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Abstract

Tiling is one of the more important transformations
for enhancing locality of reference in programs. Tiling
of perfectly-nested loop nests (which are loop nests in
which all assignment statements are contained in the
innermost loop) is well understood. In practice, most
loop nests are imperfectly-nested, so existing compilers
heuristically try to find a sequence of transformations
that convert such loop nests into perfectly-nested ones
but not always succeed. In this paper, we propose a
novel approach to tiling imperfectly-nested loop nests.
The key idea is to embed the iteration space of every
statement in the imperfectly-nested loop nest into a spe-
cial space called the product space. The set of possible
embeddings is constrained so that the resulting prod-
uct space can be legally tiled. From this set we choose
embeddings that enhance data reuse. We evaluate the
effectiveness of this approach for dense numerical linear
algebra benchmarks, relaxation codes, and the tomcatv
code from the SPEC benchmarks. No other single ap-
proach in the literature can tile all these codes auto-
matically.

1 Background and Previous Work

The memory systems of computers are organized as a
hierarchy in which the latency of memory accesses in-
creases by roughly an order of magnitude from one level
of the hierarchy to the next. Therefore, a program runs
well only if it exhibits enough locality of reference for
most of its data accesses to be satisfied by the faster lev-
els of the memory hierarchy. Unfortunately, programs
produced by straight-forward coding of most algorithms
do not exhibit sufficient locality of reference. The nu-
merical linear algebra community has addressed this
problem by writing libraries of carefully hand-crafted
programs such as the Basic Linear Algebra Subroutines
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(BLAS) [22] and LAPACK (3] for algorithms of interest
to their community. However, these libraries are use-
ful only when linear systems solvers or eigensolvers are
needed, so they cannot be used when explicit methods
are used to solve partial differential equations (pde’s),
for example.

The restructuring compiler community has explored
a more general-purpose approach in which program lo-
cality is enhanced through restructuring by a compiler
which does not have any knowledge of the algorithms
being implemented by these programs. In principle,
such technology can be brought to bear on any program
without restriction to problem domain. In practice,
most of the work in this area has focused on perfectly-
nested loop nests that manipulate arrays. A perfectly-
nested loop nest is a set of loops in which all assignment
statements are contained in the innermost loop.

Highlights of the restructuring technology for
perfectly-nested loop nests are the following. A loop
is said to carry algorithmic reuse if the same memory
location is accessed by two or more iterations of that
loop for fixed outer loop iterations. Permuting a reuse-
carrying loop into the innermost position in the loop
nest allows us to exploit the reuse. In many programs,
there are a number of loops that carry algorithmic reuse
— this can be addressed by tiling. Tiling interleaves iter-
ations of the tiled loops, thereby enabling exploitation
of algorithmic reuse in all the tiled loops rather than
in just the innermost one [28]. Sophisticated heuristics
have been proposed for choosing tile sizes [5, 8,9, 15,21].

Tiling changes the order in which loop iterations are
performed, so it is not always legal to tile a loop nest.
If tiling is not legal, it may be possible to perform lin-
ear loop transformations like skewing and reversal to
enable tiling [2,4, 16, 23,26]. This technology has been
incorporated into production compilers such as the SGI
MIPSPro compiler, enabling these compilers to produce
good code for perfectly-nested loops.

In real programs though, many loop nests are
imperfectly-nested (that is, one or more assignment



statements are contained in some but not all of the loops
of the loop nest). Figure 2 shows a loop nest for solving
triangular systems with multiple right-hand sides; note
that statement S2 is not contained within the k loop, so
the loop nest is imperfectly-nested. Cholesky, LU and
QR factorizations [11] also contain imperfectly-nested
loop nests. Carr and Lehoucq [6] have shown that these
factorization codes can be tiled by a sequence of loop
transformations.

A number of approaches have been proposed for en-
hancing locality of reference in imperfectly-nested loop
nests. The simplest approach is to transform each
maximal perfectly-nested loop nest separately. In the
triangular solve code in Figure 2, the ¢ and r loops
together, and the k loop by itself form two maximal
perfectly-nested loop nests. The perfectly-nested loop
nest formed by the ¢ and r loops can be tiled by the
techniques described above, but it can be shown that
the resulting code performs poorly compared to the
code in the BLAS library which interleaves iterations
from all three loops [22].

A more aggressive approach taken in some produc-
tion compilers such as the SGI MIPSPro compiler is
to (i) convert an imperfectly-nested loop nest into a
perfectly-nested loop nest if possible by applying trans-
formations like code sinking, loop fusion and loop fis-
ston [29], and then (ii) use locality enhancement tech-
niques for the resulting maximal perfectly-nested loops.
In general, there are many ways to do this conver-
sion, and whether the resulting code could be tiled de-
pends on how this conversion is done [13]. Sophisticated
heuristics to guide this process were implemented by
Wolf et al [27] in the SGI MIPSPro compiler, but our
experiments show that the performance of the resulting
code does not approach that of hand-written code in
the LAPACK library [14].

These difficulties led Kodukula et al [13] to propose a
a technique called data-shackling. Instead of tiling loop
nests, the compiler blocks data arrays and chooses an
order in which these blocks are brought into the cache;
code is scheduled so that all statements that touch a
given block of data are executed when that block is
brought into the cache, if that is legal. However, this
is not legal for relaxation codes like Jacobi or Gauss-
Seidel which make multiple traversals over data arrays.
A related approach, iteration space slicing was devel-
oped by Pugh and Rosser [20], but it does not address
tiling.

Recently, Song and Li [24] have proposed techniques
for tiling codes like Jacobi. These techniques tackle
programs with a specific structure consisting of an
outermost time-step loop that contains a sequence of
perfectly-nested loop nests. Their algorithm identifies
one loop from each loop nest, fuses these together and

F 1
A} \ al o Code
— —
Ly gen
St
/ 2
E

b

Transformed
Product Space

Source code Statement
Iteration Spaces

Product Space Output code

Figure 1: Tiling Imperfectly-nested Loop Nests

skews them with respect to the time-step loop. This
transformation strategy is not applicable to codes such
as matrix factorizations.

Chatterjee et al are exploring the use of space-filling
curves to enhance locality in numerical codes [7]. Their
goal is to use this idea to write libraries by hand, and
there is no effort to generate these blocked codes auto-
matically from high-level algorithms.

In this paper, we propose an approach for automatic
tiling of imperfectly-nested loop nests that generalizes
the approach used for perfectly-nested loop nests. Our
strategy is shown in Figure 1. Each statement Si in an
imperfectly-nested loop nest is first assigned a unique
iteration space S; called the statement iteration space.
These statement iteration spaces are embedded into a
large iteration space called the product space which is
simply the Cartesian product of the individual state-
ment iteration spaces. Embeddings generalize transfor-
mations like code-sinking and loop fusion that convert
imperfectly-nested loop nests into perfectly-nested ones,
and are specified by embedding functions F; as shown in
Figure 1. The product space is further transformed by
unimodular transformations to produce a loop nest that
can be tiled, if possible. The conditions under which a
tilable loop nest can be produced are expressed as ma-
trix inequalities involving the embedding functions F;
and the unimodular transformation T of the product
space. In Section 3, we show how embedding functions
can be determined for different choices of the unimodu-
lar transformation. Section 3.3 describes our algorithm
and our heuristic for picking “good” embedding func-
tions. We are implementing our approach in the SGI
MIPSPro compiler, and in Section 4, we present the em-
beddings found by our implementation and preliminary
performance results for dense numerical linear algebra
codes, relaxation codes and the tomcatv code from the
SPEC benchmarks. Finally, we discuss ongoing work in
Section 5.

The advantages of our approach are the following.
By embedding statements in the product space we ab-
stract away the syntactic structure of the code. Hence,
we do not rely on the code conforming to a particu-



for r ,N
for k 1,r-1
S1: B(r,c) = B(r,c) - L(r,k)*B(k,c)
S2: B(r,c) = B(r,c)/L(r,Tr)

Figure 2: Triangular Solve with Multiple Right-hand
Sides

lar structure. Secondly, by directly determining em-
beddings that allows us to tile the code, we avoid the
problem of searching for a sequence of transformations
allowing us to tile codes. Finally, we know of no other
single technique that is capable of tiling all the classes
of programs discussed in the paper.

2 Product Spaces and Embeddings

The kernel in Figure 2 will be our running example. Tri-
angular systems of equations of the form Lx = b where
L is a lower triangular matrix, b is a known vector and
x is the vector of unknowns arise frequently in appli-
cations. Sometimes, it is necessary to solve multiple
triangular systems that have the same co-efficient ma-
trix L. Such multiple systems can obviously be viewed
as computing a matrix X that satisfies the equation LX
= B where B is a matrix whose columns are constituted
from the right-hand sides of all the triangular systems.
The code in Figure 2 solves such multiple triangular
systems, overwriting B with the solution.

2.1 Statement lteration Spaces

We associate a distinct iteration space with each state-
ment in the loop nest, as described in Definition 1.

Definition 1 FEach statement in a loop nest has a
statement iteration space whose dimension is equal to
the number of loops that surround that statement.

We will use S1, S2, ..., Sn to name the statements
in the loop nest in syntactic order. The corresponding
statement iteration spaces will be named &7, S2, ...,
Syn. In Figure 2, the iteration space S; of statement S1
is a three-dimensional space ¢; X r1 X k1, while the iter-
ation space S» of S2 is a two-dimensional space ca X 3.

The bounds on statement iteration spaces can be
specified by integer linear inequalities. For our running
example, these bounds are the following;:

81 M Z C1 Z 1 82 ' M Z Co Z 1
N> 21 N > rn > 1
r — 1 2 kl Z 1

An instance of a statement is a point within that
statement’s iteration space.

2.2 Dependences

We show how the existence of a dependence can be for-
mulated as a set of linear inequalities.

A dependence exists from instance is of statement Ss
to instance ¢4 of statement Sd if the following conditions
are satisfied.

1. Loop bounds: Both source and destination state-
ment instances lie within the corresponding it-
eration space bounds. Since the iteration space
bounds are affine expressions of index variables, we
can represent these constraints as B %45 + by > 0
and By * ig + by > 0 for suitable matrices By, By
and vectors by, by.

2. Same array location: Both statement instances ref-
erence the same array location and at least one of
them writes to that location. Since the array ref-
erences are assumed to be affine expressions of the
loop variables, these references can be written as
Agxig+as and Ag*ig+ag. Hence the existence of
a dependence requires that Az*xis+as; = Agxig+aq.

3. Precedence order: Instance i, of statement Ss oc-
curs before instance ig4 of statement Sd in program
execution order. If commongg is a function that
returns the loop index variables of the loops com-
mon to both i, and ¢4, this condition can be written
as commongq(ig) = commongy(is) if 8d follows Ss
syntactically or commongq(ig) = commongq(iq) if
it does not, where > is the lexicographic ordering
relation.

This condition can be translated into a disjunction
of matrix inequalities of the form X *is— Xg*ig+
z > 0.

If we express the dependence constraints as a dis-
junction of conjunctions, each term in the resulting dis-
junction can be represented as a matrix inequality of
the following form.

B, 0 by
; 0 By ; bq
D|:.s :|—|—d= Ay, —Ayg |:.s:|—|— ags — Qg >0
td —As Ad ta aq — Qg
XS —Xd x

Each such matrix inequality will be called a depen-
dence class, and will be denoted by D with an appropri-
ate subscript. For our running example in Figure 2, it
is easy to show that there are two dependence classes'.
The first dependence class D; arises because statement
S1 writes to a location B(r,c) which is then read by
statement S2; similarly, the second dependence class D,
arises because statement S2 writes to location B(r,c)
which is then read by reference B(k, c) in statement S1.

IThere are other dependences, but they are redundant.



For simplicity, they are presented as sets of inequalities
rather than in matrix notation.

Dlt M Z (4] Z 1 M Z Co Z 1
N >rn 21 N 2>2rn 21
r—1 > k1 > 1
71 = T
C1 = C3
Dg: M Z C1 Z 1 M Z C2 Z 1
N >2rnn 21 N 27 21
r—1 > k1 > 1
kl = 79
C1 = C32

2.3 Product Spaces and Embedding Functions

The product space for a loop nest is the Cartesian prod-
uct of the individual statement iteration spaces of the
statements within that loop nest. The order in which
this product is formed is the syntactic order in which
the statements appear in the loop nest.

The relationship between statement iteration spaces
and the product space is specified by projection and em-
bedding functions. Suppose P = &1 X Sz... X S,,. Pro-
jection functions 7; : P — §; extract the individ-
ual statement iteration space components of a point
in the product space, and are obviously linear func-
tions. For our running example, 7 = [ I3z 0 ] and
=0 Iy |

An embedding function F; on the other hand maps
a point in statement iteration space S; to a point in
the product space. Unlike projection functions, em-
bedding functions can be chosen in many ways. In our
framework, we consider only those embedding functions
F; : §; — P that satisfy the following conditions.

Definition 2 Let Si be a statement whose statement
iteration space is S;, and let P be the product space. An
embedding function F; : S; — P must satisfy the follow-
ing conditions.

1. F; must be affine.
2. mi(F;(q)) =q for all q € S;.

The first condition is required by our use of inte-
ger linear programming techniques. We will allow sym-
bolic constants in the affine part of the embedding func-
tions. The second condition states that if point g € S;
is mapped to a point p € P, then the component in
p corresponding to S; is ¢ itself. Each F; is therefore
one-to-one, but points from two different statement it-
eration spaces may be mapped to a single point in the
product space. Affine embedding functions can be de-
composed into their linear and offset parts as follows:
Fj(ij) = Gjij + g;-

for i =1, N

for j =1, N
S1: C(i,j) =0

for k =1, N
S2: B(i,k) =0

(a) Original code

for i1 =1, N
for ji1 =1, N
for i2 =1, N
for k2 =1, N
Si: if ((12==1)&&(k2==1)) C(i1,j1) =
S2: if ((11==N)&&(j1==N)) B(i2,k2)

non
o O

(b) Transformed code

i N
il | & i»]. | N
=14 me )|
1 ks

(c) Embeddings

Figure 3: Embeddings for Loop Fission

2.3.1 Examples of Embeddings

Embeddings can be viewed as a generalization of tech-
niques like code-sinking, loop fission and fusion that
are used in current compilers such as the SGI MIPSPro
to convert imperfectly-nested loop nests into perfectly-
nested ones. Figure 3 illustrates this for loop fission.
After loop fission, all instances of statement S1 in Fig-
ure 3(a) are executed before all instances of statement
S2. It is easy to verify that this effect is achieved by
the transformed code of Figure 3(b). Intuitively, the
loop nest in this code corresponds to the product space;
the embedding functions for different statements can be
read off from the guards in this loop nest and are shown
in Figure 3(c).
Code sinking is similar and is shown in Figure 4.

2.3.2 Dimension of Product Space

The number of dimensions in the product space can be
quite large, and one might wonder if it is possible to
embed statement iteration spaces into a smaller space
without restricting program transformations. For ex-
ample, in Figure 4(b), statements in the body of the
transformed code are executed only when i2 = i1, so
it is possible to eliminate the i2 loop entirely, replac-
ing all occurrences of i2 in the body by il. Therefore,
dimension i5 of the product space is redundant, as is di-
mension js. More generally, we can state the following



for k =1, N

for i1 =1, N
for ji1 =1, N
for i2 =1, N
for j2 =1, N
for k2 = 1, N
Si: if ((12==11)&&(j2==3j1)&&(k2==1))
C(i1,j1) = 0
S2: if ((11==12)&&(j1==32))
C(i2,j2) += A(i2,k2)*B(k2,j2)
(b) Transformed code
i1 i2
; J1 ia Jo
Fl([.l])z i1 B(| j2 |)= i
)t J1 ko Jo
1 ko

(c) Embeddings

Figure 4. Embeddings for Code Sinking

result.

Theorem 1 Let P' be any space and let
{F1,Fs,...,F,} be a set of affine embedding functions
F; : S; — P' satisfying the conditions in Definition 2.
Let F;(i;) = Gji; +g;. The number of independent
dimensions of the space P' is equal to the rank of the
matriz G = [G1G2 ... G,).

In Figure 4, the rank of this matrix

10100
01010
G=|10100
01010
0 0001

is 3, which is also the number of independent dimensions
in the product space. The remaining 2 dimensions are
redundant.

Corollary 1 Let P be the product space.

1. Any space P' bigger than P has redundant dimen-
sions under any set of affine embedding functions.

2. There exist affine  embedding  functions
{F\,F,,...,F,} for which no dimension of P
is redundant.

Intuitively, Corollary 1 states that the product space
is “big enough” to model any affine transformation of
the original code. Furthermore, there are affine trans-
formations that utilize all dimensions of the product
space. For example, there are no redundant dimensions
in the product space of completely fissioned code, as
Figure 3 illustrates.

In general, therefore, it is the embeddings that de-
termine whether there are redundant dimensions in the
product space. Since we compute embeddings and
transformations simultaneously, we use the full product
space to avoid restricting transformations unnecessarily.
At the end, our code generation algorithm suppresses
redundant dimensions automatically, so there is no per-
formance penalty in the generated code from these extra
dimensions.

2.4 Transformed Product Spaces and Valid Embed-
dings

If p is the dimension of the product space, let T?*P be
a unimodular matrix. Any such matrix defines an order
in which the points of the product space are visited. We
will say a set of embeddings is valid for a given order of
traversal of the product space if this traversal respects
all dependences. More formally, we have the following
definitions.

Definition 3 The space that results from transforming
a product space P by a unimodular matrix T is called
the transformed product space under transformation T .

For a set of embedding functions {Fy, Fs, ... F,} and
a transformation matrix 7', we model execution of the
transformed code by walking the transformed product
space lexicographically and executing all statement in-
stances mapped to each point as we visit it. We say that
the pair ({F1, F»,...F,},T) defines an ezecution order
for the program. For an execution order to be legal, a
lexicographic order of traversal of the transformed prod-
uct space must satisfy all dependencies. To formulate
this condition, it is convenient to define the following
concept.

Definition 4 Let {F1, F»,... F,} be a set of embedding
functions for a program, and let TP*P be a unimodular
matriz. Let

D:D[’.S]erzo
iq

be a dependence class for this program. The difference
vector for a pair (is,iq) € D is the vector

V’D(isaid) =T [Fd(id) - Fs(is)] .

The set of difference vectors for all points in a de-
pendence class D will be called the difference vectors for
D; abusing notation, we will refer to this set as Vp.



The set of all difference vectors for all dependence
classes of a program will be called the difference vectors
of that program; we will refer to this set as V.

With these definitions, it is easy to express the con-
dition under which a lexicographic order of traversal
of the transformed product space respects all program
dependences.

Definition 5 Let TP*?P be a unimodular matriz. A set
of embedding functions {F1,Fs,...,F,} is said to be
valid for T if v > 0 for allve V.

3 Tiling

We now show how this framework can be used to tile
imperfectly-nested loop nests. The intuitive idea is
to embed all statement iteration spaces in the prod-
uct space, and then tile the product space after trans-
forming it if necessary by a unimodular transforma-
tion. Tiling is legal if the transformed product space is
fully permutable—that is, if its dimensions can be per-
muted arbitrarily without violating dependences. This
approach is a generalization of the approach used to tile
perfectly-nested loop nests [17,26]; the embedding step
is not required for perfectly-nested loop nests because
all statements have the same iteration space to begin
with.

3.1 Determining Constraints on Embeddings and
Transformations

The condition for full permutability of the transformed
product space is the following.

Lemma 1 Let {Fy, Fs,...,F,} be a set of embeddings,
and let T be a unimodular matriz. The transformed
product space is fully permutable if v > 0 for allv € V.

The proof of this result is trivial: if every entry in
every difference vector is non-negative, the space is fully
permutable, so it can be tiled. Thus our goal is to find
embeddings F; and a product space transformation T
that satisfy the condition of Lemma, 1.

Let D: D ;S + d > 0 be any dependence class.
d

For affine embedding functions, the condition v > 0 in
Lemma 1 can be written as follows:

T[ -G, Gd][jf;]w[gd—gs]zo.

The affine form of Farkas’ Lemma, lets us express the
unknown matrices T,G;,95,G4 and g4 in terms of D.

Lemma 2 (Farkas) Any affine function f(x) which is
non-negative everywhere over a polyhedron defined by
the inequalities Ax+b > 0 can be represented as follows:

flx)=Xo + AT Az 4+ AT
Ao >0,A>0

where A is a vector of length equal to the number of rows
of A. g and A are called the Farkas multipliers.

Applying Farkas’ Lemma to our dependence equa-
tions we obtain

ig
T[—Gs Gd][ld] + T[gd_gs]
= y+YTD[;3]+YTd
d
y>0,Y >0,

where the vector y and the matrix Y are the Farkas
multipliers.
Equating coefficients of is, ig on both sides, we get

T[-G, Ga] = Y'D
Tlga—gs) = y+Y'd (1)
y>0,Y >0.

The Farkas multipliers in System (1) can be elim-
inated through Fourier-Motzkin projection to give a
system of inequalities constraining the unknown em-
bedding coefficients and transformation matrix. Since
we require that all difference vector elements be non-
negative, we can apply this procedure to each dimension
of the product space separately.

Applying the above procedure to all dependence
classes results in a system of inequalities constraining
the embedding functions and transformation. A fully
permutable product space is possible if and only if that
system has a solution. The set of dimensions for which
the equations have a solution will constitute a fully per-
mutable sub-space of the product space.

3.2 Solving for Embeddings and Transformations

In System (1), T is unknown while each G; is partially
specified?. To solve such systems, we will heuristically
restrict 7' and solve the resulting linear system for ap-
propriate embeddings if they exist.

3.2.1 Example

Before describing the algorithm, we illustrate this for
the running example. The embedding functions for this
program can be written as follows:

2The embedding functions are partially fixed because of con-
dition (2) in Definition 2.
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where f{? etc. are unknown affine functions that must
be determined. Assume that T is the identity matrix.
We apply our procedure dimension by dimension to the
product space.

Consider the first dimension. We have to ensure two
conditions:

1. f5'(ca,m2) —c1 > 0 for all points in Dy, and
2. ¢1 — f5*(c2,72) > 0 for all points in D,.

Consider the first condition. Let f5*(ca,r2) =
9esC2 + groT2 + guM + gnN + g1 Applying Farkas’
Lemma, we get fs'(c2,r2) —c1 = Ao+ (M —c1) +
)\2(01 - ].) 4+ 4 )\13(01 — 02) + )\14(62 — Cl) where Ao,
..., A4 are non-negative®. Projecting the \’s out, we
find out that the coefficients of f5*(ca,72) must satisfy
the following inequalities:

gu > 0

gn = 0

9es Tt 2> 1

grotgn 2> 0

Ges +29r Y9 +29g8n+91 > 1

Similarly, for the second condition, this procedure
determines the following constraints:

gu < 0

gn < 0

geo tgu <1

grs tgn <0

Jeo + 9ro + 9 +29g8n+ 91 < 1

The conjunction of these inequalities gives the solu-
tion f5'(c2,r2) = ca.

Applying the same procedure to the other dimen-
sions of the product space, we obtain the following set
of legal embeddings:

5 (c2,m2) = 2

5 (ca,r2) € {ra,r2+1}

5(cy,ry) € {ro,ra—1}
ff2(61,7"1,k1) =

flr2(C1,T1,k1) S {T1,T1—1,k1,k1+1}.

3There are 14 inequalities that define D; in Section 2.2, so
there are 14 Farkas multipliers Ay ... A14.

In this case, we get more than one solution, and any
one of them can be used to obtain a fully permutable
product space.

3.2.2 Reversal and Skewing

In general, it may not be possible to find embeddings
that make the product space fully permutable (that is,
with T restricted to the identity matrix). For such pro-
grams, transforming the product space by a non-trivial
transformation T may result in a fully permutable space
that can be tiled. This is the case for the relaxation
codes discussed in Section 4. If our algorithm fails to
find embeddings with T restricted to the identity ma-
trix, it tries to find combinations of loop permutation,
reversal and skewing for which it can find valid embed-
dings. The framework presented in Section 3.1 can be
used to find these transformations.

Loop reversal for a given dimension of the product
space is handled by requiring the entry in that dimen-
sion of each difference vector to be non-positive. For a
dependence class D, the condition that the jt* entry of
all of its difference vectors Vp are non-positive can be
written as follows:

[-Gi G} ] [zd ] +g;-93<0
which is equivalent to

f6i -~ ]|k ] +ai-aizo

Loop skewing is handled as follows. We replace the
non-negativity constraints on the j* entries of all dif-
ference vectors in V' by linear constraints that guaran-
tee that these entries are bounded below by a negative

constant, as follows:

[-Gi G ] [zd ] +gi—gl+a>0, a>0 (2
where « is an additional variable introduced into the
system. The smallest value of « that satisfies this sys-
tem can be found by projecting out the other variables
and picking the lower bound of a. If the system has a
solution, the negative entries in the jt* entry of all dif-
ference vectors are bounded by the value of a. If every
difference vector that has a negative value in dimension
7, has a strictly positive entry in a dimension preced-
ing 7, loop skewing can be used to make all entries in
dimension j positive.

3.3 Algorithm

Our algorithm is shown in Figure 5. The determination
of the embedding functions and of the transformation



ALGORITHM DetermineEmbeddings

@Q := Set of dimensions of product space

J := Current layer (initialized to 1)

DU := Set of unsatisfied dependence classes
(initialized to all dependence classes of program)

DS := Set of satisfied dependence classes for the current layer
(initialized to empty set)

T := Transformation matrix (initialized to Identity)

for dimension j = 1,p of the transformed product space

process_dimension :
for each ¢ in Q

Construct system S constraining the gth dimension
of every embedding function as follows:
for each unsatisfied dependence class u € DU
Add constraints so that each entry in dimension g of
all difference vectors of u is non-negative;
for each satisfied dependence class s € DS
Add constraints so that each entry in dimension g of
all difference vectors of s -+ positive o
is non-negative;
if system has solutions
Pick a solution corresponding to smallest a;
Update DS and DU;
Delete ¢ from () and make ¢ the jth dimension
of the transformed product space;
Update row j of T';
Continue j loop;
endif

// if the previous system does not have a solution
// check whether reversing the dimension permits solutions
Construct system S constraining the gth dimension
of every embedding function as follows:
for each unsatisfied dependence class u € DU
Add constraints so that each entry in dimension ¢ of
all difference vectors of u is non-positive;
for each satisfied dependence class s € DS
Add constraints so that each entry in dimension ¢ of
all difference vectors of s — positive o
i1s non-positive;
if system has solutions
Pick a solution corresponding to smallest a;
Update DS and DU;
Delete q from (Q and make ¢ the jth dimension
of the transformed product space;
Update row j of T';
Continue j loop;
endif
endfor

// Reach here if no further dimension of Q can be added to the
// current layer

J :=J +1 // Start a new layer

DS := empty set

goto process_dimension

endfor

Figure 5: Algorithm to Determine Embeddings and
Transformation

are interleaved, and they are computed incrementally
one dimension at a time. Each iteration of the outer j
loop determines one dimension of the transformed prod-
uct space by determining the embedding functions for
dimension ¢ of the product space, and permuting that
dimension into the j** position of the transformed prod-
uct space, reversing that dimension and skewing that
dimension by outer dimensions if necessary.

The algorithm as shown in Figure 5 does not stop af-
ter identifying the outer set of permutable dimensions.
While trying to find the j** dimension of the trans-
formed product space, if none of the remaining dimen-
sions of the product space can be made permutable with
the outer j — 1 dimensions (even allowing reversal and
skewing), it determines the subset of these dimensions
that can be made permutable with respect to each other
(but not with the outer dimensions). By applying this
successively, the algorithm creates a transformed prod-
uct space that consists of nested layers of permutable
dimensions.

An important notion in this algorithm is that of a
satisfied dependence class which is similar to this no-
tion in the context of perfectly-nested loop nests [28].
At the jt" iteration of the outer loop, we say that a de-
pendence class D is satisfied if all (partially determined)
difference vectors Vp are lexicographically positive. In-
tuitively, a lexicographic traversal of the first j dimen-
sions of the transformed product space is guaranteed
to respect all the difference vectors of this dependence
class, regardless of how the remaining dimensions of the
transformed product space are traversed. In checking
whether a particular dimension ¢ of the product space
can be made permutable with the outer dimensions, the
linear system we construct specifies that all unsatisfied
dependence classes DU must have non-negative entries
along this dimension® while the satisfied dependence
classes DS are allowed to have entries greater than some
constant negative® a to allow skewing by an outer di-
mension. This ensures that a solution with skewing
is accepted only if it is legal. By choosing a solution
that corresponds to minimum «, we choose embedding
functions that require the least amount of skewing for
successful tiling. If the minimum value of « is 0, then
no skewing is required.

While processing the j** dimension of the trans-
formed space, if we fail to find a dimension of the prod-
uct space to add to our current set of permutable dimen-
sions, we start a new layer of permutable dimensions
nested within the outer layers. To do this we simply
need to drop from consideration the satisfied depen-
dence classes (DS).

Regarding the correctness and completeness of the
algorithm we state the following theorem:

Theorem 2 The algorithm DetermineEmbeddings has
the following properties:

1. It always produces embeddings {F1, F»,...,F,} and
transformation matriz T defining a legal execution
order.

4non-positive for the reversal case
5positive a in the reversal case



for i1 =1, N
for ji1 =1, N
S1: A(i1,j1) = B(j1,i1)
for i2 = 1, N
for j2 =1, N
S2: A(i2,j2) = A(i2,j2) + B(i2,j2)

Figure 6: To Fuse Or Not To Fuse?

