
INFORMATION BASED MANAGEMENT OF
TRANSPORT NETWORKS: NEW MODELS,

ALGORITHMS AND INSIGHTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Zhen Tan

May 2018



c⃝ 2018 Zhen Tan

ALL RIGHTS RESERVED



INFORMATION BASED MANAGEMENT OF TRANSPORT NETWORKS:

NEW MODELS, ALGORITHMS AND INSIGHTS

Zhen Tan, Ph.D.

Cornell University 2018

We studied several important management problems in modern transportation

systems based on proper use of various types of information in different ways.

We focused on two main research questions: 1) How to design smart informa-

tion schemes for decentralizing better (e.g., more efficient, stable and sustain-

able) flow patterns on transportation networks (Chapter 1 & 2); and 2) How to

utilize information and system data fully and efficiently for better (e.g., closer to

optimal and more cost-effective) centralized decision making (Chapter 3 & 4).

Specifically, we have explored the following four dimensions (each corresponds

to one chapter).

1. Strategic information scheme design for enforcing optimal flow on traf-

fic networks with minimal tolls. We explored how disclosing flexible new in-

formation can help reduce the toll intensity needed for decentralizing a Nash

equilibrium on a general traffic network that minimizes certain system-level

cost. We formulated the “Minimal Toll Information Design Problem” (MTIDP)

and designed efficient algorithms for finding near-optimal solutions to the prob-

lem. Numerical examples are used to reveal insights of MTIDP and validate the

effectiveness of the proposed solution algorithms.

2. Remedy of the negative effect of inaccurate travel time estimate on dy-

namic routing using additional endogenous information feedback. We pro-

posed to provide en-route real-time traffic-sensitive pollution information to



drivers for suppressing traffic oscillations caused by delay in travel time re-

porting. Theoretical analysis (based on a novel queueing model), numerical

examples, and simulation experiments for simple traffic networks are adopted

to demonstrate the potential traffic stabilizing benefit of this new information.

3. Utilization of system data and demand forecast for real-time control of

complex human-centered infrastructure systems. We used multi-access man-

aged lanes systems as an illustrative application. With the available measure-

ment of traffic condition and demand forecast, we developed a hybrid model

predictive control based dynamic pricing algorithm using origin-destination

specific tolls. Through proper formulation of system models and practical con-

straints, the proposed control model can be implemented efficiently in real-time.

4. Value of information and optimal learning in solving large scale net-

work optimization problems with uncertainty. We looked at the challenging

second-best network pricing problem (SNPP) with stochastic demand. We de-

signed Bayesian learning model for the problem and tailored linear belief-based

Knowledge Gradient sampling policy to SNPP. Experiment on a benchmark

network with more than a million candidate solutions showed superior per-

formance of our approach to the benchmark heuristic.

We have proposed novel methodology and generated new insights in each

dimension, concrete examples are involved. Our goal is to provide useful ref-

erences, practical solutions and new thinking for existent nontrivial problems

and emerging challenges in traffic management under this information age and

unprecedented demand for efficient and sustainable urban mobility.

We have two notes:

1) Each chapter uses independent notation, the notation table provided in

one chapter (if any) is only valid within that chapter.



2) Chapter 3 and Chapter 4 are based on the following two published papers:

Z. Tan, H. Gao (2018). “Hybrid model predictive control based dynamic

pricing of managed lanes with multiple accesses.” Transportation Research Part

B: Methodological, 112: 113-131.

Z. Tan, H. Gao (2016). “Bayesian Ranking and Selection Model for Second-

Best Network Pricing Problem.” Proceedings of the 2016 Winter Simulation

Conference, 2487-2498.
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CHAPTER 1

MINIMAL NETWORK PRICING WITH STRATEGIC INFORMATION

PROVISION

In the first chapter, we explore how disclosing new (and presumably imper-

ceivable) travel-related information can help reduce (as much as possible) the

toll intensity needed for decentralizing a system optimal (SO) flow on a traffic

network. The information considered in our model is very general: it can be

either endogenous or exogenous and can be in various types such as available

local link information in the routing map, travel time variability estimate, and

health risk due to air pollution exposure in traffic, etc.. Although there has been

an increasing number of studies discussing how providing extra information to

users may affect traffic flow distribution on the network and the resulting exter-

nalities, the analysis on the full potential or benefit new information disclosure

can bring about is still lacking. Therefore, we go one step further to discuss

optimal information scheme design models and algorithms.

Specifically, we consider a flexible setting where one or more of the follow-

ing dimensions can be included in the information scheme design: 1) selection

of user groups; 2) selection of origin-destination pairs, and 3) selection of the

links (where the relevant information are to be disclosed). The performance of

a certain information scheme is measured by the minimal toll intensity (an in-

creasing function of link tolls) needed for enforcing an SO flow. The SO flow

is defined as the link flow pattern that minimizes the total system cost such

as time delay or emissions. We derive necessary conditions for toll intensity re-

duction by proving new information regarding all the links of the network to all

the users and sufficient conditions for toll intensity reduction by partial infor-
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mation disclosure (e.g., only on a subset of links). We then formulate a general

minimum toll information design problem (MTIDP) to find the information dis-

tribution schemes that needs the lowest possible toll intensity for decentralizing

an SO flow. Two practical algorithms are proposed for solving the MTIDP. Nu-

merical examples are used to verify the effectiveness of the proposed solution

methods. Our results imply that the potential of using information intervention

in network control depends significantly on how much flexibility is allowed in

the information design as well as the combination of different system param-

eters such as user preferences and cost functions on the links. Useful insights

and caveats are also generated by solving a number of representative MTIDP

instances. Therefore the proposed optimization model and solution algorithms

can be very useful tools for designing effective and robust information schemes

for proactive traffic management.

1.1 Introduction

Congestion pricing has been studied extensively in theory (e.g., [44, 129]) and

implemented as an regulation of road transport externalities in practice (e.g.,

[29, 52]). While some projects are going smoothly, many proposals faltered due

to social and political resistance (e.g., [64]) though proved effective in easing

gridlock by analytical or simulation studies. High toll charge is a main fac-

tor that limits the applicability of congestion pricing projects due to concerns

such as the equity effect [38, 48, 64]. Without intelligent mechanism design

and proper revenue redistribution, pricing policy can be regressive [75], bur-

dening low-income drivers and even keeping them from promising workplaces

[38]. To avoid paying the toll, violation behavior are often reported (e.g., [25]),

2



causing difficulty in regulation enforcement. Furthermore, considering other

externalities of traffic congestion such as emissions and air pollution, the wel-

fare maximizing toll will be much higher [20, 29] and less affordable. Therefore,

more “soft”, fair, acceptable and sustainable traffic management policies are de-

sirable for proactive congestion mitigation in addition to regulatory tolls. For

example, by leveraging big data and operations research techniques, we can

improve the information distribution schemes by taking different travelers’ be-

havior and preferences into account, so that a system optimal flow distribution

can be enforced with only a marginal toll charges. In this study, we investigate

a general model for such a flexible information scheme design problem on traf-

fic networks targeted to heterogeneous users. The objective of our information

design problem is minimizing system-level cost (e.g., total delay and emissions)

with the least intensive tolls.

Intelligent transportation systems (ITS) technologies, GPS-enabled on-board

devices and smart phones as well as growing computing power make data col-

lection, processing and information release more convenient. Traffic conditions

and travel time forecasts has been provided in many cities for traffic manage-

ment [123]. Development in advanced traveler general information systems

(ATGIS) enables disclosing of more comprehensive and different types of travel-

related information such as fuel consumption and green house gas emissions

[105] via fixed or portable media [80]. Furthermore, advancement in sensing

and estimation technologies makes it feasible to forecast and thus disclose in-

formation on various kinds of externalities/travel characteristics such as high-

resolution air pollution and exposure levels [21, 30, 33]. The explicit provision

of the new information would affect travelers’ decision making due to more di-

rectly perceived factors such as reliability, safety and health risk (e.g., due to ex-
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posure to air pollution), which were usually underestimated or even neglected.

There is an emerging stream of research about how new information can af-

fect traffic on the network. For example, it was proved that providing different

“information sets” (defined as the available links of the network) to different

user groups can lead to less efficient Nash flow compared to the case where all

the users have the full information about the network [7]. Recent study [119]

also shows that the increased penetration of routing apps can have negative

externalities as more users have knowledge on low-capacity local road links

and the traffic volume increases dramatically on those residential streets, which

causes bad impact on local community and costs government millions to steer

away the traffic. Numerical experiments of realistic network by [105] showed

that providing travelers with fuel and emissions costs via ATGIS could cut the

total delay on the network by 1% to 17% or even increase it by 1%, depend-

ing on the perceived cost prior to the disclosure of these new information if

any. This interesting observation reflects that the impact of new information

provision on system output can be very complicated considering how users re-

act to and value the new information. Another important complexity comes

from users can have different risk attitude towards travel time variability, even

though most users are risk-averse, their relative valuation of travel time vari-

ability compared to the expected travel time can vary notably [88]. The model

and argument of work [100] indicate a potential of efficiency loss by providing

travel time variability information to the selfish routers who are risk-averse and

underestimate or ignore the travel time variability.

The above-mentioned studies ([7, 100, 105, 119]) and other related work fo-

cused on analyzing and revealing interesting effect of information provision on
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traffic efficiency on the network, but did not discuss how different types of in-

formation can be strategically provided (possibly with other traffic management

measures) for optimizing system performance. Furthermore, although there are

previous studies (e.g., [78, 112]) discussed the minimum toll problem (in the

sense of toll revenue), none of them consider how information can be used to

reduce the toll for an SO flow. Therefore, we go one step further to discuss

the optimal information design problem with the present of pricing. Specifi-

cally, we formulate the problem of determining where and to whom such in-

formation should be disclosed on the network that can minimize the link-based

anonymous toll charges needed for enforcing a system optimal (SO) flow pat-

tern. Flexible practical constraints on the spatial distribution and targets of the

new information can be incorporated in our model. We define the SO objec-

tive function to be a system performance measure (e.g., total traffic delay or

emissions on the network) that is monotone in link flows. We consider a finite

number of heterogeneous user groups with fixed demand and assume the new

information brings some extra perceived cost which is link-additive (such as

variance of travel time, en-route exposure to air pollution).

The rest of this chapter is organized as follows. In Section 2, we present

the mathematical models for network routing under new information provi-

sion and link-based pricing and characterize the feasible toll set that can realize

a system optimal (SO) Nash flow given any information scheme. Section 3 raises

the question of whether toll intensity needed for enforcing an SO network flow

can be reduced using strategic information design, both necessary condition for

effective full information scheme and sufficient condition for partial informa-

tion scheme are discussed. In Section 4, we systematically study this toll reduc-

tion potential by formulating the “minimum-toll information design problem”
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(MTIDP) and propose two efficient approximation algorithms for solving the

MTIDP. Numerical examples are presented in Section 5 and we draw conclu-

sions and discuss future extensions in Section 6.

1.2 Mathematical Formulation

We have G = (N, A) be a directed transportation network defined by a set N of

nodes and a set A of directed links. Each link a ∈ A has an associated average

travel time ta and an piece of extra information ea. Suppose each link a can

also have a nonnegative toll charge τa. A path p is a sequence of links which

connect a sequence of nodes following the link directions. Let W be the set of

origin-destination (OD) pairs, each is a pair of distinct nodes in N. Let Pw be

the set of all paths connecting OD pair w ∈ W, Each OD pair w has a fixed

demand dw > 0 to be routed through the network. This traffic network problem

in the computer science community is also referred to as the multi-commodity

flow problem (e.g., [44]) where each “commodity” w ∈ W goes from the source-

destination pair defined by the OD pair w.

1.2.1 Models for link travel time and extra information

Monotonic univariate link volume-delay function is commonly used in traf-

fic assignment models to account for not only link but also intersection delay

(which can be considerable in urban networks) (e.g., [109]). Thus we assume

Assumption 1.1 The average travel time ta is a function of the link flow variable xa,

6



denoted by function ta(xa) and is continuous and strictly increasing in xa.

Now we introduce some quantity ea ∈ R associated with each link a. For

simplicity and demonstration of the key idea, we assume here that ea is imper-

ceivable unless it is disclosed or reported explicitly. For example, ea can be an

exogenous quantity such as the exposure to some air pollutant that is dominated

by background emissions or some environmental conditions independent of the

flow [80]. It can also represents the exposure to some air pollutant that is very

sensitive to traffic condition, then intuitively ea should depend on traffic inten-

sity not only on link a but also on all the links near link a [29, 30]. Also, ea can

be negative, which represents some type of “discount” or “credit” by traveling

on link a (i.e., availability of new ITS facility that reduces en-route speed fluctu-

ations). Thus for generality, we express each extra link-specific quantity ea as a

function of the flow distribution on the entire network:

ea = ea(x), (1.1)

where column vector x = {xa, ∀a ∈ A} is the link-flow vector. Note that we

can define ea(x) ≡ ea to be some proper constant to represent special type of

information, such as the availability of the link in routing [7, 119] (in which case

we can set ea ≡ ∞ or a very large number to “hide” link a from or to not suggest

link a on the routing map). We need a key assumption regarding ea on different

links when we evaluate the same quantity for a certain path.

Assumption 1.2 The quantity ea is link-additive, i.e., this quantity for one path p

(denoted as ep) is equal to
∑
a∈p

ea.

The total travel demand consists of groups with different socio-economic

characteristics and travel purposes that govern their behavior parameters. Let
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M be the set of groups of users, so each group is indexed by m ∈ M. Let αm ∈ R++

and βm ∈ R be the average value of time (VOT) and value of extra information

(VOE), respectively, for user group m. Notice that in order to model general

cases of user valuation of the new information, there is no restriction on the

sign of βm in our model. For easy of analysis we assume no two groups have the

same VOT and sort the user groups in the increasing order of αm, i.e., 0 < α1 <

α2 < ... < α|M|. We define dm
w ≥ 0 as the demand of group m for OD pair w, so

∑
m∈M

dm
w = dw. (1.2)

We define a binary vector δ ∈ {0, 1}|A||W ||M| which has δw,m
a = 1 (a ∈ A, w ∈

W, m ∈ M) if the quantity ea is provided on link a for user group m of OD pair

w, and δw,m
a = 0 otherwise. We call δ the “info-selection vector”. We denote êw,m

a

the extra information regarding link a observed by user group m on OD pair w,

hence we have

êw,m
a = δw,m

a ea. (1.3)

On each link a, there is also a toll charge τa ≥ 0, which is anonymous (i.e.,

every user on link a needs to pay the same amount τa regardless of what user

group she belongs to), anonymous tolls are realistic and easy to enforce [130].

Therefore, on each OD pair w ∈ W for each user group m ∈ M, each path

p ∈ Pw is associated with a travel time tp, a perceived extra information êp
m, and

an anonymous toll charge τp ≥ 0. By construction, these quantities are

tp =
∑
a∈p

ta(xa), êp
m =

∑
a∈p

δw,m
a ea(x), τp =

∑
a∈p

τa, p ∈ Pw, w ∈ W, (1.4)

the second equality is because of (1.3) and Assumption 1.2.
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1.2.2 User equilibrium (UE) and system optimal (SO) flows

Suppose each user chooses a path that minimizes his own travel cost that in-

cludes the cost of travel time, and possibly the extra perceived cost associated

with the extra information if any, as well as toll charges if any. Since we assumed

the quantity ea is imperceivable and hard to estimate, we assume that

Assumption 1.3 Users take into account the extra cost associated with quantity ea on

link a only when they are informed of this value on link a (i.e., the perceived information

for link a is êa = ea).

Under provision of the extra information according to info-selection vector δ,

users’ perceived travel cost includes factors other than travel delay, so it fits to a

conventional concept “generalized cost” used in literature, and is usually mea-

sured by unified monetary cost (e.g., [93, 130]). Here in our problem both travel

time ta and the quantity ea are transferred into equivalent amount of money us-

ing the multiplicative parameters VOT and VOE, respectively, when evaluating

the generalized cost of users. We denote gw,m
a and ĝm

p as the generalized cost for

users of group m of OD pair w traveling on link a and on path p.We assume a

linear perceived cost function for users. Then we have

gw,m
a = αmta + βmδ

w,m
a ea + τa, a ∈ A, w ∈ W, m ∈ M; (1.5)

ĝm
p = αmtp + βmêp

m + τ
p, p ∈ Pw, w ∈ W, m ∈ M (1.6)

We define the column vector that contains all the gw,m
a or ĝm

p terms

g = {gw,m
a ,w ∈ W,m ∈ M, a ∈ A} = {g1,1

1 ...g
1,|M|
1 ...g|W |,11 ...g|W |,|M|1 ...g|W |,1|A| ...g

|W |,|M|
|A| };(1.7)

ĝ = {ĝm
p ,m ∈ M, p ∈ Pw,w ∈ W} = {ĝ1

1...ĝ
|M|
1 ...ĝ

1
|P1 |...ĝ

|M|
|P1 |...ĝ

1
|P|W | |...ĝ

|M|
|P|W | |}. (1.8)
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We also define the OD-group-link flow vector y and group-path flow vector f

y = {yw,m
a ,w ∈ W,m ∈ M, a ∈ A} = {y1,1

1 ...y
1,|M|
1 ...y|W |,11 ...y|W |,|M|1 ...y|W |,1|A| ...y

|W |,|M|
|A| };(1.9)

f = { f m
p ,m ∈ M, p ∈ Pw,w ∈ W} = { f̂ 1

1 ... f̂
|M|
1 ... f̂

1
|P1 |... f̂

|M|
|P1 | ... f̂

1
|P|W | |... f̂

|M|
|P|W | |}, (1.10)

where yw,m
a is the flow of user group m of OD pair w on link a, and f m

p is the flow

of user group m on path p. The generalized cost vector g (or ĝ) can be expressed

as a function of the OD-group-link flow vector y (or the group-path flow vector

f ) as g(y) (or ĝ( f )) since it is a function of the link flow x.

We call the group-path flow vector f feasible if it lies in

F :=

 f ∈ R|M|
∑

w∈W |Pw |
+ :

∑
p∈Pw

f m
p = dm

w , ∀m ∈ M, w ∈ W

 . (1.11)

We call the OD-group-link flow vector y feasible if it lies in

Y :=

y ∈ R|W ||M||A| : ∃ f ∈ F , s.t. yw,m
a =

∑
p∈Pw:a∈p

f m
p , ∀a ∈ A, m ∈ M

 . (1.12)

Finally we call the link-flow vector x feasible if it lies in

X :=

x ∈ R|A| : ∃y ∈ Y, s.t. xa =
∑
m∈M

ym
a , ∀a ∈ A

 . (1.13)

Note that F ⊆ R|M|
∑

w∈W |Pw |
+ , Y ⊆ R|W ||M||A|+ and X ⊆ R|A|+ are all closed and convex.

With the generalized cost described in (1.5), we define f UE as a user equilib-

rium (UE) group-path flow pattern (a.k.a. Nash flow [44]) if under f UE no user

has incentive to unilaterally switch his path [109], i.e.,

ĝm
p ( f UE)


= γm

w , if f m
p > 0

≥ γm
w , if f m

p = 0
∀p ∈ Pw, w ∈ W, (1.14)

where γm
w represents a common quantity for all the paths that are used by user

group m between OD pair w under the UE flow. In other words, all utilized
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paths by a certain group of users on a certain O/D pair have equal and minimal

generalized cost. We also define yUE as the OD-group-link UE flow. The UE flow

yUE or f UE can be characterized by the following variational inequalities.

Theorem 1.1 A OD-group-link flow yUE ∈ Y (a group-path flow f UE ∈ F ) is a user

equilibrium if only if

g(yUE)T(y − yUE) ≥ 0, ∀y ∈ Y
(
ĝ( f UE)T( f − f UE) ≥ 0, ∀ f ∈ F

)
(1.15)

Condition (1.15) can be defined in either group-path flow or OD-group-link

flow.The proof is omitted as this is a natural extension of the classical result

in network equilibrium analysis, see, e.g., [93, 114].

Remark 1.1 In general there is no equivalent mathematical programing formulation

for the UE flow problem with more than one cost components that are associated with

arbitrary weights. Hence the above variational inequality characterization serves for

the basis of the algorithms that find the equilibrium numerically. In addition, we have a

very general function ea(x) to represent the possibly endogenous extra quantity, so the

user equilibrium flow pattern is not necessarily unique [71, 93]. However, when int

he following three special cases, we claim that the UE flow is unique: 1) There is only

one group of user, |M| = 1; 2) There are more than one groups of users but the ratios

αm/βm (m ∈ M) are the same; 3) there is no extra information (i.e., δ = 0, where 0 is

a vector of zeros) or the quantity ea is exogenous (i.e., ea(x) = ea) ∀a ∈ A, This can be

seen as a straightforward corollary of the Theorem in Section 2.1 of [71]. In particular,

we will utilize the special case 3) in our discussion later.

The focus of our study is not computing the user equilibrium. In stead, we

are interested in how the extra information in addition to toll charges can enable
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an Nash flow pattern that coincides with some desired target flow pattern on the

network using as low tolls as possible. The target flow pattern can be any system

optimal (SO) flow under which some centralized network performance measure

is optimized. For example, the operator may want to minimize (over the peak

period), the total delay on the network; the total emission on the network; or the

linear combinations of the two or more objectives. Here we consider the SO flow

pattern in terms of the minimization of a general type of objective functions that

satisfy the property below.

Assumption 1.4 The SO performance measure Φ can be expressed as a function of the

link-flow vector x, Φ(x). In addition, ∂Φ/∂xa > 0, ∀a ∈ A.

A large class of practical objectives commonly used in the literature satisfies

the above property. For example, one can consider the following objectives: 1)

Total travel time on the network (SO-TT), which is a traditional and important

network performance measure ([44, 109, 130]; 2) Total emissions on the network

(SO-TEM), which is an important overall environmental objective [9, 66]; 3) A

linear combination of the above two objectives (SO-TT&TEM) that gives flexi-

bilities in trading off total travel time and total emissions [9]. All the objectives

are evaluated over the period within which the OD demand {dw} is modeled.

The minimization problems are

SO − TT : min
x∈X

∑
a∈A

xata(xa); (1.16)

SO − TEM : min
x∈X

∑
a∈A

laxara(xa); (1.17)

SO − TT&TEM : min
x∈X
ωTT

∑
a∈A

xata(xa) + ωT EM
∑
a∈A

xalara(xa) (1.18)

where ωTT , ωT EM > 0 are the weights associated with the total travel time and

total emissions, respectively, in the objective SO-TT&TEM; ra is the vehicle emis-
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sion rate per distance on link a, which is a increasing and convex function of link

flow a; la is the length of link a.

It can be verified that the objectives in (1.16) - (1.18) are all convex in link

flow x. The feasible region X is closed and convex. Hence the optimal solutions

to (1.16) - (1.18) can be computed very efficiently using any convex optimization

techniques. Also note that when ta and ra are strictly convex, then the SO link-

flow is unique, but it may correspond to multiple optimal OD-group-link flows

y and group-path flows f .

Related to Remark 1.1 we made above, here we make an observation based

on the definition of SO flow and extra information.

Proposition 1.1 Given a SO link flow x∗, and any info-selection vector δ, if we fix the

extra information for group m ∈ M of OD pair w ∈ W regarding link a ∈ A as

êw,m
a = δw,m

a e∗a = δ
w,m
a ea(x∗), (1.19)

then the UE flow is unique.

Proof: Note that under δ and e∗a the general cost for a user group m ∈ M on link

a is gw,m
a = cm

a + αmta(xa), where cm
a = βmδ

w,m
a ea(x∗) + τa is a group-specific constant

term. Then the uniqueness of the UE flow follows readily from the Theorem in

Section 2.1 of [71] as we noted in Remark 1.1 since (1.19) represents a special

case of “exogenous” information. ■

Proposition 1.1 is fundamental for our following discussion of enforcing an

SO flow by tolls and information. Specifically, by using link-based tolls together

with new information about ea’s whose values are determined by a given SO

flow, we are able decentralize an SO flow as a Nash equilibrium.
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1.2.3 System optimal tolls under extra information

Suppose we want to generate a Nash flow xUE that coincides with some SO

flow pattern x∗ (both in terms of link flow here) by setting proper nonnegative

toll charges on the links, which is required to be anonymous, i.e., each user of

on the same link pays the same toll specified for this link regardless of which

group she belongs to. Let the column vector τ = {τa} ∈ R|A|, we call τ SO-flow

enabling if it can reproduce a SO Nash flow xUE = x∗, and denote T as the set of

all such eligible toll vectors.

It is known that pricing according to the total marginal social cost on each

link (thus the link toll is anonymous) leads to the SO flow when 1) the users are

homogeneous; 2) the non-toll cost considered by users and that defined for the

SO objective consist of the same quantities with the same weights. For example,

under our problem setting, if users have homogeneous VOT (α1 = α) and VOE

(β1 = β) (m=1), the information design is link-based and independent of ODs

(subscripts m and w are not needed for δ), and the SO-objective is∑
a∈A

αta(xa) + βδaea(x), (1.20)

then putting a toll on each link a that equals the total marginal social cost (as-

suming both ta(·) and ea(·) are differentiable)

αta(x∗a)
dta(xa)

dxa
xa=x∗a + βδaea(x∗a)

∂ea(x)
∂xa

x=x∗

results in a UE flow that minimizes the above objective. This can be easily ver-

ified by the first order condition of the minimization problem with objective

(1.20) and feasible region X. Details are omitted here.

Nevertheless, if users are heterogeneous or the SO objective is different from

(1.20) or information design is OD-dependent, such marginal cost tolling can
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not work in general. Instead, it turns out that T can be characterized by the

optimal dual solutions of a linear programing (LP) problem. Suppose x∗ is an

SO-link-flow that minimizes functionΦ(x), and t∗a = ta(x∗a) and e∗a = ea(x∗), ∀a ∈ A.

We formulate the LP problem

min
f , z

∑
w∈W

∑
p∈Pw

∑
m∈M

f m
p

(
αmt∗p + βmê∗pm

)
s.t. za +

∑
m∈M

∑
w∈W

∑
p∈Pw:a∈p

f m
p = x∗a, ∀a ∈ A∑

p∈Pw

f m
p = dm

w , ∀m ∈ M, w ∈ W (1.21)

f m
p ≥ 0, ∀p ∈ Pw, w ∈ W, m ∈ M

za ≥ 0, ∀a ∈ A,

where z = {za, ∀a ∈ A} contains the slack variables. The dual of problem (1.21) is

max
τ,γ

∑
w∈W

∑
m∈M

dm
wγ

m
w −

∑
a∈A

x∗aτa

s.t. γm
w −

∑
a∈A:a∈p

τa ≤ αmt∗p + βmê∗pm , ∀p ∈ Pw, w ∈ W, m ∈ M (1.22)

τa ≥ 0, ∀a ∈ A.

where the column vectors γ =
{
γm

w , ∀m ∈ M, w ∈ W
}

and τ = {τa, ∀a ∈ A} contain

all the dual variables. Here τa is actually the negate of the multiplier associated

with the corresponding constraint in (1.21), thus the coefficients of each τa in the

objective and the first constraint of (1.22) are negative instead of positive. This

makes the meaning of τa more relevant (the toll on link a).

Note that the primal problem (1.21) is feasible because there must exist a

group-path flow vector f ∈ F such that
∑
m∈M

∑
p:a∈p

f m
p = x∗a since we have the SO link

flow solution x∗ ∈ X. In addition, the primal objective value is lower bounded

by 0 since f m
p ≥ 0 for feasibility. This implies both the primal problem (1.21) and

its dual (1.22) have an optimal solution. Suppose ( f̃ , z̃) is an optimal solution to
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the primal problem and (τ̃, γ̃) is an optimal solution to the dual problem. Thus

by strong duality, we know the two optimal values are equal, in addition, ( f̃ , z̃)

and (τ̃, γ̃) are complementary slack, i.e.,
f̃ m
p

(
τ̃p + αmt∗p + βmêp∗

m − γm
w

)
= 0, ∀p ∈ Pw, w ∈ W, m ∈ M;

z̃aτ̃a = 0, ∀a ∈ A,
(1.23)

where τ̃p =
∑
a∈p

τ̃a.Based on the first line in (1.23) in addition to the primal and

dual feasibility constraints f̃ m
p ≥ 0, τ̃p + αmt∗p + βmê∗pm ≥ γ̃m

w , we know that the

generalized cost

ĝm
p ( f̃ )


= γ̃m

w , if f̃ m
p > 0

≥ γ̃m
w , if f̃ m

p = 0
∀p ∈ Pw, w ∈ W. (1.24)

This is exactly the UE condition in the form of (1.14), i.e., for each OD pair w

only the path(s) with minimal generalized cost γm
w are used by user group m.

Hence f̃ corresponds to a UE flow pattern.

Now let x̃ be the link-flow corresponding to f̃ , we show that x̃ = x∗ by con-

tradiction. We know that x̃ ∈ X has its entry x̃a ≤ x∗a, ∀a ∈ A. If there exits

a ∈ A such that x̃a < x∗a, then by Assumption 1.4, we know that Φ(x̃) < Φ(x∗),

which implies that x∗ is not an SO link-flow. In other words, in the optimal so-

lution ( f̃ , z̃) to the primal problem (1.21), we must have that z̃a = 0, ∀a ∈ A (i.e.,∑
m∈M

∑
w∈W

∑
p∈Pw

f̃ m
p = x̃a = x∗a).

Therefore, we have demonstrated that a toll vector specified by any optimal

solution to the dual problem (1.22) enforces an SO-flow pattern on the network

if the SO-objective function satisfies Assumption 1.4. This result is a natural ex-

tension of the one proved in [44] (where only delay cost is considered by the

users) to the setting where there are cost components other than travel delay

(such as the perception of air pollution exposure as we consider here). Study
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[130] also used similar argument to characterize the SO-flow enabling tolls con-

sidering only delay cost for the special SO objective – total delay on the network,

i.e., the one defined in (1.16). Notice that the converse is also true: any toll vec-

tor τ that can result in a SO-flow pattern must form an optimal solution to the

dual problem (1.22) together with the minimum generalized cost vector γ. We

summarize these observations in the following theorem.

Theorem 1.2 Consider the following constraints in the link-toll vector τ and the min-

imum group-OD generalized cost vector γ

∑
a∈p

τa ≥ γm
w −

∑
a∈p

αmta(x∗a) + βmδ
w,m
a ea(x∗), ∀p ∈ Pw, w ∈ W, m ∈ M;

∑
a∈A

τax∗a =
∑
w∈W

∑
m∈M

dm
wγ

m
w −

∑
m∈M

∑
a∈A

ỹm
a

αmta(x∗a) + βmea(x∗)
∑
w∈W
δw,m

a

 ;

τa ≥ 0, ∀a ∈ A,

(1.25)

where x∗ is any minimizer of Φ(x) over X, and ỹ is the OD-group-link flow vector that

corresponds to any optimal solution f̃ of the problem (1.21). Define the set

T := {τ : (τ, γ) satisfies (1.25)} . (1.26)

Then we have that 1) T is nonempty; 2) If Assumption 1.4 holds, a link-toll vector τ

results in a UE flow pattern x∗ (which minimizes the SO-objective function Φ) if only

if τ ∈ T .

Proof: The inequalities in (1.25) are equivalent to the dual feasibility constraints

in (1.22), and the equality in (1.25) means the primal and the dual optimal val-

ues are the same by strong duality by noting that
∑
w∈W

∑
p∈Pw

∑
m∈M

f m
p (αmt∗p + βmê∗p) =

∑
m∈M

∑
a∈A

ym
a

αmt∗a + βme∗a
∑
w∈W
δw,m

a

. Thus the “if” part is proved earlier.
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Now we show the converse. Suppose a toll vector τ̃ results in a UE flow

x∗ that minimizes Φ(x), f̃ ∈ F is a resultant group-path flow vector, and γ̃ is

the group-OD generalized cost vector under τ̃. Then the UE condition (1.24) is

satisfied, which implies (by complementary slackness) that ( f̃ , τ̃, γ̃) is an optimal

primal-dual solution to the problem (1.21). Hence τ̃ ∈ T . ■

We know by (1.24) that for each γm
w , there must be at least one inequality in

the first line of (1.25) is tight. Thus given an optimal primal solution f̃ and due

to strong duality, we can actually characterize the set T in (1.26) explicitly by

simply eliminating variables γm
w using those equalities in the first line of (1.25)

and express the rest strict inequalities in terms of only variables τa.

As we will discuss later, making the extra information êa associated with

extra quantity ea perceivable has a potential of cutting the toll charges that are

needed for achieving the SO flow pattern, for which Theorem 1.2 serves as a

starting point.

1.3 Cutting the Tolls for the SO Flow using Extra Information

Our focus in this study is to reduce the minimum toll intensity needed to real-

ize the SO-flow pattern using new information. To this end, we define the toll

intensity measure J and assume it to have the following property.

Assumption 1.5 The toll intensity measure J can be expressed as a convex function of

the link-toll vector τ, J(τ). In addition, ∂J/∂τa > 0, at τa > 0 ∀a ∈ A and J(0) = 0.
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The toll intensity J(τ) that satisfies Assumption 1.5 can have many forms for var-

ious policy needs.For example, we can consider minimizing the weighted sum

of the tolls on the links (with strictly positive weights); or a convex quadratic

function of the toll vector, i.e.,

J(τ) = ωTτ; J(τ) = τTΛτ,

where ω is a wight vector whose entry a, ωa > 0 represents how much we want

to restrict the toll on link a, Λ is a positive diagonal matrix used to penalize the

corresponding link tolls.

As explained earlier, our goal is to minimize the toll intensity needed for an

SO-flow, i.e., minimize J(τ) over T . Note that the feasible toll set T as defined

in (1.26) actually depends on how the extra information is disclosed (encoded

by the vector δ), so it is a function of δ, T (δ). Thus, we call a toll “minimal”

under δ if it minimizes J over T (δ). Then given an info-selection vector, δ, the

minimization problem is

min
τ∈T (δ)

J(τ). (1.27)

Suppose under the SO-link flow x∗, the travel time on each path p is t∗p. For

each OD pair w ∈ W, we sort the paths such that t∗p
w
1 ≤ t∗p

w
2 ≤ ... ≤ t∗p

w
|Pw | . Under

no provision of the new information, we suppose f (0) reproduces the SO flow

x∗. We then define a mapping Q0
w(p) for used paths p ∈ Pw under f (0) by the

following: if p has a distinct delay among all used paths in Pw, we simply map

it to itself; if multiple used paths have the same delay (then they must have

the same toll cost due to UE condition), we map them to a common element q.

We denote the range of this mapping as Q0
w whose elements have the consistent

ordering with the original ordering of the paths in Pw. For example, if |Pw| = 4

and tpw
1 < tpw

2 = tpw
3 < tpw

4 , and all four paths are used under f (0), then we have

19



Q0
w = {qw

1 , q
w
2 , q

w
3 }, where pw

1 is mapped to qw
1 , pw

4 is mapped to qw
3 , and both pw

2 and

pw
3 are mapped to qw

2 . We also define two quantities for each user group m

q̄0
w(m) : = argmax

{
q ∈ Q0

w : ∃p ∈ Pw s.t. f (0)m
p > 0, Q0

w(p) = q
}

(1.28)

q0
w
(m) : = argmin

{
q ∈ Q0

w : ∃p ∈ Pw s.t. f (0)m
p > 0, Q0

w(p) = q
}

(1.29)

We have a basic observation regarding the equilibrium behavior of the users

under the original scenario without new information: any path chosen by a user

with a higher VOT is at least as fast as any path chosen by a user with a lower

VOT. Formally, we have (WOLG we assume dm
w > 0, ∀m ∈ M)

Lemma 1.1 Under flow f (0), for each OD pair w ∈ W, each user group m ∈ M exactly

uses paths p ∈ Pw such that Q0
w(p) = q0

w
(m), q0

w
(m) + 1, ..., q̄0

w(m). I.e., the image of the

paths used by each user group under mapping Q0
w is connected. In addition, q̄0

w(m) ≤

q0
w
(m − 1), ∀m = 2, ..., |M|.

Proof: Let τ(0) be any link toll vector that results in flow f (0) when δ = 0. Show

by contradiction. Suppose under f (0), among all the used paths in Pw, user

group m uses paths p1, p3 but not path p2 with Q0
w(p1) < Q0

w(p2) < Q0
w(p3). So

there must be some other user group m′ , m uses path p2, which means

if m′ < m, then τ(0)p2 − τ(0)p3 ≤ αm′(t∗p3 − t∗p2) < αm(t∗p3 − t∗p2);

if m′ > m, then τ(0)p1 − τ(0)p2 ≥ αm′(t∗p2 − t∗p1) > αm(t∗p2 − t∗p1),

in both cases, group m has a incentive to use path p2, so it is a contradiction.

Now we show q̄0
w(m) ≤ q0

w
(m − 1), ∀m = 2, ..., |M| also by contradiction. Sup-

pose q̄0
w(m) > q0

w
(m − 1) for some m = 2, ..., |M|, then by definition (1.28)-(1.29) we

know t∗q̄
w,m > t∗q

w(m−1). So based on the connected image argument above, this
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implies that there exist two paths p, p′ ∈ Pw with t∗p > t∗p
′ such that both groups

m − 1 and m use both paths p and p′. So by UE condition,

αm−1(t∗p − t∗p
′
) = τ(0)p′ − τ(0)p = αm(t∗p − t∗p

′
),

which is a conflict since αm−1 < αm. ■

1.3.1 Necessary conditions for effective full information

As a first attempt, the operator can simply disclose the new information on ev-

ery link of the network to every user (i.e., set δ = 1, where 1 is a vector of ones).

However, it is nontrivial to conclude if this can result in a reduction in the toll

intensity for realizing a SO flow pattern or not, i.e., if the optimal objective value

(1.27) decreases or not:

min
τ∈T (1)

J(τ) < min
τ∈T (0)

J(τ),

whereT (0) and T (1) are, respectively, the SO-flow enabling toll set defined in

(1.26) when there is no extra information (δ = 0) and extra information is posted

on every link (δ = 1). Obtaining T (0) or T (1) needs to solve the primal LP

problem (1.21), hence we have to solve four LPs in order to check the above

inequality. However, we also want to explore under what conditions this toll

reduction may happen. Let’s look at a basic example.

Consider a simple network that has two nodes A and B, and only two links

connect A to B, shown in Figure 1.1 (where functions ta(·) and ea(·) are given).

Suppose there are two groups of users m = 1, 2 with travel demand d1 = d2 = 10

and VOT and VOE parameters as α1 = 1, α2 = 2, β1 = 0.2, β2 = 0.1. The SO

link flows in terms of total delay (1.16) are x∗1 = 8.33, x∗2 = 11.67. Two possible

scenarios of functional forms ea(·) are compared. On the left plot ea(·) are the
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same on the two links ea = 0.1xata, (a = 1, 2), while on the right plot e1(·) is the

same with that in the left plot, but e2 = 0.3t2 is just a linear function of travel time

t2. Table 1.1 shows the travel times ta and quantities ea under the SO solution,

the minimal SO-flow enabling tolls τ∗ (minimizer of J(τ) over T ), the total toll

charged (optimal value J∗ = J(τ∗) =
∑
a=1,2

τ∗ax∗a) as well as the group-path flows

under the minimal toll solution.

A B

Link 1: t1=10+2x1, e1=0.1x1t1

Link 2: t2=20+x2, e1=0.1x2t2

A B

Link 1: t1=10+2x1, e1=0.1x1t1

Link 2: t2=20+x2, e1=0.3t2

Figure 1.1: An example (left: same function ea(·) on two links; right: dif-
ferent functions ea(·) on two links).

Table 1.1: Outputs of the simple network example

Scenario No new info. With new info. (left) With new info. (right)

t∗1, t∗2 26.67, 31.67 26.67, 31.67 26.67, 31.67

e∗1, e∗2 /, / 22.22, 36.94 22.22, 8

f 1
1 , f 1

2 0, 10 0, 10 0, 10

f 2
1 , f 2

2 8.33, 1.67 8.33, 1.67 8.33, 1.67

τ∗1, τ
∗
2 10, 0 11.47, 0 8.58, 0

J∗ 83.33 95.60 71.48

We can see that if functions ea(·) are the same on two links (left plot), the

minimum total toll charged is higher than that when no extra information is

provided, while if functions ea(·) are different on two links (right plot), the min-

imum total toll charged reduces compared to the case when there is no extra

information. Note that the group-path flows are unchanged in both scenarios
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that have the extra information present compared to the original scenario where

the extra information is not disclosed. This means that the optimal solutions to

the primal LP (1.21) are the same under all the three scenarios. In addition, it

can be checked that in all three scenarios the minimal toll is only applied to link

1, the purpose of which is making group 2 indifferent to which link of the two

to choose (i.e., g1
2 = g2

2), while group 1 always prefers link 2. This explains why

in the left plot the toll increases while in the right one the toll decreases: in the

example of the left plot, t∗1 < t∗2 and e∗1 < e∗2 which actually enlarges the difference

of the non-toll costs between the two links for any group, hence a higher toll on

link 1 is needed to make group 2 still has same generalized cost of joining either

link as compared to the case when the extra information is not disclosed. In

contrast, in the example of the right plot, t∗1 < t∗2 but e∗1 > e∗2, since the differences

t∗2−t∗1 and e∗1−e∗2 have same magnitude but βm is much smaller than αm, (m = 1, 2),

hence for both groups the non-toll cost of the two links become closer, therefore

a lower toll is needed on link 1 to make g1
2 = g2

2. We formalize a related result of

the above simple example.

Proposition 1.2 For a simple network (parallel links connecting one OD pair), if

min
τ∈T (1)

J(τ) < min
τ∈T (0)

J(τ), then we have either ∃a, a′ ∈ A, m ∈ M such that t∗a > t∗a′

but βme∗a < βme∗a′ , or ∃m, m′ ∈ M, a ∈ A such that αm > αm′ but βme∗a < βm′e∗a, or both.

Proof: For a simple network, each path p is just a link a between the same OD

pair, so the analysis is the same in terms of paths. We show by contradiction.

Suppose any two paths p, p′ ∈ P with t∗p ≥ t∗p
′ have e∗p ≥ e∗p

′ and any two

groups m,m′ ∈ M with αm > αm′ have βm ≥ βm′ . Let ( f (1), τ(1), γ(1)) be an optimal

primal-dual solutions to (1.21) under δ = 1, and τ(1) is also a minimizer of J(τ)

over T (1). Consider any fixed m ∈ M and those paths p ∈ P that have f (1)m
p > 0.
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suppose there are Km ≥ 1 such paths, we sort them as pm
1 , ..., p

m
Km

in the increasing

order of their travel times. Then under δ = 1 the corresponding inequalities in

(1.25) for these paths are tight by complementary slackness, i.e.,

γ(1)m = τ(1)p + αmt∗p + βme∗p, ∀p ∈
{
pm

1 , ..., p
m
Km

}
, (1.30)

it follows that

τ(1)pm
k − τ(1)pm

k+1 = αm(t∗p
m
k+1 − t∗p

m
k ) + βm(e∗p

m
k+1 − e∗p

m
k ), (1.31)

hence τ(1)pm
1 , ..., τ(1)pm

Km−1 are determined by τ(1)pm
Km .

Now because any two paths p, p′ with t∗p ≥ t∗p
′ have βme∗p ≥ βme∗p

′ for any

user group m, and any two groups m, m′ with αm > αm′ have βme∗p ≥ βm′e∗p for

any path p, it is straightforward to have a similar result to Lemma 1.1 (where

δ = 0) for δ = 1: a higher indexed user group uses paths that are at least equally

fast and two adjacent user groups use at most one same path. Then we have

τ(1)p1
K1 ≤ ... ≤ τ(1)p1

1 ≤ τ(1)p2
K2 ≤ ... ≤ τ(1)p2

1 ≤ ... ≤ τ(1)p|M|K|M| ≤ ... ≤ τ(1)p|M|1 by (1.31).

Moreover, we claim that the tolls τ(1)p of all the used paths p in P can be

determined from τ(1)p1
K1 . This is so by considering two possible cases of any

adjacent user groups m and m − 1: 1) if q̄1(m) = q1(m − 1), then τ(1)pm
Km = τ(1)pm−1

1 ;

2) if q̄1(m) > q1(m − 1), then it must be true that
τ(1)pm

Km ≥ τ(1)pm−1
1 + αm−1(t∗p

m−1
1 − t∗p

m
Km ) + βm−1(e∗p

m−1
1 − e∗p

m
Km );

τ(1)pm
Km ≤ τ(1)pm−1

1 + αm(t∗p
m−1
1 − t∗p

m
Km ) + βm(e∗p

m−1
1 − e∗p

m
Km ),

(1.32)

where we define a mapping Q1
w for δ = 1 in a similar manner as Q0

w for δ = 0,

and q̄1(m), q1(m) are defined for δ = 1 in a similar manner as q̄0(m), q0(m) for

δ = 0. Hence it follows that the first of the above two inequalities is tight because

αm(t∗p
m−1
1 − t∗p

m
Km ) > αm−1(t∗p

m−1
1 − t∗p

m
Km ) ≥ 0, βm(e∗p

m−1
1 − e∗p

m
Km ) ≥ βm−1(e∗p

m−1
1 − e∗p

m
Km ) ≥ 0,
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and τ(1) minimizes J over T (1) (i.e., increasing τ(1)pm
Km makes objective J larger),

and this equality is achievable since the network is simple (link toll is just path

toll). We also deduce that τ(1)p1
K1 = 0 since τ(1) minimizes J over τ(1).

Then based on τ(1) we construct a toll vector τ(0) as follows:

τ(0)pm
Km− j = τ(1)pm

Km− j − βm(e∗P
m
Km− j+1 − e∗P

m
Km− j), j = 1, ...,Km − 1, ∀m

τ(0)pm
Km =


τ(1)pm−1

1 − βm−1(e∗P
m−1
1 − e∗P

m
Km ), if q̄1(m) = q1(m − 1)

τ(0)pm−1
1 + αm−1(t∗P

m−1
1 − t∗P

m
Km ), if q̄1(m) > q1(m − 1)

0, if m = 1.

(1.33)

Thus τ(0)p ≤ τ(1)p, ∀p ∈ P (equivalently, τ(0)a ≤ τ(1)a, ∀a ∈ A). In addition, it

can be seen that f (1) is also a UE flow under τ(0) with δ = 0, and since f (1) is

a SO flow, thus τ(0) ∈ T (0) by the optimality condition of the problem (1.21).

Therefore, we deduce by Assumption 1.5 that

min
τ∈T (0)

J(τ) ≤ J(τ(0)) ≤ J(τ(1)) = min
τ∈T (1)

J(τ),

which is contradictory to min
τ∈T (1)

J(τ) < min
τ∈T (0)

J(τ). ■

The above result has some policy implications. For example, in managed

lane systems where the tolled lanes and the general purpose lanes run in par-

allel, minimizing total delay may need higher tolls if information about the air

pollution exposure (which is proportional to the travel time and pollution con-

centration [21]) is disclosed on both types of lanes users have similar valuation

to it (and more pollution exposure means no higher utility, i.e., βm ≤ 0 ∀m ∈ M).

This is because the air pollutant concentrations are very similar on two type of

lanes and thus the ranking of ea are the same with ta and disclosing ea enlarges

the perceived cost difference between two types of lanes. However, if the paths

consists of multiple transport modes, it may be effective in lowering the tolls by
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providing such extra information for all the modes. For example, it is likely that

driving on the ground takes shorter but has higher exposure to air pollution,

while mass transit via elevated viaduct takes longer but is cleaner.

The above basic result implies that “full” provision of the information can

have negative benefit in reducing the toll intensity. Instead, disclosing extra in-

formation only on a subset of links or a subset of users may be more effective in

toll intensity reduction. However, allowing flexible “partial” provision of infor-

mation can significantly increase the possible number of information schemes,

which makes the design problem nontrivial and we will discuss this in the re-

maining of the chapter.

1.3.2 Sufficient conditions for effective partial information

Recall the example in Figure 1.1, if in the left plot we only provide the extra in-

formation on link 1 to both users, then the optimal toll becomes τ∗1 = 7.78. τ∗2 = 0

and results an even lower total toll charged of 64.81, since the cost of e1 serves

just as an extra “price” on link 1 that reduces the gap between the non-toll cost

on two links. Essentially, via strategic provision of the extra information “par-

tially” on the network, we may re-balance the perceived travel cost which re-

sults in a lower total toll charge needed to regulate the traffic towards a SO flow

pattern. The intuition behind the effectiveness in toll reduction by partial in-

formation is rooted in the necessary condition of toll reduction by full informa-

tion discussed in the previous subsection. For example, we have the following

straightforward observation.

Lemma 1.2 There exists an info-selection vector δ such that t∗p < t∗p
′ but βmê∗pm >
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βmê∗p
′

m for some user group m ∈ M, some paths p, p′ ∈ Pw and some OD pair w ∈ W.

And there exits an info-selection vector δ such that αm > αm′ but βmê∗pm < βm′ ê
∗p
m′ for

some user groups m, m′ ∈ M, some path p ∈ Pw and some OD pair w ∈ W.

Proof: Pick two paths p , p′ ∈ Pw and some w ∈ W with t∗p < t∗p
′ , and a link a

such that a ∈ p, a < p′ and e∗a , 0. Suppose βm , 0 for some user group m ∈ M.

If βme∗a > 0, we can set δw,m
a = 1, δw,m

b = 0,∀b , a, then we have βme∗a = βmê∗pm >

βmê∗p
′

m = 0; same argument applies to the case βme∗a < 0.

Similarly, we pick two groups m , m′ ∈ M with αm > αm′ , and βm′ , 0.

Suppose e∗a , 0 on some link a ∈ p for some path p ∈ Pw and some w ∈ W. If

βm′e∗a > 0, we can set δw,m
b = 0 ∀b ∈ p and δw,m′

a = 1, δw,m′

b = 0 ∀b ∈ p with b , a,

then we have 0 = βmê∗pm < βm′ ê
∗p
m′ = βm′e∗a > 0; same argument applies to the case

βm′e∗a < 0. ■

Our focus on the rest of this section is to come up with some practical rules

of partial information design that ensure positive toll intensity reduction. We

first construct a general sufficient condition that ensures positive toll intensity

reduction. This is based on the routing under the minimal SO-flow enabling

tolls when there is no extra information on the network.

Theorem 1.3 Let τ(0) ∈ arg minτ∈T (0) J(τ), and f (0) be an optimal solution to (1.21)

under δ = 0. For an info-selection vector δ, if there exits a toll vector τ̂ such that J(τ̂) <

J(τ(0)) and f (0) corresponds to a UE flow under τ̂ and δ, then min
τ∈T (δ)

J(τ) < J(τ(0)).

Proof: f (0) is an optimal solution to (1.21) with δ = 0 means that f (0) forms a

SO flow. Then since it is also a UE flow under τ̂ and δ, we deduce that τ̂ ∈ T (δ)

by the definition of T (δ). Thus min
τ∈T (δ)

J(τ) ≤ J(τ̂) < J(τ(0)). ■
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By Theorem 1.3, one can attempt to cut the toll intensity by focusing on dis-

closing the extra information on the tolled links under τ(0) provided that certain

conditions are satisfied. We construct some intuitive cases to focus on selecting

“qualified” links out of three types of tolled links under τ(0): 1) links with zero

flow; 2) links that are used by only group(s) of users that have the same VOE; 3)

links that are used by groups of users that have at least two different VOEs. We

denote g(0) and γ(0), respectively, the generalized cost, and minimum general-

ized cost, under δ = 0 and τ(0).

Proposition 1.3 Define A0 = {a ∈ A : τ(0)a > 0}, and let Ma be the set of groups

that use link a under f (0) (where τ(0) and f (0) are defined in Theorem 1.3). µa be the

number of distinct values of βm among the users that use link a under f (0). Suppose link

a is in either one of the sets A1, A2 and A3 defined below, and we form an info-selection

vector δ by setting δw,m
a = 1, ∀w ∈ W, m ∈ M (starting from δ = 0), then we have

min
τ∈T (δ)

J(τ) < J(τ(0)).

A1 =

a ∈ A0 :
µa = 0, g(0)m

p − γ(0)m
w ≥ min{τ(0)a, βm̂ae

∗
a} − βme∗a,

∀p ∈ Pw with a ∈ p, w ∈ W, m ∈ M with βme∗a ≤ 0

 , (1.34)

where m̂a = arg minm∈M{βme∗a : βme∗a > 0};

A2 =


a ∈ A0 :

µa = 1,ma ∈ Ma, τ(0)a ≥ βmae
∗
a > 0,

g(0)m
p − γ(0)m

w ≥ (βma − βm)e∗a, ∀p ∈ Pw with a ∈ p,

w ∈ W, m ∈ M with βme∗a < βmae
∗
a


; (1.35)

A3 =


a ∈ A0 :

µa > 1, τ(0)a ≥ βm̄ae
∗
a > 0,∑

p∈Pw:a∈p

f (0)m
p = dm

w , ∀w ∈ Wm
a , m ∈ Ma with βme∗a < βm̄ae

∗
a

g(0)m
p − γ(0)m

w ≥ (βm̄a − βm)e∗a, ∀p ∈ Pw with a ∈ p,

w ∈ W, m ∈ M \ Ma with βme∗a < βm̄ae
∗
a


,

(1.36)
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where m̄a = arg maxm∈Ma βme∗a and Wm
a = {w ∈ W : ∃p ∈ Pw s.t. a ∈ p, f m

p > 0}.

Proof: The idea is to show that we can construct a toll vector τ̂ such that f (0)

(an optimal solution to (1.21) with δ = 0, as defined in Theorem 1.3) is a UE

group-path flow under τ̂ and the δ constructed by setting δw,m
a = 1 ∀w,m for link

a ∈ A0 in either of the sets Ai, i = 1, 2, 3. Besides, J(τ̂) ≤ J(τ(0)). Thus the result

follows from Theorem 1.3. See the Appendix for detailed proof. ■

Remark 1.2 Proposition 1.3 implies that actually starting from δ = 0, we can loop

over all the links a ∈ A0 by checking if a ∈ Ai in any order of i ∈ {1, 2, 3} and setting

δw,m
a = 1 ∀w,m (if yes) and update the relevant quantities τ, g and γ after the application

of each change of δ, and update Ai ← Ai \ {a} (if a ∈ Ai) with the updated new variables

τ, g and γ. Then we may achieve more toll reduction. This can be verified by simple

induction as the toll intensity reduction after each update of δ must be strictly positive

by Proposition 1.3 based on a similar statement as Theorem 1.3.

The above three rules are only intuitive examples of how to construct an info-

selection vector δ that ensures positive reduction in toll intensity for enforcing

an SO flow, there may be other similar but more sophisticated rules. The main

advantage of such rules is that we can actually design efficient algorithms to

implement them (e.g., find the sets Ai, i = 1, 2, 3), this can be achieved with a

reformulation of problem (1.21) with a different set of variables (see Remark 1.5

in Section 4). However, it should be emphasized that the effectiveness of such

rules are highly dependent on network structure and user behavior parameters,

which are problem specific. For example, we have a corollary to Proposition 1.3

when the distributions of VOTs and VOEs satisfy certain conditions.
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Corollary 1.1 If we form δ by either (i) or (ii) (when applicable) starting with δ = 0,

then we have min
τ∈T (δ)

J(τ) ≤ J(τ(0)):

(i) If βm = β ∀m ∈ M, then for each a ∈ A, if x∗a = 0, τa > 0, βe∗a > 0, or x∗a > 0,

τ(0)∗a ≥ βe∗a > 0, we set δw,m
a = 1 ∀w ∈ W, m ∈ M.

(ii) For each a ∈ A with x∗a > 0, let Wa = {w ∈ W : ∃p ∈ Pw s.t. a ∈ p} and m0
a,w =

min
{
m ∈ M : ∃p ∈ Pw s.t. a ∈ p and f (0)m

p > 0
}
. If βm ≥ βm+1 ∀m = 1, ..., |M| − 1, then

set δw,m
a = 1 ∀w ∈ W, m ∈ M if m0

a,w = m′ ∀w ∈ Wa, τ(0)∗a ≥ βm′e∗a > 0, and link a is

used by all the shortest paths between OD pairs w ∈ Wa.

Proof: We can verify that a link a ∈ A that qualifies for condition (i) must lie

in either set A1 or A2 defined in Proposition 1.3. And a link a ∈ A that qualifies

for condition (ii) must lie in either set A2 or A3. Thus setting δw,m
a = 1 ∀w,m for

a link a that qualifies either (i) or (ii) leads to min
τ∈T (δ)

J(τ) < J(τ(0)) by Proposition

1.3. Then we can apply the reasoning in Remark 1.2 to loop over a ∈ A for either

case (i) or (ii) and update δ starting from δ = 0 for qualified links, which gives

the result. See the Appendix for details. ■

The application of (i) in Corollary 1.1 requires that users have a common sen-

sitivity to the extra information ea, this may well approximate the case where the

information has quite uniform perceived value especially when it is displayed

in monetary units. For other types of information, it is more likely that the users

have different sensitivity to ea. And to apply (ii) when ea > 0, we need that

users with higher VOT have lower VOE, which is a ordering condition on the

distribution of user utility function parameters. For some types of information

this may be the case, for example, empirical studies (e.g., [107]) found that the

air pollution information has less impact on travelers who have more urgent

trips (thus value time more) (see, e.g., the second scenario of the first example
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in Section 5); similarly, users who are very picky about arriving on time may

care less the safety implications during the trip. This assumption may not be

good in other cases (e.g., users who value expected time more are likely to also

care more about the reliability of the travel time [26]), and richer people (who

value time more) may be also more willing to avoid higher health risk due to

air pollution exposure. In addition, the number of the links that are “qualified”

to set δa = 1 heavily depends on the network structure. For some simple real

networks, such as the managed lane systems on highway networks (in which

higher VOT users are willing to pay the toll for faster service), it is usually the

case that some link on the shortest paths is tolled. Also the minimal tolls are typ-

ically put on the links that are only used by the shortest paths of one or a few

OD pairs, since intuitively, a higher toll is needed for one link if the potential

demand of traveling on this link is higher. Thus cutting the toll on the qualified

links according to (ii) can be effective. But for other settings, there may be very

few or no qualified links (e.g., our second numerical example).

Therefore, in order to study the full potential of flexible information design

in reducing the toll regulation for enforcing an optimal flow for general cases,

we have to solve an optimization model. In the next section, we will formulate

the mathematical programing problem for finding the info-selection vector δ

that can reduce the toll intensity J(τ(δ)) for realizing an SO flow pattern on a

general network with any distributions of VOTs and VOEs. This problem turns

out to be very challenging to solve, we also propose two efficient algorithms to

obtain near-optimal solutions.
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1.4 Minimum-Toll Information Design Problem (MTIDP)

1.4.1 Problem formulation

We consider the problem of finding the optimal information scheme (encoded

by info-selection vector δ) that can help achieve an SO flow patten using the least

toll intensity, we call it “minimal-toll information design problem (MTIDP)”.

Recall that given a fixed δ, the least toll intensity needed for an SO flow can be

obtained by solving problem (1.27). Since the eligible toll set T (δ) defined in

(1.27) can be characterized by the optimality condition of problem (1.21) under

δ involving continuous variables, formally we need to solve an optimization

problem on mixed-integer decision variables. The binary variables correspond

to whether to provide certain type of users with the extra information related

to certain links of the network or not, and the continuous variables are the pri-

mal and dual variables of problem (1.21). Specifically, by the primal and dual

feasibility as well as complement slackness condition to (1.21) (i.e., optimality

condition), the MTIDP can be formulated as the following nonlinear mixed in-

teger programing (NLMIP) problem.

min
δ, τ, γ, f

J(τ)

s.t. δ ∈ {0, 1}|W ||M||A|, τ ∈ R|A|+ , γ ∈ R|W |×|M|, f ∈ F∑
a∈p

(τa + αmt∗a + βmδ
w,m
a e∗a) ≥ γm

w , ∀p ∈ Pw, w ∈ W, m ∈ M (1.37)∑
a∈p

(τa + αmt∗a + βmδ
w,m
a e∗a) − γm

w

 f m
p = 0, ∀p ∈ Pw, w ∈ W, m ∈ M∑

m∈M

∑
p∈P:a∈p

f m
p = x∗a, ∀a ∈ A.

Before we present these solution methods to MTIDP, we first note that it is
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desired to compute the feasible SO-flow enabling toll set T efficiently in the first

place (for larger networks). In order to avoid solving an exponential sized LP

(1.21) due to path enumeration, we can re-formulate the problem in link-based

decision vector
{
f w,m
a , ∀w ∈ W, m ∈ M, a ∈ A

}
(each entry is the flow of group m

on link a from OD pair w) as hinted in [44]. Then we get a problem which is

equivalent to (1.21)) but is instead polynomial sized:

min
f

∑
m∈M

∑
w∈W

∑
a∈A

f w,m
a

(
αmt∗a + βmδ

w,m
a e∗a

)
s.t.

∑
m∈M

∑
w∈W

f w,m
a ≤ x∗a, ∀a ∈ A (1.38)

∑
a∈A:as=n

f w,m
a −

∑
a∈A:at=n

f w,m
a =


dm

w , if n = sw

−dm
w , if n = tw

0, otherwise

, ∀n ∈ N, m ∈ M, w ∈ W

f w,m
a ≥ 0, ∀a ∈ A, m ∈ M, w ∈ W,

where as, at denote the starting and ending nodes of link a, respectively; and

sw, tw denote the origin node and destination node of OD pair w, respectively.

The dual of problem of (1.38) is

max
τ,η

∑
w∈W

∑
m∈M

dm
w

(
ηw,m

sw
− ηw,m

tw

)
−

∑
a∈A

x∗aτa

s.t. ηw,m
as
− ηw,m

at
≤ τa + αmt∗a + βmδ

w,m
a e∗a, ∀a ∈ A, w ∈ W, m ∈ M (1.39)

τa ≥ 0, ∀a ∈ A.

where the column vector η =
{
ηw,m

n , ∀n ∈ N, m ∈ M, w ∈ W
}

contains the dual

variables other than the tolls: the entry ηw,m
n represents the minimal general-

ized cost (relative to ηw,m
tw ) a group m user would have incurred starting from

node n to her destination (if she had chosen a path that leads her to n ). Using

similar argument, we can prove that the optimal dual solution τ̃ to (1.39) results

in the SO flow x∗. But now the size of the problem reduces significantly (the

33



number of constraints is only linear in |A| and |N| given W and M). Accordingly,

the SO-flow eligible toll set can be re-expressed as

T :=
{
τ : (τ, η) is an optimal solution to problem (1.39)

}
. (1.40)

and problem (1.37) can be reformulated as a polynomial sized NLMIP problem

min
δ, τ, f , η

J(τ)

s.t. τ ∈ R|A|, δ ∈ {0, 1}|W ||M||A|, f ∈ R|A||W ||M|, η ∈ R|N||W ||M|,

Constraints in (1.38) and in (1.39) (1.41)

(ηw,m
as
− ηw,m

ast − τa − αmt∗a − βmδ
w,m
a e∗a) f w,m

a = 0, ∀a ∈ A, w ∈ W, m ∈ M

Remark 1.3 By Assumption 1.5, we know that if the optimal value of problem (1.41)

J(τ∗) = 0, we have τ∗a = 0 ∀a ∈ A. I.e., we can actually enforce an SO flow purely

relying on information design, which is the ideal case.

Remark 1.4 If we knew there exits a minimizer (δ∗, τ∗, f ∗, η∗) to problem (1.41) with

f ∗ = f (0) (the optimal solution to the primal LP (1.38) under δ = δ∗, i.e., f (0) remains a

UE flow under δ∗ and τ∗, then problem (1.41) can be reduced to an linear mixed integer

programing (LMIP) problem by replacing the nonlinear constraints by
ηw,m

as − ηw,m
ast − τa − αmt∗a − βmδ

w,m
a e∗a = 0, if f (0)w,m

a > 0

ηw,m
as − ηw,m

ast − τa − αmt∗a − βmδ
w,m
a e∗a ≤ 0, if f (0)w,m

a = 0
, ∀a ∈ A, w ∈ W, m ∈ M,

(1.42)

which is much easier to solve. However, since we did not know if such a minimizer exits

or not, we can instead utilize this easier LMIP problem to construct a upper bound of

the optimal solution to the original NLMIP problem (1.41). Specifically, let δ∗0 be the

optimal solution to (1.41) where f is replaced by f (0) (so it becomes a LMIP problem),

clearly we have that J(τ(δ∗)) ≤ J(τ(δ∗0)). We will see the quality of such a upper bound
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in our numerical examples in Section 5. Also note that if J(τ(δ∗0)) < J(τ(0)), then the

sufficient condition for toll reduction stated in Theorem 1.3 must be true.

Remark 1.5 By reformulating the path-link-based problem (1.37) to node-link-based

one (1.41), it is not hard to see that we can actually use the variables involved in (1.41)

to design a polynomial time algorithm that characterizes either sets Ai (i = 1, 2, 3) in

Proposition 1.3. See the Appendix for details.

Remark 1.6 In problem (1.41) we only restrict δ ∈ {0, 1}|W ||M||A|. However, in reality

there may be other constraints on δ. For example, the information provided to all the

users from a certain region must be the same (i.e., δw,m
a = δa∀sw ∈ N1 ⊂ N, m ∈ M), or

only the area with higher accident rates or air pollution exposure should be considered

to provide relevant safety or health risk information (i.e, δw,m
a = 0 ∀a < A1 ⊂ A, w ∈

W, m ∈ M), etc.. Such constraints shrink the feasible region to δ ∈ ∆ ⊂ {0, 1}|W ||M||A|,

and since these constraints are usually in trivial forms (such as those shown above),

they allow a MTIDP with much smaller decision vector δ̃ than δ by considering e.g.,

only region-based information selection, which makes the problem much easier to solve.

These problem variants can be easily formulated in similar form as (1.41). We present

here the most flexible information design problem with the largest solution space.

Efficiently and exactly solving a NLMIP problem such as (1.41) is in gen-

eral very difficult [63], meta heuristics are usually used in practice. In the

next two subsections, we will present two practical algorithms to solve prob-

lem (1.41). The first one is a surrogate optimization (SUO) approach based on

well-established method (e.g., [90]). The second one is a convex relaxation ap-

proach we specially designed for our MTIDP based on the problem structure.
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1.4.2 A solution algorithm based on surrogate optimization

In many optimization problems, the performance of each feasible decision vec-

tor can be obtained by solving a mathematical programing problem or evaluat-

ing a “black box” simulation model. Hence sampling-based approach can be ap-

plied to solving this type of problems, which try to approach optimal solutions

by evaluating a sequence of solutions one by one or group by group selected by

some specially designed rules. Meta-heuristics (e.g., [35]) and Bayesian learn-

ing based algorithms (e.g., [45]) all belong to this type of “simulation opti-

mization” approach. Solving our MITDP can also be viewed as a simulation

optimization problem, since the performance of any binary decision vector δ,

J∗(δ) = min
τ∈T (δ)

J(τ), can be evaluated by solving the dual problem (1.39) and the

convex program min
τ∈T (δ)

J(τ) (as more explicitly presented in Algorithm 1.1 below.

Algorithm 1.1: Evaluate J∗(δ) given δ

1: Solve the dual LP (1.39) under δ and obtain the optimal objective value OPT

2: Construct the linear inequalities characterizing T (δ) (1.40) using the dual

feasibility constraints in (1.39) and the restriction that the objective value of

the dual LP (1.39) equals OPT

3: Solve problem (1.27) under δ and obtain an optimal solution τ∗(δ) and opti-

mal value J(τ∗(δ))

4: J∗(δ)← J(τ∗(δ))

Surrogate optimization (SUO) is a popular approach for solving simulation

optimization problems. The idea of surrogate optimization is fitting an analyt-

ical model that approximates the complicated unknown relationship between

system input (decision variables) and output (the performance measure) and
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searching for good solutions efficiently by the guidance of this surrogate model

[90]. By the use of the surrogate model, the algorithm can usually accelerate

the performance improvement along the sampling decisions and find the good

solutions in relatively few evaluations. The SUO algorithms have been recently

applied to transportation network optimization problems with satisfactory so-

lutions found [27, 39].

For the MTIDP, we use the commonly used radial basis function (RBF) [101],

we denote δ1, ..., δn ∈ {0, 1}|W ||M||A| the n sample points where the objective function

J∗(δ) has been already evaluated, and let Dn = {δ1, ..., δn}. An RBF interpolant

that is used to approximate the true function form can be expressed as (where

|| · ||2 denotes the Euclidean norm)

r(δ) =
n∑

i=1

ρiϕ(||δ − δi||2) + bTδ + c, J∗(δ) = r(δ) + ϵ(δ), (1.43)

where r represents the response surface (surrogate model); ϵ is the difference be-

tween the true system and the surrogate model output (model error); ϕ denotes

the radial basis function (here we use the cubic RBF: ϕ(x) = x3); bTδ+c represents

the affine tail term with b = [b1, ..., b|W ||M||A|]T ∈ R|W ||M||A| that has the same dimen-

sion with the decision vector δ, and c ∈ R. The parameters ρ1, ..., ρn, b1, ..., bk and

c are determined by solving the following linear system of equations [58]

 Φ D

DT 0


 ρθ

 =
 J

0

 , with D =


δT

1 1
...
...

δT
n 1

 , (1.44)

where entry square matrix Φ ∈ Rn×n has its entry Φi j = ϕ(||δi − δ j||2), i, j ∈ {1, ..., n},

ρ = [ρ1, ..., ρn]T, θ = [b1, ..., b|W ||M||A|, c]T, J = [J∗(δ1), ..., J∗(δn)]T. The system (1.44)

has a unique solution if and only if rank(D)=|W ||M||A| + 1[101].

In general, the procedure of the surrogate optimization algorithms contain
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the following main steps: 1) Generate the initial experimental design; 2) Gen-

erate the set of candidate solutions 2) pick one of the candidate solution (that

is not evaluated before) based on the surrogate model performance as the next

sample solution; 3) Iterate until the total sampling budget Nsample is exhausted.

In particular we implement the following SUO based algorithm 1.2 for MTIDP,

which contains a subroutine (Algorithm 1.3) corresponds to step 2) and 3).

1.4.3 A solution algorithm based on semidefinite relaxation

Now we introduce a semidefinite relaxation (SDR) based approach to solve

problem (1.41). SDR is by definition, a relaxation of the original nonconvex pro-

gram to a semidefinite program (a type of general convex optimization prob-

lem). SDR is a powerful framework to deal with a family of nonconvex opti-

mization problems, it has been successfully applied to many NP-complete com-

binatorial optimization problems [84] and many challenging problems in many

areas such as signal processing and communications, [84]. Since a semidefinite

program can be solved very efficiently by methods such as self-dual type of al-

gorithms available in many solver packages [31], we just need a way to construct

a good solution to the original NLMIP problem (1.41) based on the optimal so-

lution of the SDR problem. In the rest of this subsection, we will briefly describe

the idea of SDR and derive a SDR formulation for our problem (1.41).

First consider the following standard real-valued homogeneous quadrati-

cally constrained quadratic program (QCQP) in vector z:

min
z∈Rn

zTCz

s.t. zTFiz ≤ fi, i = 1, ..., l, (1.45)
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Algorithm 1.2: SUO based algorithm for solving MTIDP (1.41)

Require: The input data of (1.41), Nsample, and Nc (which is set to 500)

1: D← [],D ← ∅, δ1 ← 0,

2: Evaluate J∗(δ1) by Algorithm 1.1, Jbest ← J∗(δ1), δbest ← δ1

3: while rank(D) < |W ||M||A| + 1 do

4: Generate points {δ2, ..., δn0} (where n0 = |W ||M||A| + 1) using the standard

Latin hypercube design with in [0, 1]|W ||M||A| and rounding to integers

5: D← [δT
1 , 1; ... ; δT

n , 1]

6: end while

7: for i = 2 to n0 do

8: Evaluate J∗(δi) by Algorithm 1.1

9: if J∗(δi) < Jbest then

10: Jbest ← J∗(δ∗n0
), δbest ← δ∗n0

11: end if

12: end for

13: J ← [J∗(δk), k = 1, ..., n0]T

14: for i = n0 + 1 to Nsample do

15: Compute ρ and b by solving (1.44) using D and J, update r(·) in (1.43)

16: Pick the next sample δ∗i by Algorithm 1.3 using δ = δbest,D = Di−1 and r(·)

17: Evaluate J∗(δ∗i ) by Algorithm 1.1

18: D← [D; δ∗i , 1], J ← [J; J∗(δ∗i )],D = D∪ {δ∗i }

19: if J∗(δ∗i ) < Jbest then

20: Jbest ← J∗(δ∗i ), δbest ← δ∗i
21: end if

22: end for

23: return δbest and Jbest
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Algorithm 1.3: The sample decision step of SUO based Algorithm 1.2

Require: Current best point δ, sampled pointsD, and response surface r(·)

1: Initialize C∗ ← ∅

2: while C∗ \ D = ∅ do

3: P← min
{
max

{
5

|W ||M||A| , 0.1
}
, 1

}
4: for j = 1 to Nc do

5: for k = 1 to |W ||M||A| do

6: Pick ζ from 1,2,3 at random and draw u ∼ N(0, ζ2)

7: δ̄
j
k ← δ

j
k + u and round to the nearest integer in {0, 1}

8: end for

9: end for

10: Uniformly generate Nc solutions δ̄Nc+1, ..., δ̄2Nc in {0, 1}|W ||M||A|

11: C ← {δ̄1, ..., δ̄Nc} ∪ {δ̄Nc+1, ..., δ̄2Nc}

12: C∗ ← arg minδ∈C r(δ)

13: end while

14: return δ∗ ← any element in C∗ \ D

zTH jz = h j, j = 1, ...,m,

where l is the number of inequality constraints and m is the number of equality

constraints. Matrices C, F1, ..., Fl,H1, ...,Hm ∈ Sn (where we denote the set of all

real symmetric n × n matrices by Sn), and f1, ..., fl, h1, ..., hm ∈ R. Notice that the

following important equalities hold by the basic properties of trace operation:

zTCz = Tr(zTCz) = Tr(CzzT),

zTFiz = Tr(zTFiz) = Tr(FizzT),

zTH jz = Tr(zTH jz) = Tr(H jzzT),
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which implies that the objective function and the constraints in (1.45) are linear

in the matrix zzT. Thus, by letting Z = zzT and noting that Z = zzT is equivalent

to Z being a rank one symmetric positive semidefinite (PSD) matrix, we obtain

the following equivalent formulation of problem (1.45):

min
Z∈Sn

Tr(CZ)

s.t. Tr(FiZ) ≤ fi, i = 1, ..., l, (1.46)

Tr(HiZ) = hi, i = 1, ...,m,

Z ⪰ 0, rank(Z) = 1,

where Z ⪰ 0 means Z is PSD. It is clear that the objective function and all the

constraints in (1.46) are linear in matrix X, except for the constraint rank(Z) = 1

(which is nonconvex). Hence the fundamental difficulty in solving (1.45) lies in

this rank constraint. If we drop this rank constraint, we thus obtain a natural

relaxation of problem (1.45):

min
Z∈Sn, Z⪰0

Tr(CZ)

s.t. Tr(FiZ) ≤ fi, i = 1, ..., l, (1.47)

Tr(H jZ) = h j, j = 1, ...,m,

which is a standard semidefinite program that can be solved efficiently.

We now show that our original NLMIP problem (1.41) can be written as a

standard homogeneous QCQP in the form of (1.45), which enables us to formu-

late a SDR in the form of (1.47) for problem (1.41).

Proposition 1.4 Define l = |A|(1+ 2|W ||M|), m = n = 1+ |A|+ (2|A|+ |N |)|W ||M|, then

there exit C, Fi, H j ∈ Sn and fi, h j ∈ R (i = 1, ..., l; j = 1, ...,m) such that problem

(1.41) is equivalent to a QCQP in the form of (1.45).
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Proof: We construct vector z = t[1, δ̂T, τT, f T, ηT]T, where τ ∈ R|A|, f ∈ R|A||W ||M|, and

η ∈ R|N||W ||M| are defined earlier, and we define t ∈ R with t2 = 1 and δ̂ ∈ R|W ||M||A|

with δ̂k = 2δk−1, k = 1, ..., |A|. Hence z ∈ Rn. Note that for every k = 1, ..., |W ||M||A|,

δk ∈ {0, 1} if only if δ̂2
k = 1. Hence together with t2 = 1 we first have 1 + |W ||M||A|

quadratic equality constraints in z. In problem (1.41) we have |A| linear equality

constraints in f T that encode SO link flow condition, and another |N||W ||M| linear

equality constraints in f T which encode flow conservation condition. Finally,

in problem (1.41) there are |A||W ||M| many equality constraints in δ̂, η, and τ

that encode complementary slackness condition. All of these constraints can be

translated into some quadratic constraints in z by noting that for any A ∈ Sn and

a ∈ Rn (let s = [δ̂T, τT, f T, ηT]T), it is true that

sTAs + aTs = 0 ⇔ zT

 0 aT/2

a/2 A

 z = 0, t2 = 1.

Therefore, we have a total of m = 1 + 2|A| + (|A| + |N|)|W ||M| quadratic equalities

in z. Similarly, we can validate that the inequality constraints in problem (1.41)

are equivalent to a total of l = |A|(1 + 2|W ||M|) quadratic inequalities in z, and the

objective function in problem (1.41) is also quadratic in z. ■

Now suppose we obtain an optimal solution Zopt = zzT of problem (1.47)

for the relaxed version of problem (1.41) , we want to recover a feasible and

hopefully near optimal solution to the original problem (1.41). This is a crucial

part of the SDR approach which is usually problem-dependent [84]. Note that

we can approximate the PSD matrix Z∗ by the following rank one matrix [84]

Zopt =

n∑
i=1

λiqiqT
i ≈ λ1q1qT

1 = (
√
λ1q1)(

√
λ1q1)T, (1.48)

where λi, i = 1, ..., n, are the eigenvalues of matrix Zopt sorted in an descending

order, and qi ∈ Rn, i = 1, ..., n, are the corresponding eigenvectors. Thus if we
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first normalize the second to the (1+ |W ||M||A|)th entries in
√
λ1q1 by its last entry

(corresponding to t ∈ {1,−1}) and then take the sign operation of these entires,

we recover a vector δ̂ ∈ {−1, 1}|W ||M||A|. It follows that we can obtain a feasible

solution z1 to problem (1.41) by substituting δ = (1 + δ̂)/2 to the primal and dual

problems (1.38) and (1.39) and solve these two problems.

We can further use randomization technique to improve the solution [84].

Specifically, in addition to z1, we can randomly generate more feasible solutions

z2, ..., zNsample of problem (1.41), where Nsample is some given number of samples.

Let Σ = Zopt(1 : |W ||M||A| + 1, 1 : |W ||M||A| + 1) then the following relation is true:

Eξ∼N(0,Σ)ξ
Tξ = Σ. (1.49)

Hence a natural choice is to sample a vector ξ ∼ N(0,Σ), then we divide the

second to the (1 + |W ||M||A|)th entries in ξ by its last entry and take the sign oper-

ation of these entires, we recover a vector δ̂ ∈ {−1, 1}|W ||M||A|, finally we can solve

for problem (1.27) with δ = (1 + δ̂)/2 and get a corresponding feasible solution

to problem (1.41). We can repeat the random sampling Nsample − 1 times, and

together with z1 we choose the one that yields the best objective J. This entire

SDR based solution procedure is summarized in algorithm 1.4 below.

Theorem 1.4 Both Algorithm 1.2 and Algorithm 1.4 converge to a global optimal so-

lution δopt to problem (1.41) as Nsample increases.

Proof: The convergence of the SUO based algorithm can be deduced by a simple

counting argument [90]. We know that the number of feasible solutions δ are

finitely many, and no solution will be sampled more than once, so the Algorithm

1.2 must sample the global minimum δ∗ at some stage. The convergence of the

SDR based algorithm lies in its randomization step. Specifically, because ξ ∼
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N(0,Σ) and the covariance matrix Σ has its diagonal entries Σii = 1 as required

by the constraints δ̂2
i = 1, and it is positive definite (as a result of interior point

method in solving the SDP), so each δ̂ (and the corresponding binary vector

δ after rescaling and taking the sign operation to each entry of δ̂) has positive

probability to be chosen. Therefore, when Nsample → ∞, the optimal solution δ∗

will be selected and evaluated with probability 1. ■

The convergence result just shows finding an global optimal solution is en-

sured as Nsample increases. This is a weak result, as any brute-force search method

can always find the optimal solution in finitely many steps since the solution

space is finite and our problem is deterministic. However, the results of our nu-

merical examples below show that the algorithms can approach good solutions

(i.e., can find δ with J∗(δ) significantly less than J∗(0)) rather efficiently even

when the solution space is very large.

1.5 Numerical Examples

To illustrate the results derived in the previous section and the performance of

the solution algorithms we proposed, in this section we present two examples

of MTIDP on two networks each with a different type of new information.

1.5.1 Example 1: Two-OD simple network

First, we consider a small benchmark network that was used by other studies to

demonstrate the existence of SO-flow enabling tolls (e.g., [128, 130]). Here we

use this network to convey the basic idea and modeling steps of the information
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Algorithm 1.4: SDR based algorithm for solving MTIDP (1.41)

Require: The input data of (1.41) and Nsample

1: l← |A|(1 + 2|W ||M|), m, n← 1 + |A| + (2|A| + |N |)|W ||M|

2: Construct the coefficients C, Fi, fi, i = 1, ..., l and H j ∈ Sn, h j, j = 1, ...,m to

the QCQP (1.45) formulated for (1.41) based on the problem data

3: Solve the relaxation of (1.45), (1.47), by interior point method to obtain an

optimal solution Zopt ∈ Sn
+

4: λ1 ← largest eigenvalue of Zopt, q1 ← eigenvector corresponds to λ1

5: q←
√
λ1q1, t ← q(n), δ̂1 ← sgn(q(2 : |W ||M||A| + 1)/t)

6: Σ← Zopt(2 : |W ||M||A| + 1, 2 : |W ||M||A| + 1)

7: for i = 2 to Nsample do

8: Sample ξi ∼ N(0,Σ)

9: for j = 1 to |W ||M||A| do

10: δ̂i( j) = sgn(ξi( j)/t)

11: end for

12: end for

13: Jbest ← J∗(0), δbest ← 0

14: for i = 1 to Nsample do

15: δi ← (1 + δ̂i)/2

16: Evaluate J∗(δi) by Algorithm 1.1

17: if J∗(δi) < Jbest then

18: Jbest ← J∗(δi), δbest ← δi

19: end if

20: end for

21: return δbest
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design problem we introduced in section 1.3 as well as the effectiveness of the

proposed toll intensity reduction algorithms. This network has four nodes and

five directed links, as shown in Figure 1.2(a), where the link indices are high-

lighted beside the links. The network contains two OD pairs, one from A to D

(w = 1), one from B to D (w = 2). Four paths are A → D (p = 1), A → C → D

(p = 2), B→ C→ D (p = 3), B→ D (p = 4). So P1 = {1, 2} and P2 = {3, 4}. The link

travel times (min) are given by affine functions ta(xa) in the link flow variables

xa [130]: t1 = 20 + 2x1, t2 = x2, t3 = x3, t4 = 20 + x4, t5 = 2x5. In this example we

assume the extra information on link a, ea, is an estimate of the exposure to air

pollutant NO2 on the link, measured by the expected intake of NO2 [21]

ea(x) = ρca(xa)ta(xa),

where ρ = 0.1 is the average air pollution intake fraction by a commuter on the

road, which is assumed the same for all the links. ca(xa) is the NO2 concentration

on link a (ppb, parts per billion), as NO2 is a relatively reactive gaseous species

and sensitive to local traffic intensity, we assume ca to be proportional to the

traffic flow only on the link itself: ca(xa) = 5(xa), a = 1, ..., 5. Suppose there are

two user groups (M = {1, 2}) traveling on the network, their VOTs are: α1 =

1, α2 = 2, and we look at three choices of VOEs (valuation of exposure to NO2):

β1 = 0.1, β2 = 0.2, β1 = 0.2, β2 = 0.1 and β1 = β2 = 0.15.

We take the system optimal objective as the total delay on the network,

i.e., Φ(x) =
∑

a∈A xata(xa). Then we obtain the optimal link flow x∗ =

[10, 10, 20, 10, 20]T, which results in the link travel times t∗1 = 40, t∗2 = 10, t∗3 =

20, t∗4 = 30, t∗5 = 40 and the total travel time on the network is Φ(x∗) = 2000.

The expected average NO2 exposure on the links under the optimal flow x∗ are

e∗1 = 200, e∗2 = 50, e∗3 = 200, e∗4 = 150, e∗5 = 400. When there is no provision of the

air pollution exposure information (δ = 0), the optimal solution to the primal LP
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Figure 1.2: Two example networks (the numbers are link indices).

problem (1.21) is f ∗ = [10, 0, 10, 10, 0, 10, 0, 10]T, which means for OD pair

1, group 1 chooses path 1 while group 2 chooses path 2; and for OD pair 2, half

users of group 1 chooses path 3 and the other half chooses path 4 while group

2 chooses path 4. The SO flow enabling tolls are contained in the polyhedron

T (0) defined by the following linear constraints (derived from equation (1.25)

with the variables γm
w eliminated):

T (0) =
{
τ ∈ R5

+ : 10 ≤ −τ1 + τ2 + τ3 ≤ 20; −τ3 − τ4 + τ5 = 10
}

The toll intensity function used is the total toll revenue, J(τ) = x∗Tτ. For each

of the three VOE scenarios, Table 1.2 lists the info-selection vector in an optimal

solution to problem (1.37), δopt, in the solution based on Theorem 1.3, δrule, as

well as in the solution found based on one realization of the randomized SDR

algorithm 1.4 (for the reformulation (1.41) of the original problem (1.37)) with

sample size Nsample = 5, δsdp. Problem (1.47) is solved using the SeDuMi solver

in CVX [31] (which is an implementation of interior point method). The corre-

sponding optimal objective values of these solutions are also listed in Table 1.2.

We denote J∗(δ̄) as the optimal value of problem (1.27) under δ = δ̄, which is

equal to the optimal value of (1.37) corresponding solution which has its info-

selection vector δ = δ̄.
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Table 1.2: Optimal solutions for the first network example (α1 = 1, α2 = 2)

VOEs Scenario 1 Scenario 2 Scenario 3

[β1, β2] [0.1, 0.2] [0.2, 0.1] [0.15, 0.15]

Flexibility Only link selection allowed, i.e., δw,ma = δa ∀w,m

J∗(δopt) 150 0 75

Number of δopt’s 2 2 1

Selected links in δopt (1,2,3,5); (1-5) (3,4,5); (1-5) (1-5)

J∗(δrule)(a) 300 200 200

Selected links in δrule None 2 2

Flexibility OD, link selection allowed, i.e., δw,ma = δwa ∀m

J∗(δopt) 150 0 75

Number of δopt’s 64 48 32

Selected ODs and

links in δopt, e.g.,

OD2:(3,5);

OD2:(3,4,5)

OD1:3,OD2(3,4,5);

OD1:3,OD2:(2,3,4,5)

OD1:2,OD2:(3,4,5);

OD1:2,OD2:(2,3,4,5)

Flexibility User group, link selection allowed, i.e., δw,ma = δma ∀w

J∗(δopt) 0 0 0

Number of δopt’s 88 204 88

Selected groups and

links in δopt, e.g.,

group2:(3,5);

group2:(2,3,5)

group2:(3,5);

group2:(2,3,5)

group2:(3,5);

group2:(2,3,5)

Flexibility OD, user group, link selection all allowed

J∗(δopt) 0 0 0

Number of δopt’s 92160 194560 92160

Selected groups,

ODs, and links in

δopt, e.g.,

OD1-group2:(3),

OD2-group2:(5);

OD1-group2:(3),

OD2-group2:(4,5)

OD1-group2:(3),

OD2-group2:(5);

OD1-group2:(3),

OD2-group2:(4,5)

OD1-group2:(3),

OD2-group2:(5);

OD1-group2:(3),

OD2-group2:(4,5)

a The rules given in Proposition 1.3 only require link-based info. selection, so the

same δrule and J∗(δrule) also work for other flexibility cases.
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We can see that the toll intensity under no NO2 exposure information is as

high as 300 in order to minimize the total delay on the network. Provision of

the air pollution exposure information can help lower this toll intensity. For

example, disclosing the NO2 intake information of all the links to all users un-

der the second VOE scenario leads to zero toll intensity needed for minimizing

the total delay. Under both the second and the third VOE scenarios with only

link selection allowed in information design, the minimal toll vector that results

from the provision only e2 (based on the rule by Proposition 1.3) can cut the total

toll charged by one third (specifically, link 2 is qualified for item (ii) in Corollary

1.1 under the second scenario and qualified for item (ii) in Corollary 1.1 under

the third scenario). However, the rule in Proposition 1.3 does not help reduce

the toll intensity for the first VOE scenario as in this case the sets Ai, i = 1, 2, 3

are all empty. Interestingly, under this network setting, the result of applying

Corollary 1.1 is equivalent to applying Proposition 1.3. The results for other

three information design flexibility cases verify that the reduction of SO-flow

enabling toll intensity can be more significant when we have more flexibility in

the information design. For example, if user groups can be selected in addition

to the links in information scheme design, then we do not have to charge any

user under the optimal solution δopt, i.e., J∗(δopt) = 0, under all the three VOE

scenarios. I.e., we can achieve optimal flow on the network purely by extra

information provision. But note that adding one free dimension of OD in addi-

tion to link selection actually does not help improve the optimal values J∗(δopt),

which indicates the importance of having an optimization model that can help

do the trade-off between policy flexibility choices and potential performance.

We also observe that although the number of feasible solutions increases

exponentially in the size of the decision vector δ, including different free di-
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mensions in information design lead to quite different proportions of optimal

solutions out of the entire solution space. E.g., under the second scenario

(β1 = 0.2, β2 = 0.1) the optimal solutions take up only 48/210 ≈ 5% of all the

feasible solutions with both OD and link selection allowed in the information

design, which is lower than that (2/25 = 6%) if only link selection is allowed. By

contrast, under the same scenario, the optimal solutions take up 204/210 ≈ 20%

of all the feasible solutions with both user group and link selection are allowed,

which is much higher than that (2/25 = 6%) if only link selection are allowed.

For the case with the most flexible information design (selection of OD, user

group and links are all allowed) and also the largest solution space (220), we ob-

serve that there are about 9%, 19% and 9% solutions are optimal for scenario 1,

2, and 3, respectively. These proportions are almost the same with those when

only user group and link selection considered and are significantly higher than

other two flexibility cases, which indicates a potential of using solution algo-

rithms that involve random sampling, such as the ones we proposed in the pre-

vious section.

Now we apply the two algorithms we introduced in the previous section to

the MTIDP on this network. In order to test these algorithms, we choose the

two flexibility cases where the proportion of optimal solutions among all the

feasible solutions are the lowest according to the brute-force examination (see

Table 1.2). These two cases are: 1) only link selection are allowed in information

design; 2) both OD and link selections are allowed in information design. Figure

1.3 show the average performance of the two algorithms over 30 independent

tests for each of the three scenario under various Nsmaple values when only link

selection is allowed in information design. Figure 1.4 show their performance

when both OD and link selections are allowed. We can see from Figure 1.3 when
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only link selection is allowed, the value J∗(δbest) converges to the true global

minimum rather fast using either algorithm for all three scenarios of different

VOEs. In particular, we observe that on average, for any Nsample ≥ 2 at least 25%

toll intensity reduction (compared to J∗(0) = 300) can be achieved by disclosing

extra information on the set of links selected by the SDR based algorithm. By

contrast, the SUO based algorithm needs |A|+ 1 = 6 points for initial experiment

design, but even when it stars with Nsample = 6 (i.e., only using random Latin

hypercube sampling), the toll intensity reduction is quite notable. In addition,

this reduction becomes more significant as the sample size Nsample increases. E.g.,

when Nsample reaches 10, on average the toll intensity reductions under the best

solutions found by both algorithms are more than 90% of that achieved by the

true optimal solution under all three scenarios of different VOEs.

When the flexibility of OD selection is also included in information design,

we observe from Figure 1.4 that for the first two scenarios, the two algorithms

can achieve about 90% of the maximum toll reduction from the baseline level

J∗(0) = 300 when Nsample reaches 25. But for the third scenario (β1 = β2 = 0.15),

both algorithms need more than 40 samples to achieve good performance, this is

intuitive as in this scenario only about 32/45 ≈ 3% feasible solutions are optimal,

this percentage is the lowest among all three scenarios (see Table 1.2). We also

observe that the SUO based algorithm seems to converge slightly faster than

the SDR based approach for this scenario. We also noticed in our experiment

(although not shown here) that under other two flexibility cases (user group

and link selection allowed, and full flexibility case), where the proportions of

optimal solutions are relatively higher, both algorithms can almost find an opti-

mal solutions within 2 iterates (after the initial experimental design for the SUO

base algorithm and during the random sampling for the SDR based algorithm).
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Hence, the proposed solution methods are quite effective and efficient in found-

ing high quality information schemes with various flexibility.
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Figure 1.3: Average performance of Algorithm 1.2 (SUO) and Algorithm
1.4 (SDR) for the first network (only link selection allowed in
information design). Each curve represents the sample mean
of 30 independent tests, the error bar represents the 95% confi-
dence interval for the mean estimate. The dash line represent
the value of the true optimal solution J∗(δopt).

1.5.2 Example 2: Series-parallel network

The second example is a series-parallel (SP) network that represents a common

setting in traffic planning. This network has six nodes and eight directed links,

as shown in Figure 1.2(b). We only consider one OD pair: node A to B, and two

user groups M = {1, 2} with demand d1
1 = d2

1 = 10. Note that link 1 to 7 can be

regarded as local network available for those who choose to drive themselves.

Link 3 represents a bottleneck link (e.g, a single bridge or tunnel) through which

anybody who uses the local network must pass in order to start from node A to

B. Link 8 represents a separate public transit route (e.g., subway line) from note
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Figure 1.4: Average performance of Algorithm 1.2 (SUO) and Algorithm
1.4 (SDR) for the first network (both OD and link selection al-
lowed in information design). Each curve represents the sam-
ple mean of 30 independent tests, the error bar represents the
95% confidence interval for the mean estimate. The dash line
represent the value of the true optimal solution J∗(δopt).

A to B. The link delay functions follows a classic BPR formula in the form [97]

ta(xa) = t0
a + αa

1 + (
xa

ca

)βa
 , (1.50)

where t0
a is the free-flow travel time, αa, βa ≥ 0 are two parameters, ca is the link

capacity. Among the local network links, links 3, 6 and 7 have relatively larger

capacity than links 1, 2, 4 and 5. These parameters for all the links are listed

in Table 1.3. In this example, the extra information we focus on is the travel

time variance on each link, which provides some indication of the travel time

reliability. Since the separate transit line has no interaction with other traffic, we

assume it has quite stable travel time with variance e8 = 0.25. However, the local

roads are subject to non-recurrent congestions caused by interactions of traffic,

so in general the travel time uncertainty increases in travel time [85]. We assume

that the travel time variance ea = 4ta (in magnitude), ∀a ∈ {1, 2, 3, 4, 5, 6, 7}. Note

that here βm > 0 implies that users are all risk averse with utility contains a linear

combination of mean plus variance of the travel time, this functional form was
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also adopted in other network routing and travel choice model studies (e.g.,

[88, 100]). In this example, we also use total delay as the SO objective, ϕ. The

Table 1.3: Link delay function parameters for the second network example

link a 1 2 3 4 5 6 7 8

t0
a 0.1 0.1 0.2 0.1 0.1 0.2 0.2 1.25

ca 5 5 10 5 5 10 10 20

αa 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0

βa 6 6 5 6 6 5 5 1

SO-flow and the original UE flow (i.e., δ = 0, τ = 0) are

x∗ = [3.936, 3.936, 11.662, 3.916, 3.916, 7.726, 7.746, 8.338]T;

xUE = [5.481, 5.481, 16.633, 5.485, 5.485, 11.152, 11.148, 3.367]T.

The total delay ϕ(xUE) = 24.96, which is 33.7% higher than ϕ(x∗) = 18.67, because

more users choose to drive themselves under the UE flow than that under the

SO flow: under UE flow only 16.8% users choose transit while this number is

41.7% under the SO flow. The toll intensity function used for this example is

the same as the first example, which is total delay. Thus, minimizing the total

delay will require some users (at the UE flow) to switch from local routes that

uses links 1∼7 to link 8 (the transit line). Hence if we expect that when there

is no extra information (δ = 0), the toll should be applied to some of the links

1∼7 to decentralize an SO flow. Compared to the first simpler example, this

second example shows a trend that the number of paths can increase rapidly in

the network size (here this number is 5). Hence we solve either (1.38) or (1.39)

to characterize T according to (1.40). Then we solve problem (1.27) and get

τ∗(0) = [0.03, 0, 0, 0, 5.45, 0, 5.42, 0]T with J(τ∗(0) = 63.42, so there is a significant

toll on the local roads to encourage self-drivers to use transit line instead, which
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is consistent to our expectation.

To demonstrate how travel time variability information can play a role in re-

ducing the original toll intensity J∗(0) = 63.42, we look at the optimal solutions

to the MTIDP under four different scenarios of VOT and VOE distributions. In

the first three scenarios, VOTs are the same: α1 = 10, α2 = 20. The first two

scenarios seem plausible as the users who value expected travel time more also

value travel time reliability more, and the ratio αi/βi are constant over all the

users, which is 0.1 for scenario 1 and 0.2 for Scenario 2. In Scenario 1, if we

only allow link selection in information design, the optimal solution is disclos-

ing reliability measure on every local road to all the users, which cuts the tolls

on local roads by more than 50%. This is intuitive, as users all hate the risk of be-

ing delayed due to longer travel time than expected, the provision of the travel

time variation information on links 1∼7 to users can help cut the toll needed

for decentralizing a minimum-delay flow pattern if the Nash flow under τ∗(0)

is unchanged when additional information is provided. Indeed, we verify that

the Nash flow f (0) (under δ = 0 and τ∗(0) is also Nash under δopt and τ∗(δopt).

Interestingly, if we also allow user group selection in information design, the

corresponding optimal solutions show that giving the travel time reliability in-

formation of local roads only to users with lower VOT and VOE is enough, since

actually 83.38% of this group of users choose to take the transit line under f (0),

which is exactly the SO flow on link 8. This means the new information and

tolls only create incentive for group 1 to switch their route choices (taking tran-

sit instead of driving), which is enough to result in a SO flow. In Scenario 2,

the VOE’s are doubled compared to scenario 1, and this leads to a necessity in

disclosing travel time variability on the transit line in addition to that on local

roads (if all users need to receive the same set of information) in order to enforce
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a SO flow with least toll. The intuition behind this optimal solution is that as β2

increases to 4 in this scenario compared to the previous one, group 2 also has

an incentive to switch to transit line if they are only informed with the “risk” of

extra delay on the local roads, which can lead to over-high flow on the transit

line and worsen the efficiency. So the information ea imposes an “balancing” ef-

fect to keep the most efficient flow, as we have verified that f (0) remains a Nash

flow under δopt and τ∗(δopt).

In Scenario 3, everything is the same with Scenario 1 except that β1 = −2,

which is negative, meaning users from group 1 become risk lovers [88]. This

leads to a dramatic change in the optimal information schemes. As we checked

that in this case f (0) is still a UE flow under δopt and τ∗(δopt), and this means

providing variability of travel time on transit lines, e8, to user group 1 will en-

courage them to use link 8 instead of link 1 ∼ 7, and this is exactly reflected in the

optimal solutions δopt, for both flexibility levels. Although seems unlikely, this

example shows a caveat in optimal information design when some users behave

very differently than other. If we had thought β1 = 1 while in fact it is −2, we

would have discouraged those risk lovers to switch to transit by not reporting

the travel time variability on the transit line, we then need a much higher toll on

the local road to make this up in order to maintain an SO flow. Therefore, our

model provides an automatic way of capturing such possibilities and thus en-

suring system efficiency by distributing information accordingly. By contrast,

although the VOT and VOE values seem plausible and quite likely in the last

scenario, the optimal information schemes δopt derived give us little intuition

and are hard to imagine and reasoning. This illustrates that even a quantita-

tive difference in system parameters can lead to very different and nontrivial

optimal information distribution schemes. Therefore, an system optimization
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model such as the one we proposed is useful.

Table 1.4: Optimal solutions for the second network example

VOTs, VOEs Scenario 1 Scenario 2 Scenario 3 Scenario 4

[α1, α2], [β1, β2] [10, 20], [1,2] [10, 20], [2, 4] [10, 20], [-2, 2] [12, 16], [3, 5]

Flexibility Only link selection allowed, i.e., δw,ma = δa ∀w,m

J∗(δopt) 30.49 3.38 57.59 0.27

Number of δopt’s 1 1 1 1

Selected links in δopt (1-7) (1-8) (8) (1,2,3,6,8)

Flexibility User group, link selection allowed, i.e., δw,ma = δma ∀w

J∗(δopt) 30.38 2.38 57.59 0.22

Number of δopt’s 2 4 4 6

Selected groups and

links in δopt, e.g.,

group1:(1-7);

group1:(1-7),

group2:(8)

group1:(1-7);

group1:(1-7),

group2:(8)

group1:(8);

group1:(8),

group2:(8)

group1:(3),

group2:(1,2,3,5,6,8);

group1:(3),

group2:(1,2,3,4,6,8)

Figure 1.5 show the average performance of the two algorithms over 30 in-

dependent tests for each of the four scenario under various Nsmaple values when

both user and link selection are allowed in information design. We observed

that our SDR based approach performs remarkably well under the first three

scenarios: the Algorithm 1.4 can exactly find an optimal solution or nearly opti-

mal solution starting from Nsample = 1. I.e., in these three scenarios, δ1 = (1− δ̂1)/2

is exactly an optimal info-selection vector (where δ̂1 is extracted from λ1q1qT
1 , the

approximate rank one matrix of the SDP solution Zopt) (see line 4 in Algorithm

1.4). The explanation of this is that these three scenarios all have f (0) as a UE

flow under δopt and τ∗(δopt), hence we expect that solving the problem is easier

since in this case the NLMIP problem (1.41) can be reduced to a LMIP problem
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(see Remark 1.4). By contrast, the SUO base algorithm performs just normally

with the best objective found J∗(δbest) gradually approaching the optimal value,

but with no sign of “early discovery”. This interesting observation indicates

that the proposed SDR base algorithm can sometimes uncover an optimal solu-

tion or near optimal solution very fast for certain problem instances due to the

deep recognition of the problem structure of MTIDP (i.e., a QCQP), which can

notably outperform surrogate model based sampling algorithms that only uses

general response surfaces or meta-models fitted by the samples.
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Figure 1.5: Average performance of Algorithm 1.2 (SUO) and Algorithm
1.4 (SDR) for the second network when both user and link se-
lection are allowed in information design. Each curve repre-
sents the sample mean of 30 independent tests, the error bar
represents the 95% confidence interval for the mean estimate.
The dash line represent the value of the true optimal solution
J∗(δopt).

We test for robustness of our algorithm by solving 50 randomly gener-
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ated instances of MTIDP using random VOT and VOE parameters for the

network. Specifically, the VOTs are independent and uniform distributed as

α1 ∼ U(0, 10), α2 ∼ U(10, 20), and VOEs are independent and uniformly dis-

tributed as β1 ∼ U(0, 2), β2 ∼ U(2, 4). I.e., we assume that on average each

group of uses has notably smaller valuation to travel time reliability compared

to expected travel time; and intuitively, users with higher VOT also have higher

VOE. We test the case where both user and link selections are allowed in the

information design. Figure 1.6 show the results. The upper two plots show

the histograms of the ratio J∗(δbest)/J∗(0) obtained by two algorithms (averaged

over 30 independent runs) over 50 independently generated random problem

instances under two different choices of Nsample. The ratio J∗(δbest)/J∗(0) quanti-

fies the relative toll intensity reduction potential under the best solutions found

compared to the case with no reliability information), the smaller this ratio is,

the more significant toll intensity reduction is expected. The lower two plots

show the values of J∗(δbest) obtained by our algorithms (averaged over 30 inde-

pendent runs) for each problem instance under two choices of Nsample. This val-

ues are put together with the true optimal value J∗(δopt) and the initial minimal

toll intensity needed J∗(0) when there is no travel time reliability information.

We observe (from both the upper and lower plots) that ∼ 95% of the time,

our two algorithms can find good information scheme solutions that result in

decent toll intensity reduction. But in very few “bad” problem instances, the

resultant information solutions actually increase the toll intensity needed for an

SO flow. The average of the mean ratio J∗(δbest)/J∗(0) being 0.31 and 0.32 for

the SUO based and SDR based algorithm, respectively, under Nsample = 30 and

being 0.18 and 0.25 for the SUO based and SDR based algorithm, respectively,

under Nsample = 50. Hence in average (over 50 problem instances) the SUO based
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algorithm achieves a slightly higher toll intensity reduction benefit than the SDR

based approach. However, we note that each run of the the SDR based approach

is much faster than the SUO approach, for example when Nsample = 50 (Nsample =

30), each run of the SUO Algorithm takes 9 ∼ 33s (3.5 ∼ 9s) while each run of the

SDR Algorithm takes only 1 ∼ 6s (0.5 ∼ 6s), In addition, while the overhead of

SUO approach is slowly increasing over the samples (due to increasing work in

fitting the response surface), more than two thirds of the computational time for

the SDR based Algorithm is spent on solving the SDP to first get a covariance

matrix, each of the subsequent sampling is relatively efficient and independent

of the total random sample size. Hence we expect that the SDP approach can

have more improvement given the same computational time.

We want to point out that the ratio J∗(δbest)/J∗(0) can be used to bound the

“sub-optimality”(in terms toll intensity reduction) of the best solution found by

our algorithm, δbest, by observing that

J∗(0) − J∗(δbest)
J∗(0) − J∗(δopt)

≥ J∗(0) − J∗(δbest)
J∗(0)

= 1 − J∗(δbest)
J∗(0)

. (1.51)

Therefore, the results of the above random instance test show that the perfor-

mance of our algorithms are satisfactory.

Finally, via the same random instance test, we also compute the upper bound

provided by an optimal solution δ∗0 to the reduced LMIP problem assuming f (0)

is still Nash (see Remark 1.4). Given the flexibility of both link and user selection

in information design, Figure 1.7(a) shows the upper bound J∗(δ∗0) compared

with the true optimal value J∗(δopt) and the original minimum toll intensity

without information J∗(0) over those 50 random problem instances, and Fig-

ure 1.7(b) plots the histograms of the ratios J∗(δopt)/J∗(0) and J∗(δ∗0)/J∗(0). It can

be seen that the gap between the upper bound J∗(δ∗0) and the true optimal value
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Figure 1.6: Performance of Algorithm 1.2 (SUO) and Algorithm 1.4 (SDR)
for the second network over 50 random problem instances
when both user and link selection are allowed in information
design. Upper plots are the histograms of the average ratio
J∗(δbest)/J∗(0) over 30 independent trials. Lower plots show
three types of objective values for 50 problem instances: 1)
J∗(δbest) (averaged over 30 runs, in red and blue lines); 2)J∗(δopt);
and 3) J∗(0). (Each type of objective values for 50 problem in-
stances are connected together).

J∗(δopt) is notable for almost half of the problem instances, but for almost all the

scenarios J∗(δ∗0) is significantly lower (less than 60%) than J∗(0). Therefore, in

practice, even by solving the easier LMIP problem, we can expect a decent toll

reduction by using the information design specified by δ∗0.
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Figure 1.7: Comparison of the true optimal value J∗(δopt), the upper bound
J∗(δ∗0) and the baseline value J∗(0) for the second network over
50 random problem instances when both user and link selec-
tion are allowed in information design. (Each type of objective
values for 50 problem instances are connected together in the
left plot)

1.6 Conclusion and Extensions

In this study we have explored how strategic distribution of extra spatially re-

solved travel information can help reducing the toll intensity needed for achiev-

ing system-optimal flow on a traffic network. Based on the assumptions that

user have an linear additive perceived cost function and the underlying quan-

tity of the new information is link additive, We have proved a fundamental

results characterizing the feasible toll set for enforcing an optimal flow under

new information. We have discussed when “full information” may not be able

to lower this toll intensity and when “partial information” is guaranteed to lead

to positive toll intensity reduction. A general model of MTIDP was formulated

together with two practical solution approach. Results of representative numer-

ical examples show satisfactory performance of the proposed our algorithms in

dealing with various restrictions in information design as well as distributions

of user behavior parameters. Now we are experimenting on larger networks,

for which each function evaluation by solving the large-sized LPs (Algorithm
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1.1) can take up-to hours or even days. In this case, an efficient solution algo-

rithm will be highly desired. We are also exploring how to scale up the SDR

approach to efficiently obtain a initial covariance matrix Σ in the first place for

larger applications.

There can be a number of natural and interesting extensions to this work. For

example, instead of using total cost aggregated from link flows, we can define

the SO objective in terms of user-weighted cost (e.g., total perceived dis-utility

related to delay). We can add another dimension in the information design

problem when more than one types of new information are available. In ad-

dition, as we can see from the numerical examples that the optimal information

schemes are quite sensitive to the behavior parameters, so taking behavior and

demand uncertainty into account in the design of robust information distribu-

tion schemes can be an interesting future exploration. Besides, model extensions

can be studied to consider more realistic factors such as pre-system perceived

cost and indirect information acquisition through subjective estimate of spacial

correlation and network-effect among different groups of users.

1.7 Appendix

1.7.1 Proof of Proposition 1.3

Proof: The key is to prove that for one link a ∈ A0 (i.e., x∗a > 0) that is in either of

the three sets Ai (i = 1, 2, 3), ∃ τnew ∈ R|A| with J(τnew) < J(τ) such that updating

δ = 0 by setting δa = 1 (we denote δnew the new info-selection vector) will keep

f (0) a UE flow. Then Theorem 1.3 implies that min
τ∈T (δnew)

J(τ) < J(τ(0)).
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1) Suppose link a ∈ A1, and we set δnew
a = 1 and δnew

a′ = 0 ∀a′ , a. Then if we

construct a toll vector τnew such that τnew
a = max{0, τa−βm̂ae

∗
a} and τnew

a′ = τ(0)a′ ∀a′ ,

a, the perceived cost of any path p that contains link a by any group m ∈ M does

not decrease since

If βme∗a ≥ βm̂ae
∗
a : g(δnew)m

p = g(0)m
p + βme∗a − τa + τ

new
a

= g(0)m
p + βme∗a − τa +max{0, τa − βm̂ae

∗
a}

≥ gm
p (0) ≥ γ(0)m

w;

Otherwise : g(δnew)m
p = g(0)m

p + βme∗a − τa + τ
new
a

≥ γ(0)m
w +min{τa, βm̂ae

∗
a} − τa +max{0, τa − βm̂ae

∗
a}

= γ(0)m
w ,

and the perceived cost of any other path by any group is unchanged, i.e.,

gm
p (δnew) = gm

p (0) ∀m ∈ M, w ∈ W, p ∈ Pw with a < p. Thus f (0) (in particular,

no users use link a) remains a UE flow under τnew and δnew.

2) Suppose link a ∈ A2 is selected, ma ∈ Ma and we set δnew
a = 1 and δnew

a′ =

δa′ ∀a′ , a. If we construct τnew such that τnew
a = τa − βmae

∗
a and τnew

a′ = τa′ ∀a′ ,

a, then f (0) remains Nash under δnew and τnew. Similarly, this is because the

perceived cost on any path p that contains link a by any group m ∈ M with

βme∗a = βmae
∗
a does not change since by construction τnew

a + βmaδ
new
a e∗a = τa, and for

other groups m ∈ M (i.e., with βme∗a , βmae
∗
a),

If βme∗a > βmae
∗
a : g(δnew)m

p = g(0)m
p + βme∗a − τa + τ

new
a

= g(0)m
p + βme∗a − τa + τa − βmae

∗
a

> g(0)m
p ≥ γ(0)m

w;

If βme∗a < βmae
∗
a : g(δnew)m

p = g(0)m
p + βme∗a − τa + τ

new
a

≥ γ(0)m
w + (βm̄ − βm)e∗a + βme∗a − τa + τa − βmae

∗
a
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= γ(0)m
w ,

and the perceived cost gm
p (δnew) = gm

p (0) ∀m ∈ M, w ∈ W, p ∈ Pw with a < p.

3) Finally, suppose link a ∈ A3 is selected and we set δnew
a = 1 and δnew

a′ =

δa′ ∀a′ , a. If we construct τnew such that τnew
a = τa − βm̄ae

∗
a and τnew

a′ = τa′ ∀a′ , a,

then again, f (0) remains Nash under δnew and τnew. This is because for any group

m ∈ M that has βme∗a = βm̄ae
∗
a, the perceived cost on any path p that contains link

a is not changed, since by construction, τnew
a + βm̄aδ

new
a e∗a = τa, and for the other

groups m ∈ M (i.e., with βme∗a , βmae
∗
a),

If m ∈ Ma (then βme∗a < βm̄ae
∗
a by definition of m̄a) :

g(δnew)m
p = g(0)m

p + βme∗a − τa + τ
new
a

= γ(0)m
p + βme∗a − τa + τa − βm̄ae

∗
a

< γ(0)m
p ≤ g(0)m

p′ ∀p′ ∈ Pw, w ∈ Wm
a with a < p;

If m < Ma and βme∗a < βm̄ae
∗
a : g(δnew)m

p = gm
p (0) + βme∗a − τa + τ

new
a

≥ γ(0)m
w + (βm̄a − βm)e∗a + βme∗a − τa + τa − βm̄ae

∗
a

= γ(0)m
w ,

If m < Ma and βme∗a > βm̄ae
∗
a : g(δnew)m

p = gm
p (0) + βme∗a − τa + τ

new
a

= g(0)m
p + βme∗a − τa + τa − βm̄ae

∗
a

> g(0)m
p ≥ γ(0)m

w ,

(in particular, the first of the above three cases indicates that under δnew and τnew,∑
p∈Pw:a∈p

f m
p (0) = dm

w , ∀w ∈ Wm
a , m ∈ Ma with βme∗a ≤ βm̄ae

∗
a), and again gm

p (δnew) =

gm
p (0) ∀m ∈ M, w ∈ W, p ∈ Pw with a < p.

Note that in all of the above three scenarios (i.e., a ∈ Ai, i = 1, 2, 3), the con-

structed τnew has τnew
a < τ(0)a and τnew

a′ = τ(0)a′ ∀a′ , a, thus by the property of toll
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intensity function (Assumption 1.5), it is true that J(τnew) < J(τ(0)). Therefore,

the result follows by Theorem 1.3. ■

1.7.2 Proof of Corollary1.1

In this proof, the relevant variables and the sets Ai, i = 1, 2, 3 are defined in either

the statement or the proof of Proposition 1.3.

First we proof item (i). Note that when βm = β ∀m ∈ M and βe∗a > 0, A1 and A2

can be simplified to

A1 = {a : τ(0)a > 0, µa = 0}, A2 = {a : τa > 0, µa = 1, τ(0)a ≥ βe∗a}, (1.52)

and A3 = ∅ since µa ≤ 1. Thus a link a ∈ A that qualifies conditions in (i) must

lie in either A1 or A2. Now let’s consider the argument given in Remark 1.2.

Specifically, starting from δ = 0 and τ = τ(0), we scan over the links a ∈ A,

each time we find a new link a ∈ A that is qualified for (i) (i.e., in either A1 or

A2 defined in (1.52), we update δnew
a = 1, δnew

a′ = δa′ ∀a′ , a, and we update

the toll vector from τ to τnew by reducing its entry corresponds to link a and

keeping all the other entries unchanged (see the proof of Proposition 1.3). A key

note here is that after such an update of δa (suppose a ∈ Ai), the set Ai \ {a} is

just the remaining links in the original set Ai defined in (1.52), because τnew
a =

τ(0)a ∀a ∈ Ai \ {a}. As a result, since each update keeps f (0) Nash and results in

J(τnew) < J(τ). There fore, we have the result for case (i).

Then we show item (ii). We first consider two cases for a specific link a that

is qualified for the conditions in (ii): 1) µa = 1; 2) µa > 1.

1) If µa = 1, then we show that a ∈ A2. Since a is used by all the shortest paths
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of OD pairs w ∈ Wa, from Lemma 1.1 we know that the group |M| (i.e., the group

with the highest VOT) must uses link a under f (0), and they must be the only

group that uses link a under f (0) since we know µa = 1 and βme∗a ≥ βm+1e∗a ∀m =

1, ..., |M| − 1. Thus we deduce that Ma = {m ∈ M : βm = β|M|} and βmae
∗
a = β|M|e

∗
a, it

follows that the set A2 reduces to

A2 = {a : x∗a > 0, τ(0)a ≥ β|M|e∗a > 0}. (1.53)

And by definition of m′, we know m′ = |M|, so τ(0)a ≥ βm′e∗a ↔ τ(0)a ≥ β|M|e∗a , so

we deduce that a ∈ A2.

2) If µa > 1, then we show that a ∈ A3. Firstly, since βme∗a ≥ βm+1e∗a ∀m =

1, ..., |M| − 1, by definition of m̄a and m′, we deduce that m′ = m̄a < |M|. Then we

deduce by Lemma 1.1 that Ma = {m̄a, m̄a + 1, ..., |M|} and∑
p∈Pw:a∈p

f m
p = dm

w ∀w ∈ Wm
a , m ∈ Ma with βme∗a < βm̄ae

∗
a.

since a is used by all the shortest paths between OD pair w ∈ Wa. Secondly,

due to Ma = {m̄a, m̄a + 1, ..., |M|} (as we derive above) and βme∗a ≥ βm+1e∗a ∀m =

1, ..., |M| − 1, we deduce that ∄ m ∈ M \Ma s.t. βme∗a < βm̄ae
∗
a. Combining these two

observations, we know the set A3 is simplified to

A3 = {a : x∗a > 0, τ(0)a ≥ βm̄ae
∗
a > 0}, (1.54)

since m̄a = m′, so we deduce that a ∈ A3.

Now consider looping over all of those links a ∈ A that are qualified for (ii),

we can verify that each update of δ to δnew and τ to τnew keeps f (0) a Nash flow

and results in J(τnew) < J(τ). And in addition, similar as case (i), after such an

update of δa (suppose a ∈ Ai), the set Ai \ {a} is just the remaining links in the

original set Ai defined in (1.53) or (1.54), because τnew
a = τ(0)a ∀a ∈ Ai \ {a}. Hence

we have the result. ■
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1.7.3 Design of a polynomial time algorithm for Proposition 1.3

Here we discuss the key idea for designing a polynomial time algorithm that

characterizes the sets Ai (i = 1, 2, 3) defined in Proposition 1.3. Suppose

( f (0), τ(0), η(0)) is an optimal primal and dual solution to problem (1.38) un-

der δ = 0. Here f (0)w,m
a is the flow of user group m between OD pair w on link a

under δ = 0; and (ηw,m
n − ηw,m

tw ) is the minimum generalized cost a user of group m

would have incurred if she had started from node n to her destination tw.

By the above definition of f (0)w,m
a a ∈ A,m ∈ M,w ∈ W, we know that

Ma = {m ∈ M : f (0)w,m
a > 0 for at least one w ∈ W},

∑
p∈Pw:a∈p

f (0)m
p = f (0)w,m

a . (1.55)

By the above definition of ηw,m
n n ∈ N,m ∈ M,w ∈ W, we claim the following.

Lemma 1.3 For some constant c, g(0)m
p − γ(0)m

w ≥ c ∀p with a ∈ p is equivalent to

ĉ(0)m
sw,as
+ αmt∗a + τ(0)a + η(0)w,m

at
− η(0)w,m

sw
≥ c, (1.56)

where ĉ(0)m
u,v denotes the minimum generalized cost on any path from node u to v for

user group m.

Proof: By definition of ĉ(0)m
sw,as

, we know that g(0)m
p − γ(0)m

w ≥ c ∀p with a ∈ p is

equivalent to

ĉ(0)m
sw,as
+ αmt∗a + τ(0)a + ĉm

sw,tw − γ(0)m
w ≥ c

since for any path p ∈ Pw with a ∈ p, g(0)m
p ≥ ĉm

sw,as
(0)+αmt∗a + τa(0)+ ĉm

sw,tw . We also

know the minimum generalized cost γ(0)m
w = η(0)w,m

sw − η(0)w,m
tw , then plug this into

the LHS of the above relation, we have that

ĉ(0)m
sw,as
+ αmt∗a + τ(0)a + ĉ(0)m

sw,tw − γ(0)m
w
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= ĉ(0)m
sw,as
+ αmt∗a + τ(0)a + η(0)w,m

at
− η(0)w,m

tw − (η(0)w,m
sw
− η(0)w,m

tw )

= ĉ(0)m
sw,as
+ αmt∗a + τ(0)a + η(0)w,m

at
− η(0)w,m

sw
,

where the first equality is by definition of η(0)w,m
n . Thus have the result. ■

Therefore, based on relation (1.55), Lemma 1.7.3, and any fast shortest path

algorithm (for finding ĉ(0)m
u,v defined in (1.56)), we can clearly design a polyno-

mial time algorithm to find sets Ai, i = 1, 2, 3.
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CHAPTER 2

TRAFFIC STABILITY UNDER REAL-TIME EN-ROUTE AIR POLLUTION

INFORMATION

In this chapter, we discuss the potential of providing specially chosen additional

information in mitigating the negative effect on real-time routing caused by in-

accuracy in travel time reporting. Our model analysis and experiment discus-

sion augment the previous literature on traffic stability (mostly focus on the con-

vergence to the user equilibrium flow under user choice adjustments) by adding

the dimension of real-time flow dynamics under user choices and endogenous

information feedback (with possibly varied accuracy).

Travel time information has been estimated and provided to drivers to help

them make better routing decisions and alleviate congestion. However, because

of challenges in data collection and sensor working principal, travel time infor-

mation is often delayed and hence inaccurate. This inaccuracy can misguide

motorists and result in unstable traffic patterns that exacerbate congestion. To

alleviate this negative effect of travel time information on traffic flow, we ex-

plored the potential of providing drivers with real-time average en-route air

pollution information (in addition to travel time). We developed a new queue-

ing model that considers choice behavior of drivers provided with both travel

time and air pollution information. Our model captures the impact of real-

time air pollution information and the subsequent effects on traffic patterns.

Results of our theoretical and numerical analysis indicate that provision of real-

time air pollution information to travelers may help stabilize traffic. We further

investigated how demand, choice behavior, emission and environmental pa-

rameters can affect this traffic stability enhancing effect. Such benefits are also
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demonstrated in our microscopic simulation of traffic on the George Washing-

ton Bridge using real-world data. We find that by posting real-time air pollution

information, the average number of waiting vehicles and en-route vehicle stops

can be reduced by as much as 69.8% and 17.1%, respectively, under a 5-min de-

lay in travel time information. Our results shed light on a novel behavior-based

transportation management strategy: informing drivers of real-time en-route air

pollution information can assist dynamic routing, enhance traffic stability, and

mitigate congestion. The proposed queueing model also provides a tractable

way of studying real-time traffic dynamics under user choices and provision of

endogenous information.

2.1 Introduction

2.1.1 Background and motivation

Traffic congestion and the associated air pollution is one of the most important

challenges facing society today. In the United States alone, congestion in 2015

cost $160 billion in wasted fuel and time loss [108], which is about $1000 per

commuter (and much more in metropolitan areas like Los Angeles and New

York City) [125]. When the public health costs due to air pollution from vehicle

emissions are included, such as asthma and respiratory illnesses, the total cost

of traffic congestion is even much higher. The World Health Organization has

estimated that around 3 million deaths each year worldwide are attributed to

outdoor air pollution [127], to which motor vehicle emissions are a major con-

tributor [136]. Pollution from fine particulate matter (referred to as PM2.5), a
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key factor linked to premature deaths, is strongly associated with motor vehi-

cle emissions. PM2.5-related damage is estimated to be hundreds of billions of

dollars per year worldwide [76].

To mitigate congestion and cope with growing demand for mobility, many

cities have turned to “smart” traffic management by leveraging information

technology. Adoption of various tools such as dynamic message signs (DMS)

and smart-phone apps enable drivers to make better routing decisions. More-

over, the use of sensor networks allows for monitoring and improved use of

the urban transportation infrastructure to an unprecedented extent. These tools

are integrated into the Advanced Traveler Information System (ATIS), which

provides travel time or/and traffic condition information to help drivers with

their routing decisions [14, 74, 105]. The left plot in Figure 2.1 shows an exam-

ple of a DMS near the west entrance to the George Washington Bridge in New

York City, which displays the estimated travel times for the upper and lower

levels of the bridge. Although travel time is the type of information most com-

monly provided by the ATIS, more general travel related information such as

fuel/emission costs or air pollution levels can certainly be included [105].

A key issue in the provision of travel time information is that travel time es-

timates are usually lagged on account of the working principle of traffic detec-

tors/sensors [34, 89] and/or post-processing/prediction algorithms [123]. Such

lagged information does not well-reflect the real-time traffic condition and can

misguide the drivers, which may create unstable flow distribution (according to

the study of such service systems with heavy traffic [98]). In reality due to ca-

pacity constraints, unstable traffic distribution can worsen the congestion. The

negative effect of inaccurate pre-trip travel information on user behavior and
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traffic distributions was observed and discussed by relevant studies (e.g., [14]),

although the problem scale and focus are different from ours. In this study,

we focus on real-time system performance and provide a model analysis that

quantifies how much inaccuracy in the travel time reporting (measured by in-

formation delay here) the system can tolerate as a function of key parameters

such as demand and user preferences. In addition, we propose providing real-

time en-route air quality information as a remedy to the negative effect caused

by delayed travel time information. This is based on the following considera-

tions. First, sensor technologies have achieved significant advancements that

make it practical to measure and disclose real-time air pollution information to

travelers in a timely manner (e.g., 20 sec) [133, 139]; (by contrast, travel time

estimates are usually delayed (e.g. by 15 mins) because of technical restrictions

[34, 79]). Second, the concentration of certain pollutants such as ultra fine par-

ticles (UFP) [72] Thus in these senses, monitored on-road air pollution infor-

mation can reflect more closely the real-time traffic condition. In addition, air

pollution information can easily be included on DMS or in smart-phone apps

and displayed to travelers (see the example in the right plot in Figure 2.1). More

importantly, providing drivers with the air pollution information can help raise

their environmental and health awareness, and thus has the potential to help

them internalize the externalities of traffic congestion and emissions. Empirical

evidence shows that people do value the availability of air pollution informa-

tion that they can incorporate into their daily travel decisions (e.g., [8, 95]).
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Figure 2.1: DMS at the George Washington Bridge (GWB). Travel time in-
formation (left panel), source: http://www.panynj.gov. The
information of average PM2.5 concentration on each level of the
GWB are “added” artificially (right panel).

2.1.2 Literature review and our contribution

There has been a stream of literature on dynamic routing models under user

choices, and in particular, the convergence to the equilibrium flow of these mod-

els (e.g., [23, 56, 115, 135]). For example, local and global stability of the equilib-

rium flow under day-to-day route choice adjustment process was analyzed in

[135] based on previous experienced travel time. A link-based dynamical sys-

tem model of day-to-day traffic adjustment on networks is studied in [56] with

discussion of the properties of the system evolution including the stability of

the equilibrium point. Authors in [23] studied the property of traffic equilib-

rium under node-by-node adaptive routing decisions based on new available

real-time travel time information to the destination at each new node. Con-

trol measures such as dynamic pricing (e.g., [57]) or signal plans (e.g., [115])

in-response to day-to-day flow adjustment have also been proposed to facilitate

the system convergence to the equilibrium flow on the traffic network. There

are also a increasing number of studies on the effect of information provision on
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traffic flow distributions. For example, studies have shown via either theoretical

analysis [80] or laboratory experiments [103] that under certain cases exogenous

pre-trip information such as weather condition or road-work can worsen traffic

distribution (in terms of social welfare) on parallel routes connecting a common

origin-destination (O-D) pair. But they assumed that the information is accu-

rate such that it is consistent with that experienced by the users. By contrast,

authors in study [14] did an interesting experiment study on the impact of in-

accurate pre-trip information on day-to-day route choice behavior, and useful

implications for ATIS design were discussed.

However, there is no work to our best knowledge on how inaccurate in-

formation (such as delayed travel time estimate which is common in reality

[34, 89]) can affect the real-time route choice dynamics and the resultant traffic

flow patterns or proposed countermeasures to improve real-time system perfor-

mance under inaccurate information. The stability of real-time adaptive node-

to-node routing under travel time information was discussed in [23], but it was

assumed that this information is accurate. In this study, we focus on discussing

how delayed travel time information can cause undesired traffic patterns in

routing choices. We show that given a set of competitive links serving fixed

demand on the same O-D pair, delayed travel time information can cause un-

stable traffic, in which case the traffic distributions over different links keeps

oscillating around the equilibrium. That is, the stale equilibrium flow (also re-

ferred to in the previous studies (e.g., [56, 135]) cannot be achieved. To remedy

such negative effect, we also analyze the stability condition of the equilibrium

flow under the provision of additional information that better reflects real-time

traffic status.
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The time delay problem is also found in many other service systems, such

as call centers, hospitals, and amusement parks [98]. In these systems, queue

length or waiting time information can be announced to customers for im-

proved system management, but the announced information is usually esti-

mated on the basis of past arrivals [65]. Thus, the development of relevant

analytical methods to understand the impact of giving customers delayed in-

formation in such queueing services has attracted much attention from many

research communities and is growing steadily (e.g., [65, 98, 99, 126]). A de-

terministic infinite-server queueing model with user choices was analyzed in

recent studies [98, 99]. The authors showed that delays in information can have

significant impacts on the performance of the system and provided insights into

system stability under lagged queue length information. They found that the

stability of the queue lengths can be characterized by a “critical delay” such

that the queue lengths will converge to equilibrium when the information lag is

smaller than this critical delay, but will oscillate indefinitely otherwise [98].

We generalize the queueing models of [98, 99] to consider a state-dependent

service rate with more than one category of information provided to users. The

state-dependent service rate is needed for representation of the relationship be-

tween traffic density and speed [68] and is usually explicitly included in dy-

namic routing models (e.g., [23]). We derive the critical delay under this new

model and discover that traffic stability can be enhanced by providing travelers

with real-time air pollution information in addition to an estimate of travel time.

The air pollution information we adopted is in the form of the average en-route

concentration of certain type of pollutant that is easy to measure and relatively

sensitive to local traffic volume (as mentioned earlier).
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In the rest of the paper we derive analytical results, conduct numerical and

simulation experiments, and perform sensitivity analysis of key system param-

eters to illustrate the potential of disclosing real-time air pollution information

in helping enhance traffic stability in real-time dynamic routing and mitigate

congestion. To facilitate the derivation of the analytical results and description

of the experimental data, we provide a notation table below that summarizes

the main variables used in our model.

Variable Notation Units
Number of alternative links N /
Total vehicle arrival rate λ veh/min
Proportion of vehicles choosing link i pi /
Number of vehicles on link i Qi veh
Average travel time on link i Ti min
Delay in travel time information ∆ min
Average air pollution concentration on link i Ci µg/m3

Cross-sectional area of the “air box” for each link A m2

Dilution rate constant of the pollutant κ min−1

Background air pollution concentration Cb µg/m3

Willingness to pay (WTP) of travel time saving βt $/min
WTP of air pollution concentration reduction βc $/(µg/m3)
Travel time function in the number of vehicles Qi g(Qi) min
Emissions source strength function in Qi h(Qi) µg/m3/s/veh
Total vehicle emission source strength on link i S i µg/m3/s

Table 2.1: Notation of the main variables in the model

2.2 Model

We consider a simple traffic network that has N links (indexed by i ∈ {1, . . . ,N})

serving traffic with fixed demand from a common origin region to a common

destination region. At time t, both an estimate of the average travel time on

each link with a common delay of ∆, Ti(t − ∆) (min), and average air pollutant

concentration on each link of a certain air pollutant Ci(t) (µg/m3) are made avail-
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able to drivers near the origin. Before presenting the details of our model, we

made two main assumptions regarding the travel-time-related parameters and

ambient environment conditions on alternative links, respectively.

Assumption 2.1 The N alternative links are non-overlapping and physically separated

with sufficient space in between. The N alternative links have the same length, fleet mix,

free-flow travel speed and traffic capacity.

Under this assumption, the alternative links have the same travel time function

and emission source function in terms of the number of vehicles on the link (as

will be defined more precisely later), and travelers cannot switch to the other

link in the middle of the trip.

Assumption 2.2 The N alternative links have the same emission dispersion condition

and the same background air pollution concentration. The background concentration

changes in a much longer time scale than the traffic dynamics and hence can be regarded

as time invariant within the problem period to our interest (e.g., half a hour).

Notice that the above two assumptions are made mainly for tractability of

our theoretical model (the symmetry in the dynamical system equations) that

we exploit in deriving the key insights. It well models the routing settings of

competing alternatives such as parallel (but separate) tunnels or parallel (but

separate) bridge links that connect to the same pair of origin and destination

regions and have similar geometric configurations and ambient conditions. The

symmetry condition does not necessarily hold in other real settings. However,

our model can still be useful for understanding key qualitative implications in

those settings. For instance, we will see that the phenomenon predicted by our
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analytical model is also observed in the simulation experiment where the sym-

metry assumption is relaxed (one link has larger traffic capacity than the other).

2.2.1 Traffic flow model

For purposes of traffic stability analysis, we study the traffic flow by use of

queueing models. For a given total traffic demand represented by the total ve-

hicle arrival rate λ (min−1), we denote the arrival rate for link i by λi (min−1). We

assume that there are no connections between links (Assumption 2.1), so that

once a motorist enters one link they cannot switch to another one.

To model the traffic flow on a link as a queueing system, we can think of

the space occupied by an individual vehicle plus the headway between two

adjacent vehicles as one “server, which goes into service at the time the vehicle

enters the link and ends service when the vehicle reaches the end of the link

[11]. We assume that the length L (m) of each link is much larger than the length

of a server, so the number of servers on a link can be very large. We model

the number of vehicles on link i as a state-dependent queueing process with a

queue length of Qi(t) [11], so average vehicle density on link i is ρi(t) = Qi(t)/L

(m−1). A key feature of traffic flow is that an increase in vehicle density leads

to a slowdown in the traffic, hence we assume that there is a positive, smooth,

decreasing function µ(·) such that the service rate on link i is µi(t) = µ(Qi(t))

(min−1) [68]. Function µ is the same for all links by Assumption 2.1. By this

construction, the average travel time on link i is also a function g(·) of the queue

length:

Ti(t) = µi(t)−1 = µ(Qi(t))−1 := g(Qi(t)). (2.1)
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2.2.2 Air pollution model

In addition the travel time, information on the measured air pollution can be

posted to influence the routing choices of drivers. We denote the average pol-

lutant concentration on link i by Ci(t). As studies show, on-road or near-road

air pollution is strongly affected by traffic. Since we assume that the links are

spatially separated (Assumption 2.1), we model Ci(t) explicitly in terms of the

traffic density ρi(t) or the number of vehicles Qi(t) on link i. Following a common

approach used in the modeling of transient air quality [67], we construct an “air

box” around the link segment that represents the space where the average con-

centration is measured (see Figure 2.2). Under given meteorological conditions,

the average concentration in the air box evolves over time and depends on the

emission source strength and the dispersion intensity, hence it can be modeled

by the mass balance equation [29, 67]:

Ċi(t) = S i(t) − κ(Ci(t) −Cb), (2.2)

where κ > 0 is the pollutant dilution rate constant that represents the disper-

sion intensity (min−1) [67]; κ depends mainly on meteorological conditions and

the chemical/physical properties of the pollutant, so we assume it to be ex-

ogenous [29]. By Assumption 2.2, we use a common κ for the links. Cb is the

background concentration (µg/m3), which is assumed constant and common to

all the links during the analysis period by Assumption 2.2. S i(t) is the emis-

sion source strength (µg/m3/min) on link i, which is modeled as the product

of the vehicle density ρi(t), the average vehicle emission factor ri(t) (µg/m), the

average vehicle speed vi(t) = L/Ti(t) (m/min), and the reciprocal of the cross-

sectional area A (m2) of the air box. Note that given the common meteorological

conditions and fleet mix on the links, ri(t) can be approximated as a smooth
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function r of average speed vi(t) [136]: ri(t) = r(vi(t)). Thus by equation (2.1), the

emission source strength S i(t) can be expressed as

S i(t) =
r(vi(t))vi(t)Qi(t)

AL
=

r(L/g(Qi(t)))
Ag(Qi(t))

· Qi(t)

= h(Qi(t)) · Qi(t), (2.3)

where the function h(x) = xr(L/g(x))
Ag(x) represents the average emission strength

(µg/m3/min) per vehicle in the queue, which is nonlinear. Specifically, for the

functional form of h(·), we can substitute into equation (2.3) the empirically fit-

ted emission factor function r(·) (in terms of speed) from the emission model and

the travel time function g(·) (in terms of queue length) from the traffic model. Or

we can directly fit a function h(·) using the queue length and data on the average

vehicle emission strength by running the traffic and emission models together.

Therefore, by equation (2.3) we can re-write equation (2.2) as

Ċi(t) = h(Qi(t)) · Qi(t) − κ(Ci(t) −Cb). (2.4)

When the pollutant of concern is inert at the local scale (e.g., PM2.5 or carbon

monoxide (CO)) and the wind speed is low with stable atmospheric conditions,

the value of κ is small, and thus Ci depends more on earlier emissions. When

the pollutant is reactive (e.g. nitrogen oxides (NOx)) or wind speed is high with

unstable atmospheric conditions, the emitted pollutants have higher dispersion

rates [29, 67]. This latter case corresponds to higher values of κ, and Ci is less

affected by earlier emissions and more representative of current emissions and

traffic conditions.

Remark 2.1 Equation (2.4) is defined for any type of pollutant emitted by vehicles to

our interest. In our numerical and simulation experiments we use PM2.5 as an illustra-

tive example just because the data is more available for this type of pollutant. We want
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to emphasize that the same analysis and insights apply to other pollutants such as CO,

NOx and ultra fine particles (UFP). In fact, on/near road PM2.5 level usually contains

a large part from background concentration Cb that is comparable or higher than that

contributed by the local traffic. But for those pollutants that are more dominated by local

vehicle emissions or more reactive (such as UFP or NOx), it is typically the case that

emission source S is larger relative to Cb or κ is larger, so reporting the concentration

level for such pollutants may have a bigger effect on routing choices and traffic distri-

butions than PM2.5 (as will be explained in detail in our discussion section). Thus the

qualitative observations from our experiments also hold for other types of pollutants.

A (m2)

Average emission source 
strength Si (μg/m3/min) 

Average concentration 
Ci (μg/m3) inside the 

“air box”

Link i with traffic 
density ρi (veh/m)

Figure 2.2: Vehicle queue and air concentration model for a link segment.

2.2.3 Route choice model

We use the multinomial logit (MNL) model to describe motorists’ route choice

dynamics. The MNL model is commonly used in the modeling of discrete

choices in transportation [121]. In our MNL model, the perceived utility from
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information of average travel time with a delay of ∆, Ti(t − ∆), and the air pol-

lutant concentration Ci(t) measured real-time is (−βtTi(t − ∆) − βcCi(t)), where

βt > 0 and βc ≥ 0 are motorists’ marginal dis-utilities from the travel time and

the air pollution, respectively. According to the economics literature, βt and βc

are usually measured by the willingness to pay (WTP) [121] for the per-unit

saving in travel time ($/min) and per-unit reduction in the air pollution level

($/(µg/m3)), respectively. Hence we refer to βt and βc as WTPs in the sequel.

Thus, the probability that a motorist will choose link i is

pi(T(t − ∆),C(t)) =
exp(−βtTi(t − ∆) − βcCi(t))∑N

j=1 exp(−βtT j(t − ∆) − βcC j(t))
, (2.5)

where we define the vectors T(t−∆) = {Ti(t−∆), i = 1, ...,N} and C(t) = {Ci(t), i =

1, ...,N}, respectively, as the delayed travel time information on the links and

real-time air pollution concentration information on the links.

The main objective of our analysis was to study the traffic dynamics when

both values of C(t) and T(t − ∆) are provided. To do this, we analyzed a fluid

model of traffic instead of the actual stochastic process, which is more difficult

[98]. More importantly, the fluid model enabled us to study the mean dynamics

of the traffic system when the number of arrivals is large [98, 99], which is usu-

ally the case for road traffic. Since the fluid model is deterministic, the choice

probability given in equation (2.5) is the proportion of drivers that join link i.

Thus, in our fluid queueing model, at time t the motorists join link i at the rate

of (also a function of T(t − ∆) and C(t))

λi(T(t − ∆),C(t)) = λpi(T(t − ∆),C(t)) =
λ exp(−βtTi(t − ∆) − βcCi(t))∑N
j=1 exp(−βtT j(t − ∆) − βcC j(t))

. (2.6)

Using the models discussed above, we can analyze the stability of the traffic

densities ρi, i = 1, ...,N, on the individual links. Since the traffic density on link
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i is defined as ρi = Qi/L, the results are similar to those that can be derived by

analyzing the stability of the queue lengths Qi, i = 1, ...,N. Thus we describe the

results in queue lengths in the following section.

2.3 Results

In this section, we analyze our fluid queueing model to examine traffic stability.

Of particular interest is the derivation of the critical delay in the travel time in-

formation as a function of the parameters βt, βc. If the lag in the posted travel

time is less than the critical delay, the vehicle densities will gradually synchro-

nize across all links and reach a stable balance; otherwise, the vehicle densities

on different links remain asynchronous, i.e, the system is unstable.

2.3.1 Analytical results

By results from the basic queueing fluid model of traffic [98], together with the

air pollutant concentration from equation (2.4) and the vehicle arrival rate from

equation (2.6), we have the following system of symmetric 2N-dimensional de-

lay differential equations (i = 1, ...,N):

Q̇i(t) = λi(T(t − ∆),C(t)) − µi(t)Qi(t)

= λpi(T(t − ∆),C(t)) − µi(t)Qi(t)

=
λ exp

[−βtTi(t − ∆) − βcCi(t)
]∑N

j=1 exp
[
−βtT j(t − ∆) − βcC j(t)

] − Qi(t)
Ti(t)

=
λ exp

[−βtg(Qi(t − ∆)) − βcCi(t)
]∑N

j=1 exp
[
−βtg(Q j(t − ∆)) − βcC j(t)

] − Qi(t)
g(Qi(t))

, i = 1, ...,N;

Ċi(t) = S i(t) − κ[Ci(t) −Cb]
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= S (Qi(t)) − κ[Ci(t) −Cb]

= h(Qi(t)) · Qi(t) − κ[Ci(t) −Cb], i = 1, ...,N, (2.7)

where Ti(t) = g(Qi(t)) and h(·) are the positive, smooth functions defined earlier.

Suppose there exists a positive root Q∗ for function q(Qi) := g(Qi)
Qi
− λ

N with

q′(Q∗) > 0 (q′ denotes the derivative of q), then the equilibrium solution of the

system of equations (2.7) is

Q1 = Q2 = ... = QN = Q∗;

C1 = C2 = ... = CN =
1
κ

h(Q∗) · Q∗ +Cb. (2.8)

Now we will discuss the system of equations given in (2.7) using a nu-

merical example where we have two parallel single-lane links (N = 2) of the

same length, L = 1 (mile), and a free-flow speed of 60 (mile/hour). The fit-

ted travel time in terms of the queue length is g(Qi) = 0.0526Qi + 1.0 (min).

The average emission strength for PM2.5 in terms of the queue length is h(Qi) =

1.176 exp(−0.0058Qi) (µg/m3/min) for an on-road air box of cross-sectional area

A = 15 (m2). We used Cb = 35 (µg/m3) for the background concentration, and

κ = 6 (min−1) for the dilution rate. The WTP for travel time was taken to be

βt = 0.6 ($/min). Further details on these estimates are given in Appendix B.

We assumed that the total arrival rate was λ = 30 (veh/min) and that the WTP

for air pollution was βc = 0.2 ($/(µg/m3)). The initial conditions we used are

Q1 = Q∗ + 20, Q2 = Q∗ − 20; Ci = h(Qi) · Qi +Cb, i = 1, 2. Figure 2.3 illustrates the

stability outcome under two different time-lag scenarios for posting of travel

time information: ∆ = 4 (min) and 6 (min). We can see that when the time lag is

∆ = 4 (min) the average traffic densities ρ1, ρ2 and the average PM2.5 concentra-

tions C1, C2 on the two links balance out after about t = 100 (min). However if
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the time lag ∆ increases to 6 (min), the traffic densities and PM2.5 concentrations

continue to oscillate and don’t converge to an equilibrium. It turns out in this

example that the traffic densities and PM2.5 concentrations will be synchronous

if the time lag ∆ is less than 5.425 (min); otherwise, the system will continue to

oscillate (and never settle down). More generally, there exists a critical delay ∆cr

in the posting of travel time information such that the traffic densities on both

links will converge to the equilibrium solution (2.8) if ∆ < ∆cr, but will keep

oscillating otherwise.
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Figure 2.3: Example: λ = 30, βc = 0.2, ∆ = 4 (upper), ∆ = 6 (lower).

To characterize the traffic stability we observed, we analyzed the system of

nonlinear delay differential equations given in (2.7) via nonlinear dynamics.

This leads to our first theorem below, the proof of which is provided in the

Appendix A.

Theorem 2.1 Define the following quantities:

ξ = g′(Q∗); ϕ = [g(Q∗) − ξ · Q∗]/g(Q∗)2;
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η = h(Q∗) + h′(Q∗) · Q∗;

a = λβtξN−1; b = λβcηN−1;

B = ϕ2 + κ2 − a2 − 2b; D = (ϕκ + b)2 − a2κ2;

Ω = (−B +
√

B2 − 4D)/2.

If Ω < R++, then the equilibrium solution 2.8 of system 2.7 is stable for all ∆ > 0;

Otherwise, it is stable if ∆ < ∆cr and unstable if ∆ ≥ ∆cr, where

∆cr =
1
√
Ω

arccos
(
− bκ

a(κ2 + Ω)
− ϕ

a

)
. (2.9)

If there is no air pollution information, we can assume that motorists have no

perceived cost for exposure to air pollution, thus βc = 0. Therefore, the stability

condition in this case reduces to the following: If βt ≤ λ−1ξ−1ϕN, the equilibrium

solution 2.8 is always stable; otherwise, we obtain the critical delay by substi-

tuting b = λβcη
−1
N = 0 in equation (2.9). This enables us to rigorously compare

the stability implications for the cases with and without posting of air pollution

information.

Figure 2.4 shows the behavior of the system under the same input and ini-

tial conditions as the example in Figure 2.3 with delay ∆ = 4 (min), except that

we set βc = 0 to represent the case without posting of air pollution informa-

tion. We can see that the traffic queues oscillate with a similar magnitude but

at a greater frequency than in the case with air pollution information posted

(βc = 0.2 ($/(µg/m3))) and the longer delay, ∆ = 10 (min) (see the lower plot

in Figure 2.3). The critical delay for the case without air pollution information

is ∆cr = 3.533 (min), which is 35% shorter than for the case with air pollution

information. This implies that disclosure of air pollution information can signif-

icantly help improve traffic stability: without posting of air pollution informa-
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tion, the timeliness requirement of travel time posting is much more stringent.
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Figure 2.4: Example: λ = 30, βc = 0, ∆ = 4.

Actually such a stability-enhancing effect is guaranteed under a mild as-

sumption on the total emission source function, as stated in our second main

theorem. For convenience in stating the results, we denote ∆yes
cr and ∆no

cr as the

critical delays (defined in equation (2.9)) for the cases with (βc > 0) and without

(βc = 0) posting air pollution information, respectively. The proof of this result

is also provided in the Appendix A.

Theorem 2.2 If the total emission source strength (as a function of queue length x

defined in equation (2.3)) S (x) = h(x)·x is strictly increasing at the equilibrium solution

Q∗ defined in (2.8), i.e.
dS (x)

dx
=

d(h(x) · x)
dx x=Q∗ > 0, (2.10)

then we have: 1) if ∆cr < ∞, then ∆cr is strictly increasing in βc ≥ 0; 2) if ∆no
cr = ∞, then

∆
yes
cr = ∞.

Theorem 2.2 has the following important implications: 1) When condition

(2.10) holds, the critical delay threshold (if it is finite) under the provision of air
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pollution information is always longer (i.e., less stringent for the timeliness of

travel time estimation/posting) than otherwise; 2) If the users attach more value

to the air pollution (i.e., health implications) in their routing decision, the critical

delay threshold becomes longer, i.e., the system can tolerate even extended time

lag in posting travel time information to still achieve stable traffic; Moreover, 3)

For situations where the system is always stable (regardless of how long the in-

formation delay ∆ is) without provision of air pollution information, it remains

stable when air pollution information is added.

Notice that the total emission source strength S (Q) = h(Q) · Q is generally

higher when there are more vehicles on the link (i.e., Q is bigger) (see for exam-

ple, Figure 2.13 in Appendix B). Hence the function S (Q) is in general strictly in-

creasing in Q at the equilibrium solution Q∗. Therefore, the sufficient condition

(2.10) holds in general and is a natural result of the typical relationship between

total emission source strength and the number of vehicles on the link. Theorem

2.2 is therefore quite general, indicating that informing drivers of air pollution

information can improve traffic stability and mitigate congestion effectively in

general cases, especially when the provision of travel time information is hin-

dered by delays.

2.3.2 Simulation results

To verify the phenomenon predicted by our analytical model, we conducted a

stochastic simulation of the east-bound morning traffic (7:00–8:00 AM) on the

George Washington Bridge, which is modeled by two links: one for the upper

level (with 4 lanes) and the other for the lower level (with 3 lanes). Traffic flow
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was simulated by the cellular automaton model [92], which is a commonly-used

microscopic traffic simulation model that can reproduce key features of traffic

flow such as stop-and-go conditions [92]. In each simulation interval, informa-

tion on the travel time estimate and PM2.5 concentration was fed back to the

arriving driver, who then chose either the upper level or the lower level with

probabilities computed by equation (2.5). Travel time information was delayed

by 5 minutes. We use PM2.5 for our experiment since its hourly average back-

ground concentration data for the GWB area is available [96]. If we could get

data for other pollutants such as NOx, we can easily do the same experiment

by using new Cb, κ and function h, but the qualitative results will stay consis-

tent, as we discussed in Remark 2.1. In order to simulate pollutant level in a

discrete time setting, PM2.5 concentration was modeled by discretizing the sec-

ond equation in (2.7), and an empirical function h(Q) was used. Stochasticity

in our simulation included: 1) vehicle arrivals following a Poisson process, 2)

randomness in vehicle deceleration [92], and 3) white noise in the air pollution

concentration to represent modeling errors.

Figure 2.5 shows summary statistics on the total numbers of vehicles and

PM2.5 concentrations on link 1 and link 2, respectively. In the case without the

disclosure of air pollution information, numbers of vehicles and PM2.5 concen-

trations on the two links show persistent oscillation. This unstable pattern is sta-

tistically significant and very similar to the results derived from the analytical

model. In contrast, both numbers of vehicles and PM2.5 concentrations become

stable after a short period of variation when PM2.5 concentration information

is provided. This result verifies the traffic-stabilizing effect of disclosure of air

pollution information. Note that in this example the variation of PM2.5 concen-

tration is quite small (within 2µg/m3), given the data we used for the simula-
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tion. However, the concentration level can vary more significantly if a different

pollutant or emission rate function is used such that emission rate changes more

dramatically as vehicle speed changes. We mainly focus on the qualitative ob-

servations through our example (see Remark 2.1).

We also observe that without air pollution information, there is an ascending

trend in the numbers of vehicles on account of accumulation of vehicles waiting

to enter the links, but this does not occur when air pollution information is

posted. The reason is that with improved traffic stability across links, higher

demand can be accommodated due to the decline in the frequency of service

rate reductions caused by traffic oscillation. This is an interesting observation,

as each link only had a finite number of servers.

In addition, Figure 2.6 shows the aggregate results of average travel time

and choice probabilities of the two levels on the GWB over 103 simulation runs.

We observe oscillations of travel time and link choice probabilities, which again

reflect unstable traffic pattern under no provision of air pollution information.

In contrast, the travel time and choice probabilities stay quite stable under pro-

vision of PM2.5 concentration information, with only notable variations in the

beginning. Note that because the lower lever of GWG has one less lane (smaller

supply) compared to the upper level, choice probability is generally higher for

the upper level. In addition, from Figure 2.5 we made an observation that when

no air pollution information is posted the number of cars on two links have a

gradual increasing trend due to accumulation of waiting vehicles. Accordingly,

here in 2.6 we see that when there is no air pollution information, the travel

time also rises as time goes on, which again reflects the formation of upstream

congestion that validates the simulation model. Figure 2.7 further plots the total
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number of vehicles together with the number of vehicles traveling on the lanes,

we can see a clear increasing gap between the two curves, which indicates an

accumulation of vehicles waiting to enter the lanes. And there are more vehi-

cles waiting to enter the lanes at the lower level since it has fewer lanes (thus

fewer number of servers). Posting real-time air pollution information, however,

prevents this phenomenon by maintaining more balanced service rates across

links that serve the demand better.
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Figure 2.5: Numbers of vehicles and PM2.5 concentrations (µg/m3) on the
two links: air pollution information posted (upper two plots)
versus not posted (lower two plots). The dark center line on
each curve represents the average of 103 independent simula-
tion runs; the lighter-colored area surrounding the dark line on
each curve represents the 95% confidence interval for the mean
estimate.

Moreover, in Table 2.2 we report the average numbers of waiting vehicles

outside the links (AWV) and the total numbers of vehicle-stops (TVS) during the

simulation period of 300∼2700 s. These measures again indicate that disclosure

of air pollution information helps mitigate traffic congestion. Additional details

on the simulation data and model as well as results under different delay and
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Figure 2.6: Average travel time (s) and choice probabilities of two links:
air pollution information posted (upper two plots) versus not
posted (lower two plots). The dark center line on each curve
represents the average of 103 independent simulation runs; the
lighter-colored area surrounding the dark line on each curve
represents the 95% confidence interval for the mean estimate.
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WTPs are provided in the Appendix B.

Table 2.2: Other outputs (mean [standard deviation] of 103 samples)

Scenario AWV TVS

PM2.5 info. posted 2.6 [0.590] 13730.4 [259.5]

PM2.5 info. not posted 8.6 [0.493] 16562.9 [173.2]

2.4 Discussion

By Theorem 2.2 as well as our numerical and stochastic simulation results, we

have shown that disclosure of air pollution information to travelers enhances

traffic stability and mitigates congestion in simple transportation networks.

Now we will examine such benefits systematically under variations of the sys-

tem parameters. By Theorem 2.1, traffic stability is affected by a number of

factors: 1) the total arrival rate λ and the number of links N; 2) motorists’ WTPs

βt and βc; and 3) the emission source strength and the dispersion parameters.

Via numerical analysis we will discuss the quantitative effects of these three

groups of parameters on system performance. For analysis of the sensitivity to

the specific model parameters of concern, we keep the other parameters fixed at

the values used in the example in Figure 2.3. Empirical insights, policy implica-

tions, and practical recommendations are also discussed.

2.4.1 Total arrival rate λ and number of links N

Figure 2.8 shows a plot of the critical delay ∆cr for various arrival rate λ, and

for both N = 2 (two links) and N = 3 (three links). We can see that when λ is
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low (i.e., during the off-peak period), traffic across links always converges to the

equilibrium. However, as λ increases (to 26 or higher when N = 2, and to 39 or

higher when N = 3), the queues remain asynchronous when information delay

∆ reaches or exceeds the critical level, ∆cr. The critical delay ∆cr decreases with λ,

but at a decreasing rate. This implies that when the arrival rate is relatively high

(i.e., during peak hours), the improvement in system stability which stems from

the disclosure of air pollution information can be substantial and consistent,

even over a wide range of arrival rates (e.g., compare Figure 2.4 to the upper

plot in Figure 2.3). If we increase the number of links from 2 to 3, the system is

always stable under the same range of λ as in Figure 2.8. This implies that under

fixed total demand and information delay, the larger the number of links, the

more stable the traffic network. In addition, the critical delay ∆cr stays constant

if λ/N is held fixed. This invariance property can be deduced from Theorem 2.1

(see Appendix A). Therefore, making air pollution information available on a

larger number of links can help achieve greater stability in terms of the traffic

distribution.
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Figure 2.8: Stability region and critical delay for N = 2 and N = 3, under
various total arrival rate λ.

95



2.4.2 Behavior parameters βt and βc

Figure 2.9 shows a plot of the critical delay as a function of the WTP for travel

time, βt, and the WTP for air pollution, βc. Each blue curve displays the value of

∆cr (if Ω > 0) as a function of βt (left plot) or βc (right plot), with the other model

parameters fixed. Each dashed red line corresponds to the case Ω ≤ 0 when

the system is stable for all ∆ > 0. The blue curves show that ∆cr is monotoni-

cally decreasing in βt (which is proved rigorously in the Appendix A for the case

where g′(Q∗) > 0) and at a decreasing rate, while ∆cr is monotonically increas-

ing in βc (consistent with Theorem 2.2) and at an increasing rate. The lengths

of the dashed red lines illustrate that the width of the “always stable” region is

increasing in βc and decreasing in βt. These observations imply that traffic stabil-

ity improves as βt decreases or as βc increases. Therefore, a key conclusion from

these comparisons is that the traffic distribution in the network can achieve a

stable equilibrium without oscillation provided that the marginal rate of substi-

tution βc/βt ((µg/m3)/min) is sufficiently large, that is, that motorists attach a

certain value to the perceived impact of air pollution compared to that of travel

time. For example, when βt increases to 0.6 ($/min), the traffic system can attain

stability if the WTP for air pollution, βc, reaches 0.32 (µg/m3) (about half of βt),

even when the travel time information delay is as long as 10 minutes. Note also

that if there is no air pollution information posted, motorists will make their

routing decisions unaware of the level of air pollution (βc = 0). In this case, a

delay in the travel time information as short as ∆ = 6 (min) will cause unstable

queues for any βt ≥ 0.36 (See the lowest blue curve in the left plot in Figure

2.9). Again, these observations show the substantial value of disclosure of air

pollution information in the stabilization of traffic.
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Figure 2.9: Stability region and critical delay under various βt and βc. Each
curve in the left plot shows ∆cr as a function of βt at a fixed βc

(from βc = 0 to 0.4 from bottom to top, in increments of 0.04);
each curve on the right plot shows ∆cr as a function of βc at a
fixed βt (from βt = 0.3 to 0.9 from top to bottom, in increments
of 0.06).

2.4.3 Emission strength parameter c and dispersion factor κ

In the left 3D plot in Figure 2.10, we show the critical delay ∆cr as a function of

the dilution rate constant κ and the coefficient c in the average emission source

strength function: h(Q) = c · exp(−0.0058Q). Note that given the number of vehi-

cles on a link, c is proportional to the average emission strength per vehicle. We

can see that with the other parameters held fixed, the dependence of the stability

of the traffic density on these emission and dispersion parameters is not mono-

tone. When the dilution rate is very low (κ ≤ 0.5), the traffic can attain a stable

condition and endure a larger ∆cr under combinations of larger κ and smaller

c. When the dilution rate increases to κ > 0.5, ∆cr surges as soon as the average

emission strength per vehicle exceeds 0.4. In particular, traffic can always attain

stability when 0.5 < κ < 3c (i.e., the triangular ceiling in the 3D mesh). ∆cr drops
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dramatically when κ exceeds 3c, but the rate of this reduction decreases there-

after. The rate of the decrease is higher for large values of c. In this region, the

system also becomes slightly more stable as the emission strength parameter c

increases. These observations imply that under relatively low dispersion inten-

sity (e.g., low wind speed, stable atmospheric conditions), which is conducive to

accumulation of air pollution, a larger emission source factor c can lead to more

effective stability improving effect of disclosure of air pollution information.

When the emission strength parameter c is not very high and the dispersion

intensity is relatively high, posting of air pollution information has an almost

constant positive effect in terms of enhancing traffic stability. The “always sta-

ble” situation is achieved at moderate to high dilution rate and large emission

strength factor, as reflected in the triangular region (roughly 0.5 < κ < 3c). It is in

this region of the emission–dispersion space that posting of air pollution infor-

mation yields the greatest gain in traffic stability. The explanations are intuitive:

1) Under such emission and dispersion conditions, the on-road pollutant con-

centration can notably reflect different queue lengths for different links, thereby

affecting travelers’ route choice, which in turn rebalances traffic (this can be seen

from the equilibrium pollution concentration in solution 2.8, as κ appears in the

denominator and h is proportional to c); 2) with relatively larger κ, vehicle emis-

sions are dispersed and diluted fast enough, thus near-source measurement of

on-road air pollution gives a more accurate real-time indicator of traffic densi-

ties than does the posted estimate of the travel time, which usually suffers from

a time lag.
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Figure 2.10: Stability region and critical delay under various values of the
emission strength coefficient c and various dilution rates κ.
The 3D mesh (left) shows the log-scaled ∆cr as a function of
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region. The 2D plot (right) is a top view of the 3D mesh; the
color indicates the value of the critical delay ∆cr in log scale.

2.5 Conclusions

This study analyses how disclosing on-road air pollution information to drivers

may help improve traffic stability for proactive congestion management. Our

theoretical model shows that there can be notable benefits gained by this ap-

proach to traffic control, especially when the timeliness of travel time report-

ing is limited. Sensitivity analysis of demand, behavior, and environmental

parameters indicates that disclosure of air pollution information has a robust

stability-enhancing effect on traffic. In particular, such effect is observed even if

the travelers have relatively low valuation on the air pollution information, and

the effect is most evident when the pollution dispersion intensity is moderate to

high and vehicle emission strength factor is large. Simulation of morning peak-

period traffic on the George Washington Bridge shows that posting real-time air

pollution concentration on each level of the bridge results in smoother and more
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stable traffic. Our findings indicate that disclosure of air pollution information,

which affects travelers’ routing behavior, can be an effective tool for alleviating

congestion.

For future research, we need to investigate the effect of the proposed strat-

egy more comprehensively using driving simulator or a real-world experiment.

Study on the related sensing method and risk communication approaches are

also necessary for improving the efficacy of the proposed strategy and bring it

closer to real-world application.

2.6 Appendix A: Proofs of the Main Theorems, Related Results

In this last section we provide the proofs of the key analytical results, includ-

ing the stability condition (Theorem 2.1) and some related results, as well as

a sufficient condition of the stability enhancing effect of posting air pollution

information (Theorem 2.2).

2.6.1 Proof of Theorem 2.1

Proof: To understand the stability of (2.7) near the equilibrium solution (2.8),

we first add perturbations ui and wi (i = 1, ...,N) to the equilibrium solution (2.8)

Qi(t) = Q∗ + ui(t), i = 1, ...,N;

Ci(t) =
Q∗h(Q∗)
κ

+Cb + wi(t), i = 1, ...,N. (2.11)
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Substituting (2.11) into system (2.7), we get

u̇i(t) = λ
exp[−βtg(Q∗ + ui(t − ∆)) − βcCi(t)]∑N

j=1 exp[−βtg(Q∗ + u j(t − ∆)) − βcC j(t)]
− Qi(t)

g(Qi(t))
, i = 1, ...,N;

ẇi(t) = h(Q∗ + ui(t)) · (Q∗ + ui(t)) − h(Q∗) · Q∗ − κwi(t), i = 1, ...,N. (2.12)

Performing a Taylor expansion on the RHS of (2.12) around point ui(t) =

wi(t) = 0 (i = 1, ...,N), we obtain the linearized version of (2.12) as

u̇i(t) = − λ
N2 [βtg′(Q∗)((N − 1)ui(t − ∆) −

∑
j,i

u j(t − ∆))

+ βc((N − 1)wi(t − ∆) −
∑
j,i

w j(t))] −
g(Q∗) − g′(Q∗)Q∗

g(Q∗)2 ui(t), i = 1, ...,N;

ẇi(t) =
[
h′(Q∗) · Q∗ + h(Q∗)

]
ui(t) − κwi(t), i = 1, ...,N. (2.13)

Note that analyzing the stability of system (2.7) is equivalent to analyzing

the stability of the linearized system (2.13), this is based on non-trivial results

in analysis of nonlinear dynamical systems [59, 116]. Although system (2.13)

is linear, it includes many equations that need to be analyzed. However, we

will show that through a series of transformations we can simplify the analy-

sis of these 2N equations to 2 equations. To this end, we apply two groups of

transformations {vi(t)} and {xi(t)} defined as

v1(t) =
N∑

i=1

ui(t);

v2(t) = u1(t) − u2(t);

...

vN(t) = uN−1(t) − uN(t);

x1(t) =
N∑

i=1

wi(t);

x2(t) = w1(t) − w2(t);

...

xN(t) = wN−1(t) − wN(t),
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and the change of variables

ξ = g′(Q∗);

ϕ =
1

g(Q∗)
− ξQ∗

g(Q∗)2 ;

η = h(Q∗) + h′(Q∗) · Q∗. (2.14)

Then system (2.13) is equivalent to

v̇1(t) = −ϕv1(t);

v̇2(t) = − λ
N

(ξβtv2(t − ∆) + βcx2(t)) − ϕv2(t);

...

v̇N(t) = − λ
N

(ξβtvN(t − ∆) + βcxN(t)) − ϕvN(t);

ẋ1(t) = ηv1(t) − κx1(t);

ẋ2(t) = ηv2(t) − κx2(t);

...

ẋN(t) = ηvN(t) − κxN(t). (2.15)

If we pair up the ith equation and the (N + i)th equation (i = 1, ...,N) in (2.15),

we notice that only two variables vi and xi are involved in these two equations.

Therefore, this transformation decouples the variables originally involved in

system (2.13). This simplifies the analysis significantly.

The solution to the first equation in (2.15) is v1 = c1 exp(−ϕt) with constant

c1, so it is stable since ϕ = q′(Q∗) > 0. Then we know that the (N + 1)th equation

in (2.15) is also stable since κ > 0 and η is finite. To analyze the rest 2(N − 1)

equations in (2.15), we notice that the paired up ith and (N + i)th equations in

(2.15) have the same form in terms of variables xi and vi for all i = 2, ...,N, hence

we only need to analyze one such pair. Now to explore the stability of equation
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i and equation (N + i), i ∈ {2, ...,N}, we can substitute the following exponential

expressions

vi(t) = ai exp(rt), i = 2, ...,N;

xi(t) = bi exp(rt), i = 2, ...,N. (2.16)

Thus, for each i = 2, ...,N, substituting (2.16) into the ith and the (N + i)th

equations in (2.15), we get

air = − λ
N

[ξβtai exp(−r∆) + βcbi] − ϕai, i = 2, ...,N;

bir = ηai − κbi, i = 2, ...,N. (2.17)

Using the second equation in (2.17), we solve for ai in terms of bi and obtain for

i = 2, ...,N

ai =
κ + r
η

bi,

then substitute this back to (2.17), we get

(κ + r)(ϕ + r)
η

= − λ
N

[
ξβt(κ + r)
η

exp(−r∆) + βc

]
. (2.18)

With the transcendental equations for parameter r, it only remains for us to

find the transition between stable and unstable solutions. Characteristic equa-

tions of the form (2.17) are often studied in order to understand changes in the

local stability of equilibria of delay differential equations. Thus, it is impor-

tant to determine the values of the delay at which there are roots with zero real

part. When parameter r crosses the imaginary axis, the stability of the equilib-

rium changes. In the fully non-linear system this transition generally occurs in a

Hopf bifurcation, in which a pair of roots crosses the imaginary axis and a limit

cycle occurs. Thus, to find the critical delay for the change of stability, we set
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r = iω, ω ∈ R and substitute this in (2.18). This gives

exp(−iω) = [cos(ω∆) − i sin(ω∆)] = − (ϕ + iω)N
λξβt

− βcη

ξβc(κ + iω)
,

which is equivalent to

−λξβt(κ + iω)[cos(ω∆) − i sin(ω∆)] = (ϕ + iω)(κ + iω)N + λβcη. (2.19)

Setting the real and imaginary parts for Equation (2.19) to zero, we obtain the

following system of equations

−λβcη + (ω2 − ϕκ)N = λξβtκ cos(ω∆) + λξβtω sin(ω∆);

N(ϕ + κ)ω = −λξβtω cos(ω∆) + λξβtκ sin(ω∆). (2.20)

Solving (2.20) for sin(ω∆) and cos(ω∆), we obtain

sin(ω∆) =
−λβcηω + Nω(κ2 + ω2)
λξβt(κ2 + ω2)

;

cos(ω∆) =
−λβcηκ − Nϕ(κ2 + ω2)
λξβt(κ2 + ω2)

. (2.21)

So based on (2.21), using the equation sin(ω∆)2 + cos(ω∆)2 = 1, we have

λ2ξ2β2
t (κ2 + ω2)2 = [−λβcηω + Nω(κ2 + ω2)]2 + [λβcηκ + Nϕ(κ2 + ω2)]2,

we can factor out a term (κ2 + ω2) on the RHS and cancel that of the LHS and

through rearrangement. This yields an expression that sets a 4th order polyno-

mial of ω to 0

ω4 + Bω2 + D = 0. (2.22)

The expressions for coefficients B and D in (2.22) are

B = κ2 + ϕ2 − a2 − 2b;

D = (ϕκ + b)2 − a2κ2,
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where we define

a = λβtξN−1;

b = λβcηN−1. (2.23)

Since we have ω2 ≥ 0, Equation (2.22) has real solutions if only if W0 , ∅,

where the set

W0 := R+ ∩
−B ±

√
B2 − 4D
2

.
Now we also claim that ω = 0 cannot be a solution to (2.21). This is because

when ω = 0, we have a contradiction for the second equation in (2.21), since ∆

is finite and η, ϕ > 0,

cos(0) = 1 =
−λβcηκ − Nϕκ2

λξβtκ2
< 0.

It hence follows that (2.21) has real solution of ω if only if the set

W := R++ ∩
−B ±

√
B2 − 4D
2

 , ∅.
Thus if we haveW , ∅, let Ω ∈ W, by substituting it into the second expres-

sion of (2.21) we have the following due to symmetry of the cosine function,

cos(
√
Ω∆) =

−λβcηκ − Nϕ(κ2 + Ω)
λξβt(κ2 + Ω)

= − bκ
a(κ2 + Ω)

− ϕ
a
. (2.24)

Note that there are infinite number of solutions of ∆ to the transcendental

equation (2.24) due to periodicity of cosine function. However, we are interested

in the smallest solution to (2.24) which we call it the critical delay: ∆cr. ∆cr

determines the stability region of the equilibrium (2.8) due to Lemmas 1 & 2

that we will prove later.
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Note that for any Ω ∈ W, the smallest solution of (2.24) is

∆(Ω) =
1
√
Ω

arccos
(
− bκ

a(κ2 + Ω)
− ϕ

a

)
. (2.25)

Now a key observation is that ∆(Ω) defined in (2.25) is decreasing in Ω, this

is because both
1
√
Ω

and arccos
(
− bκ

a(κ2 + Ω)
− ϕ

a

)
are non-negative and decreasing in Ω.

Hence when W , ∅, we want to find Ω∗ = maxW. Note that if W , ∅,

then it must be true that
√

B2 − 4D ≥ 0, it follows then that −B +
√

B2 − 4D ≥

−B −
√

B2 − 4D, so we can deduce

Ω∗ = maxW =
−B +

√
B2 − 4D
2

. (2.26)

And clearly, we haveW , ∅ ⇔ Ω∗ ∈ R++.

Then the smallest solution ∆ = ∆cr to Equation (2.24) is

∆cr =
1
√
Ω∗

arccos
(
− bκ

a(κ2 + Ω∗)
− ϕ

a

)
. (2.27)

Therefore, by Lemmas 1 & 2 (see Section 2.1), we conclude that if Ω∗ ∈ R++,

then the equilibrium (2.8) of system (2.7) is stable if only if ∆ < ∆cr; Otherwise

(Ω∗ < R++), the equilibrium (2.8) is always stable (Ω∗ and ∆cr are defined in (2.26)

and (2.27), respectively). ■
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2.6.2 Related results of Theorem 2.1

Two lemmas needed for Theorem 2.1

One important part for the proof of Theorem 2.1 is to show that whenever the

time delay ∆ in travel time provision exceeds the smallest solution to the tran-

scendental equation (2.24) (which we defined as ∆cr in (2.27)), the system will

stay unstable. In other words, as ∆ increases from 0 to ∞, the real part of the

eigenvalues of the linearized system switches sign only once (from negative to

positive) when ∆ crosses ∆cr.

For example, Figure 2.11 shows different solutions ∆ to the transcendental

equation (2.24) under various total arrival rate λ (veh/min) given other param-

eters fixed. We call these curves “Hopf curves” [113, 116], each of which depicts

one system parameter (∆ here) as a function of another parameter (λ here) when

there exists a pair of pure imaginary eigenvalues of a dynamical system ((2.7)

here). We need to show that under a given λ, if ∆ increases to ∆cr (the critical

dalry calculated by (2.27), which is on the lower left curve in Figure 2.11), the

system changes from stable to unstable and remains unstable as ∆ increases.

To show this, we use perturbation techniques. Let ∆1,∆2, ...,∆∞ be the solu-

tions of the transcendental equation (2.24) (in particular ∆1 = ∆cr). Consider the

ith solution ∆i for any i = 1, 2, ..., suppose that we make a small perturbation on

the order of ϵ∆p (ϵ ≪ 1), i.e.,

∆ = ∆i + ϵ∆p. (2.28)

Then the root r of Equation (2.17) corresponding to ∆i will be also slightly per-
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turbed from the pure imaginary value it would take at ∆ = ∆i, we can write

r = iω + ϵ(ix + y), (2.29)

where x , 0 and y , 0 denote the imaginary and real parts of the perturbation,

which can be determined in terms of ∆i and ∆p.

22 24 26 28 30 32 34
0

50
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150
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∆
cr

 

Figure 2.11: Hopf curves of delay ∆ and total arrival rate λ (given other
parameters: N = 2, βt = 0.5, βc = 0.1, κ = 12, g(x) = 0.0526x +
1.0, h(x) = 1.176e−0.0058x).

We are mainly interested in the real part y, whose sign determines the stabil-

ity of the system. The following two key Lemmas are related to this analysis.

Lemma 2.1 Under the perturbation formula (2.28) for∆i and (2.29) for the correspond-

ing root r, the real part of the perturbed r is

y =
∆pω

2(2ω2 − a2 − 2b + κ2 + ϕ2)
a2 + (ϕ + κ)2 + 4ω2 + 2a(ϕ + κ) cos(ω∆i) − 4aω sin(ω∆i)

. (2.30)
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Proof: When ϵ = 0, this reduces back to the original solution of Equation (2.24),

∆i. If we substitute the perturbation formulae (2.28) and (2.29) into Equation

(2.19), we obtain

0 = −λξβt[κ + iω + ϵ(ix + y)][cos(ω(∆i + ϵ∆p)) − i sin(ω(∆i + ϵ∆p))]

−N[ϕ + iω + ϵ(ix + y)][κ + iω + ϵ(ix + y)] − λβcη

= −λξβt[κ + ϵy − (ω + ϵy)i][cos(ω(∆i + ϵ∆p)) − i sin(ω(∆i + ϵ∆p))]

−N[ϕ + ϵy + (ϵx + ω)i][κ + ϵy + (ϵx + ω)i] − λβcη. (2.31)

By rearranging and putting the real and imaginary parts together, we have

0 = −λξβt[(κ + ϵy) cos(ω(∆i + ϵ∆p)) + (ω + ϵx) sin(ω(∆i + ϵ∆p))]

−λβcη − N[(ϕ + ϵy)(κ + ϵy) − (ϵx + ω)2]

−λξβt[(ω + ϵx) cos(ω(∆i + ϵ∆p)) − (κ + ϵy) sin(ω(∆i + ϵ∆p))]i

−N(ϕ + κ + 2ϵy)(ω + ϵx)i. (2.32)

Now we view the RHS of (2.32) as a function of ϵ and use a Taylor expansion

for small values of ϵ, then Equation (2.32) becomes

− λξβt[κ cos(ω∆i) + ω sin(ω∆i)] − N(ϕκ − ω2) − λβcη

− λξβt[(y + ω2∆p) cos(ω∆i) + (x − κω∆p) sin(ω∆i)]ϵ − N[(ϕ + κ)y − 2ωx)]ϵ

− λξβt[ω cos(ω∆i) − κ sin(ω∆i)]i − N(ϕ + κ)ωi

− λξβt[(x − κω∆p) cos(ω∆i) − (y + ω2∆p) sin(ω∆i)]ϵi − N[(ϕ + κ)x + 2ωy)]ϵi

+ O(ϵ2)

= 0. (2.33)

Note that the first line and the third line of Equation (2.33) are both equal to

0 since they exactly match the first equation and the second equation in (2.20),
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respectively, and by definition of ∆i, it satisfies (2.20). Therefore, Equation (2.33)

reduces to

− λξβt[(y + ω2∆p) cos(ω∆i) + (x − κω∆p) sin(ω∆i)]ϵ − N[(ϕ + κ)y − 2ωx)]ϵ

− λξβt[(x − κω∆p) cos(ω∆i) − (y + ω2∆p) sin(ω∆i)]ϵi − N[(ϕ + κ)x + 2ωy)]ϵi

+ O(ϵ2)

= 0. (2.34)

The above Equation (2.34) holds for all small ϵ, implying that both the real

and imaginary parts of the O(ϵ) terms are 0. This amounts to a system of linear

equations in x and y

0 = a[(y + ω2∆p) cos(ω∆i) + (x − κω∆p) sin(ω∆i)] + (ϕ + κ)y − 2ωx

0 = a[(x − κω∆p) cos(ω∆i) − (y + ω2∆p) sin(ω∆i)] + (ϕ + κ)x + 2ωy, (2.35)

where a = λξβtN−1 as defined before in (2.23).

Solving for x in terms of y by the first equation and substituting the resultant

expression into the second equation in (2.35), we obtain

y =
∆pω

2(2ω2 − a2 − 2b + κ2 + ϕ2)
a2 + (ϕ + κ)2 + 4ω2 + 2a(ϕ + κ) cos(ω∆i) − 4aω sin(ω∆i)

, (2.36)

as desired. ■

Based on Lemma 2.1, we have the following result that leads to the insights

of why the smallest solution to (2.24) is enough for characterizing the stability

condition.

Lemma 2.2 The sign of the real part y is the same as the sign of the perturbation ∆p.
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Proof: Consider the RHS of Equation (2.30), the denominator equals

= a2 + (ϕ + κ)2 + 4ω2 + 2a(ϕ + κ) cos(ω∆i) − 4aω sin(ω∆i)

= a2 + (ϕ + κ)2 + 4ω2 + 2a
√

(ϕ + κ)2 + (2ω)2 cos(ω∆ − α)

≥ a2 + (ϕ + κ)2 + 4ω2 − 2a
√

(ϕ + κ)2 + (2ω)2

=
(
a −

√
(ϕ + κ)2 + (2ω)2

)2

≥ 0, (2.37)

where the second equality follows by setting

α = arctan
(

2ω
ϕ + κ

)
;

and the numerator equals

= ∆pω
2(2ω2 − a2 − 2b + κ2 + ϕ2)

= ∆pΩ(2Ω + B)

= ∆pΩ
(
−B +

√
B2 − 4D + B

)
= ∆pΩ

√
B2 − 4D, (2.38)

where the second equality follows from definition of B in (2.23), and the third

equality is by the definition of Ω in (2.26).

Therefore, by (2.37) and (2.38) we can express the real part y of the perturba-

tion as

y =
∆pΩ

√
B2 − 4D

a2 + (ϕ + κ)2 + 4ω2 + 2a
√

(ϕ + κ)2 + (2ω)2 cos(ω∆ − α)
, (2.39)

because of (2.37), Ω > 0, and
√

B2 − 4D > 0 (since y , 0), y has the same sign as

∆p. ■

Lemma 2.2 means that for any solution ∆i to the transcendental equation

(2.24), the root r crosses the imaginary axis from left to right as the delay ∆ in-

creases beyond ∆i. This implies that system instability that occurs after passing
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through the first Hopf curve remains as more Hopf curves are passed through.

In other words, given all the other parameters, the instability remains when

∆ ≥ ∆1 = ∆cr, not matter it is smaller or greater than any other solutions of

(2.24), ∆2,∆3, ...,∆∞ (there are an infinite number of solutions to (2.24)). So sys-

tem stability only changes once at the point where ∆ = ∆cr.

Useful results based on Theorem 2.1

The key purpose of the paper is to study how disclosure of air pollution infor-

mation affects the stability of traffic. To this end, we compared system perfor-

mance with and without the air pollution information provided. Note that if

there is no air pollution information provided, we can reasonably assume that

motorists perceive no disutility of air pollution in their routing decision, that is:

βc = 0. This leads to the following straightforward Corollary of Theorem 2.1.

Corollary 2.1 Suppose βc = 0 in (2.7), if βt ≤ λ−1ξ−1ϕN, then equilibrium 2.8 is stable

for all ∆ > 0; Otherwise, let

∆cr =
1√

a2 − ϕ2
arccos

(
−ϕ

a

)
, (2.40)

then the equilibrium (2.8) is stable if ∆ < ∆cr and unstable otherwise (where a =

λξβtN−1 is defined in (2.23)).

Proof: Note that βc = 0 implies b = 0 by definition (2.17), so B and D defined in

(2.23) become

B = κ2 + ϕ2 − a2; D = ϕ2κ2 − a2κ2.

It follows that

B2 − 4D = (κ2 + ϕ2 − a2)2 − 4ϕ2κ2 + 4a2κ2
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= (ϕ2 − κ2 − a2)2

≥ 0. (2.41)

Hence by Theorem 2.1, we have

Ω∗ =
−B +

√
B2 − 4D
2

=
−ϕ2 − κ2 + a2 + |ϕ2 − κ2 − a2|

2

=


−κ2, if ϕ2 ≥ κ2 + a2,

a2 − ϕ2, otherwise.
(2.42)

From (2.42) we know that the only case Ω > 0 is when a2 > ϕ2, i.e., βt >

λ−1ξ−1ϕN by definition of a.

Therefore, by Theorem 2.1, if βt > λ
−1ξ−1ϕN, we can calculate ∆cr as (2.40)

which splits the whole domain of ∆ ∈ [0,∞) into two that characterize the sta-

bility of the equilibrium; Otherwise the equilibrium is always stable. ■

Now we show a second corollary of Theorem 2.1, which was applied to our

numerical example. In that example, we approximated g(Qi) as an affine func-

tion that represents a simple (but essential) relationship between travel time and

queue length; we approximated h(Qi) as an exponential function, which well

captures the relationship between emission strength of PM2.5 per vehicle on the

link and the number of vehicles on the same link. So we have a result tailored

to these functional forms g(Qi) and h(Qi).

Corollary 2.2 Suppose g(Qi) = αQi + β with α, β > 0, and h(Qi) = γ exp(δQi) with

γ > 0, δ < 0, then the equilibrium of system (2.7) is

Qi =
βλ

N − αλ ; Ci =
βγλ

κ(N − αλ) exp
(
βδλ

N − αλ

)
+Cb, i = 1, ...,N. (2.43)
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And in Theorem 2.1, the variables ϕ and η can be calculated as

ϕ =
(N − αλ)2

βN2 ; η =
γN + γ(βδ − α)λ

N − αλ exp
(
βδλ

N − αλ

)
. (2.44)

Proof: The equilibrium solution follows from the symmetry of (2.7):

λ

N
− Qi

αQi + β
= 0; γQi exp(δQi) − κCi = 0

⇒ Qi =
βλ

N − αλ ; Ci =
βγλ

κ(N − αλ) exp
(
βδλ

N − αλ

)
.

Then the expressions in (2.44) can be obtained by substituting the equilibrium

solution (2.43) into (2.14). ■

Further, we have an observation that offers insights on how the traffic de-

mand (or system load) affects traffic stability. Recall that we had an observation

from our numerical examples that the system stability characterization is invari-

ant with respect to the ratio of λ/N, i.e., the total arrival rate divided by the num-

ber of alternatives (we call this quantity ”normalized arrival rate”). This implies

that when both λ and N change, they affect system stability only through their

ratio λ/N. In fact, we can prove this invariance property rigorously.

Proposition 2.1 Given a fixed normalized arrival rate λ/N, the stability condition for

the equilibrium solution (2.8) is invariant.

Proof: First note that quantity B and D are functions of a, b, κ and ϕ by (2.23),

since κ does not depend on N nor λ, so B and D depend on N and λ only through

a, b and ϕ. Then by Theorem 2.1, we know that system stability depends on N

and λ only through a, b and ϕ.
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By definitions (2.14) and (2.23), we have

a = βtλN−1g′(Q∗);

b = βcλN−1(h(Q∗) + h′(Q∗) · Q∗); (2.45)

ϕ = 1/g(Q∗) − g′(Q∗)Q∗/g(Q∗)2.

Then by symmetry of system (2.7), we know that the equilibrium solution

Q∗ is a root of the following function:

q(x) :=
x

g(x)
− λ

N
.

Since g(·) is an exogenous function independent of N and λ, it follows that Q∗

depends on N and λ only via the ratio λ/N, so do g(Q∗) and g′(Q∗). Similarly,

we have h(Q∗) and h′(Q∗) depend on N and λ only through λ/N. Therefore, we

deduce by (2.45) that all three quantities a, b and ϕ depend on N and λ only

through λ/N. This gives us the result. ■

Finally, we prove a sufficient condition on the intuitive result that the more

the users value travel time, the less stable the system becomes. We observed this

pattern in the numerical example. To simplify the statement of the following

proposition and also Theorem 2.2 in next section, we let ∆cr = ∞ if the system is

stable for all ∆ > 0.

Proposition 2.2 If the travel time function is strictly increasing in queue length at the

equilibrium solution Q∗ defined in (2.8), i.e.

d(g(x))
dx x=Q∗ > 0, (2.46)

then ∆cr is strictly decreasing in βt > 0 if ∆cr < ∞.
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Proof: By definition of ξ in (2.14), we know that condition (2.46) is equivalent to

ξ > 0. Suppose ∆cr < ∞ (i.e., Ω∗ ∈ R++ by Theorem 2.1), then by (2.26) and ϕ > 0

(by the definition of Q∗ in (2.8)), we have

√
B2 − 4D =

√
(ϕ2 − κ2 − a2)2 − 4b(ϕ2 − κ2 − a2) − 8bϕκ

≤
√

(ϕ2 − κ2 − a2)2 − 4b(ϕ2 − κ2 − a2)

≤
√

(ϕ2 − κ2 − a2)2 − 4b(ϕ2 − κ2 − a2) + 4b2

=
√

(ϕ2 − κ2 − a2 − 2b)2

= |ϕ2 − κ2 − a2 − 2b|. (2.47)

Then we have by (2.26) that

Ω∗ =
−B +

√
B2 − 4D
2

≤ −ϕ2 − κ2 + a2 + 2b + |ϕ2 − κ2 − a2 − 2b|
2

=


−κ2, if 2b ≤ ϕ2 − κ2 − a2,

a2 + 2b − ϕ2, otherwise.
(2.48)

Therefore, in order to have Ω∗ ∈ R++, it must be true that

2b > ϕ2 − κ2 − a2. (2.49)

Note that by (2.27) in Theorem 2.1, and since a = λβtξN−1 by (2.23) and ξ > 0,

we have ∆cr strictly decreasing in βt if we can show Ω∗ strictly increasing in a.

By (2.26) the partial derivative of Ω∗ with respect to a is

∂Ω∗

∂a
=

1
2

∂
(
−B +

√
B2 − 4D

)
∂a

=
1
2

∂
(
−ϕ2 − κ2 + a2 + 2b +

√
(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

)
∂a

= a +
1
2

∂
( √

(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2
)

∂a
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= a +
1
4

−4a(ϕ2 + κ2 − a2 − 2b) + 8aκ2√
(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

= a +
−a(ϕ2 − κ2 − a2 − 2b)√

(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

= a

1 + 2b − ϕ2 + κ2 + a2√
(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2


> a, (2.50)

where the inequality follows by (2.49). Therefore, ∂Ω∗/∂a > 0 and we have the

result. ■

Note that in the traffic flow setting, it is true that the higher the vehicle den-

sity, the lower the traffic speed. Hence the travel time function g(Qi) is indeed

strictly decreasing in the queue length Qi. Hence the result in Proposition 2.2 is

general in our traffic network analysis.

2.6.3 Proof of Theorem 2.2

Proof: First note that condition (2.10) is equivalent to η > 0 by the definition of

η in (2.14).

Proof for the first part of the conclusion is similar to the proof of Proposition

2.2. Suppose ∆cr < ∞ (i.e., Ω∗ ∈ R++ by Theorem 2.1), then by (2.26) the term

inside the square root
√

B2 − 4D must be nonnegative in the first place, i.e.,

B2 − 4D = (ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

= (ϕ2 − κ2 − a2)2 − 4b(ϕ2 − κ2 − a2) − 8bϕκ

≥ 0. (2.51)

Note that by (2.27) in Theorem 2.1, plus b = λβcηN−1 by (2.23) and η > 0, if
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we can show that Ω∗ is decreasing in b then we have ∆cr strictly increasing in βc.

By (2.26) the partial derivative of Ω∗ with respect to b is

∂Ω∗

∂b
=

1
2

∂
(
−B +

√
B2 − 4D

)
∂b

=
1
2

∂
(
−ϕ2 − κ2 + a2 + 2b +

√
(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

)
∂b

= 1 +
1
2

∂
( √

(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2
)

∂b

= 1 +
1
2

∂
( √

(ϕ2 − κ2 − a2)2 − 4b(ϕ2 − κ2 − a2) − 8bϕκ
)

∂b

= 1 − (ϕ2 − κ2 − a2) + 2ϕκ√
(ϕ2 − κ2 − a2)2 − 4b(ϕ2 − κ2 − a2) − 8bϕκ

. (2.52)

Hence showing ∂Ω/∂b < 0 is equivalent to showing

4ϕκ(ϕ2 − κ2 − a2) + 4ϕ2κ2 + 4b(ϕ2 − κ2 − a2) + 8bϕκ > 0. (2.53)

We divide the LHS of (2.53) by a factor of 4 and obtain

ϕκ(ϕ2 − κ2 − a2) + ϕ2κ2 + b(ϕ2 − κ2 − a2) + 2bϕκ

= (ϕκ + b)(ϕ2 − κ2 − a2) + ϕ2κ2 + 2bϕκ

>

(
ϕκ +

ϕ2 − κ2 − a2

2

)
(ϕ2 − κ2 − a2) + ϕ2κ2 + (ϕ2 − κ2 − a2)ϕκ

= 2ϕκ(ϕ2 − κ2 − a2) + ϕ2κ2 +
1
2

(ϕ2 − κ2 − a2)2

≥ 2ϕκ(ϕ2 − κ2 − a2) + ϕ2κ2 + 2b(ϕ2 − κ2 − a2) + 4bϕκ

> 2ϕκ(ϕ2 − κ2 − a2) + ϕ2κ2 + (ϕ2 − κ2 − a2)2 + 4bϕκ

= (ϕκ + ϕ2 − κ2 − a2)2 + 4bϕκ

≥ 0, (2.54)

where the first and the third inequalities follow by (2.49) since Ω ∈ R++ and

ϕ > 0; the second inequality follows by (2.51); and the last inequality is due to

ϕ > 0.
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Therefore, ∆cr is strictly increasing in βc if ∆cr is finite. This completes the

proof of the first part of the conclusion.

Now we show the second part of the conclusion by contradiction. Suppose

∆no
cr = ∞ but ∆yes

cr < ∞. Recall that when b = 0, (2.42) in Corollary 2.1 implies that

Ω∗ < R++ if only if ϕ2 ≥ a2, i.e., ∆0
cr = ∞ if only if ϕ2 ≥ a2. Now it follows from

ϕ2 ≥ a2 and ϕ, κ > 0 that ϕκ + b > aκ when b > 0, which implies

Ω∗ = −B +
√

B2 − 4D

= −ϕ2 − κ2 + a2 + 2b +
√

(ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

< −ϕ2 − κ2 + a2 + 2b +
√

(ϕ2 + κ2 − a2 − 2b)2

= −ϕ2 − κ2 + a2 + 2b + |ϕ2 + κ2 − a2 − 2b|. (2.55)

Since we assume ∆yes
cr < ∞, then the above inequality implies

2b > ϕ2 + κ2 − a2 > 0, (2.56)

where the second inequality is due to ϕ2 ≥ a2 and κ > 0.

Finally, we have

B2 − 4D = (ϕ2 + κ2 − a2 − 2b)2 − 4(ϕκ + b)2 + 4a2κ2

< (2b)2 − 4(ϕκ + b)2 + 4a2κ2

= −4ϕ2κ2 + 4a2κ2 − 8bϕκ

≤ 0, (2.57)

where the first inequality follows by (2.56) and the last inequality is due to ϕ2 ≥

a2 and ϕ ≥ 0.

Therefore, (2.57) is a contradiction to Ω∗ ∈ R, hence a contradiction to ∆yes
cr

being finite. This completes the proof. ■
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2.7 Appendix B: Details of Numerical and Simulation Analysis

2.7.1 Data for Numerical Analysis

In this section, we provide the supporting data for the numerical analysis in the

result section of the main paper. The example considers two separate parallel

one-mile long single-lane links, so the numerical value of average traffic density

ρ (veh/mile) equals that of the number of vehicles on the lane, Q (veh). Table 2.3

shows all the data we used for our numerical analysis. The sensitivity analysis

in the main paper was done based on these baseline values listed in Table 2.3.

Parameter Symbol Value
Number of links (single lane) N 2
Length of links L 1 mile
Total arrival rate λ 30 veh/min
Free-flow speed vfree 60 mph
Cross-sectional area of the “air box” A 15 m2

Dilution rate constant κ 6 /min
PM2.5 background concentration Cb 35 µg/m3

WTP of travel time βt 0.6 $/min
WTP of PM2.5 concentration βc 0.2 $/(µg/m3)
Travel time function g(Q) 0.0526Q + 1.0 (min)
PM2.5 missions strength function h(Q) 1.176e−0.0058Q (µg/m3/s/veh)

Table 2.3: Data for numerical analysis

In the above table, N, L are assumed data. A is obtained by assuming that the

longitudinal “box” surrounding the lane has a cross section of a 5-meter wide

and 3-meter tall rectangle (which is sufficient to cover the whole lane and the

vehicles on it). κp is estimated based on wind speed: assuming that horizon-

tal wind ventilation dominates the vertical one and has an average speed of 0.5

m/s with direction normal to the traffic direction, so every minute the air inside

the “box” is exchanged for 60/(5/0.5) = 6 times. The background concentration
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of PM2.5 is assumed to be the U.S. National Ambient Air Quality Standards of

35 µg/m3 for 24-hour average PM2.5 concentration. Willingness to pay for travel

time is estimated as 36 $/hr for the commuters which is equivalent to 0.6$/min.

We assume that commuters’ willingness to pay for reduction in PM2.5 concentra-

tion is one third of the WTP for travel time (min) savings, so βc = 0.2 $/(µg/m3)

. The two functions of queue length g(Q) and h(Q) are fitted based on analytic

models in the literature.

Specifically, we use a linear fit for the data points (travel time against traffic

density) to obtain the average travel time function g(Q). The data points shown

in Figure 2.12(a) are generated based on the classic Greenberg model [54] that

describes the relationship between average traffic speed v and traffic density ρ

(we divide the link length by traffic speed to obtain the travel time). This model

includes an explicit form of the relationship between v and ρ as

ρ(v) = ρ j exp(−v/v∗)⇔ v = v∗ ln(ρ j/ρ) (2.58)

where the optimal average speed v∗ is 16.1 mph; and the jam density ρ j is 215

veh/mile for a single lane measured at a typical road segment. Then we evalu-

ate formula (2.58) as density observations (here the density has the same nu-

merical value as that of the number of vehicles on the 1-mile long lane, Q)

together with calculated T = 60/v (min) at discrete average speed points ev-

ery 5 mph from 5 mph to 60 mph. For simplicity, we fit an affine function

g(Q) = αQ + β to these twelve observations (Q,T ) to approximate the travel

time function T ≈ g(Q). We restrict the intercept g(0) = 1.0 to represent free-flow

travel time of 1 min at a free-flow speed of 60 mph. From (2.58) we can see that

as traffic density approaches 0, traffic speed according to the Greenberg model

approaches infinity, which is unrealistic. Hence the restriction of g(0) = 1.0 is

useful also because it helps overcome this limitation of the Greenberg model.
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Figure 2.12(a) shows the fitted affine function g(Q) = 0.0526Q + 1.0 on the data

points (Q,T ), which achieves a satisfactory goodness of fit (R2 = 0.87).

For the emission strength function, we fit a function to the data points gen-

erated based on the density-speed relationship (2.58) as well as an analytic form

that approximates the emission rate (as a function of fleet speed) data from the

MOtor Vehicle Emission Simulator (MOVES) software developed by the EPA

for a realistic fleet composition [19]. The original emission rate function to be

fitted takes the following form [19]

r(v) = exp

 5∑
j=1

c jv( j−1)

 , (2.59)

where c1, ..., c5 are pollutant specific model coefficients which take values: c1 =

−1.223, c2 = −0.1769, c3 = 0.00664, c4 = −0.00011, c5 = 6.724 × 10−7 for PM2.5

[19]; and v( j−1) denotes the ( j−1)th power of v. Based on (2.59) and the expression

in (2.58), we use similar approach to fit the function h(Q) = A−1L−1r(v(Q))v(Q)

(µg/m3/s). We evaluate (2.58) for Q = ρ(v) and the corresponding expression

H = A−1L−1r(v(Q))v(Q) at discrete speed points every 5 mph from 5 mph to 60

mph. Then we get twelve data points of (Q,H) for which we fit the function

H ≈ h(Q). Now since the function h(Q) for PM2.5 turns out to be decreasing

in Q, so instead of a linear function, we choose to approximate it with an ex-

ponential function h(Q) = γ exp(δQ) with γ > 0, δ < 0 so as to ensure it is

always positive. Note that the emission strength increases first as speed in-

creases and then starts to decrease slightly when speed increases to about 50

mph. This cannot be represented by our simple exponential fit since the ex-

ponential function is monotone and has sharper decrease for smaller Q (where

speed is high). Hence we compromise for this by restricting the intercept of

the exponential function to be equal to the emission strength at the free-flow
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speed (60 mph), which is h(0) = 52.9. Figure 2.12(b) shows the fitted exponen-

tial function h(Q) = 52.9 exp(−0.0058Q) on the data points (Q,H), which achieves

a satisfactory goodness of fit (R2 = 0.96). An important note is that although the

fitted h(Q) is monotonically decreasing in Q, the total emission source strength

S (Q) = h(Q) · Q is monotonically increasing in Q within normal average speed

range (5 mph ∼ 60 mph, corresponds to about Q from 0 to 160), as shown in

Figure 2.13.

With the functional forms fitted for g(Q) and h(Q) in our numerical studies,

we can use Corollary 2 to verify the equilibrium solution of system (2.7) and

examine its convergence.
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1

3

5

7

9

11

13

15

0 20 40 60 80 100 120 140 160
Q

(a) Travel time (min)

y = 1.1760e-0.0058x

R² = 0.96

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160
Q

(b) Emission strength  (g/m3/min/veh)

Figure 2.12: Approximating travel time and emission strength functions
g(Q) and h(Q) (dots: data points; dashed curves: fitted func-
tions.

2.7.2 Simulation Model, Data and Additional Discussion

In the main paper, we demonstrate the traffic stability enhancing effect of air

pollution information disclosure via simulation of traffic on the GWB. In this

section, we describe the simulation model and data that we used for our traffic
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Figure 2.13: Total emission source strength function S (Q) (original and fit-
ted).

simulation of the GWB. Moreover, additional simulation results and discussion

are also provided.

Simulation Model

For micro-simulation of traffic, we use a popular stochastic traffic simulation

model – Cellular Automaton (CA) [92], which is well known to be able to repro-

duce the key features of traffic flow such as shock waves and different phases

in traffic fundamental diagram that are observed in reality [92]. Despite many

variants and extensions of the CA model, in this study, we adopt the original

CA model [92] for an open road segment. However we embed it into the multi-

link dynamic choice model, which is the key setting of this study. In particular,

the GWB has one upper level and one lower level available for the traffic, so

we model it as a two-link system. To use the CA [92] model, we define a one-

dimensional array of M sites with open boundary conditions for each lane of

each link. Each site may either be occupied by exactly one vehicle or unoccu-

pied. Each vehicle has an integer valued velocity between zero and vmax. We

conduct discrete time simulation over a predefined total number of time steps
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K. Each time step represents a length of t̄ (s). At every simulation time step

k = 1, ...,K, we simulate the vehicle arrivals, route choices, vehicle movements

as well as vehicle departures if any. Figure 2.14 shows the whole process of the

simulation at every step k.

Prob. 
P1(k)

LOWER LEVEL

UPPER LEVEL

Simulate 
number of 
arrivals 

~ Poisson( λ ) 
or

add 1st

Prob. 
P2(k)

add cars to a lane with 1st cell 
vacant uniformly at random till 

no such lane is available

add 2nd

use CA to update 
vehicle locations

Information: T2(k‐Δd-1), C2(k-1)

Information: T1(k‐Δd-1), C1(k-1)

Figure 2.14: Simulation process at each time step k.

Specifically, at each step k, we do the following. We first generate a ran-

dom variable Narr(k) ∼ Poisson(λt̄) which represents the total number of new

arrivals at step k, i.e., during time interval [kt̄, (k + 1)t̄). Here rate parameter λ

stands for the expected number of arrivals during a unit time interval (1s). Sup-

pose the choice probability for link i is pi, then each newly arrived vehicle is

assigned to link i with probability pi. These assigned vehicles are first put into

the buffers (each link has an associated buffer with some sufficient length Lb)

and then loaded onto the lanes of the links in a FIFO (first in first out) manner.

The vehicles in the buffer of each link i (if any) are added sequentially, each to a

lane whose first cells are vacant uniformly at random until no such lane is avail-

able for this link. The location updating of the vehicles on each link i = 1, ...,N

follows the procedure described below (where v(s) and loc(s) denote the speed

of vehicle s and site index where vehicle s is located on the lane).
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(1) For every newly added vehicle s,

v(s)← min[loc(1st vehicle on the lane) − 1, vmax].

(2) For the last vehicle s on each lane, v(s)← min[v(s) + 1, vmax].

(3) For each of all other vehicles s,

v(s) = min[v + 1, loc(the vehicle ahead of s) − loc(s) − 1, vmax].

(4) For every vehicle s, v(s)← max[v(s) − 1, 0] with probability pd.

(5) For each vehicle s, loc(s)← loc(s) + v(s), and s leaves the lane if loc(s) > L.

The operation of taking the minimum in steps (1)∼(3) essentially encodes

how the drivers decide their speed: each driver chooses to accelerate by one

unit speed level as long as the maximum speed is not surpassed and the vehicle

remains behind the vehicle ahead to prevent collision. Step (4) applies random

deceleration independently to all the vehicles according to a common deceler-

ation probability pd. This random slow-down is crucial in simulating realistic

traffic flow since otherwise the dynamics is completely deterministic. It is used

to model natural speed fluctuations as a result of human behavior or varying

external conditions [92]. Note that we assume the vehicle that is about to enter

the lane already accelerates to at least vmax − 1, so it takes the speed as speci-

fied in step (1) when it enters the lane. We also assume that free-flow condition

prevails downstream the link outlet, so the last vehicle on the lane will choose

to accelerate or maintain maximum speed except for random slow-downs due

to disturbances. In addition, since we focus on rush-hour traffic scenario for

the GWB that has relatively strict traffic regulations such as low speed limit (45

mph) [6], we do not simulate the lane changing behavior.
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Notice that other than the random slow-down due to unknown disturbances

(proposed in original CA model), the stochasticity in our traffic simulation also

includes the following aspects: 1) number of arrivals is random; 2) link choices

are random; 3) the vehicles in the buffer are added to different lanes randomly.

As shown in Figure 2.14, a key component of our simulation experiment is

information provision that affects the link choice behavior. We simulate this

by calculating the travel time and pollutant concentration and provide the re-

sult as feedback information to the system. Link choice probabilities pi are then

updated every simulation step based on the Multinomial Logit (MNL) model.

Specifically, the following procedure is adopted. Note that in our discrete time

simulation framework, the information at least “lagged” for one time interval,

since the best we can do to simulate the “real-time” information is to evaluate

the output information for the previous time interval and distribute this infor-

mation to users that arrive during the current time interval.

(1) The travel time is calculated based on the average speed of the vehicles on

each link, which is usually the working principle of either fixed or mobile

traffic sensors. To represent possible lag in travel time information, let ∆d >

1 be the number of discrete simulation intervals that equals ∆/t̄ (suppose

∆ is an integer multiple of t̄). So the average travel time evaluated for time

interval k to be posted to inform new arrivals during time interval k + 1 is

T̂i(k) = Ti(k − ∆d) =
Ml̄

average vehicle speed of link i at step (k − ∆d)
, (2.60)

where the average vehicle speed on link i is calculated as the average

speed of all the vehicles on link i and the vehicles waiting in the buffer

of link i. Since each vehicle s waiting in the buffer has discretized speed
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v(s) = 0), the average speed of link i is the average speed of the vehicles

actually traveling on the link times the number of vehicles traveling on the

link divided by the total number of vehicles both traveling on the link and

waiting in the buffer of the link.

(2) Air pollutant concentration is modeled by discretizing the ordinary dif-

ferential equation (ODE) in (2.7) plus an additive error term as below (for

each i = 1, ...,N)

Ci(k + 1) = Ci(k) + t̄[S i(k) − κ(Ci(k) −Cb)] + ε(k)

= t̄S i(k) + (1 − t̄κ)Ci(k) + t̄κCb + εi(k), (2.61)

where S i(k) is the total emission source strength on link i at time step k,

which is estimated based on the average vehicle on link i and the emission

rate function in the form of (2.59) at time k. εi(k) ∼ N(0, σ2) represents

any modeling error and measurement noise, we assume it is independent

and identically distributed across different time intervals and links. And

the reciprocal of the dilution rate constant κ has the same unit as t̄. Note

that in order to have stable system (2.61) we need to make sure that the

simulation time scale is properly determined such that t̄κ < 1.

(3) The link choice probabilities of each arriving vehicle are predicted by the

MNL formula and updated for each time step as

pi(k + 1) =
exp(−βtT̂i(k) − βcCi(k))∑N

j=1 exp(−βtT̂ j(k) − βcC j(k))
. (2.62)

With these calculations, we construct a closed-loop structure for traffic sim-

ulation in which the arrivals to each link in the current time step affects future

arrivals to the links due to the travel cost information (e.g., travel time, air pol-

lution) feedback to the new users.
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Simulation Data

To conduct the simulation for the GWB east bound morning traffic (from New

Jersey to New York), we need relevant data for determining the simulation pa-

rameters. The data we used is given in Table 2.4. Moreover, the reference that

directly supplies a data value is indicated in the bracket beside that value.

Variable Value
Number of links (single lane), N 2
Number of lanes upper level: 4; lower level: 3 [6]
Poisson rate of total arrivals, λ 2.477
Maximum speed in simulation, vmax 3
Length of each simulation step t̄ 1 s
Number of sites on each lane M 193
Length of each lane site l̄ 7.5 m
Length of the buffer of each link Lb 60 m
Cross-sectional area of the “air box”, A 60 m2

Random slow-down probability, pd 0.3
Dilution rate constant, κ 0.164/s
PM2.5 background concentration, Cb 11.0 µg/m3 [96]
Standard deviation of white noise, σ2 1.0 µg/m3

WTP of travel time, βt 1.4 $/min [18]
WTP of PM2.5 concentration, βc 0.14 $/(µg/m3)
Emission rate function of PM2.5 the same as (2.59) [19]
Delayed steps of travel time information, ∆d 300

Table 2.4: Data used for the simulation of the GWB

In Table 2.4, the number of sites of each lane is calculated by dividing the lane

length (1450 m [6]) by the length of each site (7.5m) [92], which yields M = 193.

We assume that the length of the buffer is 60 m for each link (which is enough to

accommodate the waiting vehicles in front of the link given the traffic demand

in our simulation). Note that we suppose that the free-flow speed of the vehicles

is 50 mph, which is slightly higher than the speed limit of 45 mph on the GWB.

The maximum speed and simulation time scale can be determined one after

the other. Here we first set the simulation step length as t̄ = 1 sec, then the

maximum speed in the simulation is calculated by converting the 50 mph free-

129



flow speed into the closest integer number of sites per simulation step (1 sec),

which yields vmax = 3. The expected number of total arrivals is calculated based

on the hourly (7:00 AM to 8:00 AM) automobile volume data (8917 veh/hr) on

the east bound of the GWB [2], which yields λ = 2.477. In our simulation, we

assume the vehicles are all automobiles (the fractions of buses and trucks are

less than eight percent [2]).

The cross-sectional area of the long “air box” covering the lanes (A = 60m2)

is obtained by assuming it as a 15-meter wide and 4-meter tall rectangle cross

section (based on the clearance of the bridge and the width of motor vehicle

lanes [6]). Using similar approach as we estimated κ in the numerical analysis,

we suppose horizontal convection dominants the dispersion of PM2.5. So the

dilution rate constant for PM2.5 is estimated mainly on the basis of the average

wind speed of 7.8 mph (about 3.486m/s) on March 2017 [5], assuming the angle

of the wind to the GWB is 45◦ on average. This gives us an estimate of κ =

(15
√

2/3.486)−1 = 0.164/s. The PM2.5 background concentration is set as the

monthly average of 7:00 AM –8:00 AM measurement records at station IS-143

near the east end of the GWB throughout March 2017 [96].

The WTP for saving one minute commuting time is βt = 1.4$/min, according

to the estimation by a recent study for New Yorkers [18]. However, due to lack of

data, we assume the WTP for one µg/m3 PM2.5 on-road concentration reduction

is only about one tenth of the WTP for one minute travel time saving, so βc =

0.1βt = 0.14 $/µg/m3. Note that βc = 0.14$/(µg/m3) is similar to the estimate by

a study in China [137] if we assume commuters evaluate their daily exposure

based on the perceived concentration of their two commuting trips. Since βc

is relatively uncertain, we provide results under different values of βc in next
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subsection.

Now we describe the initial conditions used in the simulation. At time step

k = 0, there are 25 vehicles located randomly at each lane of both links. There is

no vehicles waiting in the buffers. All the vehicles are moving very slowly and

have speed v = 0 (since only three discrete levels of speed is used in the simu-

lation). The initial PM2.5 concentration is calculated as the equilibrium solution

(see (2.43)) assuming a uniform traffic speed of 1 mph. The initial travel time

information for both lanes is M (s), which is used upto simulation step k = ∆d.

When k > ∆d, the truly evaluated information T̂i(k − 1) = Ti(k − ∆d − 1) will be

posted. We start collecting data for simulation results evaluation at k = ∆d and

continue for 2400 steps (i.e., a 40 min-long period).

Figure 2.15 shows the simulated vehicle trajectories on one lane over the time

steps 300 ∼ 500 in one sample path. This is a commonly used ”time-space” plot

in traffic engineering. The horizontal axis is the number of sites that indicates

the distance from the link entrance; and the vertical axis is the time. Each small

hollow black square at point (x, t) represents a vehicle at the corresponding site

x ∈ {1, ...,M} at time t. Each line running from bottom left to top right formed

by connecting black hollow squares depicts the ”time-space” trajectory of a ve-

hicle on the link. The gap between two adjacent lines represents the headway

between two adjacent vehicles.

From Figure 2.15, we observe that most of the vehicle trajectories are straight

lines running from bottom left to top right, whose slopes are quite close to the

maximum vehicle speed (vmax = 3) specified in our simulation. This indicates

that the vehicles are moving smoothly towards the end of the lane during most

of their trips. But there are dark regions due to closely located black squares,
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indicating very slow traffic (even break down) within certain time windows.

They correspond to temporary traffic jams caused by a stopped vehicle (due to

random slow-down) in the front and the subsequent slowing down and stop of

the cars following it. This represents the stop-and-go traffic that generates the

so called “shock waves” along the lane. For example, beginning at time point

10, a vehicle stopped at about site 70, then the vehicles following it stopped one

after another, causing a long traffic jam that lasted for about 40s and extends

backwards to site 40. Notice that each shock wave (the dark region in Figure

2.15) moves backwards (from link exit to entrance) as time goes on. This is

consistent with traffic flow theory and real observations in practice [92]. These

realistic observations therefore also helps validate our simulation model. The

speed at which these shock waves move upstream can also be used to calibrate

our simulation model (such as parameters vmax and p) if real measured trajectory

data is available.

We also note that the lines of vehicle trajectories are not evenly separated,

they are denser some time and looser some other times. This reflects the vary-

ing arrival rate to this lane over time due to the fact that vehicles are assigned

dynamically to each link and each lane based on the time-varying choice prob-

abilities. This observation again adds reality-check to the functionality of our

simulation model. Intuitively, denser lines (in the beginning part of the lanes)

for a certain link are likely due to higher choice probability for that link, e.g.,

those peaks of the choice probability curves in Figure 2.6.
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Figure 2.15: vehicle locations on one lane over a 200s time period in one
sample path of the simulation.

Additional Discussion

The main paper includes comparisons of the simulation results between cases

with and without air pollution information under the parameters fixed at the

base values shown in Table 2.4. In the following, we also expand the compar-

isons to scenarios of different travel time information delays (∆d) and the WTP

parameters (βc), the two key types of parameters in this study.

The first piece of additional experiment is to examine the traffic performance

by shortening or prolonging the lag ∆d (as defined in Table 2.4) to mimic possible

improvement or loss in the timeliness in the provision of travel time informa-

tion. Figures 2.16 and 2.17 show the resultant number of vehicles and pollutant

concentrations on two links under ∆d = 180 (∆ = 3 min) and ∆d = 480 (∆ = 8

min), respectively. Figure 2.18 compares the the total number of vehicles and the
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number of vehicles traveling on the lanes under the latter scenario. We can see

that with shorter delay ∆d = 180 in travel time information, on average the traf-

fic densities and PM2.5 concentrations can gradually converge to stable condi-

tions even without PM2.5 concentration information posted. In this case posting

pollution level information makes the system converging to equilibrium much

faster. However, when timeliness in travel time information reduces signifi-

cantly with ∆d increased to 480, system performance without posting of PM2.5

pollution information deteriorates dramatically. We can see from the lower two

plots in Figure 2.17 that the magnitude of the traffic density oscillations become

bigger and bigger as time goes on; same is true for the oscilation of pollutant

concentration. What is worse is that the service rate suffers frequent reduc-

tion due to the unstable traffic, which results in traffic jam near the entrance of

the links and exacerbates quickly over time (see Figure 2.18). Compared to the

lower two plots, the upper two plots in Figure 2.17 show that under the pro-

vision of PM2.5 concentration information both queues converge to equilibrium

smoothly without congestion near the link entrance. The benefit from the pro-

vision of air pollution information can therefore be tremendous, as we aim to

illustrate and argue in this study.

Finally, we also study scenarios by doubling and halving the WTP pa-

rameters with respect to reduction of PM2.5 concentration. That is, we set

βc = 0.28 $/(µg/m3) or βc = 0.07 $/(µg/m3), and keep ∆d at the base level of

5 min. Figure 2.19 shows the results of total number of cars and PM2.5 concen-

trations on two links. We observe from the upper two plots that in the case

with larger βc, the traffic densities and pollutant concentrations on two links

converge to the equilibrium faster than that when βc = 0.14 $/(µg/m3) (the base

case). When βc is much smaller βc = 0.07 $/(µg/m3), we can see from the lower
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Figure 2.16: Total number of vehicles and pollutant concentration on two
links under delay ∆ = 3 (min). The dark center line on
each curve represents the average of 103 independent simu-
lation runs; the lighter-colored area surrounding the dark line
on each curve represents the 95% confidence interval for the
mean estimate.

two plots that the two queues also converge to stability, although at a slower

pace compared to that when βc is larger. If βc = 0 (i.e., there is no provision of

air pollution information), the system keeps oscillating with formation of seri-

ous congestion and traffic jams at link entrances. Therefore, there exists great

potential for traffic improvement and congestion mitigation by provision of air

pollution information to drivers as long as travelers attach value, even if it is

low, to such information. This supports the discussion we had in the main pa-

per about the effect of βc on system stability, and it is consistent with results

from our analysis of the analytical queueing model (see Theorem 2.2).
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Figure 2.17: Total number of vehicles and pollutant concentration on two
links under delay ∆ = 8 (min). The dark center line on
each curve represents the average of 103 independent simu-
lation runs; the lighter-colored area surrounding the dark line
on each curve represents the 95% confidence interval for the
mean estimate.
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Figure 2.18: Total number of vehicles (including those waiting) and num-
ber of vehicles within the lanes when PM2.5 concentration in-
formation is not posted and ∆ = 8 (min). The dark center line
on each curve represents the average of 103 independent sim-
ulation runs; the lighter-colored area surrounding the dark
line on each curve represents the 95% confidence interval for
the mean estimate.
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Figure 2.19: Total number of vehicles and pollutant concentration on two
links: larger βc = 0.28 $/(µg/m3) (upper two plots) and
βc = 0.07 $/(µg/m3) (lower two plots). The dark center line on
each curve represents the average of 103 independent simula-
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mean estimate.

137



CHAPTER 3

HYBRID PREDICTIVE CONTROL BASED DYNAMIC PRICING OF

MANAGED LANES WITH MULTIPLE ACCESSES

In this chapter, we focus on how new system data and demand information can

be fully used and properly incorporated into the model-based control frame-

work for efficient real-time solutions to optimal dynamic traffic management.

For illustration, we propose a hybrid model predictive control (MPC) based

dynamic pricing strategy for high-occupancy toll (HOT) lanes with multiple

accesses. This approach pre-plans and coordinates the prices for different OD

pairs and enables adaptive utilization of HOT lanes by considering available

demand information and boundary conditions. It also addresses such practical

issues as prevention of recurrent congestion in HOT lanes, ensuring no higher

toll for a closer toll exit and fairness among different OD groups at each toll en-

try, as well as the fact that high occupancy vehicles (HOVs) have free access to

the HOT lanes. Taking the inflows at each toll entry as the control, traffic densi-

ties and vehicle queue length as observed system states, and boundary traffic as

predicted exogenous input, we formulate a discrete-time piecewise affine traffic

model. Optimal tolls are then derived from a one- to-one mapping based on the

optimal toll entry flows. By properly formulating the constraints, we show that

the MPC problem at each stage is a mixed-integer linear program and admits

an explicit control law derived by multi-parametric programing techniques. A

numerical experiment is presented for a representative freeway segment to val-

idate the effectiveness of the proposed approach. The results show that our con-

trol model can react to demand and boundary condition changes by adjusting

and coordinating tolls smoothly at adjacent toll entries and drive the system to a
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new equilibrium that minimizes the total person delay. Under the optimal pre-

diction horizon, the on-line computational cost of the proposed control model is

only about 4% and 8% of the modeling cycle of 30 s, respectively, for two typical

traffic scenarios, which implies a potential of real-time implementation.

3.1 Introduction

3.1.1 Literature review and motivation

High-occupancy toll (HOT) lanes have been recognized as one of the most ap-

plicable and cost-effective measures for reducing freeway congestion [81, 124].

By allowing single-occupancy vehicles (SOVs) to use high-occupancy vehicle

(HOV)/carpool lanes by paying a toll, excess capacity of the HOV lanes can be

utilized [124]. HOT policy can also help alleviate traffic-related environmental

problems and support sustainable urban development [15]. There are three ma-

jor tolling schemes used in HOT management: static pricing, time-of-day pric-

ing, and dynamic pricing [28, 132]. Static and time-of-day tolls do not reflect

or respond to real-time traffic conditions, while dynamic pricing is designed to

adjust toll rates according to traffic conditions [28]. However, the performance

of dynamic tolling relies on the toll-control algorithm used, which should prop-

erly account for traffic information and be implemented efficiently in an on-line

fashion. There are various types of toll mechanisms: pass based (i.e., vehicles

with a prepaid toll pass can enter the toll lane at any time ) , per-use based,

per-mile (distance) based, zone (section) based, origin-destination (OD) based,

and toll-entry based, and the combination of any of these mechanisms. The first
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two mechanisms are for single entry/exit managed lanes, while the rest are for

systems with multiple toll en- tries/exits (details can be found in [87, 132]). The

algorithm we propose in this study is for OD based tolling, which is an ideal

toll mechanism for full utilization of the HOT lanes without creating excessive

inequality across different OD pairs [87].

A number of HOT lane facilities have been implemented in the U.S., such as

on routes I-5, I-10 W, I-15, I-95, I-394, and SR-167 [28, 124, 132], and others are

in progress. According to reviews [28, 132], most of these projects use dynamic

tolling, and several use distance-based rates [28]. For example, tolls for the I-

394 HOT lanes are adjusted every 3 minutes according to the detected traffic

density; the toll rates, which are given in a “delta densitytoll increment lookup

table” [28, 60, 134] vary from $0.25 to $8.00 across different toll sections and are

prescribed to maintain a free-flow traffic speed in the HOT lanes. Similarly, tolls

for I-15 change every 6 minutes and vary from $0.5 to $8.00, as given in a lookup

table that specifies tolls for different traffic volumes and levels of service (LOS)

[28, 69, 132]. Further details of tolling methods can be found in studies such as

[28, 132]. These predefined toll adjustment rules often have many parameters

to be decided [28]. The introductory period for settling on the rules and de-

termining the parameters can extend to years [42], and the performance of the

resulting schemes is still uncertain in future scenarios. Most studies on dynamic

tolling have proposed similar elementary rule based models [47]. For example,

study [124] proposed a feedback control dynamic tolling algorithm that uses

traffic speed as the feedback variable to maintain a high LOS in the HOT lanes

and maximize the total throughput; study [134] also proposed a feedback ap-

proach that adjusts the toll based on the measured traffic density to maintain

the desired traffic density via a linear regulator. Study [49] designed a more
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complicated approach that optimizes the current toll for full utilization of the

HOT lanes based on current demand and the value of time (VOT) distribution.

In reality, speed fluctuations and recurrent congestion are common in

managed-lanes, even when there is decent capacity in the system [47, 81]. One

important reason for this is a lack of good use of available upstream traffic de-

mand information and measured boundary traffic conditions; toll adjustments

are based only on current traffic conditions [47], as is the case in the aforemen-

tioned studies. An approach that uses “self-learned” willingness to pay (WTP)

parameters was proposed in [134] to derive the toll rate for the next step by solv-

ing a one-stage nonlinear optimization problem. Their model uses upstream

demand information to predict the traffic in the next step. Study [47] proposed

a feedback control approach that also incorporates upstream traffic information

and was shown to have a faster response to real-time traffic changes than the

simple feedback approach. In both studies, traffic evolution beyond the next

step was not taken into account in deriving the tolls; as a result, the performance

over a longer period could be unsatisfactory. The “self-learning” approach [134]

was extended by [82] to a rolling-horizon setting that considers a longer period

of future traffic evolution. However, it optimizes only one future toll input at

each stage, which limits its pre-planning capability. In addition, the optimiza-

tion model is hard to solve, although it considers only a toll range constraint.

Study [120] proposed a rolling horizon approach that optimizes a sequence of

future tolls with predicted demand from traffic simulation. It solves the non-

convex control problem by exhaustive search. Since the number of feasible tolls

is exponential in the horizon length, the real-time applicability of this approach

is limited.
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All of the aforementioned studies focus on a single toll section. However,

real-world HOT projects often have multiple toll entries and exits [43, 132], and

new projects tend to have multiple access points with more complicated pric-

ing schemes [43]. For example, there are six main toll entries and exits on the

northbound I-15 in San Diego, CA [3], and five main toll entries and exits on the

Northeast Loop 820 in Farmers Branch, TX [4]. Research on control in the case of

multi-access managed lanes is relatively limited. The authors of [47] extended

their single-toll-entry control method to a multi-access system but proposed

only a very simple heuristic with no practical constraints. A general simulation

model for HOT lanes with multiple toll sections was developed in [87] that can

be tailored to various toll mechanisms. Study [36] proposed a dynamic tolling

model that first designs the flow split ratios to the two types of lanes and then

sets the tolls based on VOT distributions or auctions. However, it uses no in-

formation about incoming flows. A distance-based dynamic tolling model was

developed in [132] for managed lanes with multiple entries and exits. It uses a

quite realistic nonlinear continuous-time traffic-flow model but makes the con-

trol problem nonconvex and highly intractable. The work [138] proposed an

interesting reinforcement-learning (RL) based approach for dynamic per-mile

tolling of managed lanes with flexible accesses. Real-time computation seems

to be a limiting factor and the model considers only a few traffic densities and

toll rates due to “curse of dimensionality.

The aforementioned issues need to be considered and addressed in the de-

sign of practical and more effective HOT-lane management strategies. In this

study we formulate the managed lane system as a tractable hybrid system to-

gether with a model predictive control (MPC) based tolling strategy. Our model

has two key features: 1) it can handle systems with multiple HOT-lane accesses
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by optimizing tolls for each toll entry-exit pair utilizing the available upstream

demand information; 2) it has the flexibility to accommodate various constraints

(such as free-flow on HOT lanes) while admits convenient real- time implemen-

tation. The objective of the control model is to minimize the total person delay

in the system, thus improving the social welfare. We propose a proper “fair-

ness” condition among OD pairs for each toll entry without affecting capacity

utilization of HOT lanes, and the constraint is compatible with the restriction

of no higher tolls for closer toll exits. MPC framework has been proposed for

other traffic control measures, such as variable speed limits, ramp metering, or

a combination of the two, and was shown to be an effective tool [12, 55, 62, 83].

However, if the tolls are optimized directly (as in [49, 82, 120, 132]), the control

model can be very complicated due to the nonconvex lane-choice probability

functions. We instead take the toll entry flows as the control input and show

that the optimal tolls can be derived from those flows. By properly formulat-

ing the constraints, we prove that the control problem is a mixed-integer linear

program (MILP) that admits explicit control law based on multi-parametric pro-

graming techniques. Note that our hybrid system model formulation and the

two-step toll design approach overcome the computational intractability of the

models used in previous studies (e.g., [82, 132]). Moreover, compared to the RL

approach [138], our method solves for the optimal tolls and controls the traffic

densities both in continuous space without limiting the optimality of the solu-

tion.
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3.1.2 Model assumptions and notations

Assumption 3.1 Automatic electronic toll facilities are used such as the “transpon-

ders” [3]. The SOVs traveling to the same exit pay the same toll rate they see while

entering the toll entry, this is imposed by sensors that record where each vehicle en-

ters and exits the HOT lane and toll the trip. Thus the proposed tolling approach is

OD-based, which is an ideal toll scheme [87]. Vehicle occupancy, traffic density and

volume are measured. Upstream demand forecast has relatively high accuracy within

the prediction horizon.

Assumption 3.2 The OD ratios (i.e., the flow proportions for individual toll entryexit

pairs) of boundary inflows are the same for the SOVs as for the HOVs, and are un-

changed within the problem horizon, so do the HOV proportions at each boundary

inflow. Traffic demand of the OD pairs is such that the recurrent-congestion-free con-

straint for HOT lanes can be satisfied and the toll entry/exit flows can be accepted under

proper tolls. However GP lanes can be congested.

Assumption 3.3 A HOV prefers HOT lanes to GP lanes. The lane-choice probabili-

ties of an SOV can be described by a Logit model [124, 134, 138] that has linear utility

function with constant parameters in the problem horizon. The utility comes from travel

time, toll and other factors. The other factors (e.g., travel time variation) give no higher

utility traveling in GP lanes than in HOT lanes [24] and this utility difference is in-

creasing in travel distance.

Assumption 3.4 The SOVs only consider to enter the first toll entry they encounter

where their destination is at least as far as the next toll exit, and leave the HOT lanes

(if entered) when approach their target exit of the freeway segment. This behavioral
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assumption is mainly for practical toll control algorithm design considerations and is

also implicitly used in relevant studies (e.g., [36]). It is also consistent with Assumption

3.2 since otherwise the potential demand for each toll entry can be toll-dependent. This

assumption also automatically holds if the toll entries (from the second one) are all direct

HOT accesses.

Main notations used in our model are listed in Table 3.1.

The rest of this chapter is organized as follows. The next section presents

models describing traffic flows and lane choices for a multi-access managed-

lane system. Section 3.3 discusses the toll-manipulation model with practical

constraints. In Section 3.4, the control model is formulated and analyzed. A

numerical experiment is presented in Section 3.5. Finally, in Section 3.6 we draw

conclusions and outline future research.

3.2 Modeling of Multi-Access Managed-Lane System

3.2.1 Traffic-flow model

Traffic dynamics on a freeway segment with managed lanes can be modeled us-

ing the popular macroscopic traffic dynamic model: the cell transmission model

(CTM) [32]. We extend the idea of cell partition proposed in the original CTM to

managed lane systems. Specifically, we consider major bypass inflows and di-

vide the mainline freeway segment into N cell pairs governed by the following

principles (similar to [36, 132]), the length can vary across different cell pairs; 2)

each cell pair contains at most one toll entry (near its start), either at a bypass
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Table 3.1: Notation

n Number of HOT/GP cell pairs on the freeway segment

Li Length of cell pair i (mile)

vH
f ,i/v

G
f ,i Normalized free-flow speed in HOT lanes / GP lanes in cell pair i

nH
i /n

G
i Number of vehicles in HOT lanes / GP lanes in cell pair i

qH
i /q

G
i Number of vehicles leaving cell i and moving to cell i + 1 in HOT lanes / GP lanes

nH
c,i/n

G
c,i Critical density of HOT lanes / GP lanes in cell pair i

nH
J,i/n

G
J,i Jam density of HOT lanes / GP lanes in cell pair i

wH
i /w

G
i Normalized congestion wave speed in HOT lanes / GP lanes in cell pair i

qH
M,i/q

G
M,i Flow capacity in HOT lanes / GP lanes from cell i to i + 1

vH
i /v

G
i Travel speed in HOT lanes / GP lanes in cell pair i (mile/h)

l Number of vehicles waiting to enter the first GP lane cell

di j Travel distance from (the start of) cell pair i to (the end of) cell pair j (mile)

τi j/τ
max
i j Toll / maximum toll for travel in HOT lanes from cell pair i to cell pair j ($)

tH
i j/t

G
i j Perceived travel time from cell pair i to cell pair j in HOT lanes / GP lanes (h)

f in
i / f out

i Traffic flow that enters/ exits HOT lanes at cell pair i (veh/h)

ri/ηi Total inflow upstream the toll entry at cell pair i (veh/h)/proportion of HOVs in ri

λi proportion of vehicles travelled through GP lane cell i and keep moving to cell i+ 1

α1i/α2i Marginal utility of travel time / toll for SOVs at the toll entry in cell pair i

γi j dis-utility of traveling via di j via GP lanes compared to HOT lanes due to factors

other than time and toll

∆t Length of the modeling time step (min)

βi j Proportion of flow among r i that can travel in HOT lanes and exit at cell pair j

pL
i j Probability that an SOV will choose the HOT lanes and travel from cell pair i to j

nHOV
i /oi Number of HOVs / average occupancy of HOVs in cell pair i
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line that has on-ramps to both HOT lanes (direct access) and GP lanes or an en-

try from GP lanes to HOT lanes near an upstream GP lane on-ramp; 3) each cell

pair has at most one toll exit (near its end), either a HOT lane off-ramp (in which

case this cell pair also has a GP lane off-ramp) or an exit from HOT lanes to GP

lanes near a downstream GP lane off-ramp; 4) as required for the convergence

of CTM [32], vehicles can travel through no more than one cell in any time step.

Figure 3.1 shows a freeway segment with N = 4 cell pairs.

In the sequel, we use superscripts “H” and “G” to denote HOT lanes and GP

lanes, respectively.

Figure 3.1: Freeway segment partitioned into cells.

Traffic flow dynamics at each freeway cell

In our discrete time model, the time interval is indexed by t and has length ∆t.

For i = 1, ...,N and each lane type, qi(t) is the number of vehicles leave cell i and

move to cell i + 1 during time step t. By the CTM [32, 104], qi(t) equals to the

minimum over three quantities from left to right in (3.1): the number of vehicles

that can be sent by cell i to i + 1 during time step t, the number of vehicles that

can be received by cell i + 1 from i , and the maximum possible flow from cell i

to i + 1:

qH
i (t) = min[vH

f ,in
H
i (t) − f out

i (t), wH
i (nH

J − nH
i+1(t)), qH

M,i − f out
i (t)],

qG
i (t) = min[λivG

f ,in
G
i (t), wG

i (nG
J − nG

i+1(t)), λiqG
M,i],

(3.1)
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where ni(t) is the number of vehicles (traffic density) in cell i at time step t; λi ∈

[0, 1] is the proportion of vehicles travelled through GP lane cell i and keep

moving to GP lane cell i + 1, which is assumed constant during the problem

horizon; qM,i is the flow capacity, i.e., the maximum number of vehicles can

travel from cell i to i + 1 in each time step if λi = 1. f out
i (t) is the number of

vehicles leave HOT lane cell i in time step t; v f ,i, wi ∈ (0, 1] are the normalized

free-flow speed and congestion wave speed of cell i, respectively; nc,i, nJ,i are the

critical density and jam density of cell i , respectively.

The goal for the managed-lane system is to keep free-flow traffic in HOT

lanes [28], so we restrict 0 ≤ nH
i ≤ nH

c,i for all i = 1, ..., n. Then (3.1) for HOT lane

cells simplifies to

qH
i (t) = vH

f ,in
H
i (t) − f out

i (t), i = 1, ...,N. (3.2)

We assume that the bypass inflow r i at downstream GP lane cell i (i > 1) is

notably smaller than the demand for the first toll entry of the modeling segment,

so we do not consider ramp metering at cell i (i > 1). However, the accumulating

bypass inflows (due to the absence of ramp metering) can result in congestion in

GP lanes, a natural consequence is the formation of a vehicle queue in the first

cell of the modeling segment [53]. We model this effect by maintain a vehicle

queue in front of the first GP lane cell. Hence for the first cell of each lane type,

we have

qH
0 (t) = f in

1 (t), qG
0 (t) = min[l(t) + r1(t) − f in

1 (t), wG
1 (nG

J,1 − nG
1 (t)), qG

M,0] (3.3)

where r1 is the demand upstream mainline entry; l is the length of the vehicle

queue in front of the first GP lane cell; f in
i is the number of vehicles enter HOT

lane cell i.
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Since GP lanes can be congested, i.e., only 0 ≤ nG
i ≤ nG

J,i needs to hold for all

i = 1, ...,N, then (3.1) and (3.3) for each GP lane cell can be rewritten as (time

index omitted for clarity)

qG
0 =


l + r1 − f in

1 if l + r1 − f in
1 ≤ min[wG

1 (nG
J,1 − nG

1 ), qG
M,0]

wG
1 (nG

J,1 − nG
1 ) if wG

1 (nG
J,1 − nG

1 ) ≤ min[l + r1 − f in
1 , qG

M,0]

qG
M,0 if qG

M,0 ≤ min[l + r1 − f in
1 , wG

1 (nG
J,1 − nG

1 )]

, (3.4)

qG
i =


λivG

f ,in
G
i if λivG

f ,in
G
i ≤ min[wG

i+1(nG
J,i+1 − nG

i+1), λiqG
M,i]

wG
i+1(nG

J,i+1 − nG
i+1) if wG

i+1(nG
J,i+1 − nG

i+1) ≤ min[λivG
f ,in

G
i , λiqG

M,i]

λiqG
M,i if λiqG

M,i ≤ min[λivG
f ,in

G
i , wG

i+1(nG
J,i+1 − nG

i+1)]

, i = 1, ...,N − 1,

qG
N =


λNvG

f ,NnG
N if q̄G

N ≥ vG
f ,NnG

N

λiq̄G
N if q̄G

N ≤ vG
f ,NnG

N

,

where we define q̄G
N = min[ŵG

N+1(nG
J,N+1 − n̂G

N+1), λNqG
M,N], which can be determined

by measured density n̂G
N+1 and congestion wave speed ŵG

N+1 downstream the

modeling segment. Note that model (3.1)-(3.4) involves toll entry and exit flows,

f in
i and f out

i , queue length l, and proportions of retaining flows, λi. These quan-

tities are not present in the original CTM [32], which was for a simple freeway

segment (one lane type, no bypass inflows/outflows). However, derivation of

our model (3.1)-(3.4) inherits the basic idea of the original CTM and extends it

to the managed lane system. We also have the following two remarks on the

model above.

Remark 3.1 We assumed that the demand upstream the modeling segment is notably

larger than the bypass inflows and thus we only maintain a vehicle queue upstream the

first GP lane cell of the modeling segment. In practice if the system is very long with

several relatively large bypass inflows (e.g., from a connector of another freeway), we

can first divide the entire system into several modeling segments each of which starts
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at the location of a dominant inflows. Then using proper priority rules at the freeway

junctions involving such dominant inflows [36], the hybrid model we proposed later

can be extended to multi-segment systems and a distributed control framework can be

adopted. As we focus on the tolling problem in a representative freeway segment, we

leave this extension as a future study.

Remark 3.2 The use of constant proportion λi (defined in (3.1)) is similar to the use

of off-ramp splitting ratio in the freeway control literature (e.g., [53, 91, 104]). Strictly

speaking, λi depends not only on the OD ratios but also on the relative relationship

among traffic demand approaching different toll entries upstream of cell pair i and the

flows entering these toll entries (and thus λi also depends on the tolls at these up-

stream toll entries). As shown in [41], modeling the off-ramp flow as a function of

inflows from upstream on-ramps makes dynamic ramp metering problem intractable.

The tolling problem is more complex than ramp metering, so we use constant λi’s for

model tractability and practicability. However, we can actually impose proper con-

straints on the flow proportions entering each toll entry to improve the accuracy of the

approximation by constant λi (see Section 3.3.2 for details).

By the conservation of vehicles, we have the dynamics of vehicle densities

and queue length as

nH
i (t + 1) = nH

i (t) + qH
i−1(t) − qH

i (t) + f in
i (t) − f out

i (t), i = 1, ...,N, (3.5)

nG
i (t + 1) =


nG

i (t) + qG
i−1(t) − qG

i (t)/λi if i = 1

nG
i (t) + qG

i−1(t) − qG
i (t)/λi + ri(t) − f in

i (t) if i = 2, ...,N
, (3.6)

l(t + 1) = l(t) + r1(t) − f in
1 (t) − qG

0 (t). (3.7)
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Traffic dynamics of the entire system

The complexity of the traffic dynamics mainly comes from undetermined con-

gestion status on GP lane cells. Thus in this subsection we focus on explicitly

modeling of the dependency between density evolution in the system to the

congestion status on GP lanes.

For easy of notation, we define λ0 = vG
f ,0 = wG

N+1 = 1, nG
0 = l + r1 − f in

1 , nG
N+1 =

nG
J,N+1q̄G

N . Let vectors nH = [nH
1 , ..., n

H
N ]T, nG = [nG

0 , ..., n
G
N+1]T, f in = [ f in

1 ., ..., f in
N ]T,

r = [r1, ..., rN]T. By the bounds on each entry of nG, we know that nG ∈ Ω =

[0, qG
M,0]×[0, nG

J,1]×...×[0, nG
J,N]×[0, nG

J,N+1] ⊂ RN+2. We then define a set of polyhedra

Di =
{
nG ∈ Ω|µ(1)

i n+i ≤ ζ(1)
i , µ

(2)
i n+i ≤ ζ(2)

i

}
, i = 0, ...,N,

Wi =
{
nG ∈ Ω|µ(1)

i n+i ≥ ζ(1)
i , µ

(3)
i n+i ≤ ζ(3)

i

}
, i = 0, ...,N, (3.8)

Li =
{
nG ∈ Ω|µ(2)

i n+i ≥ ζ(2)
i , µ

(3)
i n+i ≥ ζ(3)

i

}
, i = 0, ...,N,

where n+i = [nG
i , n

G
i+1]T, µ( j)

i ∈ R3, ζ( j)
i ∈ R, i = 0, ...,N, j = 1, 2, 3 are the constant

coefficients

µ(1)
i = [λivG

f ,i wG
i+1], µ(2)

i = [λivG
f ,i 0], µ(3)

i = [0 − wG
i+1],

ζ(1)
i = wG

i+1nG
J,i+1, ζ

(2)
i = λiqG

M,i, ζ
(3)
i = λiqG

M,i − wG
i+1nG

J,i+1.
(3.9)

Then we have a basic result regarding the flow dynamics in the GP lanes.

Lemma 3.1 The traffic density at GP lane cells can be described as

nG
1 (t + 1) = F1(m1)[nG

0 (t), nG
1 (t), nG

2 (t)]T + a1(m1), (3.10)

nG
i (t + 1) = Fi(mi)[nG

i−1(t), nG
i (t), nG

i+1(t)]T + ai(mi) + ri(t) − f in
i (t), i = 2, ...,N,

where mi ∈ Π = {1, ..., 9} represents the possible modes of each GP lane cell and Fi(·) :→

R3, ai(·) :→ R are cell-mode-dependent coefficients (given in Table 3.2), i = 1, ...,N.
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Proof: Substituting (3.4) into (3.6) and by the polyhedra defined in (3.8)-(3.9),

we obtain six different linear dynamics for n1 and nN , and nine different linear

dynamics for ni, i = 2, ...,N − 1, at different polyhedra. The coefficients of these

linear dynamics are shown in Table 3.2. ■

Table 3.2: Coefficients in (3.10) under different modes (superscript “G” omitted)

mi n+i−1 ∈ n+i ∈ Fi(mi) ai(mi)

1a Li−1 Li [0, 1, 0] λi−1qM,i − qM,i

2 Li−1 Wi [0, 1, wi+1/λi] λi−1qM,i−wi+1nJ,i+1/λi

3 Li−1 Di [0, 1 − v f ,i, 0] λi−1qM,i

4a Wi−1 Li [0, 1 − wi, 0] winJ,i − qM,i

5 Wi−1 Wi [0, 1 − wi, wi+1/λi] winJ,i − wi+1nJ,i+1/λi

6 Wi−1 Di [0, 1 − v f ,i − wi, 0] winJ,i

7a Di−1 Li [λi−1v f ,i−1, 1, 0] −qM,i

8 Di−1 Wi [λi−1v f ,i−1, 1, wi+1/λi] −wi+1nJ,i+1/λi

9 Di−1 Di [λi−1v f ,i−1, 1 − vi, 0] 0

a These mi’s are impossible for i = N since LN = ∅ by construction.

Define m = [m1, ...,mN]T be the mode vector of the entire GP lane segment. It

seems that m can take possibly 6×9N−1 many values. However, this number can

be significantly reduced as the modes of two adjacent cell pairs are correlated,

e.g. if mi−1 = 1 then mi can only be 1, 2 or 3.

Lemma 3.2 Let M be the total number of possible mode vectors m, then M = 2N .

Proof: From Table 3.2 we see that the relevant components of nG can be in any

of the sets Wi, Di or Li for 0 ≤ i < N and can be in any of sets WN or DN , so by

definition, the total number of different mode m is 2 × 3N . ■
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Remark 3.3 If a triangular fundamental diagram (FD) is used (i.e., vinc,i = wi(nJ,i −

nc,i) = qM,i) and qM,i = qM, we can show that mode mi = 6 can be removed. If in addition

λi−1 = 1, then mi = 1 can also be removed, in which case it is proved in [118] that M

grows in the order of about 2.25N asymptotically. Notice that our result (Lemma 3.2)

is more general, since it holds for freeway cells with heterogeneous parameters and any

plausible shape of FDs.

Let w = [rT, nG
N+1]T be the vector of exogenous input. By (3.8)-(3.9) and Table

3.2, we can define the following set of polytopes that form a partition of Ω

Ωk =
{
nG ∈ Ω : mode vector is mk

}
=

{
nG ∈ Ω : DknG ≤ dk

}
, k = 1, ...,M. (3.11)

Then we can write (3.10) as a piecewise affine (PWA) system:

nG(t + 1) = AG
k nG(t) + BGw(t) +CG f in(t) + aG

k , if δk = 1, k = 1, ...,M.

AG
k =



0T . . . 0T

F1(mk
1)
. . .

FN(mk
N)

0T . . . 0T


, BG =


1 0T

0 0T

0 I

 , CG =



−eT
1

0T

−I

0T


, (3.12)

where mk = [mk
1, ...,m

k
N]T is the kth mode vector and we define δk(t) ∈ {0, 1}, k =

1, ...,M, satisfying δk(t) = 1 ⇔ nG(t) ∈ Ωk and
∑

k δk(t) = 1. Recall that the first

and last entries in nG ∈ RN+2 represent the auxiliary densities upstream and

downstream the modeling segment: nG
0 = l + r1 − f in

1 , nG
N+1 = nG

J,N+1 − q̄G
N , thus the

first and last rows in AG
k , BG and CG take the values above (e1 is a N-dim vector

with first entry one and the others zero, and I is a N-by-N identity matrix).

Lemma 3.3 System (3.12) is well-posed, i.e., for any nG(t) ∈ Ω, the mapping

(nG(t), w(t), f in(t))→ nG(t + 1) defined by (3.12) is single valued.
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Proof: By definition, n+i (i = 0, ...,N) are subvectors of nG(t) ∈ Ω, then considering

(3), we know that the polyhedra 1, ...,M are all closed and have disjoint interior

with their union being the polytope. Thus for any nG(t) ∈ Ω, either there exists

only one index k ∈ {1, ...,M} satisfying nG(t) ∈ Ωk, or there exits more than one

indices k ∈ {1, ...,M} with nG(t) lies on the common boundary of these k’s. Since

the mapping (nG(t), w(t), f in(t)) → nG(t + 1) is continuous on its domain, so it is

single valued. ■

Now we have the following crucial reformulation of the system model (3.12)

as a set of linear constraints on mixed integer variables.

Theorem 3.1 Let n̄ = [qG
M,0, n

G
J,1, ..., n

G
J,N+1]T, (3.12) is equivalent to the following con-

straints
nG(t + 1) =

∑M
k=1 sk(t), δk(t) ∈ {0, 1},

∑M
k=1 δk(t) = 1,

gk[1 − δk(t)] ≥ DknG(t) − dk, n̄δk(t) ≥ sk(t) ≥ 0,

sk(t) ≤ AG
k nG(t) + BG

k w(t) − f in(t),

sk(t) ≥ AG
k nG(t) + BG

k w(t) − f in(t) − n̄[1 − δk(t)],

(3.13)

where gk = maxnG∈Ω DknG − dk, k = 1, ...,M.

Proof: Clearly, for any k = 1, ...,M, 0 ≤ AG
k nG + BGw− f in ≤ n̄ (entry-wise compar-

ison) holds, and for either the upper or lower bound, there must exit one k such

that the bound is tight by our partition of into {k, k = 1, ...,M}. Thus the result

follows by Lemma 3 and the discussion in [13]. ■

For the dynamics of HOT lane densities in (3.5), we simply have

nH(t + 1) = AHnH(t) + f in(t), (3.14)
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AH =



1 − vH
1 0 . . . 0 0

vH
1 1 − vH

2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 − vH
N−1 0

0 0 . . . vH
N−1 1 − vH

N


Note that the toll exit flow terms { f out

i } do not appear in (3.14), this is because

they are cancelled by (3.2) and (3.5) as a result of free-flow traffic in HOT lanes.

Finally, for the dynamics of the queue length at segment entry, we can ex-

press (3.7) as

l(t + 1) = (1 − σD
k )l(t) + (1 − σD

k )eT
1 [w(t) − f in(t)] + σW

k wG
1 [eT

2 nG(t) − nG
J,1] − σL

k qG
M,0

= l(t) − σD
k eT

1 nG(t) + σW
k wG

1 [eT
2 nG(t) − nG

J,1] − σL
k qG

M,0 (3.15)
σL

k = 1 if mk
1 ∈ {1, 2, 3} and 0 otherwise,

σW
k = 1 if mk

1 ∈ {4, 5, 6} and 0 otherwise,

σD
k = 1 if mk

1 ∈ {7, 8, 9} and 0 otherwise,

where the second equality follows by our definition nG
0 = l + r1 − f in

1 ; and the

binary variables σL
k , σ

W
k , σ

D
k encode if the term −qG

0 in (3.7) is equal to qG
M,0,

wG
1 (nG

J − nG
1 ) or l + r1 − f in

1 , with σL
k + σ

W
k + σ

D
k = 1, so (3.15) is also a well-posed

PWA system.

In practice the queue lengths must be bounded, thus we can impose l(t) ≤

lmax. Then by noting the correspondence between σL
k , σ

W
k , σ

D
k and the binary

variables δk(t), k = 1, ...,M, we can express (3.15) also as a set of linear relations

in terms of continuous variables l(t), l(t+1) and binary variables δk(t), k = 1, ...,M,

in the similar way as we translated (3.12) to (3.13).

Combining (3.13), (3.14) and (3.15), we can describe the traffic dynamics in
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the entire managed lane system by a set of linear mixed-integer relations, which

is the basis for the control model design.

3.2.2 Lane-choice model

The main factors that affect lane choice behavior of SOVs are the difference in

the travel times for the HOT lanes and the GP lanes and the toll; other minor

factors also exist [134]. In this study the commonly used linear utility function

is adopted. Let di j be the travel distance from start of cell pair i to end of cell

pair j, tH
i j and tG

i j be the perceived travel times in the HOT lanes and the GP lanes,

respectively, on this distance. Since we ensure free-flow in the HOT lanes, tH
i,i+1 =

di,i+1/vH
f ,i. However, tG

i j(t) depends on GP lane congestion status. We assume

thattG
i j(t) is equal to di j divided by the average of the historical mean speed users

experienced over distance di j via GP lanes, v̄G
i j, and the real-time local speed,

vG
i (t). Hence the utility of an SOV user traveling from cell pair i to cell pair j via

the HOT lanes (H) or GP lanes (G) is
UH

i j (t) = α1itH
i j + α2iτi j(t) = α1i

j∑
j′=i

d j′, j+1/vH
f , j′ + α2iτi j(t),

UG
i j(t) = α1itG

i j + γi j = 2α1idi j/
(
vG

i (t) + v̄G
i j

)
+ γi j

(3.16)

where τi j(t) is the toll ($) for travel of an SOV in the HOT lanes from cell pair i to

cell pair j; an SOV that enters the HOT lanes in cell pair i during time interval t

will be charged τi j(t) upon exiting the HOT lanes in cell pair j (see Assumption

3.1). The parameters α1 ≤ 0, α2 < 0 represent the marginal effects of the travel

time and the toll, respectively, on an SOV’s travel utility, which can be location

dependent, and α1/α2 represents an SOV’s VOT. γi j represents the utility due to

other factors such as travel time variation in GP lanes relative to HOT lanes [24].
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We have γi j ≤ 0 by Assumption 3.3.

Thus, for each toll entry-exit pair, the probability that an SOV will choose

the HOT lanes is:

PL
i j(t) = PL

i j(v
G
i (t), τi j(t)) = [1 + exp(UG

i j(t) − UH
i j (t))]

−1

=
{
1 + exp[α1i(tG

i j(t) − tH
i j ) − α2iτi j(t) + γi j]

}−1
(3.17)

We write PL
i j(t) as a function of vG

i (t) and τi j(t) since it depends on t only

through vG
i (t) and τi j(t) by (3.16). The model parameters α1, α2 and γi j can be

estimated empirically [24], we will give an example in Section 3.5.

Based on the lane-choice probability PL
i j for SOVs by (3.17), the common OD

ratios for HOVs and SOVs from Assumption 3.2, and the preference of HOVs for

HOT lanes from Assumption 3.3, we can calculate Pi j, the expected proportion

of the vehicle flow that will enter the HOT lanes via the toll entry in cell pair i

and head for the toll exit in cell pair j (this flow is denoted by ri j), to be

Pi j(t) = (1 − ηi(t))PL
i j(t) + ηi(t), (3.18)

where ηi is the proportion of HOVs among the flow ri, it can be time variant.

3.2.3 Toll entry flow model

By Assumption 3.4 we know the possible flow which can potentially enter the

HOT lane at cell pair i is ri. In addition, we note that the underlying OD ratios at

boundary inflows are the same for HOVs and SOVs by Assumption 3.2. Thus,

the traffic flows at the toll entry can be determined by the toll entry-exit OD
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demand and the associated entering proportions

f in
i (t) =

∑
j≥i

f in
i j (t) =

∑
j≥i

ri j(t)Pi j(t) =
∑
j≥i

βi jri(t)Pi j(t) = ri(t)
∑
j≥i

βi jPi j(t) ∀ j ≥ i, (3.19)

where f in
i j is the flow enters the HOT lane in cell pair i heading for the toll exit in

cell pair j; βi j is the proportion of flow in ri that may choose the HOT lanes and

travel to the toll exit in cell pair j.

When the “control” is entry flows instead of toll rates at toll entries, we can

avoid use of the nonlinear and nonconvex Logit functions for the lane-choice

probabilities in the control model. This can be achieved by using a proper toll-

manipulation model, as discussed below.

3.3 Toll-Manipulation Model

3.3.1 Bijection between tolls and toll entry flows

In a multi-access managed-lane system, we aim to determine time-varying tolls

for all the toll entry-exit pairs in order to maintain smooth traffic. Note that if

we directly optimize the tolls, the nonlinear and nonconvex lane-choice proba-

bility function in (3.17) has to be incorporated into the control model, making it

intractable. We have an important observation that while tolls control the pro-

portion of SOVs which chooses the HOT lanes at each toll entry, we can view

the resultant toll entry flows { f in
i j } as “intermediate” input to the system which

directly affects the distribution of traffic flow in the system. Notice that as indi-

cated by (3.12) and (3.19) , if we take the toll entry flows { f in
i j } as the input to the

system, then the resulting system model is PWA, so we have relatively efficient
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tools to deal with the control problem (optimization of the toll entry flows), as

will be discussed in detail in Section 3.4). Therefore, if we can translate each

f in
i j conveniently to a corresponding unique toll τi j > 0, we can almost as eas-

ily solve the original control problem by first solving for the optimal toll entry

flows and then translating them to the tolls. In fact, this can be achieved based

on the following basic observation.

Lemma 3.4 Pi j(t) is a function of vG
i (t) and τi j(t), Pi j(t) = Pi j(vG

i (t), τi j(t)), and given

vG
i (t), Pi j is invertible for τi j(t) ≥ 0.

Proof: It can be verified that given vG
i , PL

i j(v
G
i , τi j) is continuous and strictly de-

creasing in τi j ≥ 0. Since Pi j is an increasing affine function of PL
i j as defined in

(3.18) , it is also a function of vG
i and τi j, and in particular continuous and strictly

decreasing and hence an invertible in τi j ≥ 0 given vG
i . ■

Therefore, based on the measured vG
i and the optimal inflow to the HOT

lanes ( f in∗
i j ) obtained from the control model (the corresponding optimal enter-

ing proportion is P∗i j), the optimal toll τ∗i j can be derived by the inverse of the

function Pi j(vG
i , ·) (time index t is omitted for clarity):

τ∗i j = P−1
i j (vG

i , P
∗
i j) = P−1

i j (vG
i , f in∗

i j /ri j). (3.20)

3.3.2 Practical constraints

Lower and upper limits on SOVs’ choice probabilities

In practice, there is typically a predefined proper toll cap τmax
i j > 0, so τi j ∈

[0, τmax
i j ]. Thus, the choice probability PL

i j cannot be higher than some PL
i j,up ∈ (0, 1)
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nor lower than some PL
i j,low ∈ (0, 1). If we simply set PL

i j,up = PL
i j(v

G
i , 0) and

PL
i j,low = PL

i j(v
G
i , τ

max
i j ), then PL

i j,up and PL
i j,low depend on vG

i by (3.17) , which com-

plicates the control design. However, we can establish proper constant PL
i j,up

and PL
i j,low by two practical considerations: 1) τi j should have decent value when

the GP lanes at the toll entry i are congested so that SOVs have a paid option

for using the faster HOT lanes (one main purpose of value pricing); 2) τi j can be

τmax
i j only when the system is heavily congested.

Lemma 3.5 If PL
i j(v

G
i , τi j) ≤ PL

i j(v
G
f ,i, 0), then for any nG

i > nG
c,i, we have τi j > 0 ∀ j ≥ i;

and if PL
i j(v

G
i , τi j) ≥ PL

i j(0, τ
max
i j ), then for any nG

i < nG
J,i, we have τi j < τ

max
i j ∀ j ≥ i.

Proof: We know ∂PL
i j/∂v

G
i < 0 by (3.17), so PL

i j(v
G
i , 0) > PL

i j(v
G
f ,i, 0) for any vG

i < vG
f ,i

(i.e., nG
i > nG

ci) and PL
i j(v

G
i , τ

max
i j ) < PL

i j(0, τ
max
i j ) for any vG

i > 0 (i.e., nG
i < nG

J,i). It

follows that PL
i j(v

G
i , τi j) ≤ PL

i j(v
G
f ,i, 0) is possible only when τi j > 0 and PL

i j(v
G
i , τi j) ≥

PL
i j(0, τ

max
i j ) is possible only when τi j < τ

max
i j since ∂PL

i j/∂τi j < 0. ■

Therefore, we can choose any proper PL
i j,up and PL

i j,low with PL
i j,up > PL

i j,low and

PL
i j,up ≤

1 + exp

2α1idi j/(vG
f ,i + v̄G

i j) − α1i

j∑
j′=i

d j′, j+1/vH
f , j′ + γi j



−1

PL
i j,low ≥

1 + exp

2α1idi j/v̄G
i j − α1i

j∑
j′=i

d j′, j+1/vH
f , j′ − α2iτ

max
i j + γi j



−1 (3.21)

which are independent of vG
i and ensure restrictions 1) and 2), thus making the

control model practical and convenient to handle. Notice that applying PL
i j,up

and PL
i j,low by (3.21) is sufficient for τi j(t) to be within [0, τmax

i j ] but still provides

much flexibility in flow design (i.e., PL
i j,up is much higher than PL

i j,low) since in

practice τmax
i j is sufficiently large and v̄G

i j is notably smaller than vG
f ,i (which makes

pricing necessary in the first place), e.g., see the numerical example in Section

3.5.
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Then by (3.18) the corresponding lower and upper bounds on Pi j are

Pmin
i j = (1 − ηi)PL

i j,low + ηi, Pmax
i j = (1 − ηi)PL

i j,up + ηi. (3.22)

The constraint Pi j(t) ∈ [Pmin
i j , P

max
i j ] can then be translated to limits on toll entry

flows

ri j(t)Pmin
i j = f in,min

i j (t) ≤ f in
i j (t) ≤ f in,max

i j (t) = ri j(t)Pmax
i j . (3.23)

Constraints for equity considerations and proper use of the ratios {λi}

One issue with the OD-based tolling scheme is equity among the potential HOT

lane users of different OD pairs [87]. Here we propose the following constraints

at each toll entry: the proportions of the flows entering the HOT lanes and going

to different downstream exits do not vary significantly (the similarity can be

OD-specific), i.e.,

(1+εi j)−1Pi j ≤ Pi, j+1 ≤ (1+εi j)Pi j for some small εi j > 0 ∀ j ∈ {i, i+1, ...N−1}. (3.24)

By (3.18) we know that similar Pi j means similar PL
i j, for all i ≤ j ≤ N. Hence

the intuition behind (3.24) is that the SOVs at the same toll entry heading for

different downstream toll exits have similar likelihood to use the HOT lanes.

Note that although (3.24) leads to extra restrictions to the tolls τi j (i ≤ j ≤ N),

it does not limit the level of capacity utilization of the HOT lanes as there is no

restriction to the absolute value of any particular Pi j. Now we show that (3.24)

may also help justifying the use of constant ratio λi (see Remark 3.2).

Proposition 3.1 If (3.24) holds, then λ j ≈ 1 − β1 j/(
∑

j′≥ j β1 j′) provided that: (i) (1 −

Pmax
11 )r1 >> (1 − Pmin

11 ))ri for all 1 < i ≤ j (if any) or (ii) the OD ratios βi j′ are close for

all i ≤ j given each j′ ≥ j.

161



Proof: Under case (i), we have by definition of λ j and (3.24)

λ j = 1 −
∑

i≤ j ri j(1 − Pi j)∑
i≤ j

∑
j′≥ j ri j′(1 − Pi j′)

≈ 1 −
r1 j(1 − P1 j)∑

j′≥ j r1 j′(1 − Pi j′)

= 1 −
r1β1 j(1 − P1 j)∑

j′≥ j r1β1 j′(1 − Pi j′)
≈ 1 −

β1 j∑
j′≥ j β1 j′

and under case (ii), we have by (3.24)

λ j = 1 −
∑

i≤ j riβi j(1 − Pi j)∑
i≤ j

∑
j′≥ j riβi j′(1 − Pi j′)

≈ 1 −
β1 j

∑
i≤ j ri(1 − Pi j)∑

i≤ j ri
∑

j′≥ j β1 j′(1 − Pi j′)

≈ 1 −
β1 j

∑
i≤ j ri(1 − Pi j)∑

i≤ j ri(1 − Pi j)
∑

j′≥ j β1 j′
≈ 1 −

β1 j∑
j′≥ j β1 j′

■

Note that r1 dominates ri (i > 1) by our modeling choice (see Remark 3.1)

and pmax
i j should be not too close to 1 nor pmax

i j to 0 by use of (3.21) in setting pL
i j,up

and pL
i j,low; and if two toll entries i and i′ are close (which is the model setting of

our focus) the underlying OD ratios {βi j} and {βi′ j} to downstream exits could be

similar. Hence imposing (3.24) also ensures that λ j ≈ 1 − β1 j/(
∑

j′≥ j β1 j′) is a good

approximation by Proposition 3.1. Notice that here the first cell pair actually

represents the location of a major inflow to the modeling segment, hence this

approach can be used for estimating λ j’s for a long system with several model-

ing segments (see Remark 3.1).

Relative relationships among tolls to different exits

Another practical requirement in the OD-based tolling [87] is that at each toll

entry the toll for a more distant toll exit cannot be lower than that for a closer

toll exit. We show below that this restriction has a good property (Proposition

3.2) that admits a convenient sufficient condition.
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Lemma 3.6 For any j and j′ with i ≤ j < j′ ≤ N, the perceived travel time satisfies

ti j < ti j′ .

Proof: First we let t̄G
i j be the historical average travel time users experienced

on distance di j via GP lanes, so v̄G
i j = di j/t̄G

i j. Showing ti j < ti j′ is equivalent to

showing di j/(vG
i + v̄G

i j) < di j′/(vG
i + v̄G

i j′), which is equivalent to di j/(vG
i + di j/t̄G

i j) <

di j′/(vG
i + di j′/t̄G

i j′), and this is true because di j

vG
i + di j/t̄G

i j

−1

=
vG

i

di j
+

1
t̄G
i j

>
vG

i

di j′
+

1
t̄G
i j′
=

 di j′

vG
i + di j/t̄G

i j′

−1

since di j < di j′ and t̄G
i j < t̄G

i j′ . ■

Proposition 3.2 Let S i = {( f in
i j , f in

i j′) : τi j ≤ τi j′ for any j′ > j] ≥ i}, then given ri and

vG
i , S i is convex.

Proof: By (3.17) we have that for different toll exits j and j′ with j′ > j ≥ i (time

index t omitted),

ln
(
(PL

i j)
−1 − 1

)
= α1iti j + γi j − α2iτi j, ln

(
(PL

i j′)
−1 − 1

)
= α1iti j′ + γi j′ − α2iτi j′ . (3.25)

Given ri j, PL
i j is a positive affine function of Pi j by (3.18), and hence a positive

affine function of f in
i j . Then by (3.25), τi j ≤ τi j′ implies that implies that

α2iτi j = α1iti j + γi j − ln
(
(PL

i j)
−1 − 1

)
≥ α1iti j′ + γi j′ − ln

(
(PL

i j′)
−1 − 1

)
= α2iτi j′ ,

where the inequality is due to τi j ≤ τi j′ and α2i < 0. By rearranging terms, we

obtain

ln
[(

(PL
i j′)
−1 − 1

)
/
(
(PL

i j)
−1 − 1

)]
≥ α1i(ti j′ − ti j) + (γi j′ − γi j).

This implies that (let ω = exp[α1i(ti j′ − ti j) + (γi j′ − γi j)])

PL
i j′ ≤ f (PL

i j) = PL
i j

(
ω + (1 − ω)PL

i j

)−1
, (3.26)
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where we define the rightmost term as a function of PL
i j, f (Pi jL), whose second

derivative is

∂2 f
∂(PL

i j)2
= ∂

 ω

((1 − ω)PL
i j + ω)2

 /∂PL
i j = −

2ω(1 − ω)
((1 − ω)PL

i j + ω)3
. (3.27)

Since α1i ≤ 0, ti j < ti j′ (by Lemma 3.6) and γi j′ ≤ γi j ≤ 0 (by Assumption 3.3),

we have 0 ≤ ω ≤ 1, thus (3.27) implies that ∂2 f /∂(PL
i j)

2 ≤ 0. Thus, f is concave, so

(3.26) is convex in (PL
i j, P

L
i j′) and thus also convex in ( f in

i j , f in
i j′) since given ri, PL

i j is

a positive affine function of f in
i j for all j ≥ i, so S i is convex. ■

Therefore, to have τi j ≤ τi j′ for any j′ > j ≥ i, only the following constraints

are needed for each i:

f in
i j − ri jηi

(1 − ηi)ri j

ω + (1 − ω)( f in
i, j−1 − ηiri, j−1)

(1 − ηi)ri, j−1

 ≤ f in
i, j−1 − ri, j−1ηi

(1 − ηi)ri, j−1
∀ j > i. (3.28)

Based on the convexity of (3.28), we can derive a linear constraint that en-

sures (3.28) for control design. One natural option is to connect the two corner

points of the feasible region for (Pi, j−1, Pi j) defined by (3.22): (Pmin
i, j−1, P

min
i j ), and

(Pmax
i, j−1, P

max
i j ), for j > i, and require Pi j ≤ (Pi, j−1 −Pmin

i, j−1)(Pmax
i j −Pmin

i j )/(Pmax
i, j−1 −Pmin

i, j−1)+

Pmin
i j . These restrictions amount to a set of linear constraints on { f in

i j } for each toll

entry i:
f in
i j

ri j
≤

Pmax
i j − Pmin

i j

Pmax
i, j−1 − Pmin

i, j−1

 f in
i, j−1

ri, j−1
− Pmin

i, j−1

 + Pmin
i j ∀ j > i. (3.29)

Notice that the coefficients in (3.28) depend on vG
i via variable ω. but (3.29) is

independent of vG
i , a nice property for control design. Figure 3.2 depicts the two

constraints (3.28) and (3.29) in terms of Pi j for an illustrative example (toll entry

i and toll exits j and j′ with i ≤ j ≤ j′). We can see that the feasible region for

the linear constraint (3.29) lies within and reasonably approximates the feasible

region for the convex constraints (3.28) for a wide range of different vG
i ’s. We

will impose (3.29) in the control model.
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Figure 3.2: Toll constraints in terms of Pi j and Pi j′ (arrows indicate the fea-
sible regions; data used: di j = 1, di j′ = 2, vH

f ,i = vG
f ,i = 60, v̄G

i j = 30,
α1i = 20, γi j = −0.5di j, τmax

i j = τ
max
i j′ = ∞, ηi = 0.1).

One key observation is that our control model is flexible enough to incor-

porate such constraints as (3.23), (3.24) and (3.29), which will be explained in

Section 3.4.3 .

Remark 3.4 It can be verified that at each toll entry the fairness condition (3.24) is

compatible with the condition of no less toll for a more distant toll exit. To see this,

we note that for any j and j′ with i ≤ j < j′ ≤ N, if Pi j′ = Pi j, then (3.17) implies

that α1iti j − α2iτi j + γi j = α1iti j′ − α2iτi j′ + γi j′ . Since di j < di j′ , α2i < 0, α1i ≤ 0,

γi j′ ≤ γi j (by Assumption 3.3 since di j < di j′), ti j < ti j′ (by Lemma 3.6), we deduce that

τi j − τi j′ = [α1i(ti j − ti j′) + γi j − γi j′]/α2i ≤ 0.

Remark 3.5 For easy of notation, we have assumed that all cell pairs have toll entry

and exit, the derivations can easily be modified so that only the cells that actually have

these components appear in the equations. We will keep use this convenient notation,
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and without loss of generality, let V = (N + 1)N/2 be the maximum possible number of

toll entry/exit pairs, typically it is much smaller.

3.4 The Control Model and Solution Method

3.4.1 System predictive model

Let the system state be x = [(nH)T, (nG)T, l]T ∈ R2N+3 and the controlled input

be u = { f in
i j } ∈ RV , then based on (3.12), (3.14) and (3.15) as well as the linear

relationship f in
i =

∑
j≥i f in

i j , we can describe the entire system by the following

relations:

x(t + 1) = Ax(t) + B1u(t) + B2w(t) + B3δ(t) + B4s(t) + ϵ(t), (3.30)

C1δ(t) +C2s(t) ≤ C3u(t) +C4w(t) +C5x(t) +C6, (3.31)

where δ = {δk, k = 1, ...,M} ∈ {0, 1}M, s = {sk, k = 1, ...,M} ∈ RM, with each binary

auxiliary variable δk and each continuous auxiliary variable sk defined earlier;

A, B1∼4, C1∼6 are constant matrices of suitable dimensions; ϵ is the random noise

term that represents modeling error (e.g., modeling the real traffic flow by CTM

and use of constant λi) and demand forecast error and implementation error

(use of Logit lane-choice probability functions), we assume that ϵ(t) has zero

mean, is bounded and independent across t. Given the current state x(t) and

input u(t), the evolution (3.31) is determined by a feasible value of δ(t) and s(t)

to (3.31).
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3.4.2 Control model formulation

Two major advantages of MPC are: 1) explicit consideration of and computation

with state and input constraints which would be very hard to accomplish in

any other way [17, 22]; 2) effective disturbance rejection by adjusting the action

based on current state measurement and a certain length of system prediction.

At each control stage t, given the observation xt = x(t), the planned control

sequence ut, ut+1, ..., ut+P1, and the exogenous input forecast wt+1, ...,wt+P−1, we can

predict the future states over the prediction horizon P as xt+1, ..., xt+P. We use

subscript t+ p to indicate a quantity predicted or to be computed p-step into the

future based on the current observation xt. At each stage t ≥ 0 we compute the

controls ut, ut+1, ..., ut+P1 by solving the following optimization problem:

min
ut ,...,ut+P−1∈RV

δt ,...,δt+P−1∈{0,1}M

J0(t) =
P∑

p=1

bT(xt+p − B0nHOV
t+p ) + oTnHOV

t+p + ρ||ut+p − ut+p−1||1 (3.32)

s.t. xt = x(t), (3.33)

xt+p+1 = Axt+p + B1ut+p + B2wt+p + B3δt+p + B4st+p, p = 0, ..., P − 1, (3.34)

C1δt+p +C2st+p ≤ C3ut+p +C4wt+p +C5xt+p +C6, p = 0, ..., P − 1, (3.35)

xmin ≤ xt+p ≤ xmax, p = 1, ..., P, (3.36)

∆umin ≤ ut+p − ut+p−1 ≤ ∆umax, p = 0, ..., P − 1, (3.37)

umin
t+p(wt+p) ≤ ut+p ≤ umax

t+p (wt+p), p = 0, ..., P − 1, (3.38)

F(ut+p,wt+p) ≤ 0 p = 0, ..., P − 1. (3.39)

The coefficients of the objective function J0(t) in (3.32) are B0 = [I, 0]T, b =

[1T, 0, 1T, 0, 1]T, here I is a N-by-N identity matrix, 0 is a (N + 3)-by-(N + 3) zero

matrix, nHOV = [nHOV
1 , ..., nHOV

N ]T and o = [o1, ..., oN]T, respectively, contain the

number of HOVs and the average occupancy of HOVs on each HOT lane cell.
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Thus by Assumption 3.2, the first two terms in the summation in J0(t) are the

total number of travelers in the freeway segment at time t+ p. Hence in (3.32) we

want to minimize the weighted sum of two terms over the prediction horizon:

the total person travel time and the effort involved in control input changes,

with ρ > 0 represents the weight of the control smoothing term relative to the

total person delay term. The constraints are described below.

(3.33)-(3.35) are system dynamics constraints based on (3.31) and (3.31),

where we replace the noise ϵ(t + p) with its expectation 0, this is a commonly

used approach in practice for its convenience and good empirical performance

in MPC [17].

(3.36) is the state constraint. We restrict the traffic density to be at most the

critical value for HOT lanes, so xmin = 0, xmax = [nH
c,1, ..., n

H
c,N , n̄

T]T.

(3.37) applies the limits ∆umin and ∆umax on delta changes in the input [120],

which can determined based on traffic safety and stability needs.

(3.38) are the limits (3.23) on the input u. Note that we write the bounds on

ut+p as functions of wt+p, because they depend on ri j.

(3.39) encodes constraints (3.24) and (3.29) in Propositions 3.1 and 3.2. F is a

vector-valued function with suitable dimension.

Although all P controls are computed in the optimization model, only the

first one, ut, is implemented while the others are discarded. The same process is

repeated in the next stage, once it is revealed.
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3.4.3 Properties and solution method of the control model

We first reformulate problem (3.32)-(3.39).

Proposition 3.3 Problem (3.32)-(3.39) is equivalent to the following (where ϕt+p =

[ϕt+p,1, ..., ϕt+p,V]T):

min
ut ,...,ut+P−1,ϕt ,...,ϕt+P−1∈RV

δt ,...,δt+P−1∈{0,1}M

J(t) =
P∑

p=1

bTxt+p + ρ1Tϕt+p (3.40)

s.t. (3.33) − (3.39),−ϕt+p,l ≤ ut+p,l − ut+p−1,l ≤ ϕt+p,l, p = 1, ...., P − 1, l = 1, ...,V (3.41)

Proof: Since the HOT lanes are maintained at free-flow condition, by Assump-

tions 3.2 and 3.3, the number of HOVs in the HOT lane cells can be predicted by

(where AH is defined in (3.14))

nHOV(t + 1) = AHnHOV(t) + diag(η1, ..., ηN)r(t).

It follows that the terms which involve nHOV can be dropped from the objective

function J0(t) in (3.32) without affecting its optimal solution.

Also note that |ut+p,l − ut+p−1,l| ≤ ϕt+p,l is equivalent to −ϕt+p,l ≤ ut+p,l − ut+p−1,l ≤

ϕt+p,l for each p = 0, ..., P − 1 and l = 1, ...,V , where ut+p,l is the lth entry of

ut+p. In addition, at the optimal solution to problem (3.40)-(3.41) we must have

|ut+p,l − ut+p−1,l| = ϕt+p,l, since otherwise the objective function J(t) in (3.40) can be

improved by reducing ϕt+p,l. This completes the proof. ■

Although more variables are involved in problem (3.40)-(3.41), it is easier

to handle than problem (3.32)-(3.39) as occupancy data (which is usually hard

to obtain) is not needed in computing the optimal control while the resulting

optimal solution also minimizes the original objective J0(t) in (3.32) and the new

objective J(t) in (3.40) is clearly linear in xt+p and ϕt+p−1, p = 1, ..., P.
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Now we examine the structure of the constraints in (3.41). Clearly, the con-

straints in (3.33)-(3.37) are all linear in the state xt+p, p = 1, ..., P, the control ut+p,

p = 0, ..., P − 1, and the auxiliary binary variables δt+p, p = 0, ..., P − 1. The pre-

dicted exogenous input w is not involved in these constraints. For the rest of the

constraints, we claim the following.

Proposition 3.4 The constraints in (3.38) (which encode (3.23)) and the constraints

in (3.39) (which encode (3.24) and (3.29) are all linear in both ut+p and wt+p for p =

0, ..., P − 1.

Proof: Under Assumption 3.2 and (3.22), we know that Pmin
i j , Pmax

i j are constant

within the problem horizon, hence by (3.23) we know that f in,min
i j,t+p ≤ f in

i j,t+p ≤ f in,max
i j,t+p

is equivalent to

f in
i j,t+p − βi jri,t+pPmax

i j ≤ 0, − f in
i j,t+p + βi jri,t+pPmin

i j ≤ 0.

Hence the constraints in (3.38) are linear in both ut+p and wt+p for p = 0, ..., P − 1.

Assumption 3.2 implies that ri j and ri, j+1 are fixed proportions of the total bypass

inflow ri within the problem horizon, thus for each p = 0, ..., P − 1, (3.24) is

equivalent to

(1 + εi j)−1
f in
i j,t+p

βi jri,t+p
≤

f in
i, j+1,t+p

βi, j+1ri,t+p
≤ (1 + εi j)

f in
i j,t+p

βi jri,t+p
∀i ≤ j < N

⇔ βi j f in
i, j+1,t+p − (1 + εi j)βi, j+1 f in

i, j,t+p ≤ 0,

(1 + εi j)−1βi, j+1 f in
i j,t+p − βi j f in

i, j+1,t+p ≤ 0 ∀i ≤ j < N.

Similarly, for each i, each j > i and each p = 0, ..., P − 1, (3.29) is equivalent to

f in
i j,t+p

βi jri,t+p
−

Pmax
i j − Pmin

i j

Pmax
i, j−1 − Pmin

i, j−1

f in
i, j−1,t+p

βi, j−1ri,t+p
−

Pmax
i, j−1Pmin

i j − Pmax
i j Pmin

i, j−1

Pmax
i, j−1 − Pmin

i, j−1

≤ 0

⇔ βi, j−1(Pmax
i, j−1 − Pmin

i, j−1) f in
i j,t+p − βi j(Pmax

i j − Pmin
i j ) f in

i, j−1,t+p

−βi, j−1(Pmax
i, j−1Pmin

i j − Pmax
i j )Pmin

i, j−1)ri,t+p ≤ 0.
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Thus F is affine, so the constraints in (3.39) are all linear in ut+p and wt+p for

p = 0, ..., P − 1. ■

We define the decision vector zt = [xT
t+1, ..., x

T
t+P, u

T
t , ..., u

T
t+P−1, π

T
0 , ..., ϕ

T
P−1, δ

T
t , ...,

δT
t+P−1]T ∈ RP(2N+3+2V) × {0, 1}PM, and the vector of parameters yt =

[x(t),wT
t , ...,w

T
t+P−1]T ∈ R2N+3+P(N+1) that contains the current state and the pre-

dicted boundary inflows within the prediction horizon. Then by Proposition

3.4.3, problem (3.40)-(3.41) can be cast as a multi-parametric mixed integer lin-

ear programing (mp-MILP) problem

J∗(yt) = min
zt
{J(zt, yt) = f Tzt} (3.42)

s.t. Gzt ≤ S yt + g,

where f = [bT, ..., bT, 1T, 0T]T ∈ RP(2N+3+2V+M), and G ∈ RQ×P(2N+3+2V+M), S ∈

RQ×(2N+3+P(N+1)), g ∈ RQ are constant coefficients which can be constructed based

on the data in problem (3.40)-(3.41). Here Q is the total number of inequalities

needed to express the constrains in (3.41). Let Θ ⊆ R2N+3+P(N+1) be the polytope

formed by the upper and lower bounds of the entries in y and denote Θ∗ ⊆ Θ

the region of parameters y ∈ Θ such that problem (3.40)-(3.41) is feasible. No-

tice that by Assumption 3.2 we have Θ∗ , ∅ in the first place. For any given

ȳt ∈ Θ∗, J∗(ȳt) denotes the minimum value of J(yt) for yt = ȳt. The value func-

tion J∗ : Θ∗ → R denotes the function which expresses the dependence on y of

the minimum value of the objective function over Θ∗. The set-valued function

Z∗ : Θ∗ → 2R
P(2N+3+2V) × 2{0,1}

PM describes for any fixed yt ∈ Θ∗ the set of optimizers

z∗(yt) corresponding to J∗(yt).

If we can determine the region Θ∗ of feasible parameters y and find the ex-

pressions of value function J∗(yt) and an optimizer function z∗t (yt) ∈ Z∗(yt), then

computing the optimal control at each step t amounts to evaluating an analyti-
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cal form. Now we claim that this actually can be achieved due to the property

of mp-MILP.

Theorem 3.2 Consider problem (3.42). The set Θ∗ is the union of a finite number

of mutually disjoint polyhedra and the value function J∗ is PWA on these polyhedra.

In addition, it is always possible to define a PWA optimizer function Z∗(yt) on these

polyhedra.

Proof: Given any set of fixed binary variables δ = [δT
t , ..., δ

T
t+P−1]T, problem (3.42)

becomes a multi-parametric linear programing (mp-LP) problem, whose op-

timal value function J∗(yt, δ) is known to be PWA on a set of polydera {Pi(δ)}

(a partition of Θ∗) and it is always possible to define a continuous and PWA

optimizer function Z∗(yt, δ) on Θ∗ [22]. Superimposing all the polydera {Pi(δ)}

for all δ ∈ {0, 1}PM with
∑

k=1,...,M δtk = 1, t = 1, ..., P, we obtain a more refined

polydera partition {Pi} of Θ∗ since the intersection of any two polyhera is poly-

hedral. Hence for any Pi and any y ∈ Pi, J∗(y) is the minimum over a finite

set of affine functions in R2N+3+P(N+1) → R, each of which corresponds to one

distinct δ, so J∗(y) is affine on Pi. Figure 3.3 shows a simple example of PWA

value function J∗(y) when parameter y is a scalar and the number of feasible bi-

nary vectors δ is 2. Now we write Z∗(y) = (Z∗c (y),Z∗d(y)) with the continuous part

Z∗c (y) : Θ∗ → RP(2N+3+2V) and the discrete part Z∗d(y) : Θ∗ → {0, 1}PM. Using simi-

lar argument, we deduce that it is always possible to define a PWA Z∗c (y) and a

piecewise constant Z∗d(y) for all y ∈ Theta∗, hence a PWA optimizer function Z∗(y)

over Θ∗ (since piecewise constant is a special case of PWA). ■

Therefore, problem (3.40)-(3.41) admits an explicit feedback control law, as

summarized below.
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Figure 3.3: Example of the PWA value function when Θ ⊆ R, P = 1, and
M = 2 ( J∗i (y) is the optimal value function under δ = δi, i = 1, 2).

Corollary 3.1 There exists an optimal control sequences u∗ = [u∗Tt , ..., u
∗T
t+p−1]T specified

by (3.43) and achieves the minimum value for problem (3.40)-(3.41):

u∗k(x(t),wt, ...,wt+P−1) = Hk[x(t),wt, ...,wt+P−1]T + hk,

if[x(t),wt, ...,wt+P−1]T] ∈ Θ∗k, k = 1, ...,K, (3.43)

where Θ∗K , k = 1, ...,K, form a polyhedral partition of the set Θ∗, and Hk, hk are constant

coefficients with suitable dimensions.

The size of the decision vector z in (3.42) is linear in M, so exponentially in

N (Lemma 3.2). Moreover, both the size of z and number of constraints in (3.42)

grows linearly in P. Thus, for larger system and longer prediction horizon, solv-

ing (3.42) for a given parameter vector y can be costly, in which case an explicit

solution (3.43) obtained from off-line computation is desirable. An geometric

algorithm [37] can be used for solving (3.42) off-line, which is based on a recur-

sion between the solution of an mp-LP subproblem and an MILP subproblem.

However, when N and P are relatively small, an on-line controller can also be

implemented conveniently. This is because small-to-intermediate sized MILP

can be solved efficiently using methods such as the branch and bound algorithm

that avoids complete enumeration of the exponentially many combinations of

the binary variables [22].
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The model parameters such as WTP, λi, βi j and ηi, can be updated once a

while based on new data using approaches such as the one proposed in [134],

then a new problem (3.42) with these updated parameters can be defined and

solved.

3.5 Numerical Example

3.5.1 Data and simulation setup

In this section, we conduct a simulation study of the proposed tolling algorithm

for a numerical example. In this example, we have a 3-mile long freeway seg-

ment with two GP lanes and two HOT lanes, which included two explicit cell

pairs for traffic modeling (so N = 2), and density on the last mile of the freeway

segment represents the downstream boundary condition, thus nG
3 (t) is given.

There are two toll entries: one at the start of the first cell pair and the other up-

stream the ramp access to the second cell pair. Two toll exits are considered, one

is located at the off-ramp connected to the second cell pair (exit via either HOT

lanes or GP lanes) and the other one is the exit of the modeling segment. Figure

3.4(a) shows the studied freeway segment, we use this basic example to focus

on verifying the effectiveness of the proposed control model. We assume that

the freeway cells have homogeneous parameters v f , w, nJ, nc and qM (for both

HOT and GP lanes), e.g., the free-flow speed is 60 miles per hour in the system.

Each modeling step is t = 0.5 (min).

By Remark 3.3, we deduce that the modes m1 = 1 = (L0, L1) for cell pair (0, 1),

m1 = 6 = (W0,D1) and m2 = 6 = (W1,D2) for cell pair (1, 2) (see Table 3.2) can be
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removed, thus we only have to consider M = 11 mode vectors mk (k = 1, ..., 11)

as shown in Figure 3.4(b).

(a) Cell partition of the modeling segment

(a) Necessary GP lane traffic modes in the PWA system representation

Figure 3.4: Cell partition of the modeling segment and the possible mode
vectors. (The gray branches with red crossings are “pruned”
from the mode tree).

We assume that in making lane choice decisions the factors considered by

SOVs other than travel time and toll is the travel time variation, which is higher

in GP lanes than HOT lanes and is proportional to distance traveled [86], so we

can write γi j = γidi j with γi ≤ 0. We set α2i = 1, as utility is generally mea-

sured in monetary units, then the VOT equals −α1i, which we assumed to be

20$/hr. The willingness to pay for traveling the distance d in the HOT lanes

starting at cell pair i that generates one unit of time savings on average (i.e.,

d∗ = 1/[(v̄G
i )−1 − (vH

i )−1)], WTPi, is estimated to be 50$/h according to [24]. We

set v̄G
i = 30 mile/h, so we infer γi = −(WTPi + α1i)/d∗ = −0.5. The maximum

toll is τmax
i j = 8$. The bounds on Pi j can be determined by (3.22) based on ηi,

PL
i j,low and PL

i j,up (by picking the tightest values with three decimal places accord-
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ing to (3.21). Here we have Pmax
1,2 = PPmax

2,3 and Pmin
1,2 = PPmin

2,3 since d1,2 = d2,3 = 2

and η1 = η2 = 0.1. Also note that since β1,2 = β2,2 = 0.25 and β1,3 = β2,3 = 0.75,

by Proposition 3.1 we know that the constraint (3.24) can ensure very good ac-

curacy by using λ2 = 0.75. These model parameters are summarized in Table

3.3.

Table 3.3: Parameters used in the numerical example

L1 = L2 = L3 η1 = η2 β1,2 = β2,2 β1,3 = β2,3 λ1 λ2 qM

1 0.1 0.25 0.75 1 0.75 30

v, w nc, nJ α11 = α12 α21 = α22 γ1 = γ2 τmax
i j εi j

0.5, 0.375 60, 140 -20 -1 -0.5 8 0.2

Pmax
1,2 = Pmax

2,3 Pmax
1,3 Pmax

2,2 Pmin
1,2 = Pmin

2,3 Pmin
1,3 Pmin

2,2

0.795 0.875 0.683 0.107 0.107 0.127 0.102

Based on Pmin
i j , Pmax

i j , εi j, and OD ratios βi j, we can compute the coefficients of

the linear constraints in (3.41) for the input { f in
i j } and {ri}. The delta change limits

are ∆umin = 5 × 1N×1 and ∆umax = 5 × 1N×1. The weight is ρ = 0.1. The choice of

prediction horizon P will be discussed later.

We validate the effectiveness of the proposed hybrid MPC model using two

scenarios: 1) the system starts with uncongested traffic and then the demand

upstream the main toll entry increases significantly together with formation of

down- stream traffic jam; 2) the system starts with prevalent GP lane congestion

(due to downstream traffic jam) and then the downstream congestion dissipates.

Table 3.4 describes the demand profile and the initial condition for each case. We

assume that the boundary inflow or density conditions change quickly and then

stay constant again. This is a typical way of evaluating the effectiveness of the

traffic control approach, as was adopted in many studies, e.g., [12, 55, 83, 120].
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In addition, these basic representative scenarios are useful for understanding

the mechanism behind our dynamic tolling strategy in response to a certain

change. The real traffic conditions may consist of a mixture or a sequence of

such changes, hence it is important to see how our controller deal with a basic

change in demand or boundary conditions.

Table 3.4: Data of the two traffic scenarios

Scenario State vector x = [(nH)T, (nG)T, l]T = [nH
1 , n

H
2 , n

G
0 , n

G
1 , n

G
2 , n

G
3 , l]

T

#1 x(0) = [20, 30, 10a, 20, 30, 117.5b, 0]T

Exogenous input w(t) = [r1, r2, nG
3 ]T; control u(t) = [ f in

1,2, f in
1,3, f in

2,2, f in
2,3]T

w(1) = [20, 10, 117.5b]T, w(t) = [37, 10, 125b]T (t ≥ 0), u(1)c = [2.5, 7.5, 1.25, 3.75]T

Scenario State vector x = [(nH)T, (nG)T, l]T = [nH
1 , n

H
2 , n

G
0 , n

G
1 , n

G
2 , n

G
3 , l]

T

#2 x(0) = [20, 44, 40a, 100, 100, 125b, 30]T

Exogenous input w(t) = [r1, r2, nG
3 ]T; control u(t) = [ f in

1,2, f in
1,3, f in

2,2, f in
2,3]T

w(1) = [40, 17, 125b]T,w(t) = [40, 17, 117.5b]T (t ≥ 0), u(1)c = [2.5, 7.5, 3, 9]T

a We defined nG
0 = l + r1 − f i

1n, so here nG
0 = x7 + w1 − u1 − u2.

b We defined nG
N+1 = nG

J,N+1 − q̄G = nG
J,N+1 −min[λNqG

M,N , ŵ
G
N+1(nG

J,N+1 − n̂G
N+1)], thus here

nG
3 = nJ − λ2qM = 140 − 0.75 × 30 = 117.5 means free-flow downstream condition; and

nG
3 = nJ − w(nG

J − n̂G
3 ) = 140 − 0.375 × (140100) = 125 means congested downstream

condition (i.e., n̂G
3 = 100 > nc = 60).

cWe assume the initial proportions P1,2 = P1,3, P2,2 = P2,3, so f in
1,2/ f in

1,3 = β1,2/β1,3 = 1/3,

f in
2,2/ f in

2,3 = β2,2/β2,3 = 1/3.

3.5.2 Results and discussions

For this basic modeling segment we use the GLPK solver [1] on a desktop (Intel

CPU E5-2680 v3 @3.50 GHz dual processors, RAM 16 G) to compute the optimal

solution to the mixed integer linear program (3.42) in an on-line fashion. We
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simulate the closed-loop performance of the control algorithm for each scenario.

Figure 3.5 plots the total cost J and the computational time of the hybrid MPC

controller over a period of 20 min (Scenario #1) and 30 min (Scenario #2) under

different values of prediction horizon P. Based on (3.40), the total cost is defined

as:

J =
Ttot∑
t=1

bTx(t) + ρ1T||u(t) − u(t − 1)||1, (3.44)

where Ttot = 40 (for Scenario #1) and Ttot = 60 (for Scenario #2) are the number of

time steps over which the controller performance is evaluated. We can see that

under both scenarios, the total cost reduces dramatically in the prediction hori-

zon until P = 4 (after which the change of cost is negligible). We also observe

that the computational time (seconds) increases approximately exponentially in

P (i.e., approximately linear in natural log-scale), hence we choose P = 4 in our

simulation. In particular, under the chosen prediction horizon used by the con-

troller (P = 4), the computational times are 1.2 s for Scenario #1 and 2.6 s for

Scenario #2, respectively, which are much smaller than the model step of 30 s.

Figure 3.5: Cost and computational time under various prediction hori-
zon.

In Scenario #1, we note that although at t = 0 the downstream traffic be-
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comes congested and the upstream demand is nearly doubled, we still have

r1 + r2 = 47 < qM + q̄G
3 = 30 + 20 = 50, which means there should exits a routing

scheme that keep free-flow at HOT lanes while prevent formation of upstream

vehicle queues at GP lanes provided no overly stringent constraint. Indeed, we

verify that our proposed tolling algorithm can achieve this which successfully

found a new equilibrium where vehicle queue is prevented. In Figure 3.6 we

plot the evolution of system state, the optimal toll entry flows and the corre-

sponding tolls as well as the active traffic mode on GP lanes. We can see that

due to upstream demand increase, overall the tolls τ1,2 and τ1,3 increase signif-

icantly to prevent congestion in HOT lanes and the tolls τ2,2 and τ2,3 decrease

slightly since the downstream traffic jam forms which reduces the flow that can

be supplied by GP lane cell 2. We also observe toll adjustments in the mid-

dle of the simulation horizon because our controller has smoothness require-

ment (3.37) and adjusts its action in a rolling horizon manner, which finds the

optimal plan after some time steps. We can see that within 22 time steps (11

min), the controller drives the system from original free-flow state (i.e., mode

k = 11 : m11 = (D0,D1,D2), see Figure 3.4(b)) to a new equilibrium where GP

lanes are congested (i.e., mode k = 6 : m6 = (W0,W1,W2)). We verify that at

the new equilibrium the constraints P2,2 ≤ Pmax
2,2 ,P2,3 ≤ Pmax

2,3 and thus also the

constraint (3.29) are binding. We also compare the cost of the fully constrained

controller with the one without constraints (3.38) and (3.39), the cost within the

20 min horizon only increases from 8.98×103 to 9.04×103 and the final through-

put per time step are the same (both equal to the maximum possible value

47). Therefore, our controller is optimal for the new exogenous input profile

[r1, r2, nG
3 ] = [37, 10, 125] in the long run. More importantly, it achieves this with

both the fairness constraint (3.38) and “no less toll for farther exit” constraint in
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(3.39) satisfied, which is crucial for realizing the advantage and feasibility of the

OD-based tolling scheme, as discussed in Section 3.3. However, under the new

equilibrium derived by the less constrained controller, the constraints τ1,2 ≤ τ1,3

and P1,3 ≤ 1.2P1,2 are both violated.

Figure 3.6: Simulation results (Scenario #1).

In Scenario #2, we first verify that under the initial condition the GP lanes

are congested with the vehicle queue length increases in a rate of 15 per time

step because of the downstream congestion. However, at t > 0, the downstream

traffic jam disappears and the system has some excess capacity since the total

demand r1 + r2 = 57 < 2qM = 60. Hence we expect that the system should

evolve towards an uncongested condition under dynamic tolling strategy that

aims at minimizing the total person delay. Indeed, our controller drives the

system to an uncongested equilibrium. Figure 3.7 shows the evolution of sys-

tem state, the optimal toll entry flows and the corresponding tolls as well as the

active traffic mode on GP lanes. We can see that the toll τ1,2 does not change

much, but due to the disappearance of the downstream traffic jam, overall the
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toll τ1,3 that targets the user group with the largest demand (from cell pair 1 to

3) decreases from nearly 3$ to less than 2$ which allows more SOVs enter the

first toll entry. In contrast, the tolls τ2,2 and τ2,3 increase in order to maintain

free-flow at HOT lanes since the flow at HOT lane cell 1 increases significantly

due to notable decrease in τ1,3. We can see that it takes the controller 42 time

steps (21 min) to successfully manage the system from original congested mode

m6 = (W0,W1,W2) to the new uncongested mode m11 = (D0,D1,D2), which is

notably longer than the re-balance time needed for the first scenario since the

traffic speed in GP lanes is 24 mile/h under initial congestion, which is much

lower than the free-flow speed of 60 mile/h. We verify that at the new equilib-

rium the only constraint that is binding is nH
2 ≤ nH

c , indicating a full utilization of

HOT lanes at cell pair 2 that contributes to the improvement in total throughput.

Similar with Scenario #1, we notice that the cost within the 30 min horizon in-

creases by 9% (1.46×104 versus 1.34×104) compared to the cost of the controller

that ignores constraints (3.38) and (3.39), under the new flow pattern derived by

the less constrained controller, both the constraints τ2,2 ≤ τ2,3 and P1,3 ≤ 1.2P1,2

are violated. The final throughput per time step of the two controllers are both

equal to the maximum possible value 57. Thus, under the new exogenous input

[r1, r2, nG
3 ] = [40, 17, 117.5], our tolling algorithm achieves the optimal routing

plan with both fairness and “no less toll for farther exit” constraints satisfied.

3.6 Conclusions and Future Work

We have developed a hybrid MPC strategy for dynamic tolling of managed lane

systems and demonstrated its satisfactory performance on a modeling segment

that has four toll entry/exit pairs. The tolling algorithm takes advantage of
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Figure 3.7: Simulation results (Scenario #2).

the traffic demand forecasts and boundary condition measurements and intel-

ligently coordinates the tolls at different HOT lane entries to different down-

stream exits that collectively minimize the total person delay in the system, in-

cluding the possible waiting vehicles. Through proper formulation of traffic

model and practical constraints, we have shown that the control problem can

be cast as a mixed integer linear program which enables both on-line and off-

line solution. As shown in the simulation results of the numerical example, the

proposed dynamic tolling approach can effectively respond to exogenous input

changes by smoothly adjusting the toll entry flows and drive the system to a

new optimal state. The proposed control model offers a novel tractable, flexible

and nice-structured real-time OD-based dynamic pricing approach for managed

lane systems. The general PWA system representation of the traffic flow dynam-

ics in the managed lane systems is also the first of its kind according to our best

knowledge.
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Further extensions and tests of the proposed hybrid predictive control ap-

proach will help bring it closer to real-world implementation. For example, as

the size of the optimization problem grows exponentially in the number of cell

pairs in the system, the computational cost can be prohibitive when the system

is relatively long. Therefore, for large systems a decentralized control model is

more suitable (see Remark 3.1), which can be developed based on the proposed

model by incorporating additional constraints that impose consistent values at

the boundary of two adjacent modeling segments. The control model could

be extended to a robust version to deal with error in demand-forecast and off-

ramp splitting ratio approximations as well as vehicle-occupancy measurement

error (an important issue potentially affecting HOT lane pricing mechanism).

In reality, behavior complexities may exist (e.g., relaxation of Assumption 3.4),

so the flow distribution and lane-choice models could have variants with time-

varying parameters. Thus parameter-learning methods (e.g., for the WTP pa-

rameters and the OD ratios) could also be incorporated to achieve better out-

comes in practical applications. In addition, efficient coordination with other

traffic-control techniques such as ramp metering could be explored, especially

when local traffic demand surges.

183



CHAPTER 4

BAYESIAN OPTIMIZATION FOR SECOND-BEST TOLLING IN TRAFFIC

NETWORKS

In this last chapter, we will explore the potential of novel decision-making

methodology in solving nontrivial transport network planning problems. As an

example, we look at the Second-best Network Pricing Problem (SNPP) in trans-

portation. Recall that in the first chapter we discussed how the intensity of the

first-best toll can be reduced using strategic information design. Our focus there

was how to utilize information as a “control” measure that helps decentralize

an optimal flow using minimal tolls, and the tolls are allowed to be placed any-

where on the network. Now our focus is a commonly adopted “second-best”

tolling where only a set of preselected candidate links can be tolled according

to real restrictions and needs (such as physical constraints and existing ITS fa-

cilities). Unlike the first-best tolling, the second-best network pricing problem

is much more complicated, and the problem will become even more challeng-

ing if uncertainties such as stochastic demand is considered. To this end, the

key in this chapter is designing a solution method that intelligently select and

efficiently make use of the information of a few toll scheme “samples” such that

we can find a good one as fast as possible.

Specifically, we tailor a Bayesian ranking and selection (R&S) model to solve

the SNNP (possibly with demand uncertainty), whose objective is to find an op-

timal subset of links and toll levels so as to minimize the total travel time on the

network. It is in general an NP-hard problem and can have a very large num-

ber of candidate solutions. We consider every combination of tollable link(s)

and toll levels as an “alternative”, and the problem’s objective function value

184



is regarded as a “reward”, with uncertainties modeled by normal perturbations

to the travel demand. We use a linear belief based Knowledge Gradient sam-

pling policy to maximize the expected reward, with Monte Carlo sampling of

the hyper-parameters used to reduce the choice set size. Simulation experiments

for a benchmark network show the effectiveness of the proposed method and

its superior performance to a Sample Average Approximation based Genetic

Algorithm.

4.1 Introduction

Network pricing has been widely recognized as an important countermeasure

for traffic congestion [129]. One well-known first-best pricing policy involves

tolls set at marginal external costs on each link in the network and has been

discussed in many studies (e.g., [109, 129]). This policy has been regarded as

merely a theoretical construct but impractical for real-world implementation.

Under this first-best pricing scheme, total travel time on the network per mod-

eling interval is minimized. Authors of study [16]and [61] solved the problem

of finding the first-best pricing scheme that tolls the smallest number of links

in a network. They showed that the first-best toll may not be unique. Their

optimal “toll set”, however, does not account for restrictions for the location

of the tolled links (e.g., restricting tolled links within a certain cordon). Out of

practical considerations, most of the recent studies have shifted to solving the

second-best network pricing problem (SNPP), e.g., tolling only a subset of links

that are tollable. There are generally two branches of research on SNPP: toll

level design for a given set of links and optimizing toll rates and link selection

simultaneously.
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For solving the toll level design problem, derivative-based mathematical

programing methods (e.g., [122, 73]) and meta-heuristics such as genetic al-

gorithms (GA) and simulated annealing (SA) (e.g., [131, 111]) have been pro-

posed. Due to path selection assumptions and assignment convergence errors,

the derivative-based approaches encounter deficiencies in finding global op-

timums [111]. It is also known that global optimum is not ensured in meta-

heuristics. The authors of study [27] used surrogate optimization method for

cordon-based SNPP and achieved close-to-optimal toll solutions with only tens

of function evaluations. For joint optimization of toll rates and link selection,

three iterative heuristic strategies were proposed in an interesting study [122]

based on a “link index” Ia, which represents the welfare gain from implement-

ing a toll on link a alone. This strategy fully accounts for interactions among

tolled links but requires calculation of “location indices” for all possible combi-

nations of candidate links. Authors of [110] observed that such an index-based

approach has two practical problems: the potential for negative toll predictions

and the likelihood of poor initial predictions for parallel links. It was also found

that the index-based approach could miss out on toll locations that can yield a

high benefit if they are tolled simultaneously [40]. The “location indices” were

linked with GA by study [111] to optimize toll locations and used GA to design

toll levels given the toll links, due to the “location indices” used, GA often sug-

gested solutions with more toll links that were in fact less optimal. The authors

of study [131] used GA for the selection of toll locations and SA for optimal toll

level design. Several subsequent studies also applied such heuristics for SNPP

(e.g., [140]). However, as is the case for the toll design problem, none of these

methods guarantees global optimality [40]. In study [40], the authors instead

approximated discrete toll location decision variables with a continuous func-
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tion and formulated a mixed integer linear program that can be solved for its

global optimum. The method only gives a lower bound of the original SNPP,

and its computational cost grows rapidly as the accuracy requirement for ap-

proximation increases.

All of the aforementioned studies are for deterministic SNPP. Accounting for

inherent uncertainty in travel demand, some recent studies (e.g., [50, 77, 117])

started to develop methods that also consider demand uncertainty in SNPP.

