.EFFICIENT PLANARITY TESTING
John Hopcroft
_and
Robert Tarjén

TR 73 - 165.

pr:il 1973

Department of Computer Science

.Cornell University
Ithaca, New York 14850

anrery

EFFICIENT PLANARITY TESTING
John Hopcrott

u ey . .
;.‘"- f

and

Robert Tarjan

Cornell University
Ithaca, Wew York

Abstract: . AN
This paper des;ribes an efficient nlgorithm to determine
" whether an arbitrary graph G can be embedded 1n the plane.
Tho ‘algorithm may be viewed as an itetative version of a .
method originally proposed by Auslander apd Pafter and
5correct1y tormhlated by Goldstein. The algoriihm uses depth-
first search and has 0(V) time and space bounds, where V
" is the number of vertices in G, An Algol 1mplementation of
the algorithm successfully tested graphs with as many as 900

"vertices in less than 12 seconds, -

Keywords and ohrases: algorithm, complexity, depth-first
search, embeddinq, genus, graph, palm tree, planarity,

spanﬁing tree.

CR Cateccories: 5.32, 5.25, 3,24

ceyeir s e s

o

fﬁhau xcscr'c“ was svn*o*tcc hv the Hertz Poundation, the
i viem woilencr Poundaticn, and the Ofifica of laval Hzsearch
e o U‘nnts §N-00014-A-0112-0057 and §N-00014~67-A-0077-0021,

EFFICIENT PLANARITY TESTING ’
John Hopcroft
[. and

Robert Tarjan

Cornell University
Ithaca, New York

1. Introduction

Graph theory is an endless source of easily stated yet
very hard problems. Many of these probleﬁs require algorithms,
given a graph, one may ask if the graph has a certain property,
.and an algorifhﬁ is to provide the answer. Since graphs are

widely used as models of real phenomena, it is important to

discover efficient algorithms for answering graph-theoretic
questions. This paper presents an efficient alg;rithm to
deternine whetﬁer a.graph G can be embedded (without any
crossing edges5'in.the plane.

The planarity algorithm may be viewed ;s an iterative " °
version of a rccursive method originally proposed by Auslinder
and Parter [1] and correctly formulated by Goldstein [i].

The algorithm uses depth-first search to order the calculations

" and thereby achieve efficiency. Depth-first search, or back-
tracking, has been widecly used for finding solutions to prob-
lems in combinatorial theory and artifical intelligence (3,4).

. Recentl&'this gype of scarch has been used to construct effici-

ent algorithms for sélving several problems in graph theory,

including . findiny bhiconnacted components (5,6), finding tri-

il

connected comuonents {7,8), finding strongly connccted com-
ponents (6], finding dominators (9}, and determlﬂing whether
a directecd graph-is reducible [10, 11}.

In order to analyze the theoretical efficiency of the
planarity algorithm, a random access computer modol 18 used,
pata storage and retrieval, arithmetic ogexation;, compurllons,
and logical opcrations are agsumed to require fiaed times. A
memory cell is alloucd to hold integers wbose absoluto value
is bounded by k V for some constant k, where V is the
number of vertices in the problem graph, Cook [121 describes

an exact computer model along these lines i '1f -f and ¢

" are functions of x, we say “f(x) is O(g(x))"ﬁitt for some

constants k. and L J£icd] 2 ;1|g‘")| + k. for a1l x.

.within this framevwork, the planarity ulgozithm nas 0(V)

timoa and space bounds and is optimzl to within a constant
factor. ' Voot

The practical efficiency of the algoiithm was measurod--
by implementing it in Algol W, the Stanford University verxsion
of Algol [13). The algorithmliu this papen-is wmuch simpler
than the one oxiginally programueed, but .he program was able
to analyze graphs wléh up to 900 vertices in less than 12

1

scconds of IBM 360/67.processing time,

2. Previous ncsearch on Planaritv ALGorithms
- v

Lmbcdd:ng a graph in a plane has scveral applications.

The design of integratcd circuits requircs knowing whan.a

4

eircuit may be cnmbadded in a planes Deternining isoiorphism

of chemical structures is simplified if the structures are

planar [7,14-20]. The importance of the problem is suggested

by the number ot-publxshed planarity algorithms. Examples includq
[1,2,21-32]L Surprisingly l{ttle work has been directed toward a
rigorous analysis of their running times, hoche:, and algo-
rithms continue to appear which aré obviously inferior to
previously published ones. We shall examine scveral of the

best algorithms here; a more complcte history of the planarity
problem'may be found in Shirey's dissertation [28], which
'contains an extensive bibliography.

' The earliest characterization of planar graphs was glven
by Kuratwoski [33]. He proved that every nonplanar graph
contains a sunqraph which upun rewoval of degrec tws »c:.i 3]
is isomorphic either to the complete graph on five vertices
or to a complete bipartite graph on six vertices (Figure 1).
Conversely, no planar graph contains either of these graphs. .
Although elegant, Kuratowski's condition is useless as a -

: prac;iqal test.of planarity; testinq for such subgraphs

. directly may require an amount of time propo:tionél to at
least v°, if wot much viorse, wherq V is the number of

' verticos.in the‘graph.

The best approach to the planarity problcm seems to
bé an attempt to construct a represcntation of a planax
embedding of the given graph. If such a rep;ésentation
can be completed then the graph is planar; if not, then

tile greg is non-planaz. %hc first such algorithm was

proposed by Auslanaer and Parter (l]. First, a cycle is -
found in the- graph. When tpis.cyc]a is removed, the graph
falls into several pieces. The algorithm'is called recur-
sively to embed each picce ig the plane -with the original
.cyclé. Then the crmbeddings of the picces are combined, if
possible, to give an.enbcdding of the entire graph. Unfor-’
tunately, Autlander and Parter's paper contuins an orror; the
’proposed method ney loop indefinitely. Goldstein {2] correctly
' toxmulnted the algorithm, using ite:ation jndtéad of xecursion.
shirey [28] implemented this method using a list structure
representation for graphs, and proved an asymptotic time '
:.bouﬁd of o(v’) for his variation of the g}ggfighm.

Lenpel, Even, and Ccderbaum [25) have presented an alter-

-2

nate wethod £or building a graph in the plane. They start

© with a single vertex, and add all edges‘incidcnt to that

vertex., They then~add all edges 1ncidan;itq_pnq}of the new

vgrticés, and continue in this way until Lhe entire graoh

is constructed. Vertices must be selected in a special ordor

if the algorithm is to work correctly. Lempel, Even,’ aud
Cecderbaum. give no xnnlcmenLaL101 or time bound for their
method; howevar, Tarjan [{34) has implemznted the algorithm

- in a way which ;equiros o(v) space and O(V) time.

Mondshein [27] has recently proposcd another éonsttuct}ve

algorithm, He adds ono.vertex at a time until the entiré

greph’ 15 constructed. The ordar of ycztéx sclection is

again crucial. Mondshein's 1mplumentation cequires O(V)

iz, 'opcxo.t and warjan (24), using depth-’ir st saarch

-5 -

_in a complicated program, have devised a Qariant of Goldstein's
algorithm with a time bound of o(V log V). Subsequently

they discovered an improved algorithm with 0(V) time bound,

an early version of which appears in Tarjan's dissertation [291.
The algorithm to be presented here is a considerable simplication
of [291.

A few algorithms deserve mention because of éheir novel
approach. Fisher (23) gives an algoriihm which works directly
from the incidence matrix of a graph. This method, however,
is not very efficient, nor is any method which uses incidence
matrices. Bruno, Steiglitz, and Weinberg [21) present an
" algorithm pased on sone theorcrs of Tutte relating to tri-
connected planar graphs. Instead of constructing a graph in
the plane, thny reduce it to simpler and simpler graphs. .
‘Althbugh they give no explicit time bound, the algorithm does

not compare favorably with those mentioned above.

3. Preliminaries.

This section outlines some of the graph-theorctic
concepts needed to understand the planarity a}gor;thm. It
) also.descrlbes how graphs arc represented in a ‘computer,
and how‘a deptﬁ-first search vorks., We use definitions
similar to those found in any text on graph thecory, €.9.
(35,36,37,38) .

