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ABSTRACT. A recursive relation is developed for the determinant of a penta-

diegonel matrix S which satisfies s, ; 40 for |i-j|l =1. When
J

S is symmetric, one has a six-term recursive relation. An example is

given to illustrate its use in the computation of eigenvalues.
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1. Introduction.

Pentadiagonal matrices arise frequently in numericel analysis. They
are usually encountered in approximation to fourth derivatives, high order
approximations to second derivatives, and as intermediate steps in Givens'
and Householder's method for determining eigenvalues. It seems relevant,
therefore, to investigate the structure of the determinant of such a matrix
with the hope of developing a good method for determining the eigenvalues.

For this task we let
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2. Properties of the Matrix.
Definition. The product
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il,i ,...,ik distinet, is called a cycle of length k. The cycle is non-

2
zero if the product (2) is non-zero.
Lemma 1. In (1) a non-zero cycle of length k, 3 <k <n, can occur only
in a principal submatrix with a least k consecutive indices.
Proof: If suffices to show that & non-zero k-cycle cennot occur in the
principal submatrix

S[i,i+1,...,1i+3,1i+3+2,1+j+3,...,1i+k] ,
i.e. the matrix containing the indicated rows and columns. It is clear

that any cycle must contain s But now, to return to the index

i+j,i+j+2 °
i we cannot use the indices i+j or i+j+2 . From the band structure

of S it is clear that no other indices are available to return to i .

Lemma 2. In a principal submatrix of S consisting of k consecutive
indices, k > j , there are exactly two non-zero k-cycles.

Proof: Clearly, it suffices to show this for the principal submatrix
sl3,2,...,k] .

At the index i, 1<1i < k-2, we can proceed to either i+l or
i+2 . If i+l 1is chosen, then we must return by the index i+2 . Then
we have no choice except to proceed to i+3 . If i+2 is chosen, ve
must reserve i+l for the return. Hence, we must proceed to i+4 .

Starting at i=1 by either s or s we have only the two
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We will denote (3) by Cy(l,k) and (4) by the suggestive notation
C;(l,k) . This notation is prompted by the fact that transposing the
indices of the elements of the product Cy(l,k) gives the cycle C§(l,k) .

For notational convenience let us define the quantities

a, = s (i=1,2,...,n)
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We see that these are just the one-, two-, and three-cycles of S . By
assumption bi £0 (i=1,2,...,n-1) .

The key to the recursive relation lies in the fact that all cycles
of length greater than three can be written in terms of the quantities
in (5). This fact is proved in the following lemme.

Lemma 3. For the matrix S defined in (1) the following formulas are

valid for m= 2,3,...,[%n] ,
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Proof: We prove this lemma by induction on m . For m=2 , we can write

t

Cy(1,4) = 5. ,8,,8), 8252 = (5)0505591) (5o 83%30) &%
’ = =

1272445753731 S23°30 v,



and

(s. 8.8 5. )(s _s_.s_,) c
127247437317 V757537 3k 3
cy(1,5) =s_.s,,8 _S_S__ = = Cy(1,4)=
1272474575331 s3hsh3 b3

cctc

1273

b2b3

Hence, (6) is true for m=1 . Assume (6) is true for all m < k-1 .
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Yence, (€) is true for m=k , and therefore, true for all m=2,3,...[3n] .
Clearly, we also have the formulas
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It is also clear that the index 1 can be replaced by an arbitrary number
i in the expressions (6) and (7).

3. The Recursive Relation.
;

Let us denote Sfl 2 .. k\

\} 2 ... k} vy dk . Using a special case of a

determinant formula of Maybee[1], we have that
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where ¢, \;(n,k) 1is the sum of all cycles of length k containing the

index n .



But, from the previous lemmas we know that there are exactly two

non-zero cycles of length k with index n , hence
o t
l_,gg(n,k) = Cy(n-k+L,K) + Cy(n-k+1,k)

Let us write out the sum in (8) for n even, i.e. n=gm .
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Denote the expression multiplying cn by € and the expression

by e . Writing out the same sum for n % 2m+

t
multiplying cn_2 n-3

we get

1,
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The expressions multiplying cn 1 and cn 1 respectively, are
ct
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These formules hold in general. Considering the expansion (8) for n=2,

we see that we must have

The minor in (8) multiplying Bn , can be written as

1?....n-3n-l>__ i
S < 12... n-3n-1/" an-ldn-3 ﬁn-3dn-’+

We can now state the algorithm:

Set 4 1 =0,d =1,d =a ,d. =8a8-b ,€_ =e_ =0,

and compute
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for k=3’h,coo,n .

t
If S is cyclicly symmetric, i.e. ci = ci (i = 1,2,...n-2) , then

the recursive relation can be simplified greatly. For, adding

bk - dk-l to dk and expanding, we eliminate the term containing ek~3 .

We arrive at the 6-term recursive relation
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If S is symmetric, then it is cyclicly symmetric, so (11) holds.
Also, if S 1is tridiagonal, we have

B =c_=c¢ =0 (k = 1,2,...,n-2) ,

end the algorithm becomes the well-known three-term relation for computing
the determinant of a tridiagonal matrix.

For S not cyclicly symmetric, a T-term recursive relation mey be
derived which eliminates the factors ek_3 and ek_.3 from (10). It is
very complicated and vill not be given here.

4, An Example.

Consider finding the ecigenvalues of the matrix of order 25

\
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where J = tridiag {1,2,1} . The eigenvalues of J are

17t
A =2 - 2 cos ég (i =1,2,...,25) .

2
so the eigenvalues of S are just Ki . Differentiation of (11) gives a

recursive relation for the derivative of the characteristic polynomial.
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Newton's method was programmed in FORTRAN IV and using the IBM 3€0/50

~

the first 13 eigenvalues, Ki , were computed. The results were

i ;1 x‘i - ;1()( 107)
1 0.0002123 3.0
2 0.0033773 2.0
3 0.0168916 -1.0
L 0.0524811 2.0
5 0.1253387 0.0
6 0.2529873 0.0
T 0.453945k -3.0
8 0.7h62722 -1.0
9 1.1460857 -12.0
10 1.6661396 «5.0
11 2.3145628 -12.0
12 3.0938234 -11.0
13 L . 0000000 0.0

All computation was done in

6 seconds of execution time.

double precision and required about
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