The discussion in [50] demonstrated better performance of a multiple point

inflation/deflation solution method in comparison to that of single point ap-

proximation using GA and SA, in terms of computational time versus solution

quality. The study was for first-best toll design. Authors of study [77] consid-

ered demand uncertainty and environmental externalities for toll-design prob-

lems and used sample average approximation (SAA) and sensitivity analysis

to solve for the optimal toll levels, given the tolled links. The multi-point ap-

proximation method or SAA with a local derivative based method requires a

large number (depending on the sample size) of objective function evaluations;

and this computational overhead will be costly when the network size is large.

In addition, these studies focused on first-best tolling without addressing the

more practical second-best toll design, not to mention the consideration of toll

location selection. When these toll level design methods are incorporated into

heuristics-based toll location optimization problems, the overhead of expensive

objective evaluations (simulations) will increase dramatically, making it compu-

tationally intractable.

In summary, we feel that there are several important aspects of existing

methods for SNPP that need to and can be significantly improved. First, due
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to the multi-modal nature of the objective functions in SNPP, derivative-based

mathematical programming approaches for toll level design can only achieve

local optimum. These methods are not suitable for discrete toll location op-

timization, either. Secondly, heuristic methods, although frequently used for

simultaneous toll location and toll level design in SNPP, do not take advantage

of the underlying system correlation structure in guiding their search process.

Such heuristics generally cannot approach a global optimum within a limited

computational budget. In fact, due to the combinatorial nature of toll location

plus toll level alternatives, we would expect significant correlations of system

performance across candidate solutions that share a common subset of links or

that include links on parallel paths for some Origin-Destination (O-D) pairs.

Thirdly, in those very limited studies that attempted to also deal with uncer-

tainty in SNPP, the number of scenarios/repetitions used for simulation of can-

didate solutions was predetermined and fixed. This leads to under- or over-

simulation, since it forgoes the opportunity of adjusting the sampling budget

dynamically according to the solution quality and the associated uncertainty.

Therefore, if we can formulate an SNPP model and design a solution procedure

that efficiently leverages upon the underlying correlation structure among dif-

ferent toll levels/locations combinations and their uncertainties, we would be

able to improve both the capability and efficiency in approaching or finding the

global optimum within limited computational constraints.

With this motivation, in our study we adopt a Bayesian Ranking and Selec-

tion (R&S) model and design new solution algorithms to address SNPP for joint

optimization of toll locations and toll levels. R&S models [70] have shown su-

perior performance, particularly under a limited sampling budget, in analyzing

stochastic outcomes across various alternatives. In the Bayesian R&S formula-
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tion, we view each candidate solution to the SNPP as an alternative, and the

objective function values are brained by taking “samples” using a Knowledge

Gradient policy with Correlated Belief (KGCB) [45]. The Bayesian R&S model

fits nicely with SNPP due to its discrete formulation, flexible characterization

of correlation structures, and capability to incorporate prior knowledge and the

good performance of its sampling policies (e.g., [45, 106]). To adapt the original

KGCB sampling strategy to SNPP (which typically has a very large number of

alternatives), we further develop the Monte-Carlo-Linear-Belief-KG algorithm

(MCLB-KG) based on a non-perfect additive linear belief model to reduce the

computational cost for practical SNPP applications.

The rest of this chapter is organized as follows. Section 4.2 introduces the

mathematical model of SNPP. Section 4.3 formulates SNPP as a Bayesian R&S

problem and describes the construction of the MCLB-KG policy for SNPP. Sec-

tion 4.4 presents results and discusses computational examples. Section 4.5 con-

cludes.

4.2 Second-Best Network Pricing Problem (SNPP)

Consider a transportation network G = (N, A) that consists a set of nodes N

and a set of directed links A. There are a set of origin-destination (OD) pairs

D ⊆ N × N. There is a traffic demand qrs on OD pair (r, s) ∈ D (r, s ∈ N). Let Krs

be the set of paths starting from node r to node s. We consider a subset of road

links, A′ ⊆ A with (|A′| = l), be the set of candidate links for pricing (i.e., we are

allowed to add tolls to each link a ∈ A′). A′ is usually preselected empirically

according to congestion level, toll facility installation and operation, existing
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ITS facilities, etc. (e.g., [131, 140]). We assume the expected traffic demand is

known and inelastic to travel cost.

The SNPP is generally modeled by a bi-level program (e.g., [140, 40]). Let’s

consider a bi-level program formulation of SNPP with uncertainty. The upper-

level problem models the decision maker’s objective while the lower-level prob-

lem models the network users’ travel behavior. The total travel time per time

interval on the network is a commonly-adopted measure of traffic efficiency

(e.g. [131]). The decision maker’s objective is to minimize total travel time per

unit time over the network by identifying and tolling a subset of links (selected

from predefined candidate links) at appropriate toll levels. Each network user

chooses the route with minimum cost to travel from her origin to her destina-

tion. Assuming homogeneous unit “value of time” (VOT) among users, the

formulation of SNPP is given as:

(Upper − level) max
d
E(Td) =

∫
ω∈Ω

T0(ω) −
∑
a∈A

z∗a(ω)ta(z∗a(ω))

 p(ω)dω (4.1)

s.t. d = [d1, ..., dl]T, di ∈ {0, 1, ...,m}, ∀i ∈ A′

(Lower − level) min
z

Z(d) =
∑

a∈A\A′

∫ za

0
ta(ν)dν +

∑
a∈A′

∫ za

0
[ta(ν) + ua]dν (4.2)

s.t.
∑

k

f k
rs = qrs, f k

rs ≥ 0, ∀(r, s) ∈ D, ∀k ∈ Krs

za =
∑

(r,s)∈D

∑
k∈Krs

f k
rsδ

ak
rs .

In the upper level problem, we maximize E(Td), the expected difference be-

tween the total travel time of the no-toll scenario, T0, and the total travel time of

the tolled scenario,
∑

a ∈ Az∗ata(z∗a). z∗a is the traffic volume per unit time on link

a under the optimal solution of the lower level problem; ta is the correspond-

ing travel time on link a, which is a function of z∗a. In the objective function,

uncertainty is generally considered by defining a random variable ω that lies
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in a known space Ω. For generality, we assume ω is continuous (which can

also be used to model countable scenario setting, e.g., [50]). Model inputs and

parameters such as traffic demand can take on random values. The probabil-

ity density function of ω is p(ω) and assumed to be known. Traffic demand

plays a fundamental role determining network performance. Hence we focus

on random demand for uncertainty consideration in SNPP. We use ω to repre-

sent the stochasticity in OD demand {qrs}, and Ω is the set of possible outcomes

of ω related to the demand. d = (d1, ..., dl)T is an integer-valued decision vector,

i.e., di ∈ {0, 1, ...,m}, i = 1, ..., l, indicating the possible toll levels to be applied

to each candidate link. For example, if m = 3, then di = 0, 1, 2, 3 represent no

toll, low, medium and high toll levels, respectively. Link travel time ta(za) is a

non-decreasing convex function of traffic volume za, and the popular BPR for-

mula [97] is used here: ta = t0
a[1 + α(za/ca)β], where α > 0, β > 1 are empirical

parameters, t0
a, ca are free-flow travel time and capacity of link a, respectively.

ua = e · di/VOT (i corresponds to a) is the equivalent time cost of the toll on a

candidate link a ∈ A′, e is the unit toll level.

Given candidate link set A′, number of toll levels m and incremental unit e

across toll levels, the key inputs to this upper-level maximization problem of

SNPP is the traffic flow distribution on the all the directed links of the network,

z∗ = {za∗}, resulting from the solution of the lower-level problem. The link flow

distribution {za∗} is the result of the traffic flow assignments represented by the

flows on the set of paths k ∈ Krs for each OD pair (r, s) ∈ D, { f k
rs}, which are part of

the variables to the lower level problem. The binary variable δak
rs takes value one

if path k ∈ Krs contains link a, and zero otherwise. The lower-level problem is to

find a user equilibrium (UE) flow pattern with potential equivalent time cost ua

considering link travel time and toll; under UE no user has incentive to change
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route. The UE problem can be formulated as the form of (4.2) and has well-

established solution methods like Frank-Wolfe algorithm [109], but the compu-

tational cost grows significantly with the network size due to the shortest path

subroutine involved. Since the lower- and upper- level problems in SNPP are

hard to be integrated as one objective due to intrinsic difficulty of the problem

(e.g., [131]), the SNPP can be regarded as a “black-box” discrete optimization

problem. Furthermore, if considering more complicated case such as stochastic

UE [109], the lower-level problem may not have equivalent mathematical pro-

graming formulation such as the one in (4.2), in which case it can only be solved

by numerical or simulation approaches, which is in general costly. This nature

of SNPP is at the heart of its Bayesian R&S formulation. In this study, we focus

on the simple case where lower level UE problem can be solved by solving (4.2)

as a illustration.

4.3 SNPP as a Bayesian R&S Problem with Linear Beliefs

4.3.1 Bayesian R&S formulation of SNPP

In a Bayesian R&S framework, we have M alternative decisions X =

{x1, x2, ..., xM} whose rewards (e.g., the values of objective functions for differ-

ent pricing schemes in SNPP) are random with unknown mean θ = (θ1, ..., θM)T

and unknown variance λ = (λ1, ..., λM)T. Our goal is to identify the alternative

with the maximum expected reward through limited sample measurements.

We have a prior belief about θ with mean µ0 = {µ0
1, ..., µ

0
M} and covariance Σ0

(an M × M positive semi-definite covariance matrix). For SNPP, we have net-
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work performance under different pricing schemes as θ = (E(Td1), ...,E(TdM )]T ∼

N(µ0, Σ0). Assume that we can evaluate N sample decisions, x0, x1, ..., xN−1. At

stage n = 0, ...,N − 1, we make a measurement or evaluation of decision xn,

with measurement noise, ϵn ∼ N(0, λxn), independent across samples condi-

tional on xn. This yields sample observation (i.e., objective function evaluation

in SNPP) yn+1 = θxn+ϵn. Let Fn be the sigma-algebra generated by {x0, ..., xn−1} and

{y1, ..., yn}. It is a well-known result that the conditional posterior distribution of

θ is also multivariate normal. Let µn = E(θ|Fn) and Σn = Cov(θ|Fn) be stage-n

conditional expectation and covariance of θ, respectively, then µn and Σn can be

calculated recursively using standard results based on Bayes’ Rule (e.g., [51]):

µn+1 = µn +
yn+1 − µn

xn

Σn
xn xn + λxn

Σnexn , Σn+1 = Σn −
ΣnexneT

xnΣn

Σn
xn xn + λxn

, (4.3)

where exn is a column vector of zeros with a one at the entry corresponds to xn.

Σn
xn xn is the diagonal entry of matrix Σn corresponds to xn. λxn is the performance

variance corresponding to decision alternative xn.

After N measurements through a sampling policy π = {x1
π, ..., x

N
π } from

the policy space Π, we choose the alternative that yields the largest pos-

terior mean of objective function value (rewards) as the optimal solution:

supπ∈Π E
π[maxx(µN

x )], where Eπ denotes the conditional expectation under π.

In Bayesian R&S formulation of SNPP, as we evaluate pricing alternatives

dx1 , ..., dxN , we obtain measurements of the random “rewards” which represents

total network travel time reductions Td1 , ..., TdN in comparison to the no-toll base-

line scenario.
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4.3.2 KGCB sampling policy

The Knowledge Gradient policy with Correlated Belief (KGCB policy) is origi-

nally introduced in [45]. It samples alternative x that maximizes the incremental

value (knowledge gradient) of the objective function:

xKG,n(S n) = arg max
x

vKG,n(x) = arg max
x

(
En[max

i
µn+1

i |S n, xn = x] −max
i
µn

i

)
, (4.4)

where S n = (µn,Σn) is the state of our posterior beliefs at measurement n. The

KG-factor vKG,n(x) represents the incremental value (i.e., the expected improve-

ment in posterior optimal value) obtained from measuring x at stage n. It is

shown that the KGCB policy is almost-surely optimal for N = 1 or N → ∞, and

has sub-optimality bounds when N is finite [45].

By calculating the conditional predictive expectation of maxx µ
n+1
x , we can

forecast the performance of all alternatives without taking actual samples of

them. Therefore, one key step in KGCB policy is to compute conditional

predictive distribution of n+1 given information at stage n. This conditional

distribution is multivariate normal, with mean En[µn+1] = µn and covariance

σ̃(Σn, xn)σ̃(Σn, xn)T, where σ̃(Σ, x) = Σnex/
√
λx + Σn

xx, details of this calculation

can be found in [45]. Thus the stage-n conditional distribution of µn+1 is the

same as µn + σ̃(Σn, xn)Z, where Z is scalar standard normal random variable.

This allows us to compute vKG,n(x) in (4.4) as

vKG,n(x) = En[max
i
µn

i + σ̃(Σn, xn)Z|S n, xn = x] −max
i
µn

i = h(µn, σ̃(Σn, xn)), (4.5)

where function h : RM ×RM → R is defined as h(p, q) = E[maxi pi + qiZ] −maxi pi,

here p and q are deterministic M-dimensional vectors. A method of computing

h(p, q) is presented in [45], where the entries of p and q are firstly sorted and then

only the distinct ones retained to define a vector c with ci = (pi − pi+1)/(qi+1 − qi).
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These quantities are then used to calculate h(p, q) =
∑

i=1,...,dim(p)−1(qi+1 − qi) f (−|ci|),

where f (z) = Φ(z) + zϕ(z), Φ and ϕ are standard normal PDF and CDF, respec-

tively. We call this method “Subroutine-h”, by which we can compute h() for

any prior belief µ and σ̃(Σ, x). Then we are able to compute vKG,n(x) for each

alternative x, and the largest vKG,n(x) gives the measurement of decision xKG,n.

In the standard setting of KGCB, the dimensions of q, p and µn are the

number of alternatives, M. Therefore, the Subroutine-h is executed M times

for obtaining xKG,n. Since the sorting step dominates the computational cost

of Subroutine-h, so the overall complexity of the standard KGCB algorithm is

O(M2 log M). Thus for large number of alternatives, say M > 105 (which is usu-

ally the case for SNPP due to large number of link/toll combinations), the com-

putational demand of the standard KGCB is prohibitive. This leads us to the

modification of KGCB as follows.

4.3.3 Linear belief model for SNPP

In SNPP, the compounding effect of tolls on multiple links at their respective

toll levels is not simply additive, i.e., summation of individual “link indices” of

links a and b, Ia + Ib, will not simply be equal “location index”, Iab, the effect of

simultaneous tolls on links a and b [122]. In fact, the interaction effects among

tolled links, although hard to quantify, can be remarkable, especially among

links on parallel paths for the same OD pair [110]. Therefore, we propose a non-

perfect additive linear belief model to consider such joint effect from tolling

multiple links. This approach is inspired by the linear belief model used by [94]

in their study of sequential experimenting for drug discovery.
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Model structure and priors on model coefficients

For our Bayesian R&S SNPP, we assume the marginal effect (on the final objec-

tive value) from one unit increase in toll rate on a link varies significantly across

different toll levels. Thus we have m× l attributes (l candidate links, each with m

toll levels). This leads to a new binary column decision vector de of size ml, ex-

panded from the original l-dimension decision vector d. By assigning m entries

for each candidate link j in set A′ and placing these m-entries across the links in

the order of j = 1, 2, ..., l, we have:

de
i =


1, [i − m( j − 1)]th toll level onlink j

0, otherwise
∀i = m( j − 1) + 1, ...,m j, j = 1, ..., l.

(4.6)

For example, consider a toy example with only two candidate links (dimen-

sions) and two toll levels (attributes), i.e., l = |A′| = 2, m = 2, j ∈ {1, 2}. Using the

notation above, the no-toll alternative can be represented by de
(00) = (0, 0, 0, 0)T,

where the first two zeros correspond to first link and the last two for the second

link. The alternative of applying toll level 2 on link 1 and toll level 1on link 2 is

represented by de
(21) = (0, 1, 1, 0)T.

We now assume a non-perfect linear additive model for the effect of a SNPP

pricing scheme dx:

θx = η0 +

ml∑
i=1

ηide
x,i + ζx, (4.7)

where η0 is the value for the no toll case (i.e., all entries in de
x are zero); coefficient

ηi represents the marginal effect per unit change in attribute de
i (here it is the

[im( j − 1)]th toll level on link j); ζx is the deviation term from perfect additive

structure, which is alternative specific as labeled by subscript x.

196



This non-perfect linear additive model is similar to that in [94]. It is general-

ized from the perfect linear-additive model, Free-Wilson model [46], by adding

the deviation term ζx to the performance of alternative x. Since only one toll

level is to be implemented for each candidate link (as we focus on static net-

work optimization), i.e.,
∑

m( j−1)<i≤m j de
i = 1, so the requirement of the Free-Wilson

model that “at most one attribute is associated with each dimension” is auto-

matically satisfied. Based on this linear belief model, if we sample de
x (corre-

sponding to dx), the sample value would be

Tdx = yx = η0 +

ml∑
i=1

ηide
x,i + ζx + ϵx, (4.8)

where ϵx ∼ N(0, λx) is an independent measurement noise for dx. λx = 0 models

the deterministic SNPP, and λx > 0 addresses SNPP with uncertainty (due to

stochastic demand in our case).

Suppose we have independent normal priors on η0 and ηi, i = 1, ...,ml:

η0 ∼ N(µη0 , σ
2
η0

), ηi ∼ N(µηi , σ
2
ηi

), i = 1, ...,ml. To begin with, we use independent

normal distributions with mean 0 and variance σ2
ζ as priors for ζ1, ..., ζM. Note

that ζ1, ..., ζM are independent from other model coefficients. Then the prior be-

lief about the expected value of decision dx is

µ0
x = µη0 +

ml∑
i=1

µηid
e
x,i, (4.9)

and the prior belief of the covariance between the performance of dx and d′x is

[94]

Σ0(x, x′) = cov(η0 +

ml∑
i=1

ηide
x,i + ζx, η0 +

ml∑
i=1

ηide
x′,i + ζx′

= σ2
η0
+

ml∑
i=1

de
x,id

e
x′,iσ

2
ηi
+ σ2

ζ1{x=x′}, (4.10)

where 1{} is the indicator function.
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Posterior distributions on model coefficients

Maintaining and updating posteriors on linear belief model coefficients

(marginal effects of different attributes) is a key step in solving the Bayesian R&S

SNPP. Let the column coefficient vector η denote (η0, η1, ..., ηml)T and DM×(ml+1) be

a matrix comprised of rows each representing the attribute values of an alterna-

tive plus a “1” in the first entry corresponding to the baseline (no-toll scheme)

constant η0. Thus a row in D is a “1” followed by the attribute values of de. We

also use a column vector ζ to denote all the deviation terms {ζx}. With these no-

tations, the true value vector is θ = Dη + ζ by (4.7). Even though the number of

ζx is M, which is generally very large in SNPP, we only need to maintain a mean

vector and covariance matrix of ζx’s for alternatives that have already been mea-

sured. If we have not measured a alternative x by stage n, then the posterior of

ζx will stay the same as its prior. ζx remains independent of ηi’s, and of all the

other deviation terms.

Toward this end, we define column vector ηn that contains η and ζx terms for

an alternative x in {x0, ..., xn−1}. Let an and Cn be the mean vector and covariance

matrix of our stage-n posterior of ηn. Note that before the first measurement, the

initial values are η0 = η, a0 ∈ R(ml+1)×1 = {µηi , i = 0, ...,ml}, and diagonal matrix

C0 ∈ R(ml+1)×(ml+1) with diagonal entries {σ2
ηi
, i = 0, ...,ml}. Due to the property of

multivariate normal distribution, there is a recursive expression for an and Cn

[94]

an+1 = ãn +
yn − (ãn)Td̃xn

λxn + (d̃xn)TC̃nd̃xn

C̃nd̃xn , (4.11)

C̃n+1 = C̃n − C̃nd̃xn(d̃xn)TC̃n

λxn + (d̃xn)TC̃nd̃xn

, (4.12)

where ãn−1 and C̃n−1 are defined as below: if xn has been previously measured by
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stage n, ãn−1 = an−1, C̃n−1 = Cn−1; otherwise, let ãn−1 be the column vector formed

by appending a 0 to the bottom of an−1, and C̃n−1 be the matrix formed by adding

a row and a column beneath the bottom row and to the right of the rightmost

column of Cn−1, where all the entries of the new row and the new column are

zero but the diagonal entry isσ2
ζ (i.e., the rightmost bottom entry isσ2

ζ). Then the

posterior of ηn at stage n − 1 is N(ãn−1, c̃n−1). d̃xn is a column vector consisting of

1’s at indices of ηn+1 for which alternative xn contains the corresponding baseline

term, toll level attributes and deviation term, and zero elsewhere. (4.11)-(4.12)

can be viewed as a linear square recursive model (e.g., [102]) modified by in-

corporating the deviation terms from our non-perfect linear additive model for

SNPP. These updating equations allow us to track and update our beliefs on ηn

in a computationally efficient way. The prior beliefs of the model coefficients,

parameterized by µη0 , σ2
η0

, µηi , σ2
ηi

, σ2
ζ can be estimated from initial sampling or

prior information.

Based on the updated beliefs of the hyper-parameters, we can construct the

posteriors of the alternatives’ values. Noting that any multivariate normal belief

on ηn induces a multivariate normal belief on θn [94], we have θn ∼ N(µn, Σn)

from ηn ∼ N(an, Cn). µn and Σn are calculated from an and Cn using the same

method as (4.9) and (4.10). However, to use KGCB algorithm, we only need to

retrieve partial information without computing the whole Σn matrix (which is

prohibitive in SNPP).
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4.3.4 Updating the unknown variances

For the SNPP under demand uncertainty, the variance for each alternative x, λx

(i.e., the variance of measurement noise ϵx in (4.8) is usually unknown. With

very limited sampling budget, this variance affects the belief update of the

hyper-parameters in (4.11)-(4.12) and the characterization of conditional distri-

bution of µn+1. Therefore, an estimation updating procedure of λx is needed to

improve the performance of sampling policy. We use an approach inspired by

the Bayesian normal model with known mean and unknown variance [51] to

estimate λx. We start with a prior belief λ0
x that is constant or varying across

alternatives, it can be simply the best guess based on the information available.

As the learning progresses in implementing the solution algorithm, we can col-

lect more samples for a certain decision vector dx and update our estimate of

that λx. In iteration n where alternative x is sampled, we use

λn
x =
λn−1

x (w + nsn
x − 3) + (yn

x − µn
x)

2

w + nsn
x − 2

=
wλ0

x +
∑nsn

x
i=1(ynx(i)

x − µnx(i)
x )2

w + nsn
x − 2

(4.13)

≈
wλ0

x +
∑nsn

x
i=1(ynx(i)

x − θx)2

w + nsn
x − 2

,

where nsn
x is the xth entry in the M-dimensional vector nsn used to record how

many times each alternative has been sampled up to stage n; iteration nx(i) is the

iteration when alternative x is sampled for the ith time; µn(i)
x is the posterior mean

of x at iteration nx(i); and weight w ≥ 0. The idea behind (4.13) is to estimate

λx as a weighted average of the prior belief and the information observed by

the samples. To marginalize the impact of inaccuracy from posterior means, we

require n ≥ 3 before (4.13) is applied. As the number of samples increases, the

variance estimates will gradually converge to their true values.
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4.3.5 KGCB Algorithm for SNPP with linear beliefs and MC

sampling for the hyper-parameters

Now we can compute the KG factors from a belief on ηn parameterized by an

and Cn. By (4.5), we can obtain vKG,n(x) using Subroutine-h when µn and σ̃(Σn, x)

are available. Independent of x, µn = Dna, where Dn is a M × dim(n) indexing

matrix of 0’s and 1’s, each row of which corresponds to an alternative and has

1’s for the baseline term, toll attribute terms and the deviation terms from an

that are contained in the alternative. To compute σ̃(Σn, x), we set xn = x and get

the corresponding ηn+1 and C̃n. Let D̃n be a M × dim(ηn+1) matrix that is similar

to Dn, except that it maps alternatives to component of ηn+1 instead of ηn. Note

that the beliefs on those ζx terms that are not included in ηn+1 will not change as

a result of measuring xn. In addition, σ̃(Σn, xn) is not affected by such deviation

terms. So we can ignore the left-out deviation terms, by the derivation in [45],

σ̃(Σn, x) = Σn
·,x/

√
λx + Σn

xx, where Σ·,x denotes the xth column of Σn, which equals

Σn
·,x = D̃nC̃n(D̃n

·,x)
T. (4.14)

Then we can compute the KG factor vKG,n(x) for all decisions x. The standard

KGCB algorithm based on our non-perfect additive linear belief model is sum-

marized below, we refer to it as the LB-KG Algorithm (where λn = {λn
x}). The

complexity of the LB-KG Algorithm is O(M2 log M).

However, when M is large, computing KG factors for all decisions as re-

quired in standard KGCB algorithm is very expensive. Inspired by [106], we

propose a Monte Carlo (MC) sampling step to substantially reduce the size of

the choice set. But instead of sampling θ from N(µ, Σ) as used in [106], we di-

rectly sample from hyper-parameter space and generate realizations of θ accord-
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Algorithm 4.1: LB-KG Algorithm (stage n)

Require: M, λn, Dn, an and Cn

1: µn ← Dnan, v∗ = 0

2: for x = 1 to M do

3: Compute C̃n from x and Cn

4: Σn
·,x ← D̃nC̃n(D̃n

·,x)
T

5: p← µn, q← Σn
·,x/

√
λx + Σn

xx

6: v← h(p, q) using Subroutine-h (described in Section 4.3.2)

7: if x = 1 or v > v∗ then

8: x∗ ← x, v∗ ← v

9: end if

10: end for

11: return: x∗

ing to the linear belief model, which in the first place permits significant savings.

Suppose we generate K sample realizations of θ̄n based on the non-perfect linear

additive models and the posterior beliefs of the model coefficients at stage n. Let

η̄n(ωk) be the kth sample realization of model coefficients from the posterior dis-

tribution N(an, Cn). The M-dimensional column vector ζ̄n(ωk) has zero entries

for sampled alternatives, and each entry of ζ̄n(ωk) corresponds to unmeasured

alternatives is separately drawn from the prior distribution N(0, σ2
ζ). Then the

mean θ̄n(ωk) of the kth sample realization will be an M-dimensional column vec-

tor for each k

θ̄n(ωk) = Dnη̄n(ωk) + ζ̄n(ωk). (4.15)

Lettk = arg maxt θ̄
n
t (ωk) be the toll alternative that appears to be the best from
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sample k and let K0 be the number of such distinct alternatives from all K sam-

ples. The number of alternatives in SNPP is much larger than that was encoun-

tered in [106], so as a remedy, in iteration n, we propose to randomly sample K1

distinct alternatives s1, ..., sK1 from the complete candidate solution space and

use the final choice set S = {t1, ..., tK0} ∪ {s1, .., sK1}. Then the KG-factors vKG,n can

be computed only over set S . We call this the Monte Carlo linear belief KG

policy (MCLB-KG), which is adopted for our challenging SNPP. Thus the com-

plexity of MCLB-KG algorithm in vKG calculation is O(|S |2 log |S |), much less than

O(M2 log M) in the standard KGCB policy (Algorithm 4.1. Also we only need to

sample a vector with dimension equal to dim(ηn) (note that dim(ηn)≤ n + lm + 1)

from multivariate normal distributionN(an, Cn) at iteration n, the complexity of

the MC sampling step is O(dim(ηn)3K) when the Cholesky factorization of Cn is

used (which is very efficient in modern computing package), so this implemen-

tation is << O(|S |2 log |S |). Note that recognizing those unmeasured alternatives

by stage n can be done efficiently by keeping a list of sampled alternatives rather

than looping over tags for M alternatives. Hence the other overhead of the

MCLB-KG algorithm mainly comes from the multiplications of high-dimension

matrices in (4.14) and (4.15), which have only linear dependency on M. There-

fore, the computational cost can be significantly reduced compared to the LB-

KG Algorithm. We summarize this MCLB-KG Algorithm below.
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Algorithm 4.2: MCLB-KG Algorithm (stage n)

Require: M, K, K1, nsn, σ2
ζ , λ

n, Dn, an and Cn

1: S ← ∅

2: for k = 1 to K do

3: Draw a MC sample ηn(ωk) ∼ N(an, Cn)

4: ζ̄n(ωk)← 0

5: temp← vector that contains M MC samples of N(0, σ2
ζ)

6: for x = 1 to M do

7: if nsn(x) =0 then

8: ζ̄n
x (ωk)← temp(x)

9: end if

10: end for

11: Calculate θ̄n(ωk) by (4.15)

12: t ← arg maxx θ̄
n
x(ωk)

13: if t < S then

14: S ← S ∪ {t}

15: end if

16: end for

17: for k = 1 to K1 do

18: Choose a random integer s from {1, 2, ...,M}

19: if s < S then

20: S ← S ∪ {s}

21: end if

22: end for

23: Compute x∗ from all x ∈ S by Algorithm 4.1 with |S | as input instead of M
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4.4 Numerical Experiment

4.4.1 Input and simulation data

We apply the method to the benchmark Sioux Falls network, which is used in

recent SNPP studies (e.g., [40]). It has 24 nodes and 76 links and 576 OD pairs

(see Figure 4.1(a)) with detailed network date given in [10]. Due to budget con-

straints, 10 candidate links A′ = {16, 19, 29, 39, 48, 49, 52, 66, 74, 75} based on ini-

tial congestion levels are of interest, 3 toll levels are proposed with unit toll level

e = $2. The homogeneous VOT = $1/min. The total travel time under base de-

mand is T0 = 8 × 106 min per unit time. In the implementation of MCLB-KG

policy, we set the number of random samples K = 100 and K1 = 200. We use

non-informative priors for most of the parameters in the belief model: σ2
ζ = 105,

σ2
ηi
= 4×105, µηi = 400, 800, 1200 for toll levels 1, 2 and 3, respectively. Although

the prior means of the toll attributes’ marginal effects are positive, large uncer-

tainties are attached to these coefficients as well as to the deviation terms. We

have almost complete information about the baseline no-toll alternative, so we

set µη0 = 0 and σ2
η0
= 10 for deterministic tests and σ2

η0
= 104 for stochastic case.

We use a non-informative prior to demonstrate the effective learning capability

of the MCLB-KG policy for SNPP.

We examine the performance of Bayesian R&S SNPP model solved via

MCLB-KG algorithms in comparison to the GA (which is usually used for

SNPP) for deterministic setting (λx = 0) and SAA-GA for stochastic (λx > 0)

setting. We use the standard GA [35] with population size |A′| and elite size 1

(optimized by grid search). SAA is used for GA to evaluate individual solution

(e.g., [50]) with sample size 5 for stochastic setting (performs best among 2∼6).
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Figure 4.1: Sioux Falls test network and non-normality of alternative val-
ues.

The simulation budget N is 100 and 300 for the deterministic and stochastic tests,

respectively. Because in stochastic case, evaluation of one solution contains two

simulations under the same demand realization, one for the toll alternative and

the other for the non-toll baseline case, and the SAA sample size is 5 for GA, so

this means 100 and 150 iterations in R&S and ⌈100/|A′|⌉ and ⌈30/|A′|⌉ generations

in GA (or SAA-GA) for the deterministic and stochastic cases, respectively. In

stochastic test, each OD demand qrs in (4.2) is subject to a common p% ∼ N(0, v2)

perturbation, qrs is set to 0 if it drops below 0. Two cases v = 0.01 and 0.05 are

tested, with λ0
x = 105 and 4 × 105, respectively. We run 10 independent sample

paths for each algorithm in both deterministic and stochastic tests. The main

performance measure is the Relative Opportunity Cost (RelOC), defined as the

relative difference between the objective value of the true optimal solution (the

best solution possibly known) and the objective value of the best alternative
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proposed by the algorithm.

Note that normally distributed perturbation in traffic demand does not nec-

essarily results in normally distributed objective value Td, as shown in Figure

4.1(b). We can see the travel time reductions under two toll alternatives are not

affine in demand with markedly different patterns. This is due to the nonlinear

function ta(za) and complicated system response of underlying UE flow assign-

ment. We use this deviation from normality to show the robustness of the nor-

mality based Bayesian R&S algorithm for practical problems such as SNPP. This

also indicates that the objective value evaluated at base demand may not be the

true value of an toll alternative. Thus the mean of 1000 Monte Carlo samples is

used as this “true” value.

4.4.2 Results and discussion

Figure 4.2 (a), (b) and (c) compare the RelOC between Bayesian R&S SNPP

solved by MCLB-KG and solved by GA or SAA-GA (point estimate of each

RelOC with its ∼95% confidence interval (CI) plotted as “error bars”). In all

three cases, the MCLB-KG algorithm outperforms GA or SAA-GA, approach-

ing the best solution within fewer simulations and has a constantly better RelOC

within the simulation budget. In fact, in the deterministic SNPP case, MCLB-

KG finds the true optimum within 80 100 iterations in most sample paths, while

GA often stays in local optimum with RelOC values above 0.1 after reaching

the 100 sampling budget. Figure 4.2 (d) shows how many times the alternatives

in each region j ( j = 1, ..., 10) are measured by each algorithm in three typical

sample paths. As can be seen, GA tends to spend most time around certain
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area (near local optimum) while the MCLB-KG algorithm explores across the

decision space more evenly. In fact, The global exploration of the MCLB-KG

algorithm happens in earlier iterations accounting for larger uncertainties in the

hyper-parameters and then the algorithm quickly identifies promising regions

to spend more iterations in later sampling stages. In the stochastic SNPP setting,

our algorithm also explores across the decision space while SAA-GA’s searching

is much more localized, similar to the observation in the deterministic case.
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Figure 4.2: Performance comparison between two algorithms.

Take the case where v = 0.01 as an example, Figure 4.3(a) shows the entries of

posterior mean vector aN and diagonal entries of covariance matrix CN resulting

from MCLB-KG. We can see that the absolute values of the posterior means of

model coefficients for most attributes are well above those of the sampled devi-

ation terms, and the posterior variances of the deviation terms are smaller than

those for the coefficients of toll attributes. This explains why the non-perfect
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additive linear models are useful for SNPP. These are also observed for the case

where v = 0.05 (although the absolute values of aN entries decrease) and the de-

terministic case. Under larger v = 0.05, the relative ranking among the posterior

means of different model coefficients remain almost unchanged, and posterior

variances of the toll attribute effects increase, which is not surprising. Based on

these posterior means and e = 2$, we compute and plot the marginal effects of

toll rates for each preselected tollable link, as shown in Figure 4.3(b). We can see

there are notable variations of the marginal effects across links and toll levels,

which justifies that the belief model we used (i.e., using a separate coefficient ηi

for each toll level at a specific link). The results also suggest that most links have

positive expected marginal effect on travel time reduction at all toll levels, but

interestingly, the expected marginal effect of link 66 and 75 are positive at toll

level 1 and 2 but negative at toll level 3. Link 16 and 19 have negative expected

marginal effect at all toll levels, indicating that the initial congestion level may

not always be a good criteria for selecting candidate links.

 

 

 

 

 

 

(a) Posteriors on model coefficients (the lines on the left: posteriors of ηi ’s with   (b) Marginal effect at three toll levels 

 ~95% CI, the lines on the right: posterior means of ζx ’s under 3 typical trials)        (the link number is beside the line) 

-20000

-10000

0

10000

20000

2 12 22 32 42 52 62 72 82 92 102 112 122 132 142

Posterior mean vector aN

-5000

-3000

-1000

1000

3000

5000

7000

9000

Toll

level 1

Toll

level 2

Toll

level 3

ΔT/$

39 
74 
29 

52 

49 
75 

66 

19 

16 

48 

0

50000

100000

150000

2 12 22 32 42 52 62 72 82 92 102 112 122 132 142

Entry index

Diagonal entries in posterior covariance matrix CN

Diagonal entry index

Figure 4.3: Posterior distributions on hyperparameters and marginal ef-
fects of toll attributes (v = 0.01).

We also note in the test that measurement decisions xKG,n are usually from
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the set {t1, ..., tK0} by MC sampling, which is a bigger set in earlier iterations

(n ≤ 20). However, in later iterations (after enough observations that make

the belief upon those hyper-parameters relatively stable and outweigh the ef-

fect of non-informative priors), the MC step often selects only one alternative

t1 (i.e., K0 = 1). Interestingly, this t1 then often stalls for several iterations be-

fore a change is invoked by a relatively significant refinement of the belief in

the linear model coefficients after sampling a new “promising” alternative from

the set {s1, ..., sK1}. This shows the effectiveness of MC sampling as well as the

necessity of including extra alternatives in the candidate set S in each iteration,

particularly when the number of alternatives is large.

Finally, Table 4.1 shows the average per iteration computation time of each

algorithm over 10 sample paths, the MCLB-KG spends most time on sampling

decision (MC step included), which is almost 103 times as long as that spent by

the sampling step of GA (or SAA-GA). This is mainly due to computing the KG-

factor over a bigger choice set especially during the earlier stages when candi-

date alternatives {t1, ..., tK0} are more diversified with larger K0. Besides the dou-

bled simulation time per iteration (due to evaluating T0(ω) in addition to Tx(ω)),

another significant difference of the stochastic case compared to the determin-

istic case is that the average time spent on the MC sampling step increased by

∼30% under v = 0.05. This is because during earlier iterations more candidate

alternatives are generated due to bigger uncertainty on the hyper-parameters.

Such uncertainty decreases significantly as measurements accumulate, but with

K0 drops in a slower rate compared to that in the case where v = 0 or v = 0.01.

However, although the total computational time by MCLB-KG is bigger in this

test network, it considerably reduces the total number of simulations needed

for reaching a satisfactory RelOC compared to the SAA-GA. This will bring us
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substantial time savings for large networks when each simulation takes hours

even days, which is usually the case for SNPP in practice (e.g., [140]). Therefore,

the proposed MCLB-KG Algorithm can be very promising in solving real SNPP

on large networks.

Table 4.1: Average computational time per iteration

v Algorithm Simulation (s) Sampling decision (s) Update (s)

0
GA 17.1 0.13 < 0.01

MCLB-KG 16.5 41.4(57.5)a 0.81

0.01
SAA-GA 33.6 0.07 < 0.01

MCLB-KG 33.4 39.5(62.4)a 0.79

0.05
SAA-GA 34.0 0.05 < 0.01

MCLB-KG 33.6 37.8(76.4)a 0.67

a Time spent on KG-factor computing (time spent on MC sampling)

4.5 Conclusion

We have proposed a Bayesian R&S model for the Second-best Network Pric-

ing Problem (SNPP) choosing toll locations and rates simultaneously. The large

number of alternatives, combinatorial nature and random demand make the

problem challenging. We adopt a linear belief KG policy to solve the SNPP.

As an extension of [106] to the linear belief setting, MC-sampling of the hyper-

parameters is proposed to reduce the choice set. Experiment results on a SNPP

with 410 alternatives show good performance of the method and its superiority

to the SAA-GA benchmark. We believe this is a promising tool for real-world

SNPP under limited sampling budget. The successful application of the param-

eterized belief model tailored to SNPP also sheds lights on the underlying fea-

211



tures of the problem itself as well as other transport network planning problems

with similar nature.
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Yalçindaǧ. Using emission functions in modeling environmentally sus-
tainable traffic assignment policies. Journal of Industrial and Management
Optimization (JIMO), 9(2):341–363, April 2013.

[67] Daniel J. Jacob. Introduction to atmospheric chemistry. Princeton University
Press, 1999.

[68] Rajat Jain and J.Macgregor Smith. Modeling vehicular traffic flow us-
ing M/G/C/C state dependent queueing models. Transportation Science,
31(4):324–336, 11 1997.

[69] Rong-Chang Jou and Yi-Chun Yeh. Freeway passenger car drivers’ travel
choice behaviour in a distance-based toll system. Transport Policy, 27:11 –
19, May 2013.

[70] Seong Hee Kim and Barry L. Nelson. Recent advances in ranking and
selection. In Proceedings of the 2007 Winter Simulation Conference, WSC,
pages 162–172, 12 2007.

[71] Hideo Konishi. Uniqueness of user equilibrium in transportation net-
works with heterogeneous commuters. Transportation Science, 38(3):315–
330, August 2004.

[72] Prashant Kumar, Lidia Morawska, Wolfram Birmili, Pauli Paasonen, Min
Hu, Markku Kulmala, Roy M. Harrison, Leslie Norford, and Rex Britter.
Ultrafine particles in cities. Environment International, 66:1 – 10, May 2014.

[73] Siriphong Lawphongpanich and Donald W. Hearn. An mpec approach
to second-best toll pricing. Mathematical Programming, 101(1):33–55, Sep
2004.

[74] David Levinson. The value of advanced traveler information systems for
route choice. Transportation Research Part C, 11(1):75–87, Feb 2003.

219



[75] David Levinson. Equity effects of road pricing: A review. Transport Re-
views, 30(1):33–57, 2010.

[76] Jonathan I Levy, Jonathan J Buonocore, and Katherian von Stackelberg.
Evaluation of the public health impacts of traffic congestion: a health risk
assessment. Environment Health, 2010.

[77] Zhi-Chun Li, William H. K. Lam, S. C. Wong, and A. Sumalee. Environ-
mentally sustainable toll design for congested road networks with uncer-
tain demand. International Journal of Sustainable Transportation, 6(3):127–
155, 2012.

[78] Bai Lihui, Hearn Donald W., and Lawphongpanich Siriphong. Decom-
position techniques for the minimum toll revenue problem. Networks,
44(2):142–150, July.

[79] Weihua Lin, Amit Kulkarnim, and Pitu Mirchandani. Short-term arterial
travel time prediction for advanced traveler information systems. Intelli-
gent Transportation Systems, 8(3):143–154, 2004.

[80] Robin Lindsey, Terry Daniel, Eyran Gisches, and Amnon Rapoport. Pre-
trip information and route-choice decisions with stochastic travel condi-
tions: Theory. Transportation Research Part B, 67:187–207, September 2014.

[81] X. Liu, G. Zhang, Y. Wu, and Y. Wang. Analyzing system performance
for Washington state route 167. In Transportation Research Board 89th An-
nual Meeting, Compendium of Papers DVD, number 102816. Transportation
Research Board, January 2010.

[82] Yingyan Lou, Yafeng Yin, and Jorge A. Laval. Optimal dynamic pricing
strategies for high-occupancy/toll lanes. Transportation Research Part C:
Emerging Technologies, 19(1):64 – 74, February 2011.

[83] X. Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. E. Shladover. A new ap-
proach for combined freeway variable speed limits and coordinated ramp
metering. In 13th International IEEE Conference on Intelligent Transportation
Systems, pages 491–498, September 2010.

[84] Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, and
Shuzhong Zhang. Semidefinite relaxation of quadratic optimization prob-
lems. IEEE Signal Processing Magazine, 27(3):20–34, May 2010.

220



[85] Hani Mahmassani, Tian Hou, and Meead Saberi. Connecting network-
wide travel time reliability and the network fundamental diagram of traf-
fic flow. Transportation Research Record: Journal of the Transportation Research
Board, 2391(8):80–91, January 2013.

[86] Hani Mahmassani, Tian Hou, and Meead Saberi. Connecting network-
wide travel time reliability and the network fundamental diagram of traf-
fic flow. Transportation Research Record: Journal of the Transportation Research
Board, 2391:80–91, January 2013.

[87] Dimitra Michalaka, Yafeng Yin, and David Hale. Simulating high-
occupancy toll lane operations. Transportation Research Record: Journal of
the Transportation Research Board, 2396:124–132, 2013.
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