A graph’ G = (V& is an ordered pair consisting
of a finite set of vertices % and a finite set of cdges

&. v dcrotes the number of vertices in G E denotcs the

nurber of edges, If each edge is an uno;dered pair of distinct
vertices, then the graph is undirected. 'Itleach edge is an
ordcred pair of distinct vertices, then the graph is djrected,
1f (v,w) is an edge in a directed graph, ve say tﬁe edge lecaves
v and enters Ww. A geaph G = (W/l, éﬁ) is a .ubgrnoh of a craph
6, = (Va8 £V SV, nd &1 & 1t 6 M8 a directed

graph, the undirected version of G is the undirected graph

formed by convarting cach ecdge of .G ° tq 'an undirccted edge and
. removing duplicate edges.

A sequence of vertices Vi 1‘< ign, ind edges e,
1 <4 <n, such that oy = (vy,vyy) is called a path of G

from v, to v.. Therc is a path of no edgos'grgm any verte:
:;-ltself. A vertex w is reachable !tohﬁa vertex v if thero
ie s path from v tow. A §ath is 3imnln'if-n11 its vertices
are distinct., A path from a vartex to itself is a closed path.
A closed paLh from v to v with ono or mor;“edges ic a cycle if
all its edgos are distinct and the only 'vertex to appear twice
is v, which &ppears. exactly twice, Two cycles which are cyclic
permutations of each other are conaidexrd to be tho same cyclo.
Wle uvge p 1V :>5w to dcnote that p is5 a path from v to w.
An undirected graph G is conﬁectod xf any vertex in G
- is reacheble from any other vertex. The maAimal connected

subgraphs of G are well-defined and vertex-disjoint [3e),

and are callad the connacted components of G. If G contains

thrce diatinct vertices x,V, w such that w is reachable from
V but every path p : Vv = w contains x, then x is a cutnode

L SR A ex 2 111 of G. If G is connected &nd contains no

S - o

— e -

scparation points, then G is biconnccted. The maximal
biconnected subgraphs of G are well-defined and edge- .

disjoint [37), and are called the blconnectéd comnbnents

of G. If G is biconnccted but contains four dxstinct

vertices x,y,v,w such that everj path p : Vv = ‘w . con-

tains oither X% or Yy, then (x,y) is called a separation
pair of G. If G is biconnected and contains no scparation

pairs, G is triconnected. The triconnectcd comoonents of

a graph may be defined in several ways (8,39]. We may extend

these definitions to directed graphs by considering their

‘undirected versions.

A (directed,rooted) tree T is a dircctea graph with

onc distinguished vertex, called the rcot r, such that every

: "ertex in T is reachable from v, no edges enter x, and

evacLly oné edge enters every other vertex in T. The rclation

“(v,w) is an ecdge in TV is denoted by V + w. The relation
»

athexe is a path from v to W in T is denoted by Vv * w.

1f v + w, v is the father of w and w is a son of V.

* . :
1f v+w, v is an ancestor of w and w is a descendant

. of v. Every vertex js an ancestor and a dzscendant of itself.

* ; ..
If v *w and V #w, v is a proper ancestor of w and W

is a proﬁcr descéndant of v. If Ty is a tree and Ty is
a subgraph of a tree T,, then’ Ti is a gubtree of T,. If
T 'is .a tree whigh is a subgraph of a dirccted graph G and
T contains all the verticcs of G, then ? is a spanning tree

of G.

-8 -
A graph G is planar if and only:if there exists
a mapping of the vertices and edges of the graph into the

plane such that
(1) ‘each vertex is mapped into a distinct point,

(2) each edge (v,w) is mapped OntO'n-simpia curve,
with the vertices v and w mapped‘onto the

endpoints of the curve, and

b !;||:,

(3) mappings of distinct edges have' anly the mzppings

of their common ondpoints in common,
: . TR

A wmapping of G which satiefies the conditions above is

called a planar eribzddinq of G. (If G :;s?blannt, thare

is & planar ewdedding of € iy whigh the' edgéz are iaappod

* into straight lines.) We need two lemmasuybo%s‘planar graphs,

Lepma 1: If G is planar, E < 3V~3ch

. LI T -
Proof:; This lemma is an immediate consequence of Euler's
theorem relatina the number of vortices, faces, and edges
' in a planar graph [35). S

Lemma 2: Let G be a planar graph cmbcddééliﬁ.the planc.
Fo? brevity we identifx eagh cdgo of G with its embedd-

- inﬁ. Let”:pl, Py, Py be three pathe leading from x. to
y such thgt any two of the paths h&Vo only x and y as .
coumon verticas. Let (x,vl3, (x,vzs. (x..vs) ba the

fivst ¢fuen of Py, Py Py o rescectivaly, and let Gy o),

(wz,y), (wa,y) be the last edges of Py: Pys P3- If

the orientation of edges clockwise around x in the

plane is (x,vl), (x,vz), (x,v3) , then the $¥ientation
. of edges clﬁckwise around y is (wl,y), (wz,yi, (wz,y)

(Pigure 2).

Proof: This lemma is a corollary of the Jordan curve Theorem,

thch states that a simple closed curve divides the plane
into exactly two connected regions, Ve accept the lemma
without proof; the Jordan Curve Thcorem is very hard to

prove. (See [40,41]).)

An arbitrary (undirected) graph with 'V vertices may

have as many as E = V(V-1)/2 edges. However, a planar

graph has E ¢ 3V-3 by Lemma 1, Thus it may be possible

to devise a planarity algorithm with a time bound which is

linear in the number of vertices. One way to represent a

graph in a computer is to use a VxV adjzcency matrix

M= (mij)' wpere mij =1 if (i,j) is an cdge, mij = 0
otherwise. Howvever, the amount of storage space requircd
by an adjacency natrix is O(vz) , and it can be shown
rigorously that many graph vroblems (including the planarity

problem) require cxamination of every bit in the matrix

and thus have a computation time proportional to at least

V2l42]. For this reason vic use a list structure called an

adjacency structure to represent a graph. We construct

‘a set of adjaccncw lists A(v) ,-one for each vertex v,

The list for vertax v contains cach vertex .w such that

(v,w) is an cdgé of the graph, If G gs an undirccted '
graph, cach edge (v,w) is represented twice:' w - appears
in A(v) and v appears in A(w). If' G 1; di:ectcd,
cach cdge (v,w) is represented onces ;“appcg;s in A(v).
Graph algorjthms require a sys;cmntic ﬁay of explor-

ing a greph. We use one called depth-firsti'search. ¢ start

from some vertex s of G and choosc anledge leading from

s. Traversing tha cdge lcads to a new vertox. . ;Q.gonernl wo
continue the search b§ selecting and trgzé;:zﬁé an unexplored
edga leading from the rost recently reached vertex which still’
has unexplored edges. If G is connccted, each edge will be

traversed exaétly once.

) 1¢ G is wndivected, a depth~first sdaich of G 1m§cses
S direction 6n cach edge of G ‘given by the direction in.
vhich the edge is traversed during the gearch, Thus. tha
search convérts. G into a Airccted graph G'. The search)
also partitions the (now-directed) odges‘into two clasn;s;
a set of tree arcs, defining a ggﬂgging_&gég T of G',
and a set of fronds (v,w) which satisfy v Svint (6).
A directed g&nbh G' whose édges may be partitioned in
this vy is csilcd-a galﬁ txce. Depth-first-search is
importnnt because the structure of paths in a palm trez
is very simple. . '

f'To 1m§lcment a depth-first ecarch of a connected,
undirected graph, ve use a simple recursive procedure
uhich foops a stack 03 the old vertices with possibly

unexplored edges. The procedurc uscs a set of:-adjaconcy

- 11,.-.

lists of the graph to be scarched, and the exact search
order depends on the order of edges in the adjacency lists,
-The procedure numbers the vertices from 1 to V in the order
they are reached dur;ng the scarch, in addition to 1dentify-

ing tree arcs and fronds.

begin cornent routine for depth-first search of a graph G
' represcnted by adjacency lists A(v). Variable
, n ‘denotes the last nunder assigned to a vertex;
integer ny
'Eroccdurc DFS(Q,u); comeent vertex u is the féthqtlof

vertex v in the spanning tree being constructed.

begin.
R: = NUMBER(V): = n+l;
a: comment duruny statement;
for w € A(v) do becin .
if NUMBER(w) = 0 then begin
comment a is a new vertex;
f mark (v,w) as a trece arc;
+ DPS (v, V) ;
s; commnent duqmy statement;_
ena I .
else if NUNBER(w) < NUMBER(v) and w # u then beqin

comment this test is necessary to avoid exploring

,an edge in hoth directions; ,

e e v - o s mmm ¢

-12 -

mark (v,v) as a frond;
c: corment dummy statcmént;
end;
end;
for is= 1 until V do NUMBER({):=0;
n:=0; ‘
. comment the search starts at.vertox 85
D¥s (s,0); .

ond;

Lerna 3: The procedﬁre abave correctly carries out.a
' depth-firét search of an undirected grapﬁ and requires
O(V+£) time if the graph has V vertices and E. edges.
.%he vertices aze mudered 5o that if (v,w) ie a frfe
arc, NUMBER(v) < NUNBER(w); an& ig (v,w)‘ 1$ a frond,
NUMBER () < NUHDER (V). LR
, .
Proof: see [C). -
Figufe 3 shcws a conncated graph G and a palm tree

generated from G using depth-first search,

4. An Outline of the Planarxity Algorithm

This scction sketches the ideas behind the planarity
algorithm,,'§ections 5 and 6 develop the dctailed components -
and Scction 7 presents tha algorithm in toto. The first
step of tho algorithm gets rid of grapﬁé wvith too
many edges, We count the nunher of «igas in the griph 4

znd if tho count cver excecds 3V-2, we declare the -graph

non-planar. Next, we divide thec graph into biconneccted
éompononts. (A graph is planar if and only if all its»
biconnected components are planar (35).) References (5]
and (6) describe how to divide a graph into biconﬁcéted
.componenfs in O(V+E) time. Then we test the plaqarity_
of each compoﬁent. .

To test the planarity of a component, we apply DFS,
converting the graph into a palm tree P and numbering the
vertices. .Now we use huslander, Parter, and Goldstein's
algorithm. This algorithm finds a cycle in the graph and
" deletes it, leaving a set of disconnectea pieces. Then the
alqofithm checks the planarity of ecach piece plus the
original cycle (by applying itself recursively);‘and
‘deternines wvhether the cmbeddings of the pieces can be
conbined to give an embedding of the entire gfaph. Let us
' separatoly examine the cycle-finding part of this process
.and the planarity-testing part.

Each recursive call on the algorithm requires that
ve find a cycle in the piece of the graph to be tested
for ‘planarity. This cycle will comsist of a simple path
of edyes not in previously found cyclec, plus a simple path
of edges in old cycles. Ve usc depth-first scarch to dividc
the graph into sinple paths which may be assembled into the
Eycles necessary for planufity testing. We nced a second
scarch to findlﬁaths, because the search must be carriecd
out in a special order if the pianarity:tést is to be

elficient. Section 5 describew thz2 path firding nrocess
B .

- 14 = S e l

in dctail and proves some imporxtant propertics of the genaratcd
paths. ‘

- Now consxder the first cycla c. It will consist of a
>,scquencc of tree arcs followed by one frond in P. The
nusbering of \urtices is such that the vertices are in order
by nurher along thg c;cle. Each pieco not part of the cyclc'
will consist either of a single frond (v,w), or of a ttoq.azg'
(v,w) plus a subtrec with root W, plus'aifwfronds which lead
from the subtrea, Wo process the pieces and ‘add them to &
pléuur yeprcsentation in deércnsing order of v. Each piece
can go either “inside" or “outside" ¢ by the Joxrdan Curve
Theoren, tthen we add a picce, certain other picces must
be moved from the inside to the outside or from the outside
tn the $nside or.C. {see Figquru 4.) e contincs to add
new piecas and move old picces if necessary until eltper a
pieco cannot be added or the eatire graph is cmbedded in’
tha plane. gaction 6 describcs the data structures necessary
to kecp track of the pieces us they 2xe moved. Delow is ;n'

outline of the entire hlgorithm.

proc edure PLT\N.-.PIT\’ (G) s
peain corment an ouLline of Lhe planarity : algorithm;
I H
fgg’cach cége of G do gggiﬂ ' o
E:=E+); PRE TR
if e UVe3 g.“.'n_n:n. ¢o _to nonplunar;

end;

.-

e a0 -

divide G into biconnected components;
for each biconnected component G do begin .
explore ¢ to number vertices and transform C into
.:a palm trec P;
£ind a cycle ¢ in P;
‘construct planar rcpresentation for ¢i
for each piece formed when ¢ is deleted do beain
apply algorithm recursively to determine if
. piece plus cycle is planar;
if pieée plus cycle is planar and piece.may be
added to pianar representation then add it

else go to ronplanar;

lenceforth we assume that G is a biconnected graph
which has bccn cxalo:ed using DFS to number the vertices
and generate a palm tree P. We uxll identify vertices by

their pumber; If v is a vertex, let
*
5, = {v|3u(v » u and u - = w).

:Sv_ is tha sct of vertices rcached by fronds from descend-
ants of v. Let LOWPTl(v) = mxn((v} us),

LOUPT2 (V) = lv\in{(v) u (SV-(LO‘..'PT]. (v)))\ LONPTL(v) is the

i

- aw . - .-

lowest vertex below v reachable by a frond from a descendant

of v, and LOWPT2(v) is the second lowest vertex below v reach-

able by a frond from a descendant of v. 1ﬁ§”cdhvénéiﬂ:,‘;hesa

values are equal to v if they are not definedii LOWPTL (v) #LOWPT2 (V)

unless LOWPTL (v)=LOWPT2(v)=v. The LOVPT vhlues of a vertex v
depend only on the LOWPT values of sons of 'v'and on the fronds
leaving v; thus it is easy to calculata'}pﬂ?T;yq}ueu using DFS.

.~rting the follcwing statements for thq_@?ﬂmx statements

a,b, and ¢ in DFS will produce a routingﬁt? compute LOWPT values.

comment additions to DFS for calculation of LOWPT1, iowprz,

a: LOWPT1 (v):= LOWPT2(v):= NUMBER(V);
b: if LOWPTL (w) <'LOuPTl(v) then beginé:;L‘
LOWPTL (V) 3= LOWPTL (w) 3

else if LOWPTL(w)i= LOWPTL(v) then
LOWPT2 (v) i= min{LSWPT2 (v), LOWPT2(w)}

else LOWET2(v)i= min{LOWPT2(v), LOWPT1(w)};

c: if NUMBER(w) < LOWPT1(v) then begin
LQWPT2 (v) := LOKPTL (v);
LOWPT] (V) = NUMBER(W); ©
" else if MUMBER(w) > LOWPT1(v) then

LOWPT2 (v) := min{LOWPT2 (v), NUMBER(w)};

- B

It is easy to verify that DFS as modified above will
compute LOWPT values correctly in O(V+E) time. , (See (6,8,29].)
LOWPT1 may be used to test the biconnectivity of G, as described

" in-(3,61. One related lerma is important:

‘Lemma 43 If G is biconnected and Vv * W, LOWPT1 (y) < v unless.

v = 1, in which case LOWPTL (w)=v=1. Also, LOWPT1(1l)=l.

pProof: See (6].

P

To génerite paths, we sort the adjacency lists of P accozéing
to LOWPT values and perform another depth-first search. Let

¢ be a function defined on the edges (v,w) of P as followss

g 2w : ifv--+w
2+LOWPTL (W) : ifv -—> W and
. { .
' ¢(lv,u)) = o _ LOWPT2(w) 2 Vv
2 +LOWPT1 (w)+1 if v —? w and
R)
N . LOWPT2(w) <V =~ °,

‘We calculate ¢((v,w)) for each edge -in P and order the
"adjacency lists according to increasing value of é , using
a radix sort to achicve an O (V+E) time bound. This can be

‘implemented as follows:

" comment construction of ordered adjacency lists;

" for i:=1 pntil 2+V+1 do SUCKET(i)i=the empty list:

for (v,w) an ecdge of G do begin - . .
compute Gilv,w));

add (v,v) to BUCKET (¢ ((v,w)));

rer -

- 40 = e

end;
for i:=) until V do A(v):= the empty list;
for ii=l until 2*V+l do RO

for (v,w) € BUCKET(i) do add w .to end of A(V);

This routine gives a set of f:operly ordered adjacency
lists representing P, Now ve generate paths by aﬁﬁlying depth-
first search to P, using the new adjacency 1i'sts, '‘Bach time

.we traverse an edge we add it to the path being built. Each
time we traverse a frond, the frond becomes the last edge of
the current path. The next edga starts a new path. Thus each
path consists of a sequence of tree arcs followed -by a single

frond. To accomplish this, we use the following steps:

‘beqin corment routine to generate paths in a biconnected
" palm tree with specially ordered adjacency lis;s Av).
Vertex s is a global variable, the start vertex of the
current path, and is initialized to 0; '
procedure pmurmota(\}); W,,,,,".,
for w € A(v) do
if v w gﬁg& becin
if 5 = 0 ghen beain
§:='V; .
sta£t new path;
end;

add (v,w) to current path;

PATI: INDER (W) ;

e e g — e o e e

-19 -

end'
else begin
comment Vv - * W;
if s = 0 then begin
S$3=V;
start new path
end; |
add (v,w) to current path}
output current path;
8:1=0;
end;
;:-O;

| comment vertex 1 is the start vertex of the search;

The paths generated in this manner have several .
important properties, which are summarized in the following °
lemmas, Figure 5 shous a set of paths generated from the

graph in Figure 3.

Lemma 5: Let p: s 2> £ be a generated path. 1f we consider

the fronds vhich have not been used in any éath when
the first edge in p is traversed, then £ is the
lowest vertex reachable via such a frond from a

deéscendant of s. If v#s, viyfE, and v lies on p,

then f is the lowest vertex reachable from a descendant

of v via any ‘frond.

- D S T

Proof: This lemma is an immediate coniEdﬂéhcéuot the

+ ordering of the adjacenéy lists.
]

Lemma 6: Let pss = f be a generated path. ,Thon
£ : s in the spanning tree of P.. If p: ig the
first path, p is a cycle; otherwise p il’bi&élo.
If p is not the initial path, p contalns exactly
two vertices (f and s) in common with breviously

generated paths,

Proof: Let p 1 s = f be any generated path. If the
path consists of a single frond, the path is simple
and £ : s. If the path contains a tree arc, let s + v

be the first such tree arc. Then £ = LOWPT1l(v) by

¥ rmeman £ If =

-fhe path ih simple, by Lemma 4, In an*g;ase F4 H 8.
If £ is reached during the pathfinding search, then s
. has already been reached, so any path except the first
has exactly two vertices, £ and s, iﬁ common with

previously generated paths.

. . . *) N
Lem?a 7: Let py : 8y => fl and p, : 35, => £, be two -
generated paths. If py is generated before p, and

s, is an ancestor of s, then £, < f).

Proof: " The frond which erds Py leads from a descendant
°?:.§1 agd'is unused whep',plw ig generated. By

Lemma 5, £, < .

. T :
1 ¢he path ic = cycle, and i g > 1
&

= e e —-

- 21 -

Lemma 8: Let P { s = f and Py = 8 = f be two generated
paths with the same start and finish vertices. Let bl be
the second vertex of Py and let vy bé'the second vertex
of py.’ Suppos; P, is generéted before py , V) # £, and
LOHPTZ(VI) < s. Then v, # £ and LQN?TZ(YZ) <s. .

Proof#: Vertex vy must appear before vertex vy in A(s)

because p; is generated before P,. The lemma follows

from the ordering imposed on A(s).

e ‘Lemma 8 is the reason we need to include LOWPT2
Qalues in the pathfinding algorithm. When we consider
" the Embeddinq of paths in the plane, we shall see why
this léma i3 1mp=:t:£g.
If p: s = f 13 a generated path, we may form

a cycle by adding the set of tree arcs £ 3 s to p. The cycles

- formed in this way are the cycles generated by recursive calls

in the Auslander-Parter-Goldstein planarity algorithm.
They have a very simple structure; each corresponds to

a frond of P. We need one more definition before we
consider the emﬁédding of paths. If. p : s = £ is

a simpfe path generaté@ by the péthfinding algorithm,
let py ¢ S5, = fo be the earliest generated path
containing vertex s.‘ If £, <f) then., p 1is called

‘a normal path, If f, = £ then p is called a special

ath. The case £, > £ cannot occur by Lemma 7.
path. o 0

{

-'22 >

6. Embadding the Paths

If G is a biconngcted graph with a set of baths
generated by the pathfinding algorithm, we test the planarity
of G by attempting to embed the paths oneiat a time in
the plane. Let ¢ bé the first path (a.cycle). -The cycle
consists of a set of tree arcs 1 ~+ V) TVt e vp)
followed by a frond v, - ° 1. 7ne vertex nuabering is
~ such that 1 < v, < vee € Voo wWhen é {s rcemoved, G
falls into several connecteé pieces, cailed segnments,

Each segment S consists either of a single frond (vi,w),
or of a tree arc (vi,w) plus a subtree with root w élul
all fronds leading from the subtree, The order of path
generation is‘such that all‘psthz in cneP;egment are
generated before paths in any other seémeys, and the -
segments are explored in decreasing orde: of vye

A segment must be embedded complepeiifbn one side
of c by the Jordan Ciurve Theorem. A segment is attached
to ¢ by one arc (vi,w) leading from c and by one or more
fronds leading to c. (if the segment is a single.rrond,'both
endpdints of the frond are on c.) We say the segment S is
embedded on the lgggA(of c) if the oxieqtation,of edges
(clockwise in the plane) around v, is ix%rl,vi),(vi,w).
(vi,vi+1). The segment is embedded on the-right if the
orientatidn of’eddesvatOUnd‘-vf ‘is (vi_i;v;),‘(vi,vihl), (v W)
We_say q'trond which enters ¢ is embedded on the left
(richt) if thé segment to which it belongs is on the left

(right) of c. If (x,vj) is a £r3nd which enters c¢ on the

e e g - e

- 23 -

left, the orientation of edges around vj is (Vj-l;vj)'

(x,vj), (Vj’vj+1) by Lemma 2. '
Suppose c. and segments explored before s have been

somehow embedded in the plane.- Let p 3 A\ = vj be the

first path found in S. The next lemma gives a neceésary'

and sufficient condition for adding p to the embedding.

Lemma 9: Path p : \A = vj may be added to the planar
embedding by placing it on the left (right) of c if and
only if no frond (x,vk) previously embedded ‘on the left

(riqht)‘ sati;fies vy < v < vy

ggggi:i If no frond satisfies the condition, then no
embedded edge of any sort enters or léaves c.on the
left {right) betwssn vj and V- Patn. D may ba
embedded on the left (right) of c if it is placed
sufficiently close to c. Conversely, suppose ve want
tq'embéd p on the left but some embedded frond (x,v,)
with vj v vy 'enters c on the left, Either
x lies on ¢ (say x = vl) or (xlvk) is part of a
segment S' with first edge jvl,w). We know ey
by the o}det of path generation. Ve must consider two

cases.

case 1: v, > vi.(Figure 6 (a)).
Supbosev p is embedded on the left. From p, a
. path in S' joining v, and. Vi o and the path of tree
arce fron vj to ‘vl we can construct thrce péths fron
vy to v whicp violate Le?pa 2, vThus‘p qannot be embedded

on the left,

Case 2: V) = Vj .
-
Let p) : Vy => Vo be the first path found in segment
T Ralld [T .

- '§', We have v, < Vy by Lemma 7. There aye two subcases,

Subcase At Qm < vy '(Pigures (b))

Suppose P is embedded on. the: left. From path
p, a path in S’ from v, to V., add.the path of tree-
arcs from Vv, to v; we may form three paths from
v, to vy which violate Lemmnlzi' Thus P cannot be
embedded on the left. A

_ Subcase By v, = Vy (Figure §(c)).

Let y be the second vertex on p (W is already
defined as the second vertex on pl)L‘ since segment S'
containy fruud (X, vk); LI A ond Lovird (v}« e
Compzaring P and py and applying Lemma 8, we have'

y # vy and iOWPTZ(y) < vy ?uxthernore ‘LOWPT2 (y) > vy

, since LOHPTl(y) = vy by Lemma 5. ‘'Suppose p 18 embedded
on the left. From P , Py ¢ @ path from a vertex on p
to LOWPT2(y), a path from a vertex on Py 'to Vg ¢ and
a (possibly empty) path of tree: .arcs joining v and
LOWPT2 (y) we may forn three paths which violate Lemra 2.

Thus p cannot be embedded on_ the left.

We use iemma 9 to test planarity, in 'the following way:
first we cmbed the cycle c in the plane. ~Then we embed the
segrents one at a time in the order they are explored during
pathf;nding. 70 embed a segment §, wa find a path in it,
say p. We choose a s;de, say the left, on which to embed p.

- 25 -

We compare P with previously embedded fronds to determine if
p . can be emhedded. If not, we move segments which have fronds
"blocking p from the left to the right. e p can be embedded
: after moving segments, we embed it. However, if we move seg-
ments krom the left to the right we may have to move other seg-
ments from the right to the left. Thus it may be impossible to
embed p. If so, we declare the graph non-planar. If p can

be embedded, we try to embed the rest of :S by in essence

using the algorithm recursively. Then we try to embed the next
segment., ' '

We need some good data structures to eificiently implement
this method If we are about to embed a segment which starts
at vertex Vi we must know which vertices on the tree path from
1 ote vy have frands cntering them from tbe lﬂft and the right
We use two stacks (L and R) for this purpose. Stack L will con-
tain (in order) vertices v, such that 1 H Vi 3 Vi 1<v <
and some embedded frond enters v, on the left. L need only
1nc1ud; a vertex vy once for each segment which has a frond leac

-ing to Vi o ‘but sometimes two fronds from the same segment nay
lead to thé §§ma_vertex Vi e and this may cause Vv, to appear
twice on the stack eveu thoﬁgh Vi is only repr;senting a single
ment. Stack R fullfills the same function as L for embedded

fronds entering ¢ on the right.’

Stacks L and R must be updated in four ways.

(1) After all segments starting at v;,, are explored and
embedded, all occurrences of vi on L and R must

'be deleted, since segments %Ft to be explored start at

-

(2)

@

{)

-26-

vettices no greater than vy . This updating requires

removing a few of the entries on top of L and R,

If pi1 s = £ 'is the first path in a segment s, and

p is normal, £ must be added to a stack when p is
embedéed. (since s lies on ¢ , p is no:mal if and
only if £ > 1.) By Lemma 9, p can only be embedded ©oR

the left (right) when every vertex on L(R) is no greater

than £ , so f may be added to the|top of L(R).

Recuvsive application o!'the algonithm dust add entries
for other paths in the segment S. We shall examine re-

cursive application of the algdzithm later.

1

Eat:ie- must be shifted from one stack to ;nother as

. the cortesponding segnents are moved. The embedding of

a frond, say on the left, forces frdnds in the same

segment to be embedéed on the lett by Lemma 2 and may
force fronds in other segments to be embeddod on the
right by Lemma 9. Let a block B be a maximal set of

entries on L and R which correspond to fronda such

_that the placement of any'ona of the fronds determines

the placement of all the others. The blocks change as
thc contént of the stacks change, but the blocks always
partiticn the stack entries. Purthermore, the blocks

have a simple structure given by the next Lemna.

Lemma 10: Let B be a block. Then the entries in BN L (B n R)

are adjacent on L(R). Also, there are vertices vj, v on

¢ such that for vy €L UR:

(1) if vj_< vy < Vg then v, €B

(2) if v, <vyorvy >V tﬁeqjvlkﬂ B.

Proofs The proof is by induction on the number of segments’

embedded and the number of entries deleted from L and R.

The lemma is certainly true before any segments are embedded
since both stacks are empty. If the lemma is true before
-all occurrences of vy are deleted from the top of L and R,
the.lemma is certainly true afterwards, since deleting

occurrences of v from L and R may only cause complete

hlnecks (connisting only of v,) to be deleted pius causing

thé top remaining block to Jose occurences of its top vertex.
suppose the' lemma is true before segment S is embedded.
Let p 3.8 %> £ be the first path in’ s, Suppose s is
to 53 embedded on the left. When entries corresponding’to:
s are added to L , a new block B is formed containing the
entries corresponding to S and also containing all oid hlocks
B with an entry v, in R satisfying £ < v, < s, by Lemma 9.
All entx{es vy in other old blocks satisfy v, £ f. The

new block B' consists of old blocks with entries on top of

L and R, plus the new entries corrésponding to S, which are

on top of L. Block B' thus satisfies the lemma with vj = f
and v, = s. Other old blocks are unchanged. The lemma foll
by induction on the nurber of segments embedded and the

number of entries deleted from L and R.
. >

- 28 -

Lemma 10 indicates how we can keep tr;ckfoﬁuthe blocks.
The blocks give us enough information to easily ﬁovc entries
from one stack to lnqther; We use linked lists to store L
and R. Then to switch a block of entries between stacks we
nead only switch list pointer; at the beginning and: the end
of the block. We use a stack B to keep tragk: of: the blocks.
Each entry on B represents a blc:ix andAga an ordered pair
(x,y), wit@ x pointing to the last block entry on L and Y
iointlng to the last block entry qn R.. If x = 0 (y = 0),
the block has no entries on L(R), The routlne‘whiéh follows
implements the émbedding algorithm, Tha.nocesshry list-

processing operations are presented in detail. in, Section 7.
4

pioceduis TE5T0; bLeplin ol
comment routine to embed a properly ordered graph in the
plane, if possibie;
L:=R;=B:= the empéy stack; o . .o
find first cycle c; - .
“while some segment is unexplored do begin
in?tlate search for path in next segment S;
when backing down tree arc v + W delete " " 0
entries on L and R and blocks on B containing -
. vertices no smaller than v; .
let p:s => f be first path found in segment S;
while position of top block determines ;;éition of p do begin .
dolete top block from B;
ig block has entries on left then switch block of entries

. . >
from L to R and from R to L by switching list pointers;

e

T - 29 -) ’ - 3% . B
ig block still has'an entry on left in conflict with §
Eﬁiﬂ go to nonplanary '
end;
if p is normal add last vertex of p to L;
add new block to B corresponding to p and blo;ks jusF
removed from B;
d: apply algorithm recursively to embed other paths in §;
comment Details of the recursive application are discussed
later. After completion of this"step, other paths in §
which lead to ancestors of S will be xep;;sented on L,
One new block corresponding to these paths will appear
oﬂ B;
combine top two blocks on B;

end;

end;

Lemma 11: Procedure EMBED runs to completion if and only if G is
planar. Otherwise the procedure branches to location “non-

planar.”

Proof: ' EMBED is a straightforward implementation' of the algorithm

previousiy described. At all times, stacks L and R contain
entries for the fronds embedded on the left and right of the
cycle ¢, and stack B contains information about the end of each
‘block of entries. Lemma 9 is used to test planarity, and Lemma
is used to modify the blocks as the routine executes. Assuming
that Step 4 (recursive application of the'algorithm) is imple-

mented correctly, it is straxghtforwa d to prove by inductioen

>

.that .

1) embedding any frond in a block completely detc:mlnes
the embedding of all fronds in a blqck.-

"(2) the embedding of a frond from one blpck'doeb pot restrict
the embedding of a frond not in theé block.

By Lemmas 9 and 10 the routine correctly tests planarity.
I"'!

Consider the embedding of the secondiand'subsequant
‘paths in a segment. Suppose cycle ¢, all segments before S,
and the first path p:s ;> £ in S have Seen embedded. It is easy
to see that the test of S can be added towthe embddding if and.
only if S and ¢ together form a planar gtaph.'l(In fact, this
follows frou Auslander and Parter's results (1]) ?iquxa 7
- shows S and ¢, Path p and the path of tree arcs from f tos.
. form a cvrls n; naad for raaursive nnp]ica;i;;—nf the embedding
algorithm. Ce

After p is embedded on the left by EMBED; the top entry
on L is £. All fronds in S lead to vertices no less than f by
Lemna ;. Suppose we place an end-of-stack markerion top of ﬁ
and apply the embedding'algorithm recursively to datermine if
cycle c plus the segments in 8§ formed when c''is deleted can be
embedded in the plane. If the recursion: is tinished successfully,
stacks L and R wiil céntain entries cotresponding to ftonds
ending normal paths in S, and stack B may contain a few new blocks.

The rest o! cycle ¢ can be added to the embddding of S and c" if
. and only if no new block has entriel On botd 'R and L . If no
‘new block has gntties on both R and L, then any new block with .
an ontry on R can be rnoved to L with the resuls that no new block

will have an entry'on R. >

- 31 -

Thus to finish testing the planarity of ¢ and S, we musé
atéempt to move the new blocks from R to L. To continue with
the top-level application(of the algorithm, we mustxcombine

_all the new blocks into one block corresponding tb paths in §
minus p and we must delete the end-of-stack marker on R. Then
"R will be rcstofcdf L will have entries for fronds in S on top
.of its other entries, and B will contain one extra block co;re-
lponding to the fronds in S minus p. SEep d can be ihplemented

as féllows: . .

'
.

. _d: * comment gpply algorithm recursively to embed
the rest of S;
add eqd-bféstack marker to R;
call embedding algorithm recursively;
- foxr each new block (x,y) on B do begin
' ‘if (x # 0) and (y # 0) then go to non planar;
“if (y # 0) then move entries in block to L;
. delete (x,y) from B; o
end;
" delete ;ndféf-séa;k ﬁarker on R; .

. add one block to B to represent S minus path p;

" Lemma 12: If Step d is implemented as above, the embedding

algorithm correctly tests planarity. .

Proof: This lemma follows from Lemma 11 and Auslander
. and Parter's result that § minus p can be added to
the planar embedding if and only if S plus ¢ is planar.

ola eqtties on L, R, and B cannot interfere with-re- -

‘: . . - 04 = - e e -

cursive application of the algorithm, since R has

an end-of-stack' marker and all entries on L are

no greater than f. When the recursive application

is completed, the information on L, R:v;;d B is

exactly upat.is needed to continue tob-level applica-

‘tion of the algorithm. Figure 8 illustrates the

contents of the stacks L, R, and B as the embedding
algorithm is applied to the graph in Figure 5. 'The

next section gives the comp;ate'émbedaing'a%gorithm

in detail. - . . ’ .

3

‘e

=33 -

7. The Comolete Path Embedding Algorithm

Since paths are embedded as they are found, the emb
ing algorithm may be combined with the pathfinding algorit
A complete implementation appears below. Steps involving
and R are implemented in detail to make the running time ¢

the algorithm obvious.

procedure EMBED(G); begin

comment procedure to degexmine if G is embeddable in t}
plane. G is repre%ented by.a set of properly ordere
adjacency lists A(v). Stacks L and R are stored as
linked lists using arrays STACK and NEXT. STACK(i)
gives a stack entry, and NEXT(i) points to the next
e;fry on tha came ckmck NEVT(O) ints ¢
entry on L. NEXT(-1l) points to the first entronn F
FREE is the first unused location in STACK. Variabl

p denotes the number of the cﬁfrent path. If v is
a vertex PATH(v) denotes the number of the first pat
containing v. If i is the number Af a path, f(i) de
the last vertex on the path numbered i. Blocks are

‘represented as ordered pairs on stack B. If (x,y)
:13 on B, * denotes the last entry on L in the block,
‘ and y denotes the last entry on R in the block. If
X =0 (y = 0), the block has no entries cn &L(R). SA

is a temporary variable used for switching;

integer array STACK(0::E), NEXT(~ lsz), t(lx.E-V+1), ek
PATH(L::V); B(l::E); U

procedure PATHPINDER(V), begin ok .
~omxent this recursive procedure finds paths and embeds them
if possible. "It is based on the’ magerial in Sections $§
and 6., Variable v is the current ve:tex in the depth-
first search used to find paths- 8 }l the start vertex
. of the current path; .
for w € A(Y) o
if v + w then beain) ' -
1€ 8=0 then begin
8i=v;
pi=ptl;
PATH () 1mn: :
PATHFINDER (w) ;
comment delete stack entries and blocks corresponding
to vertices no smaller thaﬂ:v: .
“while (x,y) on B has ((STAGKLxlgﬁ) or (x=0)) and
((STACK(y)>v) or (y=0)) :»
'ég‘delete (x,y) from B; ¢ * o)
*if (x,y) on B has STACK(x)>v then replace (x,y)
. emmby (0
N 1£:ix,y) on B has STACK(y)>v then replace (x,y)
‘on B by (x,0); e '
s gg;ig ﬁsx&(-I)#d and" STACK (NEXT{-1)) 3V
" do NEXT(-1) s=NEXT (NEXT(-1));

1

"while NEXT(0)#0 and STACK (NEXT (0))>v
‘do NEXT (0) :=NEXT (NEXT (0));
if PATH(u) # PATH(v) then begin
;COMMENT all of segment with first edge (v, w) has
; heen embedded. New blocks must be moved from
right to left;
L':%0;
while (x,y) on B has (STACK(x)>t(PATH(w))) or
(STACK(y)>f(°ATH(w))) and (STRCK (YEXT (-1)#0)) do }
1f STACK(x)>£ (PATH(W)) then begin
if STACK (y) >f (PATH(w)) then go_to nonplanar;
| L':=x; end
. glég begin ccmment STACK(y)>£ (PATH(W));

on "r~ -,ur-vma-l\.
~e aleseoa \&0 § ¢

NEXT(L') :=NEXT(-1);
NEXT(-1) :=NEXT(y);
xNBXT(y):=SAV£; B Lo
L':=y;
end;
‘delete (x,y) from B;
n,ggﬂi
comment block on B must be combined with
-new blocks just deleted;
delete (x,y) from B;
if x # 0 then add (x,y) to B
else if (L'#0) or (y#0) then add (L',y) to B;
corment delete end-of-stack marker on right stack;
NEXT(-1) := NEXT (NEXT (-1)); .

end; end

-3 -
: e

‘else beain comment v -+ w. Current path is complete.
~ Path is' normal if £(PATH(s)) < w; '
if s=0 then beain A
pi= p¥l;. . : IRRTRY
$1= Vi
endi _ e
£(p)s= w;
comment switch blocks of entries from left to right
so that p-may be embedded én 1;!&1.
L'=0; . | | ' .) -
- R's-1; ’ IR | |
~ while (NEXT(L')#0) and (STACK(NEXT(L'))>W) or
(NEXT(R')#0) and (STACK(NEXT(R'})>w) do begin
i (e,y) on B han (xF00 aid (yFC). Ehea Leads ’
- 1 STACK(NEXT(L'))>w éﬂs&j&gﬁi&'
if STACK(NEXT(R')HQ--.t_t_\"e‘_n g‘g to nonpl.anar)
SAVE:=NEXT(R'); ‘

NExT(R'):-NExT(L');
NEXT(L') :=SAVE;

' SAVE:=NEXT(x);

{. | NEXT(x) s=NEXT(¥);
NEXT (y) s =SAVE;

J

L!:=y;

R':i=x; Yoo 'M'."‘

.. 5 " end else begin comment STACKINEXT(R'))>w;

L':=x;
R':=y; end

L

end else if (x,y) on B has x7#0 then beéiﬂ comment

STACK (NEXT(L'))>w;
SAVE :=NEXT (x) ;
NEXT (x) : =NEXT(R') ;
‘ NEXT (R') :=NEXT(L'); -
NEXT (L') :=SAVE;
R'i=X; end
else if (x,y) on B has y # 0 then R' = y;
‘delete (x,y) from B;
end; ' ' .
comment add P to left stack if p 1s noxmal;
if £(PATH(s)) < w then begin
if L'=0 then L':=FREE;
STACK (FREE) :=£;
NFXT (TRFR) 1 =NRYT(0) ;
NEXT (0) :=FREE;
FREE:=I"REE-!—1;
end;
comment Add new block corresponding to combined old
blocks. New biock may be empty if segment con-
taining current path is not a single frond;
if R'i= -1 then R':=0;
if (L'#0) or (R'#0) or v#s then add (L',R') to B;
comment if segment containing current path is not

a single frond, add an end-of-stack marker to

right stéck; . ,

_36-“' R

L€ vs then beain o
STACK(FREE) :=0; ' .
NEXT (FREE) :=NEXT (-1)
_NEXT(-1) :FREE;
FREE:=FREE+1; . .
.sni, .
8:1=0;
‘end; end;
' comment initiaiization;
NEXT (-1) 4=NEXT (0) =03 v
?REE:-ly.' '
STACK(0) t=0;
Bi= the empiy stack; K

pim egmiy

[cew

PATH(1) :s=1; . e

comment vertex 1 is the start vertex of the search;

PATHFINDER(1) ; oo ' .
259’ . : e

- Lemma 13: EMBED correctly tests the planarity of a graph G.

Proof: EMBED is a straightforward implementation of the

pathfinding and embedding algorithms described in Sec-
_ e
tions 5 and 6. o

- ce- . K
11

" Lemma 14:° ‘EMBED requires O (V+E) time';b test a graph with

V vertiices and E edgés.

- 38 -

" Proof: The pathtinding part of the algorithm :equizes

O(V+E) time since it is a depth-first search with a
few additional calculations. Only a finite amount of
‘computation is performed by EMBED before some entry
is addgd to L, R, or B, or deleted from L, R, of B.
The total number of entries made to L, R,.ana B, is
O(V4E). Thus the stack calculations require O (V+E)
time. Initialization requires finite time, sé the

_ enitre algorithm requires O (V+E) time. -

Lemma 15: The planarity algorithm requires O (V) time

to test the planarity of a graph with V vertices.

-Proof: The algorithm stops if the number of edges of
G exceeds iVr3, so councting tne edges takes U(V) tiwg.
If G has O(V) edges, the initial depth-first search
xequires o(V) time, the sorting of edges using LOWPT
vplues reguires O (V) time, and the pathfinding/embedding-
algorithm requires 0(Y) time. Thus the total time is
0(V). It is also easy to see that the algorithm re-

quires 0 (V) storage space.

8. Implementation and Experiments

‘ A more complicated version of the planarity algorithm w
;togrammgd in Algol ¥, the Stanford University version of Alg
and run on an'IBM 360/67. A program listing and a more ccmpl
discussion appear in [29]). The program w;s extensively taste
The planarity algoiithm was applied to a group of planar and

- i >

TN

-39 - "“'l
. Coe L

nonplanar graphg to verlty that the lmplomentatlon was correct,
The algozithm was also applied to a setiealo! xapdomly gane:ated
complete planay q:aphl,'in order to detcrg&pgﬂthp oxperimentnl
running time. o o ﬂ:;_ﬁr' .

These test graphs were generated by ‘starting with a ‘com-
plete graph ot three vertices, ' At sach :;;p, a’ criangnla: face
of the graph was selected at random and !plit‘into three new

t:lnngular faces by adding one vertex and th:ee edges. A graph

of thtt type has the p:operty that Vs 3! & 6; no ‘new edge may

wra

_be added without destroying tho planarity of ‘the graph, Although

not 31l completa planar graphs can bc gfnqraﬂed by djviding tri-

angular !aceq in this way, the test qraﬂhl taequ to givo the

_planarity program a satisfactory workout, LR

. ghe 4538 zosulis indicated that for this class of avaphs

T = ,0125V - ,07
el

uherg v is the running time of the proééam in seconds and .-
v is the number of edges in the q:ﬁph.%*@hd‘pxogram indedd
requiras time linear in the humber of ve:ticés o! the q:aph.
The data may be summarized in another way: '-‘the program will
analyze a graph at the rate of 80 vertices/sacqnd (or faster,
it E <3V -6). Non-planat graphs generally require less time
than planar ones, since the algorithm: halt§-as soon as the graph
1s.£ound'to'bé non-planar. ' The planarity program was space-
nmited £a¢h3F than time-lPmitedja 1000 vertex, 2994 edge
graph could not ba analyzed in the space: iavailable (417,792

bytes) although no more than 12,5 seconds would be required

L4
P - . .
.

!
for processing :uoh a graph. No special care was taken in
conserving storage space; careful reprogramming or use of
auxiliary storage!devlces would allow mucﬁ'largéz graphs to
be analyzed. It lo also expected that lwplementlng the

simplerxr algo;ithm‘presented.here would cut down thé space

" and time vequirements considerably.

It is difficult to compare the expetlmental ranning
times ot different algorithms, since implementations and
machines vary greatly. However, an algorlthm devised by
Bruno, Steiglitz, and Weinberg (21) required about 30 seconds
to proceas a 28 vertex planar graph using an IBM 360/65.

. The algorithm presented here required 0.4 seconds to test

' the sama graph, 'The timc cizcrepancy would be much grsalsy”
on larger oraphs: The experimental tesulﬁslﬁe:e quite satis-
factory, ané they demonstrate that the planarity algorithm
preoonted here is of significant practical as well as theo-.

retical value.

9. Applications and Conclusiocns

The planarlty algorithm’ as described here only tests
a gtaph G for planarity; it does not construct a planar
xepteéentation of G. However the algorithm collects enough
'1n£ormatlon to make the construction of a planar representation
easy, and the algorithm may be modified slightly to carry

‘out this step, :One way to accomplish this is to consttuct

a deoendarncv_graoh D: The vertices of the dependency graph

will correspond to the paths found in G. Two paths will be
' > E ..

.
o'

T

-Joined by an edge if. the nosition of -one ‘path, determines the. ...

position of the other path. Edges are ot ‘two types, dépending

upon whether the paths must be embedded on: the same side or on

- opposite sides of the appropriate cycle. ' ‘A colorinq of the

vertices of D with two colors in a way which satisfies the edgo
constraints chen corcesponds to an embeddihq.gf G. Por details
see [29]. Figure 9 shows a dependency yraph and ap embedding

for the graph in Figures 3 and 5. vItTih'eqey to codity the
embeddinq algorithm so that it constructs -and cplors a dependency
graph. This modified algo:ithm nay bo tised to accomplish tasks

sucn as laying out electronic circuit boards.

The planarity algorithm may be combined with algorithms
for determininé connectivity propertiés of Qrapis (5,6,8] and

with an algoritnm of Hopcrott's 115,1/) to'test isomorphism

. of triconnected planar graphs,to give'ah' algorithm for deter-

mining whether two arbitrary planar graphs are isomorphic (7,16].
This algorithm requires o(v log V) time and 0 (V) space. The '
algorithm promises to be of value to chemists, since most
molecules may be represented as planar: 9raphs. A canonical

form for molecules vhich follows from the isomorph’sm algo-
rithm migct be used to speed searches of the chemical literature.
The algorithm may also be used for arureration o! various types
of planar graphs. (Sec Grace [43) for instance.)

The planarity algorithm and the otheér algorithms which

'ﬁsd depth-firlt search illustratc the value of this technique

as an efficient, systematic method for exploring graphs. Tbe'

" planarity algorithm also illustrates the value of carefully

chosen data structures. These ideas may find application

in efficient algorithms' for solving many other problems.

‘- . - B

a3 . L L

—arus oo ‘ rr
.o .

REFERENCES ' " IR T : !

(1] Auslander, L. and Parter, S.V., "On Imbedding Graphs in
the Plane,* Journal of Mathematics and Mechanics, Vol. 10,
No. 3 (May, I98I), 517-323. R

e o [.

(2] Goldstein, A.J., "Rn Efficient and Constructive Algorith
for Testing linether a Graph Can Be Embedded in a Plane,”
Graoh and Combinatorics Conference, Office of Naval Research
Yogistics Proj., Conctract.No. &GilR 1858-(21), Dept. of Math.,
Princeton University (May 16-18, 1963), 2 unno. pp.

. {3) Golumb, S.W. and Baumert, L.D., 'Baéktrack Programning,"
JACM, Vol, 12, No. 4 (Oct., 1965), $16-524.

(4] Nilsson, N., "Problem-Solving Methods -in Artificial
Intelligence, McGraw-#ill, New York, 1371. .-

{5) Hopcroft, J, and Tarjan R., 'Bf!iéiqnt’iiéoriéhml for
Graph Manipulation," STAN-CS-71-207, Computer Science
Department, Stanford University (March, 1971). .
oy ;'I': -
(6] Tarjan, R., "Depth-First Search and, Linear Graph Algorithms,"
SIAM J. Comout., Vol, 1, No. 2 (June,:1972), pp. 146-159.

st

dan, R, “Isemogphism of Planary ~rapiw,”
uter Comoutations’'R.E, Miller and J. W,
enum Press, New York, 1972, pp. 143-150.

{?) %cpozoft, J, ond Tar
Complexity of Comp
Thatcher (eds.), P

[8) lopcroft, J. and Tarjan, R., "Dividing a Graph into Tri-
connected Components”, SIAM J. Comput., to appear.

. . . A
{9) Tarjan, R., “Finding Dominators in Directed Graphs,*®
unpublished, Cornell University (December, 1972),

[10) Hecht, M.S. and Ullman, J.D., 'Pléw-craph Reducibility,"”
SIAM J. Comput., Vol. 1, .No, 2 (June, 1972), pp. 188-202, .

[11) Tarjan, R., “"Testing flow'G:aph Reducibility,” TR 73-159,
pept. of Computer Science), Cornell University (Decembex, 1972).

{12) Cook, S., "Linear Time Simulation of Deterministic Two-Way
Pushdown Autonata," IFIP Conqress'7l: Foundations of
Information Processing, Ljubljana, Yugoslavia (August, 1971),
North Holland Publishing Co., Amsterdam, pp. 174-179. :

(13) Sites, R.L., "Algol W Reference Manual,” STAN-CS-71-230,
. COmp?ter Science Department,. Stanford University (August,
1971). . . :

¢

— e

(14]

(1s)

(16}

(17)

e

(18]

- 44 -
L[4 “ -

Lederberq, J., "DENDRAL-64: A System. for Computer ,

Construction, Enumeration, and ilotation of O—ganxc

Molecules as Tree Structures and Cyclic Grazhs,

Part II:. Topology of Cvclic Granohs," Interim Report

to the Natioral Aeronzutics and Space Adnministration,

Grant Nos. G 8l1-§0, NASA CR 68898, STAR No. N-66-14074

(December 15, 1965).)

Hopcroft, J., "An n log n Algorithm for Isomorphism
of Planar Triply Connected Graphs,“ STAN CS-71-192,
Computer Science Department, Stanford University
(January, 1971).

Hopcroft, J. and Tarjan, R., "A V2 Algorithm for
Determining Isomorphism of Planar Grephs," Information
Processing Letters, Vol. 1, No. 1 (1971), pp. 32-34.

Hopcroft, J. and Tarjan, R., "A v 16g \'4 Algbrithm ‘
for Isomorphism of Triconnected Planar Graphs," JCSS,
to appear.

Weinberg, L., “Plane Representations and Codes for
Planar Graphs," Proc=szdincs: Third Rnnual 3llerton
Lonference on Ci:cui: a:i Svsten Theorv, University
of Illinois, Aller: Zouse, Monticello, Illinois
(October, 1965), oD. 733 744.

e

(19)

(20)

f21)

[22]

(23)

Weinberg, L., "Algorlthrs for Deterninlng Isomorphism
Groups for Planar Grapas," Proceadings: Third zanual
Allerton Cenferenca2 on Circuit and Svstem Tasorv,
University of Zliinois, xilercon wnouse, ‘onhxcexlo,
Illinois . (October, 1965), pp. 913-929,

Wleinberg, L., "A Simple and Efficient Algorithm for
Determining Isormorphism of Planar Triply Cornected
Graphs," I.E.E.E. Transacticns on Circuit Theory,
Vol. CT-13, No. 2 (June, 1366), cp. l42-148.

'

Bruno, J;, Steiglitz, K., and Vleinberg, L., "A New
Planarity Test Based on 3-Cornectivity,"” I.E.E.E.

* Transactions on Circeit Theorw, Vol. CT-17 No. 2

(May, 1970), pp. 197-206.

Chung, SLH.,and Roe, P.H., “"Algorithms for Testing
the Planarity of a Graph," Proceedincs of the

- Thirteenth Midwest Svmposium on Circtic iheory,

Universicy Of innesoca, ~inneasalis, .sihlicsota
(May, 1970), VII. 4.1 - VII, 4.12.

Fisher, G.J., "Computer Recognition and Extraction
of Flanar Granhs fronm the Incidence Matrix," I.Z.E.E.
Transactions ‘'on Circuit Theory, Vol. CT-13, No. 2
(June, 1966), po. 154-163.

Co
[24] Hopcroft, J. and Tarjan, R., “pPlanarity Testing in
: V log V Steps: Extended Abstract," IFIP Conaress 71:

Foundations of Information Processinag, Ljubljana,

Yugoslavia (mugust, 1971), North holland Publishing

Co., Amsterdam, pp. 18-22. N .

- {25) Lerpel, A., Even, S., and Cederbaun,.T., [*An Algo-

. rpithnm for Planarity Testing of Graphs," Theory of
Graohs: Internaticnal Swnoosiun: Rome Julv, 1966,
P. Rosenstle: (ed.), Gordon an Breachy*iiew York,
1967, pp. 215-232. -

-)

{26) Mei, P. and Gibbs, N., "A Planarity Algorithm Based
on the Kurztowski Theorem," AFIPS C nferénce Proceedings
vol. 36, 1970, Soring Joint Cormuter Ccniereace,
tlantic City, ngw Jarsey (May, 10}, pp. =95, .

{27) Mondshein, L., "Combinatorial Ordeang;:And Embedding
of Graphs,” Technical Note 1971-35, Lincoln Laboratory,
Massachusetts Institute of Technology (August, 1971).

{28) shirey, R.W., *Implementation and Rnalysis of Efficient
Graph Planarity Testing Algorithms," Ph.D. Thesis,
University of Wisconsin (June, 1969): :

. . Ay P 1. .

€20~ Taxiaa, R,, "An Efficient Planavity-Algorithm,* STAN— " .,
0s-244-71, Compuier Science Depi., Stanford Unlversity
{November, 1971). RO ‘

* {30]) Tutie, Ww.J., “"How to Draw a Graph;' Proceedings of the

London fathematical Society, Series 3, vol, 13 (1963,

pp. .743-168, ?'f"'i‘r = y .

' e ' . ‘e

(31) *Wing, O., "On DPrawing a Planar Graph} Z.E.B.E. Trausac-

ory, Vol. CT-13, No; 1 (March, 1966),
pp. 112-114. ' S

P

{32) Youngs, J.W.T., "Minimal Imbeddinés and the Genus of a
Graph,* Journal of vatheratics and Mechanics, Vol. 12,
No. 2 (1983), pp. 303-315.

(33) Kuratowski, C., "“Sur le Probiere de§ Coibes Gauches en
Topologie," Fundamenta Mathematicae; Vol. 15 (1930),
pp._271-283. e 1T :

{34] ‘Tarjan, R., "Implementation of an Efficient Algorithm
‘for Planarity Testing. of Graphs," unpublished (December,
1969). - ' s ;
£, RIS X4) - L ’

{35] Berge, C., The Theory of Graochs aad its Aoolications,

translated By Rlision Daig, lsthuen and Co., Ltd.,

London, 1964. ' .

- 136]

(371

[38]

(39)

{401

{41)

{42)

1431

. . = 40 =

- . .,
.o . e . - e e . Porel .t [P
‘e
M -
-

Busacker, R., and Saat§, T., Finite Grashs and Networks:
An Introduction with Aoplicatiars, WcGraw-Hill, new York,
1965. : . .

Harary, P., Graoh Theory, Addison-Wesley,.Readinq,
Massachusetts, 9.
: |

Ore, O., Théorv of Granhs, American Mathematical Society
Colloquiun 3ubl, Vol. 38, American Math. Soc., Providence,
Rhode Island, 1962. . ’ o .

Tutte, W.T., Connectivity in Graohs, Oxford University
Press, London, 1966.
!

Hall, D.W. and Spencer, G., Elementary Tooology, Wiley
and Sons, Inc., New York, 1955,

Thron, W.J.; Introduction to the Theory of Functions .
of a Complex Variabie, Wiley and Sons, Inc., New York,

1953,

Holt, R.C. and Reingold, E.M., »On the Time Reguired to
Detect Cycles and Connectivity in Directed Graphs,"”
TR 70-63, Department of Computer Science, Cornell Univer-

aitr (Junc, 1770:.
. . : 3

Grace, D.W., "Computer Search for Mon-Isomorphic Convex
Polyhedra,” Tacknical Report Cs15, Computer Science Dept.,
stanford University (January, 1965). ,

* e
.. L .
A o
.
.
.
(3 .
wt
.
'
"
A
- K S
3,3
-—' —
re .'
. e
EEEN LA IR

— e,

/

<
w
~—
<
w

Figure 2: Illustration of Lemma 2. Path P, is inside the

simple closed curve formed by p; and pj.

¢ ; LTRSS

e e

10 : 15

) [N
Vo

Pigure 3: (a) A graph G to be tested for planarity.

——e——

Figure 3: (b)

A palm tree P generated from G. Upward,

solid edges are tree arcs.
dotted edges are fronds.
numbered in search order.

Downward,
‘Vertices are

Fiqure 4:

ey

-~

o

Conflict between pieces. To add dotted piece §

on the inside of c and maintain planarity, piec
. 8§, and S, nust be moved from the inside to the
',o&tside. Piece Sz'must be moved from the outsi

to the inside. ' e .

.
[

ds

de

B
S2
Figure 5: (a) Paths gererated by PATHFINDER from the graph
in Figure 3. . .
A: (1,2,3,4,5,6,7,8,9,10,11,12,1) B: (13,14,15,5)
c: (15,9) D: (15,13) E: (14,11) P: (10,16,2)

G: (16,3) © A (8,6) I: (7,4)

(b) Segments with respect to initial cycle.

vy

Vi

Vk)

'v ‘ . wor

(a) . . - (b)
A\t
- . §\. w
) - ' LOWPT2 (y)
» ' Vn-vj i
(c)

. O .
.. Figure 6: Illusttation of the cases in Lemma 9. Path to be
. erbedded leads from v, to v;. Blocking segment
leads from v, to vk to Voo ’

(a) v, > v,.
L i
(b) vy =vy and Vn < N

(c) v, -Vi and vm-v:l (Note: the order of v, and
LOWPT2(y) is \mdete:ﬁined) .

Figure 7: Recursive Application of the embedding algorithm.

Segment S consists of first path p and new segments 51'

Sy¢ S5

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif

