AN OVERVIEW OF THE THEORY
OF
COMPUTATIONAL COMPLEXITY
by

J. Hartmanis
and
J.E, Hopcroft

Technical Report
No. 790-59

April 1970

Department of Computer Science
Cornell University
Ithaca, New York 14850

[l

*
AN OVERVIEW OF THE THEORY OF COMPUTATIONAL COMPLEXITY
by

J. Hartmanis and J.E. Hopcroft

Abstract

The purpose of this paper is to outline the theory of
computational complexity which has emerged as a comprehensive
theory during the last decade. This theory is concerned with
the quantitative aspects of computations and its central theme
is the measuring of the difficulty of computing functions,

The paper does not attempt to give an exhaustive survey but
instead presents the basic concepts, results and techniques
of computational complexity from a new point of view from

which the ideas are more easily understood and fit together as

a coherent whole.

This research has been supported in part by National Science
Foundation Grants GJ-155 and GJ-96.

rm—

II.
III.

Iv.

VI.
VII.
VIII.

IX.

TABLE OF CONTENTS

Introduction

Computational Complexity Measures
Speed-Up Theorem and Applications
Complexity Classes

Simulation and Parallelism

Naming of Complexity Classes

Size of Machines

Historical Notes

References and Bibliography

S

I. Introduction

It is clear that a viable Theory of Computation must deal
realistically with the quantitative aspects of computing and develo:-
to include a general theory which studies the properties of pos-
sible measures of the difficulty of computing functioms, Such
a theory must go beyond the classification of functions as
computable and noncomputable, or elementary and primitive
recursive, etc. This theory must concern itself with compu-
tational complexity measures which are defined for all possible
computations and which assign a complexity to each computation
which terminates, Furthermore, this theory must eventually
reflect some aspects of real computing to justify its existence
by contributing to the general development of computer science.
During the last decade considerable progress has been made in
the development of such a theory dealing with the complexity of
computations, It is our conviction that by now this theory is
an essential part of the Theory of Computation and that in the
future it will be an important theory which will permeate much
of the theoretical work in computer science.

The purpose of this paper is to outline the recently deve-
loped theory of computational complexity by presenting the
central concepts, results and techniques of this theory. The
paper is primarily concerned with the study of computational
complexity measures defined for all computable partial functions
and makes no attempt to exhaustively survey the whole field nor

to present the material in historical order, Rather, the paper

I

[

concentrates on exhibiting those results and techniques which
we feel are important and presents them from a point of view
from which they are most easily understood. In a way, the

paper contains what we believe every computer scientist (or

at least those working in the theory of computation) should know

about computational complexity, On the other hand, he who
wishes to do further research in this area may have to do

considerably more reading., In particular he should study the

results about specific complexity measures and relations between

different measures which have motivated much of the general
approach and remain a source for ideas and counter examples,
The first part of the paper motivates the definition of
computational complexity measures and gives several examples,
After that, some basic properties are derived which hold for
all complexity measures, It is shown, for example, that in
every complexity measure there exist arbitrarily complex zero-
one functions and that there is no recursive relation between
the size of a function and its complexity, On the other hand,
it is shown that any two complexity measures bound each other
recursively., In the following section we give a new proof of
the rather surprising result which asserts that in any measure
there exist functions whose computation can be arbitrarily
speed up by choosing more and more efficient algorithms., This
is later shown not to be true for every recursive function.
Our proof is based on a direct diagonalization argument and

does not rely on the Recursion Theorem which had to be used

in the original proof, This is achieved by observing that the
Speed-Up Theorem is measure independenty that is, if it holds
in any measure it holds in all measures, and then proving it
directly for the well-understood computational complexity
measure of tape-bounded Turing machine computations, 1In this
measure the proof loses much of its original difficulty, The
Speed-Up Theorem has the strange implication that no matter
which two universal computers we select (no matter how much
faster and more powerful one of the machines is) there exist
functions which cannot be computed any faster on the more power-
ful machine. This is so because for any algorithm which we
use to compute such a function on the more powerful machine
there exists another algorithm which is so fast that even on
the slow machine it runs faster than the other algorithm on
the faster machine,

Since there exist functions which have no "best'" programs
and thus we cannot classify functions by their minimal programs,
we turnm to the study of classes of functions whose computa-
tional complexity is bounded by a recursive function, For
this study, we show for the first time here, that for any
complexity class whose complexity is bounded by a recursive
function f we can uniformly construct a strictly larger
class whose complexity is given by a recursive function of the
complexity of f (i.e. the running-time of f), The next
result, the Gap Theorem, asserts that this is the best possible

uniform result we can obtain by showing that there exist

arbitrarily large "gaps' between the complexity classes, That
is, for every recursive function r there exists an increasing
recursive function t such that the class of all functions
computable in the complexity bound t 1s identical to the
class of functions computable in the complexity bound r o t ,
Thus we cannot always obtain larger complexity classes by
applying a recursive function to the old complexity bound.
This result has also the interesting implication that when we
consider a universal computing machine, then no matter how
much we increased the computation speed and no matter how
many new operations we added, there exist infinitely many
recursive complexity bounds in which the old and the new machine
will compute exactly the same functions, That is, within
infinitely many complexity bounds no advantage can be gained
from the additional computing power and speed of the new machine
over the o0ld machine., This discussion is followed by another
surprising result which shows that the complexity axioms admit
complexity measures with complexity classes that cannot be
recursively enumerated, Fortunately, this situation cannot
prevail for large complexity classes and it is shown that in
any measure all sufficiently large complexity classes are
recursively enumerable,

The next section takes a more detailed look at the process
of constructing new complexity classes by means of the diagonal
process. Here we present a new approach which permits us to

break down the “price of diagonalization' over any complexity

"

—

.

class into the ‘price of simulation’ and the "price of parallel
computations', From this general formulation we can read-off
the results about complexity classes for special measures once
we know how difficult it is to "simulate" and to "parallel"”
two computations in a given measure, This is illustrated by
deriving the three rather different looking results for the
complexity classes of tape-bounded Turing machine computations
as well as the results for time-bounded computations for one-
tape and many-tape Turing machine models, In each case the
differences in the structure of the result are traced back to
the differences in the difficulty of "simulation'" and "paral-
leling" computations for the three different complexity measures,
In the next section we look at the problem of '"naming"
complexity classes, First we prove the Union Theorem which
asserts that the union of any recursively enumerable sequence
of increasing complexity classes is again a complexity class,
This implies that many previously studied subclasses of the
recursive functions fit in naturally in many complexity measures.
For example, there exists a recursive tape-bound L(n) such
that the class of functions computed by Turing machines whose
tape length is bounded by L(n) consists exactly of the primi-
tive recursive functions, The second major result of this
section, the Naming Theorem, takes some of the sting out of
the Gap Theorem, by showing that in any measure there exists a
(measured) set of functions which names all complexity classes

without leaving arbitrarily large upward gaps., Unfortunately,

it turns out that this naming of complexity classes may have
arbitrarily large downward gaps, The Naming Theorem is a
rather technical result and the proof is still quite difficult,
The reader may want to skip this proof and proceed to the
next section,

We conclude this overview with a discussion of the size
of algorithms or machines in order to capture the notion of
how complicated it is to describe an algorithm, We start by
giving a formal definition of a size measure and then show that
any two such measures are recursively related, The main result
of this section shows that in any recursively enumerable 1list
of algorithms there are arbitrarily inefficient representations,
This result is then used to look at the economy of formalisms
for representing various algorithms, For example, it is shown
that when we use primitive recursive schema to represent primi-
tive recursive functions, then there are large inefficiencies
in this description of primitive recursive functions, That
is, even among the shortest programs in this schema we can find
programs which can be shortemed by any desired amount by going
to a general recursive schema. This asserts that, though we
do not nced a “go to" or "if" statement to compute primitive
recursive functions, the use of these statements can shorten
the length of our programs drastically and so clarifies their
importance in programming languages.

The last section gives a very brief history of the research

described in this paper and tries to indicate who did the

original work. We have also included a short bibliography

for possible further reading,

| S

II. Computational Complexity Measurecs

The theory of computational complexity is concerned with
measuring the difficulty of computations, In order to do this
we must discuss what 1s meant by a computatianal complexity
measure.

In this paper we are concerned with computational complexity
measures which are defined for all possible computations, that
is, for all partial reccursive functions mapping the integers
into the integers. Therefore, to define a complexity measure
we need an effective way of specifying all possible computa-
tions or algorithms (for the computation of partial recursive
functions) and the complexity measure will then show how many
"steps" it takes to evaluate any one of these algorithms on any
specific argument.

For example, our list of algorithms or computing devices
could be a standard enumeration of all one-tape Turing machines
(which we know are capable of computing all partial recursive

functions) and the complexity measure for a given machine Mi

(or algorithm) working on an argument n could be the number

of operations performed by M before halting on input n ,

i
A different complexity measure is obtained when we con-

sider (a recursive enumeration of) all ALGOL programs and

again let the complexity of the i-th ALGOL program on argument

n be defined by the number of instructions executed before the

program halts on input n

-9 -

It should be noted that these totplexity measures are
associated with the algorithms and not directly with the func-
tions they compute. The reason for this is that in computa-
tions we usually deal with algorithms which specify functions
and for each computable function there are infinitely many
algorithms which compute it, Furthermore, as it will be shown
later, there exist functions which have no "best" algorithm
and thus we can not talk of the complexity of a function as
that of its best algorithm,.

From the preceeding examples we sce that a computational
complexity measure consists of a recursive list of algorithms
which compute all partial recursive functions to each of which

is assignedastep~counting function which gives the amount of

resource used by a given algorithm on a specific argument,
The assignment of the step-counting function, furthermore,
satisfies some conditions. If our list of algorithms ie denoted

by ¢1,¢2,¢3,... and the corresponding step-counting functions
by ¢1’¢2’¢3"" s then we note that for our examples the

following two conditions hold:

1. the algorithm ¢i(n) is defined if and only if
Qi(n) is defined,

2. for any given number of steps m and any algorithm
¢i working on argument n we can determine (recur-
sively) whether ¢i(n) halted in m steps, that is

whether @i(n) =m ,

r—

-10..

In other words if the 1i-th Turing machine halts on input
n then the number of steps it took before halting is well
defined. On the other hand, if i-th machine does not halt on
input =n, then we cannot determine how complex the computation
is since the measure is not defined, What we can do for each
1 and n 1is to determine whether the 1i-th machine halted
on input n in m steps for any givern n , Clearly, we
achieve this, for our first example, by just performing m
steps of the 1i-th computation on input n and noticing
whether the computation halts on the last step.

One may impose additional conditions on the complexity
measure to capture more completely some specific aspect of
computational difficulty; but the conditions we have stated
are so natural and basic to any notion of computational com-
plexity that it is now generally accepted that they must hold
for any computational complexity measure. The surprising fact
is that they are sufficient to prove many interesting results
about all complexity measures for which they hold. 1In a way,
the rest of the paper will illustrate this although we will
look at specific measures to strengthen our intuition and
illustrate some special results,

At the same time it should also be observed that more
applied computer scientists may be far more interested in
results about the complexity of particular problems in specific
measures. Nevertheless, the above outlined approach is suf-"

ficient to start developing the general theory.

| S

r

- 11 -

We now make precise the notion of a computational com-
plexity measure, Through out this paper we refer to a compu-
table total function as a recursive function and we use the
word algorithm for algorithmic procedure even though the proce-
dure does not halt for all arguments,

Definition: A computational complexity measure ¢ is an

admissible enumeration of the partial recursive functions

¢l’¢2’¢3"" , to which are associated the partial recursive

step~counting functions ¢1,®2,¢3,... , such that

1, ¢i(n) is defined iff @i(n) is defined,

0 if @i(n) # m
2. M(i,n,m) = ig a recursive function,
1 if @i(n) = m

It was seen that the number of moves of a Turing machine
can be used as a step-counting function to obtain a computa-
tional complexity measure. Similarly we can use the number
of tape cells scanned by a Turing machine (pro§ided we agree
that if the machine does not halt the number of tape cells
scanned is undefined) to define a measure. In fact most other
natural measures which can be thought of do indeed satisfy the
definition, Given a set of step-counting functions one can
apply any recursive function £(n) , f(n) > n , or any recur-
sive unbounded monotonic function to zach step-counting func-

tion to obtain a new set of step-counting functions,

- 12 -

Nevertheless, it will be seen that the definition of computational
complexity measures is restrictive enough to eliminate as step-
counting functions, those functions which in no real sense
measure the complexity of the computation, For the present it
is instructive to consider several examples which do not form
complexity measures,

A) The number of recursions used to define a function in
a schema for primitive recursion cannot be used for step-counting
functions since the schema is not capable of representing all
partial recursive functions and thus we do not have an admis-
sible enumeration of all algorithms,

B) The functions {@i(n)} defined by @i(n) = 0 for

cach 1 and n fail to satisfy condition 1,

C) The functions {éi} defined by

0 if ¢i(n) is defined

¢’i(n) =
undefined otherwise

do not satisfy condition 2 since for each i and =n , ¢i(n)

is defined if and only if M(i,n,0) = 1 and thus M(i,n,m)
cannot be recursive (otherwise we would be solving the Halting
Problem).

Many results are implied by the definition of computa-
tional complexity measure. The first result is that for any
measure there exist arbitrarily complex recursive functions,.

To establish this result we will show that for any recursive

r

S

- 13 -

function f there exists a recursive function ¢ with the
property that any possible way of computing ¢ requires more
than f(n) steps for infinitely many =n , To construct ¢ we
just have to formalize the procedure (diagonal process) which
looks at each index i infinitely often with increasing n and

sets

¢(n) # ¢, (n) 1ff Q0 ,(n) < £(n) .

Notation. We say that 1 1is an index for the function ¢

provided ¢i(n) = ¢(n) for all n ,

Theorem 2.1: Let & be a computational complexity measure

and f any recursive function, Then there exists a recursive

function ¢ such that for any index i for ¢ @i(n) > f(n)

for infinitely many n ,

Proof: Let r(n) be a recursive function with the property

that for all i , i = 1,2,3,... , there are infinitely many n

such that r(n) i . Define

¢r(n)(n) + 1 if @r(n)(n) < f(n)
¢$(n) =

0 otherwise .

Since f and r are recursive functions (by the second condi-

tion on complexity measures) we can compute whcther

2, (ny (M) < £(n)

- 14 -

and thus ¢(n) 1is a recursive function, Furthermore, if j
is an index for ¢ , then for the infinitely many n such that

r(n) = j we have that ¢j(n) > f(n) as was to be shown,

By using a somewhat more complicated diagonal process, we
next derive the stronger result which asserts that for any
recursive f there exist recursive functions whose complexity
exceeds f almost everywhere, To establish this result we

just formalize the statement: "If the complexity @i(n) of

the i-th function is less than £f(n) for almost all n ,

then I am not the i-th function.”

Theorem 2.2: Let ¢ be a complexity measure, Then for any

recursive function f there exists a recursive function ¢

such that for any index i for ¢ , @i(n) > f(n) for almost

all n .

Proof: Let f be any recursive function. To construct the

function ¢ such that for any index j for ¢ , Qj(n) > f(n)

for almost all n , we procced as follows: for each n we
look for the first function, smallest index i , such that

@i(n) < f(n) and make ¢(n) different from ¢i(n) , provided

this has not been done before. More precisely, let s(n) be

the smallest integer less than n such that

@s(n)(n) < f(n).v

and for no m < n 1is

T

[

- 15 -

‘I)S(n)(m) f_ f(m) with ¢S(n)(m) # ¢(m) .

If no such integer exists s(n) 1is undefined. Let

0 if ¢s(n)(n) =1
¢(n) =

1 otherwise ,

Clearly ¢(n) 1is a recursive function, Assume, ¢ ,(n) < f(n)

3

for infinitely many n and ¢j = ¢ , Eventually for some value
of n , say noo the smallest integer k such that

i <
Qk(no) < f(no) and for no m < n_ is @i(m) < f(m) with
¢k(m) # ¢(m) will be j . Thus, by the definition of ¢ ,

¢(no) # ¢j(no) , a contradiction., Therefore, for any index 1

for ¢ , ¢i(n) > f(n) for almost all n .

Corollary: There exist arbitrarily complex 0-1 valued func-

tions in all measures,

By the previous theorem we see that there are arbitrarily
complex bounded functions. From this we immediately conclude
that there can be no recursive relation betwecn functions and
their complexities since such a relation would imply a bound

on the complexity of any bounded function,

Theorem 2.3: There is no recursive function b such that for

each 1 b(¢i(n),n) > @i(n) almost everywhere,

[

- 16 -

Proof: Assume that such a b exists, Then the complexity

Qi(n) of any zero-one function ¢i(n) must satisfy
@i(n) —<_ b(O,n) + b(l’n) a.e,

contradicting Theorem 2,2,

Although there is no recursive relation between the value
of a function and its complexity there is a rescursive relation
between the complexity of am algorithm in any two measures,

In other words a function which is "easy" to compute in one

measure is "easy'" to compute in all measures,

Theorem 2.4: Let & and ® be complexity measures, There

exists a recursive r such that for any i ,

r(n,@i(n)) > ai(n) and r(n,@i(n)) > Qi(n)

for almost all n , -

Proof: Let

r(n,m) = max{@i(n)yai(n)Ii < n and either

L]
.
~
=
~
]
=]

or @i(n) = m} ,

Clearly

r(n,9; () > 8, (a)

and

r(n,d, () > &, (n)

- 17 -

for all n > 1., The function r 1is recursive since there is

an effective procedure to determine if either @i(n) or
ai(n) is equal to m . Should either be equal to m , then

both must be defined. Hence the maximum can be effectively

computed.

Saying that two measures are recursively related does not
mean much from a practical point of view since the recursive
relation may be arbitrarily large. Furthermore, the recursive
relation given by Theorem 2.4 may not be a tight bound since
the relation given depends on the enumeration, Thus if we are
comparing the number of steps of a single tape Turing machine
to the number of tape cells used, the function r of Theorem
2.4 will depend on the order in which we enumerate Turing
machines. However, as a consequence of the theorem, we note
that the complexity of any class of functions which is bound
in one measure (e.g. polynomials, primitive recursive func-
tions, etc,) is bounded in every complexity measure.

Before we proceed to the study of more exciting results,
we prove a technical lemma which shows that in any measure

' computations the complexity of the new com-

when we "combine'
putation is recursively bounded by the complexity of the com-
ponent computations. This lemma is used repeatedly in the

study of computational complexity.

Lemma 2.1 (Combining Lemma): Let & be any measure and c(i,j)

a recursive function such that 1f ¢i(n) and ¢j(n) are

r-r«q

- 18 -

defined then so is ¢c(i,j)

function h such that

Qc(i,j)(n) < h(n,@i(n),éj(n)) a.e,

Proof: Define

[]
o

éc(i,j)(n) if @i(n) = m and ¢j(n)

p(i,j,n,m,R) =
1 otherwise

This function is recursive and we obtain the desired h by

setting

h(n9®i(n)s¢j(n)> =_m?§n p(i,j,n,m,%) .

i,

Clearly for n > i,j we have

h(nséi(n),Qj(n)) >0)(n)

e(i,]

and thus the inequality holds almost everywhere, as was to be

shown.

(n) . Then there exists a recursive

ey

- 19 -

III. Speed-Up Theorem and Applicationms,

We now give a new proof (without invoking the Recursion
Theorem) of the rather surprising result that there exist func-
tions which have no best algorithms, In fact we show that for
any recursive function r(m) , there exists a recursive func-
tion ¢(n) such that to every index i for ¢ there corres-

ponds an index j for ¢ with Qi(n) > r(Qj(n)) for suf-
ficiently large n .

For example, if we choose r(n) = 2" , then there exists a

recursive function ¢ such that if ¢i = ¢ then for some

other index j of ¢ we have

Qj(n) < log ®i(n) a.,e,

Furthermore, this process can be repeated and we conclude that

there exists an index k for ¢ such that

@k(n) < log log @i(n) a.e,

and this logarithmic speed-up can bc iterated arbitrarily often.
Rather than prove the most gencral case directly we shall
first establish the result for a specific well-understood measure
by a straightforward diagonalization argument and then use the
fact that all mecasures are recursively related to obtain the
general theorem. The complexity measure which we will use is
based on the amount of tape used by a one-tape Turing machine.

The machines are so modified that they never cycle on a finite

- 20 -

segment of their tape and thus this mcasure satisfied the two
conditions of our definition, Furthermore, we modify them so

that Li(n) (the number of tape cells used by the 1i-th

Turing machine on input n) is larger than the length of the
description of the i-th Turing machine. Finally, we will

use an enumeration of these Turing machines with the property
that the 1i-th Turing machine has at most 1 different tape
symbols. The advantage of selecting the amount of tape used as
our complexity measure stems from the fact that tape can be
reuscd several timos for different computations which we will
carry out in the desired computation of ¢ ,

We say that a recursive function f(n) 1s tape-construc-

table if and only if there exists a one-tape Turing machine which

uses exactly f(n) tape cells for input n , n = 1,2,..,, .
The basic idea of the following proof is quite simple,

We will construct a function ¢ which cannot be computed fast

by "small"machines by running a diagonal process in which the

stringency of conditions will decrease with the size of the

machine. More explicitely, for a properly chosen function h

we will formalize the following procedure for the construction

of ¢ , "if the 1i-th machine computes ¢i(n) on fewer than
h(n - 1) tape cells, then ¢ is not ¢i" , and then show that

this diagonal process is sufficiently simple that for any k
we can compute ¢ on h(n - k) tape cells by a sufficiently

large machine.

S

{«oﬂ«

= -

- 21 -

Lemma 3.1: Let r(n) be any recursive function, Then there
exists a recursive function ¢(n) such that for each i for

which ¢i(n) = ¢(n) there exists a j with

¢j(n) = ¢(n) and L,(n) > r(L,(n))

3
for sufficiently large n ,

Pro~f: Without loss of generality we can assume that r(n)

is a strictly increasing tape constructable fuaction, (Other-
wise replace r(n) by £(n) where £f£(n) 1is a strictly in-
creasing tape constructable function and £(n) > r{n) for

all n .) Define h(n) by h(l) =1 and for =n > 1 set
h(n) = r¢th(n - 1)) + 1 ,

Then
h(n) > r(k(n - 1))

for all n > 1 and clearly h 1is tape constructable since
r(k) and r(k) + 1 are tape constructable and thus by induc-

tion is h(n) .

We will define the function ¢(n) =o that

(1) ¢i(n) = ¢(n) implies that Li(n) > h(n - 1) a,e. ,

(2) for each k there exists an index j such that

¢j(n) = ¢(n) and Lj(n) < h(n - k) .

This will insure that given an index 1 for ¢ there

exists an index j for ¢ with

Lt
I

- 22 -

Li(n) > r(Lj(n)) a.e,

To achieve this, select j so that

Ly(a) 2 h(n - 1 -1) .

Then

Li(n) > h(n - 1) > r(h(n - 1 - 1)) > r(L,(n)) .

3

Construction of ¢(n):

¢l(l) + 1 if Ll(l) < h(l)
Set ¢(1) =
0 otherwise

If Ll(l) < h(l) , cancel first Turing machine from the list

of Turing machines. For n = 2,3,4,... , set

¢i(n) + 1 where 1 1is the smallest index not already
cancelled such that Li(n) < h(n - i) and

cancel index i .
¢(n) =

0 1if no such i exists
Clearly if the 1i~th Turing machine computes ¢ , then

Li(n) > h(n - 1) a.e,

since for sufficiently large oo, cach j which will eventually

be cancelled has already been cameelled and hence if

Li(n) < h(n - 1)

g

e

for any

n > n_ o then

¢(n) = ¢,(n) + 1 and hence ¢, (n) # ¢(n) ,

Furthermore, for each k there exists a Turing machine j

which computes ¢ 1in

tape cells.

i <k, which ever gets cancelled, gets cancelled for a value of

n <v

Ly(a) < h(n - &)

For each n v, j has stored in its finite control

the value of ¢(n) and simply prints out the appropriate

value.

For n >v , j computes the smallest i not already

cancelled as follows:

1)

2)

3)

j lays off h(n - k) tape cells,

j has stored in finite control, the values of 1

cancelled on input n , n < v ,

for v <m<n, j simulates each Turing machine
i, v<i<n, determines which machine gets can-
celled at each value of m < n , and then finds the

smallest uncancelled 1 such that

Li(n) < h(n - 1)

and sets

o(n) = ¢, (n) + 1,

If no i exists ¢(n) 1s set aqual to zero, The

simulations can be carried out in h(n - k) tape

Turing machine j operates as follows. For each

i

™

=

P

——n

- 24 -

cells since j simulates only machines with indices
greater than v and simulates the machine i only
until it exceeds h(n - 1) tape cells, Since machine

i has at most 1 tape symbols, the simulation requires

at most
ih(n - 1) < h(n - k)

tape ceils.

Next we consider arbitrary measures and show that a speed

up theorem exists for all measures,

Theorem 3.1 (Speed-Up Theorem): Let ¢ be a complexity measure

and r(n) a recursive function, There exists a recursive func-

tion ¢(n) so that for each i such that ¢i(n) = ¢(n) there

exists a j for which

¢j(n) = ¢(n) and ¢, ,(n) > r(¢j(n)) a.e.

Proof: Since all measures are recursively related there exists

a strictly monotonic R such

Li < R(@i) and Qj < R(L

) a.e,

3

provided @i and Lj grow faster thamn n ., Set

t(n) = R(r(R(n))) .

Select ¢ by Lemma 3.1 so that for each i such that ¢i = ¢

there exists an index j for ¢ with

Then

R(r(%,)) < R(r(R(Lj))) <Ly <L R(2,) a.e,

3

But

R(x(8,)) < r(8,) a.c,

J
and R strictly monotonic implies

r(Qj) <0 ale.,

as was to be shown.

In the next section we will show that not all recursive
functions can be speeded-up by proving that in any measure
there exists an increasing recursive function h such that

for each sufficiently large running-time @i there exists a

function f with complexity Qi which cannot be speeded-up

by the factor h . That is, f 1is computable in running-time

@i but not in running-time Qj if

h o Qj(n) < @i(n) a.e,

Thus in any measure many functions have h-best programs.
One should also observe that the speed-up is not effective

in that the value of v in the construction of Lemma 3.1 1is

——

S

- 25 -

not effectively determined, This immediately raises the ques-
tions as to whether there is some other construction and another
function f with an effective epeed up, If one wishes a small
speed up, say a linear speed up for tape bounded Turing machines,
then there is an effective procedure, (Small here, of course,
depends on the measure and must be less than the previously
mentioned h .) Large speed ups, however, can never be effec-
tive. Since effectiveness of speed up is measure independent,
we consider the amount of tape used by single tape Turing
machines and show that in this measure large speed-ups are not
effective. Again the outlined proof makes use of the fact that
we can reuse the tape many times for different computations.

Let ¢ be a function and il,iz,... be a list of progrems
for ¢ with the property that if ¢j = ¢ , there exists a k

so that r(d,) < ¢ a,e. Here r 1is reasonably large and

ik h|

we are faced with the following problem if we assume that the
list 1s recursively enumerable. Consider an algorithm which
for input n marks off two tape cells, enumerates as much of

the list i as will fit on half of the amount of tape

1,12,...
marked off and then simulates successively cecach algorithm

¢i ’¢i se++ until the simulation tries to exceed the tape
1 2

marked off. If noc algorithm has yet computed ¢(n) , then
two more tape cells are marked off and the process 1s repeated.

This way every algorithm ¢ on the list is tried eventually

1y

- 26 -

and, since the simulation of ¢i by our algorithm does not

3

require more than a constant times the amount of tape used by

¢i , we conclude that this algorithm runs in approximately as
2
J

little space (almost everywhere) as any algorithm on the list.
Hence a program running in considerably less space cannot
appear on the list and therefore we have no r-speed-up for the
program we constructed, Thus we cannot recursively enumerate
any list of algorithms for £ which contain arbitrarily mani-
fold .r-speed-ups.

Since the speed-up theorem applies to all complexity
measures, it can be applied to speed up computer programs,,
However, in a computer program one usually wishes to compute
a value of a function on a specific input or for some finite
range of inputs not on all possible inputs. Reducing the

asymptotic running time almost everywhere is not precisely what

a practical computer scientist is interested in. However, the
theorem does tell us that we cannot classify functions by their
complexity since some functions have no intrinsic minimal com-
plexity. What we shall do instead is to define complexity
classes and study them in the next section,

Before proceeding with the study of complexity classes
we will discuss one application of the speed-up theorem. Let
us consider two different computers both of which can compute
all partial recursive functions. One of these computers is

assumed to have a very rich set of operations and, say, it can

- 27 -

perform (101101

)! operations per second; the other computer
is assumed to have only a few of the operations of the first
machine and it can perform only one operation every hundred
years. We can now use these two computers and their programs
to define two computational complexity measures based on their
running time measured in seconds, Furthermore, we know from
Theorem 2.4 that the running times of these two machines are
related by a recursive function h . Clearly, h will be a
very large function, indeed, Nevertheless, the Speed-Up Theorem
asserts that if we pick functions which have an r-speed~up
with r > h , then we cannot gain za2ny speed advantage by using
the faster machine to compute these functions, Since for
every program which is used on the fast machine, there exists
another program computing the same function faster (for large
values) on the slow machine, Note that the conclusion holds
only for sufficiently large values of n and that there is

no effective way of finding the program for the slow machine,
nevertheless, we know that it exists,

Later we will find a related result, the Gap Theoremn,
which asserts that we can also exhibit an arbitrarily large
recursive function such that the set of functions computed in
this time bound is identical for both machines., 1In this case,

as it will be seen, the proof does not rely on the fact that

the slow machine is using better programs,

IV. Complexity Classes

In the first part of this paper we postulated two proper-
ties which any computational complexity measure must have and
then derived several results about complexity measures utilizing
only these postulates, We saw that in any measure there exist
arbitrarily complex computable functions, that there can not
exist a recursive relation between the size of computable func-
tions and their computational complexity, that any two complexity
measures are recursively related (they bound each other recur-
sively), and finally that there exist functions whose computa-

tion can be ‘

‘speed up" arbitrarily,
We now turn to the study of the classes of functions whose
computational complexity is bounded by recursive functions,

More precisely for any complexity measure ¢ we define, for

any recursive function ¢i , the complexity class

Ci. = (0,00, () < ¢, () ae.} .

1

Thus Cg or C¢ consists of all computable functions whose
i .

1

complexity is bounded by ¢i almost everywhere,

We consider first the problem of constructing for any

given C ¢i—recursive, a new complexity class which contains

¢i ’

some new function not contained in C¢ .
i

© 2~

- 29 -

The construction of the new class will be achieved by
diagonalizing over the total functions which are computed in

¢,(n) steps. It should be observed that in our diagonalization
i

we should look at each index infinitely often since the func-

tion ¢j is in C¢ provided Qj(n) < ¢i(n) for sufficiently
i

large n . Thus even if we find that for some n ,

Qj(n) > ¢i(n) , we still should check later whether the inequality

is not reversed and whether we should not set ¢ # ¢j .

This is done by first selecting any recursive function
r with the property that for all 1 ;, r{(n) = 1 for infinitely

many n . Then define

2 (ny(®) + 1 if () (@) 2 ¢y (m)
¢(n) =

1 otherwise ,
1f ¢j € C¢ then for a sufficiently large n , Qj(n) < ¢i(n)
i

and r(n) = j , which implies that ¢ # ¢ by construction,

b
Thus ¢ 1is not in C¢ . On the other hand by usinge the

i
Combining Lemma, we know that for some recursive h and index

3 for ¢

Qj(n)i h[n,@r(n)(n),¢i(n)] a.e.

Thus we have obtained the following result,

- 30 =~

Theorem 4.1: In any measure ¢ there exists a recursive func-

tion E such that for each total ¢i there exists a function

fi .
£y € Cy 2md Iy € CppnLe (n)]
i
The above formula can be simplified by deleting the first
argument of H(n,@i(n)) for @i(n) > =n . We cannot do this

in general since if one of our measures is the number of tape

cells used by an off-line Turing machine and Qi(n) is constant

(in reality the Turing machine is a finite automaton), then

H(@i(n)) would be a constant and could not bound, say, the
nunmber of steps pérformed by a Turing machine whose complexity
grows at least linearly with the size of the input,

Corollary: In any measure ¢ there exists a recursive function

k such that for all total ¢i(n) such that @i(n) > n there

exists an fi(n) such that

By a slight modification of the previous proof we can
obtain a new complexity class which properly contains the old

class.

~

-~

Corollary: In any mecasure ¢ there exists a recursive func-

tion R such that for all ¢i total

6, F %&ln,0, (0)]

Again 1f we consider sufficiently difficult, recursive func-

tions ¢i , 1.e. @i(n) > n , then we can drop the n from the

above equation and obtain C¢1 3 CR°¢1 .

The previous results show that in any complexity measure
we can obtain new complexity classes uniformly in the running

time of any recursive ¢i , that is.
c c C
93 4 Rely

The proof of this result was quite simple and we saw that the

running time @i entered the expression because we had to

compute ¢i in order to bound the number of simulation steps

of ¢)(n) . If we could bound the size of the running time

r(n

Qi recursively to the size of the function ¢i , then we

would have a result which would yield new complexity classes

uniformly in ¢i instead of in the complexity @i . On the

other hand we know that the complexity of the function cannot
be recursively bounded by the size of the function and this

leads us to suspect that therz is no recursive q such that

Pt as

- 32 -

c c C for all 1 ., The next result proves this sus-
b1 4 9006y

picion, establishing the previous result as the strongest uni-
form result which we can get when we consider all total func-
tions.

The Gap Theorem which we prove next can be viewed as an
assertion that for any complexity measurc the step-counting
functions are sparse relative to recursive functions. The
reason for this is that the second condition for complexity

measures permits us to decide whether ¢i(n) <m for all

n, m and 1i . This is so strong a condition that using it
we can construct for every recursive r a recursive t such
that no step-counting function falls infinitely often between
t and r o t . Thus insuring that whatever can be computed

in bound r o t can also be computed in bound t ,

Theorem 4.2 (Gap Theorem): In any complexity measure ¢ for

any recursive function r there exists a recursive monotoni-

cally increasing function t such that

Proof: VLet @1,¢2,®3,... be the enumeration of the running

times of the complexity measure & , We define the desired

inductively; 1let

t(l) =1
t(n+l) = t(n) + oo, where

m_ = min {m|for each 1 < m either ¢ ,(n+l) > r o [t(n) + m]

or Qi(n+l) < t(n) + m} .

The last predicate is recursive and thus we can test it
for m = 1,2,3,... «+ To sece that this procedure will find

the desired moo note that there are only a finite number of

¢,(n+l) , 1 < n , and thus there sxists an m @80 that
@i(n+1) < t(n) +m

for all 1 , 1 < i < n , such that @i(n+1) is defined; if

@i(n+1) is not defined, then clearly
¢,(n+1) » r o [t(n) + m] for all m .

Thus a desired m exists and we conclude that t(n) 1is a
recursive function.

To have Ct i Crot we must find a ¢j such that

¢j(n) <r e t(n) a.e. and not ¢j(n) < t(n) a.e, This is

impossible by construction of t since ¢,(n) < r ¢ t(n) a.e.

3

implies ¢j(n) < t(n) a.e. Thus

-~

P

- 34 -

The Gap Theorem shows that there are arbitrarily large
gaps among the recursive functions which contain no running

times (infinitely often). The complexity classes

defined by the functions bounding such & gap are identical. This

also implies that we cannot have a recursive way of increasing

every total function ¢i to r o ¢i to get a computation

bound for some computation not in C

¢i
At the same time it 1s worth recalling that there exists

a recursive way of increasing the running time Qi of any

total function ¢i to get a bound for a computation which is

i .e. . W hal
not in C¢i , 1.e C¢i i CR[n,Qi(n)] ‘ e shall now use

this result to see for what subclasses of the recursive func-

tions we can recursively increase the complexity bound to obtain

new computations.,

We first observe that for tape bounded computations the
running times or tape bounds realized by Turing machines are
computable in their own bounds. More precisely there exists

a recursive function 0 such that for every tape bound Li

we have

¢0(i)(n) = L,(n) and ¢o(i) € CLi .

The function ¢ just produces a new machine from Mi which

checks how much tape Mi used and then converts the number

of tape squares into the proper (say, binary) output form.

=

e

- 35 -

Under proper output conventions the same is true for the time
bounded computations of multitape Turing machines which suggest
that measures with self-computable running times deserve special
attention.

Definition: A computational complexity mecasure ¢ is said to

be proper if there exists a recursive function ¢ such that

for all i

o} and € C

doci) = % %5(1) o,

This leads us to our next result,

Corollary: 1In any proper measure @ there exists a recursive
function K such that for all i

o, G ®Rln, o (n)]

Proof: Since Qi is @1 computable we can replace ¢i by

@i in the second Corollary of Theorem 4.1.

The previous result can easily be extended to all measures
if we note that in any measure the size of the step-counting

functions bound recursively their computational difficulty.

Lemma 4.1: For any measure ¢ there exist two recursive func-

tions ¢ and r such that for all i | @i(n) = ¢U(i)(n)

and r[n,@i(n)] > @c(i)(n) a.e.

Proof: The fact that for all i , m and n we can decide

whether ¢c(i)(n) = m permits us to give a proof very similar

to that of the Combining Lemma, We set

@o(i) if ¢G(i)(n) = n
p(i,n,m) =
1 otherwise

and then let

rin,m] = max p(i;n,m)
i<n

It is seen that r gives the required bounding function,

Combining this result with Theorem 4,2 we gct

Theorem 4.3: For any measure ¢ there exists a recursive

function h such that for all 1

C c C .
Proof: We just observe that the result of Lemma 4.1 substituted
in the result of the last Corollary to Theorem 4.2 yields the

desired relation.

When we look back at the last result, we sce that the
running times can be recursively increased to obtain bounds
for new computations. This result relied primarily on the

fact that we could cnumerate the running times @i and deter-

mine whether @i(n) = m . We now generalize this observation.

- 37 -

Definition: A set of functions {y.} which can be recursively
i

enumerated and for which we can decide for 2all 1 , m , n

]
3]

whether yi(n) , is called a mecasured se¢t of functions.

Note that the running times of any complexity measure form
a measured set and furthermore the property of being a measured
set is not dependent on the complexity measure,

The above definition permits us to state a more general .

result.

Theorem 4,4: Let {y.,} be a measured set. Then in any con-
Yi

plexity measure ¢ there exists a recursive function r such

that
Cyi i Cr{nsYi(n)]

Proof: We observe that for any measured set there exists a

recursive o0 and h such that

¢o,(i) = Yi and @O_(i)(n) i h[n,d)c(i)(n)] a.e.

and then invoke the last Corollary of Theorem 4.2.
Next we take a look at the problem of enumerating all

the functions in a complexity class.

We say that the complexity class Ci is recursively

enumerable if thcre exists a recursively enumerable set of

indices which contains an index for every function in Ct

o

A

and only indices for functions in C_ , Note though, that we

do not insist that the algorithms named in this enumeration run
in the bound t , we only require that they name functions for
which there exists some algorithm running in the bound t
(almost everywhere).

It turns out that the three specific complexity measures
discussed in this paper have reccursively enumerable complexity
classes. We will show that this is the case in any complexity
measure for sufficiently large complexity classes (bounds).

On the other hand, we will also show that there are complexity

measures for which some complexity classes cannot be recursively

enumerated. This is rather surprising since it implies that
there is no effectiv: way of describing what functions are
contained in these classes, It suggests that these complexity
measures are rather pathologicel and that additional conditions
should be imposed on complexity measures to eliminate these
cases.

First, we observe that for any recursively enumerable
set of recursive functions we can bound (a.e.) their running

times.

Lemma 4.2: Let & be any measure and A a recursively enum-
erable set of total functions. Then there exists a recursive

t such that Ac C . .

Proof: Let il,iz,i3,... be a recursive enumeration of A ,

gy

o
i

an ey

then define

t(n) = max {@i (a)]3 < n} .
3

Clearly, t(n) is recursive and for each J , ¢i (n) < t(n)

3

a.e. Thus A E-Ct

In our next result we will use the set of functions of

finite support,

4;‘= {¢i|¢i(n) is total and ¢i(n) = 0 almost everywherel .

The set S; is easily szen to be recursively enumerable and

therefore in any measure there exists a recursive t such

Thus ¢

that q%.g_ci . We now show that all complexity classes which
cantain : Ct arc recursively enumerable.

Theorem 4.5: Let & be a complexity measure and t such

— o i

£ S Ct . Then for each recursive ¢j(n) > t(n) the complexity
class Cg is recursively enumerable.

Proof: Let ¢, > t and consider the recursively enumerable

Set {¢p ilp = 0,1,2,.00 9 i = 1,2,3,000} with

¢i(n) if for ecach k , p < k < n , @i(k) < ¢ (k)

45,4 (@)

0 otherwisc,

is equal to ¢i if the complexity of @i <0 for

psi 3

all n > p and is of finite support otherwise.

If

¢,(n) < 0(n) a.e,

then for some p

¢p’i = 9,
and thus every ¢i in Cg appears in our enumeration,
3
Furthermore, since all functions of finite support are in Cz
3
we can conclude that we have only functions from Ci . Thus
|

we have the desired enumeration,

The following result shows that there ¢xist complexity
measures in which "small” complexity classes cannot be recur-

sively enumerated.

Theorem 4.6: There exist complexity measures @ and recursive

t such that Ct is not recursively enumerable,

Proof: VLet ¢i ,¢i ,++« Dbe a recursive enumeration of the
1 2

constant functions such that ¢i (n) j « Define the measure

J

® as follows: for all k # ij |

and let

1,2,... , let Qén) >n ;

- 41 -

0 if Mj(j) does nct hzalt in n steps
@ij (n) =
B otherwise .,

Thus C0 consists of all those constant functions ¢i (n) = j
3

for which the j-th Turing wmachine Mj does not halt on

input j . Therefore, if ¢k ,¢k ’¢k yo++ 1s an enumeration
1 2 3

of C , then ¢, (1),9, (1),¢, (1),... 1is an enumeration of
o kl k2 k3

{lej(j)} does not halt} . This is a contradiction, since this
set is known (and can easily be shown) not to be recursively
enumerable.

It is interesting to observe that this proof relied heavily
on the fact that in this measure a finite change in ¢i could
create an infinite change in its complexity @i . If this is
not the case then all complexity classes are recursively enum-
erable. The following result captures some of this observation.
Corollary: ©Let ¢ be a measure with the property that

= e : C i .
¢i ¢j a.e. 1implies ¢i € <, if and only if ¢j € Ct
Then all complexity classes of & are recursively enumerable.
The proof of this result is similar to the proof of

Theorem 4.5.

[

e
i

- 42 -

V. Simulation and Parallelism

In this section we will take a more detailed look at the
diagonalization process over complexity classes and express
the complexity of this process in terms of the complexity of
"simulation" and running two computations in "parallel", This
approach will permit us to gain more insight into this process
and to derive easily some results about specific complexity
measures.

In the previous section we considered the following diagona-

lization process which worked for any i , provided ¢i was

a total function, yielding a function not in C :

¢y

¢r(n)(n) + 1 if Qr(n>(n) < ¢i(n)
¢d(i)(n)

1l otherwise

where r(n) was any computable function with the property
that for each 1 there exist infinitely many n for which
r(n) = 1 . We now change this process slightly to obtain the
results previously derived for specific measures.

Instead of checking whether the computation of ¢r(n)(n)
has used up more than ¢i(n) steps, that is, whether
Qr(n)(n) < ¢i(n) , we construct a machine (find an z2lgorithm)
which computes ¢r(n)(n) and then put a bound on how long

this algorithm is allowed to "sumulate" ¢r(n)(n) . Thus

=

- 43 -

in the first diagonal process we bounded the number of steps

simulated in the computation of ¢r(n)(n) . In the new process

we will bound the number of simulation steps used in the compu-

tation of ¢r(n)(n) . More precisely, let

¢S(n) = ¢r(n)(n) +1

and

dg(n) if 0, (n) < ¢, (a)
¢D(i)(n) =

1 otherwise ,

Next we express the complexity of the simulation and the

shutting off of the simulation, QD(i) s, in terms of the con-

plexity of @r(n)(n) and Qi(n)

Lemma 5.1: In any measure ¢ there exist recursive functions

S and P such that

S[nsQr(n)(n)] 2 QS(U)

and

P[nséi(n)] i ®D(i)(n)

for all i and almost all n ,

Proof: Let
@S(n) if @r(n)(n) = m

Sin,m]

1 otherwise .

To construct P , proceced as in the Combining Lenma by

letting
¢D(i)(n) if @i(n) = m
P(i,n,nm)
1 otherwise

and then let

Pla, = P(i,n,
[a,m] ’i‘§§ (i,n,m)

The next result gives 2 uniform way of constructing new

complexity classes.

Theorem 5.1: For any measure there exist two recursive func-

tions S and P such that for all recursive ¢i and ¢

3

€ln,¢,(n)] < ¢,(n)
3j i

implies that thcre exists a recursive function £ such that

f¢c but f € C

¢ P(n,0,(n)]

h|

Comment: Intuitively, the result asserts that if the time

lost in simulating the ¢j bounded computations does not

- 45 -

exceed ¢i , that is S[n,¢j(n)] < ¢i(n) , then we can diagona-
lize over these computations in time ¢i . Furthermore, the cost t«
shut~-off the simulator after it has used up ¢i(n) steps 1is
related to the difficulty of computing ¢i(n) , namely ¢i(n) ,

and is given by P[n,@i(n)] which describes the difficulty of

attaching the - shut-off mechanism (or putting it in "parallel”
with the simulation). Thus the complexity of the diagonal

process does not exceed P[n,@i(n)] and therefore there exists

such that f & C .
?5

a function f € cP[n,Qi(n)]
Proof: Let S and P be total functions which satisfy the
previous lemma and let S be nondacreasing in its second
variable (i.e. k > £ implies that for all 1 ,

sli,k] > s[i,2]). Let f£f(n) = ¢D(i)(n) and note that

Pln, @, (n)] > ¢/ ;y(n) a.e.

D(di

and therefore ¢D(i)(n) € cP[n,¢i(n)] .

To show that ¢D(i)(n) is not in C¢ consider any
3

¢k in C¢ whose complexity is bounded by ¢j R
h|

®k(n) < ¢j(n) a.e. By Lemma 5,1 we know that for sufficiently

large n

<I>s(n) < S[n,@r(n) (n)]

S

- 46 -

Furthermore, by construction of

r(n) = k

and therefore ¢k(n)

Thus for a sufficiently large n

ans since

r for arbitrarily large n ,

¢r(n)(n) and

@s(n) < Sin, o, (n)] ,

@k(n) < ¢j(n) we see

S[n,¢k(n)]

that

< S[ns¢j(n)] .

But by the hypotheses of the theorem

and therefore

S[n,¢j(n)]

Qs(n) < ¢i

which implies that

But then

¢S(n) = ¢)(n

r(n

¢k(n) # ¢D(i) . Hence,

f(n) = ¢D(i)(n) , we have that f

is not in

c

b,

J

9

< ¢, ()

(n)

¢k(n)

) + 1 = ¢k(n) +1 .

recalling that

is in

as was to be shown.

‘Pln,0, (m)]

= @r(n)(n) .

and £

By a slight modification of the proof of the proceeding

theorem we obtain our next result.

g

PR

- 47 -

Corollary: In any measure there exist two recursive functions

S and P' such that for all recursive ¢y and ¢j

implies that

C cC

¢y # B'in, 0, (n)]
This result establishes a sufficient condition for one
complexity class to be properly contained in another. Unfor-

tunately, again these results are not uniform in ¢i but only

uniform in ¢i and the Gap Theorem asserts that this is the

best we can do,

To strengthen our intuition and grasp of this general
approach we will now look at several specific measures. As
it will be seen, for specific complexity measures we can often
derive very tight bounds for the simulation time, S , and for
the cost of putting two processes in parallel, P ,

The specific measures under consideration are based on
Turing machine computations, To simplify our reasoning and
permit us to derive the results in their original form we will
make some minor modifications in our complexity measures., We
will view the Turing machines as.recognizers of input sequences
(thus they compute zero-one functions) and the parameter of the
input will be its length & (not the size of the number repre-

sented by the input).

=

e

- 48 -

A, First we outline the specific measure based on time bounded
Turing machine computations,

Definition. A set of sequences R 1is T(R) acceptable if

and only if there exists a multitape Turing machine which accepts
the set R and for inputs of length £ wuses no more than

T(2) operations, To indicate that we are dealing with multi-
tape Turing machines, we denote the class of all T-computable

M
sets by CT .

[It should be observed that the step-counting measure
based on the length of the input sequence (over a k-symbol
alphabet, k > 2) does not strictly satisfy the complexity
axioms because M may halt on some input of length & and
and not on some other. Thus we cannot assign a unique running
time based only on the length of the input. Our definition
overcomes this by looking only at C¥ , for recursive T and
insisting that all inputs of length & are processed in no
more than T(&) operations.

The purist can get out of these troubles by restricting
the input to a one symbol alphabet and representing n by a
sequence of n + 1 symbols and defining £ = n + 1 , Under

this input convention, the following results remain unchanged.]
To utilize our previous result we must now determine a
good simulation bound S and a good shut-off price P , 1In
simulation the difficult problem is to simulate machines with
arbitrarily many tapes on a machine with a fixed number of
tapes. Fortunately, there exists a clever simulation method
which yields a good result [1]. The proof of this result
is quite hard and since it is used only once in this paper, we

will not include it here.

- 49 -

Lemma 5.2: There exist two computable functicns r(n) and

c(n) , and a two-tape Turing machine M such that

M(n) = Mr(n)(n) + 1

and if M halts in t operations then M(n) halts in

r(n)(n)

no more than
c(n) t log t + c(n) operations.

Comments: 1. Thus for this model there exists a simulation

function S such that
S[n,t] € c(n) t log t + c(n)

2. The function r(n) , say for a three symbol input
alphabet {0,1,a} , can be so chosen that it depends only on
the binary prefix up until the first “a” marker and that this
prefix is interpreted as a very direct encoding of a Turing

machine's state table. Thus for every Mi there exists an

* *
x , x € (0 +1) such that for all y € (0 + 1 + a)
r(xay) = 1i

This decoding function r has the advantage that whenever Mi

is simulated its state table description is in the same form
and the operations required to start and carry out a simulation
step depends only on the prefix x and not on the length of

the whole input. (For the "purist's" case when we use a unary

- 50 -

input alphabet we are forced into using more subtle decoding
techniques but with a bit of thought they can be supplied

for the three models under consideration.)

Theorem 5.2: Let T(R) be the running time of some multi-

tape Turing machine. Then for every total function ¢

¢(R)logdp (L) _ M M
%ig T(L) = 0 1implies that C¢(2) i CT(Z) .

Proof: We outline the proof to explain the limit condition

and the use of the running time. The limit condition implies

that for any % > 0 and for sufficiently large

¢ (L) log 6(L) < T(R)

Thus CM c CM and for some sufficiently large n

¢ = T
S[n, ()] < T(L)
(wvhere & 1is the length of n and n 1is used to compute ¢r(n)(n))

M

But then we can diagonalize over all R in C¢ in T(R)
operations and, since T(2) 1is a running time of some Turing
machine MT , We can run MT on separate tapes 1in parallel

with the simulator and shut-off the process when M halts,

T
Thus P[n,T(&)] = T(4) and we conclude that ¢D(i) € C¥ but
QD(i) ¢ Cg , as was to be shown. (Viewing ¢D(i) as the

characteristic function of a set of sequences).

— &

f—

- 51 -

B. Next we look at complexity classes defined by time-bounded
one-tape Turing machines.

Definition. A set of sequences R is T(&)-acceptable by a
one-tape Turing machine if and only if there exists a one-tape

Turing machine which accepts R and uses no more than T(4R)

operations to process inputs of length & . The class of all
T(L)=-acceptable sets is denoted by C% .

For one-tape Turing machines the simulation problem is
considerably simpler than for many-tape machines, As a matter

of fact, for simple r(n) functions the simulation can be

carried out on one machine within a constant time of the machine

simulated, that is
S[n,t] < c(n)t + c(n)

This is achieved by always keeping a copy of the description

of near the place of the simulation (say on a separate

Mr(n)
track of the tape). Since the length of the description is

fixed as is the number of tape symbols Mr(n) can use, we see
that each step of the Mr(n) computation can be simulated in

a fixed number of steps of M (including the moving of the

Mr(n) description along).

On the other hand, the shutting-cff of the simulation
process after T(2) simulation operations is more difficult
than for the many-tape model {(where we just ran the shut-off

counter in parallel on separate tapes). The difficulty comes

(i

r””'

- 52 -

from the fact that we have to'run two independent computations
on the same tape with one head. One way of doing this is to
run the two processes on different tracks of the tapc and

move one of them, if necessary, to insure that the "head posi-
tions" of the two processes do not separate, If we do this,
then we are interested in making sure that the computation
which we have to move is not too long. This is achieved by
choesing T(&) to be a running time of a one-tape Turing
machine using no more than 1log T(R) tape squares. For such

T(2) it can easily be seen that
P[n,T(R)] < T(R) log T(R) .
Thus we obtain the corresponding result for one-tape machines.

Theorem 5.3: Let T(&) be the running time of a one-tape

Turing machine which computes T(&) on 1log T(L) tape squares.

Then for any total ¢

OR) _ o i i 11
%ig T(R) 0 implies that C¢ i CTlogT .

Note how the two results differ in structure because
for many-tape machines simulation was cxpensive and parallelism

free, whereas for the one-tape model simulation was cheap and

parallelism expensive.

C. We conclude by a look at tape~bounded computations.

Definition. A set of sequences R 1is L(&)-tape acceptable

if and only if there exists a Turing machine M which accepts

- 53 -

R and which uses no more than L(2) tape squares to process
inputs of length & . The set of all L-tape acceptable sets

is denoted by C: .

For tape bounded computations it can easily be shown that

gimulation costs only a constant times more, thus
S[n,2] < c(n)? + c(n)
and parallelism is free, that is

P[n,L(R)] < L(2) (provided L(R) can be computed
on L(R) tape).

Thus for tape bounded computations we get the following result.

Theorem 5.4: If L(R) 1is computable on L(&)-tape then

. 0(R) _ T T
lim 712y = O oG L

implies that C

Thus, *we see the structure of this result reflects the fact
that simulation is cheap and parallelism is free for tape-

bounded computations.

- 54 -

VI. Naming of Complexity Classes

In this section we study two related problems. The first
problem arises naturally when we look at some well-known sub-
classes of the recursive functions, like the primitive recursive
functions, and try to locate them among the complexity classes
of a given measure. Usually these subelasses of the recursive
functions are defined by the structure of their algorithms
and it is quite reassuring that they fit in naturally among
the complexity classes. We show in fact, as an application

of the Union Theorem, that for many complexity measures ¢
there exist recursive t such that Ci is exactly the set

of primitive recursive functions.
The second problem of this section arises when we ask
for '"good" ways of naming complexity classes. Recall that
the Gap Theorem asserted that in any measure for any recursive

r there exists a recursive t such that Ct = Crot . Thus

we can construct functions which '"name" the same complexity class
but which are as far apart as we wish. This seems to imply

that we have chosen improper functions to name the complexity
classes. It turns out that this is the case and that we can

do much better. We cannot always name all complexity classes
with the step-counting functions of the measure but we do show
that there exists a measured set of functions which names all

complexity classes.

P~
H

- 55 -

First we show that the union of any recursively enumerable
hierarchy of complexity classes (sequence of increasing complexity

classes) is itself a complexity class. Let {fili = 1,2,...}

be a recursively enumerable set of functions such that for

each i and n ,

fi(n) < f (n) .

i+l

It suffices to show that there exists a recursive function

which is greater than fi(n) for each i and almost all n

but is infinitely often less than each step counting function

which is greater than fi(n) for each 1 and almost all n

Then the complexity class defined by the function will be

uc .
i fi

Clearly the function t(n) = fn(n) is greater than fi(n)

for each i and almost all n . However, there may exist a

¢j for which

(1) Qj(n) < t(n) for almost all n and

(2) for each i and almost all n , Qj(n) > fi(n) .

t f

Thus ¢j is in C but not in the union of C . The way
i

to avoid this difficulty is to guess for each j that some

fi majorizes Qj . If we detect that for some n ,

3

- 56 -

¢.(n) > fi (n) , then we assign a value to t(n) which is less

3 3

than &,(n) and guess that some larger fi majorizes @j(n)

3

If ¢j is in U Cf , eventually we will find an f majorizing
i i
Qj and t will be greater than Qj almost everywhere. On the

other hand, if ¢j is not in the union, then t will be less
than Qj infinitely often and thus ¢j will not be in Ct . We

formalize this intuitive idea in the proof of the Union Theorem.

Theorem 6.1 (Union Theorem): Let {fili =1,2,...} be a recur-

sively enumerable set of functions such that for each i and

n , fi(n) < f (n) . Then there exists a function t(n)

i+l

such that C, = U C
t g

Proof: Construct t such that

1) for each i , t(n) > fi(n) a.c.

2) 1if for each j , @i(n) > f.(n) i.0., then t(n) < @i(n) i.o.

3

In the construction of t we will maintain a list of indices

11,12,13,... The list will be repeatedly updated and at the

n-th step when we computa t(n) the interpretation is as

follows: ij = k means that currently we are guessing that
fk > ¢j almost everywhere. To compute t(n) we check if all
our guesses are correct and if this is so then we set t(n) = fn(n)

and enter an additional guess that @n g_fn almost everywhere

——

- 57 -

by setting in = n ., The checking of our guesses proceeds

as follows: we start with the smallest k such that k = ij R

and determine whether £,(n) > ¢,(n) , if this condition is

3

satisfied for all k , then we set t(n) = fn(n) and enter a

new guess that fn > Qn a.e. by setting in = n , On the

(n) ,

other hand, if one of our guesses is wrong, fk(n) < 9

3

then we set t(n) = fk(n) and change our guess to

Qj L f a.e. by setting ij = n ., In this case we also add the

new guess in = n and repeat the process for n =1 + 1 .

This process is summarized more formally below:

Construction of t :

Initially ij is undefined for each j , i.e. the list

is empty. Set n =1 . Go to step =n .,
Step n: Let k be the smallest integer such that there exists a

j for which the j-th item on the list is k (i,e, ij =k)

and f, (n) < o,(n) . If more than one such j exists, select

i
i J
the smallest. Define t(n) = fi (n) and set ij = n and
]
n=n+1. Go to step n . If no such j exists define

t(n) = fn(n) . Set in = n and set n =n + 1 . Go to step n

Proof that C, = U C
i

(1) ¢g in U Cf implies that there exists an i such that
i i

PR Y

RS

¢ in C and thercefore

But t > f almost everywhere since eventually for each j ,

i

i will take on a value greater than i or 1 is such that

3 3

£, (n) majorizes Qj(n) . From this point on t > f
3

Therefore ¢g € Ct .

i .

(2) ¢g € Ct implies that @g <t a.e, and thus there exists

an f such that f, > ¢ a.e. , else infinitely often 1
k k - g g

would be the smallest number on the list such that f < ¢

i
g g
and t would infinitely often be less than fi , a contradic-
g
tion. But g in C implies that g in U C , 28 was to
fy 1ty

be shown.

Consider now the primitive recursive functions and the
complexity measure which counts the steps of a single tape
Turing machine. We claim that g primitive recursive implies

there exists a primitive recursive t such that g 1is in Ct .

The reason for this is that the successor function, the zero
function and projection function are in a complexity class
determined by a p.r. function; the recursive function bounding
the complexity of composition and recursion is p.r, and the

class of p.r. functions is closed under composition,

- 59 -

We further claim that any complexity class determined by
a p.r. function contains only p.r. functions. The reason for
this is that primitive recursion is sufficient to simulate 2a
Turing machine for 2 primitive recursive number of steps.

Note that we need only show that there exists a recursively
enumerable sequence of primitive recursive functions such that
every p.r. function is majorized in order to show that there is
a time complexity class consisting of precisely the p,r. func-

tions. If B1s8gs e is such a sequence, then f_,f

1°72°°

where

fi(n) = max {gl(n),gz(n),...,gi(n)}

is a sequence satisfying the Union Theorem. The desired result
follows immediately and we state is as a corollary of the Union

Theoren.

Corollary: There exists a recursive function t such that

the set of functions computable on a one-tape Turing machine

in the time bound t 1s exactly the set of primitive recursive
functions. The samec result holds for many-tape time-bounded

Turing machines as well as for tape-bounded Turing machines,

Note that for any measure which is related by p.r. func-
tion to the number of steps on a single-tape Turing machine,
the p.r. functions form a complexity class, Another interes-

ting observation is that the complexity class consisting of

- 60 -

precisely the primitive recursive functions cannot be named by
a primitive recursive function, For if it were named by a p.r.
t(n) , then t(n) would lie in some level of the Grzegorczyk

hierarchy and thus Ct would not contain higher levels, This

suggests that the function naming the complexity class is very
compliecated.

Furthermore, we saw from the Gap Theorem that the same
complexity class can be named by radically different functions.
Namely, in any measure for any recursive function r we can

construct a recursive function t such that Ct = Cr°t . In

all these cases the functions turn out to be very complicated
in that their complexity differs widely from their size. This
leads us to the problem of trying to name all complexity classes
with functions which are not too complex.

The above observations lead us to the problem of finding
a recursively enumerable set of functions which name all
complexity classes of a measure and have the property that
their complexity is recursively bounded by their size, that
is an honest sct of functions, The next result. the Naming
Theorem, assures that this is always possible in that all
complexity classes can be named by a measured set, Qur strategy

consists of picking for every recursive ¢ a ¢ in a

t t'

measured set so that C¢ = C¢t' . Setting ¢t’ = max (@t,,¢t)

+
[

insurcs that ¢t‘ is honest, However, it may be the case that

for some 1 , ¢i is a member of C¢ but not a member of
t!

e

[

- 61 -

C To resolve this difficulty ¢t' can be decreased below

¢,

@i(n) for infinitely many n . The values of n are selected
so that @t.(n) is also reduced to keep the function honest,

We must insure in decreasing ¢t,(n) below ¢i(n) that ¢ _,

t

does not infinitely often dip below some Qj which is almost

everywhere less than ¢t . Otherwise ©¢ is a member of C

3 6,

but not a member of C¢ . The next theorem is proved by
t‘l

formalizing the above ideas.

Theorem 6.2: For cach measure ¢ there exists a measured set

naming every complexity class.

Proof: We must show that there exist an r(n) such that for

each ¢t we can construct ¢t' with

1) r(n,¢t,(n)) > Qt,(n) a.e. and

2) C = C (i.e, o, < ¢ a.e. <=> ¢, < ¢, 2a.e.)

e! 1 t

Two lists are used in the construction of ¢ . List 1

t'

contains functions ¢i for wvhich we discover there exists

an n such that

9.(n) < @, () < ¢, (n)

The function ¢i is removed from this list when we assign

- 62 -

b1 (@) < 0, (m)

for some m . At stage k List 2 will contain each ¢j s 3 <k,

which is not on List 1 and thus will contain e=zch ¢j for which

¢, (m) < ¢, (m)

and for which we sect

6 (o (@) < o (m)

3

in removing some i from list 1 .
For k = 1,2,3,... perform the following computation.
Place k on list 2 with priority k (priority 1 will be highest,

2 next, and so on.)

Test to determine if @i(n)‘> t(n)

For each 1 < k and ecach =n < k such that @t(n) <1
compute ¢t(n) unless computed for a smaller value of k .

Place i on list 1 if not already on list 1 and assign

priority i (remove from list 2 if on 1list 2) 1if @i(n) > ¢t(n)

Try to force ¢t' below some 1 with high priority index on

list 1
Let 0d(k) < k be a function which takes on each integer

infinitely often. Let m = o(k) . If ¢t,(m) is already

defined go to stage k + 1 . Otherwise find 1 of highest

priority on list 1 such that no index on list 2 of higher

- 63 -

priority actually takes as many steps on input m as ¢i .

If an i is found, remove i from list 1 and place on list 2
with priority k . Go to stage k + 1 . However, if attempt
to find either 1 requires more than k steps, go to stage

k + 1, or (2) requires more than @t , sct ¢t' = max {@t,¢t}

and go to stage k + 1 .

To see that C = C consider:

¢t ¢t'

1) ¢i in C but not in C¢)
t t'

In this case

®,(n) < ¢, (n) a.c. and ¢, (n) > ¢tq(n) i.0,

The index i can bc placed on list 1 at most a finite number

of times (only once for zach n such that @i(n) > ¢t n)).

Eventually, each index both on list 1 and on 1list 2 of higher
priority which will ever be removed will be removed, Then i
will be removed from list 1 unless there always exists a higher
priority index j on list 2 which takes longer to compute.

If such an index always exists, ¢ cannot dip below Qj

t'
and hence infinitely often cannot dip below ¢i since

o, < o

i If no higher priority index on list 2 takes longer

3

to compute, then 1 gets removed from list 1 and is placed
on list 2. Eventually all higher priority indices on list 1

which will ever be removed are removed and then ¢t cannot

dip below Qi . Thus ¢t' > @i a,e, ; a contradiction.

- 64 -

2) ¢i in C¢ but not in Cqb
t

In this case

@i(n) < ¢t?(n) a,e. and @i(n) > ¢t(n) i,o,

Thus index i 1is on list 1 for infinitely many steps., Either
i is infinitely often removed from list 1 (in which case

¢t' < @i(n) i.o, ; a contradiction) or i remains on list 1

forevermore. Eventually, all indices on list 1 of priority
higher than i which will ever be rcmoved are removed., Simi-
larly any index on list 2 of higher priority which will ever

be removed will have been removcd. Then @i < ¢t forevermore

(contradicting @i > ¢t i.o.) since some index on list 2

of higher priority which is never removed from list 2 takes more

steps.

To sece that ¢t' is honest, if ¢t,(h) is assigned a

value because more than @t steps are needed, then

¢t,(n) = @t(n) , otherwise ¢t' is indcpendent of ¢t .

.

- -

VIII. Size of Machines

We conclude the study of computational complexity by
establishing some relations between the size of algorithms or
machines and their efficiency. Just as we abstracted the
notion of complexity of an algorithm we can abstract the notion
of the size of an algorithm. What we have in mind is to cap-
ture the notion of how complicated it is to describe an algorithm.
The size of a computer program might be measured by the number
of statements and the size of a Turing machine by the state-
tape symbol product.

Definition. Let s be a reccursive mapping of integers into

integers. We say that s 1is a measure of the size of machines

for an admiesible enumeratién of all partial recursive functions
¢1’¢2’¢3’°" , provided that
1) for each j there exist finitely many indices i such
that s(i) = j ;

2) there exists a recursive function giving the size of

each algorithm; and

3) there exists a recursive function giving the number

of algorithms of each size.
Consider representing algorithms by strings of symbols
from some finite alphabet and let the size of the algorithm
be the number of symbols. The first axiom captures the fact
that there are a finite number of strings of symbols of any
given length. The second axiom corresponds to counting the
number of symbols in a string and the third axiom captures the

notion that we can check the format of a string of symbols to

- 66 -

determine if it represents an algorithm, Thus the number of
syntactically correct strings of any given length can be com-
puted. The three axioms are equivalent to an cffective enumera-
tion of algorithms in order of increasing size (among represen-
tations of the same size, order is unimportant).

It is easily shown that all measures of size are recur-

sively related.

Theorem 7.1: Let s and § be two measures of size. There

exists a recursive function g such'that
g(s(i)) > §(i) and g(8(1)) >» s(1)

for all 1

Proof: Let

g(m) = max {s(i),8(i)}
j€s,

where
Sp = {i]either s(i) < m or §(i) < m} .

Since Sm is a finite set for each m and since s and &8 are

recursive, g 1s a recursive function. Clearly
g(s(1)) > 8(i) and g(8(i)) > s(i)

for all i

r-— rm— ™

o

- 67 -

The reason for considering size of algorithms is to study
the economy of various formalisms for representing algorithmic
processes. In writing computer programs for functions which
arise in practical situations one can dispense with conditional
transfer statements and write a program where the flow of execu-
tion is determined by a very simple nested loop structure.
Furthermore, the running time does not differ much from that
of an arbitrary program, This raises the question.as to why
use conditional transfers at all. The answer lies in efficiency
of representation. As an example, compare the size of the repre-
sentation of a primitive recursive function using a primitive
recursive schema versus the rcecpresentation by means of a Turing
machine which computes the function., Given an arbitrary recur-
sive function f , we can exhibit a primitive recursive ¢
such that the minimum number of symbols in any primitive recur-
sive schema for ¢ is larger than f(m) where m 1is the number
of symbols used to describe a certain Turing machine computing
¢ .

To obtain the result we first prove that in any infinite

sequence of algorithms there are inefficient representations.

Theorem 7.2: Let g be a recursive function with infinite

range (g <cnumerates indices of an infinitc sequence of al-
gorithms). Let f be a recursive function, There exist 1

and j such that

D45 = 4)

2) £(s(i)) < s(g(3)) .

- 68 -

NOTE: The intuitive idea bchind the theorem should be trans-
parent. Since there are a finite number of algorithms of any
given size, it follows that in any infinite r,e. sequence of

algorithms, there 1s an infinite r.e. sequence where the size
of algorithms grows as rapidly as we like, Let g enumerate

the rapidly growing subsequence. Given k , ¢g(k)(n) can be

computed by a fixed size program. Namely

¢(k9n) = ¢g(k)(n) .

Thus, the size of programs to compute ¢g(k) need only grow

at the rate needed to compute k at the same time the corres-
ponding programs on the r.e, list grow very rapidly and the
difference in the length of the two representations becomes

arbitrarily large.

Proof: Since size reduction is measure independent (i.e, if

there is arbitrary size reduction in one measure, then there
is arbitrary size reduction in all measures) we need only prove

the theorem for the case where s(i) 1is the state symbol

product of the i-th Turing machine. Without loss of generality,

assume

s(g(n+l)) > £(s(g(n)))

(Since there exist only a finite number of machines of any
sizc, simply delete machines from the sequence determined by

g until a large enough machine comes along.) Consider the

A

o———

- 69 -

algorithm which writes k on its tape, computes g(k)

%1 ()
and then computes ¢g(k) . The size of 1i(k) 4is a constant

Plus k (i.e. size of Turing machine computing g plus size

of universal machine to sinmulate ¢g plus states to store k .)
Now ¢i(k) = ¢g(k) . Increasing k by 1 increases size of

i(k) by 1 and g(k) by f . Thus, for sufficiently large k
f(s(i(k))) < s(g(k)) .
Let j = k and 1 = i(k) to complete the proof.

As a consequence of Theorem 7.2, there exists a primitive
recursive function whose smallest primitive recursive schema
is much larger than a general recursive algorithm for computing
the function. Each primitive recursive function has at least
one smallest primitive recursive definition, The smallest
definitions are recursively enumerable. (First enumerate the
smallest scheme. Start evaluating the function computed by
the 1i-th schema on input =n for larger and larger i and
n . Enumerate a schema whehever it is discovered that it com-
putes a function which differs from all functions of smaller

schema.) Let g enumerate the smallest schema. Let

f(n) = n2 and applying Theorem 7.2 we get a primitive recursive
function ¢ whose smallest primitive recursive schema has the
square of the number of symbols of some general recursive al-
gorithm for ¢ . Note that we could have selected any r.e.
class of recursive functions instead of the primitive recursive

functions and obtained the same result.

=

VIII. Historical Notes

One can detect interest in the difficulty of computations
in much of mathematics where we can find algorithms defined,
analyzed and compared for their efficiency. On the other
hand, hardly any of this constituted a systematic attempt to
develop a theory of computational complexity which would study
the quantitative problems in computing, The complexity problems
were originally not well-defined but even during the rapid devel-
opment of constructive mathematics in the first part of this
century, they were not viewed as a separate problem area,
During this time several classifications of subclasses of
recursive functions were defined and investigated but the main
interest was in uniformly constructing larger and larger subsets
of the recursive functions rather than the study of the intrinsic
computational complexity of functions. The emergence of elec-
tronic computing and the general developments of computer
science no doubt emphasized the need for a quantitative theory
of computing and recursive function theory provided the formalism
and initial models for this theory.

The first systematic attempts to define complexity measures
for all computable functions and to start the development of
a theory of computational complexity were initiated by Rabin
[2], Hartmanis and Stearns [3] and Cobham [4]. Rabin's unpub-
liéhed report, the Hartmanis and Stearns paper, and Cobham's

conference paper clearly stated the importance of this subject

- 71

and derived enough results to be considered a "call to arms"
for computational complexity and named the field as well,

The general axiomatic approach to computational complexity
used in this overview was formulated by Blum [5] who also derived
most of the results described in Section II. The Speed-Up
Theorem is also due to Blum though the proof of this result
given in Section III is new. It differs from the original proof
in that no use is made of the Recursion Theorem which (we
believe) obscured the simplicity of the central diagonal process.
The observation expressed in Theorem 4.1 is new and is used
further in Section V. The¢ Gap Theorem is due to Borodin [6]
and it shows that Theorem 4,1 cannot be improved. The Gap
Theorem thus gives a beautiful justification for Blum's use of
measured sets of functions which enter Theorems 4,3 and 4,4.

The recursive enumerability of complexity classes was studied
by Hartmanis and Stearns [3] and Young [7]. The proof that
in some measures there exist complexity classes which are not
recursively enumerable is due to F. Lewis [8] and Robertson
and Landweber [9].

The material about simulation and parallelism of Section
V is new and the results about time-bounded and tape-bounded
complexity classes in this section are due to Hennie and Stearns
[1], Hartmanis and Stearns [3], Hartmanis [10], and Stearns,
Hartmanis and Lewis [11].

The Union Theorem and the Naming Theorem in Section VI

are due to McCreight and Meyer [12]. The result that the Naming

oY

.
{

[

- 72 -

Theorem still leaves arbitrarily large downward gaps 1s due

to Constable [13]. The
derived by Blum [14],.
The development of
been influenced by many
explicitly used in this

short bibliography.

material on the size of machines was

computational complexity has further
papers and results which have not been

section, Some of them are listed in our

- 73 -

IX. References and Bibliography

A. Referecnces:

[1] Hennie, F.C,, and R.E. Stearns, "Two-tape simulation of
multi-tape Turing machines,” JACM 13 (1966), 533-546.

[2] Rabin, M.0., "Degrees of difficulty of computing a func-
tion and a partial ordering of recursive sets,'" Technical
Report 2, Hebrew University, Jerusalem, Israel, 1960.

[3] Hartmanis, J., and R,E. Stearns, " On the computational

complexity of algorithms," Transactions of the American

Mathematical Society 117 (1965), 285-306.

[4] Cobham, A., "The intrinsic computational difficulty of
functions,;" Procecedings of the 1964 International Congress
for Logic, Methodology, and Philosophy of Science, ed.

Y. Bar-Hillel, North-Holland, Amsterdam, 24-30, 1964,

[5] Blum, M., "A machine-independent thcory of the complexity
of recursive functions," JACM 14 (1%967), 322-336.

[6] Borodin, A., "Complexity classes of recursive functions
and the existence of complexity gaps," Conference Record
of ACM Symposium on Theory of Computing, 67-78, 1969.

(7] Young, P.R., "Toward a theory of cnumerations,'" JACM 16
(1969), 328-348,

[8] Lewis, Forbes, "Unsolvability considerations in computa-
tional complexity," Second Annual ACM Symposium on Theory
of Computing, 1970.

[9] Robertson, E.L., and H.H. Landweber, " On recursive pro-
perties of complexity classes," Second Annual ACM Symposium
on Theory of Computing, 1970.

[10] Hartmanis, J., "Computational complexity of one-tape
Turing machine computations," JACM 15 (1968), 325-339,

[11] Stearns, R.E., J. Eartmanis, and P.M. Lewis II,"Hierarchies
of memory limited computations,'" 1965 IEEE Conference
Record on Switching Circuit Theory and Logical Design,
179-190, 1965,

[12] McCreight, E.M., and A.R. Meyer, 'Classes of computable
functions defined by bounds on computation: preliminary
report,"” Conference Record of ACM Symposium on Theory
of Computing, 79-88, 1969.

i

o

[13]

[14]

- 74 -

Constable, R.L., "Upward and downward diagonalization
over axiomatic complexity classes," Technical Report
No. 69-32, Department of Computer Science, Cornell Uni-
versity, 1969.

Blum, M., "On the size of machines," Information and
Control 11 (1967), 257-265.

r“"“‘?

B. Bibliography:

Axt, P., "Enumeration and the Grzegorczyk hierarchy,'" Zeitschrift
fur Mathematische Logik und Grundlagen der Mathematik 9
(1963), 53-65.

Becvar, J., "Real-time and complexity problems in automata
theory," Kybernetika 1 (1965), 475-497.

Blum., M., "On effective procedures for speediag up alporithms,"
Conference Record of ACM Symposium om Theory of Computing,
43-53, 1969.

Borodin, A., R.L. Constable, and J.E. Hopcroft, '"Dense and non-
dense families of complexity classes," IEEE Conference
Record of 1969 Tenth Annual Symposium on Switching and
Automata Theory, 7-19, 1969.

Cobham, A., "On the Hartmanis-Stearns problem for a class of
tag machines," IEEE Conferencc Record of 1968 Ninth
Annual Symposium on Switching and Automata Theory, 51-60,
1968.

Constable, R.L., "The opcrator gap,'" IEEE Conference Record of
1969 Tenth Annual Symposium on Switching and Automata
Theory, 20-26, 1969.

Fischer, P.C., "Multi-tape and infinite-state automata - a
survey,”" CACM 8 (1965), 799-805.

Fischer, P.C., " The reduction of tape reversals for off-line
one-tape Turing machines," Journal of Computer and System
Sciences 2 (1968), 136-147,

Fischer, P.C., J. Hartmanis and M. Blum, "Tape reversal com-
plexity hierarchies," IEEE Conference Record of the 1968
Ninth Annual Symposium on Switching and Automata Theory,
373-382, 1968.

Grzegorczyk, A., "Some classes of recursive functions," Rozprawy
Matematyczne 4 (1953), Warsaw, 1-45.

Hartmanis, J., "Tape reversal bounded Turing machine computa=-
tions," Journal of Computer and System Sciences 2 (1968),
117-135.

Hennie, F.C., "One-tape, off-line Turing machine computations,"
Information and Control 8 (1965), 553-578.

Hennie, F.C., "Crossing sequences and off-line Turing machine
computations,'" 1965 IEEE Conference Record on Switching
Circuit Theory and Logical Design, 168-172, 1965.

- 76 -

Hopcroft, J.E., and J.D. Ullman, ""Relation between time and
tape complexities,”" JACM 15 (1968), 414-427,

Hopcroft, J.E., and J.D. Ullman, "Some results on tape bounded
Turing machines,”™ JACM 16 (1969), 168-188,

Karp, R., "Some bounds on the storage requirements of sequential
machines and Turing machines," JACM 14 (1967), 478-489.

Lewis, II, P.M., R.E. Stecarns, and J. Hartmanis, "Memory bounds
for recognition of context-free and context-sensitive
languages,” 1965 IEEE Conference Record on Switching
Circuit Theory and Logical Design, 191-202, 1965.

McCreight, E.M., '"Classes of computable functions defined by
bounds on computation,'" Doctoral Thesis, Computer Science
Department, Carnegie-Mecllon University, Pittsburgh, Pa,,
1969.

Meyer, A.R., and D.M. Ritchie, '"The complexity of loop programs,”
Proceedings of 22nd National Conference, Association for
Computing Machinery, 465-469, 1967.

Rabin, M.0., "Real time computation," Israel Journal of Mathe-
matice 1 (1964), 203-211.

Ritchie, R.W., "Classes of predictably computable functions,"
Transactions of the American Mathematical Society 106
(1963), 139-173.

Savitch, W.J., "Deterministic simulation of non-deterministic
Turing machines (detailed abstract)," Conference Record
of the ACM Symposium on Theory of Computing, 247-248, 1969.

Trakhtenbrot, B.A.,, "Turing computations with logorithmic delay,"

Algebra i Logika 3,4 (1964), 33-48 (in Russian).

Yamada, H., "Real-time computation and recursive functions not
real-time computable,' IRE Transactions on Electronic
Computers EC-11 (1962), 753-760.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif

