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The subgenomes of an allopolyploid crop will each contain complete, yet evolu-
tionarily divergent, sets of genes. Like a diploid hybrid, allopolyploids will have two
versions, or homeoalleles, for every gene. Partial functional redundancy between
homeologous genes should result in a deviation from additivity. These epistatic in-
teractions between homeoalleles are analogous to dominance effects, but are fixed
across subgenomes through self pollination. An allopolyploid can therefore be
viewed as an immortalized hybrid, with the opportunity to select and fix favorable
homeoallelic interactions within inbred varieties. With the availability of affordable
genotyping and a reference genome to locate markers, breeders of allopolyploids
now have the opportunity to manipulate subgenomes independently and fix ben-
eficial interactions across subgenomes. I present a statistical framework for parti-
tioning genetic variance to individual subgenomes of an allopolyploid, predicting
breeding values for each subgenome, and evaluating the magnitude of homeolo-
gous epistasis. I also present a subfunctionalization epistasis model to estimate
the degree of functional redundancy between homeoallelic loci and to determine
their importance within a population. I search for genome-wide patterns indica-
tive of homeoallelic subfunctionalization in a winter wheat breeding population by
anchoring homeologous marker sets to the IWGSC RefSeq v1.0 sequence. Some
traits displayed a pattern indicative of homeoallelic subfunctionalization, while

other traits showed a less clear pattern. Using genomic prediction accuracy to



evaluate importance of marker interactions, I show that homeologous interactions
explain a significant portion of the non-additive genetic signal. Allopolyploids have
traditionally been treated as diploids in breeding programs because they undergo
disomic inheritance. With modern DNA marker technology and ever increasing
computational power, I provide a new framework for breeders of allopolyploid crops
to characterize the genetic architecture of existing populations, determine breeding
goals, and develop new strategies for selection of additive effects and homeologous

epistasis in these ancient immortal hybrids.
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CHAPTER 1
INTRODUCTION

1.1 Significance

Identification, characterization of, and selection for interactions between allelic ge-
nomic regions has been paramount in the exploitation of heterosis in crop species.
However, interactions between homeologous genes in allopolyploids have been paid
relatively less attention despite their obvious analogy to dominance effects in
diploid hybrids. To my knowledge, I provide the first attempt at the capital-
ization of an inherent characteristic of allopolyploids in order to provide a method
for breeders to identify, select for and fix favorable homeoallelic interactions across

subgenomic syntenic regions on a genome-wide scale.

1.2 Introduction

Whole genome duplication events are ubiquitous in the plant kingdom. The im-
pact of these duplications on angiosperm evolution was not truly appreciated until
the ability to sequence entire genomes elucidated their omnipresence (Soltis et al.
2009). Gene duplication is known to be a primary driver of evolution by providing
the raw genetic material for gene diversification through sub- and neofunctional-
ization (Haldane 1933; Ohno 1970). Haldane (1933) postulated that single gene
duplication allowed one copy to diverge through mutation while metabolic function
was maintained by the other copy. Ohno (1970) reintroduced this hypothesis, and
it has since been validated both theoretically (Ohta 1987; Walsh 1995; Lynch and
Conery 2000), and empirically (Blanc and Wolfe 2004; Duarte et al. 2005; Liu,



Baute, and Adams 2011; Assis and Bachtrog 2013). The duplicated gene hypoth-
esis does not, however, generally explain the apparent advantage of duplicating an
entire suite of genes. The necessity of genetic diversity for plant populations to
survive and adapt to divergent or changing environments may help to explain this

pervasive phenomenon.

The need for gene diversity can become more immediate in plants than in ani-
mals, where the latter can simply migrate to “greener pastures” when conditions
become unfavorable. Plants lack substantial within generation mobility and must
therefore change gene expression to cope with changing environmental conditions.
Seed dispersion allows plants to move across generations, but this distance is de-
pendent on seed structure and is often limited. As a consequence, plant populations
often experience a greater rate of inbreeding as siblings will generally germinate
in close proximity to one another. Plant populations can also become isolated,
further restricting gene flow. Therefore, allelic diversity alone may be insufficient
to maintain gene pathway diversity with high inbreeding pressure. Duplication of
important genes can allow the plant to maintain multiple functional copies, such
that loss or fixation of a deleterious allele does not preclude the plant population

from thriving, as duplicate copies are available.

Many species maintain gene diversity through alternate splicing, but this has
been shown to be less common in plants than in other eukaryotes (Nagasaki et al.
2005). Whole genome duplication can generate the raw materials for the mainte-
nance of genetic diversity (Wendel 2000; Adams and Wendel 2005). Gault (2018)
demonstrated that similar sets of duplicated genes were preserved in two related
genera, Zea and Tripsacum, millions of years after a shared paleopolyploidization

event. This conserved pattern in purifying selection suggests that, at least for some



genes, there is a clear advantage to maintaining two copies.

Whole genome duplication events occur either through duplication of the same
genome (autopolyploidy) or the union of two closely related genomes (allopoly-
ploidy). These duplication events are less frequent in animal species, supposedly
due to the inability of most animals to produce fertile offspring without a geneti-
cally suitable partner of the opposite sex (Muller 1925; Orr 1990). Many plants, on
the other hand, can typically reproduce sexually in isolation due to the expression
of both male and female sex organs on the same plant. The ability to self pollinate
is particularly important for survival of a newly formed species if the hybridization

event is rare, where the allopolyploid will find itself instantly sexually isolated.

The union of two complete, yet evolutionarily divergent, genomes during the
formation of an allopolyploid can introduce manifold new gene pathways that can
specialize to specific tissues or environments (Blanc and Wolfe 2004). Mac Key
(1970) postulated a trade off between new-creating (allogamous) and self preserv-
ing (autogamous) mating systems, where allopolyploids favor self pollination to
preserve diverse sets of alleles across their subgenomes. As such, an allopolyploid
may be thought of as an immortalized hybrid, with heterosis fixed across syn-
tenic subgenome regions (Ellstrand and Schierenbeck 2000; Feldman et al. 2012).
While still hotly debated, evidence is mounting that allopolyploids exhibit a true
heterotic response across homeologous regions as traditional hybrids have demon-
strated across homologous regions (Wendel 2000; Adams and Wendel 2005; Chen
2010; Chen 2013).

Birchler et al. (2010) note that newly synthesized allopolyploids often outper-
form their subgenome progenitors, and that the heterotic response appears to be

exaggerated in wider inter-specific crosses. This seems to hold true even within



species, where autopolyploids from wider crosses tend to exhibit higher vigor (Bing-
ham et al. 1994; Segovia-Lerma et al. 2004). Complementation of deleterious re-
cessive alleles (or pseudo-dominance) has long been the primary explanation of
the heterotic response (Stuber et al. 1992; Cockerham and Zeng 1996). However,
Birchler et al. (2010) indicate evidence against this, where purging deleterious alle-
les has increased the additive value of inbred maize parents but has not reduced the
heterotic response observed in the hybrid (Duvick 1999). Complementation also
seems an unlikely driver of a heterotic response in allopolyploids, as the inbred
subgenome progenitors would supposedly need functional copies of these genes to

survive.

The overwhelming prevalence of allopolyploidy to autopolyploidy in plant
species (Soltis and Soltis 2009) may suggest that it is the increase in allelic di-
versity per se that is the primary driver for this observed tendency toward genome
duplication. Instead of allowing genes to change function after a duplication event,
alleles may develop novel function prior to their reunion during allopolyploidiza-
tion. The branched gene networks of the allopolyploid may provide the organism
with the versatility to thrive in a broader ecological landscape than those of its
subgenome ancestors (Mac Key 1970; Ellstrand and Schierenbeck 2000; Osborn
et al. 2003).

Statistical deviations from additivity (i.e. interactions) are important contrib-
utors to genetic variation, particularly in hybrids. Homologous gene interactions,
also known as dominance, are deviations from an additive expectation due to differ-
ent allele combinations at one locus. Non-homologous gene interactions, commonly
referred to as epistasis, are deviations from an additive expectation due to differ-

ent allele combinations at two or more loci (Fisher 1919; Cheverud and Routman



1995). When epistasis occurs between non-homologous loci with similar function,
such as across orthologs or paralogs, these interactions are comparable to dom-
inance effects. If interactions occur between homeologous orthologs on separate

subgenomes of an allopolyploid, should we call this epistasis or dominance?

In classical hybrid variety production, divergent sets of alleles are intention-
ally isolated into heterotic groups and then brought back together to form the
hybrid. This establishes heterozygosity (by decent) at all loci to form a homoge-
neous population. The union of two divergent suites of genes during the formation
of an allopolyploid also results in a homogeneous population, but heterozygosity
is established across homeologs rather than homologs. Diploid hybrids lose het-
erozygosity through segregation in following filial generations, but heterozygosity
across homeologous genes is subsequently preserved through selfing in the allopoly-
ploid (Mac Key 1970; Ozkan, Levy, and Feldman 2001; Abel, Méllers, and Becker
2005). Allelic interactions contribute to dominance variance in the diploid hybrid,
whereas homeoallelic interactions will be present as part of the additive by additive
epistatic variance in an inbred allopolyploid population. As such, allopolyploids
may be thought of as an immortalized hybrid (Ellstrand and Schierenbeck 2000;
Feldman et al. 2012), although it is not yet clear that these exhibit a true heterotic

response as traditional hybrids have demonstrated.

Common wheat (Triticum aestivum) is a staple allopolyploid crop, accounting
for about 20% of the calories consumed worldwide. Hexaploid wheat has undergone
two allopolyploid events, resulting in three genomes, denoted A, B and D. The A
genome ancestor, Triticum uratu, still exists today and was an early domesticate
from the fertile crescent important in the neolithic revolution (Dvorak et al. 1993).

The B genome ancestor (an Aegilops spp.) is believed to have since gone extinct



(Blake et al. 1999), but the tetraploid formed by these two genomes, Triticum
turgidum, is still cultivated today primarily as emmer wheat. The D genome comes
from a goat grass, Aegilops tauschii, which was may have been incorporated in a
single hybridization event as recently as 10,000 years ago (Salamini et al. 2002).
However, recent evidence based on sequence divergence of the D genome from the
A and B genome has suggested a much earlier D genome incorporation around
400,000 years ago (Marcussen et al. 2014). Other evidence suggests that limited
gene flow into the D genome may have occurred after the polyploidization event,
but appears to be from a single lineage (Wang et al. 2013). As a result, the D
genome has significantly lower genetic variation than either the A or B genome.
The gene diversity provided by these three genome ancestors may explain why
allohexaploid wheat has adapted to such wide spread cultivation from its source
in the fertile crescent to significant crop production around the globe (Dubcovsky

and Dvorak 2007).

In this report, I investigate the importance of homeologous interactions in al-
lohexaploid wheat. Three data sets are used for this investigation: the Cornell
small grains Master winter wheat breeding population (CNLM), a biparental win-
ter wheat recombinant inbred line population formed from a cross between varieties
‘Caledonia’ and ‘NY91017-8080" (RIL), and a CIMMYT wheat data set (W-GY)
from Crossa et al. (Crossa et al. 2010). The CNLM dataset is the primary focus

and is featured in all chapters.



CHAPTER 2
DATA SETS AND SOFTWARE

2.1 Cornell Master - CNLM Population

The CNLM dataset consists of 8,692 phenotypic records of 1,447 soft winter wheat
inbred lines evaluated at four locations near Ithaca, NY from 2007 to 2016, repre-
senting 26 environments (Table 2.1). These phenotypic evaluations serve primarily
as a first round of selection for grain yield and other agronomic traits before rela-
tively few are selected for replicated regional trials around New York State. Lines
are introduced and then removed after they are deemed either fit for advanced field
trials or to be discarded or recycled in the breeding program. As such, this dataset
is unbalanced in nature. Most lines were not replicated within a given trial (i.e.
year and location), but various check varieties were used throughout these years

and are typically replicated several times within a given trial.

Field plots 1.5 m by 3 m in size were planted with 100 g of seed in September
or October of the year prior to the harvest year. Data was recorded for four agro-
nomic traits: grain yield (GY), plant height (PH), test weight (TW) and heading
date (HD). Plots were harvested for grain with a plot combine after physiological
maturity and oven dried to a grain moisture of approximately 12%. Dried grain
was cleaned, weighed and measured for moisture content using a grain moisture
analyzer (GAC 2100, Dickey-John). GY was standardized to a uniform grain mois-
ture of 12%. PH was measured as the distance from the ground to the top of the
grain head at full extension. TW is used as a measure of grain quality and was
measured as the mass of a volume of grain (g L™!) using the grain moisture ana-

lyzer (GAC 2100, Dickey-John) which corrects TW for moisture content. HD is a



Table 2.1: Number of phenotypic observations for each location across 10 years.

Year Helfer Ketola McGowan Snyder
2007 0 0 246 0
2008 0 432 0 426
2009 409 0 431 0
2010 311 304 0 305
2011 310 319 318 0
2012 307 306 0 302
2013 127 130 338 0
2014 232 232 0 233
2015 469 464 461 0
2016 427 425 0 428

proxy for flowering time and was defined as the number of Julian days until 50%

of the primary grain heads have extended out of the boot.

The data set initially consisted of 1,552 lines. Thirty one lines from 2007 were
not harvested for GY, nor were they genotyped, and were dropped from the data
set. Because GY was of primary interest from a breeding perspective, plots that
were not harvested or had missing values for GY were dropped, resulting in 9,090
plots with GY measurements. This caused two additional lines with missing GY
measurements to be dropped from the dataset. Due to the reasonable size of the
dataset, small physical area of most trials, lack of replication within environment
for most lines and the availability of genetic markers, raw plot observations were
used. No attempt was made to correct plot level data for various spatial effects
or otherwise. Preliminary results had indicated relatively high genomic prediction
accuracy, suggesting that spatial correction, such as an AR1 x AR1 row column
autocorrelation structure, would be unlikely to reduce error variance drastically
and would complicate analysis. Instead, 59 plots that included breeder comments
about bad seed or significant damage to the plot, via animal or otherwise, were

removed from the dataset. Observations outside of a four standard deviation in-



Table 2.2: Means (u) and standard deviations (o) of four traits in the CNLM

population.
units 7 o
GY kg ha=! 5315.20 1015.76
PH cm 90.84 11.99
HD Julian days 151.64 3.87
™ gL} 74.95 3.09

terval from the grand mean of uncorrected GY phenotypic observations were also
removed to account for any significant undocumented damage, grain spillage or
other undocumented mistakes. This included two observations that were deemed

too high, and 20 observations that were deemed too low.

Observations of 11 lines lacking at least one phenotypic record in at least two
separate trials and 61 lines that failed to pass the marker genotype filtering proce-
dure described below were also removed from the dataset. This resulted in 8,692
phenotypic observations of 1,447 lines across 26 environments, representing 96.6%
of the plots with grain yield measurements. HD was not recorded for the 246
observations from 2007, and PH was not recorded for the 840 observations from
2009. Two additional plots were missing PH measurements from the Ketola loca-
tion, a probable height recording mistake of 2 meters made in 2008 that was set
to missing, and another in 2010 which was mysteriously not recorded. While most
of the genotypes were directly from the Cornell small grains breeding program,
a few varieties and breeding lines from other breeding programs that had been
genotyped and evaluated were not excluded from the dataset as long as they met
the previous criteria. This included 75 lines from The Ohio State University wheat
breeding program and 93 lines from the Michigan State University wheat breeding
program that were part of the Allele Based Breeding initiative, among other lines

from various breeding programs.
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Figure 2.1: Distribution of minor allele frequencies for 11,604 GBS markers in the
CNLM population.

Genotyping by sequencing (GBS) libraries (Elshire et al. 2011) of 1,521 CNLM
were developed using the protocol described by Poland et al. (2012) at Kansas
State University, and subsequently sequenced at the Genomic Diversity Facility at
Cornell University. Genotyping calls were accomplished using standard parame-
ters of the Tassel 5.0 GBS v2 Pipeline (Glaubitz et al. 2014) and were aligned to
the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0
wheat genome sequence of ‘Chinese Spring’ (IWGSC 2018, accepted). Following
Poland et al. (Poland et al. 2012), 64 bp sequence tags containing no more than
three Single Nucleotide Polymorphisms (SNPs) per tag were included to increase
the likelihood of obtaining subgenome specific markers. Only markers with a minor

allele frequency of at least 0.01 (Figure 2.1), no more than 30% missing scores, and
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Figure 2.2: Distribution of 11,604 GBS markers on the 21 wheat chromosomes
comprised of 7 homeologs of three subgenomes, A, B and D, for the
CNLM population.

no more than 10% heterozygous calls were kept for the following analyses. Then
individuals with greater than 20% heterozygous calls and individuals with more
than 50% missing genotype calls were excluded from the dataset. The process was
repeated iteratively, starting by filtering on markers until the number of markers
and genotypes converged. This resulted in 11,604 available GBS markers dis-
tributed throughout the three subgenomes (Figure 2.2). Of the 61 lines removed,
60 were removed due to missing marker information and 1 was removed due to
high heterozygosity in the final iteration. The 11 lines with a single phenotypic
observation and the two lines without grain yield observations were subsequently

removed to produce genotypic information for the 1,447 lines.
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Table 2.3: Estimated genetic correlation of traits with additive (below diagonal)
and independent genetic relationships (above diagonal). Standard de-
viations of scaled traits estimated with a realized additive covariance
between individuals and assuming independence are shown in parenthe-
ses on the diagonal, respectively.

GY PH TW HD
GY (0.29, 0.36) -0.39 -0.24 0.16
PH -0.44 (0.72, 0.65) 0.31 0.05
HD -0.05 0.11 (0.44, 0.44) -0.28
TW -0.04 0.3 -0.22 (0.5, 0.49)

Marker scores were coded using {—1,0,1} for homozygous major allele, het-
erozygous and homozygous minor allele, respectively. Categorical marker imputa-
tion was done independently for each chromosome using random forest imputation
via the R package ‘missForest” (Stekhoven and Biithlmann 2011) which relies on
the R package ‘randomForest’ (Liaw and Wiener 2002). Random forest has been
shown to be effective for genotype imputation in wheat (Rutkoski et al. 2013).
To allow all individuals to be considered completely inbred, the remaining het-
erozygous calls (< 2% of all marker scores) were conservatively replaced with the
population mode for that marker (i.e. the homozygous major allele, -1). Marker

scores were then converted to {0, 1} coding for presence of the minor allele.

Genetic correlations of traits were estimated in a multivariate model fit (Ta-
ble 2.3). This was accomplished by treating genotypes as independent, or having

a realized additive covariance structure calculated from genetic markers.
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2.2 CIMMYT - W-GY Population

The W-GY wheat dataset of 599 historical wheat lines from the CIMMY'T Global
Wheat Breeding program reported in Crossa et al. (2010) was included in Chap-
ter 3 due to its importance in genomic prediction of an inbred population with
non-additive variation (Crossa et al. 2010; Martini et al. 2016). The W-GY dataset
consists of genotypic values of all lines for grain yield in each of four environments.
The genetic correlations between these environments ranges from -0.19 to 0.66 and
can be found in Martini (2016). As performance between these environments is
not highly correlated, I refer to grain yield performance in each environment as a
trait. The dataset was used in its entirety with one exception. Of the 1,279 avail-
able DAr'T markers, only the 1,188 with known chromosomal positions as denoted
by Crossa et al. (Crossa et al. 2010) were utilized in this study. This informa-
tion was required to know which markers belonged to which subgenome such that
subgenome specific relationship matrices could be calculated. The W-GY dataset
was not used for the analysis in Chapters 4 or 5 due to the lack of known chromoso-
mal positions. I attempted to obtain positions for these markers by aligning them
to the RefSeq v1.0 wheat genome sequence with BLAST+, but found positions for
less than half of the markers. Therefore analyses requiring known positions were

restricted to the CNLM dataset.

2.3 NY91017-8080x Caledonia - RIL Population

The bi-parental recombinant inbred line (RIL) population was formed from a
cross between two Cornell soft winter wheat lines, NY91017-8080 and Caledonia.

The parental lines are semi-dwarfs, each containing one Reduced Height-1 (Rht-1)

13



dwarfing allele lacking in the the other parent line. Rht-1 mutants are insensitive
to the plant hormone gibberellic acid (GA), resulting in a semi-dwarf plant stature
(Peng et al. 1999; Pearce et al. 2011). The semi-dwarf plant architecture is less
susceptible to lodging, particularly under high nitrogen conditions, and was key to
implementation of high yielding varieties produced during the Green Revolution.
Plants with both dwarfing alleles are agronomically inviable due to extremely short
stature. Caledonia contains a GA-insensitive Rhi-1D allele, d, on chromosome 4D
and a wildtype Rht-1B allele, B, on chromosome 4B, while NY91017-8080 has
a GA-insensitive Rht-1B allele, b, on chromosome 4B and the wild type Rht-1D

allele, D, on chromosome 4D.

The RIL population consisting of 192 individuals was planted in single row
plots (i.e. headrows) in Ithaca NY and measured for plant height in 2008. The
population was screened for loci influencing plant height on chromosomes 4B and
4D using genotyping by sequencing (GBS) markers. The markers with the lowest
p-value on the short arms of 4B and 4D were used to indicate the Rht-1 gene in
this study. Only individuals with homozygous genotype calls for both loci were
included to test for epistasis. This resulted in 19 double dwarfs (bbdd), 51 D genome
semi-dwarfs (BBdd), 35 B genome semi-dwarfs(bbD D), and 53 tall (BBDD), for
a total of 158 individuals. It appeared that the Caledonia parent plant used in
the cross was heterozygous for the D genome dwarfing allele, resulting in the 1:2
segregation ratio for the d : D alleles, and was confirmed by the genotype call for

that plant.
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2.4 Software and File Descriptions

Models were fit using Restricted Maximum Likelihood (REML) for variance com-
ponent estimation with the software ASReml (Gilmour 1997) implemented in R
(Butler 2009). BLAST+ (Camacho et al. 2009) was used for coding sequence
alignment, Tassel 5.0 GBS pipeline v2 (Glaubitz et al. 2014) along with the ‘bwa’
alignment tool (Li and Durbin 2009) were used for aligning GBS markers to the
reference genome. All additional computation, analyses and figures were made us-
ing base R (R Core Team 2015) implemented in the Microsoft Open R environment
3.3.2 (Microsoft 2017) unless noted otherwise. Figures 4.2 and 4.1 were created us-
ing the ‘tikz’ package (Tantau 2018) for XTEX. Figures 4.4, 5.4 and 5.8 were made
with the ‘circlize’ R package (Gu et al. 2014). The R package ‘xtable’ (Dahl 2016)
was used to generate [{TEXtables in R. The ‘txtplot’ R package (Bornkamp 2012)
was also used regularly to visualize data during various data analyses, and merits
recognition as a text friendly R plotting function. This document was compiled

using the TexLive 2017 (https://www.tug.org/texlive/) distribution of KTEX.

All data has been included as supplementary files for transparency and re-
producibility. Phenotypes for the CNLM population are included in the file
‘pheno.txt’. Marker information and imputed marker scores for the CNLM popula-
tion are included in files ‘snpInfo.txt’ and ‘snpMatrix.txt’, respectively. Best Linear
Unbiased Predictors (BLUPs) for whole and subgenome additive effects (GEBVs
and SGEBVS, respectively), as well as non-additive whole and subgenome inter-

action effects can be found in the ‘effectTable.txt’ file.

A list of homeologous genes can be found in ‘homeoGeneList.txt’. The file
‘HomeoMarkerSet.txt’ contains non-unique marker sets anchored to each homeol-

ogous gene set. Unique marker sets used for the analysis in Chapter 4 can be found
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in ‘uniqueHomeoMarkerSet.txt’, ‘WithinMarkerSet.txt’, ‘AcrossMarkerSet.txt’ for
the Homeo, Within and Across marker sets, respectively. Marker and marker
interaction estimates and p-values for the Homeo set can be found in ‘twoWayIn-
teractions.txt’ and ‘threeWaylInteractions.txt” for two- and three-way marker in-

teractions, respectively.

Results from the arm test are not included due to the sheer volume of data asso-
ciated with each pair. However, data can be requested from Nicholas Santantonio

at ns722Q@cornell.edu.

