
Cy[~u-v+w+1, u] = Cy[-u-v+w+1, uf
+ aApfw, -u-v+b/xBy[w, -v+b]
+ aAp[w, -v+b/xBy[w, -u-v+b]

(b) transformed code

Jor v = p, 2b-2, step P
for v = 1-b, b-u
read Ap[*,-u-v+b]; read Apfx,-v+b];
read By [x,-v+b]; read By [x,-u-v+b];
Jor w = mazx(1, u+v), min(N, N+v)
Cy[-u-v+w+1, u] = Cy[-u-v+w+1, uf
+ aApfw, -u-v+b/xBy[w, -v+b]
+ aAp[w, -v+b/xBy[w, -u-v+b]

(d) parallel code with block transfer

Figure 4.13: SYR2K
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11 0 Nodes/Prog | syr2k | syr2kT | syr2kB

0 1 -1 1 1 0 ; 1,2?9.3 933.5 9011.3

0 0 1|0 i | sss | diss | a0

1 0 -1 0 0 1 ) ’ )

1 0 0 8 334.3 241.2 166.8

16 200.0 143.1 91.8

20 173.8 121.8 79.3

(e) X () T (g) Times (sec) for SYR2K
20 T T T T T 14 T T T T T ]
syr2kP —o— |
15 - 13 i syr2kB —
syr2kB Times g | i
Speedup10 - syr2kT7| 100

syr2k See 6 - ]
5F . 4 -
2+ -

0 ! ! ! ! ! ! 0 [ B R !
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28

Processors Processors
(h) Speedup (i) Projected times

Figure 4.14: SYR2K (cont.)
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Assume that we are given a wrapped-column mapping for each array. The
data access matrix is matrix X shown in Figure 4.13(e). If we apply Algorithm
BasisMatriz, we get a base matrix B consisting of the first three rows of X.
However, the dependence matrix is [0,0,1]7. The legal base mapping is Bicgal,
which is B with the second row negated, as is shown in Figure 4.13(f). This
matrix is non-singular. Using Bje4q as the transformation matrix gives the
transformed code in Figure 4.13(b). Distributing the outermost loop iterations
and generating block transfers, we get the parallel code in Figure 4.13(d) for
processor p. Figure 4.13(g) shows the experimental results. Block transfers are
relatively important in this example, since there are many non-local accesses
left in the transformed code.

To understand the experimental results, let us include block transfers into
our model. When block transfers are done, a block of remote data is transferred
to a piece of local memory, and the accesses to the remote location are replaced
by accesses to the local copy. Let 3 to be the proportion of remote data that are
transferred using block transfer and ¢, be the amortized access time for remote
references. The formula for the execution time of the program is refined as
follows:

Tp(a 3) = L4 ot 4 5(1—a)r B(1-)ty(P+(1-B)(1—a)ts (P)) +ol P)

The amortized remote access time can be estimated as follows. Let the cost
function of a block transfer be a + bB, where a is the startup time, b is the
time between successive byte transfers, and B is the block size. Let ng be the
number of block transfers and sq, s2, ...s,, be the sizes of blocks. The amortized
access time for data transferred through block transfers can be computed using
the following formula:

sizeof(float) X1 (a + b * s;)
b= ng . +1
21'21 Sq

SYR2K has 12Nb? number of memory references, in which a = %(1 + %)
of them are local after transformation. The rest of the remote references are
performed using block transfers. The number of block transfers of size N is
8b2(1— %) The problem size is 500 with a band size of 200. Thus the amortized
remote access time is ¢, >~ 2us per floating point. Therefore the time saved due
to block transfers is 7j:

640 1
Ty=T 0)—-T )=—(1-=

The projected times and actual running times are shown in Figure 4.13(i).

They are very close since contention plays less of a role in this program.
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4.8 Discussion and Related Work

This chapter is a contribution to the state of the art of compiling programs
in languages like FORTRAN-D that permit user-defined data decomposition
for parallel machines with a memory hierarchy, which is the goal of a num-
ber of projects including Parascope, Superb, Id Nouveau, Crystal, Kali, PARTI
and ASPAR projects [CK88,HKT91,ZC90,RP89, Tse89,LCI1, KM91,MSST8S,
IFKF90]. The emphasis in these projects has been on code generation mecha-
nisms (such as the ownership rule discussed in Section 4.2) and on recognizing
and exploiting special patterns of computation and communication such as re-
ductions. Although it is well-known that loop restructuring before code gener-
ation can improve performance, no general loop restructuring mechanism has
been available until now.

We require the programmer to specify data distributions. Automatic de-
duction of this information for special programs has been investigated by Bal-
asundaram and others [BFKK90], by Gannon et al [GJG88] on CEDAR-like
architectures, by Hudak and Abramham [HA90] for sequentially iterated paral-
lel loops, by Knobe et al [KLS90] for SIMD machines, by Li and Chen [LC89] for
index domain alignment and by Ramanujam and Sadayappan[RS91] who find
communication-free partitioning of arrays in fully parallel loops. These efforts
focus on deducing good data distributions for particular kinds of programs such
as fully parallel loops, and no general solution to this problem is known.

We have opted to generate code by distributing outer loop iterations among
the processor. However, access normalization can also be integrated with the
ownership rule. Rather than construct the data access matrix by choosing the
dominant subscripts from all references as described in Section 4.2, we can
choose the dominant subscripts in the distribution dimension(s) of the array
references on the [left hand side of the assignments only, since the processor
that owns the array element being defined executes the assignment statement.
Loop nests with multiple assignment statements present other opportunities for
generating better code. In this paper, loop restructuring works on entire loop
nests and every statement in the loop body undergoes the same transformation.
A possible extension is to have different transformations for different statements.
For example, statement S7 has transformation 77 and Sy has T5. Let the new
iteration spaces for S and Sz be J; and Jy respectively. The new loop nest is
an union of J; and Jy with appropriate guards (conditionals) for 57 and S to
insure that they only get executed in their subspace. A special case is when the
data dependences allow .J; and J; to be two separate iteration spaces; in that
case, we can construct different loop nests for 57 and S92 respectively — this is
the same as loop distributionWol89].



Chapter 5

Transformations for Cache
Locality

5.1 Introduction

Almost every modern processor is designed with a memory hierarchy organized
into several levels, each of which is smaller, faster, and more expensive than the
level below.

The cache is the memory level between CPU and the main memory. It is
usually between 1KB to 256 KB, and is divided into blocks (lines) of 4-128 bytes.
The unit of data transfer between main memory and cache is a block. Typically,
a cache hit takes only one cycle, while a cache miss takes 8-32 cycles [HP90]. It
is ideal for all memory references to hit in the cache, however, since cache size
is much smaller than main memory, once new data needs to be brought in from
main memory, some data in the cache has to be replaced. There will be a cache
miss when the replaced data is accessed in the future.

Therefore, high performance requires programs to possess cache locality, i.e.
having data reuse of the data in the cache before it has been replaced. If the
same data in the cache is reused, this is called temporal locality. Since the unit
of data in cache is a block (line), once the block is brought into the cache, any
access to the data elements in the block will be a cache hit. This is called spatial
locality.

A program may have data reuse, but might not be able to exploit cache lo-
cality due to the replacement of the data in the cache. Program transformations
can improve the performance significantly. The idea is to change the data access
sequence so that a data reuse can be translated into a cache hit than a cache
miss. One important approach is to use loop tiling, invented by Wolfe [Wol89],
to block the innermost loop nest so that data reuse within these smaller tiles can
be exploited by the cache. Loop tiling can be improved by loop transformations
such as loop interchange to bring some outer loops to the innermost position,

56



57

and then apply loop tiling on the new innermost loops. Wolf and Lam have cre-
ated a cache locality model, and applied unimodular transformations to choose
the best innermost loop nest to tile [WL91a]. Exploiting cache locality has been
an active research area. We will discuss more related work in Section 5.6.

Program transformations, such as tiling, have been proven to be very use-
ful in improving cache locality. However, they have been usually applied in
an ad hoc way. Wolf and Lam have proposed a cache model based on reuse
vector space, where tiling can be applied to exploit cache locality. Unimodu-
lar transformations are employed to choose an innermost loop nest. They also
have showed that it is difficult to choose a tile size for real machines, which
usually have direct mapped caches or low associativity caches [LRW91]. The
performance can be very erratic, if the block size is not chosen carefully.

