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Abstract. We use Pn phase travel time residuals to invert for mantle lid velocity and 

anisotropy beneath northern Arabia-eastern Anatolia continent-continent collision zone. 

The primary phase data were obtained from the temporary 29-station broadband 

PASSCAL array of the Eastern Turkey Seismic Experiment. These data were 

supplemented by phase data from available stations of the Turkish National Seismic 

Network, the Syrian National Seismic Network, the Iranian Long Period Array, and other 

stations around the southern Caspian Sea. In addition, we used carefully selected catalog 

data from the International Seismological Centre and the National Earthquake 

Information Center bulletins. Our results show that low (< 8 km/s) to very low (< 7.8 

km/s) Pn velocity zones underlie the Anatolian plateau, the Caucasus, and northwestern 

Iran. Such low velocities are used to infer the presence of partially molten to absent 

mantle lid beneath these regions. In contrast, we observed a high Pn velocity zone 
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beneath northern Arabia directly south of the Bitlis-Zagros suture indicating the presence 

of a stable Arabian mantle lid. This sharp velocity contrast across the suture zone 

suggests that Arabia is not underthrusting beneath the Anatolian plateau and that the 

surface suture extends down to the uppermost mantle.  

Pn anisotropy orientations within a single plate (e.g. Anatolia plate) show a higher 

degree of lateral variation compared to Pn velocity. Areas of coherent Pn anisotropy 

orientations are observed to continue across major fault zones such as the EAF zone. 

Introduction 

This study focuses on the seismic structure of the continent-continent collision 

zone between the Arabian and Eurasian plates and the resultant Anatolian-Iranian plateau 

(Figure 1). Crustal processes at the Arabian-Eurasian convergent boundary and the 

nearby regions received extensive analysis [e.g., Dewey et al., 1986; Reilinger et al., 

1997]. However, the state of the mantle lithosphere and lithospheric dynamics of this 

young continent-continent collision zone are still debated [e.g., McKenzie, 1972; Rotstein 

and Kafka, 1982; Dewey et al., 1986]. 

The tectonic history of the region is complex. A two-phase extension episode in 

Late Eocene and Early Pliocene [Hempton, 1987] initiated the split of the Arabian plate 

from the African plate along the Red Sea and the Gulf of Aqaba regions. Arabia's 

continued northward motion and further separation from the African plate along the Dead 

Sea Fault (DSF) in the Miocene/Pliocene resulted in the reorganization of relative plate 

motions in the Anatolian Plateau [Bozkurt, 2001]. In Early Pliocene, this resulted in the 

westward extrusion of the Anatolian plate along the North Anatolian Fault (NAF) and the 

East Anatolian Fault (EAF) zones [McKenzie, 1972; Sengor and Yilmaz, 1981; Sengor et 
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al., 1985]. Farther north, the Lesser and Greater Caucasus regions which are believed to 

partially accommodate the Arabian plate northward motion [Philip et al., 2001] are 

undergoing thrust and strike-slip deformation. 

Terminal suturing of the Arabian and Eurasian plates along the Bitlis Suture (BS) 

is thought to have happened in the Middle Miocene [Yilmaz, 1993]. The Arabian-

Eurasian collision is associated with extensive volcanism in eastern Anatolia, starting in 

the Late Miocene and continuing to historical times [Keskin et al., 1998; Yilmaz, 1990]. 

The source of this volcanism is possibly derived from the lower portion of the 

lithospheric mantle [Pearce et al., 1990]. GPS data [Reilinger et al., 1997] have shown 

that the Anatolian plate is escaping to the west and that there is horizontal shortening 

across eastern Anatolia. The contribution of the mantle lid to convergence dynamics 

across the collision zone and the extent of Arabia's underthrusting beneath Eurasia are 

still not well-understood. This study aims at providing additional constraints for the 

models of the upper mantle dynamics in the region. Our results provide a much higher 

resolution Pn velocity model with anisotropy that significantly improves an earlier Pn 

velocity model of Hearn and Ni [1994] beneath the Anatolia-Arabia continent-continent 

collision zone and its surroundings. 

Data and Inversion Method 

We utilized two Pn phase data sets in this study. The fewer, but high quality data 

are obtained by manually reading 7,414 Pn phases from 29 PASSCAL broadband stations 

of the Eastern Turkey Seismic Experiment (ETSE), 5 short period stations of the Turkish 

National Seismic Network, 20 short period stations of the Syrian National Seismic 

Network, 5 broadband stations in the southern Caspian region, and 5 stations of the 
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Iranian Long Period Array (ILPA) located in northern Iran (Figure 1). The uncertainty of 

the Pn phase readings is less than one second.  To include these data in our inversion we 

required a minimum of 10 different events per station and a minimum of 5 stations 

recording a single event. The larger quantity, but probably less reliable data were 

obtained from the existing seismic catalogues of the International Seismological Centre 

(ISC) and the National Earthquake Information Center (NEIC) to provide ray coverage 

where the high quality data were sparse. In this case, we used strict data selection criteria 

to select Pn phase data from these catalogues. We screened phase data for potential 

location errors by using a maximum azimuthal gap between stations of 150o, a minimum 

of 20 recording stations per event, and less than 10 seconds of location residuals for each 

event. A total of about 51,000 Pn phase data were then used in the Pn tomography 

inversion for the area covering 30o to 55o E and 30o to 45o N. 

A tomography method developed by Hearn [1996] is used to invert for Pn wave 

velocity and anisotropy, as well as station and event delays. This method uses a least 

squares algorithm [Paige and Saunders, 1982] to iteratively solve for all event-station 

pairs to obtain slowness, anisotropy, and station and event delays. The method includes 

damping parameters on both velocity and anisotropy to regularize solution and reduce 

noise artifacts.  P-wave travel time residuals (<10 s) from sources at 1.8o to 16o were used 

to invert for uppermost mantle velocity and anisotropy models at a 1/6o cell size, which is 

much smaller than cell size (1/4ox1/4o) used by Hearn and Ni, 1994 in Pn velocity 

inversion. A straight line fit for the initial travel time residuals versus distance gave an 

apparent Pn velocity of 8 km/s for the study area. In this tomography inversion we 
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assumed a crustal thickness of 35 km and a crustal velocity average of 6.2 km/s". Figure 

1 shows seismic stations atop hit counts map for the study region. 

Tomography Results 

A broad zone of low (< 8 km/s) Pn velocity underlies northwestern Iran, Turkey, 

and the Caucasus region. Within this broad low velocity anomaly, pockets of very low (< 

7.8 km/s) Pn velocity zones are observed in the Caucasus and eastern Anatolia (Figure 

2a). On the other hand, high Pn velocities underlie most of northern Arabia, the Caspian 

Sea and Azerbaijan (eastern Greater Caucasus), the Black Sea, and northeastern 

Mediterranean Sea (Figure 2a). In addition, smaller zones with high Pn velocity are 

observed in areas in northwestern Iran, central Anatolia plate, and central Greater 

Caucasus (Figure 2a). 

To test the resolution of our tomographic inversion and the reliability of the 

anomalies obtained (Figure 2a) we constructed a synthetic checkerboard model with 

alternating high and low velocities in 2ox2o cells.  We added 1 second random noise to 

the synthetic travel times obtained from the checkerboard model.  We used the same 

inversion parameters and earthquake and station distributions identical to the observed 

data to invert for the synthetic travel time anomalies (Figure 2b). The checkerboard 

anomalies in most of the study area are well resolved except for moderate smearing 

observed in northwestern Iran, the Caspian Sea, the Black Sea, and southern parts of 

northern Arabia (Figure 2b). In these regions smearing is more severe on the anisotropy 

resolution indicating that anisotropy orientations in these regions are not reliable, while 

areas of better resolved anisotropy orientations coincided with very well resolved 

velocity checkers (Figure 2b). 
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 The event and station distributions in the study area are not uniform. While the 

ETSE and Syrian National Seismic Network (SNSN) stations provide very dense 

coverage in a small region, additional stations cover other parts of the region sparsely. In 

order to take advantage of the high density station coverage of the ETSE and SNSN and 

to obtain a higher resolution Pn image along the collision zone we conducted a special, 

focused study by only using data from the ETSE and SNSN. All phase picks for these 

stations came from digital data and read by the authors. This data set is clearly higher 

quality than the bulletin phase database in this region. Using this higher quality subset of 

our data set we obtained a detailed Pn velocity image at this segment of the collision zone 

(Figure 3a). We used the earlier model cell size (1/6o) and used a smaller damping value 

(100 rather than 1000) on this data set since the noise in this subset of data set is much 

lower. This resulted in a clearly defined northernmost boundary of the Arabian plate 

along the EAF and the BS zones (Figure 3a). Figure 3b shows checkerboard test results 

obtained for this subset of data. In this case we used 1.5ox1.5o sized checkerboard 

anomalies. The synthetic results show that the resolution is high along the BS and the 

EAF zones (the area of interest) and at the junction of the North and East Antolian Fault 

zones.  

Observed anisotropy orientations and amplitude simultaneously inverted with Pn 

velocity show a higher degree of lateral variability compared to Pn velocity (Figure 4). 

Anisotropy orientations within the Anatolian plate and along the NAF vary from 

predominantly E-W in the center to more N-S in the western parts of Turkey (Figure 4). 

Zones of NE-SW anisotropy orientations surround the easternmost portion of the NAF 

zone, and along the Lesser Caucasus region. The latter two NE-SW anisotropy 
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orientations spatially correlate with zones of very low Pn velocities, and show anisotropy 

magnitudes that are larger than their surroundings (Figure 4). 

Discussion and Conclusions 

The geodynamic model governing the accommodation of the Arabian plate’s 

northward motion has been the subject of an ongoing debate [McKenzie, 1972; Rotstein 

and Kafka, 1982; Dewey et al., 1986]. In this study, we presented evidence on the state of 

the lithospheric mantle beneath this young continent-continent collision zone. Geologic 

data from eastern Anatolia and the Caucasus indicate that the latest stage of collision 

related volcanism started in the Late Miocene and continued until historical times [Keskin 

et al., 1998; Yilmaz, 1990]. Upper mantle instability in this region is also evidenced by 

young calc-alkaline and alkaline volcanism (Fig.  2a) [Innocenti et al., 1976; Pearce et 

al., 1990]. At the present time, we observe a broad scale low and smaller scale very low 

Pn velocity anomalies beneath northwestern Iran, Eastern Anatolian plateau, the 

Caucasus region, and most of the Anatolian plate (Figure 2a). Comparably, Sn wave 

propagation anomalies in this region also show high attenuation beneath the Anatolian 

plate, the Anatolian plateau, and the Caucasus region [Gok et al., 2000; Sandvol et al., 

2001]. These results are also consistent with mantle lid instability interpretation beneath 

the Eurasian side of the collision (i.e., northwestern Iran, eastern Anatolia, the Caucasus, 

and Anatolia plate). We interpret that partially molten to eroded mantle lid exists in 

regions underlain by very low Pn velocity anomalies, such as the easternmost portion of 

the NAF, and the Lesser and western Greater Caucasus regions (Figure 2a). The very low 

Pn velocity may even be interpreted to indicate the complete absence of mantle lid in 

these regions, and that asthenospheric material is directly located beneath the crust. This 
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interpretation rules out the earlier proposed idea of mantle thickening of the lithosphere 

[Dewey et al., 1986] beneath the Anatolian plateau and the Caucasus region. If there were 

ever a lithospheric thickening in these regions, either delamination or convective removal 

of the thickened mantle lithosphere might have eliminated the thick lithosphere.  

Our results invalidate the idea of Arabian plate subduction or underthrusting 

beneath the eastern Anatolian plateau as suggested by Rotstein and Kafka [1982]. Stable 

mantle lid regions as identified by high Pn velocities underlie only the northernmost 

portion of the Arabian plate. This high velocity sharply stops along the Bitlis suture zone 

(Figure 2a). Using a higher resolution subset of data we show that the northern bounds of 

Arabia's high mantle lid velocities follow the western BS and the EAF lines relatively 

well (Figure 3a). It is worthy to note that an isolated small positive anomaly occurs in 

northwestern Iran. This anomaly located in an area with obvious velocity smearing 

(Figure 2b) may not entirely be explained by NW-SE smearing artifact (see Figure 2b), 

because both ends (NW and SE) of the positive anomaly are occupied by low negative 

velocity anomalies. This suggests that the positive anomaly may be caused by a genuine 

response of a stable upper mantle beneath this part of northwestern Iran. 

In continental settings anisotropy orientations are commonly described to mimic 

regional tectonic trends [e.g., Kendall, 2000]. Compared to Pn velocity, mantle lid Pn 

anisotropy shows relatively more variations within a single plate (e.g., Anatolian plate) or 

along a single tectonic boundary (e.g., NAF). Observed Pn anisotropy orientations do not 

seem to follow the tectonic trends. The more sudden anisotropy variations in eastern 

Turkey and the Caucasus region may possibly reflect more complex deformation 

processes in this region. 
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Figure Captions 

Figure 1. Simplified tectonic boundaries (black lines) of northern Arabian and Eurasian 

plates atop hit counts base-map for every 1/6o cell size. 1 = White triangles are Eastern 

Turkey Seismic Experiment (ETSE) stations, and black triangles are Syrian National 

Seismic Network (SNSN) stations; white hexagons are Turkish National Seismic 

Network stations, black hexagons are temporary stations of the southern Caspian 

experiment; white stars are the temporary station of the Iranian Long Period Array 

(ILPA); and open triangles are other local stations obtained from the ISC catalouge. 2 = 

Thrust, and 3 = strike-slip fault boundaries. BS = Bitlis Suture and ZS = Zagros Suture, 

GC = Greater Caucasus, LC = Lesser Caucasus, NAF = North Anatolian Fault, EAF = 

East Anatolian Fault, DSF = Dead Sea Fault. 

 

Figure 2. (a) A map showing inverted tomographic image of Pn velocity of the study 

area.  1= Neogene/Quaternary volcanoes, 2= Thrust boundary, and 3= Strike-slip 

boundary.  (b) Checkerboard test results for 2ox2o cells inverted using the same station 

and event distribution used in the velocity and anisotropy model shown in Figure 2a.  
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Figure 3. (a) A map showing our tomographic image of Pn velocity using only the data 

picked and read by the authors. The upper bounds of high Pn velocity zone along the 

EAF and the eastern BS are used to define the northern extent of the Arabian plate 

boundary. (b) A map showing 1.5ox1.5o checkerboard test results inverted using the same 

stations and events distribution for Figure 3a. The best resolution is along the EAF, 

eastern BS zones, and at the intersection zone between the EAF and NAF zones. Symbols 

are as in Figure 2. 

 

Figure 4. A map showing Pn anisotropy inverted simultaneously with the velocity model. 

See Figure 2a for text abbreviation in map. 
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