Phenotypes and genotypes used in the RIL population are included in the
‘NY8080Cal.txt’ file. Genotype and phenotype data for the W-GY population can
be found in the ‘BGLR’ package of R (Campos and Pérez Rodriguez 2015), and

marker chromosome information can be found in Crossa et al. (2010)
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CHAPTER 3
PREDICTION OF SUBGENOME ADDITIVE AND INTERACTION
EFFECTS IN ALLOHEXAPLOID WHEAT

3.1 Introduction

The availability of affordable genome-wide markers has sparked a revolution in
selection on additive variation through the use of genomic prediction models. The
additive genetic merit of an individual can be estimated as the sum of its additive
marker effects to produce a genomic estimated breeding value (GEBV) (Meuwis-
sen, Hayes, and Goddard 2001) . When the number of markers is large, marker
effects are typically considered random and normally distributed such that only
one parameter need be estimated. Alternatively, the additive genetic covariance
between individuals can be estimated from the same genome-wide markers and
used to predict additive genetic values of individuals based on relatedness (Nejati-
Javaremi, Smith, and Gibson 1997; VanRaden 2008). These models are equivalent
for prediction under the same set of assumptions (Garrick 2007; VanRaden 2008;
Strandén and Garrick 2009). Genomic prediction models have since become pop-
ular for their ability to predict the performance of genotyped individuals with no
phenotypic observations. Selections on unobserved individuals allows for reduction
in the cost of phenotyping and breeding cycle time, increasing the rate of genetic
gain (Goddard and Hayes 2007; Heffner, Sorrells, and Jannink 2009; Jannink,

Lorenz, and Iwata 2010; Heslot, Jannink, and Sorrells 2015).

The potential utility of genome-wide markers has also drawn renewed interest in
non-additive genetic variation in recent years (Vitezica, Varona, and Legarra 2013;

Martini et al. 2016; Jiang and Reif 2015; Huang and Mackay 2016; Jiang et al.
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2017). Genomic prediction models that use genome-wide markers can incorporate
non-additive genetic components to obtain better estimates of individual perfor-
mance than based on additivity alone (Technow et al. 2012; Vitezica, Varona, and
Legarra 2013; Jiang and Reif 2015; Akdemir and Jannink 2015; Akdemir, Jannink,
and Isidro-Sénchez 2017; Wolfe et al. 2016). In outcrossing species such as maize,
prediction of dominance effects is key to harnessing heterosis in unobserved hybrids
(Technow et al. 2012). In inbred species, additive by additive epistatic effects have
been shown to significantly increase genomic prediction accuracy (Crossa et al.
2010; Martini et al. 2016). Epistatic effects can be added to the prediction model
by extending Henderson’s (1985) method of expected epistatic covariance estima-
tion to marker based covariance estimation (Jiang and Reif 2015; Martini et al.

2016).

The use of genome-wide markers has allowed for the partitioning of genetic
variance to specific units of chromatin, previously infeasible with phenotypes alone
(Bernardo and Thompson 2016). Allopolyploids have been traditionally treated
as diploids because they undergo disomic inheritance (Mac Key 1970), such that
the contribution of each subgenome to the genetic variance is ignored. By as-
signing markers to each subgenome, an additive genetic covariance based on each
subgenome can be calculated. Using these covariances in a genomic prediction
model, the genetic merit of an allopolyploid individual can be assigned to each of
its subgenomes. These subgenomic estimated breeding values (SGEBV) can then

be used to identify parents with complementary subgenome effects for crossing.

Under Hardy Weinburg equilibrium, subgenomes segregate independently, and
realized estimates of additive covariance of individuals based on each subgenome

will be independent. However, this does not generally hold true in breeding pro-
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grams, where population structure from non-random mating is inherent. As a
consequence, the estimates of additive covariance between individuals based on
different subgenomes will not be independent, potentially leading to confounding
of effects from each subgenome and problems partitioning variance reliably. In
an attempt to circumvent this obstacle, I present an approach for removing the
largest sources of genetic variance (i.e. population structure) using singular value

decomposition of the matrix of marker scores.

I demonstrate this methodology using two allohexaploid wheat data sets,

CNLM (Section 2.1) and W-GY (Section 2.2) described in Chapter 2.

3.2 Materials and Methods

3.2.1 Subgenome additive effects

To illustrate, I begin with a linear mixed model depicting environments as fixed

effects and genotypes as random.

Yijk = b+ By + G + i (3.1)

where p1 is the population mean, £; and G are the fixed environmental and random
genetic effects, respectively, of the 7™ genotype evaluated in the i environment,
and ¢ is the error associated with the k" observation. Using matrix notation,

model (3.1) can be rewritten as
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y=1u+XB+Zg, +¢ (3.2)

where 1,, is a vector of ones, X is the design matrix, and 3 is the vector of fixed
environmental effects. Z is the incidence matrix linking observations in the vector
y to their respective genotype effects, in the vector go. Normality was assumed
for genotype effects and the residuals, where go ~ N(0,02K¢) and € ~ N(0, 0°1).
The genetic covariance, Kq, can be derived from the expectation (or coefficient)
of co-ancestry between individuals from a pedigree (Henderson 1985), or by an
empirical estimation of the realized genetic relationship calculated with genome-
wide markers (VanRaden 2008). When genome-wide markers are used to estimate

K¢, the genomic prediction model initially suggested by Nejati-Javaremi, Smith

and Gibson (1997) and Meuwissen, Hayes and Goddard (2001) is obtained.

Given an n X m matrix, M, of m markers scored as reference allele counts
(i.e. {0,1,2}) for n individuals, method I of Van Raden (2008) finds the genetic

relationship K as,

K=c!'M-P)M-P)T +0.01I (3.3)

where P =1, ® 2pT — 1, ¢ = 2pT(1 — p) and p is the vector of allele frequencies.
The small coefficient of 0.01 was added to the diagonal to recover full rank after

centering the matrix, such that K¢ is invertible.

I use allohexaploid wheat to illustrate, but this method is easily truncated
to allotetraploids, or extended to higher level allopolyploids. If we allow the to-
tal genetic effect, G, to be decomposed into individual additive effects for each

subgenome, such that G; = A; + B; + D, the following model is obtained.
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y=1u+XB+2g,+2gy+Zg,+¢ (3.4)

In model 3.4, each subgenome is allowed to have its own additive genetic
variance and covariance between individuals, such that g4 ~ N(0,0%2K4) ,
g ~ N(0,04K3p) and gp ~ N(0,05Kp). The realized additive genetic co-
variances for each subgenome, K4, Kp and Kp, are estimated using only markers

corresponding to the respective subgenome, and calculated as described above.

Subgenome epistatic interactions

Following Henderson (1985), the epistatic covariance of individuals can be calcu-
lated as the Hadamard product of the component covariance matrices. Martini
et al.(2016) provide a proof of Henderson’s method using genome-wide markers
to estimate the additive by additive covariance matrix, H. An additional linear
kernel can then be added for an additive by additive epistatic interaction term, I},

once the additive covariance is estimated to obtain the following model.

where g; ~ N(0,07 H). Martini (2016) does not report scaling H by the sum of the
joint marker variances. Although this scalar does affect the parameter estimate,
it does not not affect the model fit or prediction. I use the square of the sum
of the marker variances as an approximation to avoid calculating all joint marker

variances. In this study, H is calculated as
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H=KoK-c?*(WoW)(Wow)? (3.6)

where W =M — P.

The additive by additive epistatic interaction term, gy, can also be decomposed
into across subgenome interactions and within subgenome epistatic interactions
such that I; = AB; + AD; + BD; + I, where AB;, AD; and BD; are the
subgenome interaction effects and [ is the remaining epistatic effects due to within
subgenome epistasis. Since no markers are shared across subgenomes, subgenome
interaction covariances can be estimated by extending Henderson’s method of using
the Hadamard product of their component covariance matrices (Martini et al.

2016). These interactions can then be incorporated in the following model.

y=1lu+XB+2Zg,+2gy +2Zgp +Zgp +ZgAp +Zgpp + Zgupp +€ (3.7)

where gap ~~ N(O 0'2 (KA ® KB))7 gAD N(O O'2 (KA ® KD)), gD ~

? 7 gAB 77 gAD

N(0,02, (Kg ® Kp)) and gapp ~ N (0,0, (K41 © Kp © Kp)). The three-
way interaction is included here for biological completeness, but was found to be
estimated on the boundary (i.e. zero) for all traits, and was therefore dropped

from further analyses.

3.2.2 Accounting for population structure

Under Hardy Weinberg equilibrium, subgenomes segregate independently, such

that for subgenome effects, Cov(A,B) = Cov(A,D) = Cov(B,D) = 0 and
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Var(G) = Var(A) + Var(B) + Var(D). A breeding program, however, intention-
ally violates this assumption, and therefore may contain significant population
structure. Price et al. (2006) demonstrated that the first £ largest principal com-
ponents (PCs) of the kinship matrix can be used to control for population structure
in genome-wide association studies, and its use has since become wide spread. Be-
cause most realized estimates of additive covariance are proportional to MMT,
singular value decomposition of M, instead of MM, can be used to separate the
population structure from the entire matrix of marker scores before it is divided
into its subgenome components. This is accomplished by first extracting the first
k principal components in the n x k£ matrix Q. The marker matrix can then be
reconstructed by setting the first £ singular values of the diagonal matrix to zero
and multiplying to produce a matrix M with the population structure removed

from each subgenome simultaneously.

To illustrate, let M be the n x m matrix of m marker scores for n genotypes.

Markers can be sorted into their respective subgenome, such that

M = {MA Mp MD} (3.8)

M can be factored using singular value decomposition as follows:

M = UDV"' (3.9)

where U, and V are unitary matrices of left and right singular vectors, and D

is a diagonal matrix of singular values.

The first k£ principal components of the marker matrix can be extracted by

selecting the first k columns of U and the first £ rows and columns of D and
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multiplying.
Q = U,k D (3.10)

In a manner similar to Eckart and Young (Eckart and Young 1936), an ap-
proximation, M, of the marker matrix, M with the first ¢ principal components
removed can be reconstructed by setting the first £ singular values in D to zero

(denoted D).

NL:UﬁVT:[ﬁu M N@] (3.11)

Additive covariance matrices with reduced collinearity can then be calculated
for each subgenome from M and incorporated into the model as previously de-
scribed. Q can then be added to the model as a set of fixed covariates, with slopes

~, such that the model will now be of the form

y=1u+XB+ZQy+ > Zg +e (3.12)
l

for all [ genetic terms in the model. Genomic estimated breeding values are then
predicted by summing the centered population structure and genetic effects. For
this study, a population structure of dimension k£ = 5 was chosen for both the
CNLM and W-GY datasets, and used to compare to the £ = 0 models that do not

correct for population structure.

3.2.3 Genomic prediction

To determine the predictability of genetic effects and the variability of variance

component estimates, k-fold cross-validation with 5 folds was performed with 10
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replications. For each replicate, the set of individuals was randomly split into five
groups, with 4 groups of 289 and one of 291. For each fold, records of individ-
uals in the fold were removed (i.e. masked) from the dataset. Each model was
subsequently fit with the remaining lines and used to predict the whole genetic
effect of the masked lines in the fold. Predictions for all five folds were gathered
and correlated to the “true” genetic values once for each replicate. In this way,
prediction results are directly comparable between the different models, and not
subject to differences in the individuals sampled. The whole genome values were
calculated as the sum of the genotypic additive and epistatic effects in the model as
previously described. Due to the unbalanced nature of the CNLM dataset, “true”
genetic values were calculated as in equation 3.2 but were considered independent

with a covariance Kg = 1.

3.3 Results

3.3.1 Model fit and variance components

Model fit was assessed using Akaike’s Information Criterion (AIC). Whole genome
models tended to have the lowest AIC values, with the exception of the PH and HD
traits for the epistatic ABD x ABD models in the CNLM population. When whole
genome models had lower AIC values, the comparable subgenome models had only
marginally higher AIC values (Tables 3.1 and 3.2). Whole genome predictions
between comparable whole genome and subgenome models were correlated at p >
0.999 or p > 0.993 for traits within the CNLM and W-GY populations, respectively.

This indicates that little, if any, genetic information was lost by splitting the whole
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Table 3.1: Table of model fit statistics for whole genome and subgenome prediction

models in the CNLM population.

Model Terms GY (0.30) H (0.73) TW (0.53) D (0.79)
G logL -48 2237 1547 6343
parameters 28 26 28 27
AIC 153 -4423 -3037 -12631
G 0.268% (12.59)"  3.823 (20.75)  1.067 (16.66) 3.9 (21.16)
R 0.324 (61.86)° 0.135 (56.17) 0.2 (60.12) 0.054 (58.76)
GxG logl -43 2360 1630 6432
parameters 29 27 29 28
AIC 144 -4665 -3203 -12808
G 0.203 (7.86) 0.889 (6.46) 0.194 (4.47) 1.121 (7.3)
H 0.018 (3.04) 0.478 (11.95)  0.184 (11.33)  0.451 (11.13)
R 0.322 (61.39) 0.132 (56.5) 0.195 (60.25)  0.053 (58.98)
ABD logl -48 2242 1549 6366
parameters 30 28 30 29
AIC 155 -4428 -3037 -12673
A 0.098 (5.86) 1.28 (8.41) 0.503 (8.24) 0.907 (7.41)
B 0.153 (6.88) 1.585 (8.7) 0.38 (7.1) 1.534 (9.04)
D 0.021 (2.47) 0.892 (6.24) 0.181 (4.38) 1.387 (8.03)
R 0.324 (61.87) 0.135 (56.16)  0.199 (60.12)  0.054 (58.75)
ABDxABD logl -41 2375 1634 6451
parameters 33 31 33 32
AIC 149 -4687 -3201 -12839
A 0.076 (4.66) 0.292 (3.7) 0.079 (2.79) 0.104 (1.71)
B 0.119 (5.4) 0.429 (4.21) 0.114 (3. 44) 0.587 (5.38)
D 0.015 (1.95) 0.279 (3.31) 0.007 (0.5) 0.664 (5.26)
AB 0.005 (0.49) 0.007 (0.11) 0.073 (2.38) 0.223 (3.29)
AD 0.012 (1.36) 0.276 (4.16) 0.073 (2.51) 0.167 (2.49)
BD 0 0.149 (2.19) 0.034 (1.15) 0.005 (0.08)
R 0.322 (61.4) 0.132 (56.51)  0.195 (60.26)  0.053 (58.98)

@ Variance component estimates reported for additive main effects (G, A, B and D) and
epistatic interactions (H, AxB, AxD, BxD) are the ratios of the actual variance component to
the residual variance component for ease of comparison.

b The variance component divided by their respective standard errors are shown in parentheses.
¢ The residual variance components are the actual estimates from the centered and scaled data
(refer to Table 2.2 for scaling coefficients) with their associated standard errors in parentheses.

genome into biologically relevant subgenome effects. The lack of perfect correlation
is at least partially due to floating point rounding errors during model fitting and

summation of genotype effects.

Subgenome additive variance parameter estimates were positive for all models,

but subgenome interaction variance parameter estimates were often estimated on
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Table 3.2: Table of model fit statistics for whole genome and subgenome prediction

models in the W-GY population.

Model Terms E1 E2 E3 E4
G logl -243 -243 -264 -248
parameters 2 2 2 2
AIC 489 490 533 500
G 0.55% (5.47)° 0.456 (5.1) 0.295 (4.23) 0.369 (4.69)
R 0.541 (11.88)¢  0.568 (12.17)  0.669 (12.73)  0.606 (12.5)
GxG logl -222 -242 -249 -233
parameters 3 3 3 3
AIC 451 491 504 472
G 0.426 (3.25) 0.44 (4.39) 0.303 (2.73) 0.314 (3.04)
H 0.272 (4.59) 0.033 (1.02) 0.325 (4.81) 0.231 (4.34)
R 0.343 (7.31) 0.532 (9.34) 0.368 (6.61) 0.391 (7.68)
ABD logl -242 -242 -264 -247
parameters 4 4 4 4
AIC 492 492 536 503
A 0.241 (3.38) 0.09 (1.9) 0.062 (1.66) 0.097 (2.1)
B 0.215 (2.88) 0.267 (3.48) 0.222 (3.23) 0.188 (2.89)
D 0.067 (1.72) 0.093 (1.92) 0.022 (0.93) 0.064 (1.86)
R 0.547 (11.97) 0.571 (12.28)  0.668 (12.79)  0.613 (12.59)
ABDxABD  logl -222 -241 -247 -232
parameters 7 7 7 7
AIC 458 495 509 478
A 0.124 (1.56) 0.07 (1.52) 0.061 (1.15) 0.08 (1.47)
B 0.269 (2.43) 0.273 (3.25) 0.239 (2.23) 0.138 (1.79)
D 0.07 (1.26) 0.093 (1.81) 0.041 (0.94) 0.087 (1.74)
AB 0.219 (3.39) 0.04 (1.33) 0.215 (2.69) 0.167 (2.88)
AD 0.029 (0.62) 0 0.097 (1.52) 0.007 (0.14)
BD 0 0 0 0.027 (0.57)
R 0.349 (7.38) 0.526 (9.57) 0.366 (6.74) 0.409 (7.92)

@ Variance component estimates reported for additive main effects (G, A, B and D) and

epistatic interactions (H, AxB, AxD, BxD) are the ratios of the actual variance component to
the residual variance component for ease of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
¢ The residual variance components are the actual estimates from the centered and scaled data
(refer to Crossa et al. (2010) for scaling coefficients).

the boundary (i.e. near zero). Variance parameters estimated on the boundary
were thus considered to be exactly zero. Shifts in variance component importance
were seen when the epistatic terms were added in the model. For example, for
the TW and E1 traits in the CNLM and W-GY populations, respectively, the
A subgenome component was the largest in the additive only model, but was

reduced to less than that of the B subgenome component in the epistatic model.
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Additive variance components were generally reduced in epistatic models compared
to additive only models, but this reduction in additive variance was accompanied
by non-zero subgenome interaction components. The B subgenome contributed
the greatest amount of additive variance in the epistatic ABDxABD models for
all traits accept HD. While the D subgenome variance component was far smaller
than the A subgenome component for GY and TW in the CNLM population, it was

comparable to the A subgenome component for all traits in the W-GY population.

The AxB component was particularly important for the W-GY traits, E1, E3
and E4, as well as the HD and TW in the CNLM population. The A xD component
also featured prominently for the PH and TW traits in the CNLM population.
The BxD component appeared to be less important, having the largest effect for
PH. No epistatic terms were significantly greater than zero for the E2 trait in
the W-GY population. Addition of epistatic interactions resulted in a significant
likelihood ratio test at p < 107% for all traits except GY, which was significant at
p < 1072. Despite the significant addition of epistatic terms, additive only GEBVs
were highly correlated with whole genome predictions from the epistatic models,
at p > 0.988 for the CNLM population and p > 0.869 for the W-GY population. A
model containing the three-way subgenome epistatic term was fit for all traits, but

estimates of the three-way interaction variance parameter were zero for all traits.

The distributions of variance component estimates from repeated sub-sampling
of the data during k-fold cross-validation were centered near the point estimate
from the full model fits. These distributions were either as wide (= 2 standard
errors from the center) or tighter than expected based on the standard error from
the full model fit (Figures 3.1 and 3.2). Standard errors were generally larger

for epistatic variance components relative to their magnitude than additive vari-
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Figure 3.1: Estimates and standard errors of variance components for four traits

in the CNLM populations from the full model (red) compared to the
sampling distribution of variance component estimates from the cross-
validation scheme (black violins). GxG and ABDxABD models are
shown to the left and right of the dotted line, respectively. The sum
of the additive and interaction variance components is also shown for
the ABDxABD model.
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ance components. Standard errors relative to their respective parameter estimates
tended to be larger for all terms in models with more estimated variance parame-

ters (Tables 3.1 and 3.2).

3.3.2 Subgenome additive effects

Subgenome estimated breeding values (SGEBVSs) were moderately correlated with
the whole genome effect, but weakly correlated with one another (Tables 3.3 and
3.4). The individuals with the highest SGEBV for one subgenome never had the
highest SGEBV for the other two subgenomes, and were often not in the top
95% quantile of the population based on the other two subgenomes (Figures 3.3
and 3.4). For example, the individuals with the highest A, B and D SGEBV for
GY in the CNLM population ranked 43, 39" and 60'" for the whole genome
effect, respectively. In contrast, the individual with the best A SGEBV for GY
ranked 1067, 952" for the B and D SGEBV, respectively. The individual with
the highest B SGEBV for GY ranked 221*" and 1393 for the A and D SGEBV,
respectively. The individual with the highest D SGEBV for GY ranked 347" and
123*4 for the A and B subgenome, respectively. The individual with the highest
whole genome GEBV for grain yield ranked 6%, 2274 and 519*" for the A, B and
D SGEBV, respectively. In several cases, the top individual based on a SGEBV
was not in the top 95% quantile based on their whole genome effect, particularly

in the W-GY population.

31



0¢0 ¢c¢0 €90
1¢°0 €0 980
600 ¥€0 €9°0
¢G50 080 €L0

G¢'0 8¢0 870
L€°0 7’0 160
200 9€0 ¥L°0
080 060 890

¢€'0 ¢c0 L90
L¢°0 60 160
gc0 1€0 G990
290 P80 690

ve0 9€0 L90
020 60 6.0
8¢’0 170 €80
19°0 080 €80

O<xmA

a d v 9)

a d v o)

a d v )

a d v )

vd

€d

¢

TH

‘TRUOSRIP O} MO[O( UMOYS ST SO J G = ¥ 151 oY) Sursn aanjonijs suorjendod 10j 8u13001100 $100]0
JO SUOIIR[OLIOD OIYM ‘[RUOSRIP 9} 9AOQR UMOYS oIv oInjonI)s uorjendod I0J SUI)00II00 INOYIIM SJO0JO WOPURI

9AT)IpPR Jo suoryepiio)) uoryendod x0)-A\ ) UL S109JJ0 SAINIPPR SWOULS(NS PUR SWIOUSS S[OYM JO UOIR[OIIO)) §'¢ d[qR],

yIo ¥ro 990
9¢°0 8T°0 1.0
¥1°0 00 090
0.0 ¥#.0 090

¢l'0 €20 670
€ro 0c'0 €L°0
G0 9¢0 GL0
090 ¥#.0 8LO

vI'0 €20 690
LT°0 61°0 0.0
gc0 410 €L°0
090 890 7.0

9¢’0 810 970
1€°0 1€°0 €80
¢c’0 9¢0 GL0
870 ¢80 080

O<mA

a d v D

d d v D

d d v D

a d v D

dH

ML

Hd

AD

‘TeUOSeIp 9} MO[o( UMOYS ST SO J G = ¥ 1811 oY} Fursn ainjonijs suorjendod 10j 8U13091109 $100]j0
JO SUOIJR[OII0D A[IM ‘[RUOZRIP o1} dAO(e UMOYS dIe 9Injoni)s uorpemdod 10J SUIOOII0D JNOYIM SIORJ0 WOPURI

9ATYIpPR Jo suorje[eiio)) -uoryemdod NN oY} Ul $}000 SAT}IPPE dWOUS(NS PUR SWOUIS 9[0YM JO UOIR[OIIO)) ¢ d[qR],

32



GY

T™™W

HD

PH

Whole Genome Effect Whole Genome Effect Whole Genome Effect

Whole Genome Effect

05 -0.5

Sub-Genome Effect

0.0 0.5 0.0 0.5

05 1.0 -0.5

Sub-Genome Effect

0.0 05 1.0 0.0 05

0.0 05 -0.5

Sub-Genome Effect

0.0 05 -1.0 05

-1.0 -0.5

Sub-Genome Effect

0.0 05 1.0 15

Figure 3.3: Plot of whole genome additive effects (GEBV) by subgenome addi-

tive effects (SGEBV) for four traits in the CNLM populations. The
dotted line indicates the 95% quantiles for whole or subgenome effects.
Blue squares, triangles and diamonds indicate the line with the highest
SGEBYV for each of the A, B and D subgenomes, respectively.
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dotted line indicates the 95% quantiles for whole or subgenome effects.
Blue squares, triangles and diamonds indicate the line with the highest
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3.3.3 Prediction accuracy

Table 3.5: Table of genomic prediction accuracies for eight traits in the CNLM
(GY, PH, TW and HD) or W-GY (E1, E2, E3, E4) populations with

k=0 and k= 5.

CNLM k GY PH ™ HD

G 0 0.601% (0.008)° 0.559 (0.007) 0.515 (0.010) 0.664 (0.009)
ABD 0.600 (0.008)  0.557 (0.008) 0.514 (0.011) 0.679 (0.007)
GxG 0.604 (0.008)  0.637 (0.004) 0.576 (0.010) 0.712 (0.008)
ABDxABD 0.603 (0.008)  0.638 (0.005) 0.569 (0.011) 0.720 (0.006)
G 5 0.600 (0.009) 0.558 (0.007) 0.514 (0.011) 0.663 (0.010)
ABD 0.600 (0.009)  0.556 (0.008) 0.513 (0.011) 0.678 (0.008)
GxG 0.602 (0.008)  0.624 (0.005) 0.560 (0.010) 0.701 (0.008)
ABDxABD 0.602 (0.007)  0.618 (0.005) 0.557 (0.010) 0.708 (0.006)
W-GY k E1 E2 E3 E4

G 0  0.501 (0.010)  0.493 (0.016) 0.356 (0.008) 0.457 (0.010)
ABD 0.492 (0.012)  0.481 (0.023) 0.346 (0.010) 0.449 (0.011)
GxG 0.568 (0.010)  0.494 (0.017) 0.396 (0.013) 0.520 (0.010)
ABDxABD 0.549 (0.011)  0.484 (0.023) 0.393 (0.015) 0.509 (0.013)
G 5 0.502 (0.010)  0.491 (0.017) 0.354 (0.007) 0.458 (0.010)
ABD 0.495 (0.011)  0.475 (0.024) 0.345 (0.010) 0.453 (0.011)
GxG 0.526 (0.010)  0.491 (0.017) 0.381 (0.007) 0.493 (0.011)
ABDxABD 0.520 (0.012)  0.475 (0.023) 0.373 (0.013) 0.486 (0.012)
@ Mean genomic prediction accuracy across ten replicates of five fold cross

validation.
b Standard deviation of prediction accuracy across ten replicates are shown in
parentheses.

Including epistasis kernels significantly improved genomic prediction accuracy
for all traits except GY and E2 (Table 3.5). Subgenome models had either com-
parable or slightly lower mean prediction accuracy than whole genome models for
all traits except HD, for which subgenome models had superior accuracy. The
variability in the prediction accuracy based on the individuals sampled was either
the same (GY and TW) or lower (PH and HD) for the epistatic models compared
to the additive models in the CNLM population, but was similar in the W-GY

population (Table 3.5). The variability in prediction accuracy was increased for
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the subgenome models compared to the whole genome models in the W-GY pop-
ulation for some traits (E2 and E3), but was either the same or decreased in the

the CNLM population.

3.3.4 Adjustment for population structure

The first two principal components explained 17% and 19% of the variance of M in
the CNLM and W-GY populations, respectively, indicating that some population
structure exists in both populations (Supplementary Figure 3.7). The correlation
of additive genetic covariance estimates between individuals based on the three
subgenomes declined as PCs were removed from M, but appeared to level out
between 5 to 10 PCs (Figure 3.5). Correlation of whole genetic effects between
additive models, G and ABD, for £ = 0 and £ = 5 was > 0.999 and > 0.996 for
the CNLM and W-GY populations respectively. Whole genome effect correlations
were lower between epistatic models GxG and ABDxABD, with coefficients of
> 0.998 in the CNLM population and > 0.980 in the W-GY population.

Removing population structure with k£ = 5 reduced most of the SGEBV effect
correlation coefficients by up to 0.06 in the CNLM population, but there was one
instance in which one correlation coefficient increased from 0.14 to 0.19 between
A and B SGEBVs for PH (Table 3.5). This was not the case for the W-GY

population, where many of the SGEBV effect correlations increased by up to 0.21.

Variance components generally decreased as k was increased from 0 to 10 (Fig-
ure 3.6). Ranks of additive variance components relative to one another were stable
for most traits, while epistatic variance components were more sensitive to changes

in k. Significant epistatic variance component rank changes occurred for the PH,
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TW and E4 traits. For PH, the AxD term was comparable in magnitude with the
additive variance components for A and D when k& = 0, but declined as k increased.
The reduction in AxD variance for PH was accompanied by an increase in both
the AxB and BxD terms. Similarly, a decline in AxB variance was followed by

an increase in BxD for TW and AxD for E4 as k was increased.

Correlations of variance component estimates were calculated from the average
information matrix for models k£ € {0,1,...,10} (Supplementary Figures 3.8 and
3.9). Correlations between subgenome additive variance estimates were generally
low (0.2-0.4), while correlations of subgenome interaction variance estimates were
high (0.8-0.95), and correlations between the two were moderate (0.4-0.6). Despite
a small reduction in the correlation of SGEBVs as k was increased from 0 to 5,
little reduction in variance component estimate correlations was observed as k was
increased from 0. Generally, correlations of additive variance parameter estimates
were slightly reduced while correlations between interaction variance parameter

estimates increased slightly.

3.4 Discussion

3.4.1 Model fit and variance components

While whole genome models tended to be the most parsimonious, subgenome mod-
els are worth consideration because they provide insight into the biology of the
allopolyploid organism. Given the stability of variance component estimation and
that no genetic information appears to be lost by partitioning the whole genome

into its individual subgenome additive effects, such a partition is informative.
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The method presented here could be used for any set of independent loci,
such as estimating a variance component and breeding value for each chromosome.
However, this will become computationally burdensome as the number of variance
components to be estimated increases. If the number of variance parameters to
estimate is large and the data set is small this may become infeasible. It is also

unclear if the estimates from larger numbers of additive kernels would be reliable.

Bernardo and Thompson (2016) assigned a breeding value for each of the 10
maize chromosomes by fitting a single ridge regression model to estimate marker
effects. They subsequently summed marker effects by chromosome to produce a
breeding value for each chromosome. However, this method does not allow for
direct estimation of variance components for each unit of chromatin. By fitting
each unit simultaneously, variance attributable to sets of loci will be split, and
the sum of the variance estimates should not exceed the total genetic variance.
It is unclear what effect LD across chromosomes has on the variance parameters

estimated.

Here I assumed that the subgenome effects are independent, but this is clearly
not the case. Generally, we can express the genetic variance due to the three
subgenomes as Var (vec([ga g5 gp])) = S ® J,, ® K, where S is the subgenome
covariance matrix, J is an n X n matrix of ones for n genotypes, and K is the
additive relationship matrix for within and across subgenomes. In this report, I
have assumed that S is diagonal with S;; = ¢? for the ith subgenome, and K is a
block diagonal with the i*® diagonal block represented by the subgenome additive

covariance matrix.

40



% 0 0 K, 0 0
S=10 04 0| andK=|0 Kp 0 (3.13)

0 0 o3 0 0 Kp

An unstructured covariance matrix, S, could be estimated, with correlation
coefficients between subgenomes, similar to the way that models are fit for maternal
and paternal effects in animals. The subgenome effects would be allowed to have

a correlation such that

0% 0ap Oap Kia Kip Kuaup
S=|oap 0% opp| dK=|K,z Kp Kpzp (3.14)
0AD OBD 0123 Kiap Kip Kp

However, it is unclear what the covariance structure should be between
subgenomes (e.g. K,p). If consensus haplotypes from uniquely identifiable se-
quences could be determined with two or more alleles segregating in at least two
subgenomes, a covariance across the subgenomes could be constructed. Polymor-
phisms that predate speciation would be used to identify the consensus haplotypes,
while post speciation polymorphisms would be used to identity the subgenome ori-
gin. Individuals would then receive a score based on the number of consensus
haplotypes they have in common between two subgenomes. This could prove to be
a formidable challenge given the evolutionary time between the subgenome ances-
tors. The Hadamard product of the two additive covariance matrices is a tempting
candidate for these off diagonal blocks, however, this would substitute a correlation
coefficient between additive effects in place of an epistatic variance. It is unclear
to this author if epistasis variance can be thought of and modeled as a correlation

between additive effects.
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3.4.2 Genetic architecture

The genetic architecture of grain yield (GY, E1, E2, E3, E4) in the two populations
investigated here are markedly similar, despite the divergent genetic backgrounds
of the two populations. The CNLM population is primarily comprised of breeding
lines and varieties derived from germplasm historically grown in the North East,

in contrast to the W-GY population which has a broader pedigree.

The D genome is known to have low genetic diversity due to limited gene
flow from a single Ae. tauschii lineage after the most recent allopolyploidization
event (Wang et al. 2013), estimated to have taken place as recently as 10,000
years ago (Salamini et al. 2002; Marcussen et al. 2014). The International Maize
and Wheat Improvement Center (Centro Internacional de Mejoramiento de Maiz
y Trigo, CIMMYT) has introgressed some genetic material from the D genome
ancestor, Ae. tauschii, through the use of synthetically produced hexaploid wheat
to increase the genetic diversity of the historically bottle-necked D genome. The
higher proportion of D genome variance in the W-GY population may be due to
the increased use of wild Ae. tauschii in their breeding program, highlighting the

merit of the strategy.

Many of the subgenome epistatic variance parameters were estimated at zero,
possibly due to a lack of power to detect them. Greater genetic diversity, larger
numbers of individuals, and higher allele frequencies would allow for increased
power to detect true interactions. Hill et al. (2008) emphasized the effect of low
allele frequencies on epistatic interactions, proving that as allele frequencies (and
therefore joint frequencies of alleles at two loci) approach zero or one, most of
the epistatic variance becomes additive. For example, suppose two loci have a

large interaction, such that one pair of alleles is selected. Once one locus becomes
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fixed, all remaining variance is due to the presence of the two alleles at the other
locus, and becomes strictly additive. The low joint frequency is magnified in the
three-way interactions, likely causing the inability to detect any three-way epistatic

interaction signal between the three subgenomes.

This is also apparent in the reduction of additive variance components upon the
addition of epistatic terms to the model. These components were often estimated
to be rather large compared to the additive components, but did not change the
final whole genome value drastically. This suggests that the additive terms absorb

much of the epistatic variance in the absence of the epistatic kernels.

The AxB epistatic terms were the most important for many of the traits,
reflecting the greater genetic variation of these two subgenomes. Subgenome in-
teraction terms including the D genome were notably more important for traits
known to have important loci on the D genome. PH is partially governed by two
dwarfing genes, Rht-1D and Rht-1B on 4B and 4D, respectively. These two genes
have been shown to exhibit a less than additive epistatic interaction, where the
double wildtype is less tall than expected based on the additive effects of the two
semi dwarfs from the double dwarf (see section 4.4.1 of Chapter 4). The BxD term
was large for PH, particularly after correction for population structure. Population
structure is common for these genes, as breeding programs primarily utilize one or
the other dwarfing gene to avoid producing double dwarfs during crossing, which

are agronomically undesirable.
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3.4.3 Selection on SGEBVs

Partitioning genetic variance to the subgenomes of an allopolyploid provides a
method for identifying individuals with complementary subgenomes as potential
parents for crossing. If we consider the upper 95% quantiles as candidates for
parental selection, many of the top candidates based on subgenome breeding val-
ues would not be considered candidates based on their whole genome breeding
value. When they would be considered, they were typically not the top candidates.
The low correlation between SGEBVSs highlights the opportunity to identify indi-
viduals with complementary subgenomes for crossing. These individuals may or
may not be among the top performing selection candidates, demonstrating that
the optimum set of crosses are not always between the top performing individuals

(Akdemir and Sanchez 2016).

The low correlation and high predictability of SGEBVs suggests that indi-
vidual subgenomes may be directly manipulated as never before. Prior to the
discovery and use of genetic markers to track genomic regions, the phenotype (or
some summary statistic thereof) was the only indicator of the genetic structure
of a genetically distinct individual. Variety releases still demonstrate this legacy,
with phenotypic descriptors that define a new variety as genetically distinct from
other similar varieties. One breeding strategy will be selecting parents for cross-
ing that have complementary SGEBVs to increase the potential of transgressive
segregation in the resulting offspring. I envision other breeding strategies beyond
simply choosing parents with complementary subgenomes, and see an opportunity

to weight SGEBVs according to some breeding goal.

For example, a newly formed population could undergo several rounds of ge-

nomic selection only on the D genome SGEBVs (i.e. weights of 0, 0 and 1 for the
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A, B and D subgenomes respectively) before phenotypic or whole genome selection.
Because the D genome contributes the least to the total genetic variance, pheno-
typic selection on D genome loci is challenging. Selection will act on the largest
sources of genetic variance first, potentially leading to fixation of small effect loci
in the D genome by drift, while selection acts on the large effect loci on the A
and B genomes first. By selecting on D genome SGEBVs, gains can be made to
the D genome directly with little to no selection on the A and B genomes, a feat

previously impossible with phenotypic selection.

3.4.4 Subgenome interactions

Genomic prediction of GY and E2 did not appear to benefit from including epistatic
interactions as it did for the other six traits. This may be due in part to the highly
polygenic nature of grain yield, which is the culmination of essentially all functional
genetic variants subjected to stress throughout the growth cycle. The E2 trait in
the W-GY population has previously been shown to be invariant to the addition
of various epistatic terms (Crossa et al. 2010; Martini et al. 2016), and it is unclear
why this population does not exhibit non-additive variation in this environment
as it does in the others. It may be that important epistatic interactions of GY
in the CNLM population are too small to detect or are involved with differing
performance across years or locations, such that they are lacking in a model that

does not include genotype by environment interactions.

Subgenome epistatic terms increased genomic prediction accuracy equivalent
to modeling all pairwise interactions across the subgenomes, suggesting that the
most important interacting loci are on different subgenomes. This result is consis-

tent with the observation that newly formed allopolyploids undergo considerable
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changes in gene expression, known as genome shock (McClintock 1984). This shock
has been suggested to be caused by incompatibilities of genetic pathways across the
subgenomes (Comai et al. 2003). Residual subgenome incompatibility may still be
affecting the germplasm pool, even thousands of years after the last polyploidiza-
tion event. Decay of negative gene interactions has been shown to take hundreds
to thousands of generations before all interacting genes are lost or silenced (Lynch

and Conery 2003).

It is unclear what proportion of this non-additive signal is due to homeoal-
lelic interactions. The proposed method models all pairwise interactions across
subgenomes, of which homeoallelic gene interactions are a small minority in num-
ber. Smaller homeoallelic regions or homeoallele specific marker sets would need to
be constructed to determine the relative importance of these interactions relative
to other gene interactions across the subgenomes. The usefulness of the epistatic

subgenome interactions is currently unclear and warrants further investigation.

Regardless of the source of the epistasis, I suggest that a breeding scheme should
be designed to take advantage of beneficial subgenome interactions. If a suitable
training set related to the breeding material can be established, subgenome inter-
actions can be predicted in new, genotyped breeding materials. I suggest that a
series of small bi-parental populations be constructed from important contributors
to the breeding program, and be used in the development of a training population
to balance high genetic diversity and high allele frequencies. This training popu-
lation will be used to predict SGBEVs and subgenome interactions in individuals
formed from new crosses. Individuals that contain favorable interactions can then
be selected such that they are fixed in early filial generations. After fixation in

a given line, phenotypic, whole genome, or subgenome selection can be used for
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further line development until complete homozygosity is reached.

3.4.5 Adjustment for population structure

The efficacy of the proposed method to handle population structure may need to
be improved, or a different approach may need to be taken. While this method
reduced the correlation of additive genetic subgenome covariance estimates across
the three genomes, variance parameter estimate correlations were not drastically
reduced. The correlation of subgenome interaction variance parameter estimates
tended to increase slightly when accounting for higher levels of population struc-
ture, counter to the assumption that removing this structure should result in better

estimates of subgenome interactions.

The lower correlation between epistatic models that correct and do not correct
for population structure is likely due to removing Q from the marker matrix.
Correcting for population structure also had a small, but negative effect on genomic
prediction accuracy for epistatic models. The population structure fixed effect
predictors are strictly additive and the loss of accuracy may be due to epistasis
variance associated with these PCs (i.e. population structure epistasis). Epistatic
variance related to these PCs may be recovered by using the squares of the PC
scores, although this was not done in this study. At least for the additive models,
it appears little to no genetic information is lost using the population structure

adjustment proposed here.

Determining the best value for k will be at the crux for implementing this
methodology for various traits and populations. The same population may need

different values of k for different traits, depending on how the population is struc-
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tured. Traits such as PH or HD may have less complex structure than traits such
as TW or GY, due to different marker effect distributions and the history of the
breeding population. Several methods might be used to determine k empirically
from the marker matrix (Patterson, Price, and Reich 2006, e.g.), however, these
methods may not capture subtle differences in the population structure of a given
trait. 1 used the first one to k PCs in this study, but there is no reason why we
must include all PCs up to some value k. There may be certain PCs that are
important for a given trait, and could be tested as fixed effects for inclusion or

exclusion.

This method may have better performance in populations with greater degrees
of population structure than in the populations presented here. Use of this method
for partitioning genetic variance to biologically important sets of chromatin and
estimating epistatic interactions will need further testing and validation before

widespread use.

3.5 Conclusion

To my knowledge, I provide the first attempt to assign a breeding value to each
subgenome of an allopolyploid crop. With estimates of subgenome additive effects,
parents with complementary subgenomes can be selected for crossing. Weighted
selection of subgenomes using genomic prediction could be key to increasing the
diversity of the D genome in wheat germplasm. Direct selection on the D genome
may allow targeted introgression from Ae. tauschii while mitigating the effects of
introducing unimproved alleles. Subgenome additive genetic variances appear to

be estimated well, and no genetic information appears to be lost partitioning the
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genome into its subgenome components. This demonstrates that partitioning ge-
netic variance to the subgenomes of an allopolyploid can provide useful information

for genomic assisted breeding efforts.

Subgenome interactions increase prediction accuracy, but it is unclear how
well the epistatic variance is partitioned to the three interaction terms and what
proportion of that variance is due to homeologous gene interactions. Because
the homeologous interactions make up relatively few of the possible interactions
across subgenomes, they may only explain a small portion of the observed epistatic
variance. Yet, seeing as how homeologous genes likely operate in the same or
similar physiological pathway, the likelihood for interactions between homeologous
loci is high. Further research is needed to investigate the efficacy of modeling
subgenome interaction terms, and to what degree this is explained by interactions

between homeologous orthologs.

3.6 Supplementary Materials
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Figure 3.7: Plot of the first two principal components of the marker matrix M in
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CHAPTER 4
A SUBFUNCTIONALIZATION EPISTASIS MODEL TO
EVALUATE HOMEOLOGOUS GENE INTERACTIONS IN
ALLOPOLYPLOID WHEAT

4.1 Introduction

Subfunctionalization and neofunctionalization are often described as distinct evo-
lutionary processes. Neofunctionalization implies the duplicated genes have com-
pletely novel non-redundant function (Ohno 1970). Subfunctionalization is de-
scribed as a partitioning of ancestral function through degenerate mutations in
both copies, such that both genes must be expressed for physiological function
(Stoltzfus 1999; Force et al. 1999; Lynch and Force 2000). However, barring total
functional gene loss, many mutations will have some quantitative effect on protein
kinetics or expression (Zeng and Cockerham 1993). Duplicated genes will demon-
strate some quantitative degree of functional redundancy until the ultimate fate of
neofunctionalization (i.e. complete additivity) or gene loss (pseudogenization) of
one copy. It has been proposed that essentially all neofunctionalization processes

undergo a subfunctionalization transition state (Rastogi and Liberles 2005).

If the mutations occur before the duplication event, as in allopolyploidy, the
two variants are unlikely to have degenerate mutations. Instead, they may have
differing optimal conditions in which they function or are expressed. The advantage
of different variants at a single locus (Allard and Bradshaw 1964, alleles) or at
duplicated loci (Mac Key 1970, homeoalleles) can result in greater plasticity to
environmental changes. Allopolyploidization has been suggested as an evolutionary

strategy to obtain the genic diversity necessary for invasive plant species to adapt
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to the new environments they invade (Ellstrand and Schierenbeck 2000; Beest et

al. 2011).

Adams et al. (2003) showed that some homeoallelic genes in cotton were ex-
pressed in an organ specific manner, such that expression of one homeolog ef-
fectively suppressed the expression of the other in some tissues. These results
have since been confirmed in other crops such as wheat (Pumphrey et al. 2009;
Akhunova et al. 2010; Feldman et al. 2012; Pfeifer et al. 2014), and evidence
for neofunctionalization of homeoallelic genes has been observed (Chaudhary et al.
2009). Differential expression of homeologous gene transcripts has also been shown
to shift upon challenge with heat, drought (Liu et al. 2015) and salt stress (Zhang
et al. 2016) in wheat, as well as water submersion and cold in cotton (Liu and

Adams 2007).

In the absence of outcrossing in inbred populations, selection can only act on
individuals, changing their frequency within the population. If the selection pres-
sure changes (e.g. for modern agriculture), combinations of homeoalleles within
existing individuals may not be ideal for the new set of environments and traits.
This presents an opportunity for plant breeders to capitalize on this feature of al-
lopolyploids by making crosses to form new individuals with complementary sets of
homeoalleles. Many of these advantageous combinations have likely been indirectly

selected throughout the history of wheat domestication and modern breeding.

A crucial example involves the two homeologous dwarfing genes (Borner et al.
1996) important in the Green Revolution, which implemented semi-dwarf varieties
to combat crop loss due to nitrogen application and subsequent lodging. I discuss
this example in detail, and use it as a starting point to justify the search for home-

ologous interactions. While the effect of allopolyploidy has been demonstrated
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at both the transcript level and whole plant level, I am unaware of attempts to
use genome-wide homeologous interaction predictors to model whole plant level

phenotypes such as growth, phenology and grain yield traits.

Using a soft winter wheat breeding population, I demonstrate that epistatic
interactions account for a significant portion of genetic variance and are abundant
throughout the genome. Some of these interactions occur between homeoallelic
regions and I demonstrate their potential as targets for selection. If advanta-
geous homeoallelic interactions can be identified, they could be directly selected
to increase homeoallelic diversity, with the potential to expand the environmental

landscape to which a variety is adapted.

I hypothesize that the presence of two evolutionarily divergent genes with par-
tially redundant function leads to a less than additive gene interaction, and intro-

duce this as a subfunctionalization model of epistasis.

4.2 Subfunctionalization Epistasis

[ generalize the duplicate factor model of epistasis from Hill et al. (2008), by
introducing a subfunctionalization coefficient d, that allows the interaction to shift
between the duplicate factor and additive models. Let us consider an ancestral
allele with an effect a. Through mutation, the effect of this locus is allowed to
diverge from the ancestral allele to have effects a* and @ in the two descendant
species. When the two divergent loci are brought back together in the same nucleus,
the effect of combining these two alleles is modeled as the sum of their individual
effects multiplied by the subfunctionalization factor d, such that the effect of having

both alleles becomes d(a* + a) (Figure 4.1).
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Figure 4.1: Diagram of subfunctionalization where a is the effect of a functional
allele, a* and a are the effects of the descendant alleles, and d is the
subfunctionalization (or divergence) coefficient.

a Ancestor

Mutation

Descendant 1 a* a Descendant 2

/

d(a* + a) allopolyploid

Values of d < 1, indicate a less-than additive epistasis (Eshed and Zamir 1996),
in this case, resulting from redundant gene function. When d = 1/2, and a* = a,
the descendant alleles have maintained the same function and the duplicate factor
model is obtained. As d exceeds 1/2, the descendant alleles diverge in function
(i.e. subfunctionalization), until d reaches 1, implying that the two genes evolved
completely non-redundant function (i.e neofunctionalization). At the point where

d = 1, the effect becomes completely additive.

