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New Zealand cattle tick,
Haemaphysalis longicornis




The Basics

A parthenogenetic/bisexual species of ixodid
(hard) tick

A bisexual race occurs in Japan, Korea and
China in conjunction with the parthenogenetic
race

First discovered in NZ in 1911
A three host tick
Life cycle in NZ completed in 12 months

May be possible to have more than one
generation annually

Most Northern Hemisphere populations have 2 to
3 year life cycle and 4 to 8 month activity period
annually
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World distribution of
Haemaphysalls longicornis
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Cattle tick distribution
1924 & 2014




Distribution 2018




Weather parameter with good fit
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Predicted distribution (Lawrence
et al. 2017)
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How Is range achieved and
defined?

Favourable temperatures

Favourable humidity/soil moisture levels
Suitable hosts

Suitable vegetation

Farming systems, e.g., deer

Free-ranging hosts to further distribute
ticks



Haemaphysalis longicornis,
all stages




Feeding times

« Larva: 3-9 days
 Nymph: 3-8 days
 Female: 7-14 days

The longer feeding times can occur during
heavy infestations or with hosts that have
experienced long-term exposure to ticks



Hosts for H. longicornis

All classes of livestock
Companion animals
Wild and feral mammals
Numerous bird species
Humans



Infested hosts




Seasonal cycle

Each tick stage shows relatively discrete,
synchronized activity

Some overlap seen with other stages and age
cohorts

Deferred feeding most likely explanation

Delayed development can occur because of low
temperature or moisture levels

Newly-moulted nymphs and some unfed females
enter behavioural diapause

Entrained by short day length in mid March
Further control under temperature and humidity



Seasonal activity on goats
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Tick Numbers —

Seasonality, diagrammatic
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TEMPERATURE EFFECTS



Preferred temperature range*

*various authors

» Estimated threshold for development (all
stages) 9-12°C [eggs will not hatch at
<12°C and fed stages will not moult at
<15°C].

* Interstadial development and incubation
takes place between 15 and 38°C

» Rate of development slower at low
temperatures but not linear throughout
preferred range



Female and eggs




Developmental times

 Female: mean pre-oviposition period at
18°C, 16 days; 25-38°C, 4-5 days]

» Duration of oviposition can be up to 2
weeks

* Egg: mean incubation period at 15°C,
>100 days; 18°C, 70 days; 25°C, 31 days;
28-35°C, 22 days
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Engorged larva and nymph




Interstadial developmental times

« Larva: mean pre-moult at 15°C, 31 days;
18°C, 24 days; 28-35°C, 9 days

 Nymph: mean pre-moult at 18°C, 34 days;
25°C, 17 days; 28-38°C, 12 days

Low (sub-threshold) temperatures are not
necessarily lethal, but by prolonging
development expose ticks to diminishing
food reserves and risk of dehydration
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Photoperiod and diapause

Mid March sees the ‘turnover’ from long days to
short days

Decreasing day length entrains behavioural
diapause in most unfed nymphs from April
onwards

Do not quest again until July
_ow temperatures in June may break diapause

n Northern Hemisphere populations other
stages diapause as well

Unfed females may diapause in NZ
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HUMIDITY EFFECTS



Maintaining water balance

Ticks can regain water and survive as long as
no more than ca 35% of weight is lost

Fed and unfed stages can absorb water from the
air, the latter stage more so

The further interstadial development and
embryogenesis has proceeded at a high
humidity, the more a dehydrating atmosphere
can be tolerated

Eggs and fed stages lose water more slowly
than unfed stages

Eggs cannot redress water loss, must rely on
yolk and cuticle to slow evaporation

Unfed nymph>egg>larva>female
Fed nymph>female>egg=>larva



Water vapour in air

* Relative humidity (RH%) is the percentage
of the maximum water content in air at a
given temperature

 |dentical RH values do not indicate
iIdentical atmospheric moisture conditions
unless temperature is the same



The drying power of air

« Saturation deficit (SD) measures drying power of
air as mm Hg

« Same SD applies across a range of
temperatures; makes them comparable, which
RH% does not

« SD is same as vapour pressure deficit, VPD,
[kPa]



Range of suitable humidity
conditions for H. longicornis™

(*various authors)

Egg: 1-8 mm Hg SD

* Fed larva: 2-10 mm Hg SD
 Fed nymph: 2-20 mm Hg SD
* Fed adult: 2-20 mm Hg SD

At any given temperature the nymph can withstand
more dehydration than can egg and larva yet,
paradoxically, female can oviposit at humidities
lethal to eggs



Response to dryness; near upper

survivable limit

Egg at 8mm Hg SD

* 9% hatched after 21 days [22% weight loss;
1.1%/day]

Fed larva at 8mm Hg SD

* 4% survived to moult after 12 days [ca 30%
weight loss; 2.5%/day]

Fed nymph at 20mm Hg SD

» ca 15% survived to moult after15 days [30%
weight loss; 2%/day]



Relationship between larval survival and
vapour pressure deficit™ (‘graph by K. Lawrence)
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Water balance

(Neilson 1980)

Unfed larva: lost 11% weight after 4hr at
ca 22mm Hg and 28°C

Lived for 6-8 days when placed at 6mm
Hg but lost more weight

Regained weight at >2-3mm Hg

Unfed nymph: lost 11-17% weight after
24 hr

Regained weight at ca 6-9mm Hg



Water balance

Unfed female: Lost 9% of weight over 48
hr at ca 22 mmHg (Neilson 1980)

All died after 6-8 days when later placed at
6mm Hg

Regained weight at >2-3mm Hg

Lost 12.4% of weight at 4-5mm Hg and
survived for 56 days (Kang 1981)



Redressing water balance

Unfed stages can seek favourable moisture
levels

Eggs and fed stages are hostage to fluctuating
humidities

Pasture mat offers humidity higher than air
above

The moisture requirements of the larva and its
relatively poor water retention capabillity
(compared with other stages) limit where H.
longicornis can survive and flourish



How likely is seasonal exposure to
water stress?

Nymph diapauses unfed in winter in grass mat;
metabolic rate slowed; conditions are moist when it is
active

Adult active at warm, moist time of year, so not exposed
to severe water stress anyway

Egg is less able than adult and nymph to survive
dehydration (cannot absorb water from air), but exposed
to same conditions as female and loses water slowly

Larva is most susceptible to dehydration in unfed state.
Active at hottest, potentially driest time of year, but in
grass mat when in pre-moult phase

Periods of drought biggest threat



Matching distribution with
climate



Cattle tick distribution and vapour pressure
hPa)
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Future possibilities

Climate change could produce wetter western
areas and drier eastern and northern areas

Climate change could produce warmer southern
areas

Irrigation and deer farming could provide
suitable environments where these do not
currently exist

Unfettered movement of tick-infested stock and
any other infested host provide ‘invasion’
opportunities



Deer farm density
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Conclusions

Current tick distribution can be matched
adequately with some averaged climate
parameters

Some fit better than others

Physiological needs of larva best indicator
of tick’s limits

Possible to predict potential increase in

range of tick today and with future climate
change



Vector control

Control is a misnomer; population
suppression or diminution is more accurate.

Repeated, high rotation acaricide use can
reduce numbers of larvae (susceptible stage);
fewer larvae can or should mean fewer
infective nymphs.

Maintenance of acaricide pressure throughout
nymphal and adult activity phases reduces
risks to naive stock; also reduce numbers of
females that eventually lay eggs



Vector control

Flumethrin touted as 'sterilizing' ticks, but only
Hyalomma and Rhipicephalus in vitro. Hardly
simulates field experience

Surest way is to ‘vacuum clean’ or mop up
ticks from pasture using low-value stock that
can be saturation-dipped

However, wild, mobile, wide-ranging hosts will
in time contribute to replenishment of tick
numbers

Use cattle resistant or refractory to ticks;
selective breeding

Pasture spelling may have limited value
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