The cattle tick: biology, ecology, distribution and control

Allen Heath AgResearch, Wallaceville

New Zealand cattle tick, Haemaphysalis longicornis

The Basics

- A parthenogenetic/bisexual species of ixodid (hard) tick
- A bisexual race occurs in Japan, Korea and China in conjunction with the parthenogenetic race
- First discovered in NZ in 1911
- A three host tick
- Life cycle in NZ completed in 12 months
- May be possible to have more than one generation annually
- Most Northern Hemisphere populations have 2 to 3 year life cycle and 4 to 8 month activity period annually

Western Pacific tick areas

World distribution of Haemaphysalis longicornis

Adapted from Greyhounds of the Sea The Story of the American Gipper Ship

Carl C. Cutter (New York G.P. Putran's Sons, 1930)

Cattle tick distribution 1924 & 2014

Distribution 2018

Weather parameter with good fit

Predicted distribution (Lawrence et al. 2017)

How is range achieved and defined?

- Favourable temperatures
- Favourable humidity/soil moisture levels
- Suitable hosts
- Suitable vegetation
- Farming systems, e.g., deer
- Free-ranging hosts to further distribute ticks

Haemaphysalis longicornis, all stages

Feeding times

Larva: 3-9 days

Nymph: 3-8 days

Female: 7-14 days

The longer feeding times can occur during heavy infestations or with hosts that have experienced long-term exposure to ticks

Hosts for *H. longicornis*

- All classes of livestock
- Companion animals
- Wild and feral mammals
- Numerous bird species
- Humans

Infested hosts

Seasonal cycle

- Each tick stage shows relatively discrete, synchronized activity
- Some overlap seen with other stages and age cohorts
- Deferred feeding most likely explanation
- Delayed development can occur because of low temperature or moisture levels
- Newly-moulted nymphs and some unfed females enter behavioural diapause
- Entrained by short day length in mid March
- Further control under temperature and humidity

Seasonal activity on goats

Seasonality, diagrammatic

Figure 4.2 Diagrammatic representation of the seasonal pattern of activity of *Haemaphysalis longicornis* in warmer regions of New Zealand.

For simplicity, only major peaks are shown and the diagram should be interpreted using the key below. The troughs between peaks do not indicate a total absence of ticks on animals but show when ticks that comprise the main population cohorts for the year are undergoing development on the ground.

Key:

- (a) overwintering eggs, larvae, nymphs and adults.
- (b) main nymphal peak derived from overwintered unfed nymphs; gives rise to (e).
- (c) early adult peak derived from overwintered engarged nymphs; gives rise to larvae in early to mid-summer and nymphs in mid to late summer (g).
- (d) early larval peak derived from overwintered eggs or unfed larvae; gives rise to nymphs active in late spring to early summer and adults in late summer to autumn.
- (e) main adult peak derived from (b).
- (f) main larval peak derived from (e).
- (g) subsidiary nymphal peak derived from larvae feeding and moulting mid-late summer; these nymphs give rise to (c).

TEMPERATURE EFFECTS

Preferred temperature range*

*various authors

- Estimated threshold for development (all stages) 9-12°C [eggs will not hatch at ≤12°C and fed stages will not moult at <15°C].
- Interstadial development and incubation takes place between 15 and 38°C
- Rate of development slower at low temperatures but not linear throughout preferred range

Female and eggs

Developmental times

- Female: mean pre-oviposition period at 18°C, 16 days; 25-38°C, 4-5 days]
- Duration of oviposition can be up to 2 weeks
- Egg: mean incubation period at 15°C,
 >100 days; 18°C, 70 days; 25°C, 31 days;
 28-35°C, 22 days

Seasonality, diagrammatic

Figure 4.2 Diagrammatic representation of the seasonal pattern of activity of *Haemaphysalis longicornis* in warmer regions of New Zealand.

For simplicity, only major peaks are shown and the diagram should be interpreted using the key below. The troughs between peaks do not indicate a total absence of ticks on animals but show when ticks that comprise the main population cohorts for the year are undergoing development on the ground.

Key:

- (a) overwintering eggs, larvae, nymphs and adults.
- (b) main nymphal peak derived from overwintered unfed nymphs; gives rise to (e).
- (c) early adult peak derived from overwintered engarged nymphs; gives rise to larvae in early to mid-summer and nymphs in mid to late summer (g).
- (d) early larval peak derived from overwintered eggs or unfed larvae; gives rise to nymphs active in late spring to early summer and adults in late summer to autumn.
- (e) main adult peak derived from (b).
- (f) main larval peak derived from (e).
- (g) subsidiary nymphal peak derived from larvae feeding and moulting mid-late summer; these nymphs give rise to (c).

Engorged larva and nymph

Interstadial developmental times

- Larva: mean pre-moult at 15°C, 31 days;
 18°C, 24 days; 28-35°C, 9 days
- Nymph: mean pre-moult at 18°C, 34 days;
 25°C, 17 days; 28-38°C, 12 days

Low (sub-threshold) temperatures are not necessarily lethal, but by prolonging development expose ticks to diminishing food reserves and risk of dehydration

Seasonality, diagrammatic

Figure 4.2 Diagrammatic representation of the seasonal pattern of activity of *Haemaphysalis longicornis* in warmer regions of New Zealand.

For simplicity, only major peaks are shown and the diagram should be interpreted using the key below. The troughs between peaks do not indicate a total absence of ticks on animals but show when ticks that comprise the main population cohorts for the year are undergoing development on the ground.

Key:

- (a) overwintering eggs, larvae, nymphs and adults.
- (b) main nymphal peak derived from overwintered unfed nymphs; gives rise to (e).
- (c) early adult peak derived from overwintered engarged nymphs; gives rise to larvae in early to mid-summer and nymphs in mid to late summer (g).
- (d) early larval peak derived from overwintered eggs or unfed larvae; gives rise to nymphs active in late spring to early summer and adults in late summer to autumn.
- (e) main adult peak derived from (b).
- (f) main larval peak derived from [e].
- (g) subsidiary nymphal peak derived from larvae feeding and moulting mid-late summer; these nymphs give rise to (c).

Photoperiod and diapause

- Mid March sees the 'turnover' from long days to short days
- Decreasing day length entrains behavioural diapause in most unfed nymphs from April onwards
- Do not quest again until July
- Low temperatures in June may break diapause
- In Northern Hemisphere populations other stages diapause as well
- Unfed females may diapause in NZ

Seasonality, diagrammatic

Figure 4.2 Diagrammatic representation of the seasonal pattern of activity of *Haemaphysalis longicornis* in warmer regions of New Zealand.

For simplicity, only major peaks are shown and the diagram should be interpreted using the key below. The troughs between peaks do not indicate a total absence of ticks on animals but show when ticks that comprise the main population cohorts for the year are undergoing development on the ground.

Key:

- (a) overwintering eggs, larvae, nymphs and adults.
- (b) main nymphal peak derived from overwintered unfed nymphs; gives rise to (e).
- (c) early adult peak derived from overwintered engarged nymphs; gives rise to larvae in early to mid-summer and nymphs in mid to late summer (g).
- (d) early larval peak derived from overwintered eggs or unfed larvae; gives rise to nymphs active in late spring to early summer and adults in late summer to autumn.
- (e) main adult peak derived from (b).
- (f) main larval peak derived from [e].
- (g) subsidiary nymphal peak derived from larvae feeding and moulting mid-late summer; these nymphs give rise to (c).

HUMIDITY EFFECTS

Maintaining water balance

- Ticks can regain water and survive as long as no more than ca 35% of weight is lost
- Fed and unfed stages can absorb water from the air, the latter stage more so
- The further interstadial development and embryogenesis has proceeded at a high humidity, the more a dehydrating atmosphere can be tolerated
- Eggs and fed stages lose water more slowly than unfed stages
- Eggs cannot redress water loss, must rely on yolk and cuticle to slow evaporation
- Unfed nymph>egg>larva>female
- Fed nymph>female>egg>larva

Water vapour in air

- Relative humidity (RH%) is the percentage of the maximum water content in air at a given temperature
- Identical RH values do not indicate identical atmospheric moisture conditions unless temperature is the same

The drying power of air

- Saturation deficit (SD) measures drying power of air as mm Hg
- Same SD applies across a range of temperatures; makes them comparable, which RH% does not
- SD is same as vapour pressure deficit, VPD, [kPa]

Range of suitable humidity conditions for *H. longicornis**

(*various authors)

- Egg: 1-8 mm Hg SD
- Fed larva: 2-10 mm Hg SD
- Fed nymph: 2-20 mm Hg SD
- Fed adult: 2-20 mm Hg SD

At any given temperature the nymph can withstand more dehydration than can egg and larva yet, paradoxically, female can oviposit at humidities lethal to eggs

Response to dryness; near upper survivable limit

Egg at 8mm Hg SD

 9% hatched after 21 days [22% weight loss; 1.1%/day]

Fed larva at 8mm Hg SD

4% survived to moult after 12 days [ca 30% weight loss; 2.5%/day]

Fed nymph at 20mm Hg SD

ca 15% survived to moult after15 days [30% weight loss; 2%/day]

Relationship between larval survival and vapour pressure deficit* (*graph by K. Lawrence)

Water balance

(Neilson 1980)

- Unfed larva: lost 11% weight after 4hr at ca 22mm Hg and 28°C
- Lived for 6-8 days when placed at 6mm
 Hg but lost more weight
- Regained weight at >2-3mm Hg
- Unfed nymph: lost 11-17% weight after
 24 hr
- Regained weight at ca 6-9mm Hg

Water balance

- Unfed female: Lost 9% of weight over 48 hr at ca 22 mmHg (Neilson 1980)
- All died after 6-8 days when later placed at 6mm Hg
- Regained weight at >2-3mm Hg
- Lost 12.4% of weight at 4-5mm Hg and survived for 56 days (Kang 1981)

Redressing water balance

- Unfed stages can seek favourable moisture levels
- Eggs and fed stages are hostage to fluctuating humidities
- Pasture mat offers humidity higher than air above
- The moisture requirements of the larva and its relatively poor water retention capability (compared with other stages) limit where H. longicornis can survive and flourish

How likely is seasonal exposure to water stress?

- Nymph diapauses unfed in winter in grass mat; metabolic rate slowed; conditions are moist when it is active
- Adult active at warm, moist time of year, so not exposed to severe water stress anyway
- Egg is less able than adult and nymph to survive dehydration (cannot absorb water from air), but exposed to same conditions as female and loses water slowly
- Larva is most susceptible to dehydration in unfed state.
 Active at hottest, potentially driest time of year, but in grass mat when in pre-moult phase
- Periods of drought biggest threat

Matching distribution with climate

Cattle tick distribution and vapour pressure (hPa)

Future possibilities

- Climate change could produce wetter western areas and drier eastern and northern areas
- Climate change could produce warmer southern areas
- Irrigation and deer farming could provide suitable environments where these do not currently exist
- Unfettered movement of tick-infested stock and any other infested host provide 'invasion' opportunities

Deer farm density

Conclusions

- Current tick distribution can be matched adequately with some averaged climate parameters
- Some fit better than others
- Physiological needs of larva best indicator of tick's limits
- Possible to predict potential increase in range of tick today and with future climate change

Vector control

- Control is a misnomer; population suppression or diminution is more accurate.
- Repeated, high rotation acaricide use can reduce numbers of larvae (susceptible stage); fewer larvae can or should mean fewer infective nymphs.
- Maintenance of acaricide pressure throughout nymphal and adult activity phases reduces risks to naïve stock; also reduce numbers of females that eventually lay eggs

Vector control

- Flumethrin touted as 'sterilizing' ticks, but only Hyalomma and Rhipicephalus in vitro. Hardly simulates field experience
- Surest way is to 'vacuum clean' or mop up ticks from pasture using low-value stock that can be saturation-dipped
- However, wild, mobile, wide-ranging hosts will in time contribute to replenishment of tick numbers
- Use cattle resistant or refractory to ticks; selective breeding
- Pasture spelling may have limited value

Acknowledgements

- Kevin Lawrence for useful discussion and provision of some maps
- Many veterinarians and colleagues for information on tick distribution
- The internet for any unattributed photos or figures
- Various unattributed authors
- AgResearch funding partly supported this work