For values of d > 1/2, the benefit of multiple alleles is realized in a model
analogous to overdominance in traditional hybrids. As alleles diverge they can pick
up advantageous function under certain environmental conditions. The homeo-
heterozygote then gains an advantage if it experiences conditions of both adapted
homeoalleles. Values of d < 1/2 may indicate allelic interference (Herskowitz 1987),
a phenomenon that has been observed in many newly formed allopolyploids (Comai
et al. 2003; McClintock 1984). Allelic interference, also referred to as dominant
negative mutation, can result from the formation of non-functional homeodimers,

while homodimers from the same ancestor continue to function properly. This
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Figure 4.2: Epistatic interaction of two loci, B and C', with the expected effects for
the {0,1} parameterization. ¢ indicates the deviation of the BBCC
genotype from an additive model for the {0, 1} parameterization, where
d=1+= fa*. The dotted line indicates the expectation under the
additive model.

cc ccC

interference effectively reduces the number of active dimers by half (Herskowitz

1987; Veitia 2007).

4.2.1 Epistasis models

Let us consider the two locus model, with loci B and C'. Using the notation of

Hill, Goddard and Visscher (2008), the phenotype, ¥, is modeled as

y = Bag + Cac + BCaage (4.1)

where B and C are the marker allele scores, BC is the pairwise product of those
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Table 4.1: Three types of epistatic interactions for inbred populations for two loci,
B and C. The Additive x Additive and Duplicate factor are adapted
from Hill, Goddard and Visscher (2008) with the heterozygous geno-
types removed.

Additive x Additive Duplicate Factor Subfunctionalization
‘ cC cc ‘ CC cc ‘ cc cc

BB| 22 0 BB| a a BB | d(a*+a) a*

bb 0 2a bb a 0 bb a 0

marker scores, ap and a¢ are the additive effects of the B and C loci and aapgc is

the interaction effect.

I will revisit two epistatic models, the “Additive x Additive Model without
Dominance or Interactions Including Dominance” (called Additive x Additive
hence forth) and the “Duplicate Factor” considered by Hill, Goddard and Visscher
(2008) that are relevant for this discussion. I will also propose a generalized Dupli-
cate Factor epistatic model to estimate the degree of gene functional redundancy,
or subfunctionalization. Letting a be the effect on the phenotype, we can represent

these epistatic models in Table 4.1.

When markers are coded {0, 1} for presence of the functional allele, the devia-

tion from the additive expectation, ¢, is estimated by aapgc. d can then be used to

calculate the subfunctionalization coefficient, d = 1 + —°= (Figure 4.2). Omitting

5
+
the population mean, the least squares expectation of additive and epistatic effects

is then
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Bag a* a*
E COéC =lal| = a
BCaape o (d—1)(a*+a)

4.2.2 Epistatic contrasts

Epistatic interaction predictors must be formed from marker scores in order to
estimate interaction parameters. These interaction predictors are typically calcu-
lated as the pairwise product of the genotype scores for their respective loci. This
can lead to ambiguity in the meaning of those interaction effects depending on how
the marker scores are coded. Different marker parameterizations can center the
problem at different reference points (i.e. different intercepts), and can scale the

predictors based on allele or genotype effects (i.e. different slopes).

Table 4.2: Epistatic interaction tables resulting from {—1,1} and {0,1} marker
coding for inbreds.

When loci B and C are coded as {—1,1} for inbred genotypes, including the
product of the marker scores, BC', corresponds to the Additive x Additive model.
Changing the reference allele at either locus does not change the magnitude of
effect estimates but will change their signs. Using {0, 1} coding, BC' corresponds
to the subfunctionalization model and estimates 0 directly. For this coding scheme,
the magnitude and sign can change depending on the reference allele at the two

loci. This highlights one of the difficulties of effect sign interpretation, as it is not
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clear which marker orientations should be paired. That is, which allele should be
B as opposed to b, and which should be C' as opposed to ¢? Marker alleles can be
oriented to have either all positive or all negative additive effects, but the question
remains: which direction should the more biologically active allele have on the

phenotype?

Marker scores are typically assigned as either presence (or absence) of the ref-
erence, major, or minor allele, which may or may not be biologically relevant. For
the {—1, 1} parameterization, marker orientation does not change the magnitude
of the effects, but will change their sign. It is therefore not possible to determine
the sign of the epistatic effect relative to the additive effects without biological

knowledge of marker orientation.

While it has been noted that the two different marker encoding methods do
not result in the same contrasts of genotypic classes (He, Wang, and Parida 2015;
Martini et al. 2016; Martini et al. 2017), coding does not affect the least squares
model fit (Zeng, Wang, and Zou 2005; Alvarez-Castro and Carlborg 2007). Alverez-
Castro and Carlborg (2007) show that there exists a linear transformation to shift
between multiple parameterizations using a change-of-reference operation. This is
convenient because all marker orientation combinations can be easily generated by
changing the effect signs of a single marker orientation fit for the {—1,1} marker
coding. These effect estimates can subsequently be transformed to the {0, 1} cod-
ing effect estimates using the change-of-reference operation for all marker orienta-

tion combinations.

Following Alverez-Castro and Carlborg (2007), I demonstrate the change-of-
reference operation simplified for inbred populations. For {0,1} marker coding

and allowing GG; to be the reference genotype, the genotypic values at a single
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locus can be represented as

Gl 1 0 12
G = == SOlE01 == (42)

G2 1 1 a
where Sp; is the marker score matrix using the {0, 1} marker parameterization and
Eo; is the vector of expected values. For the two locus epistasis model, the four

genotypic values are then

Gu 100 0 i
Gia 1 010 ax
G == - (SOI ® SOl>E01 = (43)
Go 1100 as
G22 1 1 11 a1a9

The three locus interaction is extended by

G = (So1 ® So1 ® So1) [ a1 az aras az aas azas alagag]T (4.4)

To shift from {—1,1} coding estimates, 3,4, to {0, 1} coding estimates, B,
the following transformation exists (Alvarez—Castro and Carlborg 2007). Let S_q;

indicate the {—1, 1} marker parameterization

1 -1
S-11:
11

then E01 = (Sall X Sall)<s_11 (24 S-ll)E-ll-
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4.3 Materials and Methods

4.3.1 RIL population

A bi-parental recombinant inbred line (RIL) population of 158 lines segregating
for two dwarfing genes was used to illustrate an epistatic interaction between the
well known homeologous genes on chromosomes 4B and 4D, Rht-B1 and Rht-
D1, important in the Green Revolution. Two genotyping by sequencing (GBS)
markers linked to these genes were used to track the segregating mutant (b and
d) and wildtype (B and D) alleles. Only one test for epistasis between these two
markers was run. This homeologous marker pair was denoted RIL_Rhtl. Details

of the population can be found in Chapter 2.3.

4.3.2 CNLM population

The Cornell small grains soft winter wheat breeding population (CNLM) was used
to investigate the importance of homeologous gene interactions in a large adapted
breeding population. The dataset consists of 1,447 lines evaluated in 26 envi-
ronments around Ithaca, NY. Because the data were collected from a breeding
population, only 21% of the genotype/environment combinations were observed,
totaling 8,692 phenotypic records. Standardized phenotypes of four traits, grain
yield (GY), plant height (PH), heading date (HD) and test weight (TW) were
recorded. All lines were genotyped with 11,604 GBS markers aligned to the In-
ternational Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 wheat
genome sequence of ‘Chinese Spring’ (IWGSC 2018, accepted), and subsequently

imputed. Further details can be found in Chapter 2.1.
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4.3.3 Homeologous marker sets

Using the IWGSC RefSeq v1.0 ‘Chinese Spring’ wheat genome sequence (IWGSC
2018, accepted), homeologous sets of genes were constructed by aligning the coding
sequences back onto themselves. Alignments of coding sequences was accomplished
with BLAST+, allowing up to 10 alignments with an e-value cutoff of le-5. Align-
ments were only considered if they aligned to 80% or more of the query gene. Of the
110,790 coding sequences, 13,111 triplicate sets with one gene on each homeologous
chromosome (representing 39,333 genes) were identified with no other alignments
meeting the criterion. An additional 5,073 triplicates (representing 15,219 genes)
were added by selecting the top 2 alignments if they were on the corresponding
homeologous chromosomes. Duplicate sets were also included if there was not a
third alignment to one of the three subgenomes, adding an additional 5,612 du-
plicates. The coding sequences for which I did not identify homeologous genes
either appeared to be singletons (24,695 coding sequences) that did not have a
good alignment to a gene on a homeologous chromosome, or had many alignments
across the genome making it impossible to determine with certainty which align-
ments were truly homeologous (20,319 coding sequences). The known 4A; 5A,
and 7B translocation in wheat (Devos et al. 1995) was ignored for simplicity in
this study, but could easily be accounted for by allowing homeologous pairs across

these regions.

The resulting 23,796 homeologous gene sets, comprised of 18,184 triplicate and
5,612 duplicate gene sets, sampled roughly 59% of the gene space of hexaploid
wheat. Each homeologous gene was then anchored to the nearest marker by phys-
ical distance (Supplementary Figures 4.7 and 4.8), and homeologous sets of

markers were constructed from the anchor markers to each homeologous gene set.
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Redundant marker sets due to homeologous genes anchored by the same markers
were removed, resulting in 6,142 triplicate and 3,985 duplicate marker sets for a
total of 10,127 unique homeologous marker sets. These marker sets were then used

to calculate marker interactions as pairwise products of the marker score vectors.

As a control, two additional marker sets were produced by sampling the same
number of duplicate and triplicate marker sets as the homeologous set (Homeo)
described above. These markers sets were sampled either from chromosomes within
a subgenome (Within, e.g. markers on 1A, 2A and 3A), or across non-syntenic
chromosomes of different subgenomes (Across, e.g. markers on 1A, 2B and 3D).
Samples were taken to reflect the same marker distribution of the Homeo set with
regard to their native genome, which has a larger proportion of D genome markers
relative to their abundance (see Figure 2.2). To illustrate, note that three-way
homeologous interactions have equal proportions of markers belonging to the A, B
and D genomes, whereas D genome markers only account for 13% of all markers
in the CNLM population. All analyses conducted on the Homeo marker set were
conducted on the Within and Across marker sets to determine the importance of

homeologous gene interactions relative to non-homeologous gene interactions.

4.3.4 Determining marker orientation

For each homeologous marker set, additive homeologous marker effects and their
multiplicative interaction effects were estimated as fixed effects in the following
linear mixed model while correcting for background additive and epistatic effects.
The {—1, 1} marker parameterization was used for fixed marker additive and in-

teraction effect estimates.
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y=ZS1E . +XB+Zg ;+e (4.5)

where 1,, is a vector of ones, p is the general mean, X is the design matrix, 3 is
the vector of fixed environmental effects, and Z is the line incidence matrix. S_i;
is the matrix of genotype marker scores and interactions, while E_q; is the additive
and interaction effects that need to be estimated. Z is the incidence matrix for the
two- or three-way genotype of each homeologous marker set. Z and Z differ in that
the former links observations to a specific line, whereas the latter links observations
to one of the two- or three-way genotype classes for the homeologous marker set.
The background genetic effects were assumed to be gg,; ~ N(0, aéKG + O’%H 7)
with population parameters previously determined (Zhang et al. 2010). The addi-
tive, K and epistatic, Hy, covariances were calculated as described in Van Raden
(2008, method I) and Martini et al. (2016), respectively. This weighted covariance
matrix was used to reduce computational burden associated with estimating two

variance components in the same fit.

A Wald test was used to obtain a p-value for the null hypothesis that the marker
effects or interactions are zero. All marker orientation combinations were gener-
ated by changing the estimated effect signs, and then transformed to the {0, 1}
marker effect estimates using the change-of-reference operation (Alvarez—Castro
and Carlborg 2007). Only marker orientations with all positive or all negative

effects were considered.

Four marker orientation schemes were used in further analyses. Markers were
oriented to have either all positive (POS) effects, all negative (NEG) effects, or
to have the direction chosen for each marker set by one of two methods. The

first method, ‘low additive variance high additive effect’” (LAVHAE), selected the
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marker orientation that minimized the difference (or variance for three-way sets)
of the additive main effects while maximizing the mean of the absolute values
of the additive main effects. Only additive effects were used to select the marker
orientation to keep from systematically selecting marker orientations with a specific
interaction pattern for the LAVHAE scheme. A second method was used to select
marker orientations solely based on the highest variance of estimated additive
and interaction effects, denoted ‘high total effect variance’ (HTEV). The HTEV
method biases the interaction term to be in the opposite direction to that of the

additive effects, therefore discussion of results using this method is limited.

4.3.5 Additive only simulated controls

Marker effect and interaction estimates using {0, 1} are not orthogonal, so care
must be taken when interpreting the direction and magnitude of the effects esti-
mates. The positive covariance between the marker scores and their interaction
leads to a multicollinearity problem, and results in a negative relationship be-
tween additive and interaction effects if both additive effects are oriented in the
same direction. The {—1,1} marker parameterization does not result in orthogo-
nal contrasts either, but only the magnitude of the estimates are affected and not
their sign. Because magnitudes do not change with the {—1,1} marker param-
eterization, sign relationships between additive and interaction effects cannot be

determined.

To determine if any observed pattern was due entirely to multicollinearity,
a new phenotype with no epistatic effects was simulated from the data for each
trait. The estimate of the marker variance was calculated from the additive genetic

variance estimate as 62, = 64(2pT(1 — p))~!, where p is the vector of marker
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allele frequencies. Then for each trait, a new additive phenotype was simulated as
Vsim = 1+ X8+ ZMug, +€sin where M is the matrix of marker scores, ug;,, was
sampled from N(0,62)) and € was sampled from A (0, 5?). A Kolmogorov-Smirnov
(KS) test was used to determine if the distribution of the estimated interaction
effects from the actual data differed from the distribution of effects estimated from
simulated data. An additional simulated phenotype was also produced by first
permuting each column of the marker matrix to remove any effects due to LD

structure.

4.3.6 Genomic prediction

To determine the importance of epistatic interactions to the predictability of a

genotype, a genomic prediction model was fit as

y=1p+XB8+7Zg; +2g; +¢ (4.6)

The random vectors of additive genotype, epistatic interactions, and errors were
assumed to be distributed as go ~ N(0,02K), gr ~ N (0,07H) and &€ ~ N (0, 0?),

respectively.

The additive covariance matrix, K, was calculated using Van Raden (2008),
method I. The epistatic covariance matrix H was calculated either as defined by
Martini et al. (2016) to model all pairwise epistatic interactions (Pairwise), or in
a similar fashion as K for oriented marker sets, where only unique products of
marker variables were included instead of the marker variables. For the latter, the

matrix was scaled with the sum of the joint marker variances as (2q*(1 — q))~*,
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where q is the frequency of individuals containing both the non-reference marker

alleles.

A small coefficient of 0.01, was added to the diagonals of the covariance ma-
trix to recover full rank lost in centering the matrix of scores prior to calculating
the covariance. Five-fold cross validation was performed by randomly assigning
individuals to one of five folds for 10 replications. Four folds were used to train
the model and predict the fifth fold for all five combinations. All models were
fit to the same sampled folds so that models would be directly comparable to one
another, and not subject to sampling differences. Prediction accuracy was assessed
by collecting genetic predictions for all five folds, then calculating the Pearson cor-
relation coefficient between the predicted genetic values for all individuals and a
“true” genetic value. The “true” genetic values were obtained by fitting a mixed
model to all the data with fixed effects for environments and a random effect for

genotypes, assuming genotype independence with a genetic covariance 1.

Increase in genomic prediction accuracy from the additive model was used as
a proxy to assess the relative importance of oriented marker interaction sets. To
determine the proportion of non-additive genetic signal attributable to each inter-
action set, the ratio of the prediction accuracy increase from the additive model
using the interaction set (Homeo, Within and Across) to the prediction accu-
racy increase from the additive model modeling all pairwise epistatic interactions
(Pairwise) was used for comparison of models. The percentage of non-additive

predictability was calculated as follows for each interaction set.

accuracy (Interaction Set) — accuracy(Additive)

(4.7)

accuracy (Pairwise) — accuracy(Additive)
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Table 4.3: Marker and epistatic effect estimates for Rht-1D and Rht-1B linked
GBS markers for plant height (cm) in 158 RIL lines derived from
NY91017-8080 x Caledonia. Least squares effect estimates are for
markers coded either using {0,1} coding or {—1, 1}, and then oriented
such that the two marker main effects are either both positive (+) or
both negative (—)

Marker Effect

Coding Orientation Intercept  Rht-1B  Rht-1D  Rht-1BxRht-1D

{0,1} n 69.9 234 222 12.2
{0,1} - 1033  -11.2 -10.0 12.2
{~1,1} + 89.7 8.6 8.0 -3.0
{-1,1} - 89.7 -8.6 -8.0 -3.0

4.4 Results and Discussion

4.4.1 Rht-1

RIL population

The markers linked to the Rht-1B and Rht-1D genes both had significant effects
(p < 107'%) and explained 19.6% and 20.5% of the variation in the height of the
RIL population (Supplemental Table 4.7). The test for a homeoallelic epistatic
interaction between these Rht-1 linked loci was also significant (p = 0.0025), but
only explained 3.5% of the variance after accounting for the additive effects. Had I
tested all pairwise marker interactions in this population, this test would not have

passed a Bonferroni corrected significance threshold.

Effect estimates for the Rht-1 markers and their epistatic interaction are shown
in Table 4.3, for {0, 1} and {—1, 1} marker parameterizations, and for orientations
where the marker main effects are both positive or both negative. By plotting

these values on a classic epistasis plot and indicating the genotype class means, it
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Figure 4.3: Epistasis plot of effects for Rht-1B and Rht-1D linked markers on plant
height (cm) in 158 RIL lines derived from NY91017-8080 x Caledonia.
Circles indicate genotype class means, and lines indicate the marker
effect slopes. The dotted line indicates the expected slope based on
the additive model. A) {0,1} marker coding with positive marker
effect orientation. B) {0,1} marker coding with negative marker ef-
fect orientation. C) {—1,1} marker coding with positive marker effect
orientation, D) {—1, 1} marker coding with negative marker effect ori-
entation.

it evident that the {0, 1} parameterization is arguably more intuitive due to effects
corresponding directly to differences in genotype values (Figure 4.3). They both
contain the same information and are equivalent for prediction, but the interpreta-
tion of the {—1, 1} marker coding is less obvious because the slopes are deviations
from the expected double heterozygote, which does not exists in an inbred popu-
lation. The {0, 1} parameterization uses the double dwarf as the reference point,
where the effects ag and a¢ are the two semi-dwarf genotypes. The tall genotype
is the sum of the semi-dwarf allele effects plus the deviation coefficient, 9§, which

corresponds to aapgc.

The estimated d parameter of 0.73 indicates a significant degree of redundancy
between the wild type Rht-1 homeoalleles. This suggests that either the gene
products maintain partial redundancy in function, or the expression of the two
homeoalleles is somewhat redundant. The latter is less likely given that the two

functional wild type genes have comparable additive effects relative to the double
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dwarf. If the two genes were expressed at different times or in different tissues
based on their native subgenome, the additive effects would be likely to differ in
magnitude. This demonstrates a functional change between homeoalleles that has

been exploited for a specific goal: semi-dwarfism.

When the markers are oriented in the opposite direction, to indicate the GA
insensitive mutant allele as opposed to the GA sensitive wildtype allele, the inter-
pretation of the interaction effect changes. The additive effect estimates become
indicators of the reduction in height by adding a GA insensitive mutant allele.
The interaction effect becomes the additional height reduction from the additive
expectation of having both GA insensitive mutant alleles, resulting in a d param-
eter of 1.58. The same interpretation can be made, but must be done so with
care. Losing wildtype function at both alleles results in a more drastic reduction
in height than expected because there is redundancy in the system. Therefore, the
d parameter is most easily interpreted when the functional direction of the alleles
is known. Simply put, when you add function on top of function, little is gained,

but when you remove all function, catastrophe ensues.

CNLM population

For the CNLM population, the markers with the lowest p-values associated
with plant height on the short arms of 4B and 4D did not show a signifi-
cant interaction with their respective assigned homeologous marker. The marker
S4B_PART1.38624956 of the homeologous marker set H4.16516 had the lowest
p-value on the 4BS chromosome (p = 5.7 x 107%), but its assigned homeologous
marker, S4D_PART1_28548806, was not significant. Similarly, H4.23244 included
the 4DS SNP with the lowest p-value, S4AD_PART1_10982050, was significant at a
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Bonferroni correction threshold (p = 6.2 x 1078), but it’s assigned homeologous
marker on 4BS, S4D_PART1.10982050, did not have a low p-value. The signifi-
cant markers were 8 Mbp downstream and 8 Mbp upstream of the Rht-1B and
Rht-1D genes, respectively. While these distances would seem extreme to those
working with a small genome such as that of Arabidopsis, they are less than < 2%
of the chromosome length. Therefore, these distances are quite reasonable con-
sidering the size of the chromosomes and relatively high degree of LD in wheat.
Chromosomes 4B and 4D are 674 Mbp and 510 Mbp in length based on the cur-
rent reference sequence, RefSeqvl.0, respectively (IWGSC 2018, accepted). For
comparison, chromosome 4B is about five times the size of the entire A. thaliana

genome.

One marker set on homeolog 4, H4.7408 with markers S4B_PART1_.60701027
and S4D_PART1.40659460, did have main effects and an epistatic interaction all
significant at p < 0.05. However, these markers were located considerably further
downstream, 30 Mbp and 22 Mbp from the Rht-1B and Rht-1D genes. This
was one of only 30 homeologous marker sets that had two main effects and an
interaction significant at p < 0.05 across all traits. These sets are discussed in

further detail below (See Section 4.4.3).

A new homeologous marker set was constructed, called CNLM_Rhtl,
with the SNPs on 4BS and 4DS with the lowest p-values mentioned above
(S4B_PART1 38624956 and S4D_PART1.10982050). The additive effects of mark-
ers S4AB_PART1_38624956 and S4D_PART1_28548806 had p-vales of p = 5.5 x 10~*
and p = 3.7 x 1078, respectively. The pair was tested for an epistatic interaction,
but was only significant at a o« = 0.05 threshold (p = 0.015). This set was oriented

in the same direction as the RIL_Rht1 set using the LAVHAE orientation method.
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While the magnitude of these effects was reduced (7.13, 7.09 and -4.56 for the 4D,
4B and 4Bx4D effects respectively), the CNLM_Rht1 set had a d parameter value
of 0.68, similar to that of RIL_Rht1. Had this set alone been tested, I would have

concluded that this was a significant homeologous interaction.

It appears that the S4B_PART1_.38624956 marker is not in high LD with the
Rht-1B gene perhaps due to physical distance, multiple alleles or separation of
these mutations in time. This SNP may have occurred before the Rht-1B mutation,
and is therefore flagging both the wild type and a GA-insensitive allele in the
population. The 4B wild type allele had a high frequency of 0.88, leading to
a higher incidence of tall wheat genotypes (0.36) than expected (Supplemental
Table 4.8). While some of the important historical varieties in this population are
known to lack either dwarfing allele, it is unlikely that the proportion would be as
high as 36% of the lines. It appears that a GBS SNP in high LD with the Rht-1B
was not sampled, or was filtered out of the marker set. The presence of the double
dwarf marker genotype also indicates a lack of perfect LD with the functional

polymorphism, as there are no phenotypic double dwarfs in the population.

These results highlight the difficulty in using single SNP markers to track home-
ologous regions. If a non-functional mutation that is not in LD with a functional
mutation is identified as the homeologous marker, then there will appear to be
no interaction, while a marker in high LD with the homeolog but physically fur-
ther away from the gene was missed. Further research is required to determine if
functionally important homeologous marker pairs can be identified based on LD

signatures in the population.

One of the challenges of using diverse panels of individuals is that marker

proximity to a functional mutation is not necessarily indicative of high LD between
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the two sites. Significantly older or newer marker mutations may be in weak LD
with a functional mutation despite close physical proximity, at least until a genetic
bottleneck brings them back into high LD. The best markers are those mutations
in close proximity and occurring at approximately the same historical time as the
functional mutation in the same individual, such that both polymorphisms are

inherited together and subsequently co-inherited.

Another strategy to determine functional homeologous regions is to relax which
sets of markers are considered homeologous. This could be accomplished by allow-
ing pairwise relationships with all markers across entire subgenomes (Chapter 3),
on syntenic chromosomes or chromosome arms (Chapter 5). Haplotypes could be
constructed in the population and used to model homeologous haplotype inter-
actions. This strategy would likely have more power assuming the correct SNPs
could be identified to assign functional haplotypes, but that is beyond the scope

of this report.

4.4.2 Significant homeoallelic interactions

A trait-wise Bonferroni significance threshold of 0.05/20, 641 = 2.4 x 107 for the
20,641 testable interaction effects out of 28,553 total interaction terms was used to
determine which interaction effects had a significant effect on the phenotype. The
other 7,912 interaction terms were a linear combination of the marker additive
effects scores, precluding the ability to test them as separate predictors. This
was often the case when a marker allele was always co-inherited with its respective

homeologous marker allele on a different subgenome (i.e. only 3 genotypic classes).

Few homeoallelic interactions were significant at the trait-wise Bonferroni cutoft
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Figure 4.4: Manhattan plot of homeoallelic marker sets for each of the 21 chromo-
somes of wheat. The red line indicates a trait wise Bonferroni signifi-
cance threshold for additive effects of —log;,(6.0 x 1076) = 5.2. Light
blue lines indicate significant two-way homeoallelic marker interactions
that exceeded a Bonferroni threshold for all testable interaction effects
—log;y(2.4 x 1076) = 5.6. Dark blue lines indicate significant 3-way
homeoallelic marker interactions that exceeded the same Bonferroni
threshold.
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(Figure 4.4). Significant homeoallelic interactions for PH were identified between
4AL and 4DS as well as 4BL and 4DL. Both of these locations were likely too far
away from the Rht-1 alleles to be tagging these genes directly, but they may be
regulatory sites for these genes. Another set of interacting sites between the short
arms of homeologous chromosomes 3AS, 3BS and 3DS was also identified for PH,
but the additive effects were not significant. Two interacting regions on homeolog
1, between 1AS and 1DS and between 1AL and 1DL, and three interacting regions
on homeolog 5 also appeared to be influencing HD. One region on the distal end
of homeolog 7 affected both HD and TW, with significant two-way and three-way
interactions. Although they were tagged with different marker sets for the two

traits, these epistatic regions appeared to co-localize within 2 Mbp.

No significant additive or interaction effects were detected for GY, highlighting
the highly polygenic nature of the grain yield trait. In several cases, one of the
additive effects was significant but the other was not, and it is not clear if this is
influencing the detection of interactions. It may be that the significant marker is
simply in higher LD with the functional mutation conditional on the presence of
the other marker, allowing the interaction to pick up the additional signal from
the functional mutation (Wood et al. 2014). However, if this were the case, the
interaction would be expected to be in the same direction as the additive effect,

which was not generally observed.

I did not detect an interaction between the two significant additive regions on
2B and 2D for the HD trait. While these two markers were not grouped as a
homeologous set, they were tested as such based on their proximity to the well
described Photoperiod-1 genes, Ppd-B1 and Ppd-D1, on chromosomes 2B and

2D respectively. These genes are known to influence photoperiod sensitivity, and
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therefore transition to flowering and heading date (Welsh J.R. and R.D. 1973;
Law, Sutka, and Worland 1978; Scarth and Law 1983). Certain allele pairs at
these genes have been shown to exhibit a high degree of epistasis (Poland 2018,
personal communication) in a bi-parental family. It is unclear why no interaction

was observed in this population.

Jiang et al. (2017) also investigated the presence of homeologous interactions,
but found little evidence in a large population of hybrid wheat. They did not
attempt to tag homeologous loci, but instead considered interactions across any
markers on homeologous chromosomes to be syntenic. It is possible that interac-
tions at homologous (i.e. heterozygous) loci largely outweighed the interactions
across homeologous loci in that population, given it was constructed from highly
divergent parents. Additionally, they tested all pairwise marker combinations,
resulting in a strict significance threshold that may have missed small effect home-

ologous interactions.

Homeologous interactions make up relatively few of the potential two-way in-
teractions within an allopolyploid genome. Given a subgenome with k£ genes and

alloploidy level p (i.e. the number of subgenomes), there are /{:(’2’) two-way home-

k

2) - k:(g) potential two-way non-homeologous gene

ologous interactions versus (
interactions. For a subgenome size of 30,000 genes, this represents 0.02% and
0.006% of the possible two-way gene interactions for an allotetraploid and an al-
lohexaploid, respectively. That said, homeoallelic interactions should be far more

likely to have a true biological interaction than random pairs of genes because they

should belong to the same or similar biochemical pathways.

7



Table 4.4: Estimates of d coefficients for marker sets where both additive and the
two-way interaction effects were significant at p < 0.05, combined for
all 4 traits. The expected number of non-zero additive and two-way
interactions effects based on a 0.05 significance threshold by chance is 11
(i.e. 4 traits x 22,411 two-way interactions x 0.05%). Coefficients have
been grouped by categories related to the potential mode of epistasis,
where d < 0.5 indicates a highly negative interaction, 0.5 < d < 1 a
less than additive interaction may be indicative of subfunctionalization
for homeologous genes, and d > 1 which indicates positive, or greater
than additive, epistasis. Three marker sets are shown, either across
all homeologous loci (Homeo), sampled sets within (Within) and across
(Across) non-syntenic subgenome regions. An additional phenotype was
simulated to contain additive only phenotypes to contain no epistasis,
and fit with the Homeo marker set (Simulated Additive).

Marker Set d<0.5 05<d<1 d>1 Total
Homeo 8 14 8 30
Simulated Additive 1 1 4 6
Across 9 7 1 17*
Within 6 3 4 13

ko okk skkok

, ) " indicate significantly greater than the expected number of significant sets
at p = 0.05, 0.01 and 107% based the binomial distribution with 89,644 trials and
a probability of 0.053.

4.4.3 Estimates of d

There were few cases where at least two additive effects and their corresponding
interaction effect were all significantly different from zero. This may be due to the
difficulty of assigning functional homeologous gene sets using single SNPs, as well
as a lack of statistical power owing to low minor allele frequencies (Hill, Goddard,
and Visscher 2008). The lack of a large number of significant interactions is not
surprising given that allele frequencies near 0.5 are uncommon in both natural and

breeding populations.

To determine whether more homeologous marker sets were displaying a pattern

indicative of subfunctionalization than would be expected by chance, marker sets
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where both additive and two-way interaction effects were significant at a threshold
of @ = 0.05 were examined (Table 4.4). The expected number of two-way marker
sets with significant additive and interaction effects is about 11 (i.e. 4 traits X
22,411 two-way interactions x 0.05%), assuming independence of loci and true ad-
ditive and interaction effects of zero. Only the Homeo and Across marker sets
had more than the expected number. The homeologous marker set had a larger
proportion of d coefficients estimated between 0.5 and 1 relative to the strictly
additive simulated phenotypes as well as the other non-homeologous marker sets,
suggesting that homeologous loci exhibit a pattern indicative of subfunctionaliza-
tion more so than other marker sets tested. However, it is unclear if these few
marker sets are indicative of any global pattern, and may simply be an artifact of
sampling. When I looked at d statistics for all two-way interactions regardless of
significance, the Homeo set had the lowest proportion of d parameters between 0.5

and 1.

Because the power to detect significant effects diminishes as more tests are
accomplished, it may be prudent to look at global trends between homeologous

additive effects and their interactions, regardless of statistical significance.

4.4.4 FEvidence of subfunctionalization

A strong negative relationship between additive and interaction effects was ob-
served when using the {0, 1} marker parameterization (Supplementary Figure 4.9).
This negative relationship was also observed in the phenotypes simulated to be
strictly additive (Supplementary Figure 4.10). The multicollinearity of the addi-
tive and epistatic predictors at least partially drives this relationship, where posi-

tively correlated additive and epistatic predictors will tend to have effect estimates

79



Homeologous Interaction Effect x Additive Sign
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Simulated Additive Interaction Effect x Additive Sign

Quantile quantile plot of the ordered estimated homeologous interac-
tion effects plotted against those from a simulated phenotype sampled
to obtain no epistatic interactions. Interaction effects have been mul-
tiplied by the effect sign of the corresponding additive effects to em-
phasize the relationship between the additive and interaction effects.
The p-value from a Kolmorgorov-Smirnov (KS) test is reported to de-
termine if the sampled effect estimate distribution is different from
that of the effect distribution estimated from the actual data. A de-
viation below the line on the bottom left of each graph (i.e. a low
dropping tail) should indicate a less than additive epistatic pattern of
subfunctionalization, whereas a deviation above the line in the upper
right (i.e. a high rising head) should indicate a greater than additive
epistasis pattern of homeologous overdominance.
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in opposing directions.

To determine if the interaction effects were greater in magnitude than expected
by chance, the ordered interaction effects from the true and simulated phenotypes
were plotted against one another to form a quantile-quantile plot (Figure 4.5).
The interaction effects were multiplied by the sign of the corresponding additive
effects to highlight the direction of interaction effect relative to the additive effect.
Interaction effect distributions were significantly different between the observed
and strictly additive simulated data as determined by the Kolmogorov-Smirnov

test (KS; p < 0.05) for all traits accept GY.

HD showed a pattern consistent with a subfunctionalization model, with a low
dropping tail for interaction effects in the opposite direction than that of the corre-
sponding additive effects. This indicates that the less than additive effects of some
estimated interactions are greater than expected by additivity alone. PH showed
some evidence of this pattern, but also demonstrated a greater than additive effect
for positively related interaction effects. The LAVHAE orientation scheme may
have selected the wrong marker coding for those marker sets, resulting in a d pa-
rameter greater than 1, or there are true greater than additive interaction responses
for positive effect alleles. Greater than additive responses would be indicative of
overdominance across homeologous loci. GY and TW showed little evidence of the
less than additive pattern, yet TW did show this trend when the HTEV marker
orientation was used (Supplemental Figures 4.12 and 4.13). These relationships
were more pronounced when the markers were permuted to remove LD before
simulating the data (Supplemental Figure 4.11). High LD between homeologous
marker sets may result in dampening of the epistatic signal due to unbalanced or

missing genotype classes.
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These findings are further supported by comparing the homeologous interac-
tions to the Within and Across interaction effect estimates. The Homeo marker set
showed more severe less than additive epistasis than both Within and Across for
HD but not the other traits (Supplementary Figures 4.14 and 4.15). The Within
set had more severe less than additive interaction effects than the Homeo set for
TW (Supplementary Figure 4.14), and the Across had more severe less than addi-
tive effects for PH (Supplementary Figure 4.15). Large or moderate effect negative
epistasis is expected across subgenomes in allopolyploids, but it is unclear why this

was also observed for the Within marker set for TW.

4.4.5 Homeologous model fit

Comparing variance component estimates across different unstructured covariance
matrices can be misleading as variance components can be scaled by pulling a
constant out of the covariance matrix. Additionally, variance partitioning is only
reliable when the covariance matrices are truly independent (Vitezica et al. 2017;
Huang and Mackay 2016; Jiang et al. 2017). Therefore, I do not make an at-
tempt to discern meaning from the variance components per se, and instead focus
the discussion on model fit diagnostics, as well as prediction accuracy from cross
validation to determine the value of the predictive information included in the

model.

All epistatic models using the {—1, 1} marker parameterization provided a su-
perior fit to the additive only model based on Akaike’s Information Criterion for
all traits (Table 4.5). These results were confirmed by a likelihood ratio test to
determine if the epistatic variance component was zero for all traits. With the

exception of the GY trait, all of the epistatic models using the {0, 1} marker pa-
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Table 4.5: Mixed model REML fit summaries of one additive and four epistasis
models for four traits (GY, PH, TW and HD) in the CNLM popula-
tion based on the {—1,1} marker parameterization using the LAVHAE
marker orientation. Plot level heritabilities assuming genotype inde-
pendence (i.i.d.) for each trait are shown underneath each trait name.

Trait Additive Pairwise Homeo Within Across
GY logl -48 -43 -42 -26 -23
h? parameters 28 29 29 29 29
0.30 AIC 153 144 141 110 104
G 0.268% (12.59)®  0.203 (7.86) 0.204 (8.49) 0.133 (5.93) 0.13 (5.84)
H 0.018 (3.04) 0.046 (3.29)*** 0.093 (5.64)**** 0.093 (5.77)****
R 0.324 (61.86)¢ 0.322 (61.39) 0.323 (61.68) 0.321 (61.7) 0.321 (61.7)
PH logL 2237 2360 2314 2367 2374
h? parameters 26 27 27 27 27
0.73 AIC -4423 -4665 -4574 -4680 -4694
G 3.823 (20.75) 0.889 (6.46) 1.882 (11.66) 0.986 (7.35) 1.046 (7.81)
H 0.478 (11.95)  0.914 (8.72)****  1.277 (11.67)****  1.253 (11.62)****
R 0.135 (56.17) 0.132 (56.5) 0.133 (56.34) 0.133 (56.45) 0.133 (56.5)
HD logl 6343 6432 6404 6425 6444
h? parameters 27 28 28 28 28
0.53 AIC -12631 -12808 -12751 -12794 -12831
G 3.9 (21.16) 1.121 (7.3) 2.019 (12.03) 1.483 (9.25) 1.212 (8.29)
H 0.451 (11.13)  0.857 (8.26)****  1.091 (10.01)****  1.202 (10.97)****
R 0.054 (58.76) 0.053 (58.98)  0.053 (58.88) 0.053 (58.93) 0.053 (58.96)
™ logl 1547 1630 1608 1641 1632
h? parameters 28 29 29 29 29
0.79 AIC -3037 -3203 -3159 -3224 -3205
G 1.067 (16.66) 0.194 (4.47) 0.442 (8.35) 0.212 (4.81) 0.221 (4.79)
H 0.184 (11.33)  0.346 (8.39)****  0.473 (10.95)****  0.473 (10.66)****
R 0.2 (60.12) 0.195 (60.25)  0.198 (60.24) 0.197 (60.35) 0.197 (60.31)

“Variance component estimates reported for additive main effects (G) and epistatic interactions
(H) are the ratios of the actual variance component to the residual variance component for ease
of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
°The residual variance components, R, are the actual estimates from the centered and scaled
data (refer to Table 2.2 for scaling coefficients).

*, e e et denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 1079, respectively for the
likelihood ratio test to determine if the epistatic variance component is zero.

rameterization also had non-zero variance components (Supplementary Table 4.9),
but did not result in a better fit for any models or traits. All LAVHAE oriented
marker sets had a better model fit than forcing allele effects to be either all posi-
tive (POS) or all negative (NEG), demonstrating that some information was gained
from orienting markers (Supplementary Tables 4.10 and 4.11). The LAVHAE also

resulted in a better model fit than the HTEV marker orientation scheme under
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either marker parameterization (Supplementary Tables 4.12 and 4.13).

Despite resulting in a better fit, adding the epistatic interactions resulted in
rather high correlations between additive and epistatic variance component es-
timates, as obtained from the average information matrix. Variance parameter
estimate correlations between the additive and epistatic interactions consistently
ranged from 0.57 to 0.65 for Pairwise, Within and Across models, but were notably
lower for the Homeo epistatic set, ranging from 0.53 to 0.57. High correlations of
variance estimates have been shown to be indicative of over fitting (Bates et al.
2015b; Bates et al. 2015a). However, if addition of epistatic interactions improves
prediction accuracy of cross-validation, then the additional information they con-

tain is warranted for inclusion in the model.

The Pairwise, Within and Across epistatic models outperformed the Homeo
marker interaction set for all traits. This may be due to poor assignment of
homeologous sets, or relatively fewer identifiable interactions and is discussed later

(Section 4.4.7).
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4.4.6 Genomic prediction

All epistatic models resulted in higher prediction accuracies for all traits other
than GY, where only marginal increases were seen for certain marker interaction

sets and parameterizations (Table 4.6).

The {—1, 1} marker coding resulted in higher prediction accuracies with a mean
increase of 0.045 over the {0, 1} coding, and ranged from 0.007 to 0.084 higher ac-
curacy. This increase may be due to choosing the wrong orientation using the {0, 1}
marker coding effects. While these two codings are equivalent for prediction using
ordinary least squares, this does not appear to be the case for the mixed model
genomic prediction environment. The discrepancy may lie in shrinkage of inter-
action effects, where the {0, 1} marker coding should result in greater shrinkage
than the {—1, 1} marker coding. This can be seen from a simple example with one
observation of each genotypic class in {bbcc, bbC'C, BBce, BBCC}. The {—1,1}
coding would have an interaction predictor of {1,—1,—1,1}, whereas the {0, 1}
coding would have an interaction predictor of {0,0,0,1}. This results in different
numbers of observations per interaction class, with the {0, 1} coding contrasting 3
and 1, verses 2 and 2 for the {—1, 1} coding. Therefore the shrinkage of the {0, 1}
coding should be greater than for the {—1,1} coding. Martini et al. (2017), also
noted that the {—1,1} marker coding has a 50% chance of choosing the wrong
marker orientation if chosen at random, whereas the {0, 1} marker coding has a

75% chance of being the wrong marker orientation.

Choosing the marker orientation based on the LAVHAE scheme was better for
all traits and marker sets for the {—1,1} coding, with a mean prediction accuracy
increase of 0.025 (ranging from 0.004 to 0.053) over the all positive (POS) or all

negative (NEG) orientations (Supplemental Tables 4.14 and 4.15). Choosing the
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orientation had little to no effect on the {0, 1} marker coding (mean 0.003, ranging
from -0.002 to 0.011). It is unclear if my attempt to choose the marker orientation
resulted in the biologically relevant orientation more often than would be expected
by chance, as this resulted in higher accuracies for the {—1, 1} but not the {0,1}

marker coding.

The increase in genomic prediction accuracy by choosing the orientation using
the LAVHAE scheme over the all positive (POS) or all negative (NEG) scheme
suggests that information can be gained from orienting markers relative to one
another (Supplementary Tables 4.15 and 4.14). This is further supported by a
better model fit for the LAVHAE orientation. However, it is unclear what strat-
egy should be used to orient pairs of markers. In this report, marker additive
effects were forced to be either all positive or all negative to model the homeolo-
gous subfunctionalization hypothesis, but there may be more biologically relevant
orientations not explored here. Martini et al. (2017) used a categorical inter-
action that included a predictor for each pairwise genotype, but that model was
shown to be less predictive than the {—1,1} multiplicative model, perhaps due
to more linearly dependent predictors assumed to have non-zero effects. How an
optimal set of orientations might be obtained without losing biological meaning of

the orientation warrants further investigation.

An indirect estimate of the proportion of non-additive genetic signal at-
tributable to homeologous gene interaction was determined by taking the ratio
of the percent increase in prediction accuracy of the Homeo, Within or Across pre-
diction models from the additive model to the increase in prediction accuracy due
to all pairwise interactions (equation 4.7). All three marker sets resulted in higher

genomic prediction accuracy than the additive only GBLUP model (G) when the
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{—1,1} marker coding was used. The homeologous marker interaction set ex-
plained between 58% and 167% of the additional genetic signal from the additive
model. This result supports the idea that homeologous interactions are an impor-
tant feature in the wheat genome. Conversely, Within and Across epistatic marker
sets always resulted in a higher increase in genomic prediction accuracy relative
to the Homeo marker set for all traits. This may suggest that the homeologous
marker interactions are the least important relative to other epistatic interactions
within and across the subgenomes, but could also be due to the paucity of these

interactions relative to all possible two-way interactions, as previously discussed.

Another explanation might be provided by the relatively higher degree of LD
across Homeo marker sets than found for the Within or Across marker sets. The
Within and Across marker interaction sets also resulted in a larger number of
unique interaction predictors because they were randomly selected across chromo-
somes. Homeologous marker sets were selected next to one another along syn-
tenic regions of homeologous chromosome, and more often shared two of the three
homeoallelic markers (Supplemental Figure 4.16). The Within and Across sets
appear to have sampled the entire genome better than selecting only homeologous

loci, as they track more unique pairs of genomic regions.

4.4.7 Homeologous LD

The superiority of the Within and Across genomic prediction models to the Homeo
genomic prediction model may indicate that homeologous interactions are rela-
tively less important than other sets of interacting loci. However, homeologous
marker sets had a much higher tendency to be co-inherited together, as seen by

relatively higher standardized linkage disequilibrium values, D’ (Lewontin 1964),
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Figure 4.6: Smoothed densities of standardized D’ statistics of linkage disequi-
librium for expected and observed joint allele frequencies for Homeo,
Within and Across marker sets. Kolmogorov-Smirnov (KS) tests were
used to determine if the distribution of LD differed between Homeo
and Within (KS test p-value = 1.1 x 107%) or Across (KS test p-value
= 2.3 x 107'3) marker sets.

than observed for either Within (KS test p-value = 1.1 x 107%) or Across (KS test
p-value = 2.3 x 10713) marker sets (Figure 4.6). The greater fixation of allele pairs
at homeologous regions may explain the lack of increased prediction accuracy of
the Homeo marker set, but this may not diminish the importance of homeologous
interactions. As sets of interactions are fixed within the population, the epistatic
variance becomes additive (Hill, Goddard, and Visscher 2008). The higher degree

of LD, per se, may indicate the importance of homeologous interactions.
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The Green Revolution dwarfing genes are an excellent example of how pairs
of homeoalleles may become fixed, or develop a tendency for co-inheritance under
selection. In this example, the desirable phenotype is a semi-dwarf, due to its
resistance to lodging. Therefore, wildtype Rht-1B alleles will usually be paired with
a GA-insensitive Rht-1D dwarfing allele, while wildtype Rht-1D alleles will usually
be found with a GA-insensitive Rht-1B dwarfing allele to confer the desirable semi-
dwarf phenotype. The CNLM_Rht1 set had a large standardized D’ value of 0.66,
indicating that pairs of alleles were being fixed in the population, despite the

apparent lack of high LD between the B genome marker and the Rhi-1B gene.

I recognize that it is also possible that the higher degree of LD observed between
homeologous marker pairs could be due to misalignment of markers to the wrong
subgenome. Markers assigned to the wrong homeolog would appear in high LD
simply because they are physically located near their homeologous partner on
the same chromosome. I used strict filtering parameters to reduce the likelihood
of misalignment. This included a threshold on observed heterozygosity in the

population, which could indicate alignment to more than one subgenome.

4.5 Conclusion

Our results indicate that homeoallelic interactions do not account for a large por-
tion of the non-additive genetic variance in the Cornell soft winter wheat breeding
population. While they do to contribute to the genetic variance of the population
as evidenced by a better model fit and higher prediction accuracy over the additive
model, sampling interactions across non-syntenic regions was superior for all traits

examined. Homeologous interactions appear to make up the minority of epistatic
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interactions within this population.

Wagner (2005) suggested that there are two potential drivers of less than ad-
ditive (Eshed and Zamir 1996) or synergistic (Segre et al. 2005) epistasis. These
drivers are i) functional redundancy, as might be expected across homeologous loci,
and ii) distributed robustness of function, in which there can be are many pathways
that can acheive the same outcome. My observation that most epistasis is not due
to homeologous interactions is supported by the findings of Jannink et al. (2009),
who found the synergistic epistasis signal in a wheat dataset to be indicative of

Wagner’s distributed hypothesis, and not of the redundancy hypothesis.

HD showed the greatest evidence of subfunctionalization. The LAVHAE ori-
entation appeared to be effective for the HD trait, but it is unclear if this marker
orientation scheme was effective for PH, which also demonstrated a greater than
additive effect. TW showed little pattern of subfunctionalization, despite having
significant epistatic interactions. GY showed no evidence of being affected which
may simply be due to the highly polygenic nature of the trait. Essentially all
functional differences in the population should contribute to GY, and it may be
that the effects of epistatic interactions are too small to detect. Large effect home-
ologous interactions for GY are likely to have allele pairs that have been fixed or
are well on their way to fixation in the elite wheat genotypes as a consequence
of modern plant breeding. The fixation of the semi-dwarf phenotype provides a
profound example where specific pairs of homeoalleles result in drastic increases in

grain production under modern agriculture.

The apparent lack of substantial interactions across homeoallelic loci may be
explained by several factors. It may be that there are few differences in protein

function or expression across the three subgenomes, although this seems unlikely
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given mounting evidence that homeologous copies are differentially expressed in
time, tissue and environment (Adams et al. 2003; Liu and Adams 2007; Liu, Baute,
and Adams 2011; Chaudhary et al. 2009; Pfeifer et al. 2014; Liu et al. 2015; Mutti,
Bhullar, and Gill 2017; Zhang et al. 2016). I was unable to assign homeologous
pairs to all genes within the genome, suggesting that many of these potential sites
for interacting loci were lost during, or shortly after, the polyploidization event.
Rapid loss of genetic material due to genome shock (McClintock 1984) is common
in newly synthesized allopolyploids (Chen and Ni 2006), as has been shown in syn-
thetic allopolyploid wheat (Ozkan, Levy, and Feldman 2001; Kashkush, Feldman,
and Levy 2002). Other interacting loci may have undergone epigenetic (Comai
2000; Lee and Chen 2001; Comai et al. 2003) or transposon induced silencing of

one or more homeoalleles (Kashkush, Feldman, and Levy 2003; Wang et al. 2004).

It may also be that important homeoallele pairs have been effectively fixed
in the CNLM breeding population, as evidenced by a higher degree of LD be-
tween homeologous markers compared to markers sampled from non-homeologous
regions. Finally, determining homeologous regions is relatively simple using gene
positions and orientation, but tagging those regions with markers that are infor-
mative of interacting loci appears to be a challenge, even for well known loci such
as Rht-1. Marker imputation using a diverse panel of highly sequenced individ-
uals may increase the marker density and the ability to identify interacting loci.
As sequencing becomes more affordable, higher read coverage will allow for better
genotyping, and should produce more high quality markers. Other approaches,
such as the use of haplotypes, should be developed to assign informative homeol-
ogous locus indicators, as opposed to simply using physical position of markers or
lumping markers on the same subgenome together. Smaller units of homeologous

chromatin may have higher power to detect these interactions.
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4.6 Supplementary Materials

Table 4.7: ANOVA table for Rht-1B and Rht-1D linked GBS markers and their
epistatic interaction for plant height (cm) in 158 RIL lines derived from
NY91017-8080 x Caledonia.

Source df SS MS F value —log,,(p-value)
SNP36427 1 7065 7065 53.5 10.9
SNP11172 1 7391 7391 56.0 11.3
SNP36427:SNP11172 1 1243 1243 9.4 2.6
Residuals 154 20323 132

Table 4.8: Table of genotype frequencies for the Rht-1 linked homeologous mark-
ers in the CNLM population. The margins indicate the marker allele

frequencies.

S4D_PART1.10982050~

S4D_PART1-10982050"

S4B_PART1.38624956~ 0.022 0.095 0.117
S4B_PART1.38624956" 0.525 0.357 0.883
0.547 0.452 D’ =0.66
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Figure 4.9: LAVHAE oriented homeologous marker pair additive effects with point
size representing the magnitude of the two-way homeologous interac-
tion effect, and the color denoting the direction of that effect where
black is positive and red is negative. Four traits, GY, PH, TW and
HD, are shown.
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Figure 4.10: LAVHAE oriented homeologous marker pair additive effects with
point size representing the magnitude of the two-way homeologous
interaction effect, and the color denoting the direction of that effect
where black is positive and red is negative. Four simulated pheno-
types sampled to obtain no epistatic interactions, GY, PH, TW and
HD, are shown.
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Figure 4.11: Quantile quantile plot of the ordered estimated homeologous interac-
tion effects plotted against those from a simulated phenotype sam-
pled to obtain no epistatic interactions using the LAVHAE marker
orientation. Markers scores were permuted before simulation of the
phenotype to remove LD between markers. Interaction effects have
been multiplied by the effect sign of the corresponding additive effects
to emphasize the relationship between the additive and interaction ef-
fects.
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Quantile quantile plot of the ordered estimated homeologous interac-
tion effects plotted against those from a simulated phenotype sampled
to obtain no epistatic interactions using the HTEV marker orienta-
tion. Interaction effects have been multiplied by the effect sign of the
corresponding additive effects to emphasize the relationship between

the additive and interaction effects.
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Figure 4.13: Quantile quantile plot of the ordered estimated homeologous interac-
tion effects plotted against those from a simulated phenotype sampled
to obtain no epistatic interactions using the HT'EV marker orienta-
tion. Markers scores were permuted before simulation of the pheno-
type to remove LD between markers. Interaction effects have been
multiplied by the effect sign of the corresponding additive effects to
emphasize the relationship between the additive and interaction ef-
fects.
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Quantile quantile plot of the ordered estimated homeologous inter-
action effects plotted against those from marker sets sampled within
subgenome chromosomes (Within) using the LAVHAE . Interaction
effects have been multiplied by the effect sign of the corresponding
additive effects to emphasize the relationship between the additive
and interaction effects.
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Figure 4.15: Quantile quantile plot of the ordered estimated homeologous inter-
action effects plotted against those from marker sets sampled across
non-syntenic subgenome chromosomes (Across) using the LAVHAE
marker orientation. Interaction effects have been multiplied by the
effect sign of the corresponding additive effects to emphasize the re-
lationship between the additive and interaction effects.
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Table 4.9: Mixed model REML fit summaries of one additive and four epistasis
models for 4 traits (GY, PH, TW and HD) in the CNLM population
based on the {0, 1} marker parameterization using the LAVHAE marker

orientation.

Trait Homeo Within Across
GY logl -48 -47 -42
parameters 29 29 29
AIC 155 152 143
G 0.267% (7.6)° 0.207 (5.5) 0.146 (4.16)
H 0 (0.01) 0.054 (1.73) 0.108 (3.39)***
R 0.324 (61.81)° 0.324 (61.77) 0.324 (61.8)
PH logl 2282 2268 2285
parameters 27 27 27
AIC -4510 -4482 -4516
G 1.198 (5.03) 1.766 (6.95) 1.177 (5.02)
H 1.981 (8.36)**** 1.592 (6.95)**** 2.051 (8.66)****
R 0.134 (56.23) 0.134 (56.24) 0.134 (56.24)
HD logl 6382 6364 6379
parameters 28 28 28
AIC -12709 -12673 -12702
G 1.51 (6.14) 2.077 (7.82) 1.659 (6.67)
H 1.781 (7.73)**** 1.358 (6.09)**** 1.68 (7.36)****
R 0.053 (58.84) 0.054 (58.78) 0.054 (58.81)
™ logl 1560 1555 1567
parameters 29 29 29
AIC -3061 -3052 -3076
G 0.553 (5.88) 0.659 (6.68) 0.498 (5.57)
H 0.414 (5.04)**** 0.331 (4.06)*** 0.482 (5.85)****
R 0.199 (60.11) 0.199 (60.1) 0.198 (60.13)

2Variance component estimates reported for additive main effects (G) and epistatic interactions
(H) are the ratios of the actual variance component to the residual variance component for ease
of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled
data (refer to Table 2.2 for scaling coeflicients).

*¥ e s ek denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 107%, respectively for the
likelihood ratio test to determine if the epistatic variance component is zero.

103



Table 4.10: Mixed model REML fit summaries of one additive and four epistasis
models for 4 traits (GY, PH, TW and HD) in the CNLM population
based on the {—1,1} marker parameterization using the POS marker

orientation.

Trait Homeo Within Across
GY logl -48 -41 -40
parameters 29 29 29
AIC 154 140 138
G 0.257% (10.31)° 0.191 (7.44) 0.186 (7.32)
H 0.008 (0.75) 0.052 (3.45)*** 0.054 (3.61)***
R 0.324 (61.7)¢ 0.323 (61.64) 0.323 (61.64)
PH logl 2287 2323 2326
parameters 27 27 27
AIC -4521 -4593 -4598
G 2.316 (13.04) 1.507 (9.34) 1.551 (9.59)
H 0.705 (7.3)**** 1.056 (9.85)**** 1.036 (9.72)****
R 0.134 (56.29) 0.133 (56.38) 0.133 (56.4)
HD logl 6379 6393 6415
parameters 28 28 28
AIC -12701 -12730 -12774
G 2.547 (13.61) 2.017 (10.81) 1.689 (9.94)
H 0.601 (6.43)**** 0.848 (8.04)**** 0.982 (9.26)****
R 0.053 (58.83) 0.053 (58.87) 0.053 (58.92)
™ logl 1589 1599 1604
parameters 29 29 29
AIC -3120 -3139 -3150
G 0.554 (9.49) 0.437 (7.44) 0.395 (7.02)
H 0.282 (7.22)**** 0.354 (8.36)**** 0.368 (8.71)****
R 0.198 (60.18) 0.197 (60.2) 0.197 (60.21)

2Variance component estimates reported for additive main effects (G) and epistatic interactions
(H) are the ratios of the actual variance component to the residual variance component for ease
of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled
data (refer to Table 2.2 for scaling coeflicients).

*¥ e s ek denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 107%, respectively for the
likelihood ratio test to determine if the epistatic variance component is zero.
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Table 4.11: Mixed model REML fit summaries of one additive and four epistasis
models for 4 traits (GY, PH, TW and HD) in the CNLM population
based on the {—1, 1} marker parameterization using the NEG marker

orientation.

Trait Homeo Within Across
GY logLl -46 -38 -35
parameters 29 29 29
AIC 151 134 129
G 0.236% (9.44)° 0.181 (7.35) 0.178 (7.35)
H 0.022 (1.86) 0.058 (3.9)*** 0.06 (4.1)****
R 0.324 (61.71)° 0.323 (61.68) 0.322 (61.68)
PH logL 2293 2336 2342
parameters 27 27 27
AIC -4532 -4619 -4629
G 2.235 (12.79) 1.428 (9.19) 1.464 (9.46)
H 0.746 (7.52)**** 1.061 (10.06)**** 1.038 (10.07)****
R 0.134 (56.3) 0.133 (56.39) 0.133 (56.42)
HD logL 6380 6402 6409
parameters 28 28 28
AlC -12704 -12747 -12762
G 2.48 (13.41) 1.88 (10.5) 1.753 (10.09)
H 0.626 (6.71)**** 0.895 (8.59)**** 0.95 (9.02)****
R 0.053 (58.83) 0.053 (58.89) 0.053 (58.9)
™ logL 1580 1605 1601
parameters 29 29 29
AIC -3101 -3153 -3144
G 0.614 (9.96) 0.373 (6.78) 0.388 (6.71)
H 0.241 (6.4)**** 0.374 (8.94)**** 0.367 (8.59)****
R 0.199 (60.15) 0.198 (60.22) 0.197 (60.21)

2Variance component estimates reported for additive main effects (G) and epistatic interactions
(H) are the ratios of the actual variance component to the residual variance component for ease
of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled
data (refer to Table 2.2 for scaling coeflicients).

*¥ e s ek denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 107%, respectively for the
likelihood ratio test to determine if the epistatic variance component is zero.
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Table 4.12: Mixed model REML fit summaries of one additive and four epistasis
models for 4 traits (GY, PH, TW and HD) in the CNLM population
based on the {—1, 1} marker parameterization using the HTEV marker

orientation.

trait Homeo Within Across
GY logl -46 -34 -30
parameters 29 29 29
AIC 151 127 118
G 0.233% (9.23)° 0.165 (6.86) 0.151 (6.45)
H 0.025 (1.97) 0.071 (4.56)**** 0.079 (5)****
R 0.323 (61.65)° 0.322 (61.66) 0.322 (61.67)
PH logl 2300 2355 2357
parameters 27 27 27
AIC -4546 -4655 -4659
G 2.052 (12.02) 1.101 (7.81) 1.142 (7.99)
H 0.84 (8.12)**** 1.227 (11.24)*** 1.209 (11.09)****
R 0.133 (56.32) 0.133 (56.43) 0.133 (56.46)
HD logl 6397 6410 6423
parameters 28 28 28
AIC -12738 -12764 -12790
G 2.13 (12.27) 1.62 (9.54) 1.395 (8.69)
H 0.808 (7.9)**** 1.029 (9.43)**** 1.139 (10.18)****
R 0.053 (58.88) 0.053 (58.91) 0.053 (58.94)
™ logl 1599 1623 1623
parameters 29 29 29
AIC -3140 -3189 -3187
G 0.476 (8.51) 0.283 (5.73) 0.267 (5.4)
H 0.335 (7.92)**** 0.435 (10.13)**** 0.45 (10.15)****
R 0.198 (60.2) 0.197 (60.29) 0.197 (60.28)

2Variance component estimates reported for additive main effects (G) and epistatic interactions
(H) are the ratios of the actual variance component to the residual variance component for ease
of comparison.

®The variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled
data (refer to Table 2.2 for scaling coeflicients).

*¥ e s ek denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 107%, respectively for the
likelihood ratio test to determine if the epistatic variance component is zero.

106



Table 4.13: Mixed model REML fit summaries of one additive and four epistasis
models for 4 traits (GY, PH, TW and HD) in the CNLM population
based on the {0, 1} marker parameterization using the HTEV marker

orientation.
trait Homeo Within Across
GY logLl -48 -48 -48
parameters 29 29 29
AIC 155 155 155
G 0.268% (12.59)° 0.268 (12.59) 0.268 (12.59)
H 0 0 0
R 0.324 (61.86)° 0.324 (61.86) 0.324 (61.86)
PH logl 2260 2246 2248
parameters 27 27 27
AIC -4466 -4438 -4443
G 1.981 (7.41) 2.84 (9.98) 2.502 (8.49)
H 1.423 (6.05)**** 0.806 (3.68)*** 1.081 (4.44)***
R 0.134 (56.2) 0.134 (56.19) 0.134 (56.19)
HD logL 6358 6350 6356
parameters 28 28 28
AlC -12660 -12643 -12656
G 2.528 (9.24) 2.937 (10.1) 2.468 (8.5)
H 1.052 (4.83)**** 0.749 (3.44)*** 1.16 (4.78)****
R 0.054 (58.79) 0.054 (58.76) 0.054 (58.78)
™ logl 1552 1547 1549
parameters 29 29 29
AIC -3046 -3036 -3041
G 0.746 (7.61) 0.992 (9.51) 0.857 (8.24)
H 0.264 (3.38)*** 0.064 (0.87) 0.183 (2.26)*
R 0.199 (60.1) 0.199 (60.08) 0.199 (60.09)

2Variance component estimates reported for additive main effects (G) and epistatic interactions
(H) are the ratios of the actual variance component to the residual variance component for ease
of comparison.
®The variance component divided by their respective standard errors are shown in parentheses.
“The residual variance components, R, are the actual estimates from the centered and scaled

data (refer to Table 2.2 for scaling coeflicients).
*¥ e s ek denote p-values of p < 0.05, p < 0.01, p < 0.001, p < 107%, respectively for the

likelihood ratio test to determine if the epistatic variance component is zero.
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Table 4.14: Prediction accuracies of Homeo, Within and Across genome marker
sets for both {—1,1} and {0, 1} marker coding using POS marker

orientation.
POS Homeo_11 Homeog; Within_qq Withingy Across.q1 Acrossg;
GY 0.599¢ 0.599 0.607 0.600 0.607 0.599
PH 0.583 0.573 0.607 0.568 0.612 0.576
™ 0.535 0.518 0.543 0.514 0.547 0.524
HD 0.681 0.681 0.688 0.670 0.698 0.671

% mean Pearson correlation between predicted and observed genetic values across 10
random 5-fold cross-validation replications.

Table 4.15: Prediction accuracies of Homeo, Within and Across genome marker
sets for both {—1,1} and {0,1} marker coding using NEG marker

orientation.
NEG Homeo_1 Homeog, Within_q¢ Withingy Across_11 Acrossg;
GY 0.602¢ 0.599 0.612 0.599 0.615 0.600
PH 0.589 0.582 0.620 0.565 0.615 0.579
™ 0.535 0.513 0.555 0.510 0.546 0.519
HD 0.676 0.671 0.698 0.671 0.697 0.680

¢ mean Pearson correlation between predicted and observed genetic values across 10
random 5-fold cross-validation replications.

Table 4.16: Prediction accuracies of Homeo, Within and Across genome marker
sets for both {—1,1} and {0,1} marker coding using HTEV marker

orientation.
HTEV Homeo_ 11 Homeog, Within_1; Withing; Across_i1 Acrossg;
GY 0.601¢ 0.601 0.616 0.600 0.621 0.600
PH 0.591 0.565 0.640 0.557 0.633 0.558
TW 0.548 0.513 0.572 0.513 0.568 0.513
HD 0.688 0.669 0.700 0.666 0.706 0.667

¢ mean Pearson correlation between predicted and observed genetic values across 10
random 5-fold cross-validation replications.
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Figure 4.16: Distribution of the number of marker occurrences in marker sets. An
occurrence of 1 indicates that a marker was only included in one
marker set, whereas an occurrence of 10 would indicate that the

marker was included in 10 marker sets.
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CHAPTER 5
A LOW RESOLUTION EPISTASIS MAPPING APPROACH FOR
IDENTIFYING CHROMOSOME ARM INTERACTIONS IN
ALLOHEXAPLOID WHEAT

5.1 Introduction

Epistasis is the interaction of alleles, or variants, at two or more loci. Early ob-
servations of epistasis by William Bateson (2007) were mostly qualitative, noting
that certain loci could mask the effects at other loci. Quantitative epistasis was
first suggested and defined by Ronald Fisher (1919) who coined the term ‘epistasy’.
Statistically, epistasis is the deviation from an additive expectation of two or more
loci, often described as a change in the slope of one locus based on the genotype
at another locus (Fisher 1919). Variance due to quantitative epistasis has been
shown to be an important contributor to the genetic variance in populations of
model organisms such as Arabidopsis (Malmberg et al. 2005; Kusterer et al. 2007),
as well as crop species such as maize (Stuber and Moll 1971; Melchinger, Geiger,
and Schnell 1986; Lamkey, Schnicker, and Melchinger 1995; Wolf and Hallauer
1997; Lukens and Doebley 1999) and rice (Yu et al. 1997; Li et al. 2008; Shen
et al. 2014). Significant epistasis has been reported in allopolyploid crops like cot-
ton (Lee, Cockerham, and Smith 1968) and wheat (Crossa et al. 2010; Jiang et
al. 2017). Epistasis across subgenomes may be indicative of interactions between
homeologous loci, analogous to dominance in diploids, and a possible contributor
to that adaptation of these crops to a wide landscape (Wendel 2000; Adams and
Wendel 2005; Chen 2010; Chen 2013). However, there is still little direct evidence

that epistasis between homeologous loci is a large contributor to the total genetic
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variance in allopolyploids.

Epistasis has also been shown to be an important contributor to evolution
(Doebley, Stec, and Gustus 1995; Lukens and Doebley 1999; Carlborg et al. 2006;
Phillips 2008; Hansen 2013; Doust et al. 2014). There has been considerable effort
over the past several decades to incorporate these non-additive genetic factors into
the genotype to phenotype map. More recently these effects have been incorporated
into whole genome prediction models (Vitezica, Varona, and Legarra 2013; Martini
et al. 2016; Jiang and Reif 2015; Huang and Mackay 2016; Akdemir and Jannink
2015; Wolfe et al. 2016; Akdemir, Jannink, and Isidro-Sanchez 2017; Jiang et al.
2017).

In practice, detecting epistatic interactions is difficult. The pairwise search
space is large even for modest numbers of markers. For example, a population
genotyped with 100 markers would require 4,950 tests for pairwise epistasis. With
advances in genotyping technologies, the number of DNA markers available is typ-
ically much larger, in the tens to hundreds of thousands, and more recently in the
millions. In this study, 11,604 markers were available, which would result in ap-
proximately 67 million tests for pairwise epistasis. A 0.05 genome-wide Bonferroni
significance threshold for all pairwise epistasis tests in this study would then be

7.4 x 10719,

Several methods have been proposed to reduce the multiple testing problem.
Epistasis is partitioned in part to the additive variance, particularly when allele
frequencies differ from 0.5 at either locus (Hill, Goddard, and Visscher 2008).
Therefore, genome-wide scans can be used to first identify marker alleles (or vari-
ants) with a significant additive effect, then test only all pairwise variants identified

in the scan (Carlson et al. 2004). This can greatly reduce the number of epistatic
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tests performed, while increasing the likelihood that epistasis will be identified.
Other methods include relaxing the multiple test correction threshold (Benjamini
and Hochberg 1995), or reducing the marker pairs tested based on some criteria
such as biological function or other filtering methods (Ritchie 2011; Cowman and

Koyutiirk 2017; Crawford et al. 2017).

The multiple test correction problem is not the only challenge to identifying
epistatic interactions. Allele frequency, linkage disequilibrium and the number of
alleles at a given locus can all reduce the efficacy of pairwise marker epistasis detec-
tion. Low allele frequencies at either locus reduce the epistatic effect, partitioning
it to the additive instead (Hill, Goddard, and Visscher 2008). Less than perfect
linkage disequilibrium between the markers and causal mutations also reduces the
apparent effect size, limiting detection much as it does for additive effects (Carlson
et al. 2004). SNP markers are typically considered bi-allelic, despite the potential
for many different alleles in the population. The impact of these factors can be
reduced by using multiple linked markers to determine haplotypes. Haplotypes
have been shown to be powerful in the detection of additive and interaction effects
by accurately tracking larger segments of DNA in high or perfect LD, and allow-
ing multiple alleles at every locus (Lin and Zeng 2006; Zhang et al. 2012; Jiang,
Schmidt, and Reif 2018). While allele frequencies are typically reduced using hap-
lotypes (i.e. the frequency of two alleles will be higher than the frequency of three
alleles), the added power from accurately tracking relevant LD blocks make these

methods attractive.

Haplotypes do not need to be assigned directly to gain an advantage from
using multiple markers to identify regions associated with complex traits. Regional

heritability mapping (Nagamine et al. 2012; Riggio and Pong-Wong 2014) has been
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used to identify additive effects of rare and common variants in humans (Nagamine
et al. 2012; Shirali et al. 2016) as well as plants species like eucalyptus (Resende et
al. 2017) and cassava (Okeke et al. 2018). These methods employ the estimation
of additive covariance between individuals based on markers in a given region
of chromatin, and are used in a mixed model to estimate the genetic variance
attributable to the region. Variance components can then be tested to determine

if they are greater than zero using a likelihood ratio test.

I propose a method to greatly reduce the number of statistical tests while taking
advantage of multiple markers to determine importance of epistatic interactions
across chromosome arms of an allohexaploid wheat population. This method is
similar to the “divide and conquer” method of Akdemir and Jannink (2015), but
models interactions across chromosomes instead of local epistasis. Epistatic co-
variances can be formed using the Hadamard product of component additive or
dominance covariance matrices (Henderson 1985; Jiang and Reif 2015; Martini et
al. 2016). Additive by additive epistatic interactions between disjoint sets of related
(i.e. linked) markers can be modeled by first calculating an additive covariance
for each marker set, K; and Ky, and using K; ® K; as the covariance estimate
of the epistatic term between these sets. I define marker sets by the chromosome
arm to which they belong, and estimate the epistatic variance component between
the two arms using Restricted maximum likelihood (REML) while correcting for

background additive and epistatic effects.

Common wheat is an important allohexaploid crop with three subgenomes, A,
B and D, resulting from hybridization events approximately 500 thousand and
10 thousand years ago. Due to the allopolyploid nature of wheat, I was particu-

larly interested in identifying interactions across homeologous loci. Interactions at
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homeologous loci are analogous to dominance effects in diploid hybrids, and could

be used to fix favorable homeoallelic interactions in inbred lines (Wendel 2000;

Adams and Wendel 2005; Birchler et al. 2010; Chen 2010; Chen 2013). Of the 21

chromosomes of wheat, chromosome arms pairs include (3) 14 = 42 homeologous
14

pairs, (124)3 = 273 within subgenome pairs, and ( 5 )6 = 546 across subgenome arm

pairs.

Each chromosome arm of the wheat genome was sequenced independently us-
ing flow cytometry to assist in the assembly of the large complex genome (Inter-
national Wheat Genome Sequencing Consortium 2014). The lone exception was
chromosome 3B, which was sequenced and assembled in its entirety before the
other chromosomes of wheat (Paux et al. 2008; Choulet et al. 2014). Therefore,
assigning markers to a chromosome arm is feasible, but their position along that
arm may not be well defined if the number of scaffolds is large, as was the case
with the first wheat survey sequence (International Wheat Genome Sequencing
Consortium 2014). Using markers across an entire chromosome arm known to be
homeologous to other chromosome arms may therefore be a better strategy than
attempting to assign single homeologous marker pairs. If interactions are detected
across homeologous regions, this may provide evidence of beneficial homeoallelic

interactions indicative of inter-genomic heterosis.

I demonstrate the low resolution epistasis mapping methodology using the
CNLM population, and show that epistasis can be detected between homeologous

and non-homeologous chromosome arms.
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5.2 Materials and Methods

5.2.1 Chromosome centromere positions

Chromosome centromere positions were provided by the IWGSC for all chromo-
somes except 3B (IWGSC, personal communication, March 1, 2017). Those posi-
tions were assigned by determining where chromosome arm library reads aligned
to the final assembly. Each chromosome arm was sequenced independently using
flow-cytometry to remove the chromosome arm from a series of aneuploid stocks,
each containing an extra arm. The lone exception was chromosome 3B, which
was sequenced in its entirety, so no centromere position was available for the 3B
chromosome. Centromere start and stop addresses provided by IWGSC are shown

in Table 5.1.

While restriction sites are expected to be uniformly distributed throughout
the genome, methylation of cytosine is not. One of the restriction enzyme used to
generate GBS libraries, Mspl, is sensitive to DNA methylation, digesting unmethy-
lated DNA at a much higher rate than methylated DNA (McClelland, Nelson, and
Raschke 1994). Methylation is an important regulator of chromatin structure,
where euchromatin tends to contain few methylation sites relative to heterochro-
matin (Keshet, Lieman-Hurwitz, and Cedar 1986). Therefore restriction sites in
heterochromatin with high levels of methylation, such as at the centromere, are
less likely to be retained as GBS markers because digestion is less likely to happen
at these sites. This means that the GBS markers can be used to roughly assign a

centromere position using the density of GBS markers along the chromosome.

To determine the centromere position of 3B, I used kernel density estimation
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of the density () function of the ‘stats’ package in R to determine the smoothed
density of GBS marker positions. I then assigned the 3B centromere interval to
the chromosome positions flanking the second position for which the derivative of
the density was zero. I performed this operation for all chromosomes to determine

the efficacy of this method for determining the centromere position.

5.2.2 Chromosome arm resolution epistasis

The low resolution epistasis mapping approach employed here uses markers from
two defined regions, i and ', to calculate additive covariance between individuals
based on those regions (i.e K; and Ky V i # ¢'). The Hadamard product of these
additive covariance matrices can be used to produce the pairwise additive by addi-
tive epistatic relationship, K;x = K; ® K;/, between these two regions (Henderson
1985; Martini et al. 2016). In this study, I defined regions as the short (S) and long
(L) arms of each chromosome, where i € {1AS,1AL,1BS,...,7BL,7DS,7TDL}.
Variance components for each region and their respective interaction were esti-

mated by fitting the following nested models

y=1u+XB+2g, +72g;, +¢€ (5.1)
y=1u+XB+2Zgg- +2g,- +Zgy, +7Zg,, t¢ (5.2)

y=1u+XB+2gq- +Zg;- +7Zgy, +7Zgs, +Zgp,xn, + € (5.3)

where ga, ~ N(0,07 K;), ga, ~ N (0,07 Ky) and ga,xa, ~ N (0,07, Kixir)-

go- and g;- were modeled as previously described in Chapter 3 equation 3.5,

but with markers belonging to region ¢ and ' removed prior to calculating the
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covariances.

Sequential nested likelihood ratio tests were used to determine if the additive
(model 5.2 versus model 5.1) and interaction (model 5.3 versus model 5.2) variance
estimates of the chromosome arms were greater than zero. From the Neyman-
Pearson lemma (Neyman and Pearson 1933), the likelihood ratio test statistic, is
defined as D = —2(logLuternative — 108Lpur), where D ~ XZle iy and is the

uniformly most powerful test.

BLUPs were subsequently used to look for patterns between additive and inter-
action effects for the chromosome arm pair. The pairwise product of the additive
chromosome arm BLUPs was then compared to the chromosome arm interaction
BLUPs, in a manner analogous to the Additive x Additive single locus model
(see Table 4.1). Negative associations should indicate a less than additive model,
whereas positive relationships would demonstrate a more than additive epistatic

effect.

When a variance parameter is very close to zero, parameter estimates are un-
reliable, and were therefore considered to be zero. Markers were oriented by minor
allele frequency as it was unclear how to apply the previous orientation schemes
to multiple sets of markers. It is not clear what effect, if any, this orientation had

on the estimates of interaction effects.

For the 14 three-way homeologous arm sets, a three-way interaction was in-
cluded and tested against a model with only the three two-way interaction terms.
I did not attempt to run all three-way chromosome arm combinations, as this
would have been computationally infeasible, with (432) = 11,480 combinations.

The Hadamard product of the three additive covariance matrices was used to
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produce the three-way additive by additive by additive epistatic relationship,

Kixirxiv = K; © Ky © K. The following two models were fit to test the three-way

interaction.
y=1u+XB +Zgq- +27g;- +7g,, +7g,, +Zg,, (5.4)
+ ZgAiXAi/ + ZgAiXAi// + ZgAi/XAi// +e
y=1u+XB+Zgg- +Zg,- +Zgy, +Zgs, +Zg,, (5.5)

+ ZgAZ XAy + ZgAZ XA + ZgAi/ XA

+ ZgAZ XAi’ XA,L-// + €

The likelihood ratio test was then used to determine if adding the three-way in-
teraction term significantly improved the model fit beyond the two-way interaction

terms.

5.3 Results

5.3.1 Centromere positions

Most of the GBS marker density estimates of centromere locations agreed well
with the positions provided by the INGSC (Figure 5.1). Chromosomes 1D and 4A
were exceptions. I estimated the 3B centromere to be positioned between 347.3

Mbp and 347.9 Mbp (Table 5.1).
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Table 5.1: Table of centromere positions for the 21 chromosomes of hexaploid
wheat based on the RefSeq v1.0 of ‘Chinese Spring’ (IWGSC 2018,

accepted). These positions were provided by the IWGSC (IWGSC,
personal communication, March 1, 2017)

Chromosome length® start? end®  single gap (T/F)?
1A 594,102,056 213,545,945  213.546,046 T
2A 780,798,557 340,034,816 340,034,917 T
3A 750,843,639 319,010,276 319,010,377 T
4A 744,588,157 265,465,435 343,405,303 F
bA 709,773,743 253,779,933 253,780,034 T
6A 618,079,260 285,321,675 285,321,776 T
TA 736,706,236 359,432,051 359,432,152 T
1B 689,851,870 236,742,047 236,742,148 T
2B 801,256,715 349,410,174 349,410,275 T
3B¢ 830,829,764 347,366,424 347,944,259 F
4B 673,617,499  319,324.823 319,324,924 T
5B 713,149,757 198,851,987 218,709,746 F
6B 720,988,478 325,245,204 325,245,305 T
7B 750,620,385 296,411,983 296,412,084 T
1D 495,453,186 172,519,511 172,519,612 T
2D 651,852,609 268,023,149 268,023,250 T
3D 615,552,423 242,690,774 242690875 T
4D 509,857,067 185,780,323 185,780,424 T
5D 566,080,677 188,798,562 188,798,663 T
6D 473,592,718 214,085,311 214,085,412 T
7D 638,686,055 339,371,184 339,371,285 T

¢ Total chromosome length
b Centromere start address
¢ Centromere end address

4 Single gap is a boolean indicator referring to whether a clear position was
determined for the centromere of each chromosome.
¢ The chromosome 3B centromere position was estimated using a kernel density
estimate of GBS marker positions on 3B.

119



"9)RUI)SO AYISUSP 9} JO SAIJRALIOP }SI 91} UO POseq 9)eu}so [RAIIUL SIWOIUD )
9JeOIPUL BUI] oN[q pPue ‘(2707 ‘T YoIe]N ‘uorpesmunurmod [euosiod) HGHAM] Aq popraoid [RAISJUI SISTUOIIULD J)
9)eDIPUI SOUI[ PO} "}BOYM JO SOUIOSOWOIYD g 9} SSOINe UOTINLIISIP ISNIRU QE¥) JO UOIJRWIISS A}ISUSP [OUIDY] :T°C oINSI ]

80+39 80+ay 80+37 00+20 80+37 BO+3E 80+dZ 8O+3T 00+30 80+ay 80+37 00430 80435 80+dy 0+3E §0+3Z BO+AT 00+30 80+29 80+3p. 80+37 00+30 80+39 80+ay 80+32 00+20 80435 80+dy BO+3E B8O+AZ 8O+AT 00+30
L ! ! ! ! ! ! L ! ! ! ! L ! ! ! ! ! L ! ! ! ! ! L ! ! ! ! ! ! L TR ! TR ! L ! ! ! !
200T =W §9=w zeL=w prE=w szL=w y8eT=w 188 = W
as as as ar ae ac ar
80439 80+3y  80+3Z  00+30 80439  80+dy  80+3Z  00+30 80+29  80+3y  80+3Z  00+30 80+29 8043y 80+97 00+30 80498  80+39  80+dF  80+3Z  00+30 80488  80+39  8O+3Y  BO+3Z  00+20 80429 80+ay 80+32 00+20
L ! ! ! L ! ! ! T R N N L I TR TR R R R | L ! ! ! ! L ! ! ! ! I T S R TR R R
98T =W £20z=w zg8T=w $00T =W ySez=w 195z =w SE8T =W
aL a9 as ar ae ac at
80+99  80+3y  80+dZ  00+30 80+29 80+ay 80+37 00+30 80+39 80+3  80+3Z  00+30 80+99  80+3y  80+3Z  00+30 80+89  80+3y  80+3Z  00+30 80+98  80+39  8O+3y  0+Z  00+30 80+89 80+ay 80+97 00+20
L ! ! ! L ! ! ! ! ! ! I R TR N N L ! ! ! L ! ! ! I ! ! ! ! L ! ! ! ! !
N
pZIZ=w 0921 =w Lzr=w virr=w 95T =w 0z8T =w ewr=w

120



5.3.2 Model fit and p-value distribution

Homeologous chromosome arm pair models each had five random genetic effects
and therefore five covariance structures for the two-way interaction models. All
models converged, but some variance parameter estimates were often close to the
parameter boundary and were considered to be zero. Variance component esti-
mates on the boundary did not occur for the background additive or epistatic
effects, but often occurred for one or both of the additive chromosome arm effects
or the interaction effect. This resulted in a relatively large number of additive
and interaction variance component tests with a p-value of 1. As a result, p-value
distributions were heavily skewed toward 0 and 1 (Figures 5.2 and 5.3). Most chro-
mosome arms had low additive effect p-values, whereas most interaction p-values
were high, indicating that the majority of chromosome arm pairs do not have effect

interactions large enough to detect.

5.3.3 Homeologous arm test

The U-shaped distribution of the p-values suggested that when the true variance
was very small or zero, the average information algorithm estimated the parame-
ter on the boundary (i.e. 0), and when it was positive, the p-value tended to be
low. Larger sample sizes may be necessary to obtain uniform p-value distributions
when the null hypothesis is true. I therefore considered homeologous arm interac-
tion effects with a p-value less than 0.05 that also had positive additive variance
component estimates to determine the relationship between additive chromosome

arm effects and their interaction.

Seventeen homeologous chromosome arm pairs had significant interaction ef-
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Distribution of p-values for 42 homeologous chromosome arm pair mod-
els for four traits, GY, TW, PH and HD. The p-value from the likeli-
hood ratio test for the additive chromosome arm model is plotted in
light gray, whereas the p-value from the the interaction model test is
shown in dark gray.
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Table 5.2: Table of significant homeologous chromosome arm interactions. The
proportion of genetic variance attributed to each arm and their cor-
responding interaction are shown with statistical significance from a
nested likelihood ratio test.

Trait arml; armyg ( arm; arm i )a hgrm7 xarm;/ pb

GY 5BS 5DS (0.038,0) 0.028** 0.27**
ay AL 7BL (0.018,0) 0.041* 0.1%%
PH 2AS 2DS (0.021,0.079)*** 0.033*** —0.04
PH 4AS 4DS (0,0.039)*** 0.017* 0.19%**
PH 4AL 4BL (0.013,0.034)* 0.029* 0.1%**
PH 4AL 4DL (0.015,0.0038) 0.027*** 0.07**
PH 4BS 4DS (0.0021,0.031)*** 0.049*** 0.18***
PH 4BL 4DL (0.048,0.0033)* 0.058*** —0.65***
PH 6AL 6DL (0.11,0.0053)** 0.024* 0.06*
PH TAL 7BL (0,0. 07) 0.029** 0.45%**
T™W 1BS 1DS (0,0) 0.073%* 0

™ 4BL 4DL (0.096,0.049)*** 0.013* 0.14***
W 6AL 6BL (0.031,0) 0.047* 0.12°+*
T™W AL 7DL (0.019,0.03) 0.14%+* —0.04
™ 7BL 7DL (0.043,0.061) 0.092*** 0.16%**
HD 1BS 1DS (0,0) 0.018* 0

HD 4BS 4DS (0,0.0023) 0.014** 0.15%**
HD 6AS 6BS (0.0078,0.041)* 0.049*** 0.02
HD 6AS 6DS (0.014, 0) 0.046*** —0.03
HD 6AL 6BL (0.0087,0.11)* 0.013* —0.21***
HD TAS 7DS (0.013,0.045)** 0.032* —0.05*
HD TAL 7BL (0,0.045)*** 0.025* 0.14%**
HD 7BS 7DS (0.013,0.054)*** 0.012* 0.29%**

@h?2 represents the proportion of the chromosome arm additive or interaction variance
component estimates to the total genetic variance.

®p indicates the correlation between the product of the additive arm effects and their
interaction effect with correlation coefficients significantly different from zero indicated by stars.
If only one additive effect had a non-zero variance, the correlation coefficient shown is the
correlation between the additive effect with the non-zero variance and the interaction effect.

*, ** and *** correspond to p-values < 0.05, 0.01, and a Bonferroni correction of 0.05/42 =

O 0012 respectively.

fects for at least one of the four traits (Table 5.2 and Figure 5.4). Interactions
involving homeologs 4 and 7 were overrepresented, with 14 of the 22 significant
interactions identified between one of these two homeologs. Despite significant
pairwise homeologous marker interactions found on chromosome homeologs 1 and
5 for HD and homeolog 3 for PH (section 4.4.2 of Chapter 4), chromosome arm

pair tests failed to detect the significant homeologous marker set interactions on

124



those arms. The failure to detect these significant regions using the chromosome
arm test suggests that these are either spurious associations, or their signal is be-
ing washed out by the abundance of uninformative markers on those chromosome
arms. The lack of a two-way arm interactions PH interaction on chromosome
arm 3S agrees with the homeologous marker set identified there, where only the

three-way homeologous marker set interaction term was significant.

The test for three-way homeologous chromosome arm interactions only revealed
three sets of homeologous arms that had a significant three-way interaction (Ta~
ble 5.3). The three-way 3S chromosome arm interaction was found to have a
positive three-way arm interaction variance parameter estimate with a p-value of
p = 0.02, supporting the evidence from the homeologous marker set on 3S. The 7L
three-way arm interaction term was also found to have a low p-value for TW of p
= 0.006, also confirming the significant three-way homeologous marker set found

there.

Many interactions were detected on chromosome arms where no homeologous
marker sets were identified with a significant interaction effect. Notably, a strong
interaction effect was identified on homeolog 6S for HD, and two regions for GY
on 5S and 7L, where no significant homeologous interaction sets were identified.
Neither of the interacting pairs for GY had a p-value lower than a homeologous

arm Bonferroni correction of 0.05 / 42 = 0.0012.
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Figure 5.4: Homeologous chromosome arm interactions significant at p < 0.05.
Blue and red bridges indicate interactions with a significant positive
or negative correlation between the product of the additive effects and
their interaction effect, respectively. Black bridges indicate significant
interactions that did not have a significant correlation between additive
products and the interaction effect.
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5.3.4 Homeologous additive and interaction effect relation-

ships

Relationships between chromosome arm additive and interaction effects were only
considered for the ten chromosome arm pair trait combinations that had all chro-
mosome arm additive and interaction effects with significant non-zero variance
components. Of these ten, six had significant correlations between the additive
product and the interaction with an absolute value > 0.1. Four of these showed
positive relationships, while the other two showed negative relationships. By far
the strongest relationship detected was between 4BL and 4DL for PH (p = —0.65,
Figure 5.5), indicating that individuals with high or low additive values for both
arms tended to have genotypic values less than expected by additivity. Conversely,
the same 4BL/4DL pair had a weak, yet positive relationship for TW (p = 0.14,
Figure 5.5). The 4BS/4DS pair, where the Rht-1 genes are known to reside, had

a weak, yet significant, positive correlation for PH (Figure 5.7).

5.3.5 All pairwise arm tests

For all (422) = 861 pairwise chromosome arm pairs, I only consider those tests that
passed a Bonferroni threshold of 0.05/861 = 5.8 x 1077 in this section. Seventy
nine chromosome arm interaction variance components were declared significantly
greater than zero for at least one trait, representing about 2% of the number
tested (Table 5.5). Of these, interactions for the PH trait were the most prevalent,
representing 49 (62%), of the interactions detected. HD and TW accounted for the
remaining 13 (16%) and 17 (22%) interactions. No chromosome arm interactions

were detected for GY at the Bonferroni significance threshold. No interactions
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4BL x 4DL versus 4BL*4DL
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4BL x 4DL Additive Product

Figure 5.5: Interaction effect of chromosome 4BL by 4DL plotted against the prod-
uct of the additive effects for 4BL and 4DL for PH. p indicates the
Pearson correlation coefficient.

were detected for any of the traits involving chromosome arms 1AS, 1DL, 2AS,

2DL, 3DL, 4AS, 5AS, 5BL, 5DL, 6BL, 6DS, and 7BS at this threshold.

There were several chromosome arms that appeared to be interacting with mul-
tiple loci (Table 5.6). Of these, several clearly stand out (Figure 5.8). Chromosome
arms 1AL, 2AL, 2DS, 4BS, 4DS, 4DL, 6AS and 7TAL were involved in five or more

interacting pairs for PH, with 2DS, 4DS and 4DL. The 4D chromosome in particu-
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4BL x 4DL versus 4BL*4DL
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Figure 5.6: Interaction effect of chromosome 4BL by 4DL plotted against the prod-
uct of the additive effects for 4BL and 4DL for TW. p indicates the
Pearson correlation coefficient.

lar was involved in almost half (21) of the interacting arm pairs for this trait. 7DL
was involved in all but three of the interacting pairs detected for the TW trait.
Arm interactions for HD did not cluster to one or a few arms in the same way as
PH and TW, but 6AS and 7BL were each involved in five interacting pairs for this

trait.

Most correlations between the additive products and the epistatic effect were
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4BS x 4DS versus 4BS*4DS
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Figure 5.7: Interaction effect of chromosome 4BS by 4DS plotted against the prod-
uct of the additive effects for 4BS and 4DS for PH. p indicates the
Pearson correlation coefficient.

low in magnitude (i.e. < 0.3), particularly for the TW and HD traits. Notable
exceptions include the 4BL/4DL pair for PH, which had a highly negative correla-
tion, as previously noted. Pairs with moderate magnitude tended to also include
the 4DL chromosome, but other pairs with moderate correlations between the
product of their additive and interaction effects included the 1AL/2AL, 1AL/7AL,
and 3AS/6AS arm pairs.
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Figure 5.8: Chromosome arm interactions significant at a Bonferroni correction
of 0.05/861 = 5.8 x 107°. Blue and red bridges indicate interactions
with a significant positive or negative correlation between the product
of the additive effects and their interaction effect, respectively. Black
bridges indicate significant interactions that did not have a significant
correlation between additive products and the interaction effect.
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Table 5.4: Table of significant chromosome arm interactions for all four traits.
The proportion of genetic variance attributed to each arm and their
corresponding interaction are shown with statistical significance from a
nested likelihood ratio test.

Trait army; armg ( arm; arm /)a hirmlxarm/ pb

PH 1AL 2AL (0.039, 0. 06)****a 0.09**** 0.37**
PH 1AL 3AS (0.065,0.011)** 0.076**** —0.01
PH 1AL TAL (0.063,0)* 0.067**** 0.35%**
PH 1AL 4BS (0.042,0.024)** 0.073**** 0.08**
PH 1AL 4BL (0.066,0.012)*** 0.086**** —0.05
PH 1AL 7BL (0.091,0.043) 0.059*++* 0.01

PH 1AL 2DS (0.079,0.094)**** 0.065**** 0.18***
PH 1AL 4DS (0.048, 0.037) =+ 0.064*++* —0.04
PH 1AL 4DL (0.07,0.002)** 0.048**** 0.05

PH 2AL TAL (0.04,0)** 0.056**** 0.27%**
PH 2AL ABS (0.06,0.032)"* 0.09*** —0.17**
PH 2AL 2DS (0.036,0.097)**** 0.061**** —0.17***
PH 2AL 4DL (0.039,0)*** 0.069**** 0.23***
PH 3AS 6AS (0.015,0.069)** 0.084**** —0.22%**
PH 3AS 6AL (0,0. 086)** 0.07**** 0.35%**
PH 3AS TAL (0.0081,0) 0.06**** 0.27%**
PH 3AS 7BL (0.00084,0.038)* 0.068**** 0.01

PH 3AS 4DS (0.02,0.033)**** 0.057**** —0.09**
PH 3AL 2DS (0.0042,0.068)** 0.042%*** —0.11***
PH 3AL 4DS (0.0075,0.033)**** 0.05%*** —0.17**
PH 3AL 4DL (0.0015,0.0097) 0.023**** —0.07**
PH 6AS TAL (0.083, 0)** 0.069**** 0.4%**
PH 6AS 1BS (0.078,0.011)*** 0.1%*** 0.02

PH 6AS 4BS (0.054,0)*** 0.13%*** —0.01
PH 6AS 4DS (0.16,0.042)**** 0.052**** 0.03

PH 6AS 4DL (0.087,0)** 0.073**** 0.23***
PH 6AS 6DL (0.069,0.0077)** 0.084**** 0.09**
PH 7AL 4BL (0,0.029)* 0.058"*** 0.29+
PH TAL 2DS (0.00064,0.064)** 0.054*** 0.11%*
PH AL 6DL (0,0.016) 0.051%++* 0.31%*
PH 1BS 2DS (0,0.11)*** 0.062**** 0.22***
PH 1BS 4DS (0,0.035)**** 0.042**** 0.26***
PH 1BS 4DL (0.023,0.0091) 0.041**** 0.3***
PH 2BS 4BS (0.027,0.053)* 0.084**** —0.11%**
PH 2BS 4DS (0.038,0.032)**** 0.069**** —0.12%**
PH 2BL 4DS (0.2,0.029)**** 0.052%** 0.13%**
PH 4BS 4DS (0.0021,0.031)**** 0.049**** 0.18***
PH 4BS 4DL (0,0) 0.056**** 0

@h? represents the proportion of the chromosome arm additive or interaction variance
component estimates to the total genetic variance.

®p indicates the correlation between the product of the additive arm effects and their
interaction effect with correlation coefficients significantly different from zero indicated by stars.
If only one additive effect had a non-zero variance, the correlation coefficient shown is the
correlation between the additive effect with the non-zero variance and the interaction effect.

*, **, and *** correspond to p-values < 0.05, 0.01, and a Bonferroni correction of 0.05/42 =

O 0012 respectively.
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Table 5.5: Continuation of Table 5.4 of significant chromosome arm interactions.

a

h2

b

Trait arml armzl ( arm; I’ a,I‘IIl /) arm; Xarnl s p

PH 4BS 6DL (0,0.021) 0.11%+ 0.07"
PH 4BL 4DS (0.063, 0.029)**** 0.051%*** —0.52%*
PH 4BL 4DL (0.048,0.0033)* 0.058**** —0.65"**
PH 7BL 2DS (0.03,0.09)*** 0.071%*** 0

PH 7BL 4DL (0.031,0.00081)* 0.094**** —0.12%*
PH 2DS 3DS (0.058,0.047)**** 0.0347*** 0.07*
PH 2DS 4DS (0.13,0.038)**** 0.046%*** 0.07**
PH 2DS 4DL (0.11,0.0057)*** 0.031%*** 0.04

PH 2DS 5DS (0.08,0.0031)** 0.031%*** 0.11%*
PH 4DS 6DL (0.031,0.0023)**** 0.036**** 0.08**
PH 4DL 6DL (0.0018,0.011) 0.026%*** —0.38"**
W 1AL 1BS (0.015,0) 0.13%%%* 0.23%**
W 1AL 7DL (0.015,0.061) 0.097%*** —0.13**
W 2AL 3BS (0.013,0) 0.13%*** 0.19***
W 2AL 7DL (0.032,0.063) 0117+ 0

W 3AL 7DL (0.019,0.072) 0.085%*** 0.01
W 4AL 7DL (0.054,0.053)* 0.11%* —0.11%*
W 5AL 1BS (0.031,0) 0.15%*** 0.26***
W 5AL 7DL (0.026,0.026)* 0.14%*+* 0.06*
TW 6AS 7DL (0,0.058) 0117+ 0.04
TW TAS 7DL (0.007,0.059) 0.09%*** 0.01
W 7AL 7DL (0.019,0.03) 0.14%* —0.04
W 1BS 7DL (0,0.018) 0.18%*** 0.18***
W 2BL 7DL (0.0042, 0.063) 0.11%* —0.21%*
TW 3BS 7DL (0,0.071) 0127+ 0.11%**
TW 3BL 7DL (0.0026, 0.054) 0.16%** 0.117**
TW 6BS 7DL (0,0.056) 0.093**** 0.08**
W 7DS 7DL (0,0.057) 0.088**** —0.02
HD 6AS TAS (0.0042,0.008) 0.098**** —0.03
HD 6AS 1BS (0.007,0) 0.058**** 0.11%*
HD 6AS 3BS (0.012,0.064)*** 0.082%"** —0.12%**
HD 6AS 5BS (0.0036,0.00018) 0.051%*** 0.11%*
HD 6AS 7BL (0.0076,0.033)*** 0.075%*** 0.06*
HD TAS 7BL (0.0089,0.037)**** 0.073%*** —0.05
HD 7AS 1DS (0.013,0) 0.053**** —0.09**
HD 1BS 4DS (0,0.0019) 0.044**** 0

HD 1BL 4DS (0,0.0038) 0.035%** 0.02

HD 7BL 3DS (0.036,0.0015)*** 0.061%*** 0.03

HD 7BL 4DS (0.031,0.0028)*** 0.053**** 0.05*
HD 7BL 6DL (0.035,0.0098)*** 0.056%*** —0.15***
HD 3DS 4DS (0,0.003) 0.020%*** 0

@h? represents the proportion of the chromosome arm additive or interaction variance
component estimates to the total genetic variance.

®p indicates the correlation between the product of the additive arm effects and their

interaction effect with correlation coefficients significantly different from zero indicated by stars.
If only one additive effect had a non-zero variance, the correlation coefficient shown is the
correlation between the additive effect with the non-zero variance and the interaction effect.

***
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Table 5.6: Counts of significant homeologous chromosome arm interactions by arm
and traits.
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5.4 Discussion

5.4.1 Centromere positions

While my assigned position for the 3B centromere position is an estimate, most
of the chromosome estimates on other chromosomes were close to the known cen-
tromere position. The centromere position estimate reported here should be suf-
ficient to assign most of the 3B markers to the correct chromosome arm for the

subsequent analyses.

5.4.2 Model fit and p-value distribution

The distribution of p-values from the likelihood ratio test should be uniform if
no true interactions exist. If interactions are important, then we would expect to
see a skewed distribution with many small p-values. However, the p-values were
often calculated to be one because the variance components were estimated on
the parameter boundary (i.e. zero), resulting in the U-shaped distribution. When
variance parameters are estimated on the parameter boundary, the p-value becomes
one simply due to the fact that the variance component is zero. This is likely due
to a lack of sufficient population size to distinguish and resolve multiple small
variance components. Perhaps another explanation may be provided by the use of
the the average information algorithm to fit the mixed model, which may lose a
small portion of information by avoiding the calculation of the second derivative of
the likelihood function. While other algorithms exist for solving REML problems,
the computational burden of resolving multiple variance components with dense

covariance structures may be restrictive. Further investigation is necessary to
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determine how large a population need be to resolve multiple genetic variance

parameters with magnitudes of 1% or less of the total variance.

5.4.3 Homeologous arm tests and additive interaction ef-

fect relationships

Most of the homeologous chromosome arm interactions detected across all traits in-
volved homeologs 4 and 7. The less than additive trend observed for the 4BL/4DL
pair may suggest a significant degree of gene functional redundancy between these
two arms. Despite having a weak positive additive genetic trait correlation be-
tween PH and TW (Table 2.3 in Chapter 2), the 4BL/4DL pair had a weak, yet
positive relationship for TW. This provides evidence that the pattern is not simply

a genetic artifact and may indicate differential gene function for these two traits.

A negative correlation for PH was not observed for the 4BS/4DS chromosome
arm pair, as might be expected from previous results for the Rht-1 genes that
reside on those chromosome arms. This casts some doubt on the usefulness of
these correlations to infer the direction of the epistatic effect. It is unclear if the
missing double-dwarf genotype is contributing to this positive correlation in the
CNLM population. The relationship between the product of the additive effects
and the interaction was thought to mirror the {—1, 1} Additive x Additive epistatic
model (Table 4.1) using a multi-locus approach, but it is unclear what is driving

these trends.

For inbred allopolyploids, multi-subunit protein complexes can be comprised of
genes from a single subgenome, or from multiple subgenomes. If functional copies

of subunits exist on both genomes, the formation of subgenome hetero-complexes

137



may occur. Protein complexes comprised of evolutionarily divergent subunits may
have increased or, more likely, decreased functionality. If heterocomplexes display
decreased functionality, then we would expect the relationship between the additive

and epistatic effects to be negative.

It is unlikely that all homeologous interactions are so large in effect that they
are quickly fixed after the hybridization event. The distribution of epistatic effects
is likely similar in shape to the distribution of additive effects. These distributions
will change based on the complexity of the trait. If a trait is governed by relatively
few loci, the relatively few epistatic interactions could have larger effects, and may
be easier to detect. In contrast, a distribution of effects with many small non-zero

effects may have many more non-zero epistatic effects, but are too small to detect.

5.4.4 All pairwise arm tests

PH appears to exhibit a higher degree of epistasis than either TW or HD. How-
ever, the number of interacting loci or chromosome arms detected was not directly
related to the observed increase in genomic prediction accuracy (Chapter 2). HD
had the largest percent increase in accuracy from the additive only model, yet had
the fewest detectable interacting chromosome arms. GY showed no evidence of
epistasis controlling the trait. This may be due to one of two explanations. The
first and most obvious is that grain yield is not subject to epistatic gene action.
This would mean that all genes contribute additively to the collection and allo-
cation of resources to vegetative tissue, and then reallocation to the ear during
flowering and grain fill. The second and more likely explanation is that GY is the
culmination of essentially all the genes working in concert to produce the final out-

come, and interactions with such small effects may simply be too small to detect
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(Xu and Jia 2007; Wu, Chang, and Jing 2012).

While I corrected for population structure on both the additive and epistatic
levels (i.e using additive and additive by additive genetic covariance terms), it
is possible that residual structure is causing these observed relationships. The
drastically different patterns in the arm pair test results for each trait suggests
otherwise. If these interactions were due to population structure, we would ex-
pect to see similar patterns of significance across all traits. When I omitted the
background epistatic effect, most of the 861 interactions were significant (results
not shown). I deemed this to be due to chromosome arm epistatic relationship
matrices modeling close relationships in the population regardless of which unit of
chromatin was used to determine those relationships. However, it is possible that
these interactions are far more prevalent than suggested here, and that correction

for background epistatic effects is diluting true genetic signal.

The prevalence of a few chromosome arms interacting with many other arms is
of particular interest, due to the potential for one site to influence the expression
of so many other sites. Jiang et al. (2017) observed a large proportion of the
epistatic interactions affecting GY involved chromosomes 4A and 7D in a large
population of hybrid wheat. While I did not detect a large number of interactions
involving 4A, 7D was particularly important for TW. However, the interactions
that they detected appear to be on the short arm of chromosome 7D, instead of
the long arm as I observed. It may be that the signal detected for arms influencing
multiple loci is due to the presence of functional and non-functional alleles at
important upstream regulators, such as transcription factors. In this case, a non-
functional transcription factor would cause the suppression of differential additive

alleles. However, it appears that the loci detected to interact with many other loci
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in this study are not the same as those of Jiang et al. (2017).

The detection of chromosome arm interactions not identified in the homeol-
ogous marker sets suggests that single marker sets may miss important interac-
tions. It is unclear if these interactions would have been detected if I had tested
all pairwise epistatic interactions between markers. While all possible tests can be
conducted, this increases the multiple testing problem drastically and may result
in the loss of ability to detect even the largest effect interactions. It is unclear how
large the effect sizes of a single pair of interacting loci would need to be to show
up in a variance component estimated from multiple loci. While this method may
not work well for a single large effect interaction, it may work well for many small

effect interactions as might be expected for homeologous interactions.

It should be noted that epistatic relationships formed from the Hadamard prod-
uct of covariance matrices have the property of shrinking distant relationships while
emphasizing close ones. For example, two lines with an additive covariance of 0.1
will have an epistatic covariance of 0.01, whereas two lines with an additive co-
variance of 0.9 will have an epistatic covariance of 0.81. It may be that there
are several levels of relatedness that must be considered to properly account for
genetic relatedness. The pedigree is an example of a covariance estimation pro-
cedure that emphasizes close relationships and deemphasizes more distant ones.
Considering both pedigree and marker based covariance matrices has been shown
to be more predictive than using either alone (De Los Campos et al. 2009; Crossa
et al. 2010). Other multi-kernel methods, including Reproducing Kernel Hilbert
Spaces (RKHS), can be used to model these various degrees of genetic relatedness
(Campos, Gianola, and Rosa 2009; Crossa et al. 2010), but may have less genetic

interpretability than the method presented here.
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5.5 Conclusion

The interacting pairs presented here do not have the precision to make claims
of interacting genes. Nor are these interactions necessarily targets for selection.
They do, however, demonstrate that there appears to be global patterns of epistasis
across the genome. Seemingly additive only traits have often been shown to be
under a high degree of epistasis when careful investigation is used to elucidate the
trait (Carlborg et al. 2006; Forsberg et al. 2017). Some have argued that essentially
all genetic variation is subject to epistasis (Huang et al. 2012; Forsberg et al. 2017),
where the rest of the genome must be functional to express additive differences in

alleles.

This is evident when we consider the the complexity of the cell, where no genes
truly work independently of one another. In order to create the complex structure
of the cell, proteins may interact with other proteins, both alike and dislike to
them, to form multi-subunit complexes. Therefore allelic variation alone should
be sufficient to produce epistatic variation. It is merely our inability to separate
this variation from “additive” variation under classic parameterizations that leads
many to conclude that epistasis is not important (Hill, Goddard, and Visscher

2008; Huang et al. 2012; Huang and Mackay 2016; Forsberg et al. 2017).

Further research into this methodology might be used to identify meaningful
haplotypes. Once interacting segments are identified, they can each be split into
multiple pieces for further refinement of the method, while nominally increasing
the number of tests performed. The low resolution epistasis mapping approach
presented here emphasizes the power of using multiple genetic markers to test for

interacting genomic regions, albeit at the cost of low precision.
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CHAPTER 6
CONCLUSION

Biological organisms are perhaps the most complex systems known to exist.
While the hard sciences can be described quite well using mathematical models,
models for biological systems are drastically simplified from reality. A single or-
ganism has billions of base pairs, comprising tens of thousands of genes, operating
in hundreds of pathways that must be regulated through time and space. It is
unlikely we will ever build models that take into account all the factors that affect
the growth and development of a single biological organism, much less a population
or ecosystem. If we do, they will likely be black box approaches, and we certainly

won’t be able gather more than the most general inferences from them.

When it comes to phenotypic expression, the most simplistic models assume
that a phenotype is the combination of two independent factors, genetics and
the environment. Some models try to account for an interaction between the
environment and genetic factors, but even these models assume that the genetic
factor is strictly additive. The effect of genetic variants, or alleles, on the phenotype
is typically assumed to be linear, with all genes operating independently of one
another. Such models are deemed to be additive, with the phenotype being the sum
of all the genetic effects. However, only a portion of the total genetic variability
is due to “independent” gene factors. Other parameterizations take into account
gene interactions at the same or different loci, which we refer to as dominance and

epistasis, respectively.

Plant and animal breeding evolved during the neolithic revolution, and has
become one of the defining characteristics of the human species. No organism on

earth manipulates the genetics of other organisms in the way that humans have,
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either intentionally or unintentionally. Additive models are particularly useful
for changing a population through generations. This additive genetic variation is
exploited during population improvement, where favorable alleles are selected to

increase their frequency within a population.

The seminal paper by Hill (Hill, Goddard, and Visscher 2008) suggests that
most genetic variation is additive in nature, regardless of the mechanism. However,
recent work has suggested that epistasis is prevalent (Forsberg et al. 2017), and is
important for maintaining long term selection (Carlborg et al. 2006; Paixao and
Barton 2016). Much like the central limit theorem finds the summation of realized
samples from non-normal distributions to be normally distributed, the effect of
many small non-additive physiological processes only appears additive because

they are summed in the expression of a complex trait.

I find some evidence of subfunctionalization of homeoallelic genes, particularly
for heading date (HD). However, the results presented here do not point to high
levels of epistasis between homeoallelic loci. The larger degree of allele pair fix-
ation at these loci may indicate that the most important interactions have been
fixed across homeologous regions in the Cornell soft winter wheat breeding popula-
tion. While this dataset represents an ideal situation to evaluate the contribution
of these interactions to the genetic variation in the breeding population, it is a
poor dataset to maximize the likelihood for detection of these effects. The allele
frequency distribution of this population is heavily weighted with low frequency

alleles, limiting the detection power of epistasis in this population.

The TILLING population developed by Kasileva et al. (2017) consisting of
2,735 mutant lines each with thousands of genic mutations could be a useful re-

source for future investigation into homeoallelic gene interactions. Lines with com-
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plementary loss of function homeologous genes could be used to develop bi-parental
mapping populations to test the degree of subfunctionalization with high statistical

power afforded by allele frequencies of 0.5.

Other genetic resources also exist that would maximize the likelihood of detect-
ing these interactions. A segregating synthetic hexaploid wheat population was
developed from a cross between a spring wheat variety, Opata, and a synthetic
hexaploid, W7984, with durum A and B genomes coupled to an Ae. tauschii D
genome (Sorrells et al. 2011). The population, consisting of roughly 200 doubled
haploid and over 2,000 recombinant inbred lines, will have high statistical power
to detect interactions between the common wheat homeologs and their durum and
Ae. tauschii ancestors due to both optimal allele frequencies and high genetic
differences. I envision a study using the Synthetic Opata population, where the
doubled haploid lines are planted in two locations across two years. Plant tissue
would be sampled from several organs through time including seedling leaf, flag
leaf and ear. Then a direct connection between variation across homeologous loci
and phenotypic expression can be drawn using homeoallele specific gene expression

as an intermediate phenotype.

Another interesting area of future research will be in transvection across home-
ologous chromosomes. Transvection is the trans-regulation of genes across chromo-
somes. For example, a promoter of one allele can recruit transcription machinery
that result in the expression of a second allele on another homologous chromosome.
This phenomenon was first identified by by Lewis (Lewis 1954) who proposed that
it be used as a tool for detection of chromosomal rearrangements. While there is
a plethora of research on transvection (Henikoff and Comai 1998, reviewed by ), a

search for transvection across homeologs of allopolyploids turned up no results.
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Prediction of unobserved beneficial homeoallelic epistatic regions may prove
difficult, as it currently is in diploid hybrids. Additionally, directed selection for
homeoallelic interactions across subgenomes will be challenging in autogamous
allopolyploids due to the intensive labor involved in making crosses. However,
these tools provide a way to screen large populations for beneficial homeologous
interactions such that they may in turn be selected in breeding populations be-
fore intensive field trials are conducted, saving phenotyping costs and potentially

reducing the time to variety release.

Treating the genome as consisting of purely additive gene action assumes that
genes are independent machines, whose products sum to the final value of an in-
dividual. While convenient for selection, this is almost certainly not true when we
consider the molecular mechanisms of biological organisms. Instead, genes work
in concert to produce an observable phenotype. Allopolyploids have tradition-
ally been treated as diploids in breeding programs because they undergo disomic
inheritance. With modern DNA marker technology and ever increasing computa-
tional power, breeders of allopolyploids can further exploit the genetic complexity
of their crops. We now have the technical ability to view and start to breed these

organisms as the ancient immortal hybrids that they are.
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CHAPTER 7
APPENDIX: PROPOSAL - APRIL 5™ 2015

The following proposal was written for the PLBRG 7160 course, Perspectives in
Plant Breeding Strategies, instructed by Dr. Mark Sorrells in the spring of 2015.
This proposal was inspired by the work of James Mac Key in the paper ‘Sig-
nificance of mating systems for chromosomes and gametes in polyploids’ (1970),
and subsequently inspired much of the work presented in this dissertation. It is

presented here exactly as it was submitted as an assignment in April of 2015.
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PLBR 7160 Genome specific kernels for genomic selection in
allopolyploid species

Nicholas Santantonio, April 5%, 2015

Introduction

As an autogamous disomic allohexaploid, some aspects of genetic improvement of common wheat, Triticum
aestivum, can be a challenge. The last polyploidization event occured approximately 9,000 years ago through
the hybridization of Aegilops tauschii and T. dicoccoides (Dubcovsky and Dvorak[2], 2007). Because this
event is thought to have occurred just a few times, hexaploid wheat has relatively less polymorphism than
other crop species. This is particularly true for the D genome, which comes from the A. tauschii, and has
consistently been shown to have less polymorphism than either the A or B genomes (e.g. Wang et al.[5], 2014).
On the other hand, the B genome has the most genetic diversity because the B genome donor, A. speltoides
is a cross pollinated species, and therefore contributed more genetic variation during the hybridization with
the A genome progenitor, T. urartu. The A genome is more polymorphic than the D genome, but less so
than the B genome due to the autogamous nature of 7. urartu.

An unfortunate consequence of phenotypic selection is that loci having the largest effects on phenotypic
variance will be preferentially selected first. Loci with relatively small effects on phenotypic variance are less
likely to be selected during the early cycles, and therefore less favorable alleles at these loci may become
fixed through genetic drift. Because of the low genetic diversity in the D genome, it is likely that the D
genome also contributes relatively small proportions of additive genetic variance compared to the A and B
genomes. Therefore phenotypic selection is likely to act the most on loci in the B genome, and the least on
loci in the D genome. Reduced genetic diversity is also associated with reduced polymorphisms that can be
used as genetic markers. Because of this, each genome is not equally represented when using typical genomic
selection techniques, such as GBLUP.

In the typical GBLUP senario, the number of markers in each genome weights the influence of that genome
when calculating the additive genetic relationship between individuals. The D genome, which typically has
very small numbers of markers compared to the B genome, is highly underrepresented when determining the
relationship of lines. Because of this, genomic selection in wheat is highly biased toward variation in the A
and B genomes, making it difficult to use for selection of useful variation within the D genome.

In either case, variation in the D genome is likely to be fixed by genetic drift through inbreeding and
selection before the breeder can take advantage of it. Therefore, neither phenotypic selection nor typical
GBLUP selection can take advantage of the relatively small portion of genetic variance in the D genome.
However, a unique feature of genomic selection is that it can allow the breeder to make selections based on
specific genomic regions, given that markers locations are known. This study proposes a solution to this
problem in order to allow the breeder to take advantage of genome specific genetic variation in a manner
that makes the most sense based on the trait of interest.

Marker Platforms

Because this method is concerned with the distribution of molecular markers across the three genomes of
wheat, a brief discussion of marker platforms will be presented first. In the case of wheat, several SNP
arrays are currently in use. While these arrays typically contain markers with “known” genetic positions
based on biparental mapping populations, they are also subject to ascertainment bias because the arrays
are designed to detect polymorphisms in the population from which they were designed. Genotyping by
sequencing (GBS) markers, on the other hand, are not subject to ascertainment bias because SNP markers
are called based on the population in which the genotyping is conducted. While GBS markers generally do
not have known positions, they can be assigned to chromosome arms by BLASTing marker sequence tags
to the Chinese Spring wheat 5x survey sequence. Because the sequencing was accomplished individually
for each chromosome arm, unique alignments that have no gaps, and one or two mismatches for the SNP
polymorphisms are probably reliable alignments and can be used to assign markers to a chromosome and
genome.
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GBS seems to be a more attractive marker platform for this exercise, however, GBS markers typically
underrepresent the D genome even more drastically than SNP arrays, because no effort is made to exploit the
somewhat rare polymorphisms of the D genome. In this light, it is unclear which marker platform would be
preferable for the following proposed method. Should coverage be given higher priority than ascertainment
bias? Answering this question would need a population(s) that has been genotyped with both platforms and
compared for their relative efficacy under the following genome specific selection method. Therefore, I will
assume that GBS markers are being used due to their recent popularity and relative flexibility.

Genome Specific Selection

A population must first be genotyped using GBS, and markers assigned a chromosome arm using a local
BLAST as previously described. Markers without chromosome information can be assigned to a chromosome
if they correlate to markers having chromosome information with a correlation coefficient greater than 0.7 or
0, such that 0.7 < r < 1. Any markers perfectly correlated to markers with chromosome information should
be dropped, as they provide no additional information, and cause the marker matrix to lack full rank.

To estimate the relative importance of each genome to the trait of interest, the marker matrix can be
separated into three matrices based on the genome origin of each marker. An additive relationship matrix
can then be calculated for each of the genome specific marker matrices (denoted A,B,D for the A, B and
D genomes respectively) using the method proposed by Van Raden [4] (2008):

ww”
23 pi(1—pi)
where W is the centered marker matrix, and p; is the major allele frequency of the 4" marker.

A linear mixed model can then be fit with each genome specific relationship matrix corresponding to the
covariance matrix for three separate kernels using the following model:

y=XB+Za+ Wb+ Vd+e

additive genetic relationship matrix, K =

with the assumptions,
a~N(0,02A) , b~ N(0,0B) and d~ N(0,03D)

where, 3 is a vector of fixed effects, a, b, and d are vectors of genome specific breeding values for the A, B
and D genomes, respectively, and X,Z,W, and V are incidence matrices. The relative amounts of additive
genetic variation explained by each genome can subsequently be determined by estimating o2, af, and 03
using software available for fitting multiple kernel linear mixed models that estimate variance components
using Restricted Maximum Likelihood (REML) methods, such as the ‘emmremlMulitKernel” function of the
‘EMMREML’ package (Akdemir and Okeke[1], 2014) in R (R Development Team[3], 2014).

Once the relative amounts of genetic variation explained by each genome is determined, weights can
be given to each kernel based on the relative importance of the genome as determined by the researcher.
Weighting each genome is accomplished by multiplying the relationship matrix by a constant between 0 and
1, such that the weight constants sum to 1, resulting in,

a~ N(0,po2A) , b~ N(0,g0iB) and d~ N(0,(1— (p+q))o3D)
for 0<p<1 , 0<¢g<1 and 0<p+g¢<1

One method would be to weight each kernel based on the relative importance of the genome to the
genetic variability of the given trait; however, this would likely give results similar to the typical GBLUP if
the proportion of markers in each genome is similar to the proportion of additive genetic variance contributed
by each genome. A breeder might decide to put most of the weight on the D genome, such that the D genome
has the highest priority and the B genome has the least priority during early stages of selection, and shift
the weight back toward the A and B genomes in later cycles of selection. This method could also allow for
several different selection schemes based on genomic regions of interest, perhaps using markers on genomic
regions inherited from a wild parent in a separate kernel from the elite recurrent parent genomic regions.

Using this method, a plant breeder can take advantage of genetic variability in underrepresented or oth-
erwise interesting genomic regions without being masked by large effect loci in over represented or otherwise
less interesting regions.
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