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This dissertation deals with the development of discrete-continuous optimization 

models and algorithms that address sustainable design and synthesis of energy 

systems. Specifically, contributions to the following two energy systems are presented, 

namely an algal biofuel and bioproduct manufacturing system and a shale gas 

processing and chemical manufacturing system. 

The algal biofuel and bioproduct manufacturing system is a promising renewable 

energy system. In the first related project, we propose a comprehensive superstructure 

of algal biofuel and bioproducts manufacturing processes and a corresponding mixed-

integer fractional programming model to determine the optimal process design with 

the optimal functional unit based economic and environmental performance. 

Moreover, we develop a tailored global optimization algorithm to efficiently solve the 

resulting problem. In the second related project, we propose a two-stage adaptive 

robust mixed-integer fractional programming model to maximize the return on 

investment under uncertainty in market related parameters. A tailored 

optimization algorithm is developed to solve the multi-level optimization problem 

that cannot be handled directly by any off-the-shelf optimization solvers. In the 

third related project, we develop a consequential life cycle optimization framework 

that simultaneously optimizes consequential environmental impacts and economic 

performance.  



 

The shale gas processing and chemical manufacturing system is a conventional energy 

system, but has gained momentum in recent decades due to the successful application 

of advanced extraction technologies. In the first related project, we develop a general 

framework for combining product distribution optimization of chemical reactions and 

superstructure optimization of process flowsheets. A comprehensive superstructure 

of shale gas processing and chemical manufacturing processes is developed and 

employed to illustrate the applicability of the proposed framework. In the second 

related project, we develop a general framework to integrate a novel quantitative 

measure of resilience and a set of resilience enhancement strategies with process 

design and operations. The framework identifies a set of disruptive events for a 

given system, formulates a multiobjective two-stage adaptive robust mixed-integer 

fractional programming model, and solves the problem with a tailored solution 

algorithm. The applicability of the proposed framework is illustrated through 

applications on a chemical process network and a shale gas processing system. 
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CHAPTER 1 

INTRODUCTION 

Energy systems for energy production and consumption are integral to our modern 

society [1, 2]. The energy sector lay the foundation of nearly all other sectors. It is 

impossible to develop and maintain efficient transportation networks without 

sufficient fuel supplies. Almost all industries stop operation immediately if they 

have no access to electricity, which is produced in various energy systems. 

According to the US Energy Information Administration [3], the total world 

energy consumption is expected to increase from 575 quadrillion BTU in 2015 to 

736 quadrillion BTU in 2040. The additional energy demand will be primarily 

driven by the strong economic growth of developing countries. Major energy 

products include fuel products (such as oil, gas, coal, and renewables) and 

chemicals (such as olefins and aromatics). World’s fastest growing energy source is 

predicted to be renewables, with their consumption to increase 2.3% each year 

from 2015 to 2040. Despite the dynamics in the renewable fuel market, fossil fuels 

will still dominate the world fuel consumption, accounting for 77% in 2040. 

Overall, with a rising energy demand, it becomes more and more significant to 

increase the efficiency of existing energy systems and develop novel energy 

systems to help fulfill the energy need. 
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The importance of energy systems is multifold. The choices and decisions of 

energy use directly impacts our living environment. The cost of energy is more 

than their monetary values, but the economic and environmental effects 

combined. It is almost a global consensus that the climate-warming trends in the 

past century are highly likely linked to human activities [4]. The use of energy is 

usually associated with releasing waste carbon dioxide whether from vehicles or 

power plants. To reduce carbon footprint, governments around the world set up 

regulatory policies that encourage the use of cleaner energy and renewables, such 

as the Renewable Fuel Standard in the US and the Renewable Fuel Directive in the 

EU [5]. With more and more regulatory documents to support renewable energy 

products, sustainable energy systems are expected to undergo a rapid expansion in 

the coming decades [6, 7]. Other side effects of conventional energy systems, such 

as toxic pollutions, also threaten the well-being of future generations [8]. As part of 

the solution to the resulting environmental issues, sustainable energy systems can 

help satisfy the growing demand of energy products and mitigate the 

environmental impacts simultaneously by utilizing renewable feedstocks and 

cutting-edge environmentally friendly technologies [9]. Therefore, there is a need 

of designing and optimizing sustainable energy systems that address the 

environmental and economic performance simultaneously so that they outperform 
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conventional energy systems. It is the goal of this dissertation to identify and 

address the research challenges in sustainable design and synthesis of promising 

energy systems using systematic tools and methods in process systems engineering. 

1.1 Superstructure optimization based sustainable process design 

Sustainability has recently emerged as an important consideration in the design 

and synthesis of energy systems [10]. Life cycle assessment (LCA) and other 

methods provide a straightforward way of measuring the sustainability of 

predefined process designs. Even though the results can be used to compare among 

various process designs, these static methods become computationally intractable 

when the most sustainable design must be identified from a large number of design 

alternatives.  
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Figure 1. Three major stages for sustainable design and synthesis of energy systems. 

Assisted directly by mixed-integer programming techniques, superstructure 

optimization enables simultaneous evaluation of process/technology alternatives 

and automatic generation of the globally optimal configuration [11]. A recent 

systematic method for sustainable design and synthesis of energy systems evolves 

from superstructure optimization and dynamically integrates the tenets of techno-

economic analysis and LCA into a multi-objective framework [12, 13]. As opposed 

to other methods, this method enables systematic generation and automatic 

evaluation of design candidates with the best process economics and highest levels 
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of environmental sustainability. Recently this method has been actively applied to 

various energy systems, including hydrocarbon biorefineries [14-18], algal systems 

[19-22], polygeneration systems [23-25], shale gas processes [26-28], and network 

systems [29]. As illustrated in Figure 1, there are three stages in sustainable design 

and synthesis of energy systems based on superstructure optimization: (1) 

superstructure generation, (2) optimization model development, and (3) optimal 

design decision determination [9]. In the dotted orange frame, there are three steps 

to construct a superstructure: 1) Define design targets; 2) Establish a preliminary 

superstructure; 3) Specify alternatives. An optimization model is shown in the 

dotted green frame. The flowchart in the dotted blue frame represents efficient 

computational algorithms for global optimization. The optimal results are plotted 

in a Pareto-optimal curve and each point on the curve represents an optimal 

process design with tradeoffs between the two objective functions. One point 

representing a “good-choice” design with relatively good performance in both 

dimensions is shown. 

1.2 Algal biofuel and bioproduct manufacturing system 

The recent years have witnessed the thriving of renewable energy as one of the 

solutions to climate change and energy dependence [30]. Microalgae and algal 
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biorefineries have received increasing attention for producing advanced biofuels 

and bioproducts. Microalgae refer to a diverse category of microorganisms which 

can rely on photosynthesis to thrive. Since carbon dioxide is captured and 

sequestered into biomass during photosynthesis, microalgae are naturally the most 

efficient contributors to carbon mitigation. Compared with traditional energy 

crops, microalgae have much higher lipid yields and do not require valuable arable 

land to cultivate, thus minimizing the competition with crops and the threat to 

food supplies [31]. Given that lipids are the precursor to biofuels, algal biofuels can 

be affordable and sustainable if the downstream processing is efficient and reliable. 

We address three research challenges related to the algal biofuel and bioproduct 

manufacturing system as detailed in the following subsections. 

1.2.1 Superstructure optimization of algal biofuel and bioproduct 

manufacturing processes 

Lab-scale designs for emerging advanced biofuel production technologies 

commonly encounter economic challenges during scale-up, diminishing the 

commercial viability of an environmentally sustainable process design. In addition 

to the ongoing research into the productivity of an effective operation, it would be 

beneficial to produce value-added bioproducts along with biofuels from the 
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systematic perspective. For instance, as a result of the continually expanding 

biodiesel industry, surplus glycerol produced from the transesterification reaction 

depresses the glycerol price to a very low level. Fortunately, glycerol is a versatile 

building block chemical, and the conversion of glycerol to its value-added 

derivatives, rather than selling raw glycerol to the market, offers an opportunity to 

relieve the increasing environmental pressure and reduce the biodiesel price 

simultaneously [32-34]. 

Among a wide array of biomass feedstocks, microalgae have recently received 

substantial attention in both academia and industry owing to their potential for a 

high lipid accumulation rate and minimum competition with food and crops [35, 

36]. There are a few existing publications that offer insights into the sustainable 

design and synthesis of algal systems. Gebreslassie et al. proposed a detailed 

superstructure of an algal biorefinery for biofuel production [19]. Despite a large 

number of technology alternatives included, they focused primarily on the 

production of algal biofuels, and did not exploit the potential environmental and 

economic benefits from value-added bioproducts. In order to explore algal 

biorefinery processes with better economics, Gong et al. optimized the 

performance of algal biorefinery processes for biological carbon sequestration and 

utilization [20]. However, the upgrading technology was restricted to 
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hydroprocessing for the production of “drop-in” renewable diesel, and did not 

consider the utilization of byproducts. Martin and Grossmann optimized the 

coproduction of biodiesel and glycerol ethers from algae oil, but little attention was 

paid to environmental impacts, and glycerol derivatives were limited to glycerol 

ethers [37]. Rizwan et al. proposed a superstructure to quickly scan through the 

algal processing pathways and identify the optimal routes with respect to various 

objective functions [38, 39]; however, their discussion did not cover the value-

added bioproducts from glycerol, and no environmental performance was 

included. An algal biorefinery integrated with a steam electric power plant was 

reported to be profitable at current biodiesel prices [40], which could be even more 

affordable if the glycerol was further upgraded. In addition to superstructure 

optimization, Silva et al. simulated an algae-to-biodiesel process with a biodiesel 

price of $4.34/gallon, which is too high to be attractive from the economic 

perspective [41]. Pokoo-Aikins et al. concluded algal biodiesel is competitive with 

food-based plant oil [42]. Additionally, much effort was also made on 

polygeneration systems [23, 25, 43], thermochemical conversion system [44], and 

sustainability [14-16, 21, 45], offering useful ideas for the integration of energy 

systems. Even with the above progress, there still lacks a complete superstructure 

which not only incorporates existing technologies for the conversion of algal 
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biodiesel, but also takes advantage of the versatile glycerol and converts it on site 

to environmentally sustainable and value-added bioproducts. Process integration is 

an important method in sustainable process design to explore the possibilities of 

improving the overall process efficiency by utilizing waste streams and ultimately 

reduce the overall expenditure and environmental impacts of the entire process. 

Bioproduct manufacturing production has the potential for boosting the algal 

biodiesel performance by utilizing byproducts in transesterification and generating 

carbon dioxide feed for microalgae growth. The aim of the corresponding chapter, 

therefore, is to explore the potential environmental and economic benefits for the 

production of both biodiesel and value-added bioproducts from microalgae. 

1.2.2 Handling uncertainty in energy systems 

Return on investment (ROI) is widely used for quantifying investment efficiencies 

[46]. For algae-based processing pathways, ROI directly reveals their 

competitiveness and economic viability, which are of great interest to investors 

and shareholders. Although recent techno-economic analyses have shown 

relatively high capital costs for popular algae upgrading technologies [36, 47, 48], 

the optimal ROI for algae-based process pathways has not been reported in 

literature. Therefore, there is a practical need to determine the optimal processing 
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pathway for producing algal fuels and bioproducts with the highest ROI and 

identify the technological and economic bottleneck to guide future research [9].  

A critical issue pertinent to evaluating the ROI of algae-based processing pathways 

involves handling uncertainty. Uncertainty can arise almost invariably in network 

design problems. Many parameters used in existing superstructure optimization 

models are subject to significant perturbations in reality. However, they are usually 

treated as deterministic values in existing contributions [19-22, 38, 40-42, 49, 50]. 

The optimal solutions determined on the nominal values of key parameters 

frequently lead to poor economic performance when uncertainty is realized [51, 

52]. In order to obtain a more realistic economic performance, it is crucial to take 

uncertainty into consideration explicitly when an optimization model is 

developed. Two-stage adaptive robust optimization is an emerging method to 

handle uncertainty in sequential decision-making processes [51, 53-56]. This 

approach can be used to obtain worst-case optimal solutions that are desired by 

risk-averse decision makers. Since ROI is defined as the ratio of net earnings over 

total investment, the objective function in the corresponding optimization 

problem becomes a fractional term. However, it remains a computational challenge 

to solve a two-stage adaptive robust optimization problem with a fractional 
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objective function. Therefore, one of the goals of this work is to address this 

challenge. 

1.2.3 Consequential life cycle optimization 

Among a handful of tools for assessing and benchmarking environmental impacts, 

LCA has received extensive research attention in the past decades by virtue of its 

unique consideration into the life cycle of a product [57, 58]. In an LCA study, 

environmental impacts are usually analyzed and compared among a collection of 

scenarios or alternatives, and it is tractable to enumerate a small number of 

scenarios or alternatives for relatively simple systems. However, a comprehensive 

decision-making process may require analyzing substantially more scenarios. 

Moreover, if iterative work may be necessary to improve the quality of the 

assessment results, manually analyzing each alternative system can be overly time-

consuming and labor-intensive. To address this challenge, a life cycle optimization 

(LCO) methodology was developed [12, 59, 60]. In LCO, the key tenets of LCA are 

translated into mathematical constraints and integrated within optimization 

models. By solving the LCO problem, we are able to simultaneously evaluate the 

environmental and economic performance of alternative systems and automatically 

identify the one with the optimal performance. LCO provides a systematic tool to 



 

12 

 

efficiently evaluate and compare the environmental impacts and performance of 

other sustainability metrics of a large number of alternative systems. 

There are two approaches for conducting an LCA study: attributional and 

consequential [57, 61]. So far, all LCO models in the literature followed the 

attributional LCA approach when evaluating the environmental impacts [8, 9, 40, 

62-64]. The attributional LCA approach determines which specific portion of the 

global environmental impacts can be attributed to a product over its life cycle [57]. 

Therefore, the system considered in an attributional LCA contains only relevant 

unit processes that are directly linked to the system under study [65]. By default, 

the system exerts no influence on the existing markets and is allowed to trade with 

suppliers and customers with no effect on supply or prices [66]. Therefore, 

attributional LCA is appropriate when evaluating the environmental impacts of 

extant systems in the current technosphere. Moreover, the environmental impacts 

of new production or service systems can be evaluated using attributional LCA 

only when the scales of such systems are small and markets are not necessarily 

involved. For example, if the feedstock suppliers save extra products from their 

previous operations and they agree to sell the feedstocks without going through 

the markets, the environmental impacts associated with such feedstocks can be 

evaluated following the attributional approach. However, the “free-to-trade” 
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assumption is never completely correct in practice, so the attributional life cycle 

environmental impacts, which account for contributions beyond process 

boundaries, are deemed theoretical [67]. If the overlooked environmental 

consequences can significantly affect the life cycle environmental impacts, the 

conclusions of attributional LCA studies would be questionable. 

Consequential LCA, by contrast, aims to quantify the change in the environmental 

impacts of a system due to changes in the incorporated processes [68, 69]. Since the 

affected processes may not be directly linked to the changed process, additional 

processes are included in the system of a consequential LCA study. Following the 

introduction of consequential LCA [70, 71], many methods and applications have 

been proposed and reported. Perhaps the most widely used method is the scenario 

analysis method, which derives multiple consequences according to market trends 

and marginal technologies [72-74]. An alternative method relies on the 

microeconomic concepts of price elasticity of supply and demand and constructs 

simple partial equilibrium (PE) models to quantify the indirect impacts [75, 76]. 

More sophisticated multi-market multi-region PE models [77], such as the Food 

and Agricultural Policy Research Institute Models [78], and the U.S. Forest 

Products Module [79], have been investigated and used. Unlike PE models that are 

restricted by one or a few economic sectors, computable general equilibrium (CGE) 
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models provide more comprehensive consequences in the context of an economy. 

The CGE models that are employed in consequential LCA include the Global Trade 

Analysis Project model [80] and the Luxembourg LUXGEM model [81]. Recently, a 

two-step attributional input-output analysis method has been reported for 

consequential LCA [82]. Other economic tools that can be incorporated into 

consequential LCA included rebound effects [83, 84], experience curves [85], 

industrial cost curves [86], and Rectangular-Choice-of-Technology models [87]. In 

addition, consequential LCA has been applied to evaluating the life cycle 

environmental impacts of many products, such as fish [88], dairy [89, 90], soybean 

meals [72], vegetable oil [74, 91, 92], and biofuels [73, 93-101]. 

Existing consequential LCA studies follow a sequential evaluation procedure, i.e. 

building a life cycle inventory before environmental impacts can be assessed. If the 

product under study is derived from a complex process system, the overall 

performance of the system would rely on a set of highly coupled decisions for 

process design and synthesis, such as the selection of technologies/processes in 

different sections of the system and the temperatures and pressures in the reactors 

of these technologies/processes. The combination of these decisions can result in 

an infinite number of possible system conditions that may not be well-represented 

by only a few scenarios. In such a circumstance, it is necessary to identify the 
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optimal decisions following a systematic LCO methodology [12, 59, 60]. However, 

the prevalent attributional LCO framework fails to account for environmental 

consequences through the lens of market mechanisms. As a result, the attributional 

LCO framework is not appropriate for consequential LCO modeling. To the best of 

our knowledge, there is no consequential LCO framework reported in the 

literature. 

1.3 Shale gas processing and chemical manufacturing system 

In recent years, shale gas is regarded as an important driver leading the changes in 

North America’s energy landscape [102, 103]. Due to the successful application of 

advanced extraction technologies, total natural gas production in the U.S. is 

predicted to increase by 45% by 2040 [104]. As a result of the boom in upstream 

shale gas production, there is a need for additional facilities to absorb the 

burgeoning supplies of shale gas [105]. Shale gas processing systems removes 

valuable natural gas liquids (NGL) and undesired constituents from raw shale gas 

[106] and serve as important components in the shale gas value chain [107]. The 

resulting NGL products can be further utilized to manufacture value-added 

chemical products. The rapid expansion of the shale gas industry will expedite the 

deployment of more shale gas processing and chemical production systems in the 
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near future. We address two research challenges in the shale gas processing and 

chemical manufacturing system as detailed in the following subsections. 

1.3.1 Superstructure optimization of shale gas processing and chemical 

manufacturing processes 

An integrated shale gas processing and chemical manufacturing process 

simultaneously produces pipeline quality gas and a collection of value-added 

chemicals from wellhead shale gas. The value-added chemicals can bring a higher 

profit margin than the NGL products from a conventional shale gas processing 

system, contributing to a better economic performance under relatively low 

energy prices. By sharing assorted utilities, process integration could lead to a 

higher energy efficiency, mitigating the environmental impacts associated with 

utility generation systems. To fully exploit these advantages, it is important to 

address the optimal process design of the integrated shale gas processing and 

chemical manufacturing process that should be both economically competitive and 

environmentally sustainable. 

Shale gas has gained increasing research attention in the recent years. As a versatile 

and cost-effective material from shale gas, methane was used as the feedstocks of 

methanol and syngas production processes [63, 108]. A raw shale gas feed can 
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consist of up to 30% NGLs by volume depending on the specific geological 

locations [109]. Given the relatively high market prices of NGLs-based chemicals, 

several process designs were proposed to integrate shale gas processing and olefin 

production systems. Differences among these process designs lie in the types of 

olefin products [26, 27, 110], and the scales of the systems [111]. Additionally, 

optimization models for shale gas supply chain were proposed [107, 112-115]. 

Recent works also address uncertainties in shale gas feed compositions and 

estimated ultimate recovery [116, 117]. Although several simplified product 

distribution models for certain well-studied reactions were integrated into 

superstructure optimization models [118], the product distributions of most 

chemical reactions were considered as fixed parameters. However, the product 

distribution of a chemical reaction can vary drastically under different operating 

conditions. As markets change rather dynamically, the most lucrative product 

portfolio decades ago may become less economically attractive or even 

unprofitable today. To identify the optimal performance of a process that involves 

chemical reactions, the product distributions of the chemical reactions should be 

optimized to enhance the yields of more profitable products in a superstructure 

optimization based process synthesis framework. To the best of our knowledge, 
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such a holistic systems modeling and optimization framework for process synthesis 

has not been proposed in the existing literature. 

There are several research challenges towards a holistic process synthesis 

framework that combines product distribution optimization of chemical reactions 

and superstructure optimization of the process flowsheet. The first one is how to 

account for reaction product distributions in the superstructure optimization 

framework. Product distributions of chemical reactions are constrained by the 

continuity equations for reaction flows, which are further governed by complex 

reaction kinetics. Additionally, product distributions of chemical reactions can 

influence the operating conditions of other unit operations in the process. These 

factors regarding product distributions of chemical reactions must be considered 

systematically in a holistic framework for process synthesis. The second challenge 

is the need of high-fidelity process data that are tailored to the product 

distributions of the involved chemical reactions in the superstructure. As these 

important process data are typically not available in the literature, it is necessary to 

develop simulation models for all the involved processes. However, due to the 

complexity of each process, careful tuning must be performed extensively to 

ensure the feasibility of the corresponding simulation model and satisfy the 

specifications of a collection of products. Given that many technology/process 
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alternatives are considered in the superstructure, performing rigorous simulations 

for all the processes with distinct operating conditions can be extremely labor-

intensive and effort-taking. The third challenge is how to efficiently solve the 

resulting superstructure optimization problem. To capture all levels of details, the 

superstructure optimization problem is formulated as a large-scale mixed-integer 

nonlinear programming (MINLP) problem that can be computationally intractable 

for general-purpose global optimization solvers. Therefore, a tailored global 

solution algorithm needs to be developed to circumvent the computational 

challenge. The goal of the corresponding chapter is to address these challenges. 

1.3.2 Resilient design and operation of energy systems 

A major goal of risk management is to avoid the occurrences of undesired events 

by implementing effective prevention and protection strategies [119]. However, 

many disruptive events, such as Hurricane Sandy in 2012 and the Haiti and Chile 

Earthquake in 2010, suggest that not all unexpected events can be avoided [120]. 

Disruptive events usually strike a process system and cause critical failures in 

vulnerable processes [121]. The undesired consequences of disruptive events 

highlight the need for enhancing the resilience of process systems [122-126]. 

System-level resilience was first introduced in ecology as the persistence of systems 
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regarding unexpected change and disturbance [127]. For infrastructure systems, 

resilience was described as the ability to mitigate hazards and minimize the 

reduction in the quality of life [128-133]. In process control, a resilient plant could 

move fast and smoothly from one operating condition to another and dealt 

effectively with disturbances [134]. Although resilience may be interpreted by 

different terminologies in various contexts [135], a resilient system is always 

capable of absorbing a portion of the impacts from disruptive events and 

recovering to the original state rapidly. 

There are several mathematical programming models in the literature for resilient 

design and operations. A group of studies focused on system operations after the 

occurrence of disruptive events and optimized the efficiency of recovery 

scheduling [136-138]. Others developed holistic optimization models for resilient 

design and operations simultaneously. Since the availability of each process after 

the occurrence of disruptive events was uncertain, systematic approaches for 

handling uncertainty, such as stochastic programming [139] and robust 

optimization [53, 140-142], were employed for resilient design and operations of 

infrastructure networks and supply chains [143-147]. However, resilience in these 

optimization models was not quantified explicitly as an intrinsic property of the 

system. Moreover, as these models considered infrastructure systems with only one 
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species, they were not suitable for chemical process design problems that involved 

multiple species in each stream. A relevant concept of resilience was flexibility 

[148] and a quantitative measure was developed to predict the probability of 

feasible operation for a design [149]. Another relevant concept of resilience was 

reliability, which described the failure rate of a unit/process over time due to 

equipment aging [150, 151]. Therefore, the strategies for improving reliability, 

such as employing parallel production units, could also be considered for 

enhancing the resilience of the overall process systems [152, 153]. 

There are several research challenges to develop a general framework for resilience 

optimization. The first challenge is to propose a novel quantitative measure of 

resilience for process systems. The quantitative measure should be able to account 

for both performance degradation and system recovery. Additionally, resilience is 

an intrinsic property of a system, indicating that the quantitative measure should 

be independent of external systems or volatile markets. The second challenge is 

how to model resilience enhancement strategies, and how to integrate the 

resilience enhancement strategies and process models into an integrated systems 

analysis and optimization framework. Because the resilience of a process system is 

relevant to both safety and operability, the system performance under the worst-

case realization of disruptive events is of paramount importance [154]. Adaptive 
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robust optimization is an emerging method to handle uncertainty in sequential 

decision-making processes and to hedge against the worst-case realization of 

uncertainty [155, 156]. Although adaptive robust optimization could be an 

effective tool for addressing problems on resilient design and operations, there are 

research challenges on developing a two-stage adaptive robust optimization model 

for resilience optimization and on effective solution of the resulting optimization 

problem that cannot be tackled directly by any off-the-shelf optimization solvers 

due to its multilevel structure. The goal of the corresponding chapter is to develop 

a resilient design and operation framework for energy systems 

1.4 Outline of the dissertation 

This dissertation addresses the sustainable design and synthesis of two energy 

systems, namely the algal biofuel and bioproduct manufacturing system (Chapters 

2 – 4) and the shale gas processing and chemical manufacturing system (Chapter 5 

and Chapter 6). The roadmap of the dissertation is provided as follows. 

In Chapter 2, we address the sustainable design and synthesis of algal biofuel and 

bioproduct manufacturing processes. We propose by far the most comprehensive 

superstructure capable of producing biodiesel, hydrogen, propylene glycol, 

glycerol-tert-butyl ether, and poly-3-hydroxybutyrate from microalgae. The major 
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processing sections include cultivation, harvesting, lipid extraction, remnant 

treatment, biogas utilization, biofuel production, and bioproduct manufacturing. 

Based on the superstructure, we integrate a cradle-to-gate LCA and techno-

economic analysis with multiobjective optimization to simultaneously optimize the 

environmental and economic performance. We also apply a tailored global 

optimization algorithm to efficiently solve the problem in reasonable computation 

times.  

In Chapter 3, we address the optimal design of a large-scale processing network for 

producing a variety of algae-based fuels and value-added bioproducts under 

uncertainty. We develop by far the most comprehensive processing network with 

46,704 alternative processing pathways. Based on the superstructure, a two-stage 

adaptive robust mixed-integer fractional programming model is proposed to tackle 

the uncertainty and select the robust optimal processing pathway with the highest 

return on investment. Since the proposed problem cannot be solved directly by 

any off-the-shelf solver, we develop an efficient tailored solution method that 

integrates a parametric algorithm with a column-and-constraint generation 

algorithm.  

In Chapter 4, we develop a consequential LCO framework that simultaneously 

optimizes consequential environmental impacts and economic performance. We 
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propose a general system boundary that encloses processes linked by markets. 

Based on the general system boundary, we develop a multiobjective optimization 

model, which integrates process models and market models with the tenets of 

consequential LCA and techno-economic analysis methodologies. To efficiently 

solve the resulting nonconvex MINLP problem, a global optimization algorithm is 

proposed to integrate the inexact parametric algorithm and the branch-and-refine 

algorithm. The application of the proposed framework is illustrated through a case 

study of producing renewable diesel from microalgae. We conduct detailed market 

analysis to identify the consequences associated with the renewable diesel 

production process. 

In Chapter 5, we propose a novel process synthesis framework that combines 

product distribution optimization of chemical reactions and superstructure 

optimization of the process flowsheet. A superstructure with a set of 

technology/process alternatives is first developed. Next, the product distributions 

of the involved chemical reactions are optimized to maximize the profits of the 

effluent products. Extensive process simulations are then performed to collect 

high-fidelity process data tailored to the optimal product distributions. Based on 

the simulation results, a superstructure optimization model is formulated as an 

MINLP to determine the optimal process design. A tailored global optimization 
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algorithm is employed to efficiently solve the large-scale nonconvex MINLP 

problem. The resulting optimal process design is further validated by a whole-

process simulation. The proposed framework is applied to a comprehensive 

superstructure of an integrated shale gas processing and chemical manufacturing 

process, which involves steam cracking of ethane, propane, n-butane, and i-

butane.  

In Chapter 6, we propose a general framework for resilience optimization is 

proposed that incorporates an improved quantitative measure of resilience and a 

comprehensive set of resilience enhancement strategies for process design and 

operations. The proposed framework identifies a set of disruptive events for a given 

system, and then formulates a multiobjective two-stage adaptive robust mixed-

integer fractional programming model to optimize the resilience and economic 

objectives simultaneously. The model accounts for network configuration, 

equipment capacities, and capital costs in the first stage, and the number of 

available processes and operating levels in each time period in the second stage. A 

tailored solution algorithm is developed to tackle the computational challenge of 

the resulting multi-level optimization problem. The applicability of the proposed 

framework is illustrated through applications on a chemical process network and a 

shale gas processing system. 
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The dissertation concludes in Chapter 7. 
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CHAPTER 2 

SUPERSTRUCTURE OPTIMIZATION OF ALGAL BIOFUEL AND BIOPRODUCT 

MANUFACTURING PROCESSES 

2.1 Introduction 

In this chapter, we develop by far the most comprehensive superstructure, which 

is able to produce biodiesel and four types of bioproducts, including hydrogen, 

propylene glycol (PG), glycerol-tert-butyl ether (GE), and poly-3-hydroxybutyrate 

(PHB). In particular, the hydrogen can be produced by either steam reforming, 

autothermal reforming, or aqueous-phase reforming. The superstructure also 

includes a methanol synthesis process in the biogas utilization section. 

Additionally, we simulate the lipid extraction processes using hexane and n-

butanol as extractants for data validation. Based on the proposed superstructure, a 

cradle-to-gate life cycle assessment (LCA) is performed to account for the life cycle 

greenhouse gas (GHG) emissions associated with three life cycle stages, namely 

feedstock acquisition, transportation, and algal biodiesel and bioproduct 

manufacturing. Following a life cycle optimization methodology, we further 

integrate the LCA and techno-economic analysis with multiobjective optimization 

to simultaneously optimize the environmental and economic performance. A 

tailored global optimization algorithm is applied to circumvent the computational 
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difficulties caused by separable concave terms and mixed integer fractional terms 

in the objective functions. The results from this study justify the significance of 

manufacturing bioproducts in algal biodiesel processes and offer guidance to 

related technology advancement. 

The rest of this paper is organized as follows. The process description is presented 

in the next section, followed by a brief explanation of a cradle-to-gate LCA. 

Necessary information of the optimization problem is provided in the problem 

statement section. Later, we propose a multiobjective mixed-integer nonlinear 

programming (MINLP) model and the global optimization strategy for efficient 

computation. In the next section, we discuss the LCA results, economic 

performance, and the computational comparison. The article is concluded in the 

last section. 

2.2 Process description 

A process superstructure refers to a collection of process alternatives that are 

candidates for a feasible or optimal design [157]. In this chapter, we propose by far 

the most comprehensive superstructure for the production of biodiesel and 

bioproducts from the microalgae strain Chlorella vulgaris, as illustrated in Figure 2. 

The superstructure can be divided into seven sections: cultivation, harvesting, lipid 



 

29 

 

extraction, remnant treatment, biogas utilization, biofuel production, and 

bioproduct manufacturing. The details of each section of the superstructure are 

given in the following subsections. 
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Figure 2. The proposed superstructure for the production of bioproducts and biofuel. Blue, purple, and green streams represent system 

input, system output, and connecting streams, respectively. 
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2.2.1 Cultivation 

 

Figure 3. Process diagram of the cultivation section. 

Given a carbon source, nutrients, and water, a commonly cultivated microalgae 

strain, Chlorella vulgaris (nitrogen starvation may significantly increase the lipid 

content, but a widely used lipid content of 25 wt% is applied), is flourished in 

raceway open ponds (Figure 3). The carbon dioxide concentration in the carbon 

source is 21.14%, which falls in the range of healthy growth of microalgae [158]. 

Algal biodiesel and bioproducts are considered environmentally beneficial because 

waste carbon dioxide generated in the process can utilized by microalgae as extra 
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carbon source. Enlightened by this idea, we recycle the off-gas streams to the open 

ponds instead of releasing them to the environment. 1 kilogram of carbon dioxide 

consumed contributes to 0.526 kilograms of microalgae [159]. However, it is 

impossible for microalgae to capture and digest the entire input carbon source in a 

single-pass injection. Due to the difficulty of collecting emitted gas from the open 

ponds, as much as 25% of the carbon dioxide together with the oxygen produced 

during photosynthesis is expelled to the environment [159]. 

2.2.2 Harvesting 

Containing only 0.015 wt% of mature biomass, the immediate product from the 

open ponds is unable to be handled and utilized by downstream technologies. 

Therefore, as shown in Figure 4, we employ a three-step strategy in the harvesting 

section to reduce the undesired water content. The first equipment unit is a 

sedimentation basin, which separates most of the surplus water from the dilute 

product via autoflocculation and achieves a concentration of 1 wt% [160]. The 

flocculant added to assist gravitational separation is a type of cationic 

polyelectrolyte and the effective concentration is 3×10-6 according to existing 

experimental results [161]. We assume the impact of the flocculant on the 

downstream processing is negligible due to the small quantity. The second step 

involves the use of a dissolved air flotation system, which increases the algal 
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concentration to 10 wt% [47]. Finally, the algae slurry is processed by one of the 

two technology alternatives: pressure filtration and centrifugation. Both 

technologies can thicken the algae slurry to 30 wt% [162, 163], but pressure 

filtration consumes less energy while a centrifuge is less expensive to install. A 

total of 5 wt% of the separated water is purged, while the remaining is recycled to 

the open ponds. As discussed in our previous work, the equipment in the 

cultivation and harvesting sections operate only during daytime because sun light 

is one of the necessary ingredients for the algae growth. Therefore, a biomass 

storage tank to store 50% of biomass is employed at the end of the harvesting 

section so that the downstream processes receive biomass feed continuously 

throughout the day. Inoculation is not considered in this superstructure. 

 

Figure 4. Process diagram of the harvesting section. 
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2.2.3 Lipid extraction 

Since lipid materials, in the form of fatty acids and triacylglycerols, are mixed in 

the algal cells with other components, such as proteins and carbohydrates, solvent 

extraction is applied to separate these convertible lipids. Before sending the algal 

biomass directly to extractors, it should be noted that the inclusion materials are 

protected by cell membranes and cell walls, which may to some extent inhibit the 

effective contact between the extractant and the target lipids. Following the results 

from Lee [164], we consider five cell disruption methods in the superstructure to 

improve the efficacy of the solvent extraction system. In Figure 5, bead beating, 

microwaving, high pressure homogenization, and sonication are four energy-

intensive cell disruption methods with various disruption effects. The last option is 

to bypass the cell disruption, which lowers the lipid content available for 

extraction, but avoids the exceeding energy consumption. The mass balance model 

of this section is shown in equations (S20)–(S39) and corresponding data are listed 

in Table S19 and Table S20. 
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Figure 5. Process diagram of the lipid extraction section. HE represents heat exchanger. 

 

 

Table 1. Simulation results for hexane extraction and n-butanol extraction. 

Hexane extraction 

Stream ext1 

mass flow rate of lipid 43.75 kg/h 

mass flow rate of water 0 kg/h 

mass flow rate of 

solvent 
1,000 kg/h 

Distillation 

column  

DC1 

top temperature 345 K 

bottom temperature 420 K 

heat duty 0.2 MW 
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cold duty 0.19 MW 

capital cost 0.37 
$M

M 

n-butanol 

extraction 

Stream ext1 

mass flow rate of lipid 6,684 kg/h 

mass flow rate of water 5,044 kg/h 

mass flow rate of 

solvent 
24,160 kg/h 

Distillation 

column  

DC1 

top temperature 380 K 

bottom temperature 459 K 

heat duty 17.23 MW 

cold duty 15.63 MW 

capital cost 0.77 
$M

M 

Distillation 

column  

DC0 

top temperature 383 K 

bottom temperature 403 K 

heat duty 44.29 MW 

cold duty 43.84 MW 

capital cost 1.42 
$M

M 

 

The extraction technologies belong to wet extraction, which avoids the intensive 

energy consumption in drying the microalgae to powers. Most existing research 

regarding lipid extraction is limited to finding appropriate solvents at the 

laboratory scale [165], but these experimental results might be less attractive and 

profitable when they are embedded in a complete process. For instance, butanol is 

a commonly available solvent with a good lipid extraction yield and little side 

effect to most downstream processes, but the butanol recovery step consumes a 

large amount of utilities due to the existence of water. In this chapter, we consider 

using solvent extraction to separate lipids from wet algal paste without completely 
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drying the biomass. Three chemicals, namely hexane, n-butanol, and supercritical 

carbon dioxide, are considered as alternative solvents in the lipid extraction. 

Because of a lack of justified data of complete extraction-recovery cycles for 

hexane and n-butanol, the processes for these solvents are constructed and 

simulated using Aspen Plus [166]. 

Hexane is not miscible in water, so only one distillation column is necessary to 

partition lipid and the solvent. In contrast, butanol is soluble in water and at least 

two distillation columns are needed if the solvent is to be reused. As a result of the 

large amount of energy spent on separating water and alcohol, lipid extraction by 

butanol loses its significant advantage in a complete extraction-solvent recovery 

system. The cursory analyses are concluded from the simulation results as listed in 

Table 1. The data for supercritical carbon dioxide extraction is retrieved from 

literature [167, 168]. 

2.2.4 Remnant treatment 

Despite the significance of algal lipids in biofuel conversion, they only contribute 

to as much as 25 wt% of the dry biomass. In fact, a substantial proportion of the 

energy captured by algae still remain in the lipid-extracted algal cells, or algal 

remnant. In the proposed superstructure (detailed by Figure 6), algal remnant is 

introduced into digesters, where long chain organic molecules are decomposed 
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into short chain carbon dioxide and methane by active anaerobic bacteria. 

Methane is carefully purified from the waste carbon dioxide through a pressure-

swing-adsorption system. Simultaneously, important elements like nitrogen and 

phosphorus are released to the effluent and reused in algae cultivation after solid 

fertilizers are separated by centrifugation. 

 

Figure 6. Process diagram of the remnant treatment section. 

2.2.5 Biogas utilization 

 

Figure 7. Process diagram of the biogas utilization section. 

In order to fully exploit the methane from anaerobic digestion, two methods are 

considered: on-site power generation and methanol synthesis. If power generation 
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is chosen (left in Figure 7), the fuel gas is sent to a combustor, and the 

corresponding flue gas enters a turbine and a heat recovery steam generation 

system sequentially, resulting in an overall energy-to-electricity conversion of 58 

% on the basis of lower heating values of the combustible gases [159]. Otherwise, if 

methanol synthesis is selected, the methane feed is introduced into a reformer 

together with steam, and converted into carbon monoxide and hydrogen. Dried by 

a demister, the syngas product is enriched by a carbon dioxide stream and 

converted to methanol. Finally, methanol, waste water, and unreacted gases are 

obtained from two distillation columns. A small proportion of the unreacted gases 

are purged to a furnace, while the remaining are recycled to the methanol reactor. 

In case that the methanol is more than the downstream demand or no methanol is 

produced in this section, we allow methanol to be sold to or purchased from the 

market. The possibility of buying and selling methanol simultaneously is 

eliminated by employing the binary variable. 

2.2.6 Biofuel production 

A lot of studies have focused on transesterification of lipids from biomass resources 

and various reaction conditions have been tested and simulated [169, 170]. In 

Figure 8, four transesterification technologies are considered, namely, sodium 

methoxide-catalyzed transesterification [171], heterogeneously catalyzed 
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transesterification [172], enzyme-catalyzed transesterification [173], and 

supercritical methanol transesterification [172]. Whatever technology selected, the 

core reaction involves transforming one molecule of triglyceride to one molecule 

of glycerol and three molecules of fatty acid alkyl esters, or biodiesel. Although 

methanol is commonly regarded as the other reactant in transesterification, short 

chain alcohol chemicals, like ethanol, propanol, and butanol are able to complete 

the same reaction. Therefore, we assume that butanol residue from the lipid 

extraction section undergoes transesterification with priority. Once the butanol 

runs out, or no butanol is mixed in the lipid feed, methanol is introduced and 

continues the reaction until the lipids run out.  
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Figure 8. Process diagram of the biofuel production section. 



 

42 

 

2.2.7 Bioproducts manufacturing 

 

Figure 9. Process diagram of the bioproduct manufacturing section. 

The immediate products from the biofuel production section are biodiesel and 

glycerol with an approximate weight ratio of 10:1. Glycerol is an important 

platform chemical which can be upgraded to value-added chemicals through 

selective oxidation, etherification, hydrogenolysis, dehydration, reforming, 
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carbonate, epichlorohydrin, etc. [33] In this chapter, we consider the conversion of 

purified glycerol from microalgae to four types of bioproducts, including hydrogen, 

PG, GE, and PHB. The process flow diagram of this section is shown in Figure 9. 

2.2.7.1 Hydrogen 

Yielding only water during oxidation, hydrogen is regarded as a clean and efficient 

fossil fuel substitute [174]. Furthermore, it participates in some important 

industrial reactions, like hydrotreating and hydrocracking [175]. Motivated by 

these merits, researchers attempted to produce hydrogen from various feedstocks, 

including surplus glycerol from biodiesel production, and through a plethora of 

technologies, including gasification, pyrolysis, catalytic steam reforming, and so 

forth [174, 176]. In this chapter, we investigate hydrogen production from purified 

glycerol via three different methods: steam reforming, autothermal reforming, and 

aqueous-phase reforming.  

In the first method, purified glycerol and water are sent to a steam reformer at 565 

C and converted to carbon monoxide, hydrogen, methane, ethylene and char 

[177, 178]. The feed glycerol is heated to 565 C by a heat exchanger based on the 

values reported by Jones et al. [175] As an endothermic reaction, glycerol steam 

reforming extracts heat from the furnace, where all the purged gases are burned. 

The solid char is eliminated from the reaction products via a cyclone, while the 
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remaining gases and a stream of steam are injected into a water-gas-shift reactor, 

where most of the carbon monoxide and water are converted to carbon dioxide 

and hydrogen [179]. After surplus water is separated by a demister, the gas 

products undergo pressure swing adsorption to obtain a hydrogen stream with 99 

wt% purity. As also assumed by Jones et al. [175], the 1% impurities primarily 

consist of carbon dioxide which does not influence the propylene glycol 

production. 

Hydrogen production via autothermal reforming of glycerol is able to achieve a net 

zero energy consumption by appropriately combining the endothermic reforming 

reaction and the exothermic oxidation of glycerol [180]. Regarding the oxidation 

reaction, the consumed oxygen is produced on site by an air separation unit, whose 

by-product, nitrogen, can be sold to the market [181]. Next, gas products are sent 

to a water-gas-shift reactor, a demister, and a pressure-swing-adsorption system 

sequentially in a similar fashion to steam reforming. 

The last hydrogen production technology is aqueous-phase reforming. As reported 

by Guo et al. [182], this reforming reaction takes place under a relatively mild 

temperature of 225 C in the presence of a Ni-B amorphous alloy catalyst, but 

achieves a single loop conversion of only 9%. Large amounts of unreacted glycerol 

and water are recycled from a demister to the inlet of the reactor. Since the 
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hydrogen selectivity is already high in aqueous-phase reforming, the gas products 

bypass the energy intensive water-gas-shift reaction for hydrogen enrichment, and 

undergo a pressure-swing-adsorption system for hydrogen purification directly 

after the demister. 

2.2.7.2 Propylene glycol 

PG, or 1,2-propanediol, commonly produced by propylene oxidation, serves as an 

important feedstock of unsaturated polyester resins [183]. As opposed to the 

conventional route, PG is produced through catalytic hydrogenolysis of glycerol in 

the present superstructure. Glycerol and hydrogen react at 190 C and become a 

mixture of water, PG, propanol, acetone, and unreacted glycerol and hydrogen. 

Two flash drums are employed sequentially to separate unreacted hydrogen from 

the other products, and 5% of the gas materials are purged to the furnace [184, 

185]. Next, 99.5 wt% PG product is achieved by using two distillation columns to 

separate waste and unreacted materials from the product. 

2.2.7.3 Glycerol-tert-butyl ether 

Another important group of glycerol derivatives are GE’s. Specifically, di-tert-

butyl glycerol ether (DE) and tri-tert-butyl glycerol ether (TE) are very useful 

additives to diesel fuels due to their antidetonant and octane-enhancing nature 

[183]. Additionally, they can reduce the emissions of fumes, particulates, and 
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carbon oxides resulting from fuel combustion. In this chapter, a mixture of DE and 

TE can be produced following the purification of crude glycerol. 

Besides glycerol, the other important raw material for GE production is 

isobutylene, which is mixed with 10 wt% isobutane. The etherification reaction 

takes place at 90 C and 1.4 MPa [186]. Both the feed and the products maintain 

their liquid states under such conditions. Before being sent to the reactor, the 

purified glycerol is regarded as an extractant to separate most of the unreacted 

glycerol and mono-tert-butyl glycerol ether from the etherification reaction. Next, 

the raffinate is introduced into a distillation column where unreacted isobutylene 

and isobutane are separated from the top of the column and recycled to the reactor 

after a small amount is purged. The remaining products undergo distillation again 

and become qualified products.  

2.2.7.4 Poly-3-hydroxybutyrate 

As a group of polyhydroxyalkanoates, PHB’s are attractive biodegradable 

substitutes for conventional petroleum-derived plastics and can be upgraded to 

fibers, films, and heteropolymers [187]. According to Posada et al. [188], PHBs can 

be synthesized by Cupriavidus necator JMP 134 over a glycerol-based substrate. In 

the PHB process, the sterilized glycerol is sent into a fermentation reactor with 

abundant air. The fermentation reaction converts glycerol to water, carbon 
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dioxide, intracellular PHB, and other cell building materials, which are regarded as 

remnant. Next, a centrifuge is employed to reduce the water content in the 

fermentation products. After cell disruption by high pressure homogenization, the 

concentrated biomass is sent to an extractor so that the PHB product can be 

extracted by diethyl-succinate (DES). The raffinate is sent to anaerobic digestion 

for energy recovery, while the extracts are introduced to a decanter after being 

cooled to 25C by a heat exchanger. The PHB product in the light phase is further 

dried by a spray drier, and DES solvent in the heavy phase is reused. 

2.3 Life cycle analysis and optimization 

The goal of this study is to quantitatively determine the minimum life cycle 

environmental impacts of the bioproducts and biodiesel from microalgae. The 

functional unit of this LCA is defined as 1 kg of bioproduct manufactured, 

following the definitions by Rostkowski et al. [189] In this chapter, the impact 

category to assess the life cycle environmental performance of manufacturing 

bioproducts and biodiesel from microalgae is dedicated to global warming. The 

corresponding environmental metric, GWP, is calculated using the IPCC 

(International Panel on Climate Change) method with characterization factors of a 

100-year horizon (GWP 100a) [190].  
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2.3.1 System boundaries 

 

Figure 10. System boundaries of a cradle-to-gate LCA for the production of biodiesel and 

bioproducts from microalgae include three life cycle stages: feedstock acquisition, 

transportation (denoted together by blue blocks), and algal biodiesel and bioproduct 

manufacturing (denoted by green dotted box). Direct and indirect GHG emissions in the 

manufacturing stage are represented with red and orange blocks, respectively. Major process 

operations and final products are denoted as gray and purple blocks, respectively. P&T, 

production and transportation. 

Refined from the proposed superstructure, the system boundaries for the LCA is 

illustrated with major processing blocks, emissions, and input and output materials 

in Figure 10. As a process-based LCA, the system boundaries take into 

consideration the life cycle GHG emissions associated with three life cycle stages, 

namely feedstock acquisition, transportation, and algal biodiesel and bioproduct 

manufacturing. The direct emissions in the algal biodiesel and bioproduct 

manufacturing stage include off-gas released in the cultivation section and 
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wastewater throughout the entire process. The indirect emissions account for life 

cycle GHG emissions associated with electricity, heating, and cooling utilities 

consumed in the process. Due to a lack of information about the end-of-life phases 

of several non-fuel chemicals, the LCA is confined to a “cradle-to-gate” analysis. 

We also assume that the carbon dioxide source comes from a nearby coal-fired 

power plant and water is also available in nearby sources. As a result, the 

environmental impacts associated with flue gas acquisition and transportation, as 

well as water transportation, are excluded from this analysis [191, 192]. 

Furthermore, life cycle GHG emissions associated with materials and energy 

consumed in construction of the processes are also excluded [193].  

2.3.2 Data source 

The LCA in this chapter is based on mass and energy balances of the 

comprehensive superstructure. We make our attempts to find and organize the 

most up-to-date data available in the literature. Data selection is prioritized to U.S. 

databases, such as electricity prices and average transportation distances. Process 

data related to mass and energy balances, as well as parameters for economic 

evaluation are extracted from literature and Aspen Plus simulation results [166]. 

The distances for delivering various feedstocks to the algal biorefinery are assumed 

to be the average U.S. transportation values specified by commodity categories 
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[194], while the life cycle impact assessment parameters for translating the mass of 

various materials, energy consumption, and transportation quantity (measured by 

the product of distance and mass of the feedstock) to corresponding GWP 

contributions are taken from the Ecoinvent database [195]. 

2.3.3 Co-product allocation 

There are several potential co-products other than bioproducts (hydrogen, PG, GE, 

and PHB) and biodiesel in the superstructure, namely fertilizer from anaerobic 

digestion, methanol and electricity from biogas utilization, and nitrogen and 

hydrogen from hydrogen production. According to the ISO guidelines [196], we 

treat the surplus electricity as an environmental credit and subtract the 

corresponding environmental impact from the total GWP. Next, a portion of the 

electricity-modified total GWP is allocated to each co-product based on its 

economic value when leaving the system boundaries. 

2.3.4 Life cycle optimization 

Some metrics are developed to quantitatively evaluate a process. For instance, the 

environmental impact can be quantified by the total GWP, while the economic 

performance of a process can be evaluated by the total annualized cost (TAC) [46]. 

Commonly, life-cycle and techno-economic analyses require pre-defined processes 

and systems, therefore lacking the ability to generate feasible process designs from 
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a process superstructure with better or best process performance (e.g. economics 

and environmental sustainability). In this chapter, an integrated methodology 

termed life cycle optimization [12], which enables the multiobjective optimization 

of a system under both economic and environmental criteria, is used to 

simultaneously optimize environmental and economic performance of 

manufacturing bioproducts and biodiesel from microalgae. This methodology 

requires establishing a rigorous equation-based multiobjective mathematical 

optimization model based on the proposed superstructure for manufacturing algal 

bioproducts and biodiesel. The problem statement, model formulation, and 

optimization algorithms are introduced in the following sections.  

2.4 Problem statement 

In this life cycle optimization problem, the most comprehensive superstructure by 

far is developed for the production of algal bioproducts and biodiesel. The 

superstructure consists of seven sections and a variety of technology alternatives. 

Specifically, the cultivation section is established with raceway open ponds. The 

harvesting section encompasses a settling basin, a dissolved air flotation system, 

and either a pressure filter or a centrifuge in the end. The lipid extraction section is 

comprised of a biomass storage tank, a cell disruption system with five technology 

alternatives, and three solvent extraction options. The remnant treatment section 
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is made up of an anaerobic digester and a centrifuge, followed by a biogas 

utilization section where biogas is consumed either by combustion or methanol 

synthesis. The biofuel production section employs four transesterification 

technology alternatives to produce biodiesel, and the last bioproduct 

manufacturing section could synthesize hydrogen with three technologies, PG, GE, 

and PHB.  

The mass flow rate of the feed carbon source is fixed. Physical properties of feed 

and product materials are given, including, but not limited to, species distributions 

of nutrients, flocculant, natural gas, steam, hexane, n-butanol, methanol, sodium 

methoxide, hydrochloric acid, oxygen, hydrogen, isobutylene, and DES. 

Additionally, we are given product distributions and conversions of microalgae 

cultivation, anaerobic digestion, combustion of organic materials, steam reforming 

reactions of biogas and glycerol, transesterification, water-gas-shift reaction, and 

synthesis reactions for methanol, PG, GE, and PHB. Operating temperatures and 

pressures of all operations as well as split fractions of separation units are known. 

Unit power, heating, or cooling utility consumption, or temperature differences 

and efficiency of heat-exchanging equipment are available in the literature. We are 

also given parameters pertaining to economic evaluation including life span of the 

biorefinery, interest rate, sizing factors, base-case costs and mass flow rates, 
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chemical engineering plant cost indices, capital-to-investment parameter, and 

prices of feed materials and products. For the purpose of the LCA, transportation 

distances and damage factors for GWP calculations are known. 

The aim of this optimization model is to determine the most sustainable strategy of 

producing value-added bioproducts and biodiesel. Decision variables of this 

multiobjective optimization problem include technology selections in harvesting, 

lipid extraction, biogas utilization, biofuel production, and bioproduct 

manufacturing, mass flow rates of all streams, power, heating, or cooling utility 

consumption or generation of different equipment, equipment capital cost, 

operating cost, and GWP’s for feedstock acquisition, transportation, and algal 

biodiesel and bioproducts manufacturing. 

2.5 Model formulation and solution method 

A bi-criteria MINLP model is formulated to optimize the design and operation of 

algal biodiesel and bioproducts manufacturing processes. This model consists of an 

environmental objective function, an economic objective function, and four types 

of constraints. In the mass balance constraints, the relationship between the input 

and output streams of a separation unit is developed based on the split fraction and 

mass conservation of every species (44 species are considered). The reactions are 

described with stoichiometric coefficients and conversions, or product 
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distributions, depending on the type of data available in the literature. Also, 

integer variables are introduced to model technology selection decisions. The 

energy balance of each unit is closely related to the corresponding mass balance 

such that the electricity, heating, and cooling utility consumption are based on the 

mass flow rates of the input and output materials. The economic evaluation 

constraints calculate annualized investment cost based on equipment capital costs 

which follow a nonlinear scaling rule. These constraints also determine the annual 

operating cost, taken as the sum of feedstock cost, utility cost, operating & 

maintenance cost, and waste treatment cost. Finally, the TAC is calculated as the 

sum of the annualized investment cost and the annual operating cost. The 

constraints for life cycle environmental impact analysis first evaluate the life cycle 

GHG emissions originating from raw material acquisition, transportation, and algal 

biodiesel and bioproduct manufacturing. Next, the emissions are translated into 

environmental impacts, which are finally aggregated to the total GWP.  

The bi-criteria MINLP model consists of one environmental objective function and 

one economic objective function. Each objective function could optimize either 

total quantities or unit quantities. For instance, problem (P1) minimizes total GWP 

and TAC simultaneously. The constraints can be found in the published article 

[22]. Despite its common usage in design problems, minimizing total objective 
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functions sometimes fails to reflect the competitiveness of a product, especially 

when the optimal solution achieves a slightly lower cost or environmental impact 

by significantly reducing the production [197]. Minimizing unit objective 

functions, however, considers both total behavior and the product quantity, thus 

providing an opportunity to directly and constructively compare the optimal 

results with real market values. To that end, the denominators of the unit objective 

functions are selected as the functional unit of the LCA, the prevalent units on the 

real market, or the commonly used units in the literature. For instance, the 

environmental objective in problem (P2) is to minimize the GWP per 1 MJ of 

energy of biodiesel produced [192, 198], and the corresponding economic objective 

is to minimize the TAC per gasoline gallon equivalent (GGE) of biodiesel produced 

[21]. In the objective functions of (P2), the variable mtac represents the modified 

TAC by considering the byproducts as credits, dieselv  stands for the total volume of 

the biodiesel produced during a year, mgwp is the modified total GWP which 

accounts for the allocation of surplus electricity, and the denominator t helps 

determine the unit GWP of algal biodiesel. 

(P1)  

min   

min   

s.t.    mass balance constraints

         energy balance constraints

         economic evaluation constraints

         life cycle environmental impact analysis constraints

tac

gwp
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(P2)  

min   

min   

s.t.    mass balance constraints

         energy balance constraints

         economic evaluation constraints

         life cycle environmental impact analysis constraints

diesel

mtac

v

mgwp

t
 

Both problems (P1) and (P2) are formulated as bi-criteria, nonconvex MINLP’s, 

which could be computationally demanding for general purpose solvers, due to 

their combinatorial and nonconvex nature. Therefore, several solution methods are 

applied to solving these problems. Regarding the objective functions, the -

constraint method is applied to transfer the environmental objective function into 

a new -constraint [199]. For (P1), the only nonlinear terms are the exponential 

sizing equations that evaluate the equipment capital costs. With sizing factors 

ranging from 0.4 to 0.7, these sizing equations are actually separable concave 

functions. An MINLP problem with separable concave functions in the objective 

function can be effectively handled by a branch-and-refine algorithm [200, 201]. 

(P3)   

min   =

s.t.    Original constraints

          

dieselobj mtac Q v

mgwp t

 

 

 

(P4)  

min   =

s.t.    Original constraints

        

        piecewise linear approximation functions

dieselobj mtac Q v

mgwp t

 

 
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Global Optimization Strategy 

1: Set Q = 0, 1outIter  , obj    

2: While outobj TOL  

3: 
 

Set 0GLB  , GUB   , 1inIter  ,GAP    

4: 
 

Initialize problem (P2) with two insertion points 

5:  While inGAP TOL  

6:   
Solve problem (P2), and obtain optimal solution x* and optimal 

objective function value obj* 

7: 
 

 Evaluate the original objective function with x*, and obtain obj  

8: 
 

 Reconstruct relaxed problem (P2) by adding x* as a new partition point 

9: 
 

 

Set 

max{ , }G G *LB LB obj , min{ , }G GUB UB obj , 1 /G GGAP LB UB  , 

1in inIter Iter   
10:  end while 

11:  Update 
*

diesel,*

mtac
Q

v
 , 1out outIter Iter   

12: end while 

13: Return Q 
Figure 11. Pseudo-code of the global optimization strategy. 

For the model (P2), the additional presence of a fractional term in the economic 

objective function leads to more computation challenges. In this chapter, the 

parametric algorithm dedicated to solving problems with fractional terms is 

applied and integrated with the branch-and-refine algorithm [21]. In the 

parametric algorithm, we introduce a parameter Q and replace the objective 

function with obj as in problem (P3). Consequentially, Newton’s method can be 

applied to search for the optimal objective function value of (P2) [202]. Regarding 

the remaining nonlinear terms in (P3), we formulate a relaxed, mixed-integer 

linear programming (MILP) problem (P4) using the proposed piecewise linear 
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approximation. As a result, the optimal objective function value of (P4) 

underestimates that of (P3), but gradually approaches it when the accuracy of the 

approximation functions increases [21]. In order to properly implement the two 

algorithms, a global optimization strategy is employed whose pseudo-code is 

shown in Figure 11. The outer loop implements the parametric algorithm based on 

Newton’s method, while the inner loop implements the branch-and-refine 

algorithm based on successive piecewise linear approximations to ensure the 

relaxed formulation achieves enough approximation accuracy. outIter  and inIter  are 

the iteration counters for the outer loop and inner loop, respectively. The absolute 

optimality tolerances for the outer loop and inner loop are denoted as outTOL  and 

inTOL , respectively. The current upper bounds and lower bounds are denoted as 

GLB  and GUB , respectively. The initial values of obj and GAP are set to +∞. Thus, 

this non-convex MINLP problem can be solved by using only an MILP solver 

[197]. 

2.6 Results and discussion 

All the computational experiments are conducted on a Dell Optiplex 790 desktop 

with Intel(R) Core(TM) i5-2400 3.10GHz CPU, 8GB RAM and Windows 7 64-bit 

operating system. All the models are coded in GAMS 24.3.1. [203] Specifically, the 

MILP solver employed is CPLEX 12.6, while the MINLP solvers utilized are 
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BARON 14.0 [204], and SCIP 3.1. The relative optimality tolerances of BARON 

14.0 [204] and SCIP 3.1, and the absolute optimality tolerances for both the 

parametric algorithm and the branch-and-refine algorithm are all set to 10-6.  

2.6.1 Environmental life cycle analysis and optimization results for 

manufacturing bioproducts and biodiesel from microalgae 

In this section, we present the life cycle environmental performance of producing 

biodiesel and each type of bioproduct from microalgae, and compare the 

optimization results with the results from the literature. 

Table 2. Life cycle CO2 equivalent emissions from hydrogen production. 

Hydrogen production method 
GWP (kg CO2-eq/kg 

H2) 
Source 

Steam reforming of CH4 11.59 
Literature 

[205] 
Total Autocatalytic decomposition 

of CH4 
1.10 

Electrolysis cell with renewable 

energy sources 
2.54 

Literature 

[206] 

Steam reforming of glycerol 4.28 This work 

 

If the bioproduct manufacturing section is devoted to hydrogen production, the 

lowest unit GWP obtained is 4.28 kg CO2-eq/kg H2 and the corresponding optimal 

process selects pressure filtration in the harvesting section, hexane as the lipid 

extractant, direct combustion for biogas utilization, enzyme-catalyzed 

transesterification for biofuel production, and glycerol steam reforming to produce 
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hydrogen. The life cycle environmental impacts of hydrogen production have been 

studied by several researchers, and the unit GWP ranges approximately from 1 to 

12 kg CO2-eq/kg H2, as shown in Table 2. Hydrogen production by steam reforming 

of glycerol demonstrates significant environmental advantages over the traditional 

fossil-based method, reaching a life cycle GHG reduction of over 63% of the total 

CO2 equivalent emissions. Although autocatalytic decomposition and electrolysis 

exhibit even lower unit GWP, these methods lack technological readiness and tend 

to be less cost-effective at a large scale. 

If we fix PG as the only bioproduct produced, the minimum unit GWP is shown in 

Figure 12 along with environmental impact evaluation results from industry.  We 

note that petroleum-based PG production contributes as much as 3.75 kg CO2-eq 

life cycle emissions per kg of PG produced. Two commercialized bio-based process 

from ADM(R) and Zemea(R) manage to reduce the unit GWP to 86.4% and 58.1% 

of the environmental impact of the petroleum-based counterpart [207, 208]. 

Benefiting from the environmentally sustainable algal biodiesel conversion 

process, the unit GWP of 1.82 kg CO2-eq/kg glycerol-based PG in this research 

achieves a 51.5% GHG reduction by selecting a similar upstream process 

configuration to the environmentally optimal process for hydrogen production. 
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Figure 12. Life cycle CO2 equivalent emissions from PG production. 

Very little attention has been drawn to the LCA of glycerol ether products. 

Beatrice et al. conducted a preliminary LCA on the etherification of glycerol with 

tert-butyl alcohol and isobutylene, but sparse details were reported with respect to 

the specific life cycle GHG emissions of their GE’s [209]. After optimizing the 

bioproduct process focusing on GE synthesis, we obtain a unit GWP of 2.37 kg 

CO2-eq/kg GE produced. We are confident that the corresponding optimal process, 

which selects the same upstream processes as in the previous scenarios will be 

environmentally attractive and worthy of investment. 

For the case of PHB production, the optimal unit GWP is 4.10 kg CO2-eq/kg PHB 

with the same upstream process configuration mentioned in the above three 

bioproduct production scenarios. In contrast, Rostkowski et al. reported a unit 
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GWP of 942 kg CO2-eq/kg PHB produced from waste biogas [189]. The 

environmental performance of producing polyhydroxyalkanoates from corn-based 

PHA fermentation and recovery by Kim et al. fell in the range of 1.6 - 4.1 kg CO2-

eq/kg PHA [210]. In terms of the fossil based products, polypropylene, low density 

polyethylene, and high impact polystyrene were studied, resulting in unit GWP’s 

of 4.34, 3.88, and 6.89 kg CO2-eq/kg plastic, respectively [211]. Through a 

comparison with these literature data, it is apparent that PHB production from 

algal glycerol is environmentally competitive. 

In terms of diesel production, the unit GWP’s of producing petroleum-based diesel 

and soy-derived biodiesel are 0.12 and 0.025 kg CO2-eq/ MJ diesel, respectively 

[192]. In the current work, the production of bioproducts and biodiesel results in a 

minimum unit GWP of 0.040 CO2-eq/ MJ biodiesel, which can be considered at 

least equally environmentally sustainable to other biomass-based diesel products, 

and outperforms the life cycle environmental impacts of manufacturing fossil-

based products. Accordingly, the environmental impact breakdown is shown in 

Figure 13. The manufacturing stage stands out to be the largest contributor to 

GWP. Specifically, the gas emissions from algae cultivation account for more than 

95% of the GWP in this category and heavily affect the environmental impacts of 

the entire process. In the mass balance constraints, we assume the carbon dioxide 
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utilization efficiency to be 75%, which is a conservative approximation mentioned 

by Frank and coworkers [159]. Therefore, an advanced cultivation system fostering 

a robust and efficient algal strain and enabling an improvement of the carbon 

utilization efficiency, could substantially reduce GHG emissions. 

 

Figure 13. Total GWP breakdown for the minimum unit GWP of biodiesel. 

From the above results, bioproducts and biodiesel production from the proposed 

superstructure proves to be environmentally sustainable, especially compared to 

fossil-based chemical products. The excellent performance stems primarily from 

two reasons. First, when biogas derived from lipid extracted biomass is chosen to 

generate electricity and reusable off-gas, there is a significant reduction in GWP 

from selling surplus electricity, and the total environmental impacts also benefit 

from fewer direct GHG emissions. Secondly, the unit GWP is calculated to take 
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into account co-product allocation, averaging the environmental benefit of the 

entire process and further reducing the unit environmental impacts. 

2.6.2 Economic savings for biofuel production 

 

Figure 14. Pareto-optimal curve associated with the UAC and unit GWP. 

In the existing literature, reported costs for algal biodiesel production do not align 

with the goal of cost-competitive biofuels [20, 21, 41]. The unit production cost in 

this chapter, however, is substantially reduced by producing value-added 

bioproduct alongside biodiesel from microalgae. Before further conclusions are 

drawn, a multiobjective MINLP model is solved to minimize unit biodiesel 

production cost and unit GWP simultaneously, and a Pareto-optimal profile is 
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generated with the global optimization strategy and the -constraint method. As 

shown in Figure 14, the Pareto-optimal profile separates the plane into a 

suboptimal region and an infeasible region. Overall, the curve demonstrates the 

trade-off between two competing objective functions: that is, the minimum unit 

annualized cost (UAC) decreases when the corresponding minimum unit GWP 

increases. Also, the UAC drops significantly between points 3 and 4, indicating 

that the UAC is sensitive to certain changes in technology selections. 

With no technology presented in the cell disruption and hydrogen production 

sections, the most environmentally sustainable process selected by point 1 employs 

pressure filtration in the harvesting section, hexane as the lipid extractant, direct 

combustion for biogas utilization, enzyme-catalyzed transesterification for biofuel 

production, and GE synthesis for bioproduct manufacturing. The minimum unit 

GWP of this process is 0.040 kg CO2-eq/MJ biodiesel, but we must shoulder a UAC 

of $10.89/GGE in exchange for the environmental savings. In contrast, the optimal 

process for points 4 to 5 (Figure 15) favors supercritical carbon dioxide in the lipid 

extraction section. As mentioned previously, the selection of this technology could 

lead to considerable unit cost reduction, but gently impact the environment. 

Eventually, the optimal process selected by point 8 achieves a UAC of $2.79/GGE 

and a unit GWP of 0.061 kg CO2-eq/MJ biodiesel by using centrifugation and 
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heterogeneously catalyzed transesterification. Overall, this result has a 74% 

decrease in UAC with a 34% increase in GWP, which shows that significantly 

larger savings in UAC can be obtained than the increase in unit GWP. 

 

Figure 15. Optimal process flow diagram of point 4. 

The optimal economic and environmental performance on the Pareto-optimal 

curve depends not only on technology selection, but also on the strategy to satisfy 

utility consumption. Points 2 and 3 select the same process configuration, but 

differ in the amount of natural gas purchased for steam generation. If heat 

consumption is satisfied by burning natural gas, a large proportion of the resulting 

off-gas can be reused and the environmental impact associated with the heat 

should be much lower than that of purchased steam. However, equipment 

construction for the steam generation system is costly, so as more heat is generated 

on site, the less economically viable a process will be.  
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The economic and environmental performance, as well as the throughputs of the 

four extreme points, corresponding to minimum total GWP, minimum total cost, 

minimum unit GWP, and minimum unit cost are presented in Table 3. From the 

Pareto-optimal point of view, the first two solutions locate in the suboptimal 

region and represent two feasible but non-optimal solutions. Note that the UAC is 

defined as the ratio of the modified TAC to the biodiesel throughput, which should 

be different from the ratio of TAC to the throughput. Similarly, when we calculate 

the unit GWP, the environmental impact allocation is taken into consideration to 

isolate the contribution caused solely by the biodiesel product. According to the 

U.S. Department of Energy [212], the biodiesel price in April, 2014 was 

$4.01/gallon, or $4.18/GGE. From the Pareto-optimal curve, the optimal biodiesel 

production costs for the strategy of co-production of bioproducts outlined in this 

chapter, ranging from $3.54/GGE and $2.79/GGE for points 4 to 8, are cost-

competitive.  

Table 3. Performance of four extreme points. The minimum value in each row is highlighted 

in bold. 

  

Minimu

m total 

GWP 

Minimu

m TAC 

Minimu

m unit 

GWP 

Minimu

m UAC 

TAC ($MM) 224.07 207.04 289.29 240.56 

Total GWP (kt CO2-eq) 1,011.25 1,052.12 1,143.16 1,074.59 

UAC ($/GGE) 3.47 3.35 10.85 2.79 

Unit GWP (kg CO2-eq/ MJ 0.064 0.075 0.040 0.061 
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biodiesel) 

Biodiesel throughput (million GGE) 48.07 47.27 18.73 47.39 

2.6.3 Computational results 

In this subsection, we compare the computation performance of the four extreme 

points, solved by BARON 14.0 [204], SCIP 3.1, and the proposed global 

optimization strategy. The model of minimizing the UAC by BARON 14.0 [204] 

and SCIP 3.1 consists of 23 discrete variables, 9,185 continuous variables, and 9801 

constraints, while the number of continuous variables and constraints slightly 

increases when the problem is solved by the proposed global optimization strategy. 

Table 4. Computation comparison for four extreme points on the Pareto-optimal curves. 

Objective 

function 

BARON 14.0 

[204] 
SCIP 3.1 proposed solution methods 

Optimal 

value 
CPU(s) 

Optimal 

value 
CPU(s) 

Optimal 

value 
CPU(s) Iter. 

Total GWP 

(kt CO2-eq) 
1,011.25 3.37 1,011.25 0.32 1,011.25 0.25 1 

TAC ($MM) 207.04 290 207.04 4.52 207.04 19.34 6 

Unit GWP 

(kg CO2-eq/ 

MJ biodiesel) 

0.04 3,435 NAa 3,600 0.04 0.92 4 

UAC 

($/GGE) 
2.79 3,275 2.79 23.33 2.79 11.06 5-5b 

a. The calculation is terminated with “intermediate infeasible”. A lower bound of 0.012 is 

returned. 

b. This point is solved with two outer iterations by parametric algorithm, costing five 

inner iterations each. 
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As listed in Table 4, the problem of minimizing total GWP can be readily solved by 

all three methods since this problem is simply an MILP. In the remaining cases, 

BARON 14.0 [204] is able to provide global optimal solutions in longer 

computation times. In contrast, the proposed solution methods are able to obtain 

optimal solutions in seconds. SCIP 3.1 is efficient when solving problems with 

economic objective functions, but is unable to provide optimal information for the 

unit GWP problem within 3,600 seconds. Overall, the proposed solution methods 

could considerably improve computation efficiency when globally optimizing 

problems with separable concave terms, or together with a fractional term in the 

objective function. For a similar nonconvex problem with a much larger size, 

general purpose solvers would hardly be able to return global optimal solutions in 

reasonable computation times, whereas the proposed method solves only linear 

problems during each iteration and still holds promise to obtain feasible solutions 

close to the global optimality [200, 213]. 

2.7 Summary 

In this paper, we proposed by far the most comprehensive superstructure for the 

production of biodiesel and four bioproducts, including hydrogen, PG, GE, and 

PHB from microalgae. Based on the proposed superstructure, we conducted a 

cradle-to-gate LCA and developed a bi-criteria MINLP model to simultaneously 
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optimize the environmental and economic performance following the life cycle 

optimization framework. The computation efficiency was enhanced with a tailored 

global optimization strategy. In terms of the environmental impacts, 

manufacturing algal bioproducts resulted in reduction of unit life cycle GHG 

emissions by 5% to 63%, compared with the petrochemical counterparts. The co-

production of value-added bioproducts from algal glycerol helped reduce the 

biodiesel production cost to as low as $2.79/GGE by employing centrifugation in 

the harvesting section, supercritical carbon dioxide as the lipid extractant, direct 

combustion for biogas utilization, heterogeneously catalyzed transesterification for 

biofuel production, and GE synthesis in bioproduct production. Computational 

results show that the tailored solution methods can significantly reduce the 

computational times of solving the proposed nonconvex MINLP problems. 
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CHAPTER 3 

ENERGY SYSTEM DESIGN UNDER UNCERTAINTY  

3.1 Introduction 

In this chapter, we develop a comprehensive processing network to produce 

biofuels and value-added bioproducts from microalgae. A variety of technology 

and process alternatives are incorporated into the network. The superstructure 

consists of eight sections: cultivation, harvesting, dewatering, cell disruption, lipid 

extraction, biofuel production, upgrading, and remnant treatment. The biofuels 

that can be produced from the network include biodiesel and renewable diesel, 

and the bioproducts include hydrogen, propylene glycol, glycerol-tert-butyl ether, 

and poly-3-hydroxybutyrate (PHB). With a total of 46,704 alternative processing 

pathways, the processing network represents by far the largest superstructure for 

producing algal fuels and bioproducts. Since uncertainty usually exists in network 

design problems for algae-based processes, the deterministic optimal solution that 

ignores uncertainty may lead to suboptimal or even infeasible solutions in some 

uncertainty realizations. Therefore, it is critical to handle uncertainty and 

determine the robust optimal processing pathway using a systematic approach. We 

develop a two-stage adaptive robust mixed integer fractional programming 

(ARMIFP) model to cope with uncertainty and determine the robust optimal 
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processing pathway with the highest return on investment (ROI). Since the 

proposed problem cannot be solved directly by any existing solver or method, we 

develop a solution method that integrates a parametric algorithm with a column-

and-constraint generation algorithm. We also investigate the maximum 

productivity under uncertainty via two-stage adaptive robust optimization. The 

obtained robust optimal processing pathway reveals the bottleneck for future 

development of algal processes and technologies.  

The novelties of this work are summarized below: 

• We develop the most comprehensive processing network by far for producing 

biofuels and value-added bioproducts from microalgae with 46,704 possible 

processing pathways; 

• A two-stage ARMIFP model is developed to maximize the ROI under 

uncertainty; 

• Since the proposed problem cannot be solved by any off-the-shelf solver, we 

develop an efficient solution method that integrates a parametric algorithm for 

handling the mixed-integer fractional objective with a column-and-constraint 

generation algorithm for solving an auxiliary two-stage adaptive robust mixed 

integer linear programming (MILP) problem. 

The rest of this article is organized as follows. In the next section, we describe the 

structure and technologies in the proposed network. The formulations of a 

deterministic mixed integer fractional programming (MIFP) model, an uncertainty 

set, and a two-stage ARMIFP model are given in the following section. In the 
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Solution Strategy section, we present a solution method for solving the two-stage 

ARMIFP problem. We present the optimal solutions in the Results and Discussion 

section. The conclusion is given at the end of the article. 

3.2 Network for producing biofuels and bioproducts from 

microalgae 

 

Figure 16. Network for producing biofuels and bioproducts from microalgae. <1,1> open pond; 

<1,2> flat plate PBR; <1,3> bubble column PBR; <1,4> tubular PBR; <2,1> flocculation with 

poly-electrolyte; <2,2> flocculation with sodium hydroxide; <2,3> flocculation with poly-

aluminum chloride; <2,4> flocculation with aluminum sulfate; <2,5> flocculation with 

chitosan; <2,6> flocculation with poly-γ-glutamic acid; <3,1> freeze drying; <3,2> thermal 

drying; <3,3> pressure filtration; <3,4> centrifugation; <3,5> blank; <4,1> bead beating; 

<4,2> bead beating; <4,3> microwaving; <4,4> high pressure homogenization; <4,5> 

sonication; <4,6> blank; <4,7> HTL; <5,1> blank; <5,2> hexane extraction; <5,3> 

isopropanol/hexane extraction; <5,4> supercritical CO2 extraction; <5,5> hexane extraction; 

<5,6> butanol extraction; <5,7> supercritical CO2 extraction; <5,8> blank; <6,1> alkaline in-

situ transesterification; <6,2> acidic in-situ transesterification; <6,3> enzymatic in-situ 

transesterification; <6,4> sodium-methoxide-catalyzed transesterification; <6,5> 

heterogeneous acid-catalyzed transesterification; <6.6> supercritical methanol 

transesterification; <6,7> enzymatic transesterification; <6,8> Co/Mo-catalyzed 

hydroprocessing; <6,9> Ni/Mo-catalyzed hydroprocessing; <6,10> HZSM-5-catalyzed 
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hydroprocessing; <7,1> steam reforming; <7,2> autothermal reforming; <7,3> aqueous-phase 

reforming; <7,4> propylene glycol production; <7,5> glycerol-tert-butyl ether production; 

<7,6> PHB production; <8,1> methanol production; <8,2> direct combustion. 

As shown in Figure 16, we propose by far the most comprehensive processing 

network with 46,704 processing pathways to produce a variety of biofuels and 

value-added bioproducts from microalgae. The major feedstock of the proposed 

network is a gaseous carbon source that can be ultimately converted to biodiesel, 

renewable diesel, hydrogen, propylene glycol, glycerol-tert-butyl ether, and PHB. 

The microalgae Chlorella vulgaris with 25 wt % lipid is considered in this system 

[159]. There are eight sections in the network: cultivation, harvesting, dewatering, 

cell disruption, lipid extraction, biofuel production, upgrading, and remnant 

treatment. The first seven sections were introduced in a previous study [21]. In the 

proposed network, we combine the primary dewatering and secondary dewatering 

sections into one dewatering section, consider more technology alternatives in the 

remnant treatment section, and incorporate a new section for the conversion of 

raw glycerol to algal bioproducts. Detailed superstructure configuration description 

is presented in Appendix A. 

3.3 Problem statement 

In this section, we formally state the problem addressed in this chapter. We 

propose a comprehensive superstructure network for producing algal fuels and 
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bioproducts as shown in Figure 16. A plethora of technology alternatives are 

incorporated into the network. The parameters involved in the problem are listed 

below. 

• The upper and lower bounds of the capacity of each technology; 

• The composition and total mass flow rate of the feed gas; 

• Component concentrations in the inlet flows; 

• The conversion of each reaction; 

• Stoichiometric coefficients of each reaction; 

• The split fraction of each species to various flows; 

• Unit consumption and generation rates of power, heating, and cooling 

utilities for each technology; 

• The area productivity of each bioreactor; 

• Operating hours of each technology in a year; 

• Base case capital costs and mass flow rates for all technologies; 

• Coefficients for evaluating total project investment based on capital costs; 

• Coefficients for evaluating operating costs; 

The uncertain parameters are modeled using an uncertainty set. Each uncertain 

parameter is constrained by an upper bound and a lower bound, the values of 

which can be retrieved from historical records. The nominal value of each 

uncertain parameter takes the average value of the upper and lower bounds. 

Moreover, a budget of uncertainty is introduced in the uncertainty set to control 

the level of conservatism of the resulting optimal solution.  

Further assumptions of the problem include: 
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• The algae growth rate remains constant during a year; 

• The distribution of products from anaerobically digesting remnants from 

different transesterification technologies is identical; 

• The technology capital costs are modeled as piecewise linear functions of 

corresponding capacities; 

• Given that several bioproducts can be coproduced in the superstructure, we 

assume there are markets to sell bioproducts into; 

The goal of this research is to determine the robust optimal processing pathways 

for producing algal fuel and bioproduct under uncertainty. The objective function 

is to maximize ROI. The mathematical model accounts for network configuration, 

mass balance, and economic evaluation. The major decision variables include: 

• Technology selection; 

• The capacity of each technology; 

• The operating mass flow rate of each technology; 

• The worst-case uncertainty realization. 

3.4 Model formulation 

3.4.1 Deterministic model 

We first develop a deterministic problem that maximizes the ROI of producing 

algal fuels and bioproducts. The general model formulation (DM) is shown below. 

There are three groups of constraints, namely network configuration constraints, 

mass balance constraints, and economic evaluation constraints. Integer variables 

are introduced in network configuration constraints to model the selection of 
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technology alternatives in the algae conversion network. All the constraints are 

mixed-integer linear equalities or inequalities. The nonlinear term in the 

deterministic problem is the fractional objective function. The indices for sections, 

technology alternatives, and species are denoted as i, j, and k, respectively. The 

variables are denoted as upper-case letters, whereas parameters are denoted as 

lower-case letters. 

(DM)  max      ROI as defined in (1.B13) 

s.t.       network configuration constraints (1.1)–(1.5) 

mass balance constraints (1.7)–(1.22) 

economic evaluation constraints (1.23)–(1.27), (1.B1)–(1.B12) 

 , 1,i j

j J

Y i I


     (1.1) 

 3,1 3,2 4,1Y Y Y    (1.2) 

 3,5 4,7 5,8 6,10Y Y Y Y     (1.3) 

 4,1 5,1 5,2 5,3 5,4Y Y Y Y Y      (1.4) 

 5,1 6,1 6,2 6,3Y Y Y Y     (1.5) 

The network configuration is described by Equations (1.1)-(1.5). Following existing 

models for superstructure optimization [14, 16, 214, 215], binary variable Yi,j is 

introduced to select technology j in section i in the network. Yi,j is equal to 1 if the 

corresponding technology is selected, and 0 otherwise. Equation (1.1) guarantees 

that one and only one technology is selected in each section in the network. 

Equation (1.2) requires that if either freeze drying or thermal drying is selected, 
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bead beating has to be selected. Equation (1.3) requires HTL, HZSM-5-catalyzed 

hydroprocessing and associated blank technologies to be selected simultaneously. 

Equation (1.4) requires that if bead beating is selected, only the blank technology 

(bypass), hexane extraction, isopropanol/hexane extraction, and supercritical CO2 

extraction can be selected in the next section. Likewise, Equation (1.5) requires 

that if no technology is selected in the extraction section, the algae slurry can be 

sent to only alkaline in-situ transesterification, acidic in-situ transesterification, 

and enzymatic in-situ transesterification in the next section. Since the any algal 

remnant can be processed by either methanol production or direct combustion, all 

lipid extraction technologies are connected to both remnant treatment 

technologies and no connection restriction between these sections is enforced. 

 , ,0 i, j,k i j i, j

k K

QO Y ubo i I, j J


       (1.6) 

 , ,0 i, j,k i j i, j

k K

QI Y ubi i I, j J


       (1.7) 

 ,,out

i, j,k i, j,kM QO i I, j J k K       (1.8) 

 ,,in

i, j,k i, j,kM QI i I, j J k K       (1.9) 

Mass balances are described by Constraints (1.7)–(1.22). The upper and lower 

bounds of the technology capacity are defined by Constraints (1.7) and (1.6). 

Nonnegative variables QIi,j,k and QOi,j,k are the capacities of species k in technology 

j in section i for the “in” and “out” flows, respectively. The definitions of “in” and 
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“out” flows are given in Figure 17. uboi,j and ubii,j are the upper bounds of the 

capacities for the “in” and “out” flows of technology j in section i, respectively. If 

technology j in section i is not selected, or Yi,j=0, the corresponding capacities will 

only be 0. Linking constraints (1.9) and (1.8) enforce that the “in” and “out” flow 

rates should not be greater than the corresponding capacities. The introduction of 

technology capacities in addition to operating flow rates facilitates the modeling of 

first-stage decisions and second-stage decisions in the two-stage adaptive robust 

optimization model as detailed in the latter subsections. 

 

Figure 17. General flow relationships of technology j in section i in the mass balance. 

 0,up feed feed

1, j, k

j J

kM w M k Kf


      (1.10) 
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 
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, , , , ,0 ,in in in

i, j,k i j k k i, j,

K

k

k

i I j J k KM p M


 



        (1.13) 

 0, , ,in up reuse makeup

i, j,k i, j,k i, j,k i, j,k i IM M M j J k KM         (1.14) 

The relationships between flow rate variables are based on the generic mass 

balance framework introduced in the previous work [21]. As shown in Figure 17, 

nine flows describe the mass balance for technology j in section i. The mass 

balance is specified by three steps: an inlet converging step (red arrows, Equations 

(1.10)–(1.14)), a conversion step (blue arrows, Equation (1.15)), and an outlet 

separation step (green arrows, Equations (1.16)–(1.19)). The “up” flow rate of the 

first section is specified by multiplying the feed composition feed

kwf  by the total 

feed flow rate Mfeed. In the remaining sections, the “up” flow rate of section i is the 

sum of several “down” flow rates, as specified by set up

iI . down

ip  takes biomass 

storage into account since microalgae stop growing at night [20]. Following a 

similar approach, the “reuse” flow rate of section i is the sum of several “recycle” 

flow rates, as specified by set reuse

iI . The feedstock relationship is described by 

Equation (1.13), where , , ,

in

i j k kp   is the concentration of species k in the “in” flow of 

technology j in section i with respect to other species k’ in the same flow. The 

purpose of Equation (1.13) is to calculate the mass flow rates of “makeup” flows 

with fixed material distribution data in the corresponding “in” flows. Finally in 
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Equation (1.14), the “in” flow rate is the sum of corresponding “up”, “reuse”, and 

“makeup” flow rates. 

  , , , , 0, , ,out in in

i, j,k i, j,k i j k k i j i, j,k

k K

M M sc x i I j J k KM 



          (1.15) 

The conversion step is described by Equation (1.15), where sci,j,k,k’ is the 

stoichiometric coefficient of species k based on another species k’ and xi,j is the 

conversion for technology j in section i. 

 0, , ,out down recycle emission product

i, j,k i, j,k i, j,k i, j,k i, j,kM M M M I k KM i j J         (1.16) 

  , , , ,0, ,down down out

i, j,k i j k k i, j,k

k K

i I j J kM s M Kf 



         (1.17) 

 , , , , 0, , ,emission emission1 out emission2 down

i, j,k i j k i, j,k i j k i, j,kM sf M s if M I j J k K         (1.18) 

 , , 0, , ,product product out

i, j,k i j k i, j,kM sf M i I j J k K         (1.19) 

 feedM fu   (1.20) 

 , , ,makeup

i, j,k i, j,k i IM m Ku j J k      (1.21) 

 
,

,
i I j

product

J

i, j,k kM KPpd k
 

    (1.22) 

In the outlet separation step, the “out” flow is split into four flows, namely “down”, 

“recycle”, “emission”, and “product” flows. The “down” flow rate is defined by 

Equation (1.17), where , , ,

down

i j k ksf   is the split fraction of species k based on another 

species k’ for technology j in section i. The model in Equation (1.17) is 

advantageous when the concentration is fixed in the “down” flow but not fixed in 
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the “out” flow. In Equation (1.18), the emission flow rate is calculated on the basis 

of both “out” and “down” flow rates. Both flow rates are considered because the 

purge rate of the harvesting section is based on the “out” flow rate excluding the 

“down” flow rate. The “product” flow rate is defined in Equation (1.19). 

Constraints (1.20) and (1.21) set the upper bounds for the total feed flow rate and 

the makeup flow rate as fu and mui,j,k, respectively. Equation (1.22) enforces the 

demands of major biofuel products pdk to be strictly satisfied. 

Based on the mass balance constraints, we evaluate several costs that contribute to 

the total investment cost and OPEX. Equations (1.23)–(1.27) model the capital cost 

CCi,j of technology j in section i using piecewise linear approximation functions.  

   ,i, j,l i, j,l i, j,l i, j,l i, j

l L

cci WI cco WO CC i I, j J


        (1.23) 

   ,
i, j

i, j,l i, j,l i, j,k

l L k KI

mi WI QI i I, j J
 

      (1.24) 

   ,
i, j

i, j,l i, j,l i, j,k

l L k KO

mo WO QO i I, j J
 

      (1.25) 

 1,i, j,l

l L

WI i I, j J


     (1.26) 

 1,i, j,l

l L

WO i I, j J


     (1.27) 

In Equations (1.23)–(1.27), L is the set for partition points of the original nonlinear 

concave power functions [46]. The capital cost data retrieved from literature are 

associated with either input or output for various technologies. WIi,j,l and WOi,j,l 
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are SOS2 (special ordered sets of type 2) variables, which allow at most two 

consecutive elements over the set L to be non-zero. mii,j,l and moi,j,l are the base “in” 

and “out” flow rates of interested species k in technology j in section i, 

respectively. The sets for the species that are used for economic evaluation are 

denoted as KIi,j and KOi,j. ccii,j,l and ccoi,j,l are the capital costs of technology j in 

section i with respect to flow rates mii,j,l and moi,j,l. The economic evaluation 

constraints as well as the original definition of ROI are shown in Appendix B. 

 0N
ROI

D
   (1.28) 

where  

              

product makeup out

0 k i, j,k k i, j,k i, j,k i, j,k

i, j,k i, j,k i, j,k

in emission

i, j,k i, j,k i, j,k i, j

i, j,k i, j,k KE i, j

N c1 M c2 M c3 M

c4 M c5 M c6 CC c7


     

      

  

  
, 

i, j j 1, j,15

i, j j

c8 CC c9 QOD      , 

   1 1k kc1 tr gec h pp      ,  

 1k kc2 tr h fp     ,  

   1i, j,k i, j,k i, j,k i, j,kc3 tr h ep upco hp uhco cp ucco          ,  

    1 1i, j,k i, j,k i, j,k i, j,k i, j,kc4 tr h ep upci gec upg pe hp uhci cp ucci                ,  

 1c5 tr h wp     ,  
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   1c6 tr mcc oocc2 ptic dcc       ,  

   1c7 tr OC oocc1     ,  

   1 1c8 wcc scc    ,  

 1 /j jc9 wcc lp pro   . 

In order to provide a compact presentation of the objective function, we combine 

the terms with the same variables in the numerator and the denominator of ROI 

and introduce parameters c1 to c9 as the coefficients for various variables. 

Moreover, N0 and D denote the net earnings and total investment cost, 

respectively. Then the deterministic problem becomes: 

(DMS)                       max     ROI as defined in (1.28) 

                                    s.t.      Network configuration constraints (1.1)–(1.5) 

                                               Mass balance constraints (1.7)–(1.22) 

             Capital cost evaluation constraints (1.23)–(1.27) 

3.4.2 Uncertainty set 

There are many parameters in the deterministic model and all of these parameters 

demonstrate certain degrees of uncertainty in practice, while market prices, 

feedstock availability, and product demands are the major factor influencing the 

profitability of biomass-based network designs [216]. For ease of exposition, we 

assume the remaining parameters are less volatile and can be precisely predicted 

and evaluated. We focus on price uncertainty, and supply and demand uncertainty 
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as it is widely addressed and well-documented. Specifically, we consider 

uncertainty in fpk, ppk, ep, hp, cp, wp, fu, mui,j,k, and pdk, which are introduced and 

included in the deterministic model (DMS). 

 ,k kkc1 d1 c1 k K      (1.29) 

 ,k kkc2 d2 c2 k K      (1.30) 

  1 , ,i, j,k i, j,kc31 d31 tr h ep upco i I, j J k K            (1.31) 

  1 , ,i, j,k i, j,kc32 d32 tr h hp uhco i I, j J k K            (1.32) 

  1 , ,i, j,k i, j,kc33 d33 tr h cp ucco i I, j J k K            (1.33) 

 
   1 1 ,

                                                                  ,      

i, j,k i, j,k i, j,kc41 d31 tr h ep upci gec upg pe

i I, j J k K

            

   
  (1.34) 

  1 , ,i, j,k i, j,kc42 d32 tr h hp uhci i I, j J k K            (1.35) 

  1 , ,i, j,k i, j,kc43 d33 tr h cp ucci i I, j J k K            (1.36) 

 c5 d5 c5    (1.37) 

Coefficients c1, c2, c3, c4, and c5 in the definition of ROI in (1.28) are influenced 

by the price-related uncertain parameters fpk, ppk, ep, hp, cp, and wp. The nominal 

values of these uncertain coefficients are denoted as c1 , c2 , c3 , c4 , and c5 , 

respectively. c1 , c2 , c31 , c32 , c33 , c41 , c42 , c43 , and c5  represent the 

maximum deviations from the nominal values due to various uncertain parameters. 

These maximum deviations are defined by Equations (1.29)-(1.37). d1k, d2k, d31, 
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d32, d33, and d5 denote the maximum deviation coefficients based on nominal 

values of fpk, ppk, ep, hp, cp, and wp, respectively. 

 k kk kc1 c1 c1 T1 , k K       (1.38) 

 k kk kc2 c2 c2 T2 , k K       (1.39) 

 
                                                              , , 

i, j,k i, j,k i, j,k i, j,ki, j,kc3 c3 c31 T31 c32 T32 c33 T3

i J k K

3,

I j

   

 

 




  (1.40) 

 
                                                                , ,

i, j,k i, j,k i, j,k i, j,ki, j,kc4 c4 c41 T31 c42 T32 c43 T33,

i I j J k K

     

   


  (1.41) 

 c5 c5 c5 T5     (1.42) 

Next, we introduce a set of continuous variables (T1k, T2k, T31, T32, T33, and T5), 

each of which is bounded by [−1,1]. As shown in Equations (1.38)–(1.42), these 

variables are used to construct an uncertain region for each uncertain parameter. 

For instance, c1k can vary within ,k k k kc1 c1 c1 c1  
 

 with k kk kc1 c1 c1 T1   . 

Note that both c3 and c4 are affected by ep, hp, and cp simultaneously. 

Specifically, c31  and c41  are associated with ep, c32  and c42  are associated with 

hp, c33  and c43  are associated with cp. Therefore, three variables T31, T32, and 

T33 are used in both definitions of c3 and c4 corresponding to the levels of 

variation of ep, hp, and cp, respectively. There are two reasons for modeling the 

variations of c3 and c4 using separate variables instead of a lumped variable. First, 

following the definitions of c1, c2, and c5, we identify and specify three sources of 
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uncertainty for parameters c3 and c4. In contrast, a lumped variation would deny 

any physical interpretation. Second, the current uncertainty definition is critical 

for determining the impacts of different uncertain parameters on the optimal 

objective function value. 

  k k

k

T1 T2 T31 T32 T33 T5 Γ1        (1.43) 

 


  

: Constraints (3.29)-(3.43),

           , , , , , 1,1 ,  

k i j k

k k

U1 c1,c2 ,c3,c4 ,c5

T1 T2 T31 T32 T33 T5 k K

 
   

   
  (1.44) 

Following the approach by Bertsimas and Sim [140], an uncertainty budget Γ1 is 

further introduced in Constraint (1.43) to control the robustness of the optimal 

solution. If a budget is set to 0, no uncertainty is allowed for the above parameters, 

and the corresponding parameters take nominal values. If a budget is set to the 

maximum number of the uncertain parameters, all the uncertain parameters are 

allowed to be realized, and the robust optimal solution will be the most 

conservative. When the budget increases from 0 to the maximum value, the 

optimal solution becomes more conservative. Note that as opposed to continuous 

budgets, an integer budget can be interpreted as the number of parameters that are 

allowed to be uncertain. We focus on integer budgets in this chapter. Based on the 

previously introduced relationship (1.29)-(1.43), a price uncertainty set U1 is 

formulated as in Equation (1.44). 
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 fu d6 fu    (1.45) 

 , ,i, j,k i, j,kk i Imu d7 ju J Km k,       (1.46) 

 ,kk kpd d8 pd k KP      (1.47) 

 fu fu fu T6     (1.48) 

 , ,i, j,k i, j,ki, j,k kmu mu mu T7 i I j J k, K       (1.49) 

 k kk kpd pd pd T8 , k KP       (1.50) 

 k k

k K k KP

T6 T7 T8 Γ2
 

      (1.51) 

 


  

, , : Constraints (3.45)-(3.51),  

                                               , , 1,1 ,  

k

k k

U2 fu mu pd

T6 T7 T8 k K

  

   
  (1.52) 

Following the same fashion, we develop a supply and demand uncertainty set U2 

as shown in Equation (1.52). 

3.4.3 Two-stage ARMIFP model 

(AROM)       max  min max1 2

c U M O

N N

D D 
  

                        s.t.  first-stage constraints (1.1)–(1.7), (1.23)–(1.27) 

where  

i, j1

i, j

N c6 CC c7   ,  

           

product makeup out

k i, j,k k i, j,k i, j,k i, j,k

i, j,k i, j,k i, j,k

in emission

i, j,k i, j,k i, j,k

i, j,k i, k

2

j, KE

c1 M c2 M c3 M

c4 M c M

N

5


    

   

  

 
, 

i, j j 1, j,15

i, j j

c8 CC c9 QOD      , 
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c represents the uncertainty parameters, 

U is defined in (1.44), 

M represents the second-stage decisions, 

 the feasible region constructed by Constraints (3.8)-(3.22)O  . 

We propose a two-stage adaptive robust optimization model (AROM) based on the 

deterministic model and the uncertainty set. In (AROM), the decisions are made 

sequentially at two stages: (1) a design stage that involves the “here-and-now” 

decisions before the uncertainties are realized; and (2) an operational stage that 

involves the “wait-and-see” decisions after the uncertainties are revealed. The first-

stage decisions include the binary variables Yi,j in the superstructure configuration 

constraints (1.1)–(1.5), and the technology capacities QIi,j,k and QOi,j,k, the 

technology capital costs CCi,j, as well as the SOS2 variables WIi,j,p and WOi,j,p in the 

capital cost evaluation constraints (1.23)–(1.27). In contrast, the mass flow rates 

, ,

n

i j kM  for all types of flows in mass balance constraints (1.7)–(1.22) belong to the 

second-stage variables. 

As shown in the general form (AROM), the problem consists of three levels: the 

first level problem determines first-stage decisions via maximizing the entire 

objective function; the second level problem determines the worst-case realization 

of the uncertain parameters via minimizing the part of objective function 

associated with uncertainty; in the third level maximization problem, second-stage 
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decisions are made given fixed first-stage decisions and revealed uncertain 

parameters.  

In order to formulate the objective function in (AROM), we split the deterministic 

objective function into two fractional terms based on the variables in its 

numerator. The numerator of the first term N1 involves only first-stage decisions, 

while that of the second term N2 involves only second-stage decisions. As a result, 

the first term is determined before the realization of uncertainty, and the second 

term should be determined based on the uncertainty realization and the first-stage 

decisions. The final form of the objective function is shown in (AROM). 

3.5 Solution strategy 

The proposed model (AROM) cannot be solved directly by off-the-shelf 

optimization solvers due to the structure of the multi-level mixed integer 

nonlinear programming (MINLP) problem. The combinatorial nature and non-

convexity stemming from the mixed-integer fractional objective function lead to 

additional computational difficulty. Unfortunately, the existing algorithms for 

two-stage adaptive optimization problems cannot handle the mixed-integer 

fractional objective function. To address this computational challenge, we develop 

a solution strategy that integrates a parametric algorithm with a column-and-

constraint generation algorithm. 
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3.5.1 Parametric algorithm 

As mentioned in the last section, the nonlinear term in the problem is the 

fractional objective function. There are several methods available to efficiently 

solve a single-stage MIFP problem. A reformulation-linearization method has been 

proposed to integrate Charnes-Cooper transformation with Glover’s linearization 

[113, 213, 217, 218]. This method transforms the original MIFP to an equivalent 

MILP or MINLP problem with added variables and constraints. Alternatively, a 

parametric algorithm with various root-finding methods can return the optimal 

solution by iteratively solving a parametric problem based on the original MIFP 

[202]. Computational results showed that the parametric algorithm could be more 

computationally efficient especially when the problem has a large number of 

variables and constraints [113, 197, 219]. Additionally, it requires much more 

effort to reformulate the two-stage ARMIFP problem using Charnes-Cooper 

transformation than to derive a parametric function for the parametric algorithm. 

In this chapter, we employ the parametric algorithm to handle the fractional 

objective function. 

To apply the parametric algorithm, we first introduce   min max 2
c U M O

f X1 N
 

  , where 

X1 represents the first-stage variables. Since D in the objective function of (AROM) 

is dependent on only first-stage variables, we have 
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   

 
max  min max max  

11 2

c U M O X1

N X1 f X1N N

D D D X1 


  , which agrees with the MIFP 

problem for the parametric algorithm [202]. Next, an auxiliary parametric function 

F with respect to a new parameter r. As shown in (LAROM), F(r) is the optimal 

objective function value of a two-stage adaptive robust MILP problem. The root of 

equation F(r) = 0 corresponds to the original optimal solution. Moreover, the 

function F(r) has been proved to be concave, monotonically decreasing and 

continuous with respect to r. Taking advantage of the bounded subgradients, an 

inexact Newton’s method can be used to find the root of the F(r)=0 [202]. 

(LAROM)       max  min max1 2
c U M O

F r N r D N
 

       

                                      s.t.  first-stage constraints (1.1)–(1.7), (1.23)–(1.27) 

where the definitions of N1, N2, and D are the same with those in (AROM). 

3.5.2 Column-and-constraint generation algorithm 

Two-stage adaptive robust MILP problems, such as F(r), are usually 

computationally expensive. One prevalent approach approximates the second-stage 

decisions as explicit functions of uncertain parameters and employs conventional 

robust optimization solution approaches to obtain the optimal solution [220]. A 

significant advantage of this method is its computational tractability even with 

sophisticated approximation functions [221-225]. A different approach involves 
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iteratively solving a master problem and a subproblem to achieve the exact optimal 

solution [155, 226]. There are two methods following the spirit of this approach. A 

Benders decomposition-based method generates constraints with the optimal dual 

information of the subproblem in each iteration [227]. In contrast, a column-and-

constraint generation method dynamically generates constraints with second-stage 

variables in the primal space [228]. It has been proved that the column-and-

constraint generation method is more efficient for large-scale two-stage adaptive 

robust optimization problems [56, 228]. Therefore, we consider the column-and-

constraint generation method to handle F(r). We show the formulation of the 

subproblem and the master problem in the remaining of this subsection. 

The subproblem is dedicated to solving the second-stage problem with fixed first-

stage decisions. In the second-stage problem, absolute value functions are utilized 

due to the introduction of Constraints (1.43) and (1.51) in the uncertainty sets. To 

alleviate the computational difficulty, we simplify the definition of the uncertainty 

set by predetermining the signs of most continuous variables. In order to do so, we 

first introduce a useful property of the objective function as Lemma 1. It states the 

third level maximization problem is monotonically increasing with respect to T1k, 

and monotonically decreasing with respect to T2k, T32, T33, and T5 for any k∈K. 

Given that T1k, T2k, T32, T33, and T5 vary between [−1,1], minimizing the third 
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level maximization problem should return non-positive T1k, and non-negative T2k, 

T32, T33, and T5. As a result, we can restrict the ranges of T1k, T2k, T32, T33, and 

T5 to [0,1] and remove the absolute value functions for T1k, T2k, T32, T33, and T5. 

In addition, we change the definition of c1 to (1.53). The proof of Lemma 1 is 

given in Appendix C. 

The only exception comes with T31, since c41  can be either positive or negative 

for various technologies. To handle this term specifically, we introduce two 

Constraints (1.54) and (1.55), which are equivalent to Constraint (1.43) with the 

absolute value term. Finally, the simplified uncertainty set is shown as U1S. 

 k kk kc1 c1 c1 T1 , k K       (1.53) 

  k k

k

T1 T2 T31 T32 T33 T5 Γ1        (1.54) 

  k k

k

T1 T2 T31 T32 T33 T5 Γ1        (1.55) 

 



   

:

             Constraints (3.29)-(3.37), (3.39)-(3.42), (3.53)-(3.55),

                 , , , , 0,1 , ,  1,1

k i j k

S

k k

U1 c1,c2 ,c3,c4 ,c5

T1 T2 T32 T33 T5 k K T31

 
   

    

  (1.56) 

The second-stage min-max problem is reformulated by dualizing the inner 

maximization problem and incorporating the resulting minimization problem into 

the outer minimization problem. The reformulated problem is a nonlinear 

programming problem with nonlinearity only in the bilinear terms in the objective 
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function. The bilinear terms are products of dual variables and level of deviation 

variables, including P13 T6 , 
i, j,k kP14 T7 , and k kP15 T8 , , ,i I j J k K   . Since 

we consider integer budgets of uncertainty, continuous variable T6 and T7k can be 

reduced to binary variables and the related bilinear terms take non-positive values 

given that both P13 and P14i,j,k are non-negative variables [56, 229, 230]. As a 

result, we apply the Glover’s linearization scheme for the simplified bilinear terms 

as in Constraints (1.74)–(1.79) [217]. The last bilinear term is more difficult to 

simplify since P15k is a free variable. However, in the minimization problem, we 

can reformulate k kP15 T8  to be k kP15 T8   without hurting the optimal objective 

function value. Next, we introduce Constraints (1.80)–(1.83) and replace 
kP15  

with a non-negative variable Uk. The new bilinear term kkU T8  can then be 

simplified using the same approach for the other bilinear terms as in Constraints 

(1.84)–(1.86). The subproblem formulation is given by (1.57)–(1.88).  

(SUB)  

 min  

      

i, j,k i, j,k i, j,k i, j,k

i, j,k

i, j,k i, j,ki, j,k i, j,k k kk k

i, j,k i, j,k k k

P1 QO P2 QI P13 fu fu M1

P14 mu mu M2 P15 pd pd M3

      

       



   
  (1.57) 

 s.t.    0feed

k k

k

P3 wf P13      (1.58) 

 ,0,k 1, j,kP3 P J7 j k K      (1.59) 

 0, 2 8, ,i,k i, j,k i j JP K4 kP7         (1.60) 
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 0 ,, ,i,k i, j,kP5 P i I j J k K7       (1.61) 

 , , ,k ki, j,k i, j,k kP7 P14 c i I j J k K2 c2 T2         (1.62) 

 

, , , , , , ,

          ,

                                                           

in

i, j,k i, j,k i, j,k i j k k i, j,k i, j,k i, j,k i j k k i j

k k

i, j,k i, j,k i, j,k i, j,k

P2 P6 P6 p P7 P8 P8 sc x

c4 c41 T31 c42 T32 c43 T33

   

 

       

      

 

               , , i I j J k K  

  (1.63) 

 

, , ,

    ,

                                               

down emission1

i, j,k i, j,k i, j,k i, j,k i j k k i, j,k i, j,k

k

product
i, j,k i, j,k i, j,k i, j,ki, j,k i, j,k

P1 P8 P9 P10 sf P11 sf

P12 sf c3 c31 T31 c32 T32 c33 T33

 



     

        



                                 , ,i I j J k K  

  (1.64) 

 
, , 0,

                                                          1 7, , 

down emission2

i 1,k i 1 i, j,k i, j,k i, j,k i j kP4 p P9 P10 P1

K

sf

j

1

i J k

       

    
  (1.65) 

 , , 0 ,,emission2

8, j,k 8, j,k 8, j,k 8 j kP9 P10 P11 s jf J k K        (1.66) 

 ,5 0 ,,
recycle
iI

i ,k i, j,k

i

P P i I9 j J k K



         (1.67) 

 , ,,i, j,k i, j,k i I j J k KEP9 P11 c5 c5 T5          (1.68) 

 , , ,0i, j,k i, j,k i IP9 j J E1 k1 KP        (1.69) 

 , ,,k ki, j,k i, j,k k kP9 P12 P15 c1 c1 T1 i I j J k KP         (1.70) 

 , , ,k ki, j,k i, j,k kP9 P12 c i I j J k KP1 c1 T1          (1.71) 

  k k

k

T1 T2 T31 T32 T33 T5 Γ1        (1.72) 

  k k

k

T1 T2 T31 T32 T33 T5 Γ1        (1.73) 

 M1 P13   (1.74) 

 0 M1 T6 u1     (1.75) 
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  1M1 P13 T6 u1      (1.76) 

 , ,,i, j,k i, j,k i I jM2 1 J4 KP k     (1.77) 

 0 ,, ,i, j,k kM2 T7 u i I j J2 k K       (1.78) 

   , ,1 ,i, j,k i, j,k kM2 P14 T i I j2 k Ku J7        (1.79) 

 ,k k kP15 u3 U k KP       (1.80) 

  1 ,k k kP15 u3 k KU P        (1.81) 

 ,k k KPP15 U k     (1.82) 

 ,k kP KPU k15      (1.83) 

 ,k kM U P3 k K     (1.84) 

 0 ,k kM3 T8 k Ku3 P      (1.85) 

  1 ,k k kM3 U T8 k KPu3       (1.86) 

 k k

k K k KP

T6 T7 T8 Γ2
 

      (1.87) 

 
     0,1 1,1 0,1

                                                   0 , ,

k k k k k

i, j,k i, j,k i, j,k

T1 ,T2 ,T32,T33,T5 ,T31 , ,T6,T7 ,T8 ,

P1 ,P2 ,P13,P1 , i j4 k

   

 
  (1.88) 

The master problem possesses both the first-stage and second-stage constraints but 

with a subset of uncertainty realizations. As a result, the master problem is 

equipped with a relaxed feasible region, resulting in an upper bound of the optimal 

objective function value. To formulate the master problem, we replace the second-

stage objective function with a new variable η, which is constrained by (1.91). 

Next, we introduce several new constraints (1.92)–(1.106) based on the original 
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second-stage constraints and plug them into the original first-stage problem. 

Moreover, every second-stage variable is assigned with a new index s, which 

denotes identified uncertainty realizations. 

(MA)   max  i, j i, j j 1, j,15

i, j i, j j

c6 CC c7 r c8 CC c9 QO 
 

        
 

     (1.89) 

 s.t.  (1)-(7)Constra , (23)-ints (27)   (1.90) 

 
        ,   

product makeup

k,s i, j,k,s k,s i, j,k,s

i, j,k i, j,k

out in emission

i, j,k,s i, j,k,s i, j,k,s i, j,k,s s i, j,k,s

i, j,k i, j,k i, j,k

c1 M c2 M

c3 M c4 M c5 M s S

    

       

 

  
  (1.91) 

 ,out

i, j,k,s i, j,kM QO i I, j J, K,s Sk       (1.92) 

 ,in

i, j,k,s i, j,kM QI i I, j J, K,s Sk       (1.93) 

 0,up feed feed

1, j,k,s k s

j J

M f M ,sk K S


       (1.94) 

 0, 2 8,
up
i

up down down

i, j,k,s

J i I

i i , j,k,s

j j, J

M p M ,si k SK
  

           (1.95) 

 
,

, ,0
reuse
i

reuse recycle

i, j,k,s i , j,k,s

j i jJ I J

i I k KM M ,s S
  





        (1.96) 

 , , , , , ,0in in in

i, j,k,s i j k k i, j,k ,s

k K

iM p I j J kM ,s SK 



         (1.97) 

 0, , ,in up reuse makeup

i, j,k,s i, j,k,s i, j,k,s i, j,k,sM M M M ,i I sJ K Sj k          (1.98) 

  , , , , , , ,0out in in

i, j,k,s i, j,k,s i j k k i j i, j,k ,s

k K

M M sc x i I j J k KM ,s S


            (1.99) 

 
,

                                           ,

0

,

out down recycle emission product

i, j,k,s i, j,k,s i, j,k,s i, j,k,s i, j,k,sM M M

i I j J

M

sk

M

, SK

    

   
  (1.100) 
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  , , , , , ,0down down out

i, j,k,s i j k k i, j,k ,s

k K

M sf M ,si I j J k K S


 



        (1.101) 

 

, , , , 0

                     

,

, ,                     

emission emission1 out emission2 product

i, j,k,s i j k i, j,k,s i j k i, j,k,s

i I

M s

j J k

f M sf M

,s SK   

   


  (1.102) 

 
, , , , ,0product product out

i, j,k,s i j k i, j,k,s iM sf M ,s SI j J k K         (1.103) 

 ,feed

s sM fu s S     (1.104) 

 , , , ,makeup

i, j,k,s i, j,k,sM mu i I j J sK Sk      (1.105) 

 
,

, ,
i I j

product

i, j,k,s k,s

J

M Kp SPd sk
 

     (1.106) 

3.5.3 Optimization solution methods 

In order to effectively solve the two-stage ARMIFP, we integrate the parametric 

algorithm with the column-and-constraint generation algorithm. As shown in 

Figure 18, the proposed algorithm employs the parametric algorithm in the outer 

loop, while the column-and-constraint generation algorithm is utilized in the 

inner loop to handle the auxiliary two-stage adaptive robust MILP problem. The 

entire algorithm starts by setting r=0, upper bound ub to be a sufficiently large 

number, and solving the deterministic problem (DMS) to obtain the initial first-

stage decisions. In addition, iteration count for the outer loop iter are initialized 

before the outer loop begins. 

 

Proposed solution algorithm 

1: 0r , ub , 0iter ; 
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2: Solve (DM) to obtain the optimal first-stage decisions CC* and QO*; 

3: 
* *   ,  ,i, j i, j i, j,k i, j,kccf CC , qof QO , i j k  ; 

4: while ubo  do 

5: 
 

  1 iter iter , 0lb , gap , 0s , S ; 

6:     while gap  do 

7:      1 s s  

8:   
  Solve (SUB) to obtain so*, T1k

*, T2k
*, T31*, T32*, T33*, T5*, T6*, T7k

*, T8k
*, 

Uk
*, and P15k

*; 

9:     
*max ,  

   
          

   
  i, j i, j j i, j,15

i, j i, j j

lb lb c6 ccf c7 r c8 ccf c9 qof so  

10:      S S s ; 

11:        * * k k k kk,s k k,s kc1 c1 c1 T1 , c2 c2 c2 T2 ,      ;  *  sc5 c5 c5 T5 ; 

12:      * * * , ,i, j,k i, j,k i, j,k i, j,ki, j,k,sc3 c3 c31 T31 c32 T32 c33 T33 , i j k       ; 

13:      * * * , ,i, j,k i, j,k i, j,k i, j,ki, j,k,sc4 c4 c41 T31 c42 T32 c43 T33 , i j k       ; 

14:      *  sfu fu fu T6 ;  * , ,i, j,k i, j,ki, j,k,s kmu mu m j7 ku T , i   ; 

15:      * * *     k,s k k kk kpd pd U P15 pd T8 , k KP ; 

16:     Create second-stage variables with respect to index s; 

17:     Solve (MA) to obtain mo*, η*, CC* and QO*; 

18:      *min ,ub ub mo ,   gap ub lb ; 

19:     
* *   ,  ,i, j i, j i, j,k i, j,kccf CC , qof QO , i j k  ; 

20:    end 

21:    * * * *
   

         
   

  i, j i, j j 1, j,15

i, j i, j j

r c6 CC c7 c8 CC c9 QO ; 

22: end  

23: return ub; 

Figure 18. Pseudo code of the proposed algorithm. 

Before the algorithm enters the inner loop, lower bound lb, gap gap, iteration 

count for the inner loop s, and the set of the uncertain parameters S are specified. 

Next, the inner loop initiates by solving the subproblem (SUB). As introduced in 
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the previous subsection, the optimal objective function value so* can used to update 

the lower bound as shown in line 9 of Figure 18. The current iteration is added 

into the set of identified uncertain parameters. As the optimal solution of (SUB) is 

in the dual space, we evaluate the identified uncertain parameters using the 

equations in line 11-15 of Figure 18. A set of second-stage variables with respect to 

the identified uncertain parameters are added to the master problem (MA). The 

algorithm then solves the master problem with all identified uncertain parameters. 

Subsequently, the optimal objective function value mo* of the master problem is 

used to update the current upper bound, taken as the larger value between the 

existing upper bound and mo*. Later, the inner loop checks the absolute difference 

between lower and upper bound. The inner loop terminates if the gap is 

sufficiently close to the tolerance. Otherwise, the optimal first-stage decisions are 

passed to a new subproblem, and the interaction between the subproblem and 

master problem continue until the stopping criterion is satisfied.  

In the outer loop of the proposed algorithm, the optimal objective function value 

or the current upper bound from the inner loop is compared with a predefined 

tolerance. The outer loop terminates if the current upper bound from the inner 

loop is smaller than the tolerance, indicating the optimal objective function value 

of the auxiliary robust optimization problem is sufficiently close to zero. 
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Otherwise, a new r is defined following the formula in line 21 of Figure 18. The 

new r is then used to obtain a new upper bound from the inner loop and the outer 

loop keeps iterating until an upper bound within the tolerance is found. 

3.6 Results and discussion 

Table 5. Major uncertain parameters in the model. 

Species 

Ava./ 

Deman

d (t/h) 

Price 

($/t) 

Maximum 

deviation 

coefficien

t 

Species 

Ava./ 

Deman

d (t/h) 

Price ($/t) 

Maximum 

deviation 

coefficien

t 

Feed gas 6000 N/A 10% 
Hydrochl

oric acid 
4 200 10% 

Urea 50 270 10% Lipase 2.5 30,000 10% 

DAP 50 460 10% Hydrogen 10 3,000 10% 

Polyelectrol

yte 
2 

2,50

0 
10% 

Isobutene 

/Isobutane 
2.5 1,500 10% 

Sodium 

hydroxide 
5 328 10% 

Diethyl 

succinate 
0.2 3,500 10% 

Poly-

aluminum 

chloride 

1 929 10% Fertilizer N/A 100 N/A 

Aluminum 

sulfate 
3.5 

1,52

0 
10% 

Propylene 

glycol 
N/A 1,600 N/A 

Chitosan 2 
1,00

0 
10% 

Di-

ether/Tri-

ether 

N/A 2,000 N/A 

Poly-γ-

glutamic 

acid 

0.5 
5,00

0 
10% PHB N/A 9,700 N/A 

Hexane 5.5 717 10% Biodiesel 25 1,008 10% 

Butanol 6.5 
1,50

0 
10% 

Waste 

treatment 
N/A 250 10% 

Methanol 13 500 10% Electricity N/A 
70.3 

($/MWh) 
6% 

Sodium 

hydroxide 
8 300 10% Heating N/A 

29 

($/MWh) 
10% 

Sodium 

methoxide 
1.2 

1,50

0 
10% Cooling N/A 

14 

($/MWh) 
10% 



 

103 

 

 

All computational experiments are performed on a desktop PC with an Intel(R) 

Core(TM) i5-2400 3.10GHz CPU and 8GB RAM. All of the models and solution 

algorithms are coded in GAMS 24.4.6 [203]. The subproblem and relaxed master 

problem are solved using CPLEX 12. The relative optimality tolerance of CPLEX 12 

is set to 10-6, and the absolute optimality tolerance for the proposed algorithm is set 

to 10-6. The deterministic problem has 37,854 continuous variables, 48 discrete 

variables, and 63,920 constraints; the master problem has 46,003 continuous 

variables, 48 discrete variables, and 39,589 constraints; the subproblem has 43,522 

continuous variables, 105 discrete variables, and 48,982 constraints. Most 

parameters are taken from previous studies [21, 22], and the uncertain data are 

evaluated based on historical records [212, 231-235]. The uncertainty information 

including the feedstock availability, biofuel demand, and prices are shown in Table 

5. 
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3.6.1 Maximizing return on investment 

 

Figure 19. A heat map for the robust return on investment (%) under various budgets of 

uncertainty. DOS is the deterministic optimal solution, and IROS is the illustrative robust 

optimal solution. 

A budget of uncertainty is a significant parameter to control the robustness of the 

optimal solutions of the proposed two-stage ARMIFP problem. When the budget 

of uncertainty increases, more deviations of the uncertain parameters from 

corresponding nominal values are allowed. Subsequently, there can be more 

uncertainty realizations and the robust optimal solution, or the worst-case optimal 

solution in all uncertainty realizations, usually becomes worse. By varying the 

budget of uncertainty, we are able to obtain a set of robust optimal solutions which 

reveal the tradeoff between risk and ROI. It can be clearly seen in Figure 19 that as 

the budgets of uncertainty increase, the robust optimal ROI decreases. The most 
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conservative ROI of 0.35% is obtained when the budget of price uncertainty is 13 

and the budget of supply and demand uncertainty is 1. When we hold either of the 

budgets and increase the other, no smaller ROI could be obtained if the budget 

exceeds that of the most conservative ROI. This is because either the involved 

uncertain parameters have reached the maximum amount of deviation for the 

chosen processing pathway, or the remaining uncertain parameters do not 

influence the optimal objective function value.  

 

Figure 20. Three identified optimal processing pathways. DP is the deterministic optimal 

pathway; IRP is the illustrative robust optimal pathway.  



 

106 

 

We consider two optimal solutions in Figure 19 to demonstrate the advantages of 

robust optimal solutions. The point corresponding to 0 budget for both price 

uncertainty and supply and demand uncertainty is referred to as the deterministic 

optimal solution (DOS). As all risks are ignored, the DOS shows the most 

economically favorable performance compared with the other robust optimal 

solutions. As shown in Figure 20, the DOS selects open pond, poly-electrolyte-

based flocculation, filtration, sonication, supercritical CO2 extraction, 

heterogeneous acid-catalyzed transesterification, PHB production, and direct 

combustion for biogas utilization. In contrast, the illustrative robust optimal 

solution (IROS) corresponds to a price uncertainty budget of 4 and a supply and 

demand uncertainty budget of 1. Larger uncertainty budgets lead to more 

conservative economic performance. This robust optimal solution selects high 

pressure homogenization in the cell disruption section and sodium-methoxide-

catalyzed transesterification in the biofuel production section. 

Table 6. Key optimal results of the deterministic optimal solution (DOS) and the illustrative 

robust optimal solution (IROS). 

 
DOS IROS 

Budget of price uncertainty 0 4 

Budget of Supply and 

demand uncertainty 
0 1 

Cell disruption technology Sonication 
High pressure 

homogenization 

Transesterification 
Heterogeneous acid-

catalyzed 

Sodium-methoxide-

catalyzed 
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Algae production, t/h 176.93 86.73 

Biodiesel production, t/h 25.00 22.50 

Biodiesel production, 

Mgal/year 
66.04 59.44 

PHB production, t/h 0.45 0.43 

Productivity, % 14.13 25.94 

ROI, % 7.83 0.85 

 

In order to understand why different technologies are selected between the two 

pathways, we provide the key optimal results in Table 6. The DOS shows a lower 

biomass conversion efficiency, while achieves a higher ROI (highest in Figure 24). 

The IROS reduces the biomass consumption, but still meets the same biodiesel 

demand. The major difference between the two solutions is that the IROS is 

hedged against uncertainty in price, biofuel demand, and feedstock availability. 

Regarding the objective function value of the IROS, the worst-case realization in 

the supply and demand uncertainty is identified as a decline in biodiesel demand. 

However, an increase in biodiesel demand is even more critical because this 

realization can lead to feasibility issues of economically favorable processing 

pathways. Specifically, a positive deviation results in a biodiesel demand of 27.5 t/h 

(72.64 Mgal/y), which is an infeasible production rate for a processing pathway 

equipped with sonication in the cell disruption section and heterogeneous acid-

catalyzed transesterification in biofuel production. As a result, high pressure 

homogenization and sodium-methoxide-catalyzed transesterification are selected 
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in the robust processing pathway because of a higher biomass utilization efficiency. 

However, a high biomass utilization efficiency or the robustness in the resulting 

processing pathways comes at a high operating cost. Overall, the IROS is a much 

more reliable processing pathway if we take uncertainty into account. 

 

 

Figure 21. The worst-case uncertainty realizations for the robust optimal solutions with 

varying budgets of uncertainty. 

More insights can be obtained if we investigate the distribution of the budgets of 

uncertainty in the resulting robust optimal solutions. Among various uncertainty 



 

109 

 

realizations, we are interested in the worst-case uncertainty realization that 

contributes to the robust optimal solution. When we collect the worst-case 

uncertainty realization for each robust optimal solution, we find biofuel demand 

shows much more impact on the ROI than the other uncertain parameters when 

the budget of supply and demand uncertainty increases. If the biofuel demand is 

fixed, the variation in feedstock availability would not affect the optimal ROI. 

However, as we analyzed previously, if the biofuel demand fluctuates, the available 

feedstock supply may not be sufficient for certain processing pathways to generate 

adequate biofuel. We further find that for a fixed budget of supply and demand 

uncertainty (being 0 or 1), the robust optimal solutions select the same processing 

pathway. As a result, when we increase the budget of price uncertainty by 1, the 

previously selected uncertain prices are always selected again and a new uncertain 

price is also selected. We show the distribution in Figure 21, where one block 

represents an uncertain price and the newly selected uncertain price is placed on 

the top of each column.  

In order to understand Figure 21, we start from the fact that when we fix the 

budget of supply and demand uncertainty, the impacts of all uncertain prices on 

the objective function are different. Consequently, there must be a ranking of the 

uncertainty prices based on the degree of decline in the optimal value of ROI when 
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an uncertain price is considered. The key of robust optimization is to search for the 

worst-case realization in all possible realizations. When the budget of price 

uncertainty is set as 1, the program outputs the first uncertain price in the ranking 

because the introduction of this uncertainty results in the worst-case optimal 

objective function value. When the budget of price uncertainty is set as 2, the top 2 

uncertain prices must be selected. We construct this ranking in Figure 21 

following exactly the same procedure. Therefore, the sequence of uncertain prices 

on the right of each figure reveals the impacts of uncertain prices, being the lower, 

the more influential. For example, biodiesel price is identified as the most 

influential uncertain price among those considered in the model, and a decline in 

biodiesel price leads to the largest decrease in ROI among all uncertain parameters. 
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Figure 22. Distribution of the total investment (TI), operating costs (OC), and sales for the 

deterministic optimal solution (DOS) and the illustrative robust optimal solutions (IROS). 

The breakdown of the total investment costs, the operating costs, and the sales for 

the deterministic optimal solution, and two robust optimal solutions is shown in 

Figure 22. With a higher biomass utilization efficiency, the total investment cost, 

the operating cost, and the sales of the IROS are smaller than those of the DOS. 

However, as the operating cost of the IROS does not decrease as significantly as the 

total investment cost and the sales, the overall economic performance of the IROS 

is worse than that of the DOS. In both solutions, the major categories contributing 

to the total investment costs are remnant treatment, cultivation, and dewatering. 
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Utility costs account for the largest share in operating costs. Furthermore, biodiesel 

sales and electricity generation bring the most revenue. 

Table 7. Computational times (CPUs) for robust optimal solutions with various budgets. 

Budget of 

supply and 

demand 

uncertainty 

Budget of price uncertainty 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 3.8 3.3 3.1 3.3 3.4 3.3 3.3 3.4 3.2 3.2 3.2 3.2 3.5 3.3 

1 3.6 3.4 3.2 3.2 3.3 3.3 3.5 3.5 3.2 3.2 3.3 3.3 3.4 3.2 

2 1.4 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.3 1.2 1.3 1.3 1.3 1.2 

 

Table 8. Upper and lower bounds of each iteration to obtain the robust optimal solution IROS. 

Outer 

iteration 

ROI 

(%) 

Inner 

iteration 

Upper 

bound 

Lower 

bound 
Gap 

1 
0 1 16.31  −1.21×103 1.22×103 

0 2 4.81 4.81 0 

2 
0.85 1 11.50  −1.21×103 1.22×103 

0.85 2 0 0 0 

 

In Table 7, all optimal solutions in Figure 24 can be returned in 5 seconds. The 

upper and lower bounds for solving the IROS is shown in Table 8. The proposed 

solution algorithm takes two outer iterations to solve F(r)=0. For each outer 

iteration, the column-and-constraint generation algorithm requires two inner 

iterations to find the worst-case uncertainty realization. When the proposed 

algorithm solves F(r), the best upper bound based on the optimal solution of the 

master problem keeps decreasing as more uncertainty realizations are identified by 
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the subproblem. On the other hand, the best lower bound increases when the 

subproblem is given a new first-stage decision in each inner loop. The gap between 

the best upper and lower bounds in the inner loop reduces rapidly until the 

stopping criterion is satisfied. As two-stage ARMIFP problems cannot be solved by 

any off-the-shelf solver, the short computation times and small numbers of 

iterations for the entire algorithm to converge indicate that the proposed solution 

strategy represents an efficient algorithm for the proposed two-stage ARMIFP 

problem. 

3.6.2 Maximizing productivity 

Another important fractional metric to measure the performance of processing 

pathways is productivity, which is defined as the ratio of the mass flow rate of the 

biofuel product divided by the mass flow rate of the biomass from the dewatering 

section [236]. If the objective function of (AROM) is to maximize productivity, 

both the numerator and denominator of productivity involve only second-stage 

decision variables. As a result, the objective function of the auxiliary parametric 

function in the proposed algorithm contains only second-stage decision variables. 

Furthermore, this model involves only network configuration constraints and mass 

balance constraints, thus subject to only the supply and demand uncertainty. We 

present the subproblem and master problem in Appendix D. We solve the problem 
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with various budgets of supply and demand uncertainty, and obtain only one 

optimal objective function value. The optimal processing pathway selects high 

pressure homogenization and sodium-methoxide-catalyzed transesterification and 

achieves the maximum productivity of 25.94%. These results are the same with 

those obtained in the IROS. Since demand uncertainty does not cause infeasibility 

for the processing pathway with the highest productivity (otherwise the entire 

optimization problem is infeasible), the second-stage decisions are fully adjustable. 

Consequently, given linear mass balance constraints, the robust optimal solutions 

are able to scale linearly to obtain the same highest productivity as the biofuel 

demand fluctuates. 

The obtained robust optimal ROIs show that current algae-based processing 

pathways are not competitive from an investment point of view. However, 

through the cost breakdown of two optimal solutions, we identify the bottleneck 

to be the high capital costs of cultivation, harvesting & dewatering, and remnant 

treatment. Therefore, ongoing research into algae conversion technologies should 

concentrate on reducing the capital costs of these technologies. Additionally, the 

efficiency and cost-effectiveness will be sufficiently improved if stable microalgae 

species with higher oil productivity and higher biomass product concentration are 

found applicable to large-scale cultivation. With growing global consensus on 
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utilizing sustainable fuels and products, algae-based processes may attract more 

potential investors in the future.  

3.7 Summary 

We developed by far the most comprehensive processing network with 46,704 

alternative processing pathways for producing a plethora of algal fuels and value-

added bioproducts. We formulated a deterministic MIFP model to maximize the 

ROI of producing biofuels and bioproducts from microalgae. In order to handle 

parameter uncertainty in the deterministic model, we proposed a two-stage 

ARMIFP problem for the robust optimal processing pathway in the proposed 

processing network. Since the problem could not be solved by any off-the-shelf 

solver, we developed a tailored solution strategy that integrated a parametric 

algorithm with a column-and-constraint generation algorithm. Two optimal 

processing pathways were identified. The robust optimal processing pathway 

selected open pond, poly-electrolyte-based flocculation, filtration, high pressure 

homogenization, supercritical CO2 extraction, sodium-methoxide-catalyzed 

transesterification, PHB production, and direct combustion for biogas utilization. It 

was also found that the robust ROIs ranged from 0.35% to 7.83% corresponding to 

different budgets of uncertainty. Biodiesel price influenced the ROI most 

significantly. The highest productivity of 25.94% was found. The major 
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contributors to the total investment cost were the capital costs of cultivation, 

harvesting, and remnant treatment. Future research should be directed to reducing 

the capital costs of these technologies and seeking microalgae species with higher 

oil productivity and higher biomass product concentration.  

3.8 Appendix A: Superstructure configuration description 

There are four technology alternatives provided in the cultivation section: open 

pond, flat plate photobioreactor (PBR), bubble column PBR, and tubular PBR. 

Open ponds are less costly to construct and operate, while they require more land 

area and are less productive than PBRs. Despite the differences in conversion 

coefficients and production costs, the immediate product from the first section 

contains too much water for downstream utilization. Therefore, in the subsequent 

sections, the algal biomass concentration must reach at least 30 wt % through a set 

of dehydration operations. The harvesting section aims at reaching a concentration 

of 10 wt % via autoflocculation and dissolved air flotation, and we consider six 

alternative flocculants: poly-electrolyte, sodium hydroxide, poly-aluminum 

chloride, aluminum sulfate, chitosan, and poly-γ-glutamic acid. In the next section, 

both pressure filtration and centrifugation are able to increase the concentration of 

algae biomass product to 30 wt %, and this slurry is suitable for wet-extraction 

methods in the next section. In addition, energy-intensive technologies, such as 
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freeze drying and thermal drying, generate algae powder with a concentration of 

85 wt %. This product can then be processed by dry-extraction methods. To better 

utilize algal lipids, a cell disruption section destroys the biological protection layers 

and improves extraction efficiency. We consider five cell disruption alternatives. 

Bead beating is employed for both algae powder and algae slurry, while 

microwaving, high pressure homogenization, and sonication are considered only 

for algae slurry. Since the increased revenue from extra lipids may not compensate 

the increased capital expenditure (CAPEX) and operation expenses (OPEX) for cell 

disruption, we add one bypassing option in this section. Six technology alternatives 

are included in the lipid extraction section. Hexane extraction and supercritical 

CO2 extraction apply to both algae powder and algae slurry; isopropanol/hexane 

extraction is considered only for algae powder; butanol extraction is specifically for 

algae slurry. In addition to the above extraction-based technologies, we include an 

independent processing pathway for hydrothermal liquefaction (HTL), which can 

process dilute algal product from the harvesting section and achieve relatively 

higher lipid yields. Two groups of technologies are able to convert algal lipids to 

biofuels: transesterification results in biodiesel and glycerol, while hydroprocessing 

results in renewable diesel as a substitute to fossil-based diesel fuels. Specifically, 

we consider alkaline in-situ transesterification, acidic in-situ transesterification, 
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and enzymatic in-situ transesterification for algae powder, sodium-methoxide-

catalyzed transesterification, supercritical methanol transesterification, 

heterogeneous acid-catalyzed transesterification, enzymatic transesterification, 

Co/Mo-catalyzed hydroprocessing, and Ni/Mo-catalyzed hydroprocessing for lipids 

from various extraction technologies, and HZSM-5-catalyzed hydroprocessing for 

lipids from HTL. If a transesterification technology is selected in the biofuel 

production section, the coproduced glycerol can be utilized later to produce 

hydrogen, propylene glycol, glycerol-tert-butyl ether, and PHB. Moreover, we 

incorporate three hydrogen production alternatives, namely steam reforming, 

autothermal reforming, and aqueous-phase reforming. Their detailed processes 

were described in detail elsewhere [22]. In the last section, the algal remnant is 

sent to anaerobic digesters and converted to biogas, a recyclable aqueous product, 

and a separable solid product. Biogas is utilized onsite to produce methanol or 

electricity, and the off-gas is reused in the cultivation section. Multiple fuel and 

chemical products can be generated in the superstructure, which allows selecting a 

portfolio of products for the most economically favorable performance. 
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3.9 Appendix B: Economic evaluation constraints and definition of 

ROI 
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Land cost LC is calculated by Equation (1.B1), where lp denotes the unit land cost 

and proj is the productivity of technology j. The startup cost SC and the working 

capital WC are calculated by Equations (1.B2) and (1.B3), respectively. The capital 

cost, land cost, startup cost, and working capital constitute the total investment 

cost. 
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The feedstock cost FC is evaluated by Equation (1.B4), where h represents the 

annual operating hours and fpk is the feedstock cost of species k. Later, we calculate 
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the utility cost UC in Equation (1.B5), where ep, hp, cp, and wp denote the prices 

of electricity, heating utility, cooling utility, and waste treatment, respectively. 

upcoi,j,k, uhcoi,j,k, and uccoi,j,k are the unit consumption rates of electricity, heating 

utility, cooling utility, respectively, for species k in the “out” flow of technology j 

in section i. upcii,j,k, uhcii,j,k, and uccii,j,k have similar definitions but based on the 

“in” flow. 
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Other production expenditures are calculated by Equations (1.B6)–(1.B10). 

Operations cost OC consists of three parts: operators’ wages-based cost, technical 

assistance cost ta, and cost of laboratory cl. In Equation (1.B6), w, no, and co are 

the wage per operator, the number of operators, and the coefficient for related 

costs, respectively. Inflation is captured by the CPI (consumer price index) 

coefficient cpic. The maintenance cost MC, property tax and insurance PTI, and 

depreciation cost DC are evaluated based on the total capital cost and respective 
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coefficients mmc, ptic, and dcc. Operating overhead cost OOC consists of a part 

oocc1 based on the operations cost, and a part oocc2 based on the maintenance 

cost. 
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The sales S of selling the products are calculated by Equation (1.B11), where ppk 

denotes the product price of species k and upg is the unit electricity generation 

rate. A general expense GE is spent for promotion and sales management, and it is 

evaluated as a portion, gec, of the total sales in Equation (1.B12). 
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The goal of this deterministic problem is to obtain the maximum ROI, which is a 

widely used indicator to project financing. As shown in Equation (1.B13), ROI is 

defined as the net earnings divided by the total capital investment [46]. The net 

earnings are further defined as the after-tax difference between the annual sales 

and OPEX. The latter quantity is the sum of feedstock costs, utility cost, operations 

cost, maintenance cost, operating overhead cost, property taxes, insurance, and 

depreciation cost.  
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3.10 Appendix C: Monotonicity of F(r) 

The goal of this section is to show that the third level maximization problem of 

F(r) is a monotonic function with respect to several uncertain parameters 

considered in the second level minimization problem. The monotonicity of the 

maximization problem can be used to simplify the original uncertainty set by 

eliminating the absolute value functions. 

By definition, ,  0M c1 , and , , , , , , 0      c2 c31 c32 c33 c42 c43 c5  .  

Let    , , , , , max , , , , , ,k k k k
M O

2G T1 T2 T31 T32 T33 T5 T1 TN 2 T31 T32 T33 T5 M


 , where N2 

is defined in (AROM) and the uncertain parameters are determined by Constraints 

(1.29)-(1.43). 

Lemma 1. :k K   G(T1k,T2k,T31,T32,T33,T5) is monotonically increasing with 

respect to T1k; G(T1k,T2k,T31,T32,T33,T5) is monotonically decreasing with 

respect to T2k, T32, T33, and T5, respectively. 

Proof. (1) : 1 2

k kT1 T1k K   ,  , 1

1 kT T1  and  , 2

1 kT T1  are two feasible points in 

uncertainty set U with the values of remaining components denoted by T1 being 

the same. Let M* be the optimal solution of  , 2

k1G T T1 . We have 
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Therefore, G(T1k,T2k,T31,T32,T33,T5) is monotonically increasing with respect to 

T1k.  

(2) : 1 2

k kT2 T2k K   ,  , 1

2 kT T2  and  , 2

2 kT T2  are two feasible points in 

uncertainty set U with the values of remaining components denoted by T2 being 

the same. Let M** be the optimal solution of  , 2

k2G T T2 . We have 
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Therefore, G(T1k,T2k,T31,T32,T33,T5) is monotonically decreasing with respect to 

T2k. Similarly, we can prove that G(T1k,T2k,T31,T32,T33,T5) is monotonically 

decreasing with respect to T32, T33, and T5, respectively. □ 

3.11 Appendix D: Subproblem and master problem formulation of 

maximizing productivity 

(SUB2)  Min Objective function defined in (1.57) (1.D1) 

 s.t.    Constraints (3.71)-(3.74)   (1.D2) 
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CHAPTER 4 

CONSEQUENTIAL LIFE CYCLE OPTIMIZATION  

4.1 Introduction 

In this study, we propose a general conceptual framework of consequential life 

cycle optimization (LCO). We demonstrate how the four phases of consequential 

life cycle assessment (LCA) are integrated into the optimization framework. To 

achieve this goal, we develop a general system boundary to enclose a target process 

and the processes and markets that would be influenced by the target process. 

Based on the general system boundary, we develop a multiobjective optimization 

model that integrates consequential LCA, techno-economic analysis, process 

models, and market models. The market models describe how a market reaches a 

new equilibrium by shifting its aggregate supply and/or demand curves. The 

resulting optimization model is formulated as a mixed-integer nonlinear 

programming (MINLP) model, which can be computationally intractable for 

general-purpose global optimization solvers. To tackle the computational 

challenge, a tailored global optimization algorithm is developed to integrate the 

inexact parametric algorithm and the branch-and-refine algorithm. We apply the 

proposed framework to a process design problem for algal renewable diesel 

production. A superstructure with a number of process and technology alternatives 
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in each section of the algal process is developed. To establish the system boundary, 

we analyze the potential feedstock and product markets, and identify 

corresponding consequences. The resulting optimization model minimizes the 100-

year global warming potential (GWP) per GJ of algal renewable diesel and the 

ReCiPe endpoint score per GJ of algal renewable diesel as the environmental 

objective functions, and maximizes the net present value (NPV) per GJ of algal 

renewable diesel as the economic objective function. The constraints of the 

consequential LCO model systematically account for network configuration, mass 

and energy balances, market models, techno-economic evaluation, and 

environmental impact assessment. We compare the optimal environmental and 

economic results based on the proposed framework with those based on the 

existing attributional LCO framework. The major novelties of this work are 

summarized below: 

• A novel general conceptual framework of consequential LCO, including a 

general system boundary and a general multiobjective optimization model; 

• A tailored global optimization algorithm for efficiently solving the resulting 

large-scale nonconvex MINLP problem; 

• A comprehensive application of the proposed framework to algal renewable 

diesel production with detailed market analysis; 

The rest of the paper is organized as follows. The General Conceptual Framework 

section describe the four phases of consequential LCA and how they are integrated 
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into an optimization model. Next, the proposed framework is applied to a process 

design problem for algal renewable diesel production. Conclusion is provided in 

the last section. 

4.2 General conceptual framework 

The goal of this work is to develop a general conceptual framework of 

consequential LCO. As consequential LCA has never been employed in an LCO 

model, we first show how the four phases of consequential LCA contribute to the 

consequential LCO framework, before we exhibit and describe the general form of 

the optimization model. 

4.2.1 Goal and scope definition 

The first phase is goal and scope definition, where we declare the key settings of 

the LCA, including but not limited to the goal of the study, functional unit, system 

boundary, allocation method, and major assumptions. Typical goals of 

consequential LCA include determining the consequential environmental impacts 

of a product over its life cycle, and identifying the hotspots of the consequential 

environmental impacts. The function of the application can be either producing a 

specified product, or performing a certain service. The functional unit is thus 

defined with both the qualitative and quantitative aspects of that function. By 

applying the same functional unit, results derived from different approaches can be 
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fairly compared. Since consequential LCA captures marginal changes in upstream 

and downstream markets, multi-product allocation is automatically handled by 

system expansion. 

 

Figure 23. System boundary of attributional LCA (upper) and consequential LCA (lower). 
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A major difference between attributional LCA and consequential LCA lies in the 

system boundary. As shown in the upper part of Figure 23, the system boundary in 

a conventional attributional LCA study includes only the directly connected 

processes. A general system boundary of consequential LCA is shown in the lower 

part of Figure 23, which consists of two regions and three types of components. 

The primary region contains the target process, feedstock and product markets, 

and linking flows. The secondary region contains affected processes, downstream 

markets, and linking flows. It is noted that there can be multiple feedstock and 

product markets in the primary region and multiple downstream markets in the 

secondary region. For illustrative purposes, only one representative market is 

presented for each category. 

Once the target process starts operations, its demand for feedstocks and its supply 

for products begin to influence the relevant markets. According to classical 

microeconomics [237], when the demand or supply of a good changes, the price 

and quantity produced of that good in its market shift to a new market 

equilibrium. Since a good in the primary region is also an input or output of other 

processes in the secondary region, the change in price and quantity of that good 

will also affect the product price and quantity in the downstream markets, and so 

on. Given different price elasticities of supply and demand, there can be different 



 

130 

 

consequences regarding the change in the target process. Possible consequences are 

denoted as “Increase”, “Decrease”, and “Unchanged” in Figure 23. 

The assumptions concerning the components in the general system boundary 

include: 

(1) In line with all market equilibrium-based models [68], the system is assumed at 

an equilibrium state before the change occurs and can converge to a new equilibrium 

state after the change occurs. 

(2) In the secondary region, the supplies from the feedstock suppliers’ processes, 

other product suppliers’ process, and other suppliers’ processes for downstream 

markets are perfectly elastic. The assumption is in accordance with the assumption for 

consequential life cycle inventory (LCI) and life cycle impact assessment (LCIA) 

results in the Ecoinvent database [238]. 

(3) As consequences can be theoretically infinite, it is practical to simplify the 

consequences to be analyzed [69]. Normally, no more than two levels of markets and 

no more than one affected technology are identified and discussed [72, 95]. It is 

assumed in this chapter that the consequences propagate no further than the suppliers 

of the downstream markets. Moreover, the downstream markets are assumed to be 

unaffected by the changes that are not included in this chapter. As a result, the 

demands of downstream markets in the secondary region are perfectly inelastic. 
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4.2.2 Life cycle inventory analysis 

During the second phase, all the LCI data, e.g. material and energy flow rates, are 

collected. In both attributional and consequential LCA, the mass and energy 

balance relationships within a process can be readily established following existing 

mathematical models. In addition, consequential LCA requires the changes in the 

involved markets be quantified and used together with the process flow data. 

However, collecting these data is not a trivial task. 

Unlike relatively mature attributional LCA approaches, namely process-based, 

input-output-based, and hybrid LCA [58, 239], consequential LCA is still under 

development. Consequential LCI data measure the difference between the physical 

flows after a change occurs and those before the change occurs in the system. 

Although researchers share a common understanding of the advantages of 

consequential LCA, there is no procedural consensus. As models and techniques 

are highly simplified representations of reality, they are unable to accurately 

capture all possible changes in the system [240]. Despite the limitation, existing 

consequential LCA methods and applications still provide valuable insights that 

cannot be obtained from the corresponding attributional LCA results. There are 

four methods to determine the types and amounts of materials to be included in 

the consequential LCI data, namely scenario analysis, simple PE models, 
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sophisticated PE models, and CGE models. Applying different assumptions and 

targeting various levels of markets and geological regions, these methods coexist in 

the literature for varying modeling needs [241]. Since each method is capable of 

capturing only a subset of consequences (sometimes with overlaps), one method 

cannot prove to be superior over the others [68, 69]. 

In this chapter, we aim the consequential LCO framework at relatively small-scale 

applications, such as estimating the life cycle environmental impacts associated 

with producing fuels from a biorefinery. Therefore, the consequential LCI data for 

market changes are compiled using tailored simple PE models due to its accuracy 

and flexibility. The detailed reasons are summarized as follows. 

• Systematic approach: A scenario analysis predetermines the affected quantities, 

such as prices and flow rates, in the market. Therefore, it considers only a limited 

number of consequences. In this chapter, a systematic approach is desired to 

determine the affected quantities along with other major system decisions. 

Therefore, the scenario analysis method is not chosen in the proposed framework. 

• Model resolution: In order to capture a whole picture of a sector or even an entire 

economy, comprehensive models understandably reduce their complexity by 

considering similar products as one commodity. For example, different kinds of 

liquid fuels are lumped as one commodity in a CGE model [81]. Therefore, the 

results would be too coarse to make fair comparison with the results via the 

attributional approach which captures details between similar products. 
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Additionally, it is impossible to differentiate the environmental impacts of the 

products in the same commodity category. 

• Model maturity: There are only several sophisticated PE models available for 

non-agricultural sectors. Therefore, if changes involve products that are not 

relevant to agricultural sectors, existing sophisticated PE models are unable to 

determine the consequences. Moreover, a mapping is required to link the LCI data 

from solving PE or CGE models to the LCIA results in the Ecoinvent database 

[195]. However, a significant portion of the LCIA data are not available. In the 

case of biofuels, there are observed limitations, such as the lack of accurate land 

use modeling in Ecoinvent, the modelled processes not adapted to each region, and 

high uncertainty due to model aggregation [66]. 

In contrast, tailored simple PE models are immune to the drawbacks of the other 

methods and they are most suitable to be integrated in the proposed consequential 

LCO framework. The constraints of the proposed PE model are introduced in the 

consequential LCO model subsection. 

4.2.3 Life cycle impact assessment 

Next, consequential LCI data are translated into environmental impact indicators, 

or midpoint indicators, by multiplying the LCI data by the consequential 

characterization factors of corresponding impact categories. Based on the midpoint 

indicators, more comprehensive impact indicators, or endpoint indicators, can be 
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calculated by summing up normalized midpoint indicators in different impact 

categories with a set of predefined weights. In the proposed consequential LCO 

model, either a midpoint or an endpoint indicator can be employed as the 

environmental objective function, as long as it can be calculated using the 

consequential LCI data and characterization factors. 

4.2.4 Interpretation 

Interpretation is the most versatile phase in consequential LCA. It is performed in 

every previous phase to guarantee its completeness and consistency. It works in an 

iterative manner before the conclusion is given. When interpreting the LCIA 

results, the major contributor in a certain category may be explained by tracking 

down the corresponding LCI data. Furthermore, the optimal environmental 

impacts and optimal economic indicators can be plotted as a Pareto-optimal curve. 

The curve contains many optimal solutions that demonstrate trade-offs between 

the objective functions and allow a visual comparison between the solutions from 

different approaches. 

4.2.5 Consequential LCO model 

Based on the settings in consequential LCA, a general consequential LCO model is 

proposed to determine simultaneously the optimal consequential environmental 

impact and economic performance. As shown below, the model consists of two 
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objective functions and four sets of constraints. The environmental objective 

function and economic objective function are given by (1.17) and (1.18), 

respectively. The mass and energy balance of the target process is modeled by 

Constraint (1.19); the aggregate supply and demand are calculated by Constraint 

(1.20) and (1.21), respectively; the new market equilibrium is established by 

Constraints (1.22). 

      , , , ,

, ,

min   , ,k k k l l l r s l r s l l l

k l l r s

cfd u X cft Q cfc v Q AS AD             (1.17) 

  ,

,

max    , ,k l l l k

k l

h P Q X  (1.18) 

  ,s.t.    , ,   l k l k k

k

Q f X YP l   (1.19) 

          , , ,   l l l l lAS m Q P YS l   (1.20) 

          , , ,   l l l l lAD n Q P YD l   (1.21) 

         ,   l lAS AD l   (1.22) 

In this model, the involved species are indexed by k, the feedstock and product 

markets by l, the affected processes by r, and the downstream markets by s. The 

environmental objective function is to minimize the total environmental impact 

change in the system. cfdk, cftl, and cfcl,r,s are the characterization factors for 

emitting material k, transporting feedstock or product l, and producing material s 

in process r in market l, respectively. Continuous variable Xk can be used to model 

various flow rates of material k in the target process. Function uk(·) denotes the 
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flow rate of material k in the direct emissions flow. Ql is the flow rate of feedstock 

or product l in the target process. ASl is the aggregate supply of feedstock or 

product l. ADl is the aggregate demand of feedstock or product l. Function vl,r,s(·) 

denotes the flow rate change of material s in process r relevant to feedstock or 

product l. The economic objective function is to maximize NPV of the project. 

Function hk,l(·) denotes the cost estimation function. Pl is the price of feedstock or 

product l. Constraint (1.19) represents a general process model denoted by function 

fk,l(·). Integer variable YPk can be introduced to model the selection of technology 

alternatives in the target processes. The tailored PE model to quantify the changes 

in the market consists of Constraints (1.20)–(1.22). More specifically, the model 

describes how the supply and demand relationships in the relevant markets are 

influenced given the flow rates of the feedstocks and products in the target 

processes. The feedstock and product flow rates of the target process are first 

integrated into tailored aggregate supply function ml(·) in Constraint (1.20), and 

aggregate demand function nl(·) in Constraint (1.21). Integer variable YSl and YDl 

can be introduced to facilitate evaluating aggregate supply and demand, 

respectively. In Constraint (1.22), a new equilibrium can be achieved in each 

market by letting the supply equal to the demand. 
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4.3 Application to algal renewable diesel production 

To illustrate the proposed consequential LCO framework, the optimal process 

design for algal renewable diesel production using the proposed framework is 

addressed in this section. 

4.3.1 Goal and scope definition 

There are two goals for this consequential LCA: (1) Assessing the cradle-to-grave 

consequential life cycle environmental impacts of renewable diesel production 

from microalgae Scenedesmus sp. [242]; (2) Comparing the life cycle 

environmental impacts via the attributional and consequential approaches. The 

functional unit is defined as 1 GJ of renewable diesel produced from microalgae. In 

a resource assessment study [243], a large number of potential microalgae farm 

sites in the U.S. were ranked according to the biomass productivity and freshwater 

availability of each site. The sites in the Gulf Coast area in Texas showed the 

highest ranks. Following these results, the renewable diesel production process in 

this chapter is expected to be established in the gulf coast area in Texas. 
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Figure 24. Superstructure of the algal renewable diesel production process. 

The target process in this application converts a carbon gas source to algal 

renewable diesel. Many alternative process designs for renewable diesel production 

from microalgae are included in a superstructure as shown in Figure 24 and Figure 

25. Figure 24 provides an overview of the technology alternatives in the 

superstructure, and Figure 25 shows the equipment units and material flows in the 

superstructure. There are 11 sections: cultivation, harvesting, primary dewatering, 

secondary dewatering, drying, cell disruption, lipid extraction, biofuel production, 

remnant treatment, utility generation, and hydrogen generation. As only one 

technology is included in the remnant treatment, utility generation, and hydrogen 
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generation sections, they are aggregated as the final row in Figure 24 as utility 

generation and waste treatment. Renewable diesel is the major product of the algal 

renewable diesel production process and the byproducts include the digestate from 

the anaerobic digestion process in the remnant treatment section and the extra 

electricity in the utility generation section. In the remnant treatment section, an 

attractive alternative to the anaerobic digestion process is selling the algae meal 

directly as an animal feed. The use of algae meal as an animal feed can further 

reduce the amount of corn as the animal feed, thus mitigating the total 

environmental impacts from a consequential perspective. Despite its 

environmental advantage, selling the resulting algae meal does not generate 

additional carbon dioxide for the cultivation section as the anaerobic digestion 

process, thus reducing the ultimate yield of renewable diesel. In order to produce 

more renewable diesel, only anaerobic digestion is considered in the 

superstructure. 
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Figure 25. Detailed Superstructure of the algal renewable diesel production process. 

The target process interacts with six markets to purchase feedstocks or sell 

products. Specifically, these markets trade urea, diammonium phosphate (DAP), 

natural gas, n-hexane, electricity, and diesel. Therefore, there are six markets 

included in the system boundary. In addition to the markets, the corresponding 

upstream processes and downstream processes as well as markets are also included 

in the system market as shown in Figure 23. Note that the total quantities of the 

goods in the considered markets are orders of magnitude larger than the quantities 

purchased/sold by the algal renewable diesel production process. However, the 

corresponding consequential LCA focuses on the changes to the upstream and 

downstream processes, which are relevant to the size of the system under study 
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instead of the size of the markets. When the capacity of an algal renewable diesel 

production process is large enough to absorb the carbon gas source from a small 

power plant of 10 MW [244], consequential LCA is preferred. 

4.3.2 Life cycle inventory analysis 

The consequences in each market as well as the tailored PE models for quantifying 

these consequences are presented in detail in this subsection. 

• Urea market: Microalgae cultivation relies on two fertilizers: urea and DAP 

[36]. Urea is synthesized from ammonia and carbon dioxide. It is widely used 

as the nitrogen source for crops. New Orleans, Louisiana is a major gateway of 

imported urea in the U.S. and is where the urea market is located [245]. Two 

functions are required to define the equilibrium in the market. An aggregate 

supply function for the urea market can be developed using a cost curve for the 

urea delivered to the market [246]. However, there is no willingness-to-pay 

curve for the urea demand. Therefore, the definition of price elasticity of 

demand can be used to approximate the aggregate demand function [247]. 

Based on a recent urea price quote [248], the original equilibrium quantity of 

urea before the algal renewable diesel is produced can be calculated using the 

aggregate urea supply function. As the renewable diesel production process 

purchases additional urea from the market, the original equilibrium is shifted 

and the price and total quantity of urea in the market increase simultaneously. 

The changes in the urea market can propagate into both upstream and the 
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downstream processes. The upstream processes increase their supplies and thus 

incur additional environmental impacts to the system. The consequences to the 

downstream processes are more complex than those to the upstream processes. 

Since the price of urea increases, the other customers purchase less urea than 

before. It has been shown that fertilization accounts for over 90% of the total 

use of urea [249], and corn consumes an order of magnitude more nitrogen 

fertilizers than other common crops [250]. Therefore, the reduction in the 

amount of urea can incur a decline in the corn production in the U.S. The 

relationship between corn yield and urea application rate is used to evaluate the 

amount of reduction in corn production [251, 252]. In the downstream market 

for corn, the reduction in corn supplies is replenished by imported corn. 

• DAP market: DAP, a phosphorus fertilizer, supplies both nitrogen and 

phosphorus to microalgae. An aggregate supply function for DAP can be 

formulated using an industry cost curve [253]. Therefore, the DAP market 

covers all the DAP consumed in the U.S. Next, the aggregate demand function 

for DAP can be constructed in the same manner as urea. Similar to the 

consequences of urea, the additional DAP consumed by the renewable diesel 

production process leads to simultaneous increases in the price and total 

quantity of urea in the market. The expanded upstream processes cause added 

environmental impacts. Approximately 90% of the phosphate products are 

consumed as fertilizers [254], and the majority of phosphorous fertilizers are 

used for corn, soybean, and wheat cultivation [250]. Accordingly, the decrease 
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in the DAP demand by the other customers affects the production of corn, 

soybean, and wheat simultaneously. The declined amount of DAP is allocated 

to the production processes based on the DAP consumption rates of the crop 

production processes. Next, the decline in the crop production rates can be 

determined by the relationships between crop yields and their DAP application 

rates [252, 255-257]. Finally, the downstream markets for corn, soybean, and 

wheat are rebalanced by imported crops. 

• Natural gas market: As introduced previously, there are a large number of 

alternative process designs included in the superstructure. The process design 

that demonstrates the best overall performance within the superstructure is 

termed the optimal process design. Natural gas will be consumed if an energy 

intensive technology such as freeze drying or thermal drying is selected in the 

optimal process design. An aggregate supply function and an aggregate 

demand function can be formulated according to the elasticity of supply and 

demand for natural gas, respectively [258]. Since the end use for pipeline 

quality shale gas is to generate heat, the change in the other customers’ 

processes leads to a decrease in the heat supply, which is offset by increasing 

the heat generated by the heavy fuel oil from petroleum. 

• n-Hexane market: n-Hexane serves as the solvent in two lipid extraction 

processes. As a portion of the solvent remains in the extraction products, n-

hexane is continuously consumed and replenished in these processes. The size 

of the national market for n-hexane is relatively smaller than those of the other 



 

144 

 

feedstocks, and additional demand can be satisfied domestically [259]. 

According to the U.S. Department of Health and Human Services [260], many 

facilities are capable of entering the market through a minor alteration in 

refining operating when the demand for n-hexane increases. Therefore, the 

increase in n-hexane demand can be completely absorbed by an expansion of 

the n-hexane suppliers’ processes. 

• Electricity market: The renewable diesel production process generates and 

consumes electricity simultaneously, and the rates of generation and 

consumption vary depending on the specific process design and operating 

conditions. As a result, the renewable diesel production process can influence 

the electricity market from both the customer’s side and the supplier’s side. 

The power grid in the state of Texas is managed by The Electric Reliability 

Council of Texas, or ERCOT, one of the nine independent systems operators in 

North America. An aggregate supply function can be developed using an 

ERCOT ISO supply stack curve [261]. As the price elasticity of demand for 

the electricity consumption in Texas is essentially zero [262], the downstream 

markets associated with the other electricity customers’ processes are not 

influenced by the supply side. Therefore, the net import or net export of 

electricity in the renewable diesel production process would be completely 

absorbed by the electricity suppliers. 

• Diesel market: Renewable diesel, the major product, is chemically identical to 

fossil-based diesel and compatible with existing engines and infrastructure. 
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Although renewable diesel is comparatively environmentally sustainable, 

current commercial products are not economically competitive. In order to 

achieve regulatory goals, federal and state governments in the U.S. have 

offered incentives to renewable diesel suppliers, and its demand has been 

growing through increasing governmental and commercial fleet vehicle uses 

[263]. Therefore, renewable diesel products in the current stage are matched 

with specific demands and substitute for the fossil-based diesel products on an 

equivalent basis. In this chapter, the aggregate supply and aggregate demand 

functions in the diesel market can be modeled following the definition of price 

elasticity of supply and demand, respectively [264]. Given the aforementioned 

fact, introducing renewable diesel into the diesel market leads to a reduction in 

the demand for fossil-based diesel, thus resulting in a new market equilibrium. 

The change in the total diesel consumption (renewable diesel plus fossil-based 

diesel) can further influence the gasoline consumption in the transportation 

market [104], since both types of fuels are the major energy sources in the 

transportation sector. 

4.3.3 Life cycle impact assessment 

A well-recognized midpoint indicator for algal biofuels is GWP, which measures 

the global warming impact of a chemical relative to that of carbon dioxide, whose 

GWP is equal to 1 [265]. According to the Intergovernmental Panel on Climate 

Change, the latest 100-year GWPs of carbon dioxide and methane data are 1 and 
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28, respectively [265]. Therefore, emitting 1 kg of methane is equivalent to 

emitting 28 kg of CO2 when evaluating the GWP of a system. Given its popularity 

in LCA for algal biofuels [266], the 100-year GWP is employed as the 

environmental objective in the first case study. 

Since GWP focuses on a specific impact category, there is a need to determine the 

optimal process design that is environmentally benign from a variety of impact 

categories. Such a goal can be fulfilled by switching to an endpoint indicator as the 

environmental objective function. In the second case study, the ReCiPe endpoint 

score is used as the environmental objective function. This indicator incorporates a 

basket of impact categories and allows for a comprehensive evaluation of 

environmental impacts. The Hierarchist perspective and average weighting (H,A) 

are considered when collecting the endpoint scores of the ReCiPe method from the 

Ecoinvent database.  

4.3.4 Interpretation 

The optimal results of each case study are plotted as a Pareto-optimal curve, 

together with the breakdowns of the optimal environmental and economic 

objective function values of several representative points. The trade-offs between 

the representative points are analyzed. The results are later compared with those 

from the existing attributional LCO framework. The differences between the 
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results are analyzed and pros and cons of consequential LCO are generalized. The 

details are provided in the later subsections.   

4.3.5 Problem statement and complete consequential LCO model 

In the optimization problem, we are given a comprehensive superstructure for 

producing renewable diesel from microalgae. We know the parameters for 

describing the mass and energy balance and analyzing the techno-economics of the 

process: the upper and lower bounds of the capacity of each technology; the 

composition of the feed gas; component concentrations in the inlet flows; the 

conversion of each reaction; stoichiometric coefficients of each reaction; the split 

fraction of each species to various flows; unit consumption and generation rates of 

power, heating, and cooling utilities for each technology; the total area limit and 

the area productivity of each bioreactor; coefficients for evaluating total project 

investment based on capital costs; coefficients for evaluating operating costs. We 

know that the markets for urea, DAP, natural gas, n-hexane, electricity, and diesel 

are influenced by the target process. Additionally, we are given the parameters to 

describe how the mass flow rate of each player changes in the market: original 

price and quantity of each good in the market; own price elasticity of demand and 

supply for a good, or a set of aggregate supply quantities of a good with regard to its 

market prices. We also know the input-output mass balance relationships of other 
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processes linked to the markets. Moreover, we know the consequential 

characterization factors of every material purchased or released to the atmosphere, 

and type of energy consumed. 

The goal is to determine the optimal process design for producing algal renewable 

diesel by simultaneously optimizing the economic and consequential 

environmental performance. The economic objective function is to maximize the 

NPV per GJ of algal renewable diesel, while the environmental objective function 

is to minimize the 100-year GWP per GJ of algal renewable diesel in the first case 

study and the ReCiPe endpoint score per GJ of algal renewable diesel in the second 

case study. The major decision variables include: 

• Technology selection; 

• The mass flow rate of each technology; 

• The price of the good in each primary market; 

• The aggregated supply and demand quantities of the good in each primary 

market. 

The process model and techno-economic analysis model are based on previous 

studies [21, 267], and adapted to the current superstructure. The general model 

formulation of the algal renewable diesel application is given below. The complete 

consequential LCO model is provided in Appendix A.  

max    

     ,
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min    
environmenal

TEIC
OBJ

TE
  in Eq. (1.A80) 

s.t.      superstructure network configuration constraints (1.A81)–(1.A84) 

            mass balance constraints (1.A1)–(1.A21) 

            energy balance constraints (1.A22)–(1.A28) 

                       market constraints (1.A29)–(1.A45) 

                       techno-economic evaluation constraints (1.23)–(1.A64) 

            environmental impact assessment constraints (1.A65)–(1.A80) 

where OBJeconomic and OBJenvironmental denote the functional unit based NPV and 

functional unit based environmental impact, respectively. The numerator of 

OBJeconomic is the NPV, which sums up a set of separable concave terms for the 

capital expenditures (CAPEX, denoted by   in

i ia X ), a set of bilinear terms for the 

revenue and a part of the operating expenditures (OPEX, denoted by bm,n·Pm·Qn), 

and several linear terms for the remaining OPEX (denoted by cj·Zj). The numerator 

of OBJeconomic accounts for the total energy content of the renewable diesel product 

over the project lifetime. ls, h, and TEC are the project lifetime, the operating time 

per year, and the energy content of the renewable diesel product per hour, 

respectively. The numerator of OBJenvironmenal is the total environmental impact 

change TEIC for the GWP or the ReCiPe endpoint score. Since the market prices 

are dependent on the quantities of goods purchased/sold to the markets, the scale 

of the algal renewable diesel production process can affect the optimal economic 

and environmental performance. In order to account for the influence of the 
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process scale, the flow rate of the feed carbon gas is modeled as a decision variable 

in the consequential LCO model. 

The life cycle optimization model employs integer variables to select the 

technology/process alternatives and facilitate the process designs, and continuous 

variables for other decisions, such as process flow rates and market prices. A set of 

separable concave terms are introduced in the techno-economic evaluation 

constraints to calculate the CAPEX. Because the market prices and quantities 

sold/purchased are both continuous variables, a set of bilinear terms are used to 

calculate the revenue and the OPEX. Furthermore, the objective functions include 

mixed-integer fractional terms. Given the problem structure, the resulting problem 

is a mixed-integer nonlinear fractional programming (MINFP) problem and the 

global optimization of this problem is nontrivial. 

4.3.6 Tailored global optimization strategy 

Due to the combinatorial nature and nonconvexity of the MINFP problem, global 

optimization of the consequential LCO problem can be computationally intractable 

for general-purpose global optimization solvers [21]. To efficiently solve the 

resulting consequential LCO problem, we develop a tailored global optimization 

algorithm that integrates two state-of-the-art algorithms, including the inexact 

parametric algorithm [202] and the branch-and-refine algorithm [200, 268]. 
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Global Optimization Algorithm 

1: r ← 0, obj ← +∞, iterout ← 0; 

2: while obj ≥ tolout do 

3:  iterout ← iterout +1; 

4:  lb ← 0, ub ← +∞, gap ← +∞, iterin ← 0; 

5:  Initialize the auxiliary parametric problem; 

6:  while gap ≥ tolin do 

7:   iterin ← iterin +1; 

8: 
  Solve the parametric problem for the optimal solution m* and objective 

function value OBJ*; 

9: 
  Evaluate the original objective function value OBJΔ using m* and nonlinear 

functions; 

10:   lb ←  max lb,OBJ  , ub ←  *min ub,OBJ , gap ← | ( ub – lb ) / ub |; 

11: 
  Update the parametric problem by adding the optimal solution m* as a new 

partition point to each approximation function; 

12:  end 

13: 

 

obj ← ub, 
 

 * * *
1

1

lsir ir
r ACF TCI h ls TE

ir

  
     

  

;  

14: end 

15: Return r 

Figure 26. Pseudo code of the tailored global optimization algorithm that integrates the inexact 

parametric algorithm and the branch-and-refine algorithm. 

The inexact parametric algorithm is used in the outer loop of the global 

optimization algorithm to handle the computational challenge stemming from the 

fractional objective functions. First, we introduce an auxiliary parametric problem 

F(r) with respect to an auxiliary parameter r, so that  the original optimal solution 

is identical to the optimal solution of the auxiliary parametric problem with the 

parameter r* such that F(r*)=0 [202]. Even though no fractional term is included in 

the auxiliary parametric problem, F(r) is still an MINLP problem with separable 

concave terms and bilinear terms in the objective function. To efficiently solve this 
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MINLP problem, we replace the separable concave terms and bilinear terms with 

successive piecewise linear approximation functions, and solve the resulting 

mixed-integer linear programming (MILP) problems iteratively following the 

branch-and-refine algorithm [200, 268]. This tailored solution algorithm is 

guaranteed to converge within finite iterations. Figure 26 presents the pseudo code 

of the tailored global optimization algorithm. iterout and iterin are the iteration 

counters of the outer loop and the inner loop, respectively. tolout and tolin are the 

optimality tolerance in the outer loop and the inner loop, respectively. The 

objective function value in the outer loop is denoted as obj, while the upper bound 

and the lower bound in the inner loop are denoted as ub and lb, respectively. gap 

represent the optimality gap in the inner loop. m* is the global optimal solution in 

the inner loop. The optimal objective function value and the evaluated objective 

function value are denoted as OBJ* and OBJΔ, respectively. The detailed model 

formulation of the auxiliary parametric problem is given in Appendix B. 

4.3.7 Results and discussion of case study 1 

GWP is selected as the life cycle environmental impact indicator in the first case 

study. The optimal solutions of the multiobjective optimization problem 

demonstrate the optimal economic performance and the optimal environmental 

performance simultaneously. The consequential LCO model accounts for the 
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energy consumption and generation of each technology/process alternative in the 

superstructure. Note that heat integration can improve the energy efficiency of the 

resulting optimal process designs, but the detailed simulation models of the 

alternative processes in the superstructure are not available in the literature. It is 

worth future research to investigate the optimal performance of algae-based 

renewable diesel production considering heat integration. 

 

Figure 27. Pareto optimal profiles showing the trade-off between the NPV and the annual 

GWP. The five pie charts are the cost breakdowns of Solutions A–E. The functional unit based 

NPV values for Solutions A–E are $0.4/GJ, $−29.2/GJ, $−28.5/GJ, $−55.5/GJ, and $0.4/GJ, 

respectively. The functional unit based GWP values for Solutions A–E are −89, −67, −68, 

−151, and 22 kg CO2-eq/GJ, respectively. The renewable diesel production capacities of 

Solutions A–E are 3.5, 5.0, 10.0, 0.5, and 3.5 million gallons per year, respectively. 
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We first present the optimization results when the total economic and 

environmental performance are used as the objective functions. The corresponding 

optimal solutions are plotted as Pareto optimal profiles in Figure 27. A clear 

tradeoff can be identified between the optimal economic and environmental 

performance: the smaller the carbon footprint of an optimal design, the lower 

profit it earns. Among the optimal solutions, only Solution A has a positive NPV. 

The technologies selected by the most economically viable Solution A are shown 

in Figure 28.  

The major differences between the technologies selected by Solution A and those 

with negative NPVs lie in the cultivation and dewatering sections. In the 

cultivation section, Solution A selects open ponds, while the other displayed 

optimal designs select flat plate photobioreactors (PBR). Open ponds show smaller 

production costs and smaller contributions to GWP than flat plate PBRs if they are 

employed to produce the same amount of algal biomass. However, the productivity 

of open ponds is significantly lower than that of flat plate PBRs. As the total area 

for the renewable diesel production process is limited, the largest amount of 

biomass generated by open ponds is substantially smaller than that by flat plate 

PBRs.  
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The major feedstock of the renewable diesel production process is a carbon gas 

source from a power plant. Absorbing the carbon dioxide in the feedstock provides 

a significant credit for the direct emissions of the renewable diesel production 

process and the corresponding GWP is negative. If the resulting renewable diesel 

production process is environmentally sustainable due to the use of more energy 

efficient technologies and/or generating more fertilizer products, the total GWP 

can be negative. The negative GWP indicates that the renewable diesel production 

process is essentially a biosequestration system. Therefore, selecting flat plate PBRs 

enables production of the largest amount of renewable diesel, thus maximizing the 

net carbon dioxide reduction. In the dewatering sections, the most 

environmentally sustainable design of Solution C opts for a combination of a 

hollow fiber membrane in the primary dewatering section and a centrifuge in the 

secondary dewatering section, while Solution A selects a belt filter press for the 

whole dewatering process. Given the same target concentration in the dewatering 

product, a belt filter press is more cost effective than a combination of a hollow 

fiber membrane and a centrifuge, but the latter option consumes less energy and 

makes smaller contributions to GWP. 
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Figure 28. Optimal process pathway selected by Solution A and Solution E. 

The cost breakdowns of three optimal solutions are also shown in Figure 27. Fixed 

capital investment is identified as the largest cost in all the Pareto-optimal designs, 

and its share increases as the annual GWP declines. Although cell disruption is 

energy intensive, about 77% of the electricity consumption can be satisfied by 

onsite power generation, and the net utility cost does not significantly impact the 

cost structure. 
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Figure 29. Annual GWP breakdowns of Solutions A–E in Figure 27. The functional unit based 

GWP values for Solutions A–E are −89, −67, −68, −151, and 22 kg CO2-eq/GJ, respectively. 

A major goal of this study is to compare the optimal environmental impacts by the 

proposed approach with those by the existing attributional approach. The Pareto 

optimal profile resulted from the existing attributional LCO approach is also 

presented in Figure 27. With the same optimal NPV, the annual GWP evaluated 

by the attributional approach is significantly larger than those by the consequential 

LCO approach. In order to better understand such a difference, the distributions of 

the annual GWP of Solutions A–E are presented in Figure 29. Solution A and 

Solution E select the same process layout and production level. Therefore, direct 

emissions, electricity production, and fertilizer-related contribution are the same 

in the corresponding designs. Note that “fertilizer consumption” in the 

attributional LCO approach and “fertilizer adjustment” in the consequential 
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approach account for the end-of-life emissions of using the digestate as a nitrogen 

fertilizer. However, “fertilizer consumption” in the consequential LCO approach 

accounts for the environmental impacts associated with the changes in the 

downstream market due to a reduction in fertilizer consumption of the other 

customers.  

The diesel-related contributions of the two optimal solutions are considerably 

different. In Solution E, the renewable diesel product is combusted in its end-of-

life stage, thus contributing positively (denoted by “Diesel consumption”) to the 

GWP of its entire life cycle from an attributional perspective. In contrast, a 

substitution effect is considered in Solution A, and the fossil-based market reaches 

a new equilibrium with a shifted aggregate demand curve. Since the reduction in 

demand causes the price to decline and the lower price encourages extra diesel 

consumption, the new total diesel consumption rate is in fact higher than the 

original total diesel consumption rate. Moreover, the additional diesel 

consumption offsets a portion of the gasoline consumption in the transportation 

sector. In the proposed model, the consequential LCI data account for (1) the 

consumption of renewable diesel, (2) the reduced production and consumption of 

displaced fossil-based diesel, (3) the increased production and consumption of 

fossil-based diesel due to a lower equilibrium price in the diesel market, and (4) the 
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reduced production and consumption of gasoline in the transportation market. In 

the annual GWP breakdown of Solution A in Figure 29, “Diesel production” 

represents the net effect of (1) and (2). As a large amount of fossil-based diesel is 

displaced, the contribution is negative. In addition, “Diesel consumption” is the net 

result of (3) and (4). The small negative contribution from “Diesel consumption” 

shows that a substitution of diesel for gasoline can slightly reduce the GWP in the 

transportation sector.  

Additionally, “hexane production” shows rather distinct contributions in Solutions 

A and E. For Solution E, the consumption rate and the attributional 

characterization factor of hexane are both positive and relatively small. Therefore, 

the contribution of “hexane production” is positive but almost negligible in the 

breakdown of the attributional GWP results. In contrast, the consequential 

characterization factor of hexane from the Ecoinvent database is negative, and its 

absolute value is one order of magnitude larger than that of its attributional 

counterpart. The significant difference between the attributional and 

consequential characterization factors for producing hexane may stem from the use 

of more environmental sustainable technologies. With the same positive 

consumption rate of hexane, “hexane production” becomes negative in the 

consequential GWP results. 
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The largest positive contribution in the consequential GWP results stems from 

“fertilizer adjustment”, or the end-of-life emissions of utilizing the digestate. In 

order to further mitigate the environmental impacts from producing fuels from 

microalgae, future research should be directed to developing more sustainable 

technologies for handling digestate. If the conversion and utilization of digestate 

can be used for electricity production, the positive contribution to GWP would be 

negligible and the sustainable performance of this biofuel would be more 

pronounced. 

The above consequential results suggest three key reasons why switching to algal 

renewable diesel mitigates the GWP: (1) sequestering the direct emissions in the 

feed gas, (2) reducing the consumption of fossil fuels, and (3) using hexane that 

creates additional GWP credits during its production phase. All three reasons are 

significant to the practical environmental benefits of renewable diesel from 

microalgae. However, the attributional approach considers the first one, but 

misinterprets the second with additional theoretical emissions and the third with 

static and theoretical characteristic factors. Overall, the consequential approach 

facilitates decision-making processes with more information taken into account. 
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Figure 30. Pareto optimal profiles showing the trade-off between the functional unit based 

NPV and the functional unit based GWP. The boxes show the major process technologies for 

the optimal solutions with the minimum GWP per GJ of algal renewable diesel. 

As the functional unit provides a fair basis for comparing results from different 

analysis approaches, functional unit-based values, rather than total quantity-based 

values, are often used and compared in the literature [197]. The Pareto optimal 

curves corresponding to functional unit based economic and environmental 

objective functions are presented in Figure 30. Before understanding the 

differences among the optimal solutions, it is important to compare the optimal 

results in the work with the corresponding results in the literature. With 

cultivation productivities ranging from 12 to 30 g/m2/d (25 g/m2/d in this chapter), 
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attributional well-to-wheel greenhouse gas emissions were reported to vary from 

29 to 37 kg CO2-eq/GJ of algal renewable diesel [243, 269, 270]. As only one 

process design was considered and evaluated in each of these attributional LCA 

studies, the environmental performance was nonoptimal. In this chapter, a set of 

process alternatives are compared automatically for the optimal environmental 

performance of producing algal renewable diesel, and all the optimal unit GWP 

results are smaller than 22 kg CO2-eq/GJ.  

The functional unit based results of the optimal solutions in Figure 27 are also 

demonstrated in Figure 30. The optimal solutions in Figure 27 are all located in the 

feasible regions, i.e., the regions under the Pareto optimal curves, in Figure 30. The 

most economically competitive solutions in Figure 30 are the same as those in 

Figure 27. However, the most environmentally sustainable solutions select 

different designs when functional unit-based objective functions are employed. 

Solution C selects flat plate PBRs in the cultivation section so that the largest 

amount of algal biomass can be produced in each year and the largest amount of 

off-gas can be sequestered. However, the corresponding process design consumes 

substantially more energy than those with open ponds, resulting in a relatively 

lower carbon mitigation efficiency. If the same amount of biomass is produced, 

relatively more off-gas would be sequestered by open ponds than by PBRs. 
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Similarly, technologies selected by Solution C focus on increasing the capacity, 

while those in the most environmentally sustainable design focus on improving the 

efficiency. Overall, the results show that the environmental impacts based on the 

existing attributional approach are usually overestimated. 

4.3.8 Results and discussion of case study 2 

 

Figure 31. Pareto optimal profiles showing the trade-off between the NPV and the annual 

ReCiPe endpoint score. The five pie charts show the cost breakdown of Solutions H–L. The 

functional unit based NPV values for Solutions H–L are $0.4/GJ, $−29.2/GJ, $−28.5/GJ, 

$−55.5/GJ, and $0.4/GJ, respectively. The functional unit based ReCiPe endpoint scores for 

Solutions H–L are −9.7, −7.6, −7.6, −4.5, and 1.7 Pt./GJ, respectively. The renewable diesel 

production capacities of Solutions H–L are 3.5, 5.0, 10.0, 0.5, and 3.5 million gallons per year, 

respectively. 

The ReCiPe endpoint score is selected as the life cycle environmental impact 

indicator in the second case study. The Pareto optimal profiles for the total 
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economic and environmental performance are shown in Figure 31. The annual 

ReCiPe endpoint scores via the consequential approach are substantially lower 

than those via the attributional approach given the same economic performance 

level. The breakdowns of the ReCiPe endpoints scores of Solutions H–L are 

presented in Figure 32. “Fertilizer consumption”, which is positive in Figure 29, 

becomes negative in Figure 32. As one of the consequences, more crops will be 

imported to account for the decreased supply if less fertilizer is applied to the 

production of domestic crops. Since the “agricultural land occupation” impacts of 

the imported crops are notably lower than those of the original domestic crops, the 

net effect of the change is a large reduction in this impact category. Therefore, the 

“fertilizer consumption” turns negative to illustrate an overall positive effect of 

importing crops. 
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Figure 32. Annual ReCiPe endpoint score breakdowns of Solutions H–L in Figure 31. The 

functional unit based ReCiPe endpoint scores for Solutions H–L are −9.7, −7.6, −7.6, −4.5, 

and 1.7 Pt./GJ, respectively. 

In order to identify the hotspots of the impact categories included in the ReCiPe 

endpoint scores, the total scores are decomposed by impact categories and 

components in Figure 33 for Solution H and Figure 34 for Solution L. The total 

height of each bar represents a 100% share and a contribution in each bar can be 

either positive or negative. In Figure 33, 10 out of 17 impact categories are most 

influenced by “diesel production”, 2 impact categories by “fertilizer consumption”, 

another 2 impact categories by “direct emissions”, 1 impact category by “hexane 

production”. In fact, such major components provide environmental credits in the 

corresponding impact categories. Diesel production that does not contribute to the 

attributional LCO approach proves to be a key component to mitigate the 

environmental impacts from a consequential perspective. A corresponding 

environmental profile for Design L is shown in Figure 34. The environmental 

hotspots are “power generation”, “DAP production”, and “end-of-life emissions”. 

Moreover, these contributors are all positive and add to the environmental 

impacts.  
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Figure 33. Environmental profile of Solution H in Figure 31. 

Based on the hotspot analysis for attributional results, it is encouraged to mitigate 

the environmental impacts of the aforementioned components. Since many effects 

are completely overlooked in attributional LCA, there are notable discrepancies in 

the identified hotspots based on the consequential and attributional results. 

Therefore, if only the attributional approach is used for identifying the 

environmental hotspots, the results may overestimate the practical performance in 

several categories and underestimate the contributions from the others. 
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Figure 34. Environmental profile of Solution L in Figure 31. 

To illuminate how the functional unit-based objective functions can influence the 

optimal process designs, a multiobjective optimization problem with functional 

unit-based environmental and economic objective functions is solved. Similar to 

Figure 30, the optimal solutions corresponding to the total quantity-based 

objective functions (shown as solid dots) lie within the feasible regions (under the 

Pareto optimal curves) in Figure 35. The key technologies selected by the most 

environmentally sustainable solution are shown in Figure 35. Hexane extraction is 

preferred in the lipid extraction section because the consequential environmental 

impacts of producing hexane are negative, reducing the total environmental 
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impacts. Furthermore, the functional unit-based environmental impacts from the 

existing attributional LCO framework are overestimated when compared with 

those from the proposed consequential LCO framework. 

 

Figure 35. Pareto optimal profiles showing the trade-off between the functional unit based 

NPV and the functional unit based ReCiPe endpoint score. The boxes show the major process 

technologies for the optimal solutions with the minimum ReCiPe endpoint score per GJ of 

algal renewable diesel. 

4.3.9 Sensitivity analysis 

The market prices of feedstocks and products in the system are volatile compared 

with the process parameters which are derived from experiments. Moreover, the 

price elasticities of demand and supply are relatively uncertain because these 

parameters are estimated during specific periods and may vary over time [247, 258, 
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262, 264, 271]. In this subsection, a sensitivity analysis is conducted to investigate 

how the prices and price elasticities of demand and supply influence the 

optimization results via the consequential LCO approach. The maximum positive 

and negative variation are 20% and -20% of the nominal value for each parameter.  

 

Figure 36. Sensitivity analysis for the minimum annual GWP of Solution A in Figure 27. The 

functional unit based GWP for Solutions A is −89 kg CO2-eq/GJ. 

It is found that only prices are influential to the economic objective function, 

while variations in price and price elasticities can both affect the optimal 

environmental objective function value. For both GWP and ReCiPe endpoint score 

results, the variation of the price of DAP causes the most significant changes in the 

optimal environmental objective function value. Specifically, an increase in the 

price of DAP reduces the annual GWP, while increases the annual ReCiPe 

endpoint score. The absolute changes due to increases in parameters are more 
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pronounced than those due to decreases in parameters for the annual ReCiPe 

endpoint score results, but is less pronounced for the GWP results. The price of 

diesel can dramatically influence the NPV. In all cases, the changes in NPV are 

positively correlated with the changes in the price of diesel. The results show that 

the price of diesel is critical to the profitability of the sustainable process design 

and a lower price of DAP is favorable in order to achieve more environmentally 

sustainable performance. 

 

 

Figure 37. Sensitivity analysis for the minimum annual ReCiPe endpoint score of Solution H 

in Figure 31. The functional unit based ReCiPe endpoint score for Solutions H is −9.7 Pt./GJ. 
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Figure 38. Sensitivity analysis for the maximum NPV of Solution A in Figure 27 and Solution 

H in Figure 31. The functional unit based NPV for Solution A is $0.4/GJ. 

4.4 Summary 

Consequential LCA offers unique perspectives into the environmental impacts of a 

system by accounting for markets and their participants. However, this advantage 

can be overwhelmed by the difficulty in manually implementing the method for a 

large number of alternative systems. We addressed this challenge by developing a 

systematic consequential LCO framework that simultaneously determined the 

environmental impacts of each alternative system and automatically identified the 

optimal one. We developed a general system boundary that enclosed a target 

process and the markets and processes influenced by the target process. Based on 

the general system boundary, we proposed a general consequential LCO model for 

sustainable process design. The resulting optimization model optimized the 

functional unit based economic and environmental performance simultaneously 



 

172 

 

and accounted for network configuration constraints, mass and energy balance 

constraints, market constraints, techno-economic evaluation constraints, and 

environmental impact assessment constraints. To efficiently solve the resulting 

nonconvex MINLP problem, we developed a tailored global optimization 

algorithm that integrated the inexact parametric algorithm and the branch-and-

refine algorithm.  

The proposed framework was applied to the sustainable process design of algal 

renewable diesel production. The markets for urea, DAP, natural gas, n-hexane, 

electricity, and diesel were considered for consequential life cycle optimization. 

We conducted a detailed market analysis to identify the consequences when 

establishing an algal renewable diesel production process. The most economically 

viable process showed a unit NPV of $0.4/GJ and selected open pond, settler, belt 

filter press, high pressure homogenization, hexane extraction, and UOP 

hydroprocessing from a set of alternative process designs. For this process, the 

minimum unit GWP values via the consequential approach and the attributional 

approach were −89 and 22 kg CO2-eq/GJ, respectively; the minimum unit ReCiPe 

endpoint scores via the consequential approach and the attributional approach 

were −9.7 and 1.7 Pt./GJ, respectively. The consequential approach resulted in 

lower environmental impacts because it accounted for sequestering the direct 
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emissions in the feed gas, reducing the consumption of fossil fuels, and using 

environmentally friendly hexane simultaneously. The petroleum-based diesel 

production process was found to contribute most significantly in 10 out of 17 

impact categories of the ReCiPe endpoint score via the consequential approach, but 

it was completely overlooked via the attributional approach. We conducted a 

sensitivity analysis for the identified optimal solution and found that the 

environmental impacts were sensitive to the price of DAP, while the NPV was 

significantly influenced by the renewable diesel price. The consequential LCO 

model could be validated by adapting the market reaction of other biofuel products 

in the short run and by industrial implementation results in the long run. To 

further reduce the environmental impacts, future development of algal renewable 

diesel processes could be direct to handling digestate with more efficient and 

environmentally sound methods.  

4.5 Appendix A: Model formulation of the consequential LCO 

problem 

The consequential LCO problem is formulated as a multiobjective MINFP problem. 

The detailed model formulation is provided as follows.  
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4.5.1 Mass balance constraints 

The mass balance relationships in the superstructure are based on a general flow 

relationship developed in a previous work [21, 267]. As shown in Figure 39, nine 

flows, namely “makeup”, “up”, “reuse”, “in”, “out”, “emission”, “down”, “product”, 

and “recycle”, are employed to describe the mass balance relationships for 

technology j in section i. There are three steps: an inlet converging step (red 

arrows), a conversion step (blue arrows), and an outlet separation step (green 

arrows). 

 

Figure 39. General flow relationships of technology j in section i in the mass balance [21, 267]. 
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
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Constraints (1.A1) and (1.A2) are linking constraints that set upper and lower 

bounds of mass flow rates of the “in” and “makeup” flows of each technology using 

the technology selection decisions. 

 feed offgasM m   (1.A3) 

The total feed gas flow rate is bounded above by the off-gas flow rate of upstream 

power plants as shown in Constraint (1.A3).  

 ,up feed feed

1, j,k k

Jj

M w M k Kf


     (1.A4) 

In the first section, the mass flow rate of each species of the “up” flow is defined 

using the total feed gas mass flow rate and its composition as shown Eq. (1.A4). 

 1 , 2 7,up down

i, j,k i , j,k

J Jj j

i kM M K






       (1.A5) 

In Sections 2–7, the mass flow rates of the “up” flows are equal to the mass flow 

rates of the “down” flows in previous sections as shown in Eq. (1.11). 

  ,up down down

8, j,k 7, j,k 1

Jj j J

0, j,kM M k KM
 

      (1.A6) 

In section 8, the “up” flow mixes the “down” flows from both sections 7 and 10 as 

shown in Eq. (1.A6). 

 0, ,up

9, j,k j KM J k     (1.A7) 

The feedstock of anaerobic digestion comes from recycling the remnant of the lipid 

extraction section and makeup water. Therefore, the mass flow rates of the “up” 

flow of section 9 are fixed to be 0 as shown in Eq. (1.A7). 
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 ,up down

10, j,k 9, j,k

j jJ J

M kM K
 

      (1.A8) 

The biogas product stream from the anaerobic digestion process, or the “down” 

flow of section 9, is split and sent to different sections. Depending on the amount 

of hydrogen needed, a portion of the biogas is sent to section 10 for hydrogen 

production, while the remaining is used for utility generation. Therefore, the mass 

flow rate of the “up” flow of section 10 is smaller or equal to the mass flow rate of 

the “down” flow of section 9 as shown in Eq. (1.A8). 

  ,up down down up

11, j,k 8, j,k 9, j,k 10, j

J j J

,k

j

M M kM M K
 

      (1.A9) 

Accordingly, the “up” flow of section 11 collects the fuel gas from section 8 and the 

remaining biogas from section 9 as shown in Eq. (1.A9). 
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As shown in Eqs. (1.A10) and (1.A11), the cultivation section reuses several 

“recycle” flows in downstream sections. It is noted that the cultivation section is 

the only section that ceases operations at night. The recycling gas is emitted at 

night, while the recycling solids including the algae biomass and nutrients remain 

in the cultivation section. The operation during daytime is explicitly modeled in 

the mass balance constraints and modifications are made to reflect the operations 
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at night. Therefore, the reused gas and water during daytime are exactly the 

“recycle” flows generated during daytime in Eq. (1.A10), while the “reused” solids 

during daytime account for accumulation at night in Eq. (1.A11).  

 ,reuse recycle

9, j,k 7, j,k

j jJ J

M kM K
 

      (1.A12) 

 0, 2 8 10 11, ,reuse

i, j,k i i j kM J K          (1.A13) 

As in Eq. (1.A12), the anaerobic digestion section reuses the “recycle” flows from 

the lipid extraction section. The other sections do not reuse flows as described in 

Eq. (1.A13). 

 , , ,in up reuse makeup

i, j,k i, j,k i, j,k i, j,kM M M i I j J k KM        (1.A14) 

The inlet converging step is modeled by Eq. (1.A14), where the “in” flow of 

technology j in section i combines the “up”, “reuse”, and “makeup” flows sent to 

the same technology.  

  , , , , , ,in in in

i, j,k i j k k i, j,

k K

k i I KM jp J kM


 



       (1.A15) 

The flow rates of various species in the “in” flows are proportional to the key 

components in the “in” flows according to stoichiometry relationships of reactions. 

The relationships are modeled using parameter , , ,

in

i j k kp   in Eq. (1.A15). 
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 
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The conversion step of each technology is modeled using Eq. (1.A16), where sci,j,k,k’ 

denotes the stoichiometric coefficient and xi,j denotes the conversion.  

 , , ,out down recycle emission product

i, j,k i, j,k i, j,k i, j,k i, j,kM M M M M i I j J k K        (1.A17) 

The “out” flow of a section is split into the “down”, “recycle”, “emission”, and 

“product” flows as shown in Eq. (1.A17). 

  , , , , , ,down down out

i, j,k i j k k i, j,

k K

kM isf M I j J k K


 
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In Eq. (1.A18), the “down” flow comes from the “out” flow based on split fraction 

, , ,

down

i j k ksf  .  

  , , , , , , , ,emission emission1 out emission2 down

i, j,k i j k k i, j,k i j k i, j

K

,k

k

i IM sf M sf j J k KM 



        (1.A19) 

The flow rates of the “emission” flows depend on both the flow rates of the “out” 

and “down” flows as described in Eq. (1.A19). 

  , , , , , ,product product out

i, j,k i j k k i, j,

K

k

k

i I j J KM ksf M 



       (1.A20) 

Similar to the “down” flow, the “product” flow is directly split from the “out” flow 

as shown in Eq. (1.A20). The remaining materials in the “out” flows are sent to the 

corresponding “recycle” flows. 

 
,

product

8, j,k

kj J K

TE uc M
 

     (1.A21) 

The energy content of the renewable diesel is evaluated as in Eq. (1.A21), where uc 

is the unit converter. 
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4.5.2 Energy balance constraints 

  , , , , , ,out in

i, j i j k i, j,k i j k i,

K

j,k

k

HC uhco M uhc M Ji i I j


       (1.A22) 

The heat consumption of technology j in section i is calculated using Eq. (1.A22), 

where parameters uhcoi,j,k and uhcii,j,k are unit heat consumption based on the “out” 

and “in” flows, respectively. 

    1HRSG GT in

k 11,1,

k K

kHG lhv M 


       (1.A23) 

The heat generation rate is calculated using lower heating values of the fuel gas 

entering the gas turbine. In Eq. (1.A23), ηHRSG, ηGT, and lhvk are heat generation 

efficiencies of the heat recovery steam generation system, power generation 

efficiency of the gas turbine, and lower heating value of species k, respectively.  

 
feed

feed up

1, j,

J

2

j

upc
PC M

dn 

    (1.A24) 

Eq. (1.A24) calculates the power consumption of transporting feed gas. upcfeed is the 

power consumption rate for transporting 1 tonne CO2 in the feed gas. 
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Eq. (1.A25) calculates the power consumption for cooling extra heat generated. 

Parameter upccooling is the power consumption rate for cooling 1 MW heat. 
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The power consumption of technology j in section i is calculated using Eq. (1.A26), 

where parameters upcoi,j,k and uhcii,j,k are unit power consumption rates based on 

the “out” and “in” flows, respectively. 

  GT in

k 11,1,k

Kk

PG lhv M


     (1.A27) 

The power generation rate PG is calculated by Eq. (1.A27). 
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j J

PE PI PG PC PC PC
 
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The power balance is enforced by Eq. (1.A28), where PE and PI are power export 

and import rate, respectively. 

4.5.3 Market constraints 
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  1

1
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l,p l,p
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ns ns
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




  


  (1.A30) 

  , 1,2,4 ,l,p l,p l,p l,p lbsc ns asc m l p Ps PC       (1.A31) 

 4PS PE   (1.A32) 

  0, 1,2lPS l    (1.A33) 

  , 1, 2, 41
l

l,p

p PPC

Y lS


    (1.A34) 

  , 1, 2, 4
l

l,p l

p PPC

XS PR l


    (1.A35) 

  1 , 1,2,4 ,l,p l,p l,p l,p ll,p lms YS XS ms p PPCYS       (1.A36) 
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Eqs. (1.A29)–(1.A31) define the aggregate supply curves of markets 1, 2, and 4 

using piecewise linear functions. Parameter nsl,p is the aggregate supply in market l 

at partition point p and msl,p is the price in market l at partition point p. 

Continuous variables ASl is the aggregate supply in market l, PRl is the price in 

market l, and XSl,p is the price in market l in interval p. Integer variable YSl,p is 

introduced to model the selection of partition interval p. 

    , 3,51l l
l l l l

l

es
AS PR e ls







        (1.A37) 

The aggregate supplies of natural gas and diesel are modeled by Eq. (1.A37), where 

esl is the price elasticity of supply, αl and βl are the original aggregate supply and 

the original price in the market, respectively. 

  1 ,l l
l l l l l

l

PD
ed

A R e lP d LD






         (1.A38) 
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2 i, j,1

i I, j J
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M
PD M

dn 

 
   

 
   (1.A40) 

 makeu

i I,

p

3 i, j

J

,

j

7PD M
 

    (1.A41) 

 4PD PI   (1.A42) 

 produ

j J,k K

ct

5 8, j,kPD M
 

     (1.A43) 
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 makeup

6 i, j,

i I j J

18

,

PD M
 

    (1.A44) 

Eq. (1.A38) defines the aggregate demand curve in the market l based on the 

definition of price elasticity of demand edl. Parameters αl and βl are the original 

aggregate demand and the original price in market l, respectively. Variables ADl 

and PDl are the aggregate demand and process demand in the market l, 

respectively. The specific forms of PDl are defined in Eqs. (1.A39)–(1.A44). 

 ,l lAS AD l L     (1.A45) 

A new market equilibrium after the deployment of the algae process is enforced by 

Eq. (1.A45). 

4.5.4 Techno-economic analysis constraints 
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  (1.A46) 

The direct cost of each technology is evaluated using nonlinear function as shown 

in Eq. (1.23), where ccibi,j and ccobi,j are the base-case capital costs with respect to 

base-case “in” flow mibi,j aand “out” flow mobi,j, respectively. scfi,j is the scaling 

factor of technology/process j in section i. cepcir and cepcibi,j are the chemical 
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engineering plant cost index in the reference year and in the base-case year for 

technology/process j in section i, respectively. Since the capital cost data for 

different technologies are based on input or output mass flow rates, both types of 

data are considered in the model. 

 i, j

i I, j J

FCI fcic DC
 

     (1.A47) 

Fixed capital investment FCI is calculated based on the direct cost of each 

technology as shown in Eq. (1.A47).  

 

out in

1, j,14 1, j,14

j J j

M M
all ac aul

productivity


     (1.A48) 

 

out in

1, j,14 1, j,14

j J j

M M
LC lp ac

productivity


     (1.A49) 

The area limit is enforced by Eq. (1.A48), where ac is the coefficient to account for 

total land area of the facility, productivityj is area productivity of cultivation 

system j, all is the area lower limit, and aul is the area upper limit. Land cost is 

calculated in Eq. (1.A49). 

 WOC wcc FCI    (1.A50) 

Working capital WOC is calculated as a product of the fixed capital investment 

and working capital coefficient wcc as shown in Eq. (1.A50).  

 TCI FCI LC WOC     (1.A51) 
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Total capital investment TCI is calculated as the sum of fixed capital investment, 

land cost, and working capital as shown in Eq. (1.A50).  

 
   

           

1 1 1 2 2 2

3 3 6 6

FC h PR retail PD h PR retail PD

h PR PD h PD

       

     
  (1.A52) 

Feedstock cost is calculated using Eq. (1.A52), where h is the total hours in a year 

and retaill represents the differences between market price and retail price. 

 4UC h PR PI     (1.A53) 

Utility cost is calculated using Eq. (1.A53). 

 up

5, j,14

j J,

OC M bmr ocr


    (1.A54) 

Operations cost is calculated using Eq. (1.A54), where bmr is the reference biomass 

generation rate and ocr is the reference operations cost. 

 i, j i, j

i I, j J

MC mcc DC
 

    (1.A55) 

Maintenance cost of each technology is a percentage of the direct cost as shown in 

Eq. (1.A55). 

 PTI ptic FCI    (1.A56) 

Property tax and insurance is calculated as a percentage of fixed capital investment 

as shown in Eq. (1.A56). 

 DPC dpcc FCI    (1.A57) 

Depreciation cost is calculated as a percentage of fixed capital investment as shown 

in Eq. (1.A57). 
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  5 5 4S h PR PD PR PE        (1.A58) 

The total sales include the revenue from selling renewable diesel and extra power 

as shown in Eq. (1.A58). 

 GE gec S    (1.A59) 

General expense is calculated as a percentage of sales as shown in Eq. (1.A59). 

  IT tr S FC UC OC MC GE PTI DC           (1.A60) 

 0IT    (1.A61) 

 5ITC h credit PD      (1.A62) 

Income tax is calculated as a percentage of sales less several costs as in Eq. (1.A60). 

By enforcing Eq. (1.A61), the income tax is not levied over a project with a 

negative income. The income tax credit is calculated as shown in Eq. (1.A62). 

 ACF S FC UC OC MC GE PTI IT ITC           (1.A63) 

The annual cash flow is calculated in Eq. (1.A63). 

 

 1

1
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economic

ir ir
ACF TCI

irOBJ
ls h TE

 
 


 

  (1.A64) 

In Eq. (1.A64), the functional unit based net present value is calculated as the ratio 

of NPV to the total energy of the renewable diesel over the project lifetime. ir is 

the interest rate and ls is the project lifetime. 
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4.5.5 Environmental impact evaluation constraints 

 ,l l l lPSC AS PS l L       (1.A65) 

For the suppliers’ processes in market l, the changed amount is calculated by Eq. 

(1.A65). 

 , ,l,t l,t lEICS ccfsup PS l LC t T     (1.A66) 

Therefore, the environmental impact associated with the change of supply is 

evaluated by Eq. (1.A66). ccfsupl,t is the consequential characterization factor of 

supplying l in impact category t as evaluated by Ecoinvent. 

 ,l l l lPDC LC A lD D      (1.A67) 

Eq. (1.A67) calculates the change in the demand of other customers in market l.  

 ,l,s l,s l,s lCPC yield ca LCDC l      (1.A68) 

Next, the consequences of the change in the other customers’ demand are 

evaluated. The potential products of the other customers’ processes are indexed by 

s. As a change in l may influence multiple products, parameter cal,s is introduced to 

allocate the change in the demand of l to a specific process for generating s. The 

yieldl,s is introduced to translate the change in l to the change in s. 

   , ,l,t s,t s,t l,s

s S

l l,t lEICD ccfcus ccfsub CPC cf ccfsup C l tDC


           (1.A69) 

The environmental impact associated with the change in the other customers’ 

demand is evaluated in Eq. (1.A69). ccfcuss,t and ccfsubs,t are the consequential 
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characterization factors of producing s in impact category t by the customers and 

substitute processes, respectively. For feedstock markets, CPCl,s is negative, so the 

first summation in Eq. (1.A69) indicates that the changed amount of l is no long 

produced. In fact, feedstock l is still manufactured, but it is transferred to the 

renewable diesel production process. Such an effect does not apply to product 

markets, or when CPCl,s is positive. Therefore, the environmental impact is 

modified by adding back the environmental impact associated with producing 

feedstock l. 

 ,digestate C product N product

t t 9,1,17 t 9,1,12EOLE ccf M cc M Tf t      (1.A70) 

Another modification is made in Eq. (1.A70), because the digestate is sold as a 

nitrogen fertilizer, which will incur additional carbon dioxide and nitrous oxide 

emissions during the use of the fertilizer [159]. 
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  (1.A71) 

The net direct emissions from the renewable diesel production process are 

evaluated by Eq. (1.A71). The first term and the second term account for the 

emissions from the cultivation section during daytime and nighttime operation, 

respectively. gask is the gas species in the set K to be emitted to the atmosphere. 
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The third term accounts for the amount of the off-gas absorbed in the feed during 

daytime operating. The last term accounts for the emissions from other sections. 

 ,t k,t k

k K

EIDE ccf DE t T


      (1.A72) 

The environmental impact associated with the direct emissions is evaluated in Eq. 

(1.A72). 

    ,makeup product
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 
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  (1.A75) 

   ,4,t 4,t 4TRANSE ccfsup fuel PI PE t T      (1.A76) 
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5,t 5,

J

t 5,t 5 8

,k K

, j,k

j

TRANSE ccfsup eolcf fu M t Tel
 

       (1.A77) 

   ,makeup

6,t 5,t 5,t 6 i, j,18

i I, Jj

TRANSE ccfsup eolcf fu M t Tel
 

       (1.A78) 

The environmental impacts associated with transportation are evaluated by Eqs. 

(1.A73)–(1.A78) 

  digestate

l,t l,t t t

l L,t T

l,tTEIC EICS EICD EOLE EIDE TRANSE
 
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The total environmental impact change TEIC sums up the environmental impacts 

associated with different life cycle stages in Eq. (1.A79). The functional unit based 

environmental impact change is evaluated using Eq. (1.A80). 

4.5.6 Superstructure network configuration constraints 

 , 1,i j

j J

Y i I


     (1.A81) 

 3,1 4,1Y Y   (1.A82) 

 5,2 5,3 6,6Y Y Y    (1.A83) 

 6,6 7,3 7,4Y Y Y    (1.A84) 

Binary variable Yi,j is introduced to select technology j in section i. Yi,j is equal to 1 

if the corresponding technology is selected, and 0 otherwise. Eq. (1.A81) requires 

that one and only one technology is selected in each section in the network. The 

technologies indexed by <i,j> are <1,1> open pond, <1,2> flat plate PBR, <1,3> 

bubble column PBR, <1,4> tubular PBR, <2,1> settler, <3,1> blank, <3,2> hollow 

fiber membrane, <4,1> belt filter press, <4,2> centrifuge, <5,1> blank, <5,2> freeze 

drying, <5,3> thermal drying, <6,1> wet bead beating, <6,2> microwaving, <6,3> 

high pressure homogenization, <6,4> sonication, <6,5> blank, <6,6> dry bead 

beating, <7,1> wet hexane extraction, <7,2> wet supercritical CO2 extraction, <7,3> 

dry hexane extraction, <7,4> dry supercritical CO2 extraction, <8,1> UOP 

hydroprocessing, <8,2> SuperCetane hydroprocessing, <9,1> anaerobic digestion, 
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<10,1> hydrogen generation, and <11,1> utility generation. Since belt filter presses 

can reduce the water content from 1% to 20% directly, a primary dewatering 

process will be bypassed if belt filter press dewatering is selected. This relationship 

is enforced by Eq. (1.A82). The capital investment and energy consumption of 

disrupting dried biomass differ from those for wet biomass. As a result, the 

products of drying technologies are disrupted by a tailored technology as described 

by Eq. (1.A83). Moreover, by enforcing Eq. (1.A84), the dried and disrupted algae 

biomass is sent to lipid extraction processes that operate under different operating 

conditions from those for wet algae biomass.  

4.6 Appendix B: Model Formulation of the Auxiliary Parametric 

Problem 
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E i j JC I




     (1.B3) 

 
, ,1 , ,1, ,i j i jC EC i j JW I     (1.B4) 

 , ,1 , , 1 , , , , ,2 1i j i j n i j n i I j JWC EC EC n N          (1.B5) 

 
, , , , 1, ,i j N i j NWC EC i I j J      (1.B6) 
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, ,0 1, , ,i j n i I j J nWC N      (1.B7) 

  , , , , ,

1

, ,
N

i j i j n i j n

n

DC WC i I j Jcc


      (1.B8) 

To handle the separable concave terms for calculating the CAPEX, we approximate 

the original nonlinear functions in Eq. (1.23) by successive piecewise linear 

approximation functions in Eqs. (1.B1)–(1.B8). A set of SOS1 variables ECi,j,n are 

used in the piecewise linear approximation functions, so that at most one variable 

over set N can be nonzero. 
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,1 ,1,m mWB E mB M     (1.B12) 

 
,1 , 1 , , ,2 1m m n m nWB EB E m n NB M        (1.B13) 

 
, , 1,m N m NWB E m MB      (1.B14) 

 
, ,0 ,1m n m M nW NB      (1.B15) 
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  1 1 1 2 2 2 3 6 6FC h BT retail PD BT retail PD BT PD            (1.B19) 

 4UC h BT    (1.B20) 

  5 6S h BT BT     (1.B21) 

An auxiliary variable XBm is introduced for the bilinear terms. XB1–XB5 are equal 

to PR1–PR5, respectively; XB6–XB8 are equal to PD1–PD3, respectively; XB9 is equal 

to −PD5; XB10 is equal to PI; XB11 is equal to PE. The continuous variables are 

partitioned using SOS1 variables EBm,n. A bivariate model by Eqs. (1.B16)–(1.B18) is 

introduced to approximate the bilinear terms BTp. 

 TEIC TE     (1.B22) 
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algorithm

ir ir
OBJ ACF TCI r ls h TE

ir
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
  (1.B23) 

To handle the fractional objective function, we introduce a parameter r and an 

auxiliary problem with respect to r. The general model formulation of this 

auxiliary function is shown as follows. 

max    OBJalgorithm in (1.B23) 
s.t.     original constraints (1.A1)–(1.A45), (1.A47)–(1.A51), (1.A54)–(1.A57),  

                                           (1.A59)–(1.A63), (1.A65)–(1.A79), (1.A81)–(1.A84) 

                     piecewise linear approximation functions (1.B1)–(1.B21) 

          additional constraints for environmental objective functions (1.B22) 

            new objective function (1.B23) 
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CHAPTER 5 

SUPERSTRUCTURE OPTIMIZATION COMBINED WITH PRODUCT 

DISTRIBUTION OPTIMIZATION  

5.1 Introduction 

In this chapter, we propose a novel process synthesis framework that combines 

product distribution optimization of chemical reactions and superstructure 

optimization of the process flowsheet. In this framework, a superstructure that 

contains a variety of technology/process alternatives is developed in the first step. 

A set of dynamic optimization problems are solved to determine the optimal 

product distributions of the critical chemical reactions that maximize the profits of 

the effluent products. The optimal product distributions of these chemical 

reactions are then used as input parameters for extensive process simulations of the 

involved processes. Based on the high-fidelity process simulation results, a large-

scale mixed-integer nonlinear programming (MINLP) model is formulated to 

determine the optimal process design, which is further validated by a whole-

process simulation in the last step of the proposed framework. We apply the 

proposed modeling framework to an integrated shale gas processing and chemical 

manufacturing process. The proposed superstructure includes 51,840 alternative 

possible process designs, and it consists of eight sections, including acid gas 

removal, dehydration, natural gas liquids (NGLs) recovery, NGLs separation, 
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hydrocarbons conversion, light olefins separation, C4 separation, and acid gas 

disposal. For the steam cracking reactions in the hydrocarbons conversion section, 

we optimize the product distributions of steam cracking of ethane, propane, n-

butane, and i-butane, because heavier components are usually sold as a natural 

gasoline product. Extensive process simulations are performed for all the involved 

processes in the superstructure in order to collect high-fidelity process data and 

develop detailed process models for the technology/process alternatives in the 

superstructure. Next, we propose a multiobjective MINLP model for sustainable 

design and synthesis of the integrated shale gas processing and chemical 

manufacturing process. The superstructure optimization model consists of five 

groups of constraints, namely superstructure network configuration constraints, 

mass balance constraints, energy balance constraints, techno-economic evaluation 

constraints, environmental impact assessment constraints. Three objective 

functions are maximizing the net present value (NPV) per GJ of raw shale gas, 

minimizing the global warming potential (GWP) per GJ of raw shale gas, and 

minimizing the water footprint per GJ of raw shale gas, respectively. Because the 

process system’s performance and the total amount of raw shale gas processed are 

both considered in the unit objective functions, the optimal objective function 

values can directly reflect the competitiveness of the optimal process design. A 
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tailored global optimization algorithm is applied to efficiently solve the resulting 

nonconvex MINLP problem. The application of the proposed framework is 

illustrated through a case study based on a Marcellus shale gas feed. The novelties 

of this work are summarized below: 

• A novel modeling framework for process synthesis by combining product 

distribution optimization of chemical reactions and superstructure optimization of 

the process flowsheet; 

• The first superstructure for an integrated shale gas processing and chemical 

manufacturing process systems including 51,840 alternative possible process 

designs; 

• A novel product distribution optimization model for the steam cracking of 

hydrocarbons; 

• A tailored global optimization algorithm for efficiently solving the resulting large-

scale nonconvex MINLP problem. 

The rest of the paper is organized as follows. The problem addressed in this chapter 

is presented in the next section, followed by the Modeling Framework section. The 

proposed framework is applied to the process synthesis of an integrated shale gas 

processing and chemical manufacturing process. The superstructure of the 

integrated process system and corresponding optimization models are introduced 

next. We present the computational performance and the optimal solutions in the 

Results and Discussion section. Conclusion is provided at the end. 



 

196 

 

5.2 Problem statement 

The superstructure optimization problem for process synthesis of an integrated 

shale gas processing and chemical manufacturing process is formally stated in this 

section. We are given a set of technology/process alternatives in each section of the 

integrated shale gas processing and chemical manufacturing process. A 

superstructure can be developed as a collection of alternative possible process 

designs. The parameters that are relevant to the superstructure optimization 

problem include: 

• The physical properties of the involved species; 

• The ideal gas constant; 

• The kinetic models of steam cracking of ethane, propane, n-butane, and i-

butane [272, 273], including the Arrhenius parameters of each rate constant 

as well as the equilibrium constant of each reversible reaction; 

• The heat of all reactions;  

• The overall heat transfer coefficient between the wall of a steam cracking 

reactor and the gas mixture; 

• The upper and lower bounds of the temperature, pressure, and feed-to-

steam ratio of the gas mixture in each steam cracking reactor;  

• The wall temperature and the diameter of the steam cracking reactors;  

• The flow rate, the temperature, and the pressure of each hydrocarbon feed 

to its steam cracking reactor;  

• The upper and lower bounds of the capacity of each technology/process; 

• The composition and total flow rate of the raw shale gas; 

• The composition of the feed to each technology/process; 
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• The product distributions of the involved reactions; 

• The split fraction of each species to various flows; 

• The unit consumption and generation rates of power, heating, and cooling 

utilities in each technology/process; 

• The steam turbine efficiency for electricity generation; 

• The total hours of operations in a year; 

• The project lifetime; 

• The base-case capital costs, flow rates, scaling factors, and chemical 

engineering plant cost indices of the involved processes; 

• The coefficients for evaluating total project investment based on capital 

costs; 

• The prices of feedstocks, power, heating, and cooling utilities, and 

wastewater treatment; 

• The coefficients for evaluating operating costs; 

• The characterization factors of producing feedstocks, power, heating, and 

cooling utilities, wastewater treatment, and off-gas emissions. 

The goal is to determine the optimal process design by maximizing the NPV per GJ 

of raw shale gas, minimizing the GWP per GJ of raw shale gas, and minimizing the 

water footprint per GJ of raw shale gas. The decision variables include: 

• The flow rates of all the species along the steam cracking reactors; 

• The temperatures of the gas mixture along the steam cracking reactors; 

• The pressures of the gas mixture along the steam cracking reactors; 

• The selection of technologies/processes in the optimal process design; 

• The flow rates in each technology/process in the optimal process design; 

• The NPV, capital expenditures (CAPEX), and operating expenditures 

(OPEX) of the optimal process design; 
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• The GWP and the water footprint of the considered life cycle stages in the 

optimal process design.  

5.3 A novel modeling framework for process synthesis combining 

reaction product distribution optimization and superstructure 

optimization 

 

Figure 40. Flowchart of the proposed process synthesis framework that combines product 

distribution optimization of chemical reactions and superstructure optimization of the process 

flowsheet. 

As product distributions of chemical reactions can significantly influence the 

overall performance of a process, it is important to account for product 
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distributions of chemical reactions in a holistic framework for process synthesis. In 

this chapter, we propose a novel process synthesis framework that combines 

product distribution optimization of chemical reactions and superstructure 

optimization of the process flowsheet, as shown in Figure 40. In the first step, a 

superstructure is developed with a set of technology/process alternatives. In the 

second step, several product distribution optimization models for the involved 

chemical reactions are developed to maximize the profits of the effluent products. 

After the optimal product distributions of the chemical reactions are determined, 

they are used as input parameters for extensive process simulations to generate 

high-fidelity data for process synthesis. In the third step, the simulation results are 

used to develop a superstructure optimization model, which is likely a nonconvex 

MINLP. After globally optimizing the MINLP problem, the resulting optimal 

process design is then validated by a whole-process simulation. If the process flow 

rates of the optimal process design agree with those in the whole-process 

simulation, the framework would output the validated optimal design and 

terminate; otherwise, the process data in the whole-process simulation would be 

used to update the parameters in the superstructure optimization model, and the 

MINLP problem is solved iteratively until the process flow rates of the optimal 

process design agree with those in the whole-process simulation. As there are 
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finite process designs in the superstructure and the parameters of one process 

design are updated in each iteration, the optimal process design converges to the 

corresponding whole-process simulation within finite iterations. 

Ideally, the reaction product distribution optimization and superstructure 

optimization problems should be solved simultaneously in an integrated 

optimization framework. However, the explicit process models that treat product 

distributions of chemical reactions as variables are typically not available in the 

literature. More importantly, the resulting integrated problem is computationally 

intractable due to the computational complexities of the integrated optimization 

problems [274]. A superstructure optimization problem consists of integer variables 

to describe the network configuration and facilitate the process designs. 

Additionally, nonlinear terms are employed to evaluate capital costs and model 

other nonlinear relationships in the process. Due to the combinatorial nature and 

nonconvexity of the MINLP problem, it is nontrivial to globally optimize the 

superstructure optimization problem. To determine the optimal product 

distributions of the involved chemical reactions simultaneously, the integrated 

optimization problem should also embed a set of continuity equations and reaction 

kinetic models into the superstructure optimization problem. As a result, a set of 

ordinary differential equations (ODEs) and more nonlinear terms are added to the 
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superstructure optimization problem, resulting in a large-scale mixed-integer 

nonlinear dynamic optimization problem, which is known to be very challenging 

to solve. Thus, the proposed framework employs a sequential heuristic approach 

that first determines the optimal product distributions of the involved chemical 

reactions, and then determines the optimal process design with the process data 

tailored to the optimal product distributions of the chemical reactions. For 

comparison purposes, the superstructure optimization problem is solved twice to 

determine the optimal solutions corresponding to the optimal product distributions 

and the product distributions taken from the literature, respectively. As illustrated 

by the shale gas application, the proposed approach is computationally tractable 

and leads to better solutions than the conventional superstructure optimization 

method that uses fixed product distributions of chemical reactions from literature. 
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5.4 Superstructure description 

 

Figure 41. Overview of the proposed superstructure for an integrated shale gas processing and 

chemical manufacturing process. 

The proposed modeling framework is applied to the process synthesis of an 

integrated shale gas processing and chemical manufacturing process. The details of 

the three key steps, i.e. superstructure generation, reaction product distribution 

optimization, and superstructure optimization, are introduced in this and the next 

two sections, respectively. 
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Although several design variants for the polygeneration of chemicals and 

electricity from shale gas have been investigated [275-277], many other valuable 

technology and process alternatives may further improve the overall performance 

of an integrated system. In this chapter, we develop a comprehensive 

superstructure of an integrated shale gas processing and chemical manufacturing 

process to produce pipeline quality sales gas and a collection of value-added 

chemicals from raw shale gas. The general configuration of the proposed 

superstructure is shown in Figure 41 to provide an overview of the considered 

technology/process alternatives. There are eight sections in the superstructure, 

namely acid gas removal, dehydration, NGLs recovery, NGLs separation, 

hydrocarbons conversion, light olefins separation, C4 separation, and acid gas 

disposal. The raw shale gas from wellhead is first sent to the acid gas removal 

section to split hydrogen sulfide and carbon dioxide. The acid gas waste is then 

sent to the acid gas disposal section, and the sulfur content is captured before the 

remaining waste is emitted. The sweet gas becomes dry gas after the dehydration 

section. The dry gas is then separated by the NGLs recovery section to a pipeline 

gas product and a NGLs product. In the NGLs separation section, the mixture is 

split into ethane, propane, n-butane, i-butane, and natural gasoline. The first four 

hydrocarbons are sent to their corresponding processes in the hydrocarbons 
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conversion section to form a spectrum of olefins. The effluents are then handled by 

a set of separation processes in the light olefins separation section. In additional to 

the light olefin products, the unreacted ethane and propane are recycled to the 

hydrocarbons conversion section, and the C4 mixture is sent to the C4 separation 

section. The unreacted C4 hydrocarbons are recycled to the hydrocarbons 

conversion section, while other C4 chemicals are fractionated to their 

corresponding products. The process flowsheet of the acid gas removal, acid gas 

disposal, dehydration, NGLs recovery, and NGLs separation sections is shown in 

Figure 42. The process flowsheet of the remaining sections is presented in Figure 

43. Each section is described in the following subsections. 
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Figure 42. Process flowsheet of the acid gas removal, acid gas disposal, dehydration, NGLs recovery, and NGLs separation sections in the 

superstructure. 
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Figure 43. Process flowsheet of the hydrocarbons conversion, light olefins separation, and C4 separation sections in the 

superstructure. 
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5.4.1 Acid gas removal and acid gas disposal 

Raw shale gas is first introduced into the acid gas removal section to separate 

carbon dioxide and hydrogen sulfide from the hydrocarbons, so that no corrosive 

acid can be formed in the transmission pipelines [278]. Four technologies are 

considered to generate sweet shale gas in the superstructure, namely 

monoethanolamine (MEA) absorption, diethanolamine (DEA) absorption, 

diglycolamine (DGA) absorption, and Benfield Hipure process [278, 279]. The first 

three technologies follow the same process configuration of an absorption-stripper 

cycle while the selection of different solvents results in different operating 

conditions. MEA shows a higher solution capacity, but also a higher rate of 

vaporization loss and a higher energy requirement during regeneration [278]. In 

contrast, DGA has a lower vapor pressure and the corresponding process requires a 

lower solvent circulation rates. The DEA process, on the other hand, requires less 

energy for solvent regeneration. The Benfield Hipure process employs a hot 

potassium carbonate solution for absorbing most acid gas. Since conventional hot 

potassium carbonate based technologies are unable to reduce the concentration of 

CO2 to lower than 30 ppmv, an MEA absorption process is integrated into the 

Benfield Hipure process to further purify the resulting gas [280]. 
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In the acid gas disposal section, the sulfur content in the acid gas is handled by 

either a scavenger or a Claus process. A scavenger, such as iron sponge, reacts with 

hydrogen sulfide to form non-regenerable wastes [278]. This option is cost-

effective if the amount of hydrogen sulfide is small; otherwise, a Claus process is 

more economically viable. Given that the sulfur concentration is too low to be 

thoroughly reacted with oxygen, a methyl diethanolamine absorption process is 

employed to concentrate hydrogen sulfide in the acid gas [26]. The sulfur content 

finally becomes solid sulfur and adds to the revenue of the entire project. 

5.4.2 Dehydration 

Water in the sweet shale gas can form hydrates in the following NGLs separation 

process. Therefore, five dehydration technologies are considered in the second 

section. The first one removes water when the sweet shale gas is condensed. The 

corresponding process shows a lower capital investment, but a higher utility cost 

than a triethylene glycol (TEG) absorption based process [116]. In addition to the 

condensation process, we include three glycol absorption based technologies. The 

diethylene glycol based process can operate under low temperatures; tetraethylene 

glycol based process shows a low circulation rate but a low hydrocarbon recovery 

[281]. Conventional TEG based process exhibits a comprised performance between 

the other two glycol based processes. The last alternative in the dehydration 
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section is molecular sieve adsorption, which consumes more heating utility for a 

higher hydrocarbon recovery [280]. 

5.4.3 NGLs recovery and NGLs separation 

The goal of the NGLs recovery section is to split pipeline quality gas from NGLs. 

We include three alternative processes. The first one is seamlessly integrated with 

the condensation process in the last section. In this process, methanol is added to 

the sweet shale gas as an inhibitor. To remove methanol in the NGLs product, a 

water wash tower and a TEG absorption process are employed. Note that the 

capacity of the added TEG absorption process is substantially smaller than that of 

the TEG absorption process in the dehydration section [116]. The other two 

alternative processes can handle the dry shale gas from the glycol based processes 

and the molecular sieve absorption process in the last section. A gas sub-cooled 

(GS) process employs a collection of heat exchangers, a Joule-Thompson valve, and 

a turboexpander for reaching a substantially low temperature before the feed gas is 

sent to a demethanizer column [26, 27, 111]. Based on the GS process, an internal 

refrigeration (IR) process cools the feed gas using a side draw from the bottom of 

the demethanizer column, aiming to reduce the cooling utility consumption [282]. 

For all these processes, pipeline quality gas is pressurized as a major product of the 

proposed superstructure. The other product stream containing NGLs is sent to the 
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NGLs separation section, where the mixture is split into ethane, propane, n-

butane, i-butane, and natural gasoline. Ethane, propane, n-butane, and i-butane 

are sent to the next section, and natural gasoline is sold as a product. 

5.4.4 Hydrocarbons conversion 

Given different reaction conditions, the four hydrocarbon feeds from the last 

section are sent to their respective reactors in the hydrocarbons conversion 

section. Two types of reactors are considered in the superstructure for each 

hydrocarbon feed: (1) steam cracking and oxidative dehydrogenation for ethane; 

and (2) steam cracking and catalytic dehydrogenation for propane, n-butane, and i-

butane. For the steam cracking technology, the feed is sent to a furnace with steam 

and cracked into light alkanes and olefins in a few seconds [283]. To increase the 

olefin yields, the reaction should be ceased instantaneously by rapidly cooling the 

furnace effluents through a transfer line exchanger and a water-quench column. 

After the cooling units, the gas mixture then reaches the ambient temperature. 

Later it is sent to a multi-stage compressor system, an MEA absorption process, and 

a molecular sieve adsorption unit for compression, acid gas removal, and drying, 

respectively. If the feed gas of a steam cracking process contains primarily heavier 

hydrocarbons, there can be an additional liquid stream formed during the 

compression process and it would be routed to the depropanizer column in the 
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next section. The gas streams from the steam cracking processes are sent to 

corresponding separation processes in the following sections. There are many 

species in the effluents of steam cracking reactors, but the yields of olefins are 

relatively low. An attractive alternative to steam cracking of ethane is oxidative 

dehydrogenation of ethane, which offers a substantially higher ethylene yield and 

consumes less energy [284]. In the same spirit, catalytic dehydrogenation of 

propane, n-butane, and i-butane enhances the yields of major olefin products and 

reduces the energy consumption [285]. Since the reactions are endothermic, heat 

consumption is supplied by inter-stage heaters. The supporting units for 

compression, acid gas removal, and dehydration are the same as those in the steam 

cracking processes. However, an additional catalyst regeneration unit is included 

in dehydrogenation processes [286]. 

5.4.5 Light olefins separation 

Three alternative light olefins separation configurations, namely front-end 

demethanizer, front-end deethanizer, and front-end depropanizer, have gained 

commercial significance [283]. As their names suggest, the major difference lies in 

the first step in the fractionation sequence. In the front-end demethanizer 

configuration, the gas feed is first sent to a demethanizer column to remove 

methane and lighter components. The heavier stream is then sent to a deethanizer 
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column, with the C2 components being hydrogenated and the C3+ components 

being depropanized. The treated C2 gas contains no acetylene, and it is split into 

ethylene and ethane products. The overhead gas from the depropanizer column is 

hydrogenated, and then split into a propylene product and a propane stream for 

recycling. The bottom gas from the depropanizer column is split into a pyrolysis 

gasoline product and a C4 stream to the next section. The separation sequence of 

the front-end deethanizer configuration starts from the deethanizer column. The 

lighter components are hydrogenated before being fed to a demethanizer column, 

and the heavier components are sent to a depropanizer column as in the front-end 

demethanizer configuration. In the front-end depropanizer configuration, the feed 

gas is sent to a depropanizer and the overhead product is pressurized before being 

sent to the hydrogenation reactor. Only one hydrogenation reactor is needed in 

the front-end depropanizer configuration as acetylene and methylacetylene are 

converted to respective olefins in the same reactor. Next, the treated gas is 

demethanized, deethanized, and split to an ethylene product, a propylene product, 

an ethane recycling stream, and a propane recycling stream. The bottom product 

from the depropanizer column is separated into a pyrolysis gasoline product and a 

C4 stream to the next section. When the feeds lack certain components, several 

unit operations or even the whole configuration become redundant. For the feeds 
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with various percentages of olefins, the operating conditions can vary significantly. 

All three configurations are applied to each gas mixture product from the 

hydrocarbons conversion technologies with careful adjustment. A recycling stream 

containing methane and ethylene from the front-end demethanizer configuration 

is sent to the corresponding upstream hydrocarbons conversion process. The 

ethane streams from all light olefins separation processes are merged with the feed 

to the ethane conversion process, while all propane streams are merged with the 

feed to the propane conversion process. 

5.4.6 C4 separation 

The C4 mixture from the light olefins separation section consists of n-butane, i-

butane, 1-butene, 2-butene, i-butene, and 1,3-butadiene. Extractive distillation 

with dimethylformamide (DMF) is first employed to separate 1,3-butadiene [287, 

288]. Next, methanol is added to the remaining gas mixture to turn i-butene to 

methyl tert-butyl ether (MTBE) [289]. MTBE is separated as the bottom product of 

a distillation column, and the residual methanol is washed off and recycled. The 

dried gas is extracted by DMF again with butanes remaining in the gas phase. n-

Butane and i-butane are then split and recycle. Finally, the extracted components 

from the top of a solvent recovery column are fractionated to n-butene products 

sequentially [290]. 



 

214 

 

5.5 Product distribution optimization of chemical reactions 

In the second step of the proposed framework, product distribution optimization 

models are developed for the critical reactions in the superstructure. In the 

integrated shale gas processing and chemical manufacturing process, steam 

cracking is a well-established reaction for producing olefins in the petrochemical 

industry [283]. With the kinetic models of steam cracking [272, 273], it is possible 

to determine the optimal product distributions of chemical reactions that 

maximize the profit of the effluent products under certain market conditions. 

Compared with the product distributions of chemical reactions in the literature 

that might not be optimized based on the current market conditions, the 

optimization can enhance the yields of more profitable products, thus contributing 

to a better overall performance of the entire system. It is practical to integrate 

chemical kinetic models into rigorous simulation models for process design [276, 

277], but how to determine the optimal product distributions of chemical reactions 

systematically in superstructure optimization is still a research challenge. Ideally, 

an integrated optimization model should be developed for simultaneous reaction 

product distribution optimization and superstructure optimization. However, it is 

challenging to develop the explicit process models that treat product distributions 

of chemical reactions as variables. Moreover, the integration of these optimization 
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models combines their computational complexities. With a set of integer variables 

as well as nonconvex and nonlinear ODEs, it is challenging to globally optimize 

the resulting large-scale integrated optimization problem. As a heuristic approach, 

we solve the reaction product distribution optimization problems and the 

superstructure optimization problem sequentially in this chapter. The optimal 

product distributions of the involved chemical reactions that maximize the profits 

of the effluent products are used as input parameters of rigorous process 

simulations. The high-fidelity process simulation data can be used in the 

superstructure optimization problem to determine the optimal process design. 

Additionally, we apply a tailored global optimization algorithm to efficiently solve 

the resulting large-scale nonconvex MINLP problem for superstructure 

optimization. 

In this section, we present the product distribution optimization models for steam 

cracking. The hydrocarbons that are heavier than butane in the NGL stream are 

typically separated and sold to the market as a natural gasoline product [283]. 

Therefore, we focus on steam cracking of ethane, propane, n-butane, and i-butane 

in this study. We develop four ODE-constrained dynamic optimization models for 

steam cracking of these hydrocarbons, respectively. The general model formulation 
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is shown below. The detailed models and optimization results are presented in 

Appendix A. 

max     PRO as defined in (1.A48) 

s.t.       kinetic model constraints (1.A24)–(1.A30) 

                   continuity equations and boundary conditions (1.A31)–(1.A43) 

                   economic evaluation constraints (1.A44)–(1.A48) 

5.6 Superstructure optimization for sustainable process design and 

synthesis 

5.6.1 Model formulations for life cycle optimization 

Based on the optimal product distributions of steam cracking of ethane, propane, 

n-butane, and i-butane, we develop 53 simulation models for different alternative 

designs of processes in the superstructure. In the light olefins separation section, 12 

simulation models are developed for the steam cracking processes with the optimal 

product distributions, 12 simulation models are developed for the steam cracking 

processes with the product distributions taken from the literature [283, 285], and 

another 9 simulation models are developed for the dehydrogenation processes. The 

simulation results are then used to calculate key parameters such as inlet 

compositions and split fractions of the major unit operations in the process. Finally, 

a life cycle optimization model is formulated to determine the optimal process 

design of the integrated shale gas processing and chemical manufacturing process 
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[12, 22, 197]. The life cycle optimization model integrates superstructure 

optimization and the tenets of the techno-economic analysis and life cycle analysis 

(LCA) methodologies through a multiobjective optimization framework [9]. 

 

Figure 44. System boundary of the cradle-to-gate life cycle optimization. The gray arrows 

denote the material flows; the yellow arrow denotes the utility flow; the dark green arrow, the 

red arrow, and the solid blue arrow denote the wastewater, direct emissions, and direct water 

consumption from the integrated shale gas processing and chemical manufacturing process, 

respectively; the dotted orange arrows and the dotted blue arrows represent indirect emissions 

and indirect water consumption and production, respectively. 

The functional unit of the LCA is processing 1 GJ raw shale gas. As shown in 

Figure 44, the system boundary covers four life cycle stages from cradle to gate, 

namely shale gas extraction, utility production, shale gas processing and chemical 

manufacturing, and wastewater treatment. We focus on GWP and water footprint 

in life cycle impact assessment for two reasons. First, these two indicators are most 

widely discussed environmental impact indicators for shale gas systems [291-294]. 

Second, there are not enough life cycle impact assessment results of other mid-
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point or end-point environmental impact categories for the studied life cycle 

stages. It deserves future research effort to develop comprehensive life cycle 

inventories and life cycle impact assessment results for the integrated shale gas 

processing and chemical manufacturing process. GWP measures the global 

warming impact of a chemical relative to that of carbon dioxide, whose GWP is 

equal to 1 [265]. For example, emitting 1 kg of methane is equivalent to emitting 

28 kg of CO2 over the course of 100 years according to the Intergovernmental 

Panel on Climate Change [265]. As shown in Figure 44, the GWP in this LCA 

accounts for the global warming impact of the greenhouse gases emitted in all the 

life cycle stages. Moreover, the water footprint in this LCA accounts for direct 

water consumption in the integrated shale gas processing and chemical 

manufacturing process, indirect water consumption in shale gas extraction and 

utility production, and indirect water production in wastewater treatment. The 

data for direct water consumption in the superstructure are directly extracted from 

the simulation results. The data for indirect water consumption associated with 

shale gas extraction and utility production are taken from the literature [293]. The 

data for indirect water production in the wastewater treatment process are taken 

from the Ecoinvent database [295]. 
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The techno-economic analysis accounts for the CAPEX and the OPEX of the 

integrated shale gas processing and chemical manufacturing process. CAPEX 

includes the capital costs of reactors, columns, compressors, drums, and heat 

exchangers as well as land cost and working capital [46]. OPEX includes feedstock 

cost, utility cost, operations & maintenance cost, property tax & insurance, general 

expense, and income tax. The annual cash flow is equal to the difference between 

the annual revenue and the annual OPEX. The NPV is defined by subtracting the 

CAPEX from the sum of the discounted annual cash flows over a project lifetime of 

20 years at an interest rate of 10%. Zero salvage value is considered when 

calculating the NPV. 

The general model formulation of the life cycle optimization model is given below, 

and the detailed models are presented in Appendix C. The proposed model 

employs functional unit based objective functions for several reasons. First, the 

functional unit in LCA provides a reference to which the inputs and outputs of a 

system can be related. By applying the same functional unit, the performance of 

different process systems that generate distinct final products at various scales can 

be compared in a fair manner. Second, the optimal performance of the entire 

process system may correspond to significantly low productivities. Thus, the 

resulting optimal process design may be less sustainable and the final products may 
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be less competitive in the markets. In contrast, the functional unit based objective 

functions account for the entire process system’s performance and the quantity of 

the final products simultaneously. The corresponding optimal solutions are found 

to be more sustainable and more competitive [197, 296]. 

            max    
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       min    
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  in Eq. (1.C42) 

                    s.t.     superstructure network configuration constraints (1.C43)–(1.C56) 

       mass balance constraints (1.C1)–(1.C16) 

                   energy balance constraints (1.C17)–(1.C20) 

                              techno-economic evaluation constraints (1.C21)–(1.C36) 

      environmental impact assessment constraints (1.C37)–(1.C42) 

 

where OBJeconomic, OBJGWP, and OBJwater denote the unit NPV, unit GWP and unit 

water footprint, respectively. The numerator of OBJeconomic is the NPV, which sums 

up several linear terms for the revenue and the OPEX (denoted by Xi,j) and several 

separable concave terms for the CAPEX (denoted by   i, jn

i, j i, ja Z ). The numerator 

of OBJeconomic accounts for the total energy content generated over the project 

lifetime. lt, h, and TEC are the project lifetime, the operating time per year, and 

the total energy content per hour, respectively. The numerators of OBJGWP and 
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OBJwater are the total GWP per hour and the total water footprint per hour, 

respectively. EIF, EIU, EIW, and EID represent the environmental impacts 

associated with feedstocks, utilities, wastewater treatment, and direct emissions, 

respectively. The constraints for mass and energy balance relationships are 

developed for the technology/process alternatives, instead of the equipment units 

In the life cycle optimization model, integer variables are introduced to select the 

technology/process alternatives and facilitate the process designs. The other 

decision variables, such as process flow rates, are continuous variables. 

Additionally, separable concave terms are used to calculate the CAPEX in the 

techno-economic evaluation constraints. The objective functions include mixed-

integer fractional terms. Given the problem structure, the resulting problem is a 

mixed-integer nonlinear fractional programming (MINFP) problem and the global 

optimization of this problem is nontrivial. 

5.6.2 Tailored global optimization strategy 

Global Optimization Algorithm 

1: r ← 0, obj ← +∞, iterout ← 0; 

2: while obj ≥ tolout do 

3:  iterout ← iterout +1; 

4:  lb ← 0, ub ← +∞, gap ← +∞, iterin ← 0; 

5:  Initialize the parametric problem with one-piece approximation functions; 

6:  while gap ≥ tolin do 

7:   iterin ← iterin +1; 

8: 
  Solve the parametric problem for the optimal solution m* and objective 

function value OBJ*; 

9:   Evaluate the original objective function value OBJΔ using m* and nonlinear 
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functions; 

10:   lb ←  max lb,OBJ  , ub ←  *min ub,OBJ , gap ← ( ub – lb ) / ub; 

11:   Update the parametric problem by adding a new partition point m*; 

12:  end 

13:  obj ← ub,  * *r NPV h ls TEC   ;  

14: end 

15: Return r 

Figure 45. The pseudo code of the tailored global optimization algorithm that integrates the 

inexact parametric algorithm and the branch-and-refine algorithm. 

As mentioned above, the multiobjective MINFP problem consists of both integer 

and continuous variables as well as multiple nonlinear nonconvex functions. Due 

to the combinatorial nature and nonconvexity, global optimization of this MINFP 

problem can be computationally intractable for general-purpose global solvers [21]. 

To tackle the computational challenge, we employ a tailored global optimization 

algorithm to efficiently solve this MINFP problem [21]. Specifically, the global 

optimization algorithm integrates two state-of-the-art algorithms, including the 

inexact parametric algorithm [202] and the branch-and-refine algorithm [200]. 

The computational challenge stemming from the fractional objective functions is 

tackled by the inexact parametric algorithm. Instead of solving the original MINFP 

problem directly, we introduce an auxiliary parameter r and an auxiliary 

parametric problem F(r). The original optimal solution is identical to the optimal 

solution of the auxiliary parametric problem with the parameter r* such that 

F(r*)=0 [202]. In each iteration of the inexact parametric algorithm, we need to 
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globally optimize an MINLP problem F(r) with separable concave terms in the 

objective function. To efficiently solve these MINLP problems, we replace the 

nonlinear terms with successive piecewise linear approximation functions and 

solve the relaxed mixed-integer linear programming (MILP) problems iteratively 

following the branch-and-refine algorithm [200]. This tailored solution algorithm 

is guaranteed to converge within finite iterations. The pseudo code of the tailored 

global optimization algorithm is shown in Figure 26. The iteration counters in the 

outer loop and the inner loop are denoted as iterout and iterin, respectively. The 

optimality tolerance in the outer loop and the inner loop are denoted as tolout and 

tolin, respectively. obj represents the objective function value in the outer loop, 

while ub and lb represent the upper bound and the lower bound in the inner loop, 

respectively. gap denotes the optimality gap in the inner loop. The global optimal 

solution in the inner loop is m*. The optimal objective function value and the 

evaluated objective function value are OBJ* and OBJΔ, respectively. The detailed 

model formulation of the auxiliary parametric problem is given in Appendix D. 

5.7 Application to a Marcellus shale gas feed 

The proposed framework is applied to the design and synthesis of an integrated 

shale gas processing and chemical manufacturing process for handling a raw shale 

gas feed of 200 million standard cubic feet per day from Marcellus shale [297]. The 
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raw shale gas feed is collected from about 200 wells after being preprocessed on 

wellsites [298]. All computational experiments are performed on a DELL 

OPTIPLEX 7040 desktop with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 32 

GB RAM. The process simulation models are developed in ASPEN HYSYS [299]. 

We use the amine thermodynamic package in ASPEN HYSYS for the processes 

that involve amines [300], the glycol thermodynamic package for the processes 

that involve glycols [300], the Wilson thermodynamic package for the C4 

separation process [301], and the Peng-Robinson thermodynamic package for the 

remaining processes [300]. The capital costs are evaluated using ASPEN Process 

Economic Analyser [302]. The product distribution optimization problems for 

steam cracking are coded and solved in MATLAB 2016a [303]. Specifically, the 

fmincon solver is employed to solve the product distribution optimization 

problems for steam cracking reactions, and the ode15s solver is used to handle the 

ODEs [304]. The superstructure optimization problem and its solution procedure 

are coded in GAMS 24.8.3 [203], with CPLEX 12.7. used as the MILP solver and 

BARON 17.1 [204] and SCIP 3.2 [305] being the MINLP solvers. The relative 

optimality tolerances for the inexact parametric algorithm and the branch-and-

refine algorithm are 10-6. 



 

225 

 

5.7.1 Case study 1: Minimizing the unit GWP of shale gas processing 

A shale gas processing system receives raw shale gas and separates undesired 

components to produce pipeline quality gas. For gas quality and transmission safety 

purposes, shale gas processing is usually required regardless of the amount of NGLs 

in a raw shale gas feed. Therefore, many LCA studies for shale gas production and 

utilization calculate the environmental impacts associated with shale gas 

processing. In the first case study, we focus on the shale gas processing part of the 

superstructure, which consists of the acid gas removal section, the dehydration 

section, and the NGLs recovery section. As no hydrogen sulfide is reported in the 

considered raw shale gas feed, the acid gas disposal section is bypassed. Moreover, 

the sections involving chemical reactions are not considered in this case study, so 

product distribution optimiztion for chemical reactions is bypassed. To compare 

with existing LCA results, we focus on minimizing the GWP per GJ of the products 

from shale gas processing. 

As shown in Table 9, the minimum GWP per GJ of the products from shale gas 

processing is 1.12 kg CO2-eq/GJ. It is reported that the GWP per GJ of the products 

from shale gas processing from raw Marcellus shale gas  is 1.20 kg CO2-eq/GJ [293], 

while the corresponding value for average raw shale gas in the U.S. is 3.66 kg CO2-

eq/GJ [306]. A comparison shows that the minimum unit GWP of shale gas 
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processing in the proposed superstructure is lower than the literature values. It is 

noted that different works may apply different assumptions and rely on data from 

various sources. Therefore, the goal of comparing the unit GWP values is to 

validate that the superstructure optimization model can return reasonable 

estimates of environmental impacts relative to those in the literature. 

Table 9. Comparison of the GWP per GJ of the products from shale gas processing in this 

chapter and in the literature. 

Source Unit GWP (kg CO2-eq/GJ) Raw shale gas source 

This work 1.12 Marcellus 

Laurenzi and Jersey 

[293] 
1.20 Marcellus 

Jiang et al. [294] 4.30 Marcellus 

Burnham et al. [306] 3.66 National average 

 

The selection of the optimal technology/process alternatives is the major reason for 

resulting in a lower unit GWP in this chapter than in the literature. In the cited 

literature [293], a TEG absorption process and a GS process are employed in the 

dehydration section and the NGLs recovery section, respectively. Although the 

TEG abosrption process does not require a dedicated heater or consume a large 

amount of fuel gas for heating, it demonstrates a lower hydrocarbon recovery rate, 

resulting in a higher unit GWP. The GS process, however, is less energy-efficient 

than the other process alternatives. In contrast, the most environmentally friendly 

shale gas processing design in this chapter selects the MEA absorption process, the 
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molecular sieve adsorption process, and the IR process as shown in Figure 46. The 

molecular sieve adsorption process has a higher hydrocarbon recovery, resulting in 

more hydrocarbon products than the other alternatives. The IR process is energy-

efficient and shows a lower GWP associated with utility generation. Overall, the 

selection of a different set of technologies/processes leads to the minimum unit 

GWP. 

 

Figure 46. Optimal process flowsheet corresponding to the minimum GWP per GJ of the 

products from the shale gas processing part of the integrated shale gas processing and 

chemical manufacturing process. 

5.7.2 Case study 2: Economic and environmental optimization of the 

entire superstructure 

In the second case study, we consider the entire superstructure for the integrated 

shale gas processing and chemical manufacturing process. To better understand the 

trade-offs between the economic and environmental objectives, the first one 

maximizes the NPV per GJ of raw shale gas and minimizes the GWP per GJ of raw 
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shale gas simultaneously; the second one maximizes the NPV per GJ of raw shale 

gas and minimizes the water footprint per GJ of raw shale gas simultaneously. The 

optimal solutions of these multiobjective optimization problems can be plotted as 

Pareto-optimal curves. The Pareto-optimal curves in Figure 47 demonstrate the 

trade-offs between the unit NPV and the unit GWP, while those in Figure 48 

demonstrate the trade-offs between the unit NPV and the unit water footprint. 

 

Figure 47. Pareto-optimal curves showing the trade-offs between the NPV per GJ of raw shale 

gas and the GWP per GJ of raw shale gas. Two good-choice optimal solutions and the selected 

technologies/processes are also presented. 
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Each point on the Pareto-optimal curve corresponds to an optimal solution of the 

superstructure optimization problem. The highest unit NPV with the optimal 

product distributions of steam cracking is $0.62/GJ (corresponding NPV: $1.12 

billion), which is 22% higher than the highest unit NPV with the product 

distributions of steam cracking taken from the literature [283, 285]. This 

improvement comes from the product distribution optimization of steam cracking, 

which considerably increases the yield of the profitable 1,3-butadiene. With the 

optimal product distributions of steam cracking, the economic performance of the 

optimal process designs can be enhanced. Moreover, the minimum unit GWP and 

minimum unit water footprint with the product distributions of steam cracking 

taken from the literature are 16.58 kg CO2-eq/GJ and 33.11 kg H2O/GJ, 

respectively. In contrast, the minimum environmental impact indicators with the 

optimal product distributions of steam cracking are 17.49 kg CO2-eq/GJ and 34.57 

kg H2O/GJ, respectively. To increase the yields of more profitable products, the 

temperatures and pressures of the steam cracking reactions need to be raised. As a 

result, the optimal process designs with the optimal product distributions consume 

more utilities, contributing to relatively higher unit environmental impacts.  
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Figure 48. Pareto-optimal curves showing the trade-offs between the NPV per GJ of raw shale 

gas and the water footprint per GJ of raw shale gas. Two good-choice optimal solutions and 

the selected technologies/processes are also presented. 

Each point on the Pareto-optimal curves corresponds to an optimal process design. 

In addition to the Pareto-optimal curves, Figure 47 and Figure 48 exhibit the 

selected technologies/processes of four good-choice optimal solutions. The good-

choice optimal solutions in Figure 47 select a molecular sieve absorption process in 

the dehydration section, while those in Figure 48 select a TREG absorption 

process. In the glycol based dehydration processes, a portion of the dry shale gas 

product must be separated and utilized as stripping gas to reduce the water content 

in the recycled glycol solvent. Later, the stripping gas coming from the top of the 
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stripper column is burnt in a furnace to generate heating utilities. Therefore, the 

gas yields of the glycol based dehydration processes are lower than that of the 

molecular sieve absorption process, which sends all the dry shale gas product to the 

next section. Despite this drawback, the TREG absorption process corresponds to 

much less water footprint than the molecular sieve absorption process, because the 

latter process relies on a significant amount of water to cool the gas product. 

Therefore, the optimal solution with the minimum GWP per GJ of raw shale gas 

favors molecular sieve absorption, while the optimal solution with the minimum 

water footprint per GJ of raw shale gas favors TREG absorption. Moreover, since 

steam cracking strikes a good balance between the economic and environmental 

performance, the good-choice optimal solutions select only steam cracking 

technologies in the hydrocarbons conversion section. 

5.7.3 Case study 3: Simultaneously maximizing the unit NPV, minimizing 

the unit GWP, and minimizing the unit water footprint of the entire 

superstructure 

In the third case study, we consider the entire superstructure and solve the 

superstructure optimization problem that maximizes the NPV per GJ of raw shale 

gas, minimizes the GWP per GJ of raw shale gas, and minimizes the water 

footprint per GJ of raw shale gas simultaneously. The optimal solutions of this 
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multiobjective optimization problem can be plotted as 3D Pareto-optimal surfaces. 

Figure 49 shows the Pareto-optimal surface with the product distributions of steam 

cracking taken from the literature and Figure 50 shows the Pareto-optimal surface 

with the optimal product distributions of steam cracking. 

5.7.3.1 Optimal process designs 

The selected technologies/processes of a good-choice optimal solution are 

highlighted on each Pareto-optimal surface (A in Figure 49 and B in Figure 50). 

The optimal process flowsheets of the good-choice optimal solutions are explicitly 

demonstrated in Figure 51 and Figure 52. The unit NPV, the unit GWP, and the 

unit water footprint of the optimal solution A are $0.46/GJ (corresponding NPV: 

$0.83 billion), 16.99 kg CO2-eq/GJ, and 38.92 kg H2O/GJ, respectively. In contrast, 

the unit NPV, the unit GWP, and the unit water footprint of the optimal solution 

B are $0.53/GJ (corresponding NPV: $0.96 billion), 18.71 kg CO2-eq/GJ, and 40.42 

kg H2O/GJ, respectively. Therefore, the optimal product distributions of steam 

cracking lead to better economic performance but worse environmental 

performance than the product distributions of steam cracking taken from the 

literature.  
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Figure 49. Pareto-optimal surface with the product distributions of steam cracking taken from 

the literature, showing the trade-offs among the NPV per GJ of raw shale gas, the GWP per GJ 

of raw shale gas, and the water footprint per GJ of raw shale gas. A good-choice optimal 

solution and the selected technologies/processes are also presented.  

The good-choice optimal solutions A and B consider a TEG absorption process in 

the dehydration section. Demonstrating a moderate GWP and a moderate water 

footprint rate simultaneously, the TEG absorption process becomes a balanced 

option when the unit GWP and the unit water footprint are minimized 

simultaneously.  
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Figure 50. Pareto-optimal surface with the optimal product distributions of steam cracking, 

showing the trade-offs among the NPV per GJ of raw shale gas, the GWP per GJ of raw shale 

gas, and the water footprint per GJ of raw shale gas. A good-choice optimal solution and the 

selected technologies/processes are also presented. 

In the hydrocarbons conversion section, only steam cracking processes are selected 

by the good-choice solutions. However, the other hydrocarbons conversion 

technologies/processes can be favorable if only one objective function is 
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considered. To maximize the unit NPV, the optimal process flowsheet selects 

catalytic dehydrogenation of propane and n-butane, because the product 

distributions of these reactions are more profitable than those of the corresponding 

steam cracking reactions.
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Figure 51. Optimal process flowsheet of the good-choice optimal solution A in Figure 49. 
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Figure 52. Optimal process flowsheet of the good-choice optimal solution B in Figure 50.
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5.7.3.2 Cost and environmental impacts breakdowns 

 

Figure 53. Breakdowns of the OPEX and the annualized CAPEX for the good-choice optimal 

solution A in Figure 49 and the good-choice optimal solution B in Figure 50. 

To better understand the optimal process designs, we present the breakdowns of 

the OPEX and the annualized CAPEX of the good-choice optimal solutions A and 

B in Figure 53. The annualized CAPEX is calculated with a project lifetime of 20 

years and a discount rate of 10% [14, 19, 307]. The capital cost of each technology 

of the good-choice optimal solutions A and B is presented in Table 10. The 

dominant contributor in Figure 53 is the feedstocks cost and around 97% of the 

feedstock cost is spent in purchasing the raw shale gas. An OPEX item that 
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deserves additional attention is the income tax, which is evaluated as a percentage 

of the difference between the revenue and all other OPEX items. If a fixed amount 

of raw shale gas, for example 1 GJ, is fed to the integrated shale gas processing and 

chemical manufacturing process, the feedstock cost will be almost the same for all 

the optimal process designs. Therefore, a higher ratio of the income tax to the 

feedstock cost indicates a higher profit per year and finally a higher unit NPV. The 

ratio of the income tax to the feedstock cost for the optimal solution B is 0.31, 

while the ratio for the optimal solution A is 0.26. Therefore, the optimal process 

design for the optimal solution B is more economically competitive. 

Table 10. Breakdown of CAPEX for optimal solution A and optimal solution B. 

 Technologies/Processes 

Costs for 

optimal 

solution A 

(MM$) 

Costs for 

optimal 

solution B 

(MM$) 

Direct 

cost 

MEA Absorption 1.17 1.17 

TEG Absorption 1.78 1.78 

IR Process 18.58 18.58 

NGLs Fractionation 5.20 5.20 

C2 Steam Cracking 54.31 54.31 

C3 Steam Cracking 30.68 30.68 

nC4 Steam Cracking 11.29 11.29 

iC4 Steam Cracking 5.84 5.84 

Light olefins separation for C2 16.93 23.78 

Light olefins separation for C3 20.23 24.29 

Light olefins separation for 

nC4 
4.16 9.07 

Light olefins separation for 

iC4 
2.55 2.03 
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C4 Separation 11.59 14.56 

Steam Turbine 11.24 12.62 

Total direct cost 195.55 215.20 

Indirect cost 68.44 75.32 

Fixed capital investment 263.99 290.52 

Working capital 13.20 14.53 

Total capital investment 277.19 305.05 

 

The breakdowns of the GWP and the water footprint of the good-choice optimal 

solutions A and B are presented in Figure 54. The GWP in the superstructure 

optimization model can be classified by the sources of emissions. The GWP 

associated with direct emissions account for the off-gas from the integrated shale 

gas processing and chemical manufacturing process, while the GWP associated 

with indirect emissions account for the off-gas from feedstock extraction, heating 

utilities production, cooling utilities production, electricity production, and 

wastewater treatment. Since the GWP associated with wastewater treatment is 

several orders of magnitute smaller than the GWP associated with other sources, 

wastewater treatment is not included in the breakdowns of the GWP. For both 

optimal solution A and optimal solution B, the largest share of GWP comes from 

feedstocks extraction. Moreover, since producing heating utilities is relatively 

more energy-intensive than producing cooling utilities and electricity, heating 

utilities production causes more GWP than the other two utilities-related 

contributors. The GWP associated with heating utilities production in the optimal 
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solution B is higher than that of the optimal solution A. Therefore, future 

development of the integrated shale gas processing and chemical manufacturing 

process can focus on improving the energy utilitzaiton efficiency to reduce the 

total GWP. 

The breakdowns of the water footprint are also displayed in Figure 54. The water 

footprint in this chapter consists of direct water consumption in the integrated 

shale gas processing and chemical manufacturing process, indirect water 

consumption in feedstock extraction and utilities production, and indirect water 

production in wastewater treatment. However, as the water footprint of the 

wastewater treatment process is negative, it is excluded in the breakdowns. Among 

the considered contributors, cooling utilities consume much more water than 

others, because a substantial amount of water evaporates to reduce the temperature 

of the remaining cooling water. To ensure the cooling quality, makeup water is 

added to the cooling system. Given that cooling is needed for all the reactors and 

distillation columns, makeup water becomes the dominant consumer of water 

within the entire system. The water footprint for utilities production in the 

optimal process design of the optimal solution A is smaller than that of the optimal 

solution B, but the direct water consumption in the optimal process design of 

optimal solution A is higher than that of the optimal solution B. To save more 
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water, future research may be focused on improving the efficiency of the cooling 

water system. 

 

Figure 54. Breakdowns of the GWP and the water footprint of the good-choice optimal 

solution A in Figure 49 and the good-choice optimal solution B in Figure 50. 

5.7.4 Result validation by a whole-process simulation 

A key assumption of the superstructure model is that the mass and energy balance 

relationships scale linearly. To develop the superstructure optimization model for 

process synthesis of the integrated shale gas processing and chemical 

manufacturing process, a set of simulation models of the involved processes are 

first developed separately with fixed operating conditions. Based on the simulation 

results, linear mass balance and energy balance constraints are developed and 

included in the superstructure optimization model. However, this assumption is 

not stringent in a whole-process simulation, where the connected unit operations 

are powered by nonlinear mass and energy relationships and complex phase 
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equilibrium constraints. Therefore, it is worth examining how much the flow rates 

in the optimal solution deviate from corresponding simulation results. Based on the 

optimal process design of the optimal solution B, we perform a whole-process 

simulation and summarize the flow rates of the nine products from both methods 

in Figure 55. The relative differences between the optimization results and the 

simulation results range from 0.05% to 5.78%, while the absolute differences range 

from 0 t/h to 0.07 t/h. Higher relative differences correspond to the products with 

considerably small absolute differences.  

Overall, the optimization results agree well with the whole-process simulation 

results. Note that the validation results do not suggest that the linear process 

models represent good approximations to the complex models in all circumstances. 

In fact, it is important to set the operating conditions of the simulation models for 

different alternatives processes in the superstructure as close to the optimal 

solution as possible, and validate the solution iteratively with whole-process 

simulations. As mentioned previously, the optimization results can converge to the 

simulation results in finite iterations, because there are finite process 

alternatives/designs in the superstructure, and the parameters of one process design 

are updated in each iteration. By enumerating the process alternatives/designs, the 
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optimization can finally return the same results with the corresponding whole-

process simulation. 

 

Figure 55. Comparison of the product flow rates for the optimal solution B based on 

optimization and the corresponding whole-process simulation. 

5.7.5 Sensitivity analysis 

The parameters considered in the superstructure optimization problem can be 

classified into two groups: the parameters relevant to markets and the parameters 

irrelevant to markets. The market related parameters, such as prices, are volatile in 

most circumstances. Therefore, even though we apply the most recent values of 

these parameters for the Pareto-optimal surfaces, it is worth investigating how 

these parameters influence the optimization results. Figure 56 and Figure 57 

present how the optimal economic objective function values of the most 
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economically competitive optimal solutions change when the market related 

parameters are allowed to deviate 20% from their current values. It is noted that 

for the product distributions of steam cracking taken from the literature, the most 

influential market related parameter is the price of raw shale gas. A 20% increase 

in the price of raw shale gas reduces 29% of the highest NPV, while a 20% decline 

raises 29% of the highest NPV. The prices of feedstocks and utilities are in a 

negative correlation with the highest NPV, while the prices of products are in a 

positive correlation with the highest NPV. One exception is the price of electricity, 

because the optimal design generates surplus electricity and treats electricity as a 

product instead of a feedstock/utility. The influence of market related parameters is 

similar when the optimal product distributions of steam cracking are considered. 

In Figure 57, the price of raw shale gas causes the largest change in the highest 

NPV. Compared with Figure 56, the influence of the price of pipeline quality gas 

and the price of ethylene is less significant, while the influence of the price of 1,3-

butadiene is more pronounced in Figure 57. 
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Figure 56. Sensitivity analysis results for the most economically competitive optimal solution 

with the product distributions of steam cracking taken from the literature. The high price and 

the low price correspond to 120% and 80% of the current price, respectively. 

 

Figure 57. Sensitivity analysis results for the most economically competitive optimal solution 

with the optimal product distributions of steam cracking. The high price and the low price 

correspond to 120% and 80% of the current price, respectively. 
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5.7.6 Computational performance 

The product distribution optimization model for steam cracking of ethane consists 

of 31 continuous variables and 46 constraints. These constraints include 11 ODEs 

for the continuity equations. A few more variables, constraints, and ODEs are 

included in the product distribution optimization models for steam cracking of 

heavier hydrocarbons because more species and kinetic equations are involved. 

When solving the ODEs, the solver is set to return the solutions evaluated at every 

0.1 m. All the product distribution problems for steam cracking can be solved 

efficiently in a few seconds. 

The superstructure optimization model consists of 43 integer variables, 164,248 

continuous variables, and 290,987 constraints. The global optimization algorithm 

provides an efficient tool for solving the large-scale MINLP problem for the 

process synthesis of the integrated shale gas processing and chemical 

manufacturing process.  

Table 11. Computation performance for 6 instances on the Pareto optimal curve with the 

optimal product distributions of steam cracking using BARON 17.1, SCIP 3.2, and the 

tailored global optimization algorithm. 

 
BARON 17.1 SCIP 3.2 Global optimization algorithm 

No

. 

Unit NPV 

($/GJ) 

CPU 

time (s) 

Unit NPV 

($/GJ) 

CPU time 

(s) 

Unit NPV 

($/GJ) 
Iter. 

CPU time 

(s) 

1 N/Aa 3,600 
Loc. 

Infeas.b 
3 

0.24 
2 2 

2 N/Aa 3,600 0.26c 3,600 0.44 4 7 

3 N/Aa 3,600 0.50 9 0.50 4 6 
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4 N/Aa 3,600 0.17 5 0.17 2 4 

5 N/Aa 3,600 0.49 9 0.49 2 3 

6 N/Aa 3,600 0.61 33 0.61 4 7 

a. No upper and low bound information is returned before the program reaches the 

computation time limit of 1 hour. 

b. “Loc. Infeas.” denotes “locally infeasible”. 

c. A feasible solutions is returned before the program reaches the computation time limit. 

 

To demonstrate the computational performance, the proposed superstructure 

optimization problem is solved by BARON 17.1, SCIP 3.2, and the global 

optimization algorithm, respectively. Table 11 summarizes the computational 

results of solving six MINLP problems with the optimal product distributions of 

steam cracking. The optimal solutions of these instances correspond to six points 

on the Pareto-optimal curve with the optimal product distributions of steam 

cracking. In all the instances, BARON 17.1 proceeds to the local search phase in a 

few seconds and fails to return any feasible solution within 1 hour. Another global 

optimizer SCIP 3.2 shows better computational performance than BARON 17.1, 

because it returns the optimal solutions of Instances 3–6 and a suboptimal solution 

of Instance 2. However, SCIP 3.2 fails to converge in Instances 1 within 1 hour. In 

contrast, the tailored global optimization algorithm returns the optimal solutions 

in all the instances within 5 iterations and 10 CPUs. Overall, the global 

optimization algorithm is more efficient than general-purpose MINLP solvers for 

solving the resulting MINLP problems. 
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Figure 58. Upper and lower bounds in each iteration of the global optimization algorithm for 

solving the superstructure optimization problem in Instance 5 in Table 11. 

In Figure 58, we present the lower and upper bounds of each iteration of the global 

optimization algorithm when solving the MINLP problem in Instance 5 in Table 

11. Only 6 iterations are needed to reduce the relative optimality gap to 0%. The 

best upper bound decreases as the number of iterations increases, and more feasible 

solutions are added to the piecewise linear approximation functions. The best 

lower bound keeps increasing until the upper bound and lower bound are close 

enough. It is noted that the relative optimality gap between the best upper bound 

and lower bound reduces rapidly in the first three iterations, showing that the 

algorithm can add new partition points automatically and efficiently for improving 

the accuracy of the approximation functions.  
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5.8 Summary 

We proposed a novel process synthesis framework that combines product 

distribution optimization of chemical reactions and superstructure optimizaiton of 

the process flowsheet. The product distributions of critical chemical reactions in a 

superstructure were first optimized to maximize the profits of the effluent 

products. With the optimal product distributions of the chemical reactions, 

extensive process simulations were performed to collect high-fidelity process data. 

Next, the simulation results were used to develop an MINLP model for 

superstructure optimization. In the last step, the optimal process design was 

validated by a whole-process simulation. The proposed framework was illustrated 

by an application to an integrated shale gas processing and chemical manufacturing 

process. The proposed superstructure included 51,840 alternative possible process 

designs and consisted of eight sections, namely acid gas removal, dehydration, 

NGLs recovery, NGLs separation, hydrocarbons conversion, light olefins 

separation, C4 separation, and acid gas disposal. For the steam cracking processes in 

the hydrocarbons conversion section, several dynamic optimization models were 

developed to maximize the profits of producing various chemicals from 

hydrocarbons. Based on the optimal product distributions of steam cracking, a set 

of simulation models were developed for all the involved processes in the 
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superstructure. A multiobjective MINLP model was developed to address the 

sustainable design and synthesis of the integrated shale gas processing and 

chemical manufacturing process. To solve the resutling MINLP problem 

efficiently, we employeed a tailored global optimization algorithm that integrates 

the inexact parametric algorithm and the branch-and-refine algorithm. A good-

choice solution was identified on the resulting Pareto-optimal surface with the 

optimal product distributions of steam cracking. The process design selected MEA 

absorption, TEG absorption, IR process, NGLs separation, steam cracking of ethane 

with front-end demethanizer, steam cracking of propane with front-end 

demethanizer, steam cracking of n-butane with front-end demethanizer, steam 

cracking of i-butane with front-end deethanizer, and C4 separation. The highest 

NPV per GJ of raw shale gas was higher when the optimal product distributions of 

steam cracking were used, while the minimum GWP and water footprint per GJ of 

raw shale gas were lower when the product distributions of steam cracking taken 

from the literature were used. A sensitivity analysis showed that the most 

influencial market related parameter in the superstructure optimization problem 

was the price of raw shale gas. The tailored global optimization algorithm was 

more efficient than general-purpose solvers when handling the proposed MINLP 

model. 
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5.9 Appendix A: Model formulation of the product distribution 

optimization problem for steam cracking of ethane 

2 6 2 4 2

2 6 3 8 4

3 6 2 2 4

2 2 2 4 4 6

2 4 2 6 3 6 4

=1:  C H C H H

=2:  2C H C H CH
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=5:  C H C H C H CH
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

 



 

  

  

According to a kinetic model [272], the above five reactions take place 

simultaneously during steam cracking of ethane. In the corresponding product 

distribution optimization problem, the reactions are indexed by i and the species 

are indexed by j. C2H6, C2H4, H2, CH4, C3H6, C3H8, C2H2, and C4H6 correspond to 

j=1–8, respectively. The rates of reaction Ri are defined in Eqs. (1.A24)–(1.A28), 

respectively. Ki is the reaction constant of reaction i, Fj is the flow rate of species j, 

Ft is the total flow rate of the gas mixture, P is pressure, T is temperature, rc1 is the 

gas constant, kc1 and kc5 are two equilibrium constants. 

 

2

2

1

2 31
1 1

C

F FF P P
R K

Ft rc1 T Ft k rc1 T

   
     

     

  (1.A24) 

 1
2 2

F P
R K

Ft rc1 T
  


  (1.A25) 

 

2

2

5

5 7 4
3 3

C

F F FP P
R K

Ft rc1 T Ft k rc1 T

   
     

     

  (1.A26) 



 

253 

 

 

2

2

7 2
4 4

F F P
R K

Ft rc1 T

  
   

 
  (1.A27) 

 

2

2

1 2
5 5

F F P
R K

Ft rc1 T

  
   

 
  (1.A28) 

The reaction constant Ki is defined as a function of temperature in Eq. (1.A29), 

where ai and eci are the Arrhenius parameters of reaction i, and rc2 is the gas 

constant (differing with rc1 in the unit). 

 exp ,  i
i i

ec
K a i

rc2 T

 
    

 
  (1.A29) 

The total flow rate Ft is defined by Eq. (1.A30), where Fs is the flow rate of steam. 

 j

j

Ft F Fs    (1.A30) 

A set of continuity equations for one-dimensional plug flow reactors are used in 

this model because they can accurately calculate the product yields of steam 

cracking reactions under a wide range of operating conditions [308]. The mass 

balance is described by Eq. (1.A31), where Z is the length of the tube, d is the 

diameter of the tube, and si,j is the stoichiometric coefficient of species j in reaction 

i.  

  
2

, ,  
4

j

i j i

i

dF d
s R j

dZ

 
     (1.A31) 
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The energy balance is described by Eq. (1.A32), where u is the overall heat transfer 

coefficient, tw is the wall temperature of the tube reactor, dhi is the heat of 

reaction i, cpj is the heat capacity of species j and cps is the heat capacity of steam.  

 

   

 

2

4
i i

i

j j

i

d
d u tw T R dh

dT

dZ F cp Fs cps



 

      
 

  




  (1.A32) 

To ensure the safety of the reactor, the temperature of the gas mixture must be 

bound in [tl, tu], as enforced by Constraint (1.A33). 

 tl T tu    (1.A33) 

The momentum balance is described by Eq. (1.A34), where Mt is molecular weight 

of the gas mixture as defined in Eq. (1.A35), Fr is the friction factor as defined in 

Eq. (1.A36), and G is the total mass flux as defined in Eq. (1.A37). Reynolds 

number Re is defined in Eq. (1.A38), where ρ and μ are the density and viscosity of 

the gas mixture, respectively. 

 

2

1 1 1

1

d dT
Fr

dP dZ Mt Mt T dZ

PdZ

Mt P G rc1 T

   
     

   


   

  (1.A34) 

 

 j j

j

F m Fs ms

Mt
Ft

  




  (1.A35) 

 
0.2

0.092
Re

Fr
d



    (1.A36) 
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  2

4
j j

j

G F m Fs ms
d

 
    

  
   (1.A37) 

 4
Ft rc1 T

Re
d P



 

  
 

  
  (1.A38) 

Similar to the safety requirement for temperature, the pressure of the gas mixture 

must be bound in [pl, pu], as enforced by Constraint (1.A39). 

 pl P pu    (1.A39) 

The initial values of the flow rates, temperature, and pressure are provided by Eqs. 

(1.A40)–(1.A42). The ratio of the flow rate of ethane to that of steam is bound in 

[rl, ru], as enforced by Constraint (1.A43). 

 
, 0 ,  j Z jF f0 j     (1.A40) 

 0ZT t0    (1.A41) 

 0ZP p0    (1.A42) 

 0 0 0Z 1,Z ZFs rl F Fs ru        (1.A43) 

The revenue is calculated using Eq. (1.A44), where prj is the price of species j, JP is 

the set of products, and Z* is the length of the reactor. In Eqs. (1.A45)–(1.A47), 

investment cost IC, feedstock cost FC, and utility cost UC are calculated, 

respectively. ict represents the investment cost per unit length of the reactor; JF is 

the set of feedstocks; prs is the price of steam; prh is the price of the heating utility. 

 , *j j Z Z

j JP

REV pr F 



    (1.A44) 
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 *IC ict Z    (1.A45) 

  , 0 , *j j Z j Z Z

j JF

FC pr F F prs Fs 



       (1.A46) 

  
*

0

Z

UC prh d u tw T dZ         (1.A47) 

Finally, the profit is defined as the difference between the revenue and all the costs 

in Eq. (1.A48). 

 PRO REV IC FC UC      (1.A48) 

5.10 Appendix B: The optimal results of the product distribution 

optimization problems for steam cracking 

The optimal flow rates of the involved species along the reactors for steam cracking 

of ethane, propane, n-butane, and i-butane are presented in Figure B1, Figure B2, 

Figure B3, and Figure B4, respectively. The optimal product distributions of steam 

cracking and the product distributions of all the reactions taken from the literature 

are given in Table B1. The single-pass conversions of the optimal product 

distributions of steam cracking are lower than those of the corresponding product 

distributions of steam cracking taken from the literature. However, the optimal 

product distributions of steam cracking show higher yields of more profitable 

products. For example, more 1,3-butadiene can be produced from steam cracking 

of ethane. In contrast, the single-pass conversion of oxidative dehydrogenation of 

ethane is higher than that of steam cracking of ethane, but a portion of the ethane 
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feed is converted to undesired carbon oxides, lowering the ultimate yields of value-

added products. The catalytic dehydrogenation technologies demonstrate higher 

yields of a certain olefin product and can potentially benefit from a surge in the 

market price of that product. However, this feature of catalytic dehydrogenation 

can sometimes become a drawback when the corresponding market undergoes a 

down turn. 

 

Figure B1. Flow rates of all species along the reactor tube of steam cracking of ethane. 
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Figure B2. Flow rates of all species along the reactor tube of steam cracking of propane. 

 

Figure B3. Flow rates of all species along the reactor tube of steam cracking of n-butane. 
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Figure B4. Flow rates of all species along the reactor tube of steam cracking of i-butane.
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Table B1. Product distributions of the considered reactions in the hydrocarbons conversion section [283-285, 309]. (unit: wt %) 

 

C2 Steam 

Cracking C2 Oxidative 

Dehydrogenation 

C3 Steam 

Cracking C3 

Dehydrogenation 

n-C4 Steam 

Cracking n-C4 

Dehydrogenation 

i-C4 Steam 

Cracking i-C4 

Dehydrogenation 

 

Literatu

re 

Optima

l 

Literatu

re 

Optima

l 

Literatu

re 

Optim

al 

Literat

ure 

Optim

al 

H2 4.0 3.5 1.2 1.5 1.3 4.7 1.9 0.7 1.5 1.9 0.8 1.5 

CH4 3.8 5.1 4.5 23.4 15.9 2.8 6.6 16.4 2.5 1.8 12.5 1.0 

C2H2 0.4 0.4 0.1 0.5 0.2 0.0 0.0 0.2 0.0 0.0 0.3 0.0 

C2H4 51.9 41.1 42.9 37.2 23.7 0.2 32.9 28.6 1.0 18.8 3.1 0.0 

C2H6 35.0 41.5 10.6 3.1 0.5 2.2 1.5 5.3 0.6 0.4 0.6 0.2 

C3H4 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 

C3H6 1.2 0.7 1.6 14.8 20.1 28.0 26.3 18.8 1.0 28.2 19.5 1.5 

C3H8 0.1 0.7 0.2 10.0 35.2 62.0 0.1 0.2 0.0 0.0 0.0 0.0 

C4H4 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

C4H6 1.8 6.9 1.5 2.9 0.8 0.0 3.8 0.8 1.0 0.9 0.1 0.2 

n-C4H8 0.1 0.0 0.7 0.4 0.0 0.0 17.9 2.1 39.5 0.9 0.8 4.5 

i-C4H8 0.1 0.0 0.9 0.6 0.0 0.0 0.9 0.0 1.0 39.5 15.5 40.0 

n-C4H10 0.1 0.0 0.0 0.0 0.0 0.0 6.0 18.5 50.0 0.9 0.0 0.9 

i-C4H10 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 6.0 35.4 50.0 

C5+ 1.3 0.0 2.3 5.1 2.2 0.2 2.2 8.5 0.9 0.6 10.0 0.3 

CO 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CO2 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

H2O 0.0 0.0 26.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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5.11 Appendix C: Model formulation of the superstructure 

optimization problem 

5.11.1 Mass balance constraints 

The mass balance relationships in the superstructure are developed following a 

general mass balance model in previous works [21, 267]. Nine types of flows 

(“makeup”, “up”, “reuse”, “in”, “out”, “emission”, “down”, “product”, and “recycle” 

flows) are introduced to describe the mass balance relationships for 

technology/process j in section i. The species are indexed by k. 

 , , ,0 makeup

i, j,k i j i, j,kM Y ubmu i I, kj KJ        (1.C1) 

 , , ,0 reuse

i, j,k i j i, j,kM Y ubre i I, kj KJ        (1.C2) 

Constraints (1.C1) and (1.C2) are linking constraints that set the upper and lower 

bounds of the flow rates of the “makeup” and “reuse” flows. If the 

technology/process is selected, the corresponding binary variable Yi,j will be equal 

to 1 and the corresponding flow rates will be allowed to change between the lower 

and upper bounds. Otherwise, the corresponding binary variable will be 0 and the 

corresponding flow rates will be forced to be 0 as well. 

 ,up feed rawshalegas

1, j,k k

j J

m KM wf k


     (1.C3) 
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There are three steps in the general mass balance model: an inlet converging step, a 

conversion step, and an outlet separation step. In the first section, the flow rate of 

each species of the “up” flow is defined using the total feed gas flow rate and its 

composition as shown Eq. (1.C3). 

 
   

, , ,
i,l i,l

up down

i , j,k i, j,l ,k

i , j UP j,l DOWN

i KM M l L k K 

  

       (1.C4) 

In Sections 2–8, the flow rates of the “up” flows are equal to the flow rates of the 

“down” flows in previous sections as shown in Eq. (1.C4). A new index l is 

introduced to differentiate multiple sub-flows in the same flow category. 

 
 

, , ,
i,l i,l

reuse recycle

i, j,k i , j,l ,k

j REUSE i , j,l RECYCLE

M i I L k KM l 

  

       (1.C5) 

As shown in Eq. (1.C5), the “reuse” flows sum up a set of “recycle” flows. 

 , , ,in up reuse makeup

i, j,k i, j,k i, j,k i, j,kM M M i I j J k KM        (1.C6) 

The inlet converging step is modeled by Eq. (1.C6), where the “in” flow of 

technology/process j in section i combines the “up”, the “reuse”, and the “makeup” 

flows that are fed to the same process.  

  , , , , , ,in in in

i, j,k i j k k i, j,

k K

k i I KM jp J kM


 



       (1.C7) 

The flow rates of various species in the “in” flows are proportional to the key 

components in the same flows according to the feed composition of the 
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corresponding technology/process. The relationships are modeled using parameter 

, , ,

in

i j k kp   in Eq. (1.C7). 

  , , , , , ,out in in

i, j,k i, j,k i j k k

K

i, j,k

k

i I j Jsc M kM M K



         (1.C8) 

The conversion step of each technology/process is modeled using Eq. (1.C8), where 

sci,j,k,k’ denotes the product distribution of the chemical reaction.  

 , , ,out down recycle product waste

i, j,k i, j,l,k i, j,l,k i, j,l,k i, j,k

l L l L l L

M i I j JM M kM M K
  

         (1.C9) 

The “out” flow of a section is split into a set of “down”, “recycle”, “product”, and 

“waste”,  flows as shown in Eq. (1.C9). 

 , , , ,down down out

i, j,l,k i, j,l,k i, j,k iM sf I j k KM J l L         (1.C10) 

 , , , ,recycle recycle out

i, j,l,k i, j,l,k i, j,k i I j J l L k KM sf M        (1.C11) 

 , , , ,product product out

i, j,l,k i, j,l,k i, j,k i I j J l L k KM sf M        (1.C12) 

Following a common assumption in the literature [38, 310], the mass and energy 

balance relationships of each technology/process scale linearly. In Eq. (1.C10), the 

“down” flow comes from the “out” flow based on split fraction down

i, j,l,ksf . Similar to 

the “down” flow, the “recycle” and “product” flows are directly split from the “out” 

flow as shown in Eqs. (1.C11) and (1.C12). The remaining materials in the “out” 

flows are automatically treated as the “waste” flow. 

  ,fm fm product product

k 2, j,l,k 3

j J,l

, j,l,

L

kM p M k KM
 

      (1.C13) 
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 , , ,fuel waste

i, j,k i, j,k i I j J kM KGM       (1.C14) 

 , , ,wastewater waste fuel

i, j,k i, j,k i, j,kM i I j J k KM M       (1.C15) 

  , , , ,fuel utility fuel offgas

i, j,k k k i, j,k i, j,k

k K

M sc M M i I j J k K


 



        (1.C16) 

In Eq. (1.C13), a small amount of the pipeline quality gas product is leaked to the 

atmosphere [291]. The “waste” flows in the superstructure are separated into a fuel 

gas flow and a wastewater flow as in Eqs. (1.C14) and (1.C15). Finally, Eq. (1.C16) 

is used to calculate the amount of emissions after the fuel gas is combusted to 

supply heat and generate electricity onsite. 

5.11.2 Energy balance constraints 

 ,up

i, j i, j i, j,

K

k

k

HC uhc M i I, j J


      (1.C17) 

Heating utility consumption is calculated in Eq. (1.C17), where uhci,j is the unit 

heating utility consumption rate of technology/process j in section i. Four heating 

utilities are considered, namely low-pressure steam, mid-pressure steam, high-

pressure steam, and heater. 

 ,up

i, j i, j i, j,

K

k

k

CC ucc M i I, j J


      (1.C18) 

Cooling utility consumption is calculated in Eq. (1.C18), where ucci,j is the unit 

cooling utility consumption rate of technology/process j in section i. Six cooling 
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utilities are considered, namely cooling water, ethane, ethylene, propane, 

propylene, and Freon 12. 

 ,up

i, j i, j i, j,

K

k

k

PC upc M i I, j J


      (1.C19) 

Power consumption is calculated in Eq. (1.C19), where upci,j is the unit power 

consumption rate of technology/process j in section i. 

  
, , , ,i I j J k K

ST fuel heater

k i, j,k i

i I j J k K

, j,kPP hhv M HC
     

 
    

 
    (1.C20) 

The fuel gas is combusted in the furnace to satisfy a part of the energy requirement 

in the hydrocarbons conversion section. The off-gas from the furnace is then used 

to generate electricity via a steam turbine system as modeled in Eq. (1.C20). 

5.11.3 Techno-economic evaluation constraints 

 ,

i, jscf
up

i, j,k

k
i, j i, j

i, j i,

K

j

M
cepcir

DC ccb i I, j J
mb cepcib



 


 

    
 
 
 


  (1.C21) 

 

stscf

st st

st st

PP cepcir
DC ccb

ppb cepcib

 
   

 
  (1.C22) 

Following existing superstructure optimization models [14, 16, 310], the direct cost 

of each technology/process is evaluated using power functions as shown in Eq. 

(1.C21), where ccbi,j is the base-case capital cost, mbi,j is the base-case flow rate, 

cepcibi,j and cepcir are the base-case and reference chemical engineering plant cost 
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index, respectively. The direct cost of the steam turbine system is evaluated using 

Eq. (1.C22). 

 i, j st

i I, j J

FCI fcic DC DC
 

 
   

 
   (1.C23) 

The fixed capital investment FCI is evaluated as a percentage of the direct costs as 

shown in Eq. (1.C23).  

 WC wcc FCI    (1.C24) 

Based on the fixed capital investment, the working capital WC is defined in Eq. 

(1.C24). 

 TCI FCI WC    (1.C25) 

The total capital investment TCI sums up the fixed capital investment and the 

working capital in Eq. (1.C25).  

    
,

feed rawshalegas makeup

rawshalegas k k k i, j,k

k K i I, j J k K

FC h pr ec wf m pr M
   

 
       

 
   (1.C26) 

The feedstock cost FC is calculated using Eq. (1.C26), where h is the total hours of 

operation in a year, prrawshalegas is the price of raw shale gas, eck is the energy content 

of species k, and prk is the market price of species k. 

 

 

          

heater

heat i, j i, j,k cool i, j

i I, j J i I, j J

power i, j

i I, j J

UC h pr HC HC h pr CC

h pr PC PP

   

 

      

 
    

 

 


  (1.C27) 
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The utility cost UC consists of the costs for purchasing heating utilities, cooling 

utilities, and electricity as detailed in Eq. (1.C27). 

 i, j st

i I, j J

OMC no hs h occ ns as mcc DC DC
 

 
         

 
   (1.C28) 

Eq. (1.C28) defines the operations and maintenance cost OMC. no is the number of 

operators, hs is the operator’s salary per hour, occ is the coefficient of operations 

cost based on the operators’ salary, ns is the number of scientists, as is the 

scientist’s salary per year, and mcc is the percentage of the direct costs to account 

for the maintenance cost. 

 i, j st

i I, j J

PTI ptic DC DC
 

 
   

 
   (1.C29) 

The property tax and insurance PTI is estimated as a percentage of the total direct 

costs as shown in Eq. (1.C29). 

 , ,

,

product

i l i l i, j,l,k

j J k K

SA h pr m
 

      (1.C30) 

SAi,l is the sales of product l in section i in Eq. (1.C30). 

 ,i l

i I,l L

GE gec SA
 

     (1.C31) 

The general expense GE is defined by Eq. (1.C31), where gec is the percentage of 

the general expense of the total sales. 

 i, j st

i I, j J

DPC dpcc DC DC
 

 
   

 
   (1.C32) 
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For tax purposes, a depreciation cost DPC is calculated using Eq. (1.C32). 

 ,i l

i I,l L

IT tr SA FC UC OMC PTI GE DPC
 

 
        

 
   (1.C33) 

The income tax IT is equal to a percentage of sales less several costs as in Eq. 

(1.C33).  

 ,i l

i I,l L

ACF SA FC UC OMC PTI GE IT
 

         (1.C34) 

The annual cash flow ACF account for the sales and the OPEX in Eq. (1.C34). 

 
 1

1

ltir ir
NPV ACF TCI
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 
  


  (1.C35) 

The net present value NPV is defined in Eq. (1.C35), where ir is the interest rate 

and lt is the project lifetime. 

 economic

NPV
OBJ

lt h TEC


 
  (1.C36) 

Finally, in Eq. (1.C36), the economic objective function is defined as the NPV per 

GJ of raw shale gas processed over the entire project lifetime. 

5.11.4 Environmental impact assessment constraints 

  
,

rawshalegas makeup makeup

rawshalegas k i, j,k

i I, j J k K

EIF cf m cf M
  

      (1.C37) 

The environmental impact for raw shale gas extraction and feedstock production 

EIF is evaluated by Eq. (1.C37), where the cf stands for the characterization factor. 
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,
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wwt i, j,k

i I, j J k K

EIW cf M
  

     (1.C39) 

    
,

fm offgas

k k k i, j,k

k K i I, j J k K

EID cf M cf M
   

       (1.C40) 

The environmental impacts associated with utility production EIU, wastewater 

treatment EIW, and direct emissions EID are defined by Eqs. (1.C38)–(1.C40), 

respectively. 
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EIF EIU EIW
OBJ
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 
   (1.C42) 

One of the environmental objective functions is defined in Eq. (1.C41) to minimize 

the unit GWP. In the first case study, only the shale gas processing part of the 

superstructure is considered and the objective function is to minimize the GWP 

per 1 GJ of shale gas processing products. Therefore, the numerator of the 

fractional term of Eq. (1.C41) accounts for the direct and indirect emissions 

associated with the shale gas processing part of the superstructure, while the 

denominator TEC is defined as  
, , ,

product

k i, j,l,k

i IP j J l L k K

ec M
   

 . In the other case studies, 

the entire superstructure is considered and the objective function is defined as the 
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GWP per 1 GJ of raw shale gas. The numerator of the fractional term of Eq. (1.C41) 

accounts for the direct and indirect emissions associated with the entire integrated 

shale gas processing and chemical manufacturing process and the corresponding 

TEC is defined as  feed rawshalegas

k k

k K

ec wf m


  . The other environmental objective 

function in Eq. (1.C42) minimizes the unit water footprint. The total water 

footprint sums up the direct water consumption in the integrated shale gas 

processing and chemical manufacturing process, indirect water consumption in 

feedstock extraction and utility consumption, and indirect water production in 

wastewater treatment. 

5.11.5 Superstructure network configuration constraints 

  , ,   1
j J

i j i 1,2, ,4,8Y 3


    (1.C43) 

 2,1 3,1Y Y   (1.C44) 

 15,1 5,2Y Y    (1.C45) 

 15,3 5,4Y Y    (1.C46) 

 15,5 5,6Y Y    (1.C47) 

 15,7 5,8Y Y    (1.C48) 

 5,1 6,1 6,2 6,3Y Y Y Y     (1.C49) 

 5,2 6,4Y Y   (1.C50) 

 5,3 6,5 6,6 6,7Y Y Y Y     (1.C51) 
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 5,4 6,8 6,9 6,10Y Y Y Y     (1.C52) 

 5,5 6,11 6,12 6,13Y Y Y Y     (1.C53) 

 5,6 6,14 6,15 6,16Y Y Y Y     (1.C54) 

 5,7 6,17 6,18 6,19Y Y Y Y     (1.C55) 

 5,8 6,20 6,21Y Y Y    (1.C56) 

To describe the network configuration, the sections of acid gas removal, 

dehydration, NGLs recovery, NGLs separation, hydrocarbons conversion, light 

olefins separation, C4 separation, and acid gas disposal are indexed by i=1–8, 

respectively. Furthermore, the first technology/process in each section is indexed 

by j=1 and index of any other technology/process is equal to the index of the 

technology/process above it plus 1. Consequently, each technology/process is 

assigned with a unique pair of indices (i,j). Then, binary variable Yi,j is introduced 

for each technology/process. When Yi,j is equal to 1, the corresponding 

technology/process is selected, and 0 otherwise [14, 16, 19, 307]. Eq. (1.C43) 

requires that one and only one technology/process is selected in the sections of 

acid gas removal, dehydration, NGLs recovery, NGLs separation, and acid gas 

disposal. Since the condensation process in the dehydration section is integrated 

with a tailored NGLs recovery, they are selected or rejected simultaneously as 

enforced by Eq. (1.C44). In Eqs. (1.C45)–(1.C48), only one from the two 

technologies is selected when upgrading the hydrocarbons. In Eqs. (1.C49)–(1.C56)
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, one from the three separation technologies is selected for each product from the 

hydrocarbons conversion section.  

5.12 Appendix D: Model formulation of the auxiliary parametric 

problem 

  , , , , , , , , , ,i, j i j p i j p i j p i j p

p P

DC ac XC ibc YC I j J


       (1.D1) 
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i IY j JC


      (1.D2) 
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 1
p P

pYST


   (1.D8) 
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
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1 ,p p p p pmst YST XST mst YST p P       (1.D10) 
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  (1.D12) 

The separable concave terms in Eqs. (1.C21) and (1.C22) can be approximated by 

piecewise linear approximation functions (1.D1)–(1.D12). P represents a set of 

partition points; continuous variables XCi,j,p and XST are introduced to connect 

with the original input variables of the nonlinear functions in Eqs. (1.D3) and 

(1.D9); integer variables YCi,j,p and YST are introduced to select a piece of the 

piecewise linear functions.  

  
GWP

EIF EIU EIW EID TEC 1       (1.D13) 

  
water

EIF EIU EIW TEC 2      (1.D14) 

 
algorithmOBJ NPV r h ls TEC       (1.D15) 

Based on the piecewise linear approximation functions, we introduce an auxiliary 

parameter r and an auxiliary parametric problem with respect to r. The general 

model formulation of this parametric objective function is shown below. 

max    OBJalgorithm in (1.D15) 

 s.t.     original constraints (1.C1)–(1.C20), (1.C23)–(1.C35), (1.C37)–(1.C40), (1.C43)
–(1.C56) 

           piecewise linear approximation functions (1.D1)–(1.D12) 

           additional constraints for environmental objective functions (1.D13)–(1.D15) 
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CHAPTER 6 

RESILIENT DESIGN AND OPERATIONS OF ENERGY SYSTEMS  

6.1 Introduction 

In this chapter, we address the resilient design and operations of process systems in 

response to disruption events. An improved quantitative measure of resilience is 

proposed as the ratio of the quantity of products manufactured with disruptive 

events to that without disruptive events. Five resilience enhancement strategies are 

then introduced, including selecting the most resilient technology/process 

alternatives, increasing the capacities of operating processes, employing parallel 

operating processes, building backup processes, and optimizing the operating levels 

after the occurrence of disruptive events. A general framework for resilience 

optimization is further proposed to incorporate the quantitative measure of 

resilience and the resilience enhancement strategies into process design and 

operations. In the first step of the proposed resilience optimization framework, a 

preliminary risk assessment is performed for a given system to identify the 

disruptive events that are worth considering in process design and operations. The 

numbers of failed processes for the identified disruptive events and the recovery 

time of each process are used as input parameters for resilient design and 

operations. In the second step, a multiobjective two-stage adaptive robust mixed-
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integer fractional programming (ARMIFP) model is formulated. There are two 

objective functions: the first objective function is to maximize the resilience under 

the worst-case realization of disruptive events, and the second objective function is 

to minimize the total capital cost. Both objective functions are independent of 

external processes and volatile markets, thus reflecting the intrinsic properties of 

the given system. As external processes and volatile markets would influence the 

operating expenditures (OPEX) after the occurrence of disruptive events, OPEX is 

not included in the economic objective function. The resulting optimization model 

has a three-level structure: the first level determines the optimal network 

configuration, equipment capacities, and capital costs; the second level determines 

the worst-case realization of disruptive events; the third level determines the 

optimal number of available processes and operating levels in each time period. To 

tackle the computational challenges stemming from the multilevel structure and 

the nonlinear objective function, a tailored global optimization method is proposed 

by integrating the inexact parametric algorithm and the column-and-constraint 

generation algorithm. The applicability of the proposed resilience optimization 

framework is illustrated through two applications on process design and planning 

of a chemical process network and superstructure optimization of shale gas 
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processing and natural gas liquids (NGL) recovery processes, respectively. The 

novelties of this work are summarized below: 

• A novel multiobjective ARMIFP model for resilient design and operations; 

• A tailored solution algorithm for efficient global optimization of the resulting 

ARMIFP problems; 

• Novel applications to resilient design and planning of a chemical process network 

and superstructure optimization of shale gas processing and NGLs recovery 

processes. 

The rest of this paper is organized as follows. The quantitative measure of 

resilience and a set of resilience enhancement strategies are described in the next 

two sections, followed by the Problem Statement. We then present the general 

framework for resilience optimization. Two applications of the proposed resilience 

optimization framework are presented in the following sections. Conclusion is 

provided at the end. 

6.2 Quantitative measure of resilience 

Common disruptive events include natural disasters (such as tornados, 

earthquakes, and hurricanes), process accidents (such as faulty operations), and 

intentional man-made attacks (such as terrorism and sabotage) [154]. Many system 

performance indicators, such as the flow rates of key streams and the number of 

normally functioning processes, respond to disruptive events dynamically and 

reflect the impacts of disruptive events to a given system. Figure 59 illustrates the 
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three sequential phases of the performance of a system performance function F(t). 

The disruptive events occur at t0 and cause initial failures in the process system. 

The first phase, or the impact propagation phase, lasts from t0 to t1. During this 

period, the initial failures cause additional failures in other normally functioning 

processes. Therefore, the system performance function keeps declining until t1, 

which corresponds to the lowest operating level. In the system recovery phase 

from t1 to t2, the failed processes in the given system recovers gradually and the 

system performance function increases to its original operating level. In the last 

phase from t2 to tn, the system maintains the operating level. 
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Figure 59. Definition of resilience. 

There are several ways to measure the impacts of disruptive events and quantify 

the resilience. One way is to measure the recovery time, or t2−t0, which indicates 

how long the given system can regain the original operating level [120]. Another 

way is to measure the performance degradation, or F(t1)−F(t0), which calculates the 

maximum decline in the operating level after the disruptive events [120]. 

Alternatively, resilience was calculated as the mean ratio of absolute quantities 

[311, 312], the mean ratio of areas under performance curves [121], the ratio of 

durations [313], and the ratio of recovery to loss at each time point [314]. 
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Resilience was also defined indirectly as the probability given the maximum 

acceptable performance loss and recovery time [315], the conditional probability of 

a satisfactory state [316], the sum of factors for system safety [317], and the 

weighted sum of resilience costs [318]. Among these definitions, ratio measures are 

straightforward to understand and to compare with different systems. However, 

the existing ratio measures are not suitable for process systems and can cause 

computation difficulties.  In the definition by Bruneau et al. [128], the maximum 

operating level of the performance function was known and set as 100. 

Nevertheless, this maximum operating level in a process design and operations 

problem is unknown before the optimization problem is solved. Therefore, the 

maximum operating level should be treated as a variable. In another definition by 

Ouyang and Duenas-Osorio [319], resilience was measured as a time-dependent 

ratio of the accumulated performance with disruptive events to that without 

disruptive events. Since this measure was proposed for infrastructure systems with 

continuous performance functions, the resulting optimization model consists of 

integral terms in both numerator and denominator of the fractional objective 

function. As a result, global optimization of the resulting dynamic optimization 

problem would be quite challenging. An improved quantitative measure of 

resilience is proposed in this chapter to address the above issues. 
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The denominator of Eq. (1.16) calculates the accumulated system performance 

from t0 to tn and the numerator of Eq. (1.16) calculates the accumulated system 

performance in the same period but assumes that no disruptive event occurs. A key 

advantage of this quantitative measure is that it accounts for recovery time and 

performance degradation simultaneously. Moreover, as the quantitative measure is 

normalized by the accumulated system performance without disruptions, the 

resilience analysis results can be compared among distinct process systems. The 

failed processes of a given system can be reused only if they are fully repaired and 

tested. Therefore, system performance remains the same in each time period, and 

the system performance functions are step-wise functions. Based on this property, 

the integral terms in Eq. (1.16) are equal to the corresponding summation terms in 

Eq. (1.17), where ti is the length of each time period. The time horizon is divided 

into a set of time periods. The performance function stays unchanged when a 

process is under recovery, and the performance function increases at the end of a 

time period when recovery completes. Therefore, the step-wise performance 

function for process systems can be naturally discretized. 
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    k k
k

F t M t      (1.18) 

An important component of the proposed measure in Eq. (1.17) is the system 

performance function F(t). Since resilience is an intrinsic property of the system, a 

system performance indicator should be independent of external processes or 

volatile markets, and should respond to the disruptive events dynamically. In this 

chapter, the system performance function is defined in Eq. (1.18), where M(t)k and 

ωk are the flow rate and the weight of product k, respectively. The weights can be 

defined by decision makers, or using the intrinsic properties of products, such as 

energy contents. 

The proposed quantitative measure of resilience is different from those in the 

existing literature. In the definition by Bruneau et al. [128], the maximum 

operating level of the performance function was known and set as 100. However, 

this maximum operating level in a process design and operations problem is 

unknown before the optimization problem is solved. Therefore, the maximum 

operating level is treated as a variable in the denominator of the proposed 

resilience measure. In another relevant definition by Ouyang and Duenas-Osorio 

[319], resilience was measured as a time-dependent ratio of the accumulated 
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performance with disruptive events to that without disruptive events. There are 

several differences between the proposed measure and the one in the literature. 

First, the proposed measure considers the same time horizon for different process 

designs in order to make a fair comparison, while the one in the literature is time-

dependent. Second, the operating level without disruptive events in the proposed 

resilience measure is equal to the operating level before the occurrence of 

disruptive events, while the literature one is modeled as a function of time. Third, 

the product flow rates of a process system are step-wise functions and the measure 

in Eq. (1.16) can be reformulated to the one in Eq. (1.17). Given that the measure 

in the literature is used for infrastructure systems with continuous performance 

functions, a similar reformulation would not be rigorous. Therefore, the proposed 

resilience is more suitable for process systems than those reported in the literature. 

6.3 Resilience enhancement strategies 

In the existing studies for resilience, many strategies have been developed to 

mitigate the impacts of disruptive events [121, 136, 146]. For example, the average 

time of a customer with no power access could be reduced effectively if the 

optimal post-earthquake recovery schedule of a power system was employed [136]. 

However, only a few resilience enhancement strategies have been considered in 

each study and a summary of resilience enhancement strategies is still not available 
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in the literature. In this chapter, we introduce five resilience enhancement 

strategies for process systems. The first four strategies are related to process design 

and can be implemented before the disruptive events occur, while the last strategy 

is related to process operations and can be implemented only after the disruptive 

events occur. The details of the resilience enhancement strategies are provided as 

follows. 

• The first strategy is to select the most resilient process design from a set of 

alternative process designs. This strategy corresponds to determining the optimal 

design decisions of a network system [320]. If several technology/process 

alternatives can complete the same task in a process system, the one that 

demonstrates the shortest time to recover from damages caused by disruptive 

events would be preferred. A combination of different processes for manufacturing 

the same intermediate or final product can also reduce the impacts of disruptive 

events. 

• The second strategy is to increase the capacities of the selected operating processes 

beyond their nominal operating levels. This strategy was also referred to as the 

absorptive capacity in infrastructure network problems [146]. In the case where 

several different processes can manufacture the same intermediate or final product, 

the increased capacity of one process can make up the loss of another one’s. 

• The third strategy is to employ multiple parallel operating units in place of a single 

operating unit with the same total capacity. This strategy was highlighted in the 
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optimization models for reliable process designs [152, 153]. Process units with 

smaller capacities tend to recover (including shutting down, repair, and starting up) 

in a shorter time than the corresponding ones with larger capacities. Moreover, 

once one of the failed parallel operating units is recovered, the system can resume 

the production instantly. 

• The fourth strategy is to build backup processes in addition to operating processes. 

This strategy was also referred to as redundancy in the literature [128]. Unlike 

operating processes, backup processes are not used during normal operations. A 

major advantage of backup processes is that a portion of or even the entire 

capacity can be instantly recovered after the occurrence of disruptive events. 

• The fifth strategy is to optimize the operating levels after the occurrence of 

disruptive events. This strategy corresponds to determining the optimal recovery 

scheduling decisions and the optimal operational decisions after the occurrence of 

disruptive events [136]. During system recovery, the available capacity of each 

process keeps changing. To maximize resilience, it is important to determine the 

maximum operating levels of each process and the maximum product rate in each 

time period. 

The aforementioned strategies aim to enhance the resilience of a process system, 

but they come at a cost that may overwhelm the enhancement in resilience. In 

practice, there is typically a trade-off between capital investment and systems 

resilience. Therefore, it is necessary to address the resilience and the total capital 
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cost simultaneously, which motivates the use of a bi-criterion optimization 

approach in the proposed resilience optimization framework. 

6.4 Problem statement for resilience optimization 

In this chapter, we address the resilient design and operations of a process system 

in response to disruptive events, based on the proposed quantitative measure of 

resilience and five resilience enhancement strategies. We are given a process 

system with many interconnected processes. Alternatively, we are given a 

superstructure that incorporates a number of process design alternatives. A set of 

disruptive events may impact part of or even the entire system. The following 

parameters are also known: 

• The physical properties of the involved species; 

• The upper and lower bounds of the capacity of each technology/process 

alternative; 

• The base-case capital costs, flow rates, scaling factors, and chemical 

engineering plant cost indices of all the processes; 

• The recovery time of each process; 

• The composition and the upper bound of the feedstock flow rate; 

• The composition of the feed to each process; 

• The product distributions of the involved reactions; 

• The split fractions of each species to various flows; 

• The demand of various products; 
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The problem is formulated in discrete time with a finite time horizon. The 

occurrence of disruptive events gives rise to failures in a set of process units at the 

beginning of the first time period. After a disruptive event occurs, a process 

influenced by the disruptive event can be denoted as either failed or functioning 

normally. However, the availability of each process is unknown until the system is 

thoroughly inspected and tested. Therefore, the availability of each process after 

the occurrence of disruptive events is considered as uncertain, which can be 

quantitatively described using an uncertainty set. Two additional parameters are 

introduced in the uncertainty set to enforce an upper bound of the total 

availability of the processes: (1) The numbers of failed processes after the 

occurrence of disruptive events, which can be estimated from historical records to 

reflect the impacts of the disruptive events; (2) A tolerance level, which is 

introduced to control the conservatism of the robust optimal solution. 

A resilient design of the process system may correspond to a significantly high 

capital cost, which is undesirable from an economic perspective. Therefore, the 

goal of this problem is to determine the optimal process design by maximizing the 

resilience under the worst-case realization of disruptive events and minimizing the 

total capital cost simultaneously. OPEX is not considered in the economic objective 

function for two reasons: (1) As the operating levels keep changing after the 
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occurrence of disruptive events, a low OPEX after the occurrence of disruptive 

events does not necessarily suggest a low OPEX with normal operating conditions; 

(2) Given that the resilience objective function reflects an intrinsic property of the 

process system, the economic objective function excludes OPEX to avoid the 

influence from external processes and volatile markets. 

In the two-stage adaptive robust optimization problem, decisions are made 

sequentially in two stages: (1) In the first stage, the “here-and-now” decisions are 

made before disruptive events occur; (2) In the second stage, the “wait-and-see” 

decisions are made after the failed processes in the given system are revealed. The 

first-stage decision variables include: 

• Technology/process selection in the optimal process design; 

• The capacities of the operating processes and backup processes; 

• The capital costs of the operating processes and backup processes. 

The second-stage decision variables include: 

• The number of available operating processes and backup processes in each 

time period after the occurrence of disruptive events; 

• The operating levels of various flows in each process in each time period. 

6.5 General framework for resilience optimization  

To mitigate the impacts of disruptive events, it is critical to account for resilience 

systematically in process design and operations. We propose a general framework 
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for resilience optimization that incorporates the quantitative measure of resilience 

and the five resilience enhancement strategies. As shown in Figure 60, there are 

three steps in the proposed resilience optimization framework. In the first step, a 

preliminary risk assessment is performed for a given system. A set of disruptive 

events are identified, and the related information, such as the number of failed 

processes in the given system and the recovery time of each process, is used as 

input parameters in the second step to formulate a multiobjective two-stage 

ARMIFP model. The model includes two objective functions: maximizing the 

resilience under the worst-case realization of disruptive events and minimizing the 

total capital cost. Moreover, the model consists of three levels: the first level 

determines the optimal network configuration, equipment capacities, and capital 

costs; the second level determines the worst-case realization of disruptive events; 

the third level determines the optimal number of available processes and operating 

levels in each time period.  
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Figure 60. General framework of resilience optimization. 

In the third step of the proposed resilience optimization framework, the 

multiobjective two-stage ARMIFP problem is solved by a tailored global 

optimization method that integrates the parametric algorithm and the column-

and-constraint generation algorithm. The details of the proposed resilience 

optimization framework are presented in the following subsections. 

6.5.1 Identification of disruptive events 

The first step of the proposed resilience optimization framework is to identify the 

disruptive events that should be considered in the resilient design and operations. 
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For a given system, there can be a number of potential disruptive events with 

varying probabilities of occurrence and varying levels of severity. The disruptive 

events that are more frequent and severe tend to be more destructive, while others 

may not deserve much attention in the design and operations. Therefore, there is a 

need of conducting a preliminary risk assessment to screen the potential disruptive 

events and identify the destructive ones that are worth considering in process 

design and operations. This preliminary risk assessment can be conducted using a 

risk matrix method [321]. This method characterizes a disruptive event with a 

probability score and a severity score. The combinations of the probability score 

and the severity score are then translated to multiple risk levels and displayed in a 

matrix. As a result of the preliminary risk assessment, priorities should be given to 

high-level and moderate-level disruptive events. 

An example of the risk matrix method is given as follows. First, five probability 

intervals are matched with 5 probability scores: a probability lying in [0, 20%), 

[20%, 40%), [40%, 60%), [60%, 80%), and [80%, 100%] corresponds to a 

probability score of 1, 2, 3, 4, and 5, respectively. Second, five cost intervals are 

matched with 5 severity scores: an increase in the production cost within [0, 1%), 

[1%, 5%), [5%, 10%), [10%, 20%), and [20%, +∞) corresponds to a severity score of 

1, 2, 3, 4, and 5, respectively. Next, three risk levels are determined based on the 
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scores: (1) A low-risk level if the probability score is equal to 1, or if the probability 

score is greater than 1 and the sum of the probability score and the severity score is 

smaller than or equal to 5; (2) A moderate-risk level if the probability score is 

greater than 1 and the sum of the probability score and the severity score is greater 

than 5 but smaller than 8; (3) A high-risk level if the sum of the probability score 

and the severity score is greater than or equal to 8. Finally, the disruptive events 

with a moderate-risk level or a high-risk level are considered in the next step. 

Several key parameters of the identified disruptive events, such as the number of 

failed processes in the given system and the recovery time of each process, are used 

as input parameters of the optimization model for resilient design and operations. 

6.5.2 Multiobjective two-stage adaptive robust optimization model 

Given the identified disruptive events from the first step, a multiobjective two-

stage ARMIFP model is developed for resilient design and operations. The 

decisions are determined sequentially in two stages. The first-stage decisions, 

including network configuration, equipment capacities, and capital costs, are 

determined before the occurrence of the disruptive events; the second-stage 

decisions, including the number of available processes and operating levels in each 

time period, are determined after the occurrence of the disruptive events. 
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   
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nu CC CCR
 

 
  

 
   

              s.t.    network configuration constraints (1.21) – (1.22) 

                    equipment capacity constraints (1.23) – (1.25) 

                      capital cost evaluation constraints (1.26) – (1.41) 

Where   U=   0 1 : constraints (4) (5)
I D

SI ,


  , 

              O= recovery constraints (27) (32);  operating level constraints (33) (47)  . 

 

In robust optimization, the worst-case uncertainty realization should be 

determined before making the decisions that are affected by uncertainty. In this 

proposed ARMIFP model, the availability of process units is uncertain after the 

occurrence of disruptive events. Therefore, a minimization problem must be solved 

to determine the worst-case realization of the availability of process units before 

the second-stage decisions are made. Following the existing two-stage adaptive 

robust optimization models [56, 155, 322, 323], the proposed ARMIFP model has a 

three-level structure: the first-level optimization problem determines the optimal 

first-stage decisions, including network configuration, equipment capacities, and 

capital costs; the second-level optimization problem determines the worst-case 

realization of the availability of process units; the third-level optimization problem 

determines the optimal second-stage decisions, including the number of available 

processes and operating levels in each time period. Unlike the existing models 
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[155, 156, 227], the proposed model includes two objectives. The first objective is 

to maximize the resilience under the worst-case realization of disruptive events, 

and the second objective is to minimize the total capital cost of the given system. 

In the proposed model, indices i, j, k, m, and v are for sections, technology and 

process alternatives, parallel operating processes, species, and network connection 

constraints, respectively. A list of indices/sets, parameters and variables is given in 

the Nomenclature, where all parameters are denoted in lower-case symbols or 

Greek letters, and all variables are denoted with a capitalized first letter. The 

details of the constraints are presented in the following subsections. 

6.5.2.1 Uncertainty set 

Depending on many external and internal factors, a disruptive event can impact 

only one process or multiple processes in the given system. External factors 

include, but not limit to, the type, scale, and severity of the disruptive event, the 

start time of the disruptive event, the duration of the disruptive event, and the 

environment of the given system. Internal factors include, but not limit to, the use 

of advanced sensors, monitors, and process control technologies, the precautions 

against the disruptive event, and the contingency plans for the disruptive event. 

However, due to the uncertain nature of disruptive events, it is impossible to 
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predict precisely whether a process will be affected by a specific disruptive event 

or not. 

  1   
d

i,d d d

i ID

SI , d D


        (1.19) 

 0   
d

i,d

i ID

SI , d D


     (1.20) 

In the proposed multiobjective two-stage ARMIFP model, the uncertain 

availability of section i after the occurrence of disruptive event d is modeled as a 

binary variable SIi,d. SIi,d is equal to one if the operating processes in section i fail 

after the occurrence of disruptive event d, and 0 otherwise. Given the same 

operating conditions, parallel operating processes are assumed to show the same 

availability after the occurrence of disruptive event d. Additionally, constraints 

(1.19) and (1.20) are introduced to provide an upper bound of the number of failed 

processes in the given system. Γd denotes the number of failed processes of 

disruptive event d based on historical records or simulation results. As a decision-

maker may consider it too conservative to hedge against the realization where Γd 

processes fail, a tolerance level ɛd is introduced to adjust the degree of conservatism 

of the optimal solution. Since a disruptive event may influence only a set of 

processes, the summation in constraint (1.19) are limited to a subset of sections IDd. 

The processes not in subset IDd are fixed to be 0 as enforced by constraint (1.20). 
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In the traditional robust optimization approach, the total deviation of uncertain 

parameters from their nominal values are not restricted, so the corresponding 

variables in the uncertainty set can take any value in their intervals. Therefore, it is 

unnecessary to include a second-level optimization problem in the model, because 

the worst-case realization can be easily predetermined by taking the worst-case 

value of each variable. In the proposed adaptive robust optimization problem, it is 

practically unnecessary to build resilient processes to hedge against all possible 

disruptive events. Similar to budge of uncertainty [155], we constrain the total 

deviation of uncertainty by introducing an acceptable total number of failed 

processes, which is the product of a historical total number of failed processes Γd 

and decision makers’ tolerance level ɛd. Therefore, it becomes nontrivial to 

determine the worst-case realization of the uncertain parameters and a second-

level optimization problem is integrated into the adaptive robust optimization 

problem to determine the worst-case realization. 

6.5.2.2 First-stage constraints 

   1
J,

i, j,

j m

m

M

Y , i I
 

    (1.21) 

   0   v i, j,mF , vY V     (1.22) 

Binary variable Yi,j,m is introduced to model the selection of technology/process 

alternatives. Yi,j,m is equal to 1 if technology/process alternative j in section i with 
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m parallel operating processes is selected, and 0 otherwise. Constraint (1.21) 

enforces that one and only one technology/process alternative with a certain 

number of parallel operating processes is considered in the optimal design. In Eq. 

(1.22), function Fv(Yi,j,m) denotes a set of logic constraints to describe the 

connections within the network system. By enforcing the logic constraints (1.21) 

and (1.22), the integrated technology/process alternatives across the network can 

be selected or rejected simultaneously. 

 
in

m i, j,m i, j,m i, jnu CA Y ub i I, j, , MJ m        (1.23) 

  i, j i, j

m

m i,

M

j,mCAR pr nu CA i I, j J,


       (1.24) 

 
product product

m i, j,m,k i, j,m i, jnu CA Y ub i I, j, ,m M,k KJ        (1.25) 

The upper bound of the capacity of each parallel operating process is given by 

constraint (1.23), where num is the number of parallel operating processes of index 

m and 
in

i, jub  is the upper bound of the “in” flow capacity of technology/process 

alternative j in section i. In constraint (1.24), the capacity of each backup process is 

bounded above by the product of pri,j and the capacity of all the parallel operating 

processes for the corresponding technology/process alternative. pri,j represents the 

ratio of the allowed capacity of the backup process in technology/process 

alternative j in section i to that of the corresponding operating process. Constraint 

(1.25) enforces the upper bound of the normal production level before the 
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disruptive events occur. Overall, constraints (1.23)–(1.25) describe the equipment 

capacities. 

  i, j,n i, j,m,n i, j,m

n N

u W1 CA i I, j, ,m MJ


       (1.26) 

 1i, j,m,n

n N

W1 i I, j , MJ, m


      (1.27) 

 

1

1

1
N

i, j,m,n

n

E , ,m1 , Mi I j J




      (1.28) 

 
1 1i, j,m, i, j,m, , ,m MW1 E1 i I, j J      (1.29) 

  1 : 2 1i, j,m,n i, j,m,n i, j,m,n , ,m M,W n1 E1 E N n n1 i I, J Nj          (1.30) 

 
1i, j,m, N i, j,m, N
, ,m MW1 E1 i I, j J


      (1.31) 

 1i, j,m,n ,W1 i I, ,m M,nJ Nj      (1.32) 

  i, j,n i, j,m,n i, j,m
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dcp CC , ,m MW1 i I, j J


       (1.33) 

  i, j,n i, j,n i, j

n N

u ,W2 CAR i I, j J,


     (1.34) 

 1i, j,n

n N

W2 i I J, , j


     (1.35) 
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E2 I, j J, i



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1 1i, j, i, j,W2 E , J,2 i I j     (1.37) 

  1 : 2 1i, j,n i, j,n i, j,n , ,nW2 E2 E2 i I, j nJ N n N            (1.38) 

 
1i, j, N i, j, N

W2 ,E2 i I, j J


     (1.39) 

 1i, j,nW2 i I, j J, ,n N      (1.40) 
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  i, j,n i, j,n i, j

n N

dcp CCR ,W2 i I, j J


      (1.41) 

In the proposed resilience optimization model, capital costs are evaluated using 

SOS1 (specially ordered set of type 1) based piecewise linear formulations [268]. 

Parameters ui,j,n and dcpi,j,n denote the capacity and capital cost of 

technology/process alternative j in section i for partition points n, respectively. By 

enforcing Eq. (1.28), one and only one SOS1 variable E1i,j,m,n can be 1 among all the 

partition points. Based on constraints (1.29)–(1.32), variable W1i,j,m,n is allowed to 

vary from 0 to 1 for partition point n and n+1, but it must remain 0 for the other 

partition points. With nonnegative variables W1i,j,m,n and W1i,j,m,n+1, Eqs. (1.26), 

(1.27), and (1.33) calculate the capital cost as a linear combination of the capital 

costs of the two adjacent partition points n and n+1. Constraints (1.26)–(1.33) 

evaluate the capital costs of the operating processes. Similarly, the capital costs of 

the backup processes are evaluated in a similar way in constraints (1.34)–(1.41). 

6.5.2.3 Second-stage constraints 

The second-stage constraints describe the recovery model and the mass balance 

relationships of the operating levels in each time period based on the first-stage 

decisions and the realization of failed processes after the occurrence of disruptive 

events. 

 
i, j,m,t m i, j,mZ nu Y i I,, ,m M,j TJ t       (1.42) 
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  1 1i, j,m, m i, j,m i,dZ nu Y SI i I, j J, ,m M,d D         (1.43) 

 
1i, j,m,t i, j,m, i, j,m, ,mZ Z M,i I, j J t TB      (1.44) 

 
1i, j,m,t i, j,m,t i, j,mZ Z i, ,m M,t TAI, j J       (1.45) 

    1i, j,m,t i, j,m,t i, j,m i, j,m,tZ Z i I, j J, ,m M, t,t TA ,TL        (1.46) 

  i, j i,d i,

d D

dZR ri SI i I, j J,


      (1.47) 

Zi,j,m,t denotes the number of available operating processes for technology/process 

alternative j in section i with m parallel operating processes in time period t. Zi,j,m,t 

is bounded above by the number of operating processes in each section in 

constraint (1.42). The number of available operating processes in the first time 

period Zi,j,m,1 relies on the availability of each process after the occurrence of 

disruptive events. If the operating processes in section i fail, or SIi,d is equal to one, 

Zi,j,m,1 should be 0; otherwise, Zi,j,m,1 should be bounded above by the number of 

operating processes in the corresponding section as enforced by constraint (1.43). 

The time before and after the first operating process is recovered in 

technology/process alternative j in section i with m parallel processes is TBi,j,m and 

TAi,j,m, respectively. Therefore, the number of available operating processes during 

TBi,j,m is the same as that in the first time period as described by constraint (1.44). 

During TAi,j,m, the number of available operating processes in time period t is 

bounded below by the number of available operating processes in time period t−1, 
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and bounded above by the number of available operating processes in time period 

TLi,j,m,t plus 1 as described by constraints (1.45) and (1.46), respectively. ZRi,j 

denotes whether the backup process for technology/process alternative j in section 

i is available, and ZRi,j is bounded above by the sum of the product of correlation 

parameter rii,d and SIi,d over all disruptive events in constraint (1.47). If the 

availability of a backup process follows that of the corresponding operating 

process, the correlation parameter rii,d is equal to 1; otherwise, it is equal to 0. 

Although Zi,j,m,t and ZRi,j are defined as continuous variables, the optimal solutions 

of Zi,j,m,t and ZRi,j are integers and the optimal objective function value is not 

affected by whether Zi,j,m,t and ZRi,j are continuous or integer variables. Constraints 

(1.42)–(1.47) form the recovery model in the second stage. 

  in
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M nu , ,CA i I, j J t T
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  product product
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Figure 61. General mass balance model for technology/process alternative j in section i. 

Following a general mass balance model in Figure 61, nine types of flows (“up”, 

“makeup”, “reuse”, “in”, “out”, “down”, “recycle”, “product”, and “waste” flows) are 

introduced for each technology/process alternative [21]. In constraint (1.48), the 

operating levels of the “in” flows are bounded above by the capacity of all the 

operating processes for technology/process alternative j in section i. Additionally, it 

is bounded above by the sum of the capacities of the available operating processes 

and backup process as enforced by constraint (1.49). It is noted that variables CAi,j,m 

and CARi,j are first-stage decision variables and they are known parameters in the 

third-level optimization problem. In constraint (1.50), the operating levels of the 

“product” flows are bounded above by the total production level without 

disruptive events for technology/process alternative j in section i. 
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in up reuse makeup

i, j,k,t i, j,k,t i, j,k,t i, j,k,t , i I, j J,k K, TM M M M t        (1.56) 

The feedstock flow rate feed

tM  is bounded above by ubfeed. The “up” flows in the 

first section of the network are from the feedstock of the entire network. In 

contrast, the “up” flows in the remaining sections are from the “down” flows in the 

previous section. The “reuse” flows gather relevant “recycle” flows from other 

sections of the system. The “makeup” flows account for the consumption of other 

materials in addition to the feedstock of the network system. , , ,

makeup

i j k kp   denotes the 

ratio of the flow rate of species k to the flow rate of species k’ in the “in” flow of 

technology/process alternative j in section i. The “up”, “reuse” and “makeup” flows 

in each section form the corresponding “in” flow. Constraints (1.51)–(1.56) 

describe the inlet converging step of the general mass balance model. 
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The conversion step of the general mass balance model is enforced by constraint 

(1.57), where 
, , ,i j k ksc   denotes the stoichiometric coefficient of species k based on 

species k’ in technology/process alternative j in section i. 

 
out down recycle product waste

i, j,k,t i, j,k,t i, j,k,t i, j,k,t i, j,k,tM M , i I, j J,kM tM ,M K T         (1.58) 
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recycle recycle out

i, j,k,t i, j,k i, j,k,t , i IM sf M , j J,k K,t T       (1.60) 
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n

i I,
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i, j,k

j J

,t kM p , k K
 

    (1.62) 

In constraint (1.58), the “out” flow of each technology/process alternative j in 

section i is separated into a “down” flow, a “recycle” flow, a “product” flow, and a 

“waste” flow. In constraints (1.59)–(1.61), 
down

i, j,ksf , 
recycle

i, j,ksf  and 
product

i, j,ksf  are split 

fractions of the “down”, “product” and the “waste” flow, respectively. Constraint 

(1.62) requires that the operating level of each product at the end of the time 

horizon is no less than the demand of that product. Overall, constraints (1.58)–

(1.61) describe the outlet separation step of the general mass balance model. 

The proposed multiobjective two-stage ARMIFP model has a three-level structure. 

Integer variables are introduced in the first-level problem to select the 

technology/process alternatives and facilitate the process designs, as well as in the 

second-level problem to determine the worst-case realization of failed processes 
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after the occurrence of disruptive events. The other decision variables, such as 

equipment capacities, capital costs, and operating levels in each time period, are 

continuous variables. Additionally, the only nonlinear term in the optimization 

model is the fractional objective function for the proposed quantitative measure of 

resilience. Therefore, the resulting problem is a multiobjective multilevel 

nonconvex mixed-integer nonlinear programming (MINLP) problem. 

6.5.3 Tailored solution algorithm 

Since the proposed multiobjective two-stage ARMIFP model has a multilevel 

structure, it cannot be handled directly by any off-the-shelf optimization solvers. 

Additionally, due to the combinatorial nature and nonconvexity stemming from 

the mixed-integer terms and the fractional objective function, the optimization 

problem is challenging to solve. To tackle the computational challenge, we employ 

a tailored optimization algorithm to efficiently solve this ARMIFP problem [267]. 

Specifically, the optimization algorithm integrates two state-of-the-art algorithms, 

including the inexact parametric algorithm for handling the fractional objective 

function and the column-and-constraint generation algorithm for solving an 

auxiliary two-stage adaptive robust mixed-integer linear programming (MILP) 

problems [202, 228].  
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ARMIFP:    

 

 

 

max   min   max

min   

SI UX1 C1 X2 O
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fd X1

fc X1

 



  

Conventional design and operations problem:  min   
X1 C1

fc X1


  

Auxiliary problem:       max  min max
SI UX1 C1 X2 O

P r r fd X1 fn X2
 

     

Reformulated master problem: 
 

 max  
X1,X2, CM

r fd X1





    

Reformulated subproblem: 
 
min  

SI,P CS
SO


 

Proposed optimization algorithm 

1: 0r  ,ub , 0iter  ; 

2: Solve the conventional design and operations problem for 
*X1 ; 

3: *xi1 X1 ; 

4: while outub tol  do 

5:   1iter iter  , ub , 0lb , gap , 0s  , S  , xc1 xi1 ; 

7:   while ingap tol  do 

8:    1s s   

9:   Solve the reformulated subproblem for the optimal solution SO* and SI*; 

10:     *max ,  lb lb r fd xc1 SO    ; 

11:    S S s , *

ssii SI ,  create second-stage variables with respect to index s; 

12:   Solve the reformulated master problem for 
*X1  and η*; 

13:   *xc1 X1 ; 

14:     * *min ,ub ub r fd X1     ,  gap ub lb  ; 

15:  end 

16:    * *r fd X1 ; 

17: end  

18: return r; 

 
 

Figure 62. The pseudo code of the proposed optimization method that integrates the inexact 

parametric algorithm and the column-and-constraint generation algorithm. 
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For illustration purposes, the compact forms of involved models are introduced. X1 

and X2 denote the first-stage and second-stage variables, respectively. fc(X1), 

fd(X1), and fn(X2) denote the economic objective function, the denominator of the 

resilience measure, and the numerator of the resilience measure, respectively. η 

represents the second-stage objective function in the reformulated master problem, 

and SO represents the objective function of the subproblem. C1, U, O, CM, and CS 

denote the feasible regions of the first-level optimization problem, second-level 

optimization problem, third-level optimization problem, reformulated master 

problem, and reformulated subproblem, respectively. The detailed model 

formulations of the conventional design and operations problem, the auxiliary 

parametric problem, the master problem, and the subproblem are given in 

Appendices A, B, C, and D, respectively. 

The proposed optimization algorithm employs the inexact parametric algorithm in 

the outer loop to tackle the computational challenge stemming from the fractional 

objective function. Instead of solving the original optimization problem with the 

fractional objective function directly, we introduce an auxiliary parameter r and an 

auxiliary parametric problem P(r). Following the ε-constraint method [199], the 

economic objective function in the original optimization problem is converted to 

Constraint (1.B2) (details are given in Appendix B). The optimal solution of the 
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orginal optimization problem is identical to the optimal solution of the auxiliary 

parametric problem with the parameter r* such that P(r*)=0 [202]. In each iteration 

of the inexact parametric algorithm, we need to solve a two-stage adaptive robust 

MILP problem P(r), which cannot be tackled directly by any off-the-shelf 

optimization solvers. In the inner loop of the proposed optimization algorithm, a 

master problem and a subproblem of P(r) are developed and solved iteratively 

following the column-and-constraint generation algorithm [228]. This solution 

algorithm is guaranteed to converge within finite iterations [267]. A conventional 

design and operations problem that minimizes the total capital cost without 

disruptive events is solved after the initialization step, and the optimal first-stage 

solutions are used by the first subproblem in each inner loop. The pseudo code of 

the optimization algorithm is shown above, and the flowchart of the algorithm is 

presented later. The iteration counters in the outer loop and the inner loop are 

denoted as iter and s, respectively. The optimality tolerance in the outer loop and 

the inner loop are denoted as tolout and tolin, respectively. SO* and MO* represent 

the optimal objective function values of the subproblem and the master problem, 

respectively, while ub and lb represent the upper bound and the lower bound in 

the inner loop, respectively. gap denotes the optimality gap in the inner loop. It is 

noted that ub = +∞ is presented in the initialization step of the pseudo code but not 
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in the flowchart because the loop condition of the pseudo code comes ahead of 

solving any optimization problems. 
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Figure 63. Flowchart of the proposed optimization algorithm. 

6.6 Applications of the general framework for resilience 

optimization 

6.6.1 Application 1: Chemical process network design and planning 

The application of the proposed resilience optimization framework is first 

illustrated thorough the resilient design and planning of a chemical process 

network with ten chemicals and six processes as shown in Figure 64 [200]. The 

feedstock materials include acetylene, propylene, benzene, and nitric acid; the 

products include acetaldehyde, acrylonitrile, isopropanol, phenol, acetone, and 

cumene. The correlation parameter rii,d is equal to 1 for all processes and disruptive 

events. The tolerance level ɛd is equal to 5% for all disruptive events. We consider 

4 case studies of this application. Case studies 1–3 involve only one disruptive 

event, and case study 4 involves two disruptive events. The numbers of failed 

processes in case studies 1–3 are 2, 4, and 6, respectively. In case study 4, the 

numbers of failed processes of the first and second disruptive events are 3 and 2, 

respectively. The data on recovery time are provided in Appendix E. 

All computational experiments are performed on a DELL OPTIPLEX 7040 desktop 

with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 32 GB RAM. The solution 

procedure is coded in GAMS 24.8.5 [203], with CPLEX 12.7 used as the MILP 
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solver. The relative optimality tolerances for the inexact parametric algorithm and 

the column-and-constraint generation algorithm are 10-6. 

 

Figure 64. Chemical process network in the first application. 

Table 12. Computational times for the instances of the optimal solutions A, B, C, and D. 

Instances Number of outer 

iterations 

Computational 

times for solving 

master problems 

(CPUs) 

Computational 

times for solving 

subproblems 

(CPUs) 
A 2 31 1 
B 2 13 1 
C 2 27 1 
D 2 79 2 

 

In this application, the subproblem of all case studies and instances consist of 6 

integer variables, 1,766 continuous variables, and 1,690 constraints. Depending on 
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the number of inner iterations, the size of the master problem can increase from 

132 integer variables, 3,547 continuous variables, and 3,243 constraints, to 732 

integer variables, 12,182 continuous variables, and 14,468 constraints. As shown in 

Table 12, four instances in the first application can be solved in less than 2 min. . 

The four instances are all based on case study 1. The computational times for 

solving the master problems are significantly longer than the computational times 

for solving the corresponding subproblems. The short overall computational times 

indicate that the proposed optimization algorithm is very efficient for the proposed 

bi-criterion two-stage ARMIFP problems. 
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Figure 65. Pareto-optimal curves of the application for chemical process network design and 

planning. 

The optimal solutions of the multiobjective two-stage ARMIFP problems can be 

plotted as Pareto-optimal curves in Figure 65. Each point on the Pareto-optimal 

curves corresponds to an optimal solution of the optimization problems. On the 

Pareto-optimal curves, an increase in resilience corresponds to an increase in the 

total capital cost. For case study 1, the most resilient solution demonstrates a 

resilience of 1 and a capital cost of $8.64 MM, while the most cost-effective 

solution demonstrates a resilience of 0.71 and a capital cost of $4.32 MM. Both 

optimal solutions employ the same operating processes, but the minimum capital 
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cost of the most resilient solution is twice of that of the most cost-effective 

solution. It is noted that the most resilient solution includes a set of backup 

processes with the same capacities of the corresponding operating processes, while 

no backup process is built for the most cost-effective solution. The optimal capital 

cost ranges from $4.32 MM to $8.64 MM across all the case studies. If the optimal 

capital cost is fixed, the optimal resilience decreases as more failed processes are 

considered in the optimization problem. The Pareto-optimal curve in case study 2 

overlaps with that in case study 4, because the total numbers of failed processes 

adjusted by the tolerance level are the same in these two case studies. Similar to 

budge of uncertainty, the total number of failed processes and the tolerance level 

are adjustable parameters to control the level of conservatism of the robust optimal 

solution. In Figure 66, when the capital cost is fixed at $6 MM, a larger number of 

failed processes and a smaller tolerance level correspond to a smaller and more 

conservative resilience result. 
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Figure 66. Heatmap of the optimal resilience results with a capital cost of $6 MM, various 

numbers of failed processes, and various tolerance levels. 

Each point on a Pareto-optimal curve corresponds to an optimal process design. 

Figure 67 presents the optimal capital costs as well as the worst-case realization of 

the optimal solutions A, B, C, and D in Figure 65. To satisfy the product demands, 

the optimal solutions A, B, and D select the same processes with the same 

equipment capacities of the operating processes. The difference lies in the 

capacities of the backup processes. There is no backup process in the optimal 

solution A in order to minimize the total capital cost. With a higher capital 

investment, a backup process is built for process 4 in the optimal solution B. 

Although the capacity of this backup process is smaller than that of the 

corresponding operating process, it effectively increases the worst-case operating 
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levels from 230 ton/day to 330 ton/day in time periods 1–3. As an extreme case of 

the optimal solution B, the optimal solution D establishes backup processes for all 

the operating processes and the capacities of the backup processes are the same as 

the corresponding operating processes. In the optimal network designs of solutions 

A, B, and D, only process 1 is employed to produce acrylonitrile. A different 

process design is selected for the optimal solution C and both process 1 and process 

3 are employed to produce acrylonitrile. Accordingly, the capacity of process 1 in 

the optimal solution C is lower than those in the optimal solutions A, B, and D. 
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Figure 67. Capital cost breakdowns and worst-case realizations of four optimal solutions. Network design (i) corresponds to the 

optimal solutions A, B, and D in Figure 65. Network design (ii) corresponds to the optimal solutions C in Figure 65. 
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Figure 67 also displays the worst-case realizations for the corresponding optimal 

solutions. Process 4 is identified as the failed process in the optimal solutions A, B, 

and C. Because the product of process 4 is the feed of process 5 and no backup 

process is built in the optimal solution A, both processes produce nothing in time 

periods 1–3. As a backup process is established for process 4 in the optimal solution 

B, it instantly recovers a portion of the lost capacities. Cumene from process 4 is 

then converted to phenol and acetone in process 5. Therefore, the gap between the 

production rate and the capacity in the optimal solution B is smaller than that in 

the optimal solution A. As the capacity of the backup process in the optimal 

solution C is higher than that in the optimal solution B, the production rate in 

process 5 becomes higher and the resilience is also higher. The worst-case 

realization of the optimal solution D shows that no matter what process is affected 

by the disruptive event, the demand can be always satisfied. 

6.6.2 Application 2: Superstructure optimization of shale gas processing 

and NGLs recovery processes 

The application of the proposed resilience optimization framework is then 

illustrated through the superstructure optimization of shale gas processing and 

NGLs recovery processes [26, 110, 111, 116]. We develop a superstructure that 

integrates 108 possible process designs for shale gas processing and natural gas 

liquids recovery processes. The superstructure consists of four sections, namely 
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acid gas removal (green), dehydration (yellow), NGLs recovery (blue), and sulfur 

recovery (purple). The considered technology and process alternatives in each 

section are presented in Figure 68. The process flowsheet of the superstructure is 

shown in Figure 69. 

 

Figure 68. Technology and process alternatives in the superstructure of shale gas processing 

and NGLs recovery processes. 

Similar to the settings in the first application, the correlation parameter rii,d is equal 

to 1 and the tolerance level ɛd is equal to 5% for all disruptive events. A total of 4 

case studies are considered: Case studies 1–3 involve only one disruptive event 

with 2, 4, and 6 failed processes, respectively, while Case study 4 involves two 

disruptive events with 3 and 2 failed processes in the first and second disruptive 

events, respectively. The resulting subproblem consists of 4 integer variables, 8,581 

continuous variables, and 9,232 constraints. The size of the master problem can 

increase from 330 integer variables, 17,523 continuous variables, and 15,889 
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constraints, to 1,530 integer variables, 55,163 continuous variables, and 55,013 

constraints. In all the instances, it takes at most 10 inner iterations and 5 outer 

iterations for the proposed optimization algorithm to converge to the global 

optimal solution. The upper bound and the lower bound of each iteration for the 

instance of the optimal solution G is presented in Figure 70. It takes 2 outer 

iterations for the inexact parametric algorithm to find the root of P(r)=0, and in 

each inner loop, the gap between the upper and lower bounds closes in 5 

iterations. Figure 70 illustrates the algorithm features which integrate the 

parametric algorithm in the outer loop and the column-and-constraint generation 

algorithm in the inner loop. 
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Figure 69. Process flowsheet of the superstructure for shale gas processing and NGLs 

recovery processes. 
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Figure 70. Upper and lower bounds of each iteration for the instance of the optimal solution G. 

Table 13. Computational times for the instances of the optimal solutions E, F, G, and H. 

Instances Computational times for solving 

master problems (CPUs) 
Computational times for solving 

subproblems (CPUs) 
E 238 2 
F 716 2 
G 571 1 
H 494 1 

 

The computational times for the instances of the optimal solutions E, F, G, and H 

are presented in Table 13. The optimization problem in the second application can 

be solved in less than 12 min. Given that the proposed problems cannot be handled 

directly by any off-the-shelf optimization solvers, the reasonable computational 
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times and the small number of iterations illustrate the computational efficiency of 

the proposed optimization algorithm. 

 

Figure 71. Pareto-optimal curve and optimal process design of the superstructure optimization 

application. 

The optimal solutions are plotted in the Pareto-optimal curve in Figure 71. Since 

the shale gas processing and NGLs recovery processes form a tandem system, the 

entire system will be disrupted even if only one process in the system fails. In 

order to increase the resilience, backup processes must be built for all the operating 

processes simultaneously regardless of the number of failed processes. As a result, 

the optimal solutions and optimal objective function values are the same across all 

the cases studies, and only one Pareto-optimal curve is exhibited in Figure 71. The 
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most resilient solution demonstrates a resilience of 1 and a capital cost of $31.22 

MM, while the most cost-effective solution demonstrates a resilience of 0.4 and a 

capital cost of $15.61 MM. A tradeoff can be seen between the two competing 

objective functions. A resilience of 1 for the most resilient solution means that the 

production rate is not affected by the disruptive events, but such an ideal 

performance corresponds to the highest capital cost, which is twice the cost of the 

most cost-effective solution. 

All the optimal solutions on the Pareto-optimal curve select the same 

technologies/processes, namely diglycolamine (DGA) adsorption in the acid gas 

removal section, condensation in the dehydration section, integrated NGLs 

recovery process in the NGLs recovery section, and scavenger in the sulfur 

recovery section. The selected technologies and the corresponding flowsheet are 

also presented in Figure 71. This result provides a good example of selecting the 

most suitable technology to maximize resilience. On the same basis, the resilience 

would be higher if additional products can be generated in the same process 

system. However, the technology alternatives that generate additional sulfur in the 

sulfur recovery section are not selected by the optimal process design, because of 

the relatively high capital costs of these technology alternatives. Although the 

selected scavenger process does not generate a sulfur product, the capital cost of 

this process is substantially lower. Therefore, the process resilience will be higher 
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if the reduced capital cost is invested in alternative resilience enhancement 

strategies, such as employing multiple parallel processes. Overall, the optimal 

process design selects technologies that enhance resilience by either directly 

generating products or by saving capital investment for other resilience 

enhancement strategies. 

 

Figure 72. Capital cost breakdowns of the optimal solutions E, F, G, and H on the Pareto-

optimal curve in Figure 71. 

The breakdowns of capital costs of the optimal solutions E, F, G, and H are 

presented in Figure 72. The integrated dehydration and NGLs recovery process 

contribute to over 90% of the total capital cost. It is noted that two resilience 

enhancement strategies are implemented. The optimal solution F employs two 

parallel operating processes for the integrated dehydration and NGLs recovery 

process, while backup processes are built for all the sections in the optimal 
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solutions G and H. The results also indicate that employing parallel processes can 

lead to a higher resilience with a low capital investment, but building backup 

processes is desirable if the capital investment is high.  

 

Figure 73. Worst-case realizations of the optimal solutions E, F, G, and H on the Pareto-

optimal curve in Figure 71. The selected technology/process alternatives in all the sections are 

shown in the middle. 

The worst-case realizations of the optimal solutions E, F, G, and H are shown in 

Figure 73. The worst-case realization of the optimal solution F is distinct from the 

others, because it employs two parallel operating processes in the dehydration 

section and the NGLs recovery section. As a process with a smaller capacity can be 

repaired and tested more efficiently, a half of the capacity of the operating 
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processes is recovered in time period 3. In time period 4, the remaining operating 

processes are recovered, and the production rates in time periods 4 and 5 are the 

same as those in the optimal solution E. Overall, a higher capital investment 

enables more products to be manufactured in time period 3. When the capital 

investment keeps increasing, building backup processes can further reduce the loss 

of products after the occurrence of disruptive events as in the optimal solutions G 

and H. 

6.7 Summary 

In this chapter, we addressed the resilient design and operations of process systems 

in response to disruptive events. We proposed a quantitative measure of resilience 

for process systems as a ratio of the quantity of products manufactured with 

disruptive events to that without disruptive events. Moreover, we introduced five 

resilience enhancement strategies for process systems, including selecting the most 

resilient technology/process alternatives, increasing the capacities of operating 

processes, employing parallel operating processes, building backup processes, and 

optimizing the operating levels after the occurrence of disruptive events. We 

further proposed a general framework for resilience optimization to incorporate 

the quantitative measure and the resilience enhancement strategies. The 

framework consisted of three steps, namely preliminary risk assessment, 

developing a multiobjective two-stage ARMIFP model, and solving the 
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optimization problem with a tailored solution algorithm. The objective functions 

of the multiobjective two-stage ARMIFP model were to maximize the resilience 

under the worst-case realization of disruptive events and to minimize the total 

capital cost. The model determined the optimal network configuration, equipment 

capacities, and capital costs in the first stage, and the optimal number of available 

processes and operating levels in each time period in the second stage. 

The applicability of the proposed resilience optimization framework was illustrated 

through the design and planning of a chemical process network and the 

superstructure optimization of shale gas processing and NGLs recovery processes. 

The maximum resilience of the chemical process network ranged from 0.71 to 1 if 

two out of six processes in the network failed after the occurrence of a disruptive 

event, while the corresponding minimum capital cost ranged from $4.32 MM to 

$8.64 MM. In the second application, the optimal process design selected DGA 

adsorption, condensation, integrated NGLs recovery process, and scavenger. The 

maximum resilience ranged from 0.4 to 1, while the corresponding minimum 

capital cost ranged from $15.61 MM to $31.22 MM. The tailored solution 

algorithm could efficiently solve the resulting multiobjective two-stage ARMIFP 

problems that could not be handled by any off-the-shelf optimization solvers 

directly.  
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A practical limitation of the proposed framework is that OPEX has not been 

considered in the economic objective function of the proposed ARMIFP model.  As 

OPEX involves the second-stage decisions, the economic objective function for 

both CAPEX and OPEX would consist of a three-level structure, which cannot be 

converted to a constraint as in the proposed tailored solution algorithm. It may 

involve more sophisticated multiobjective optimization method to handle two 

three-level objective functions. 

6.8 Appendix A: The conventional design and operations problem 

The conventional design and operations problem minimizes total capital cost 

without disruptive events. 

     m i, j,m

m

i, j

i I, j J M

NO nu CC CCR
  

 
   

 
    (1.A1) 

The objective function in this problem is provided in constrain (1.A1). We show 

the model formulation of the conventional design and operations problem as 

follows. 

min   NO in (1.A1) 

   s.t.    constraints (1.21)–(1.24), (1.26)–(1.41), (1.48), (1.51)–(1.62), (1.A1) 

6.9 Appendix B: The auxiliary parametric problem 

The auxiliary parametric problem P(r) is a function of the auxiliary parameter r. 

The optimal solution of the orginal optimization problem is identical to the 
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optimal solution of the auxiliary parametric problem with the parameter r* such 

that P(r*) = 0. 

  m i, j,m i, j

i I, j J m M

nu CC CCR tcc
 

 
   

 
    (1.B2) 

The objective function of minimizing the total capital cost is converted to 

constraint (1.B2). We present the formulation of auxiliary parametric problem as 

follows. 

   
 

max   min   maxproduct product

m i, j,m,k i, j,k,t
SI U Z,ZR

i I, j J,m M,k K i I, j J,k K,
,M

T
O

t

P r r tt nu CA M
 


    




        

                    s.t.    first-stage constraints (1.21)–(1.41), (1.B2) 

Where   U=   0 1 : constraints (4) (5)
I D

SI ,


  , 

              O= recovery constraints (27) (32);  operating level constraints (33) (47)  . 

 

6.10 Appendix C: The master problem of the auxiliary parametric 

problem 

6.10.1 (C1) Master problem 

The master problem is a relaxation of the auxiliary parametric problem. It includes 

all the first-stage constraints of the auxiliary parametric problem, and a set of 

modified second-stage constraints that are limited to a subset of the realizations of 

the uncertainty parameters. 

 product

i

i, j,k

I, j

,t,s

J,k K,t T

, s SM
   

     (1.C1) 

 
i, j,m,t,s m i, j,m ,Z nu Y i I, j J,m M,t T,s S        (1.C2) 
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  1 1i, j,m, ,s m i, j,m i,d,sZ nu Y sii i I, j J, ,m M,d D,s S         (1.C3) 

 
1i, j,m,t,s i, j,m, ,s i, j,m, ,m M,t TB ,sZ Z i I, J Sj       (1.C4) 
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 in up reuse makeup
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 out down recycle product waste
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 recycle recycle out

i, j,k,t,s i, j,k i, j,k,t,sM sf M , i I, j J,k K,t T,s S        (1.C20) 

 product product out

i, j,k,t,s i, j,k i, j,k,t,sM sf M , i I, j J,k K,t T,s S        (1.C21) 

 
n

i I, j J

product demand

i, j,k,t ,s k , k K,s SM p
 

     (1.C22) 

  product

m i, j,m,k

i I, ,m M,kj KJ

MO r tt nu CA 
   

        (1.C23) 

The second-stage objective function of the auxiliary parametric problem is 

replaced by variable η, which is bounded above by the second-stage objective 

function values in all the identified realizations in constraint (1.C1). The objective 

function of the master problem is defined in constraint (1.C23). We show the 

formulation of the master problem as follows. 

max   MO in (1.C23) 

 s.t.    constraints (1.21)–(1.41), (1.B2), (1.C1)–(1.C23) 

6.10.2 (C2) Linearization of bilinear terms 

As a set of bilinear terms Zi,j,m,t,s·CAi,j,m are included in constraint (1.C9), the master 

problem is an MINLP problem, which can be nontrivial to solve if a large number 

of realizations are added to the master problem. To solve the master problem 

efficiently, we exploit the properties of the bilinear terms and formulate an MILP 

master problem that has the same optimal solution and can be tackled by MILP 

solvers.  

Although Zi,j,m,t,s and ZRi,j,s are defined as a continuous variable, the relevant 

constraints only enforce their integer upper and lower bounds. As the objective 
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function of the master problem is maximized, Zi,j,m,t,s and ZRi,j,s should take the 

upper bound value as the optimal solution. This property is proved as follows. 

Lemma. The optimal solutions of Zi,j,m,t,s and ZRi,j,s in the master problem are 

integers. 

Proof. Let  in product

i, j,k,t,s i, j,k,t,sG M M  denote the linear relationship that maps the flow 

rate of the “in” flow to the “product” flow by constraints (1.C12)–(1.C21). 

i, j,m,m M,ti I, J TA Sj ,s     , 1 2

i, j,m,t,s i, j,m,t,s m i, j,mZ Z nu Y    , 

 1 2

i, j,s i, j,,s

d

i,d i, s

D

d,ZR ZR ri sii


   ,  1 ,1 ,1 1 1product in

i, j,k,t,s i, j,k,t,s i, j,m,t,s i, j,s,M ,M ,Z ,ZR  and 

 2 ,2 ,2 2 2product in

i, j,k,t,s i, j,k,t,s i, j,m,t,s i, j,s,M ,M ,Z ,ZR  are two feasible solutions of the master problem, 

where the first-stage decisions Y, CA, and CAR are fixed. We have ,1 ,2in in

i, j,k,t,s i, j,k,t,sM M  

from constraint (1.C9) and then based on the linear mass balance relationship, 

   ,1 ,1 ,2 ,2product in in product

i, j,k,t,s i, j,k,t,s i, j,k,t,s i, j,k,t,sM G M G M M   . Next, from constraint (1.C1), we 

have 1 2  , which leads to the following relationship. 

 1 1product

m i, j,m,k

,m M,I, k Ki j J

MO r tt nu CA 
   

       

 ≤  2 2product

m i, j,m,k

,m M,I, k Ki j J

MO r tt nu CA 
   

       

In order to maximize the objective function MO, Zi,j,m,t,s is pushed to its integer 

upper bound at 
i, j,mt TA , and ZRi,j,s is pushed to its upper bound  i,d i,d,s

d D

ri sii


 . 
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As Zi,j,m,t,s is an integer at 
i, j,mt TB  by constraints (1.C3) and (1.C4), the optimal 

solutions of Zi,j,m,t,s and ZRi,j,s are integers.   □ 

 
i, j,m

i, j,m,t,s l i, j,m,t,s,l

l LB

, ,m M,t T,s SZ bv ZB i I, j J


         (1.C24) 

 1
i, j,m

i, j,m,t,s,l

l LB

, ,m M,t T,s SZB i I, j J


       (1.C25) 

Therefore, the feasible region of Zi,j,m,t,s can be restricted to a set of integer values by 

constraints (1.C24) and (1.C25) without affecting the optimal objective function 

value. bvl denotes a possible integer value of Zi,j,m,t,s and ZBi,j,m,t,s,l is a binary 

variable. 

 
i, j,m,t,s,l i, j,m i, j,mBT CA i I,, ,m M,t T,s S,j J l LB         (1.C26) 

 

in

i, j i, j,m,t,s,l

i, j,m,t,s,l i, j,m

m

ub ZB
BT i I, ,m M,t T,s S,, j J l LB

nu
   


      (1.C27) 

  1

in

i, j

i, j,m,t,s,l i, j,m i, j,m,t,s,l i, j,m

m

ub
BT CA ZB i,, ,m,t,j l LB

nu
s,       (1.C28) 

The bilinear term Zi,j,m,t,s·CAi,j,m is then equal to the sum of multiple bilinear terms 

bvl·ZBi,j,m,t,s,l·CAi,j,m. Each of the new bilinear terms can be equivalently substituted 

by a nonnegative variable BTi,j,m,t,s,l and a set of mixed-integer linear constraints 

(1.C26)–(1.C28) following the Glover’s linearization scheme [217]. 

 
i, j,s i, j,s , ,s SZR ZRB i I, j J      (1.C29) 

 i, j,s i, j , ,s SBTR CAR i I, j J      (1.C30) 

 in

i, j,s i, j i, j,sBTR ub ZRB i I, J, ,s Sj       (1.C31) 
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  1in

i, j,s i, j i, j i, j,sBTR CAR ub ZR , ,sB i , j J SI        (1.C32) 

Similarly, continuous variable ZRi,j,s can be replaced by a binary variable ZRBi,j,s 

without affecting the optimal objective function value. Then, bilinear term 

ZRBi,j,s·CARi,j,m can be substituted by a nonnegative variable BTRi,j,s and a set of 

mixed-integer linear constraints (1.C30)–(1.C32). 

  
i, jk K m M

in

i, j,k,t,s l i, j,m,t,s,l

,

i, j,s

l L2

, ,t T,s SM bv BT BTR i I, j J
 

          (1.C33) 

Finally, constraint (1.C9) is replaced by constraint (1.C33), and the master problem 

is reformulated as follows. 

                 max   MO in (1.C23) 

                  s.t.    constraints (1.21)–(1.41), (1.B2), (1.C1)–(1.C8), (1.C10)–(1.C33) 

 

6.11 Appendix D: The subproblem of the auxiliary problem 

6.11.1 (D1) Subproblem 

The goal of the subproblem is to determine the optimal second-stage decisions 

with fixed first-stage decisions. However, the second-stage min-max problem 

cannot be handled directly by any off-the-shelf optimization solvers. To tackle this 

computational challenge, the inner maximization problem is dualized and 

incorporated into the outer minimization problem. 

 1 1   0
i, j,m

i, j,m, i, j,m,d i, j,m,t i, j, i,

B

,m

TD t

j

d

P1 P2 P3 P8 cai , ,mi I, j J M


         (1.D1) 
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0

1

i, j,m,t i, j,m,t i, j,t i, j,m

i, j,m i, j,m i, j,m

P1 P3 P8 cai

i I, j J , TLT ,

,

,m M,t B TtT t A

   

     
  (1.D2) 

 

                           

0

1

i, j,m,t

i, j,m,t i, j,m,t i, j,m,t i, j,t i, j,m

t TLI

i, j,m i, j,m i, j,m

P1 P3 P5 P8 cai

i I, j J ,

,

,m M,t TB t At TTLT ,





    

      


  (1.D3) 

 
1 0

                      1     

i, j,m,t

i, j,m,t i, j,m,t i, j,m,t i, j,m,t i, j,t i, j,m

t TLI

i, j,m i, j,m i, j,m

,P

,m M,t

1 P3 P4

TB

P5 P8 cai

i I, j J , TLT ,tt TA






    

    

  


  (1.D4) 

 
1

                                        

0

  

i, j,m,t

i, j,m,t i, j,m,t i, j,m,t i, j,m,t i, j,m,t i, j,t i, j,m

t TLI

i, j,m

P1 P4 P4 P5 P5 P8 cai

i I, j

,

J,m M,t TA




      

   


  (1.D5) 

       0i, j i, j,t i, j

t T

P6 P8 cari i I j J, ,


      (1.D6) 

   0     fee

k K

d

t k,t kP10 P11 wf T, t


       (1.D7) 

  1 1 1, , , 0   makeup

k

k,t , j,k,t , j,k ,t j k k i, j,

K

k,tP11 P14 P14 , ,k K,p P15 j J t T


           (1.D8) 

  , , , 0 2 makeup

i,k,t i, j,k,t i, j,k ,t i j k k i, j,k,

k K

tP12 P14 P14 p P15 , ,kj ,i , t


          (1.D9) 

  , , , 0  makeup

i,k,t i, j,k,t i, j,k ,t i j k k i, j,k t

K

,

k

P13 P14 P14 p , ,P15 i, j k,t 



       (1.D10) 

 0   i, j,k,t i, j,k,tP14 P15 i I, j, ,k K,t TJ       (1.D11) 

  , , , 0i, j,t i, j,t i, j,k,t i, j,k,t i, j,k

k

,t i k

K

j kP7 P8 P15 P16 P16 sc , , k,i ,j t


         (1.D12) 

 
                           0  

down recycle

i, j,k,t i, j,k,t i, j,k,t i, j,k i, j,k,t i, j,k

product

i, j,k,t i, j,k

P1

,

6 P17 P18 sf P19 sf

P20 sf i I, j J,k K,t T

     

    
  (1.D13) 

 
1 0i,k,t i, j,k,t i, j,k,tP12 P17 , ,k K,t TP18 i I, j J         (1.D14) 

 0
i

i ,k,t i, j,k,t i, j,k,t

REI

P13 P17 P19 i I,, ,k K TJ ,j t          (1.D15) 
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 1i, j,t i, j,k,t i, j,k,t nP9 P17 P20 i I,, k ,t tj KJ,        (1.D16) 

 1
n n ni, j, i, j,k, i, j,k, kt t tP9 P17 P20 P21 i I, j, KJ,k         (1.D17) 

 0i, j,k,tP17 i I, j J, ,k K,t T       (1.D18) 

 

 

 

 

 

         1

         

         

i, j,m

i I, j J,m M,t T

i I, j J,m M,d D

i, j,m,t m i, j,m

i, j,m,d m i, j,m i,d

i, j,m,t i, j i,d i,d

i,

i I, j J,m M,t TA i I, j

j,t m i, j,

J,d

m

D

SO P1 nu yi

P2 nu yi SI

P5 P6 ri SI

P7 nu cai

   

   

      

  

      

   

  





 

 

   

         

         

i I, j J,m M,t T

i I, j

product

i, j,t m i, j,m,k

feed demand

t k

J,m M,k K,t T

t T k K

k

P9 nu cai

P10 ub P21 p

   

    

 

  

   





 

  (1.D19) 

The formulation of the subproblem is presented as follows. 

                                       min   SO in (1.D19) 

                                        s.t.    constraints (1.19)–(1.20), (1.D1)–(1.D19) 

6.11.2 (D2) Linearization of bilinear terms 

Since bilinear terms P2i,j,m,d·(1−SIi,d) and P6i,j·SIi,d are included in the objective 

function SO in constraint (1.D19), the resulting subproblem must be solved by 

MINLP solvers. Given that SIi,d is a binary variable, we replace the bilinear terms 

by BT1i,j,m,d and BT2i,j,d, respectively, and add constraints (1.D20)–(1.D25) following 

the Glover’s linearization scheme [217]. Moreover, the objective function is 

reformulated by constraint (1.D26). 

 
i, j,m,d i, j,m,dBT1 P2 i I,, ,m Mj DJ ,d      (1.D20) 
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  1i, j,m,d i,dBT1 ubbt1 SI i I, j, ,m M,d DJ         (1.D21) 

 
i, j,m,d i, j,m,d i,dBT1 P2 ubbt1 SI i I, j J, ,m M,d D        (1.D22) 

 
i, j,d i, j , ,d DBT2 P6 i I, j J      (1.D23) 

 
i, j,d i,dBT2 ubbt2 SI i I, J, ,d Dj       (1.D24) 

  1i, j,d i, j i,dBT2 P6 ubbt2 SI i I, j, dJ, D        (1.D25) 

 

 

 

 

 

         

         

         

i, j,m

i, j,m,t m i, j,m

i, j,m,d m i, j,m

i, j,m,t i, j,d i,d

i, j,t m

i I, j J,m M,t T

i I, j J,m M,d D

i I, j J,m M,t TA

i, j,m

i I, j J,d D

i I, j J,m M,t

SO P1 nu yi

BT1 nu yi

P5 BT2 ri

P7 nu cai

   

   

      

   

  

  

  

  





 

 

   

         

         

T

i I, j J,m M,

product

i, j,t m i, j,m,k

feed demand

t k k

k K,t T

t T k K

P9 nu cai

P10 ub P20 p

    

 

  

   





 

  (1.D26) 

The reformulated subproblem is presented as follows and can be handled by MILP 

solvers. 

                         min   SO in (1.D26) 

                          s.t.    constraints (1.19)–(1.20), (1.D1)–(1.D18), (1.D20)–(1.D26) 

6.12 Appendix E: Parameters in the recovery constraints in the 

applications 

In both applications, a total of five time intervals are considered, or  1 2 3 4 5T , , , , . 

By enforcing  1 2M , , at most two parallel units are allowed for each process. If 

m = 1, one process with a relatively larger capacity would be built and each 
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process/section would need two time intervals to recover from disruption. 

Therefore, the availability of a process in t = 2 and t = 3 would be the same with 

that in t = 1, or  1 2 3i, j,TB , . The availability in the following time intervals or 

 1 4 5i, j,TA ,  can stay the same with that two time intervals before, or it would 

become available given the recovery effort. That said,  1 4 2i, j, ,TL   and 

 1 5 3i, j, ,TL  . If m = 2, two parallel units would be built for each process and each 

process/section would need one time interval to recover from disruption. The 

corresponding subsets are given as follows:  2 2i, j,TB  , 

 2 3 4 5i, j,T ,A , ,  2 3 2i, j, ,TL  ,  2 4 3i, j, ,TL  ,  2 5 4i, j, ,TL  . 
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CHAPTER 7 

CONCLUSIONS 

Two energy systems, namely the algal biofuel and bioproduct manufacturing system 

and the shale gas processing and chemical manufacturing system, have been studied in 

this chapter. We believe that the research presented in this dissertation lays a 

foundation for designing the algal biofuel and bioproduct manufacturing system and 

the shale gas processing and chemical manufacturing system. Moreover, the proposed 

modeling frameworks and optimization algorithms can be readily employed in the 

sustainable design and operations of other energy systems. The summary of the 

dissertation and future work are provided in this section. 

7.1 Summary of the contributions 

We proposed by far the most comprehensive superstructure for algal biofuel and 

bioproduct manufacturing processes. A key contribution of the proposed 

superstructure was the bioproduct manufacturing production processes to utilize the 

byproducts in biofuel production processes and generate carbon dioxide feed for 

microalgae growth. We developed a multiobjective mixed-integer fractional 

programming problem to optimize the functional unit based economic and 

environmental performance simultaneously. To effectively solve the proposed 

optimization problem, we developed a tailored global optimization algorithm to 

integrate the inexact parametric algorithm for the fractional objective function and 

branch-and-refine algorithm for the separable concave terms. We found that the 

environmental impacts of the resulting bioproducts were notably lower than those in 
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the literature. The computational times by the proposed global optimization algorithm 

were much shorter than those by global optimization solvers. 

We developed a two-stage adaptive robust optimization model to handle market 

related uncertainty in energy system design problems. Unlike conventional robust 

optimization models, the decisions in the proposed model were made in two stages 

according to whether they could be determined before or after uncertainty was 

realized. The objective function of the proposed optimization model was to maximize 

the return on investment, which was defined as a fraction term. Due to the multilevel 

structure and the fractional objective function, the problem could not be solved by any 

off-the-shelf optimization solvers or by existing solution methods. We proposed a 

tailored optimization algorithm to integrate the inexact parametric algorithm for the 

fractional objective function and the column-and-constraint generation algorithm for 

handling the multilevel optimization problems. The obtained optimal solution could 

effective hedge against the worst realization of uncertainty and the proposed 

optimization algorithm was found to efficiently return the optimal solutions. 

We developed a novel consequential life cycle optimization (LCO) framework that 

simultaneously optimizes consequential environmental impacts and economic 

performance. We proposed a general system boundary for consequential LCA and 

a multiobjective optimization model by integrating process models, partial 

equilibrium market models with the tenets of consequential LCA and techno-

economic analysis methodologies. In the application to algal renewable diesel 

production processes, we performed thorough market analyses to identify 
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consequences and found that the environmental impacts of the optimal process 

designs based on the proposed consequential LCO framework are significantly 

lower than those based on the existing attributional LCO framework. 

We developed a novel process synthesis framework that combined product 

distribution optimization of chemical reactions and superstructure optimization of 

process flowsheets. The framework consisted of four steps. The product distributions 

of critical chemical reactions in a superstructure were first optimized to maximize 

the profits of the effluent products. In the second step, extensive process 

simulations were performed based on the optimal product distributions to collect 

high-fidelity process data. Next, an MINLP model was developed for 

superstructure optimization. In the last step, the optimal process design was 

validated by a whole-process simulation. The proposed framework was illustrated 

by an application to an integrated shale gas processing and chemical manufacturing 

process. The proposed superstructure consisted of 51,840 alternative process 

designs. We optimized the product distributions of steam cracking and developed a 

set of simulation models for all the involved processes in the superstructure. A 

multiobjective MINLP model was then formulated to address the sustainable 

design and synthesis of the integrated shale gas processing and chemical 

manufacturing process. The maximum net present value per GJ of raw shale gas 

was higher when the optimal product distributions of steam cracking were used, 
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while the minimum globla warming potential and water footprint per GJ of raw 

shale gas were lower when the product distributions of steam cracking taken from 

the literature were used. 

We proposed a novel quantitative measure of resilience for process systems as a 

ratio of the quantity of products manufactured with disruptive events to that 

without disruptive events. To improve system performance in face of disruptive 

events, we introduced five resilience enhancement strategies. Moreover, we 

proposed a general framework for resilience optimization to incorporate the 

quantitative measure and the resilience enhancement strategies. The framework 

consisted of three steps, namely preliminary risk assessment, developing a 

multiobjective two-stage ARMIFP model, and solving the optimization problem 

with a tailored solution algorithm. The objective functions of the multiobjective 

two-stage ARMIFP model were to maximize the resilience under the worst-case 

realization of disruptive events and to minimize the total capital cost. The model 

determined the optimal network configuration, equipment capacities, and capital 

costs in the first stage, and the optimal number of available processes and operating 

levels in each time period in the second stage. The applications showed that the 

optimal process design could effectively enhance the performance after the 

occurrence of disruptive events at the expense of higher capital expenditures. 
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7.2 Future work 

The general consequential LCO framework is first of its kind to integrate the 

concept of consequential LCA with optimization techniques. For practical 

purposes, a major assumption of the optimization model is to limit the system 

boundary within two levels of markets, resulting in underestimated environmental 

consequences. As we discussed in Chapter 4, there are several systematic tools 

available to evaluate consequential environmental impacts in the entire economy, 

such as computable general equilibrium models (CGE). Despite more markets 

included, these systematic tools do not differentiate products in the same industry 

and rely on relatively low-quality and outdated data. A future direction of 

consequential LCO is to improve the coverage of environmental consequences by 

leveraging the existing tools. As has been developed in attributional LCO [239], a 

hybrid LCO approach could make the most of the detailed but boundary-limited 

process-based LCO, and the broad but low-resolution input-output LCO. Similarly, 

we may integrate the proposed tailored market analysis for currently considered 

markets, and CGE models for other markets in the economy. There may be 

computational challenges due to the use of nonlinear functions in the CGE models 

and more sophisticated computational algorithms should be developed to 

efficiently solve the resulting optimization problems. 
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We develop a holistic framework that combines product distribution optimization 

of chemical reactions and superstructure optimization of the process flowsheet. 

The two optimization tasks are conducted in a sequential manner, because 

simultaneous product distribution optimization and superstructure optimization 

can be computationally challenging. The future direction of combined 

superstructure optimization and product distribution optimization is to develop 

solution algorithms that can handle the resulting mixed-integer nonlinear dynamic 

optimization model efficiently. A promising strategy is to treat the product 

distribution optimization as a black box and approximate the mass and energy 

relationships with less computationally demanding surrogate models. It requires 

further efforts to balance the complexity and computational difficulty of the 

surrogate models. 

The framework on resilient process design and operations of energy systems 

provides a new perspective into energy systems. There are a few directions to 

improve the optimization model so that it is able to capture more details of a 

process system after the occurrence of disruptive events. (1) The first is to include 

operating expenditures (OPEX) in the economic objective function. In the 

proposed model, the economic objective function considers only capital 

expenditures (CAPEX), because both CAPEX and resilience reflect the intrinsic 

properties of a process system. However, OPEX and CAPEX are an integral part in 
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evaluating the economic performance of a process system. If OPEX is included in 

the objective function, it would be determined as the second-stage decisions in the 

third-level optimization problem. As a result, the economic objective function 

consists of a three-level structure that is the same with the resilience objective 

function. The resulting optimization model must be handled by tailored 

multiobjective optimization tools. (2) The second direction is to introduce 

externalities in the second-stage recovery model. Recovery resources are usually 

limited after the occurrence of disruptive events because professionals and relevant 

materials are expected to become demanding in the market. Recovery at the full 

speed may be too costly or even infeasible. Moreover, the disruptive events may 

also cause failures in downstream processes, so that the product demand may 

recover gradually. Therefore, it is sometimes unnecessary for the process system to 

recover at the full speed. Since it requires integer variables to account for 

externalities in the second-stage recovery model, more sophisticated solution 

algorithm should be proposed to handle the resulting two-stage adaptive robust 

optimization problem with integer recourse decisions.  
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