In this chapter, we make the following contributions:

e We introduce a new simple cache model based on reuse distances that is
more precise than the reuse vector space model.

e We develop a new loop transformation technique called height reduction,
which optimizes directly on reuse distances, so that no exhaustive search
1s necessary.

o We also integrate height reduction with tiling. This algorithm is called
width reduction, which combines both height reduction and tiling, and the
benefit of tiling is retained. Height reduction helps reduce cache interfer-
ences when tiling for real machines.

The implementation of the algorithms is also quite simple when used with
the Lambda loop transformation toolkit [LP93b]. We have observed speedups of
1.7 to 10 performance improvement on programs from linear algebra and NASA
benchmark suite.

The rest of the chapter is organized as follows: in Section 5.2, we define a
simple cache reuse model, and give a formulation of the problem. The height
reduction algorithm is described in Sections 5.3, and the width reduction algo-
rithm is presented in Section 5.4. Empirical evaluations were conducted on an
HP 9000/720 workstation, and the results are reported in Section 5.5. Finally,
we discuss related work in Section 5.6.

5.2 A Simple Cache Reuse Model

A program must have data reuse in order to exploit cache locality. For example,
consider the program in Figure 5.1. The data element Afi, j/ is used in both
iterations (¢,7) and (1 4+ 1,7 — 1).
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fori=1,n
forj=1,n
end for
end for

Figure 5.1: A Simple Example

5.2.1 Reuse Vectors

We can define data reuse concisely using an integer vector that represents two
loop iterations that access the same data location. This vector is called reuse
vector. Consider a loop nest of n loops. An iteration of the loop nest can be
represented by an integer vector of dimension n.

Definition 5. 2.1 Let ]1 and ]2 be two iterations that access the same data
location. 7= jz — ]1 is called a reuse vector.

A reuse vector is an n-dimensional vector in a loop nest of depth n. The

reuse vector for the example in Figure 5.1 is 1

An important attribute of a reuse vector is the height.

Definition 5.2.2 The height of a reuse vector is the number of dimensions from
the first non-zero entry to the last entry.

For example, the height of the reuse vector ¥ = (0,2,0, —1)T is 3, since the
first non-zero is at the second dimension.
Another important term is the notion of a reuse vector carried by some loop.

Definition 5.2.3 If the ith dimension has the leading non-zero in the reuse
vector r, then r is said to be carried by the loop 1.

For example, the reuse vector above is carried by the second loop. If a reuse
vector is carried by the loop i, then the height of the reuse vector is n —i+1 1.

The data reuse vector can be computed by solving a system of linear equa-
tions [GJG88,WL9la]. There is a reuse between A[r, j] and Al — 1,7 + 1], if
for two iterations (i1, 71) and (2, j2), A[i1,j1] and Afia — 1, jo + 1] reference the
same data. Therefore, the system of equations is as follows:

11 = 12—1

IThe outermost loop is loop 1.
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1 o= J2+1

Let r= [ 2 ) — [ "' ] be the reuse vector. The solution is r = ! .
J2 J1 -1
We can rewrite the equations using matrix notation.

A1K1 = AsKy 4+ e

The first row of Ajp is the coefficients of the subscript 1 %7 + 0 % 7 in the
first dimension of Ali, j], the second row of Aj is from the second subscript. A
is computed in a similar way as Aj. ¢z is the constant vector, where the first
element is from the constant in the first dimension of A[i + 1,j — 1], and the
second element is from the second dimension.

In general, for an m-dimensional array R in a loop nest of depth n, R[ajji; +
et @intn + @10, -y m1l1 4 ... F Gmnin + amol] can be written as R[AZ—I— al, where
A = (ajj). There is temporal reuse between references Aj + a1 and Aj + ao iff

there exist iterations 51 and ;2 such that
A?l + a1 = AZZ + as.

Then, the reuse vector = i3 — i1 is the solution to the following equation.

Ar =ay — as (5.1)

Any reuse vector is a linear combination of a basis of the null space of A
plus a special solution to the system.

F= a1 + ... + ax7% + 70 (5.2)

The set {71, ...,7%} is a basis of the null space of A. 7 is special solution to
the system 5.1.

For spatial locality, data reuse depends on the memory layout of arrays. In
FORTRAN, where arrays are column major, reuse vectors are computed by
solving the following system.
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fori=1,n fori=1,n
forj=1n forg=1,5
= Afj] = A[j]
end for end for
end for end for

(a) (b)

Figure 5.2: Reuse Distances

Ad = b
rdd — by < s

where A is A with first row deleted, b is b with the first element deleted, r{‘
is the first row of A, by is the first element of b, and s is the size of a cache line.

5.2.2 Reuse Distance

Reuse vectors are simple, but they are not sufficient for predicting cache locality.
Consider the examples in Figure 5.2. Both have the same reuse vector (1, O)T. If
n is much larger than the cache size, program (a) will have less chance to reuse
the data in the cache. On the other hand, program (b) will almost certainly
have cache reuse.

Therefore, the trip count of loops should be included in our model. Formally,
we define the width of a loop.

Definition 5.2.4 Let width of loop k be the trip count of loop k.
Definition 5.2.5 The reuse distance is defined to be the number of loop iter-
ations between two reuse iterations.

Given r the reuse vector, the reuse distance d can be computed easily.

d=rS1+ ...+ 7,5,

where S; = [[j_;11 wk, and wy, is the width of loop k.

For example, the reuse distance for program (a) in Figure 5.2 is n, and for
program (b) the distance is 5.

There is a useful fact we will use for optimizing the reuse distance.

Lemma 5.2.1 [f every loop has more than one iteration, then ¥iS; > S(;41).
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To increase the probability of cache locality, we need to shorten the reuse
distance. From the definition of reuse distance and Lemma 5.2.1, we see there
are two ways of achieving that. First, we can introduce more leading zeros in
the reuse vector, since { 51, ..., 5y, } is a strictly decreasing sequence. Second, we
can reduce the width of a loop. The first optimization should be more powerful,
since 5; is usually much larger than S(;1).

Then the optimization problem for cache locality can be decomposed into
two subproblems.

e Height Reduction: lowering the loop that carries the reuse.

e Width Reduction: decreasing loop trip counts.

5.2.3 Data Reuse Matrix

To make the optimization on reuse vectors more convenient, we introduce an-
other important data structure called the data reuse matriz, similar to the data
access matrix. The set of reuse vectors is a linear combination of a basis for
the null space of A plus a special solution as shown in equation 5.2. A data
reuse matrix is a matrix that has the basis vectors and the special solution
as its columns. Note that all reuses, self, group, temporal and spatial, defined
in [WL91a] are included in the reuse matrix. In other words, the reuse matrix
for the reuse computed from equation 5.2 is as follows:
R=(F1,...,7k70)

In general, there are many individual reuse matrice (for example, every pair
of array references that have reuse generate a reuse matrix.). The global reuse
matrix is the union of all these individual reuse matrices. It is important to
have priority on the reuse vectors. A simple heuristic is to construct the global
reuse matrix as follows. Let u be the number of individual reuse matrices. We
choose the highest priority for the vector space intersection of all individual
reuse matrices (each matrix represents a vector space). We compute a basis for
that intersection, and make the set of basis vectors as the first columns of the
global reuse matrix. The second step is to compute a basis for the intersection of
any u — 1 individual reuse matrices, and add the basis vectors as the columns to
the right of the global reuse matrix. This set of vectors has the second priority.
Then we compute the intersections of any u — 2 reuses and so on. The basis
vectors from individual reuses have the lowest priority. Therefore, the matrix is
ordered from the left to the right with the decreasing priority.

In the rest of the chapter, we show loop transformations can be used to
achieve height reduction and width reduction. Since our loop transformations
are linear, the transformed reuse vector can be easily computed.



62

Lemma 5.2.2 If T is a linear transformation and 7 is a reuse vector, then T
is the new reuse vector.

Theorem 5.2.1 IfT is a non-singular transformation and R is a reuse matriz,
then the new reuse matriz is TR.

Proof:

Consider any reuse vector r.

= a7 + ... + a7 + 10

Then

T =a1Try+ ...+ ap, T + Tro.

Since T is non-singular, 7’7, ..., T'7y are linearly independent of each other.
O

5.2.4 Discussion

To see the difference with the reuse vector space model, we consider the example
in Figure 5.3. In version (a), the reuse vector for the reference A[i, 5] is (1,0)7
(spatial reuse), the reuse vectors for A[i, k] are (0,1)7 (temporal reuse) and
(1,0)7 (spatial reuse), and the reuse vectors for A[j, k] are (1,0)” (temporal
reuse) and (0,1)7 (spatial reuse). The Wolf/Lam model would conclude that
the reuse vector space is the whole space 27, since both i-loop and j-loop carry
reuse. Similarly, the reuse vector space for version (b) is also the whole space
ij. Therefore, the Wolf/Lam model does not distinguish between these two
versions. In summary, the cost function computed using the Wolf/Lam model
is a function of the dimension of the reuse vector space, i.e. the number of loops
that carry reuse. Therefore, the order of loops is irrelevant as long as the loops
carry reuse. If data dependences prevent a subset to become the innermost loop
nest, unimodular transformations are applied so that the innermost loop nest
may be tilable.

As our experimental results in Section 5.6 show, version (b) performs much
better than version (a). In our reuse distance model, the reuse vector (1,0)7 is
regarded as the important vector to be optimized, since it occurs much more
frequently than the other one, and is the basis vector for the intersection of all
reuses. Version (b) will be the optimized version generated by the algorithms
presented in the rest of the chapter.

We describe the height reduction algorithm in Section 5.3, and the width
reduction algorithm in Section 5.4.
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fori=k+1, n forj=k+1, n
for g =k+1, 1 for i = max(j, k+1), n
end for end for

end for end for

(a) (b)

Figure 5.3: Comparison of Models

5.3 Height Reduction

Given a data reuse matrix, the goal of height reduction is to find the minimum
s such that rows 1 to n — s of the data reuse matrix are all zeros. When we
construct a legal transformation, we need to make sure that the transformation
is non-singular, and does not violate data dependences.

Let PT be the transformation matrix being constructed, D be the depen-
dence matrix (every column is a dependence vector), and R be the reuse matrix
(every column is a reuse vector).

5.3.1 Non-singularity

First, we satisfy the condition of non-singularity. To construct the first row
of the transformation so that the first row of the new reuse matrix is 0, from
Theorem 5.2.1, we need to find a vector in the null space of the old reuse matrix.
Suppose we have formed a matrix PT of s rows that satisfies the condition.
To extend the matrix, we must find a vector v such that the following three
conditions are satisfied:

1. v is linearly independent of PT, and
2. v is in the null space of R.
3. v does not violate D, the data dependence matrix.

The first condition guarantees that the resulting transformation matrix is

non-singular, and the second condition guarantees that data reuse is not carried
1

by loop s+ 1. For example, consider the reuse matrix K = | —1 |. To compute

0

the first row of the transformation matrix, we can use the vector (0,0, 1)T,
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which is an element of the null space of R. Now the partial transformation P
is (0,0, 1). To find the second row, we need to find a vector v that satisfies both
the above conditions. In this case, (1,1,0) would be a solution.

These three conditions can be satisfied using more efficient algorithms. For
example, instead of finding a linear independent vector v, we can find a vector
from the null space of PT. It is easy to compute a vector from the null space of
both PT and R. Let Q be the column union of PT and R. If Q does not span
the whole vector space, any vector in the null space is a linear combination of
a set of basis vectors: v = a1z1 + ... + arxs.

If () spans the whole space, then some reuse vectors must be deleted before
any row can be added to PT. The vectors deleted are the ones with the lowest
priority. Recall that the reuse matrix is ordered from the left to the right, with
the highest priority column as the first column, and the lowest priority column
as the last column.

Now we show that finding a vector from the null space of PT is not less
general than finding a vector that is linearly independent of PT.

Theorem 5.3.1 If there exists a linearly independent vector vy of PT that is
in the null space of R and does not violate D, then there is an orthogonal vector
v of PL that is in the null space of R and does not violate D.

Proof: Let v be the resulting vector of vy projected to the orthogonal space
of PT by the projector J (e.g. J = I — P(PTP)"'PT). Since v/ R = 0,
vI'R = (Ju1)TR = vfJTR. Notice that J is a symetric matrix, and R is
already in the orthogonal space of PT. Therefore, JTR = JR = R. Hence
vIR = 'UlTR =0.

Similarly, vI'D = 'UlTJTD = 'UITD >0, if 'UlTD >0. O

5.3.2 Dependences

Now, we consider data dependences. Any row added must not violate data
dependences. Any dependence carried by the existing rows can be deleted from
the dependence matrix. Since v = ajxy + ... + azxy, we need to choose a set
of values for {ay,...,a; } such that vI'D > 0. We first consider the case where
there is only one data dependence vector. Let d be the dependence vector, then

vld = alxle + ...+ atl'tTd.

To decide the values of each a;, we use the following rules. Let dir be z!d
computed using the dependence algebra defined in Section 3.5.1.

o if dir = “<” then a; =1
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o if dir = “>” then a; = —1

o if dir = “=" then a; = any value

o if dir = “<=" then a; = 1
o if dir = “>=" then a; = —1
o if dir = “<>" then a; =0
o if dir = “*” then a; =0

In the general case where there are more than one dependence vector, the
value of a; must be consistent with every dependence vector. If this fails, some
reuse vectors must be deleted. For the special cases where the dependence vector
is a distance vector, these rules can be further optimized.

5.3.3 Algorithm

The algorithm is shown in Figure 5.4. Let PT be the transformation matrix
being constructed, D be the dependence matrix (every column is a dependence
vector), and R be the reuse matrix (every column is a reuse vector). The
following invariants are maintained during the construction: PTD = 0 and
PTR=0.

We start from an empty transformation matrix. The notation PT denotes a
row matrix. A new matrix Q7 is created by simply combining the rows of P
and RT. If QT spans the whole space, then its null space is empty. Some lower
priority reuse vectors have to be deleted until Q7 does not span the whole space.
Once a solution, which consists of a set of all valid vectors, for the null space of
QT is found, we need to choose a vector that satisfies the data dependences as
discussed in the previous section.

For example, we consider the loop nest in Figure 5.3(a) again. The reuse

. 10
matrix is R = ( 01
reuse vecter sets computed from references Ali,j], Ali,k] and Alj,k] as shown in
Section 5.2.4. Therefore the second column is dropped while computing the
first row of the transformation. The partial transformation is PT = (0,1).
The completion algorithm is then called to complete the partial transformation

0 1
10

). The first column (1,0)7 is the intersection of all three

to get the full transformation 7' = (
Figure 5.3(b).

). The transformed version is in
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Input: A reuse matriz R, a dependence matriz D and dimension n.
Output: A legal transformation matriz T that mazimizes cache reuse.
Algorithm HeightReduction(R, D, n) : Matriz
begin
pr — @}. s =0;
While ( (s <n) and (R not empty) do
QT = union(PT, RT);
While ( rank(Q) = n ) do
delete the lowest priority reuse vector from R
solve QT’U =0, let v =a1xy1 + ...azx¢
choose ay, ..., a; such that vI'D = al;l:lTD + ..+ at:l:tTD > 0.
if success then
D =D -d, if d is a dependence vector and vid > 0
PST =vl;s=5+1;

else
delete the reuse vector with the lowest priority from R

end if
End-While
return(PT);
end

Figure 5.4: Height Reduction
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fori=1n fort; = 0, nb-1
forg=1n fort; =0, nb-1
Afi, j] = Afli-1, 5-1] fori=tixb+ 1, min(n, (t; +1)*xb—1)

forj=1t*b + 1, min(n, (ti+1)xb—1)

(a) Source Code (b) Tiled

Figure 5.5: Loop Tiling

5.4 Width Reduction

Loop width can be reduced using loop tiling [Wol89]. For example, the reuse
vectors for the loop nest in Figure 5.5 are of the form of a ( é ) + ( (1) ) The
reuse matrix spans the whole space. The loop nest in (b) is the tiled version of
the loop nest in (a), where b is the block size, and nb is the number of blocks
computed from b and n. Note that extra “tile” loops have been introduced.
This adds some overhead to the execution time.

Loop tiling is not always legal. If we replace the statement in Figure 5.5(a)
by Afi,j] = Afi-1,j+1], then the dependence vector is (1, —1)7, which prevents
tiling. The reader can easily check that tiling would violate data dependences
However, loop transformations may be applied to make a loop nest tilable. A
loop reversal on the second loop will change the dependence vector to (1, 1)T,
and make tiling legal. Before we construct such transformation, we need to
know the dependence condition for tiling.

For a loop nest i1, .., 1, loops i, ..., 1, can be tiled if any dependence carried
by loops i, ..., 1, has no negative entries. This is the simplified case of the fully
permutable loop nest defined by Wolf and Lam [WL9la]. Any negative entry
in the dependence vectors carried by the loops i1,...5(x_1) will not prevent the
tiling of loops 1, ..., 1p.

The algorithm in Figure 5.6 constructs a transformation matrix that reduces
the height of the reuse vectors, and creates opportunity for tiling. It will find
the largest innermost loop nest by minimizing the blocking level k. A row s is
calculated to reduce the height of the reuse vectors, and to make the loop i
tilable. In the algorithm, a dependence vector will flow from D, the dependence
matrix carried by loops i, ...in, to D,, the dependence matrix carried by loops
U - U(s—1), and then be deleted if it is carried by the loop 11, ..., 44 _1). When
the vector from the null space of P and R is computed, we need to make sure
that it does not violate the data dependences in D. If this fails, then no such row
s exists. To guarantee that the nest 1y, ..., 15 can be tiled, we will not generate



68

Input: A reuse matriz R, a dependence matriz D and dimension n.
Output: A legal transformation matriz T that mazimizes data reuse.
Algorithm WidthReduction(R, D, n) : Matrix
begin
=1;PT =0;s=0;
While (s < n) do
QT = union(PT, RT);
While (rank(Q)) = n) delete the lowest priority reuse vector from R
solve QT’U =0, let v = ayxy + ...azxt
choose ay, ..., ar such that ol'D = alxlTD + ..+ atmtTD >0,
and try to optimize for vI D, > 0.
if success then
For ((d € D,) and (v1'd <0)) k = maz(k, r+1), if loop i, carries d.
For ((d € D) and (UTd>0)) D=D-d;,D,=D,+d
For ((d € Do) and d carried by loops i1, ..,1(4_1)) Do = Do — d
PST =vl;s =5+ 1;
else delete the reuse vector with the lowest priority from R

End-While
return(PT );
end

Figure 5.6: Width Reduction

negative entry in any dependence vector in D,. If a negative entry is generated
for a dependence vector, d, then the highest tilable level, &, is the loop below
the loop carrying d. Therefore, if we have to generate negative entries, it is
better to give up the dependence vectors carried by the outer loops in loops

ikv <5 Us—1)

5.4.1 Tile Size and Cache Interferences

Another important issue is the block size. A naive approach is to choose a
block size large enough that the block of data fits in the cache. This has been
shown to cause very poor performance on real machines, which usually have
direct mapped cache, or have caches with very small set associativity (2 or
4) [LRWOIL1]. Performance can be erratic when tile size changes, and it is difficult
to predict the optimal tile size. The main reason for performance degradation
is cache interference, i.e. two elements are mapped to the same cache location.
Width reduction also helps eliminate the erratic cache behavior because height
reduction is performed as a part of width reduction. Experimental results in
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Section 5.5.5 show that performance changes dramatically if tiling is directly
applied to Cholesky decomposition, while tiling produces good performance
independent of tile size after height reduction.

5.5 Experiments on Uniprocessor with
Caches: HP 9000

5.5.1 The Machine Architecture

We conducted our experiments on an HP 9000/720, which has 256KB data
cache, and 32MB main memory. A word has 4 bytes. The cache latency is
1 cycle, and the memory latency is 15 cycles. Benchmark programs are first
optimized by Pnuma, and then compiled with the native FORTRAN compiler
with the -O option.

We first show the results of banded SYR2K and the NASA benchmark from
the SPEC benchmark suite, and then study the effect of data sets and loop
tiling.

5.5.2 Banded SYR2K Results

We use banded SYR2K to show that our techniques can handle quite general
data access patterns. We include the original program in Figure 5.7(a) for
convenience. First, we compute the reuse matrix, shown in Figure 5.7(c), using
the algorithm in Section 5.2. The reuse vectors computed from the references
Z(i, j-i+1) are the second and third columns in the reuse matrix, which include
both temporal and spatial reuses (Note that the temporal reuses are a subset
of the spatial reuse. Therefore, only spatial reuse vectors are computed.); the
reuse vectors (both temporal and spatial) for X(k, i-k+1) (also Y(k, i-k+b))
are the fourth and fifth columns of the reuse matrix; and the last two columns
are the temporal and spatial reuse vectors for Y(k, j-k+0b) (also X(k, j-k+b)).
The first column is the basis vector of the intersection of all reuses, i.e. the
most important reuse dimension. We then call the height reduction algorithm
to produce the transformation matrix, shown in Figure 5.7(d), from that reuse
matrix. Given the transformation matrix, we use the completion algorithm to
generate the new loop nest, shown in Figure 5.7(b). The generation of the new
loop nest requires handling general loop bounds with maz, min, and variables,
which is provided by our loop transformation framework. In the transformed
version, height reduction exploits the spatial locality of the reference C'; A, and
B, with respect to the innermost loop. In the final stage, the loop nest is tiled
to improve the temporal locality.

The execution times for the different versions are shown in Figure 5.7(e). The
problem size n is 500. The time for the original version is 101.3 seconds. After
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fori=1,n
for j =1, min(i+2xb-2, n)
for k = max(i-b+1, j-b+1, 1),
min(i+b-1, j+b-1, n)
Z(i, j-i+1) = Z(i, j-i+1)
+X(k, i-k+b)xY(k, j-k+b)
+X(k, j-k+0b)xY(k, i-k+b)

(a) Source

1 10
0 01
1 01

(c) Reuse Matrix

10
10
0 1

o = O

1
1
1

for u = max(2-2%b, 2-n-b, 0),
min(-2+2%b, -2+n+b, -2+2%n, -1+4n)
for v =u+2*maz(-u+1-b, 1-b, 1-n, -u+1-n),
u+2%min(-u-1+b, -1+b, -u-1+n), 2
for w = mazx(1, (u+v)/2+1),
min(n, (-u+v)/24+n, (u+v)/2+n)
Z((-i-j)/2+k, i+1) = Z((-i-j) /2+k, i+1)
+X(w, (-u-v)/2+b)xY(w, (u-v)/2+b)
+X(w, (u-v)/2+b)xY(w, (-u-v)/2+b)

(b) Transformed

(d) Transformation

‘ Versions ‘ Source ‘ Transformation ‘ Strength Reduction ‘
Times (sec.) | 101.3 14.36 14.26
Speedup 7.05 7.10

(e) Execution Times

Figure 5.7: Banded SYR2K
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Figure 5.8: Width Reduction- banded rank-2k Update

height reduction transformations, the time is reduced to 14.36 seconds, which
has the speedup of 7.05. Strength reduction of the divisions in the program has
not changed the performance.

We compare our results using the width reduction with the simple tiled
version. The results are in Figure 5.8 in which Source represents the original
version; Stmple Tiling represents the simple tiling version; Trans represents the
version with height reduction; and Width Reduction/Tiling represents the tiling
version with width reduction. The performance of simple tiled version varies
dramatically, when the tile size changes, while the performance of our version
is quite stable, and always outpaces the simple tiling version.

5.5.3 NASA Benchmark Results

The NASA benchmark contains 7 floating point intensive programs written in
Fortran 77. For each kernel, the program generates its own input data, performs
the kernel and compares the result against an expected result.

A brief description of the programs and major data structures is list below.

e MXM: matrix multiply.

The major data structures are three 2-dimensional arrays of sizes 256 x 128,

128 x 64, and 256 x 64.
o FFT: complex radix 2 FFT on 2D array.

The major data structure is a 2-dimensional array of size 128 x 256.
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e CHOLSKY: Cholesky decomposition on a set of input matrices. It also
performs backward substitution.

The major data structures are two 3-dimensional arrays of sizes 250 x4 x40

and 3 x 250 x 40.

e BTRIX: Block tridiagonal matrix solution along one dimension of a four
dimensional array.

The major data structures are a 4-dimensional array of sizes 30 x 30 x 30 x5
and three 4-dimensional arrays of size 5 x 5 x 30 x 30.

o GMTRY: Sets up arrays for a vortex method solution and performs Gaus-
sian elimination on the resulting arrays.

The major data structures are one 2-dimensional array of size 500 x 500,
and three 2-dimensional arrays of size 100 x 5.

o EMIT: Creates new vortices according to certain boundary conditions.

The major data structures are one 2-dimensional array of size 500 x 500,
and four 2-dimensional arrays of size 100 x 5.

e VPENTA: inverts 3 pentadiagonal matrices.

The major data structures are two 3-dimensional arrays of size 128 x 128 x
3, and seven 2-dimensional arrays of size 128 x 128.

We applied the height reduction algorithm to these programs, and Table 5.1
contains the performance results. No loop transformations have been applied
to FFT, GMTRY and EMIT. There are a few reasons for this: there are data
dependences that prevent loop transformation, the loops are imperfectly nested,
or the loops are already in the right form for cache locality.

For MXM and CHOLSKY, transformations are applied, but no improvement
are seen. This is because that the test data set is so small that they almost fit
in the caches 2, and furthermore MXM has been hand-optimized for locality by
unrolling the outermost loop 4 times. We will study the effect of the size of the
data sets in Section 5.5.4.

For BTRIX and VPENTA, since both have arrays that are larger than the
data cache, we see improvement from our transformations. If the data sets were
even larger, we would expect to see much better improvement.

5.5.4 The Effect of Data Sets

In this section, we study matrix multiplication and Cholesky decomposition
with larger data sets.

ZRecall that the size of the data cache on the HP 9000/720 is 64K words.
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Table 5.1: NASA benchmark on HP 9000/720

| Prog | MXM | FFT | CHO | BTRIX | GMTRY | EMIT | VPENTA |
Source | 14.11 [93.05]40.61 | 55.78 | 111.34 [ 15.80 | 113.50
New | 14.24 | N/A [40.70 | 34.37 N/A | N/JA | 99.52
Speedup 1 1 1.64 1.12

A natural way of writing matrix multiplication is the simple ik form in
Figure 5.9(a). However, this version is not suitable for cache locality, because,
for example, the spatial locality of neither C' nor A is exploited, and there is
only temporal locality of C' and spatial locality of B. The NASA kernel chooses
the kji form, and then unrolls the k-loop 4 times. Figure 5.9 gives the execution
times for the problem size of 750.

Our height reduction algorithm will transform both versions to the new
version in Figure 5.9. In the transformed version, the spatial locality of C' is
exploited by the innermost loop, the temporal locality is carried by the second
loop. References A and B have spatial locality and temporal locality respec-
tively. As expected, the new version performs significantly better, requiring
only 68.65 seconds. Compared to the i7k version, the speedup is 5.88; compared
to the kji version, the speedup is 10.

Another example is the Cholesky Decomposition, shown in Figure 5.10(a).
We would like to study data sizes ranging from 250 to 2000. Since the cache size
on the HP 9000/720 is 64K words, a two dimensional array of 250 x 250 is about
the largest that can fit in the cache. The original code has poor locality, since the
inner loop walks across the columns, while FORTRAN uses column major form
for array layout. The cache lines (column segments) may be displaced before
the other elements in the same cache line can be accessed. The transformation
is a loop interchange, and the new version is shown in Figure 5.10(b).

The results are listed in Figure 5.10(c). When the problem size is 250, there
is almost no improvement. This is expected, since the array is small enough to
fit in the cache. When the size is 500, we see a moderate speedup of 2. The
improvement is significant when the size is larger than 1000. We get speedup
of 5 over the original version.

5.5.5 The Effect of Tiling

We use Cholesky decomposition as the example to illustrate the effect of tiling.
If we apply tiling directly on the ij-nest in Figure 5.10(a), we get the results in
Table 5.2 for a problem of size 1000.(The original version took 196.05 seconds.)
The performance varies greatly, when the block size changes. Although tiling
is an important optimization, it is very difficult to predict the optimal block
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fori=1,n fork =1 n
forj=1,n forj=1,n
fork =1 n fori=1,n
Cl, 5] = Cfi, 5] + Ali, kjxBlk, 5] Cfi, j] = Cli, j] + Afx, kjxBfk, j]
(a) ijk (b) kji

foru =1 n
forv=1n
forw =1 n

Clw, u] = Clw, u] + Afw, v}*Bfv, u]

(c) new

‘ Versions ‘ ik ‘ kji ‘

Source 379.69 | 708.37

Transformed | 68.65 | 68.65
Speedup 5.88 10

(d) Execution Times (Size = 750)

Figure 5.9: Matrix Multiplication
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fork =1 n fork =1 n
A(kk) = sqrt(A(kk)) A(kk) = sqrt(A(kk))
fori=k+1, n foriv=Fk+1, n

Alik) = A(ik)/A(k k) Alik) = A(i,k)/A(kk)
end for end for
fori=k+1, n foru =k+1, n
for g =k+1, ¢ for v = maz(u, k+1), n
Alig) = A(ij)-A(ik)xA(5,k) Afvu) = Alv,u)-Alv,k)xA(uk)
end for end for
end for end for
end for end for
(a) Source (b) Transformed

| 250 | 500 | 750 | 1000 | 1250 | 1500 | 1750 [ 2000 |
196.05 | 453.25 | 704.65 | 1161.74 | 1748.19
91.12 | 157.29 | 249.65 | 373.15
4.55 4.55

‘ Size
Source | 0.61 | 11.71 | 63.41

Trans 0.59 | 5.74 | 19.17 | 46.49
1.03 2 3.33 4.35 5 4.55

Speedup

(¢) Execution Times

Figure 5.10: Cholesky Decomposition
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Table 5.2: Loop Tiling (Size 1000)

Block Size 16 32 64 100 200
Times (sec.) | 60.77 | 56.15 | 55.74 | 175.08 | 184.85

Table 5.3: Loop Tiling after Height Reduction (Size 1000)

Block Size 16 32 64 100 200
Times (sec.) | 52.78 | 50.12 | 48.16 | 49.09 | 47.89

size [LRWO1]. If a random block size is chosen, the performance may be very
poor.

In our approach, we apply height reduction first. The reuse vector that has
the most number of occurrences is (1, O)T, which is computed from all of the
four references. The execution time of the untiled transformed version is 46.49
seconds (Figure 5.10(c)), about more than 20% improvement over the tiled un-
transformed version. The actual percentage depends on the choice of the block
size. If we apply tiling after height reduction, the block size is not a dramatic
factor causing big performance differences. Therefore, this optimization is more
stable, since it does not depend on the cache mapping, cache size and problem
size. There is some performance degradation due to the extra overhead of tiling.
The results are shown in Table 5.3.

5.6 Discussion and Related Work

In this section, we discuss related work.

Gannon, Jalby and Gallivan [GJG88] introduced the notion of uniformly
generated data reuse. Porterfield [Por89] studied the problem of estimating the
number of cache lines for uniprocessor machines, when the cache line size is
1. The techniques by Ferrante, Sarkar, and Thrash [FST91] estimate the the
number of distinct cache lines used by a given loop in a loop nest. Given this
estimate, they compute the number of cache misses for a loop nest.

Wolf and Lam [WL9la] focus on loop tiling of the innermost loops as a
means of achieving cache locality. They try all possible subset of the loops in
the loop nest, and then try to bring that subset into the innermost position.
The subset that can be brought into the innermost position, and has the best
objective function from the reuse vector space model is chosen to be tiled. The
cost function computed using the reuse vector space model is a function of
the dimension of the reuse vector space, i.e. number of loops that carry reuse.
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Therefore, the order of loops is irrelevant as long as the loops carry reuse. If data
dependences prevent a subset to become the innermost loop nest, unimodular
transformations are applied so that the inner most loop nest may be tilable. For
example, the reuse vector space for the 1j-nest in the Cholesky decomposition in
Figure 5.10(a) is the whole space that include both ¢ and j dimensions, which has
the maximum reuse (the maximum reuse dimension is 2, in the 2-dimensional
space), according to the reuse vector space model, and the subset that includes
loop 7 and loop 7 is tilable. Therefore, loop tiling is performed on the loop nest
7. The experimental results are reported in Table 5.2.

Our approach is based on reuse vector and reuse distance (we refer to this
as the reuse distance model), rather than the dimension of the reuse space.
Therefore, the order of loops does make a difference in our model. It takes the
reduction of reuse vector height as the primary optimization. In the Cholesky
example, by reducing the reuse vector (1, O)T, which is the basis vector of the
intersection of all reuses, we get the new version in Figure 5.10(b), which would
have the same cost function as the original version under the reuse space cost
model. Therefore, our reuse distance model with the reuse vectors and reuse
distances improves upon the reuse vector space model, and is a more precise
than the reuse space model. This allows us to develop algorithms to get better
performance. The experimental results are shown in Table 5.3, which shows
that our approach generates the better results. The second advantage is that
since the transformations are operated directly on the reuse vectors, no exhaus-
tive search is necessary. The third advantage is that the performance of the
generated code is much less dependent on the tile size. Another advantage of
the reuse distance model is that we can represent more complicated data reuses
such as the data access patterns in the banded SYR2K example in Figure 5.7.
For the reuse vector (1, 1,0), the reuse space model will make an approximation
by having both loops carry reuse, but we can optimize on it directly without
losing the precision.



Chapter 6

Improving Parallelism and
Locality

6.1 Introduction

We have seen that loop transformations can be applied to improve memory
locality and cache locality. In this chapter, we first show that our loop transfor-
mation framework can be used to improve parallelism as well. Then, we develop
a unified algorithm for parallelism, memory locality, and cache locality.

Together with the locality-driven code generation scheme presented in Chap-
ter 2, we have a complete parallelizing system for NUMA architectures.

Empirical results of Cholesky decomposition and SIMPLE, a hydrodynamics
program will be presented. The experiments were conducted on the KSRI.

This chapter is organized as follows: first we define dependence summary
vector, which summarizes the data dependences in the loop nest, and also serves
as the objective function to be optimized; second, we show an algorithm that
takes the data access matrix, and optimizes for parallelism with memory locality;
third, we present the complete algorithm for parallelism, memory locality and
cache locality. Finally experimental results are presented.

6.2 Dependence Summary Vector

We define dependence summary vector to summarize data dependences in a loop
nest.

Definition 6.2.1 Given a dependence vector d, if the ith entry has the first
non-zero, the dependence vector is said to be carried by the loop 1.

A loop is a parallel loop, if it does not carry any data dependences.
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Definition 6.2.2 Given a loop nest of depth n, a dependence summary vector
is an integer vector, where the ith entry is the number of dependences carried
by loop 1.

Let pvy and pva be two dependence summary vectors, then pvy < pvg if there
exists an 7 such that pvi[l : ¢ — 1] = pva[l : 7 — 1] and puv1[¢] < pvali].

Now we show that loop transformations can reduce the dependence summary
vector. Consider parallelizing the following program for a MIMD machine.

fori=4,8
forj =238
A[Z; ]] = A[Z-S) .]_2] + 1;

3
2

The dependence matrix for this program is D =

The outermost loop is parallel if and only if it does not carry any depen-
dences; that is, the first entry of every dependence vector is 0. In our example,
the outermost loop is not a parallel loop, since iteration ¢ depends on iteration
1 — 3. We can transform the loop nest into one in which the outermost loop is
parallel if we can find a transformation 7" such that every entry in the first row
of T'D is 0. Therefore, the condition that must be satisfied for transformation

T = ( i1tz ) is that (o1 otz ) ( : ) = 0. The condition can be satisfied by

t21  t22
choosing t1; = 2 and t12 = —3. This determines the first row of the transfor-
mation matrix, and now we must add additional row(s) to get a non-singular
matrix that respects all the dependences of the loop nest.
In the nest section, we show how to increase coarse-grain parallelism with
memory locality.

6.3 Transformation for Parallelism

The problem of improving coarse grain parallelism can be formulated as follows:
we would like to generate as many parallel outermost loops as possible. If a loop
has to carry dependences, it is better to carry less dependences in order to reduce
synchronization.

For coarse grain parallelism, the problem is to minimize the dependence
summary vector. A straightforward approach will be to find a partial trans-
formation in the null space of D so that the outermost loops will be parallel.
This is the approach taken by Banerjee [Ban90] and Wolf/Lam [WL9la]. to
construct a unimodular matrix to increase coarse-grain parallelism. For NUMA
architectures, data locality as well as parallelism is critical to high performance.
Our approach is to take both into account.

We will construct our non-singular transformations from the data access
matrix from Chapter 4. If a row from the data access matrix is in the null space
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Input: Candidate matriz C, dependence matriz D and dimension n.
Output: A partial transformation P for coarse grain parallelism.
Algorithm Parallelism(C, D, n) : Matriz
begin

PT:@;S — 0,’LT:@;t =0;

For i = 1, NumberOfRows(C)

cl»T = row i of C;

If cz»TD =0 and ¢; linearly independent of PT then

Pl =l s =5 + 1;

else
[
End-1f
End-For
return(PT, LT);

end

Figure 6.1: Improving Parallelism

of D, then we can improve both parallelism and memory locality by making that
row part of the partial transformation. The algorithm in Figure 6.1 is simple.
Since the data access matrix is ordered with the most important rows at the
beginning, we search from the beginning of the matrix.

6.4 A Unified Algorithm for Parallelism and
Locality

In this section, we show that the techniques we have developed for memory
locality, cache locality and parallelism can be unified into a single algorithm.
The techniques for memory locality developed in Chapter 4 can be extended
to take a partial transformation, rather than starting from an empty transfor-
mation matrix. The function MemoryLocality takes a partial transformation, a
data access matrix, and a dependence matrix, and returns a new partial trans-
formation. Dependences carried by the input partial transformation are deleted
from the dependence matrix. With the data access matrix and the updated de-
pendence matrix, we can call the algorithms BasisMatriz and LegalBasis from
Chapter 4 to generate a partial transformation. This partial transformation is
then appended to the input partial transformation to generate a new transfor-
mation as the returned partial transformation of the function MemoryLocality.
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Input: Data access matriz, reuse matriz and dependence matriz.
Output: A legal transformation T for parallelism and locality
Algorithm ParallelismAndLocality(X, R, D, n) : Matriz
begin

(PT, X ) = Parallelism(X, D);

(PT,D) = MemoryLocality(PT, X, D);
(P, D) = CacheLocality(P*, R, D)

T = Completion(PT, D)

end

Figure 6.2: Improving Parallelism and Locality

Similarly, the techniques for cache locality developed in Chapter 5 can also
be extended to take a partial transformation as an input. The function Cache-
Locality takes a partial transformation, a reuse matrix and a dependence matrix,
and returns a new partial transformation. The reuse vectors carried by the in-
put partial transformation are deleted from the reuse matrix. The dependence
vectors carried by the partial transformation are deleted from the dependence
matrix as well. For the algorithm in Figure 5.4, we can simply start with the
partial transformation.

If the transformation matrix generated by Parallelism, MemoryLocality and
CachelLocality is still a partial transformation, then the completion algorithm in
Section 4.6 will be called to generate a legal full transformation.

6.5 Experiments on Multiprocessor with
Caches: KSR1

6.5.1 The Machine Architecture

KSRI1 is a 64-bit shared memory multiprocessor. Each KSR1 processor is con-
nected to a subcache, which is the first level cache. The subcache has 0.5MB
divided into a 0.25 MB instruction subcache and a 0.25MB data subcache. The
second level cache, called the local cache, has 32MB.

The processors are connected in a hierarchy of rings. Thirty two processors
can be connected via a ring to form a ring0. At most 34 ring0’s can be connected
to form a ringl.
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Table 6.1: KSR1 Memory Hierarchy

‘ From: ‘ Cycles ‘ Size ‘
Subcache 2 256 KB
Local Cache 18 32MB
Ring 0 126 1GB
Ring 1 600 34GB

The memory system on the KSRI1 is different from the traditional multipro-
cessor memory system: the mapping between the physical address space and
the set of processors is not fixed. Local memory (local cache) also behaves like
a cache 1. The contents of the 64-bit System Virtual Address space are stored
physically in the set of local caches. Data moves at the point of reference on
demand. Data replication is allowed: multiple local caches can have a copy of a
memory location. A read request will result in searching for the data in the sub-
cache first. If it is not found in the subcache, then the local cache on the same
processor is searched. If it is a not found there, the memory system will retrieve
a copy from a processor that has the data, and return a copy to the processor
that made the read request. Therefore, multiple copies of the same data may
be created. A write request will invalidate all copies of the data, and makes the
requesting processor the owner of the data. The memory system implements a
sequentially consistent shared memory space programming model [Lam79].

As expected, it is much faster to access the subcache than local cache, which
is faster to access than the local cache of some other processor from the same
ring0, which is faster to access than the local cache of some processor from the
same ringl but not the same ring0. The latencies and memory capacities are
listed in Table 6.1. The ratio of a ringl memory access latency and a subcache
access latency is 300.

From the programming point of view, it is critical to have the data locality
in order to get high performance. We need both memory and cache locality as
well as parallelism.

Prnuma takes programs in FORTRAN, and generates programs in FOR-
TRAN with KSR parallel constructs. The native KSR FORTRAN compiler
with the Presto runtime system is used to generate executable code. The native
scalar optimizations are used. The timing is recorded using the KSR Perfor-
mance Monitor, Pmon.

YALLCACHE is the name of the memory system.
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fork =1 n fork =1 n
A(kk) = sqrt(A(kk)) A(kk) = sqrt(A(kk))
TILE (i) fori =k+1, n
for i =k+1, n Alik) = A(i,k)/A(kk)
Alik) = A(ik)/A(k k) end for
end for PARALLEL REGION
END TILE (1b,ub,s) = get_bounds(k+1,n,1,p,P)
TILE (i) for u = Ib, ub, s
fori=k+1, n for v =maz(u, k+1), n
forj =k+1,1 Afvu) = Alvu)-Alv,k)xA(uk)
Alig) = A(ij)-A(i,k)xA(5,k) end for
end for end for
end for END PARALLEL REGION
END TILE end for
end for
(a) KAP (b) Pnuma

Figure 6.3: Cholesky Decomposition on KSR

6.5.2 Cholesky Decomposition

We studied Cholesky decomposition and compared our result with KAP, a
commercial parallelizing compiler on the KSR1. The original version is shown
in Figure 5.10(a). The KAP-generated version is shown in Figure 6.3(a). KAP
decided to tile the outer parallel loops. The two i-loops are parallelized. The
Pnuma-generated version is shown in Figure 6.3(b). Pnuma assumes that the
arrays are distributed by columns. Loop transformations are applied first. The
new u-loop is parallelized, since it is the outermost parallel loop that carries
data locality, using the code generation scheme from Chapter 2.

The problem size used is 1000. The original sequential version took 584.81
seconds. Table 6.2 has the execution times and speedups of both KAP and
Pnuma versions. The Pnuma version had a speedup of 21.58 on 4 nodes! The
row Speedupl in the table contains the speedups over the original version. The
reason for the extraordinary speedup is that loop transformations helped exploit
data reuse in subcaches and local caches. The ratio of accesses to local cache
and subcache is 9. Therefore, there will be a factor of 9 speedup between a
version with good locality and a version with poor locality. The access latency
of remote accesses is even longer. To see the cache reuse effect on the sequential
version, we also ran the transformed version on one node. The execution time of
the transformed version is 98.5 seconds, a speedup of about 6 over the original
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‘ Prog/Nodes ‘ Nodes = 4 ‘ Nodes = 8 ‘ Nodes = 16 ‘ Nodes = 32 ‘

KAP 249.45 162.54 95.41 60.32
Speedup 2.34 3.6 6.14 9.6
Pnuma 27.09 14.17 8.05 5.11

Speedupl 21.58 41.27 72.6 113
Speedup? 3.63 6.95 10.88 19.27

Table 6.3: SIMPLE on KSRI1 (Size=400)

‘ Prog/Nodes ‘ Nodes = 4 ‘ Nodes = 8 ‘ Nodes = 16 ‘ Nodes = 32

Pnuma

8.12

4.7

2.81

2.11

Speedup

3.9

6.8

11.5

15.29

version. Then we compute the speedups over the transformed one node version
to get the row Speedup?.

6.5.3 SIMPLE Benchmark Results

SIMPLE is a hydrodynamics program from Lawrence Livermore Labs, which
has about 2400 lines of FORTRAN. The program has about 20 two-dimensional
arrays and a few one-dimensional arrays as work space. There are 25 subroutines
and 3 functions.

A column distribution is assumed since the arrays in FORTRAN have the
column major form. There was a slight change to the source code. The initial
values for computing the inverse of a polynomial were dependent on the previous
function call. This dependence was deleted to increase parallelism, since it didn’t
affect the program correctness. Variable privatization was not implemented, but
done by hand. We ran one iteration of the problem on a grid of size 400 x 400.
The sequential version took 32.28 seconds. Table 6.3 contains the results from

KSRI.

6.6 Discussion and Related Work

In this chapter, we have put all of the techniques developed in this thesis to-
gether. The central issue is that, to get high performance, both parallelism and
data locality have to be optimized. Program transformations were shown to be
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very effective in improving memory locality, cache locality and parallelism.



Chapter 7

Conclusions

We have built a system called Prnuma for programming NUMA machines. We
make the following contributions:

First, we take sequential programs, and generate parallel code exploiting
both parallelism and data locality.

Second, we have developed a framework based on non-singular matrices and
integer lattice theory for the systematic development of loop transformations.
It can be used in parallelizing compilers for both coarse-grain and fine-grain
parallel architectures. We have implemented a loop restructuring tool-kit, called
Lambda, based on this framework.

Third, using this loop transformation framework, we have developed algo-
rithms for improving memory locality. The memory locality algorithm restruc-
tures loop nests to expose opportunities for parallel execution and for block
transfers, while keeping data accesses local wherever possible.

Fourth, for cache locality, we have introduced a new simple cache model
based on reuse distances, that is more precise than the existing reuse vector
space model. We have developed a new loop transformation technique that
optimizes directly on reuse distances, so that no exhaustive search is necessary.

Fifth, we have used our loop transformation framework to improve paral-
lelism as well. We have developed a unified algorithm for parallelism, memory
locality and cache locality.

Finally, system evaluations have been conducted on a multiprocessor ma-
chine without cache: BBN GP1000, a uniprocessor workstation with cache: HP
9000/720 and a multiprocessor machine with caches: KSRI, using programs
from linear algebra, NASA benchmarks and SIMPLE hydrodynamics bench-
mark.

The techniques developed in this thesis can be applied, and extended in
various ways.

e Imperfectly nested loops
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So far, our matrix theory works on perfectly nested loops, or those that
can be made perfectly nested by adding conditionals. In real applications,
many loops are not perfectly nested. It is both intellectually challenging
and practically important to extend the theory to handle general loop
nests.

Eliminating false sharing

It is important to eliminate false sharing for coherent caches, or shared
virtual memory [LH89]. For dense matrix problems, we may be able to
apply the matrix approach to analyze the data access patterns, and lay
out “unrelated” data in different cache lines or memory pages.



Appendix A

Pnuma Compiler

The Pnuma compiler is implemented in C. The front-end takes a FORTRAN
program and generates an abstract syntax tree. Optimizations are performed
on the abstract syntax tree. FORTRAN source code is generated. Loop trans-
formation algorithms are implemented using the Lambda toolkit, which is de-
scribed in Appendix B.

The compiler options are list below. DOALL loops are generated for com-
parison. Transformations for multiprocessors include both transformations for
memory locality and cache locality. Transformations for uniprocessors include
transformations for cache locality only. The statistics option outputs loop pro-
filing information such as the number of loops with certain depth.

Parallelization:

— parallelizing DOALL loops

— parallelizing for locality

Optimizations:

— transformations for multiprocessors

— transformations for uniprocessor
e Statistics:

— loop statistics

Debugging:

— demo/debugging mode
— Lambda debugging mode
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Appendix B

Lambda Transformation Toolkit

B.1 Introduction

In this chapter, we describe the Lambda toolkit, which is based on the framework
developed in Chapter 3. The data structures and routines from the following
modules are described:

e Data Dependence Module
e Transformation Module
e Code Restructuring Module

e Utility Module

The toolkit is independent of the intermediate representation used in the
compiler. This enabled Bergmark and Presberg from Cornell Theory Center
have integrated it with Parascope, a parallelizing environment from Rice Uni-

versity [BP93].

B.2 Data Dependences

B.2.1 Data Types

A data dependence can be specified with either distance or direction. A distance
is represented by an integer constant, and a direction is represented by the
following symbols.

typedef enum {
dK,
dLT,
dLEQ,
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dEQ,

dGEQ,

dGT,

dDOT,

dLG,

dSTAR,
dSIZE

} LA_DIR_T;

dK represents distance, where its value is stored in another variable. The
data type for a dependence is a structure with two fields.

typedef struct {
LA_DIR_T dir;
int dist;

} LA_DEP_T;

A data dependence vector is a vector of dependences represented by a linked
list.

typedef struct _vector {
LA_DEP_T * vector;
struct _vector *next;

} *LA_DEP_V_T, LA_DEP_V_T1;

And a dependence matrix is a set of dependence vectors.

typedef struct{
LA_DEP_V_T vectors;
int dim;
int size;
} *LA_DEP_M_T, LA_DEP_M_T1;

B.2.2 Routines

There are routines provided to operate on the dependences, some of which are
listed here. A legal dependence vector should be lexicographically positive. A
data dependence analyzer may return a dependence vector with illegal compo-
nents, i.e. not lexicographically positive. la_dep_legal deletes the illegal compo-
nents. For example, the dependence vector (*, 1) becomes (<, 1) and (=, 1).
The illegal component (>, 1) is deleted.
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e Creates a dependence vector.
LA_DEP_V_T la_dep_vec_new( int size );
e Irees a dependence vector.
void la_dep_vec_free( LA_DEP_V_T 4 );
e Creates a dependence matrix.
LA_DEP_M_T la_dep_matrix_new(int dim, int size);
o Deletes the illegal components from a dependence matrix.
LA_DEP_M_T la_dep_legal(LA_DEP_M_T D);
e Eliminates redundant data dependences.

LA_DEP_M_T 1la_dep_no_redundant(LA_DEP_M_T D);

B.3 Constructing Transformations

B.3.1 Data Types

A matrix type is a two dimensional matrix. The field denom is used to represent
a rational matrix, A/d, where A is an integer matrix, and d is an integer.

typedef struct {
int ** matrix;
int row_size;
int col_size;
int denom;

} *LA_MATRIX_T;

To create a matrix structure with rowsize and colsize, we can use the follow-
ing routine.

e LA_MATRIX_T la_matrix_new(int rowsize, int colsize);
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B.3.2 Nounsingularity

This

set of routines are useful in the construction of a non-singular transforma-

tion matrix.

Checks if the transformation matrix is nonsingular.
int la_is_nonsingular(LA_MATRIX_T T);
Checks if the transformation matrix has full rank.
int la_is_fullrank(LA_MATRIX_T pT);
Computes the rank of a matrix.

int la_rank(LA_MATRIX_T pT);

Computes a base matrix.

LA_MATRIX_T la_base(LA_MATRIX_T pT);
Extends a base matrix to a nonsingular matrix.

LA_MATRIX_T 1la_padding(LA_MATRIX_T pT);

B.3.3 Data Dependences

This

set of routines assists the construction of a legal transformation.

Checks if a full transformation is legal with respect to the data depen-
dences.

int la_is_legal(LA_MATRIX_T T, LA_DEP_M_T D);
Checks if a partial transformation is legal.
int la_is_legal_par(LA_MATRIX_T pT, LA_DEP_M_T D);

Computes a legal base matrix by deleting the rows that violate the de-
pendences.

LA_MATRIX_T la_base_legal(LA_MATRIX_T pT, LA_DEP_M_T D);
Extends the legal base matrix with respect to the dependence matrix.

LA_MATRIX_T 1la_padding_legal(LA_MATRIX_T pT, LA_DEP_M_T D);
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B.4 Code Restructuring

A loop nest is represented by a list of loops, where each loop contains a lower
bound, a upper bound, and a step size. Each bound is a list of linear expressions.
A lower bound can be the maximum of a set of linear functions, and a upper
bound can be the minimum of a set of linear functions.

Variables are allowed in the loop bounds as long as they are loop invariants.
We call them blobs. In general, a loop bound can have a linear expression of
blobs as a part of the bound.

B.4.1 Computing Loop Bounds

First, simple integer vectors and matrices are defined.

typedef int * la_vect;
typedef la_vect * la_matrix;

B.4.1.1 Linear Expressions

The linear expression type has a field for the coefficients of the loop index
variables and the coefficients of the blobs.

typedef struct _la_expr{
la_vect coef;
int cO;
la_vect blob_coef;
int denom;
struct _la_expr *next;
} *LA_EXPR_T;

For example, let 7,5 be the loop index variables. An example of a linear
expression is (¢ + 7 + 2 + @ + y)/3. The coefficient vector contains the linear
coefficients (coef = (1 1) for ¢ + j). The integer constant is in ¢0 (¢0 = 2). The
blob coefficients are (1, 1), since there are only two blobs and we consider z as
blob 1, and y as blob 2. The denominator is 3.

We can allocate and free an expression with the dimension dim and total
number of blobs blobs using the following routines.

e LA_EXPR_T la_expr_new(int dim, int blobs);

e void la_expr_free( LA_EXPR_T expr );
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B.4.1.2 Single Loops

A loop has a lower bound, an upper bound, and a step size. The lower bound can
be the maximum of a set of linear expressions defined in the previous section,
and a linear expression may have an implicit ceiling function since only integer
functions are allowed. An upper bound can be the minimum of a set of linear
expressions. The floor function is implicit.

For example,

DO i = max( ceil((i+j)/2), ...), min( floor((21)/3), ...), step 2

The loop type has a list of expressions for both lower and upper bounds.
The offset expression is used in the new bounds.

typedef struct _la_loop{
LA_EXPR_T low;
LA_EXPR_T up;
int step;
LA_EXPR_T offset;

} *LA_LOOP_T;

The new loop bounds after a nonsingular transformation can be more com-
plex. The bounds may have a linear offset, and an integer factor that equals
to the step size. The offset and factor are the same for both lower and upper
bound in the same loop.

For example,

DO v = u + 2*max( ceil((u+v)/2), ...), u + 2*min(...), step 2

These two routines allocate and free a loop structure.
e LA_LOOP_T la_loop_new( void );

e void la_loop_free( LA_LOOP_T loop );

B.4.1.3 Loop Nests

A loop nest is an ordered array of loops with first being the outermost loop and
the last being the innermost. depth is the depth of the loop nest. blobs is the
total number blobs.

typedef struct _la_loopnest{
LA_LOQOP_T *loops;
int depth;
int blobs;

} *LA_LOOPNEST_T;
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These routines allocate and free a loop nest.
e LA_LOOPNEST_T la_nest_new(int depth, int blobs );
e void la_nest_free( LA_LOOPNEST_T nest );

la_nest takes a loop nest, and the transformation matrix and returns the new
loop nest.

e LA_LOOPNEST_T la_nest(LA_LOOPNEST_T nest, LA_MATRIX_T T);

B.4.2 Computing Loop Body

The loop body can be considered as a set of simple vectors. Each vector can be
transformed using la_vector.
A simple vector is a piece-wise linear function.

typedef struct {
la_vect coef;
int size;
int denom;
} *LA_VECTOR_T;
The following routines allocate and free a simple vector.
e LA_VECTOR_T la_vector_new( int size );
e void la_vector_free( LA_VECTOR_T v );

la_vector computes the new expression in the transformed loop nest. The
input is the inverse of the transformation.

e LA_VECTOR_T la_vector(LA_MATRIX_T invT, LA_VECTOR_T v);

B.5 Utility Routines

There are many other routines available in the toolkit. These routines include
vector and matrix operations, algebraic operations on dependences, print rou-
tines for debugging, and so on.
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