2. T orders the dimensions of the transformed product
space P into layers J. The dimensions within a
layer are fully permutable.

The proof is omitted for lack of space. Note that
although in the worst case the algorithm could require
O(p?) executions of the g loop in Figure 5, in prac-
tice the number of executions of the ¢ loop is closer to
O(p). Each iteration of the g loop needs to perform
Fourier-Motzkin elimination which could potentially be
exponential; this can be engineered to work well in prac-
tice [19].

Once the transformed product space is determined,
we have in effect found a perfectly-nested loop nest with
a legal execution order. The loops are grouped into lay-
ers and loops within each layer are fully permutable
within the layer and can be tiled. Dependence informa-
tion for this loop nest can be summarized using direc-
tions and distances, and standard techniques for locality
enhancement like height reduction [16] can be applied.
After this, redundant dimensions are eliminated, fully-
permutable loops are tiled, and code is generated using
well-understood techniques [2, 12].

3.3.1 Picking good embedding functions

As far as tiling is concerned, any solution to the sys-
tem S created by the algorithm in the ¢ loop would
allow that dimension of the transformed product space
to be fully permutable with the other dimensions in the
current layer. If our only concern is to produce tiled
code, then any of the solutions will do. But not all so-
lutions are equally effective. For example, consider the
code fragment in Figure 6 which will benefit from tiling
since the accesses to arrays A and B in statement S1
cannot be made unit-stride at the same time.

Two valid embeddings for T' = I that allow this code
to be tiled are the following:

11 N

i Ji i2 N

1. F; . = F: . = .
1([31 ]) 1 2([32 ]) 12

1 Jo

This embedding corresponds to the original pro-
gram execution order. Tiling the resulting trans-

formed product space would in effect tile the two
loop nests seperately.

i 12

il jl i2 i2

2. F . =1 F: . = .
1([]1]) 11 2([]2]) 12

J J2

This embedding corresponds to fusing i1 and i2
loops and the j1 and j2 loops. The resulting fused
i and j loops can now be tiled.

By fusing the two loops, the second solution is able
to reduce the distance between the write to array A
in statement S1 and the subsequent read in statement
S2. In fact, in this solution, both the source and des-
tination of this data reuse are mapped to the same
point in the product space. Note that this reuse corre-
sponds to the flow dependence between the statement
instances S1(4,7) and S2(4,5), 1 < i,j < N. The dis-
tance between the source and the destination statement
instances can thus be represented by the difference vec-
tors for this dependence class. For the first solution,
the difference vector corresponding to this dependence
is [N —i1, N — j1,i2 — 1, jo — 1]* while it is [0,0,0, 0]’
for the second solution. For this code fragment, we pre-
fer the second solution because it exploits the reuse.

It {F1, F5,... F,} are the set of embedding functions

for a program, and D : D [ :.s ] +d > 0 is a dependence
d

class for this program, then the difference vector for a
pair (is,iq) € D is [Fy(iq) — Fs(is)]- Clearly, we can re-
duce the distance between the dependent iterations by
reducing each dimension of the difference vector. The
reuse is fully exploited if the difference vector is 0. The
embedding functions that are able to achieve this satisfy
the plane [Fy(ig) — F,(is)] = 0 for all pairs (is,iq) € D.
This plane forms one of the faces of the polyhedron
representing the system of inequalities S that describes
the set of legal embedding functions. The system is
bounded by other faces obtained from other dependence
classes. A solution that lies on the intersection of more
than one face will be able to make the entry correspond-
ing to more than one dependence class zero. The solu-
tion that makes the maximum number of entries zero
must therefore lie at the corners of the polyhedron rep-
resented by the system S. We enumerate the corners
and pick a solution maximizing number of zeros.

For the code fragment shown in Figure 6, this heuris-
tic picks the second solution.

4 Experimental Results

We are implementing our approach in the SGI MIPSPro
compiler. In this section, we present preliminary results
from this implementation for four important codes. All
experiments were run on an SGI Octane workstation



based on a R12000 chip running at 300MHz with 32 KB
first-level data cache and an unified second-level cache
of size 2 MB (both caches are two-way set associative).
Wherever possible, we present three sets of performance
numbers for a code.

1. Performance of code produced by the SGI MIP-
SPro compiler (Version 7.2.1) with the “-O3” flag
turned on. At this level of optimization, the SGI
compiler applies the following set of transforma-
tions to the code [27] — it converts imperfectly-
nested loop nests to singly nested loops (SNLs) by
means of fission and fusion and then applies trans-
formations like permutation, tiling and software
pipelining inner loops.

2. Performance of code produced by an implementa-
tion of the techniques described in this paper, and
then compiled by the SGI MIPSPro compiler with
the flags “-O3 -LNO:blocking=off” to disable all
locality enhancement by the SGI compiler.

3. Performance of hand-coded LAPACK library rou-
tine running on top of hand-tuned BLAS.

Our tile size selection algorithm is still being imple-
mented, so we tiled all codes with a fixed block size of
40. Our experiments show that there are no significant
differences in performance for block sizes ranging from
20 to 100. Performance is reported in MFLOPS, count-
ing each multiply-add as 1 Flop. For some of the codes
like tomcatv, we did not have hand-coded versions as a
comparison; in these cases, we report running time.

The numbers presented show that for these codes
tiling is important and as the SGI compiler is not able to
tile these loops, it suffers severe performance penalties.
Also, our tiled code is able to approach the performance
of hand-written libraries.

4.1 Triangular Solve

For the running example of triangular solve with multi-
ple right-hand sides, our algorithm determines that the
product space can be made fully permutable without re-
versal or skewing. It chooses the following embeddings:

C C

Cc r r
R(lr =]k Fz([j])z r
k c c

r r

The fourth and fifth dimensions of the product space
are redundant, so they are eliminated and the remaining
three dimensions are tiled. Figure 7 shows performance
results for a constant number of right-hand sides (M in
Figure 2 is 500). The performance of code generated
by our techniques is upto a factor of 10 better than
the code produced by the SGI compiler, but it is still

[-o- LAPACK —=— Our Method -+~ SGI Compiler]

200 4

MFLOPS
g

o
S

Array Size

Figure 7: Performance of Triangular Solve

20% slower than the hand-tuned code in the BLAS li-
brary. The high-level structure of the code we generate
is similar to that of the code in the BLAS library; fur-
ther improvements in the compiler-generated code must
come from fine-tuning of register tiling and instruction
scheduling.

4.2 Cholesky Factorization

Cholesky factorization is used to solve symmetric
positive-definite linear systems. Figure 8(a) shows one
version of Cholesky factorization called row-Cholesky or
ijk-Cholesky; there are at least five other versions of
Cholesky factorization corresponding to the permuta-
tions of the three outer loops. Our algorithm correctly
determines that the code can be tiled in all the six cases
and produces the appropriate embeddings.

For the ¢jk version shown here, the algorithm de-
duces that all 8 dimensions of the product space can be
made fully permutable without reversal or skewing. It
picks the following embeddings for the four statements:

) )
j j
e |
mif g || (b=
i i
J J
_i_ _7:_
F i -
i i
i i
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) )
k i
_i_ _7:_
For these embeddings, the last five dimensions are




for i = 1,N
for j = 1,i-1
for k = 1,j-1
S1: a(i,j) = a(i,j) - a(i,k) * a(j,k)
S2: a(i,j) = a(i,j) / a(j,j)
for k = 1, i-1
S3: a(i,i) = a(i.i) - a(i,k) * a(i,k)

s4: a(i,i) = sqrt(a(i,i))

(a) Original Code

|-~ LAPACK —=— Our Method - - SGI Compiler |

MFLOPS

Array Size

(b) Performance

Figure 8: Cholesky Factorization and its Performance

T
2,N-1

= 2,N-1

i,5) = (A(i,j+1) + A(i,j-1)

+ A(i+1,7) + AGi-1,7)) / 4

,N-1
S2: A(i,j) = L1,
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Figure 9: Jacobi and its Performance

redundant and are ignored. The remaining three di-
mensions are tiled. Figure 8(b) shows the result of tiling
the three loops for varying matrix sizes. The code pro-
duced by our approach is roughly 15 times faster than
the code produced by the SGI compiler, and it is within
10% of the hand-written LAPACK library code for large
matrices.

4.3 Jacobi

The Jacobi kernel is typical of code required to solve
pde’s using explicit methods. These are called relax-
ation codes in the compiler literature. They contain an
outer loop that counts time-steps; in each time-step, a
smoothing operation (stencil computation) is performed
on arrays that represent approximations to the solution
to the pde. Most of these applications have imperfectly-
nested loop nests. We show the results of applying our
technique to the Jacobi kernel shown in Figure 9(a)
which uses relaxation to solve Laplace’s equation. It
requires a non-trivial linear transformation of the prod-
uct space.

Our algorithm picks an embedding which corre-
sponds intuitively to shifting the iterations of the two
statements with respect to each other, and then fusing
the resulting i and j loops. This not only allows us to
tile the loops but also benefits the reuses between the

two arrays in the two statements.

t t
t ¢ t ’111

Rl i) = 1 B )= Jt
J i—1 J i
Jj—1 J

The last three dimensions of the product space are
redundant. The resulting product space cannot be tiled
directly, so our implementation chooses to skew the sec-
ond and the third dimensions by 2x*t.

Figure 9(b) shows the execution times for the code
produced by our technique and by the SGI compiler
for a fixed number of time-steps (100). Tiling the code
improves performance significantly.

Performance results for other relaxation codes like
Red-Black Gauss-Siedel are discussed in [1].

4.4 Tomcatv

As a final example to demonstrate that our approach
works on large codes, we consider the kernel from the
tomcatv SPECfp benchmark suite.® The code, which
is too big to be shown here, consists of an outer time

8Tomcatv is not directly amenable to our technique because it
contains an exit test at the end of each time-step, so we consider
the kernel without the exit condition. The resulting kernel can
be tiled speculatively as demonstrated in [25].
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Figure 10: Performance of tomcatv

loop ITER containing a sequence of doubly- and singly-
nested loops which walk over both two-dimensional and
one-dimensional arrays. Treating every basic block as a
single statement, our algorithm produces an embedding
which corresponds to interchanging the I and J loops,
and then fusing all the I loops. The product space is
transformed so that the I loop is skewed by 2xITER,
and the ITER and skewed I loops are tiled. It is not
possible to tile the J loops in this code because one of
the loops walks backwards through some of the arrays.
The results of applying the transformation are shown
in Figure 10 for a fixed array size (253 from a refer-
ence input), and a varying number of time-steps. The
line marked “Our Method” shows a performance im-
provement of around 18% over the original code. Addi-
tional improvement (line marked “Our Method (plus
data transformation)” ) can be obtained by doing a
data transformation that transposes all the arrays as
suggested in [24].

5 Conclusions

We have presented an approach to tiling imperfectly-
nested loop nests, and demonstrated its utility on codes
that arise frequently in computational science appli-
cations. Our approach generalizes techniques used
currently to tile perfectly-nested loop nests, and sub-
sumes techniques used in current compilers to convert
imperfectly-nested loop nests into perfectly-nested ones
for tiling. Further, it allows us to pick good solutions by
reducing the distance between dependent statement in-
stances. It also does not require that programs conform
to a specific structure.

Other kinds of embeddings have been used in the lit-
erature. For example, Feautrier [10] has solved schedul-
ing problems by embedding statement instances into
a one-dimensional space through piecewise affine func-
tions, and searching the space of legal embeddings for

one with the shortest length. Kelly and Pugh [12] search
a space of pseudo-affine mappings for programs, using
a cost model to choose the best one. The range of these
mappings is left undefined to make the framework ex-
pressive, but this generality makes it difficult to use. In
their framework they represent tiling by pseudo-affine
mappings (using mod and div) but do not show how to
obtain them. Lim and Lam [18] have used affine parti-
tions to maximize parallelism. They derive constraints
similar to our tiling constraints in order to parallelize
programs with optimal synchronization. Unlike the pre-
vious two approaches, our approach prescribes a special
space large enough to include all affine transformations
and uses it to pick good solutions for tiling.

We are implementing our technique in the SGI MIP-
SPro compiler. In a production setting, compile time is
a major concern. The time taken by our implementa-
tion on a code like tomcatv appears to be reasonable,
so we believe that compile time is not an issue (in the
full paper, we will provide compile times for the codes
discussed in this paper).

Finally, tiling some codes like QR factorization re-
quires exploiting domain-specific information such as
the associativity of matrix multiplication. Incorporat-
ing this kind of knowledge into a restructuring compiler
is critical for achieving the next level of performance
from automatic tiling.

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Tiling
imperfectly-nested loops. Technical Report TR99-
1770, Cornell University, Computer Science, Sep
1999.

[2] C. Ancourt and F. Irigoin. Scanning polyhedra
with do loops. In Principle and Practice of Parallel
Programming, pages 39-50, Apr. 1991.

[3] E. Anderson, Z. Bai, C. Bischof, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen, editors. LAPACK Users’ Guide. Sec-
ond Edition. SIAM, Philadelphia, 1995.

[4] U. Banerjee. Unimodular transformations of dou-
ble loops. In Proceedings of the Workshop on Ad-
vances in Languages and Compilers for Parallel
Processing, pages 192-219, Aug. 1990.

[5] P. Boulet, A. Darte, T. Risset, and Y. Robert.
(Pen)-ultimate tiling? In INTEGRATION, the
VLSI Journal, volume 17, pages 33—-51. 1994.



[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Carr and R. B. Lehoucq. Compiler blockability
of dense matrix factorizations. Technical report,
Argonne National Laboratory, Oct 1996.

S. Chaterjee, V. Jain, A. Lebeck, S. Mundhra, and
M. Thottethodi. Nonlinear array layouts for hier-
archical memory systems. In International Confer-
ence on Supercomputing (1CS°99), June 1999.

S. Coleman and K. S. McKinley. Tile size selection
using cache organization and data layout. In ACM
SIGPLAN ’95 Conference on Programming Lan-
guage Design and Implementation (PLDI). ACM
Press, June 1995.

J. Dongarra and R. Schreiber. Automatic block-
ing of nested loops. Technical Report UT-CS-90-
108, Department of Computer Science, University
of Tennessee, May 1990.

P. Feautrier. Some efficient solutions to the affine
scheduling problem - part 1: one dimensional
time. International Journal of Parallel Program-
ming, October 1992.

G. Golub and C. V. Loan. Matriz Computations.
The Johns Hopkins University Press, 1996.

W. Kelly, W. Pugh, and E. Rosser. Code genera-
tion for multiple mappings. In 5th Symposium on
the Frontiers of Massively Parallel Computation,
pages 332-341, Feb. 1995.

I. Kodukula, N. Ahmed, and K. Pingali. Data-
centric multi-level blocking. In Programming Lan-
guages, Design and Implementation. ACM SIG-
PLAN, June 1997.

I. Kodukula and K. Pingali. Imperfectly nested
loop transformations for memory hierarchy man-
agement. In International Conference on Super-
computing, Rhodes, Greece, June 1999.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked al-
gorithms. In Fourth International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 63-74, Apr. 8-11,
1991.

W. Li and K. Pingali. Access Normalization: Loop
restructuring for NUMA compilers. ACM Trans-
actions on Computer Systems, 1993.

W. Li and K. Pingali. A singular loop trans-
formation based on non-singular matrices. Inter-
national Journal of Parallel Programming, 22(2),
April 1994.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Lim and M. Lam. Maximizing parallelism and
minimizing synchronization with affine partitions.
Parallel Computing, 24:445-475, 1998.

W. Pugh. The omega test: A fast and practical in-
teger programming algorithm for dependence anal-
ysis. In Communications of the ACM, pages 102—
114, Aug. 1992.

W. Pugh and E. Rosser. Iteration space slicing for
locality. In Proc. of 12th International Workshop
on Languages and Compilers for Parallel Comput-
ing, (LCPC99), August 1999.

J. Ramanujam and P. Sadayappan. Tiling mul-
tidimensional iteration spaces for multicomputers.
Journal of Parallel and Distributed Computing,
16(2):108-120, Oct. 1992.

J. M. Ramesh C. Agarwal, Fred G. Gustavson and
S. Schmidt. Engineering and Scientific Subroutine
Library Release 3 for IBM ES/3090 Vector Multi-
processors. IBM Systems Journal, 28(2):345-350,
1989.

V. Sarkar. Automatic selection of high order trans-
formations in the IBM ASTI optimizer. Tech-
nical Report ADTI-96-004, Application Develop-
ment Technology Institute, IBM Software Solu-
tions Division, July 1996.

Y. Song and Z. Li. A compiler framework for tiling
imperfectly-nested loops. In Proc. of 12th Interna-
tional Workshop on Languages and Compilers for
Parallel Computing, (LCPC99), August 1999.

Y. Song and Z. Li. New tiling techniques to im-
prove cache temporal locality. In SIGPLAN99 con-
ference on Programming Languages, Design and
Implementation, June 1999.

M. Wolf and M. Lam. A data locality optimizing
algorithm. In SIGPLAN 1991 conference on Pro-
gramming Languages Design and Implementation,
June 1991.

M. E. Wolf, D. E. Maydan, and D.-K. Chen. Com-
bining loop transformations considering caches and
scheduling. In MICRO 29, pages 274-286, Silicon
Graphics, Mountain View, CA, 1996.

M. Wolfe. Iteration space tiling for memory hierar-
chies. In Third SIAM Conference on Parallel Pro-
cessing for Scientific Computing, December 1987.

M. Wolfe. High Performance Compilers for Paral-
lel Computing. Addison-Wesley Publishing Com-
pany, 1995.



