AN ALGORITHM FOR DETERMINING WHETHER
THE CONNECTIVITY OF A GRAPH
IS AT LEAST k

Shimon Even®
TR 73-184

September 1973

Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot, Israel

* This work was done while the author was with the Department of
Computer Science, Cornell University, during the summer of 1973.

AN ALGORITHM FOR DETERMINING WHETHER
THE CONNECTIVITY OF A GRAPH
IS AT LEAST k

Shimon Even
Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot, Israel

Abstract:

.The.algorithm presented in this paper is for testing whether
the connectivity, of a large graph of n vertices, is at least
k . First the case of undirected graphs is discussed, and then
it is shown that a variation of this algorithm works for directed
graphs. The number of steps the algorithm requires, in case

k <An, is bounded by O(kn>).

AN ALGORITHM FOR DETERMINING WHETHER
THE CONNECTIVITY OF A GRAPH
IS AT LEAST k

Shimon Even

I. INTRODUCTION

Let G be a finite undirected graph with n vertices and
e edges. We assume that G has no self-loops and no parallel

edges. A set of vertices, S, is called a separating set if there

exist two vertices a,b € S such that all paths between a and

b pass through at least one vertex of S. The connectivity, c,

of G is defined in the following way

(i) If G 1is completely connected” then c. = n-1.

(ii) If G is not completely connected then c¢ 1is the

least. number of vertices in a separating set.
Menger's theorem [1] states that if the connectivity of G is
c then for every two vertices a,b there exist c vertex-dis-
joint paths connecting a and b+; and conversely, if for every
two vertices a,b there exist ¢ vertex-disjoint connecting
paths then the connectivity of G is at least c. Dantzig and
Fulkerson [2] introduced the relation between connectivity and
network flow. Thus, the Ford and Fulkerson [3] algorithm can be
used -to determine the connectivity of a graph. 1In fact the max-

flow min-cut theorem (and algorithm) immediately translates to

* FEach pair of vertices is connected by an edge. In this case
G has no separating sets.

+ Clearly, the vertices a,b are shared by all c paths, but
no other vertex, and therefore no edge, is shared.

the following: The maximum number of vertex-disjoint paths con-
necting vertices a and b 1is equal to the minimum cardinality
separating set between a and b, in case there is no edge between
a and b; otherwise the number of paths is one more than the
minimum cardinality of a set separating a from b after the

edge between them has been deleted.

Thus, one can find the connectivity of a graph in the follow-
ing way: For each pair of vertices find the maximum number of
vertex-disjoint paths. The minimum value over all pairs is the
connectivity.

For each pair of vertices we construct a flow-network whose
number of vertices is 2n and the number of edges is 2e+n .
The capacities are all one” . Each labeling and augmenting path
realization costs O(e) steps, and it corresponds to one path
between the two vertices. Since the ponnectivity.can be»as high
as n-1, the whole procedure for finding the maximum number of
vertex-disjoint paths connecting this pair of vertices is at most
of cost O(ne), or O(n) if O(e) = O(n?).

Repeating this for all pairs will cost, then, at most O(n5).

Gomory and Hu [5] showed that the multi-terminal network-
‘flow problem can be solved by considering only n-1 pairs of
vertices instead of n(n-1)/2. (Their result is for undirected

.networks.) This means that the connectivity can be determined

in at most O(n4) steps.

* For more details, see, for example, [4]. There, some of the
capacities are infinite and some are unit. Changing them all to
one unit does not change anything.

Assume now that we are not interested in the connectivity it-
self, but rather would like to check whether the connectivity is
at least k, where k is much smaller than n .

It seems like the Gomory and Hu technique fails here because
one has to find a minimum-cut through which one splits the sets of
vertices created in their procedure. Thus, no reduction over the
O(n4) is provided.

Kleitman [6] has shown a method which takes at most O(k2n3)
steps. Clearly Kleitman's algorithm is better than that implied
by the Gomory and Hu method if k < Vn.

In Section II I shall present a method which takes at most
O(kn3) steps. Directed graphs are discussed in Section III.

It is proper to comment here that the case of k=1 is tri-
vially solvable in O(e) steps. The case k=2 was solved in
O(e) steps by Hopcroft and Tarjan [7] who proceeded to solve the
case k=3 in O(e) steps too [8]. Their methods are different
from the ones described above. They use the powerful technique
of Depth First Search (which was already known in the 19th century
as a maze threading technique. See for example Lucas' [9] report
on Trémaux's work). I do not believe that their methods will ex-

tend for higher k's .

II. THE ALGORITHM FOR UNDIRECTED GRAPHS

Let G be an undirected graph with n vertices and e edges.
Let L ='{vl,v2,...,v2} be a set of vertices of G and u be a

vertex of G not in L. Let k be a positive integer such that

k < 2.

Let us add to G a new vertex a and connect it by an edge
to each of the vertices in L. The new graph, Le] , will be called

the augmented graph.

Lemma 1: If in G each vertex v (1 <1i < 2) can be connected to
u via k vertex-disjoint paths then in ¢ there are k vertex-

disjoint paths between a and u .

Proof: Assume not. Then there is a separating set S, Is|l< k ,
such that all paths from u to a pass through at least one ver-
tex of S . Consider the set of vertices, U, such that, like for
u , all the paths from them to a pass through at least one ver-
tex of S . None of the vertices in L can be in U , since

each vertex of L is connected by an edge to a . Thus, there
exists a vertex v in L which is not in U and not in S .

. Every path from u to Vv must pass through at least one vertex
of S . Thus there cannot be k vertex-disjoint paths between

u and v . A contradiction. : , ' Q.E.D.

Assume the set of G's vertices is {1,2,...,n}. Let J be
the least vertex such that for some i < j there are no k ver-

tex-disjoint paths connecting i and j in G .

n
Lemma 2: Let 3j be as defined above and -G be the augmented
graph where L = {1,2,...,j-1}. There are no k vertex-disjoint

v
paths connecting a . and 5 in G.

Proof: Consider a minimum separating set S, such that all paths
between i and Jj pass through at least one vertex of S. It

follows that |S| <k . Let U be the set of all vertices such

that all paths from them to i must pass through at least one
vertex of S . Clearly j €U . If a vertex j' < j is in U
then there are no k vertex-disjoint paths from j' to i , and
j-th choice was erroneous. Thus, Jj is the least vertex in U,
or LNU=¢ . Namely, all paths from Jj "to vertices in L
must pass through, or end in, a vertex in 8 . It follows that
in E there are no k vertex-disjoint paths between a and

e Q.E.D.

We are now ready for the algorithm for determining whether

the connectivity of G is at least k .

Algorithm 1:

(1) For every i and j such that 1 < i < j <k check whe-
ther there are k vertex-disjoint paths between them. If
for some i and j the test fails, then G's connectivity
is less than k .

(2) For every j , k+l1 < j <n , form E and check whether
there are k vertex-disjoint paths between a and J .

If for some j the test fails, then G's connectivity is
less than k . |

(3) The connectivity of G is at least k .

‘The proof of validity of this algorithm is as follows: If G's
connectivity is at least k then, by Lemma 1, Step (2) will
detect no failure and the algorithm will halt with the correct
answer. If G's connectivity is less than k then by Lemma 2,
failure will occur and again the algorithm will halt with the

correct answer.

- 6 -

Step (1) of the algorithm requires at most O(k3n2) element-
ary steps and Step (2) requires at most O(kn3) . Clearly, for
k < 4n the whole algorithm requires at most O(kn3) (or Of(kne)
if oOf(e) < O(nz)) . In fact one could use the method of Gomory
and Hu to perform Step (1) and that takes at most O(kn3) for

any k .

III. THE ALGORITHM FOR DIRECTED GRAPHS

Let G be a directed graph whose set of vertices is

"{1,2,...,n} and with e edges. An (i,j)-separating set, S,

is a set of vertices such that every directed path from i to

j passes through at least one vertex in S . The connectivity

of G 1is defined as follows:

(1) If the graph is completely connected (namely, e = n(n-1))

then ¢ = n-1.

(2) If the graph is not completely connected then c¢ is the

least cardinality of a separating set.

Menger's theorem holds in this case too, and the network flow
technique applies. The straightforward technique of checking if
there are k vertex-disjoint directed paths between every ordered
pair of vertices, takes at most O(kn4) steps.

At first it seems like the case of directed graphs is harder.
The Gomory and Hu technique has .not been generalized to directed

graphs and Kleitman did not discuss directed graphs at all.*

* T believe that his method can be applied to directed graphs
too, with minor necessary changes.

However, this is not the case.

Let G be an augmented graph constructed for Jj as follows:
Add a new vertex a to the graph and connect a by an edge to each
of the vertices in L = {1,2,...,3-1} . Similarly E is con-
structed by adding a new vertex a and edges from each of the ver-

tices in L to a . Assume now that j > k .

Lemma 3: If in G each i € L can be connected to j via k
verﬁex-disjoint directed paths then in G there are k vertex-

disjoint directed paths from a to J .

Proof: Assume not. Then there is a separating set § , Is]< kx ,
such that all paths from a to Jj pass through at least one
vertex of S . Consider the set of vertices, J , such that, like
for j , all paths from a to them pass through at least one
vertex of S . None of the vertices in L can be in J , since

a is conngcted to each of them by anreage. Thus, there exists

a vertex v in L which is not in J and not in S . Every
path from v to Jj must pass through at least one vertex of

S . Thus, there cannot be k vertex-disjoint directed paths

from v to 3j . A contradiction. Q0.E.D.
Symmetrically, the following Lemma can be proved.

Lemma 4: If in G, J can be connected to each i €L via
k vertex-disjoint directed paths, then in G , there are k

vertex-disjoint directed paths from j to a .

Let j be the least vertex such that for some i < j either
there are no k vertex-disjoint directed paths from i to j

or there are no k vertex-disjoint directed paths from j to i .

Lemma 5: Assume j is as defined above and that there are no
k vertex-disjoint directed paths from i to j (from j to i).
There are no k vertex-disjoint paths from a to Jj in ¢

(from j to a in E).

proof: Consider a minimum separating set, S , such that all
paths from i to 3j pass through at least one vertex of S .
It follows that |S| <k . Let U be the set of all vertices
such that all directed paths from i to them pass through at
least one vertex of S . Clearly j €U . If . j' <3j is in
U then there are no k vertex-disjoint paths from i to 3J' ,
~and j-th choice was erroneous. Thus, Jj is the least ver-
tex in U, or LN U= ¢ . Namely, all paths from vertices in
L to j must pass through, or start in, a vertex in § . It

follows that in G there are no k vertex-disjoint directed

paths from a to j. Q.E.D.

Algorithm 2:

(1) For every i and j such that 1 < i < j < k check whether
there are k vertex-disjoint directed'paths from i to j
énd also if there are k such paths from j to i . 1If
one of these tests fails then G's connectivity is less
than k . |

(2) For every j , k+l < j < n , form ¢ and check whether there

are k vertex-disjoint directed paths from a to Jj ; also

-9 -

such paths from j

form G and check whether there are k
to a . If for some j one of these tests fails then G's
connectivity is less than k .
(3) The connectivity of G 1is at least k .
The proof of validity is similar to that of Algorithm 1. Again,
Step (1) takes at most O(k3n2) and Step (2), O(kn3) . If
steps.

k < V¥n then the whole algorithm takes at most O(kn3)

- 10 -

REFERENCES

[1] Menger, K., "Zur allgemeinen Kurventheorie," Fund. Math. Vol.
10, 1927’ pp- 96-115.
[2] Dantzig, G.B., and Fulkerson, D.R., "On the max-flow min-

cut theorem of networks, Linear Inequalities and Related

Systems, Annals of Math. Study, 38, Princeton Univ. Press,
1956, pp. 215-221.

[31 Ford, L.R., and Fulkerson, D.R., "Flows in Networks,"

Princeton Univ. Press, 1962.

[4] Even, S., "Algorithmic Combinatorics," Macmillan, 1973,

page 226.

[5] Gomory, R.E., and Hu, T.C., "Multi—terminal network flows,"
J. SIAM, Vol. 9, No. 4, 1961, pp. 551-570.

[6] Kleitman, D.J., "Methods for investigating connectivity of
large graphs," IEEE Trans. on Circuit Th., May 1969, Vol.
CT-16, pp. 232-233.

[7] Hopcroft, J., and Tarjan, R., "Algorithm 447: Efficient
algorithms for graph manipulation," Comm. of the ACM, June
1973, Vol. 16, No. 6, pp. 372-378.

[8] Hopcroft, J.E., and Tarjan, R.E., "Finding the triconnected
components of a graph", Tech. Rep. of the Dept. of Comp. Sci.,
Cornell University, Aug. 1072.

[9] Lucas, E., Récreations Mathématiques, Paris 1882.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif

