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1.0 EXECUTIVE SUMMARY 

An ample amount of research has been conducted on how nest temperatures affect the sex of sea turtle 

hatchlings, but little has been done on how heat transfer contributes to the temperature. For the purpose of 

determining if heat transfer could be modeled, Loggerhead sea turtles (Caretta caretta) in Southern 

Florida were examined. Further analysis of nest temperature under conditions associated with climate 

change can predict potential effects in the future on Loggerhead and other sea turtle populations.  

This paper assumes that research and modeling of the heating process can lead to a better understanding 

of what contributes to nest temperature. The nest was approximated as one spherical homologous domain 

with weighted egg and air properties, located at 0.35 m below the surface of the sand. Conditions 

affecting temperature of the nest include solar radiation on the sand, convective heat transfer at the 

surface of the sand, and metabolic heat generation in the eggs. Hourly weather data from locations in 

Southern Florida was collected and used to simulate a varying boundary condition at the sand surface 

from air temperature, wind speed, and solar radiation. Metabolic heat generation from the eggs was based 

on data from another species of sea turtle. Two-dimensional axisymmetric heat conduction through the 

sand and nest was modeled using the commercial analysis software COMSOL Multiphysics. The model 

was validated by comparing the resulting Loggerhead nest temperature over time with experimental data 

from another location in Florida. Analysis of parameter sensitivity was conducted by varying the density, 

specific heat, and thermal conductivity of both the egg mass and sand. Changes in all of these parameters 

by 20% produced negligible effects on nest temperature. Varying the heat transfer coefficient to reflect 

the minimum and maximum air temperatures found in Southern Florida did not have a noticeable impact 

on nest temperature. Sensitivity of solar radiation was considered in applying shading conditions. The 

model was also used to predict potential effects from climate change by varying the top boundary 

condition.  

The model was used to observe how variation of environmental conditions, especially the projected 

increase of temperature due to climate change, affects the model and destabilizes the ratio between males 

and females. The results indicated that average nests laid in peak nesting seasons tend to produce a 

female-dominated clutch. A 1 to 4 °C increase in air temperature, as predicted by global warming trends, 

could give rise to potentially dangerous nest temperatures and exclusively female clutches. Shading has a 

drastic effect on nest temperature and can act to stabilize the sex ratio in global warming scenarios. 

In a broad sense, any species with temperature dependent sex determination can feel the effects of climate 

change, making this model especially important for coming years. This study aims to examine the causes 

of nest temperature variation, and explore viable solutions to potentially harmful effects from climate 

change. More research and global attention on the harmful consequences of climate change impacting 

species is critical.  

 

2.0 INTRODUCTION   

Loggerhead sea turtles (Caretta caretta), like many species of reptiles, experience temperature dependent 

sex determination (TSD) in their embryonic stage. This means that their sex is determined by the nest 

temperature. The response to temperature occurs during the middle third of incubation (Hanson et al. 
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1998). The pivotal temperature for Loggerhead sea turtles, particularly populations in Florida, is 29.2°C 

(Mrosovsky 1987). Temperatures below this point will produce more males, and temperatures above this 

point will produce more females. Sex ratios rapidly become more skewed as the temperature moves away 

from the pivotal point, and nests can become entirely male or entirely female with a change of only a few 

degrees.  In an average fluctuating nest, temperatures reaching above 34 °C have been seen to decrease 

hatchling success (Read et al. 2013). For these reason, TSD is a particularly important area of research 

with regards to its potential to be affected by climate change.  

Loggerhead nests are typically laid at a depth of .35 m to the top of the nest with a chamber diameter of 

between .23 and .26 m (Miller et al. 2003). In southeastern U.S., nesting season is between mid-March 

and late September, with the peak occurring in June and July (SFES 1999). Average clutch size is about 

110 eggs (Miller at al. 2003). 

Climate change could have detrimental effects on nest temperatures. Global warming of air temperature 

could lead to an increase in heat flow to the nesting eggs. Exposure to different nesting temperatures 

could favor one sex over the other, leading to adverse consequences for species populations. There has 

been some interest in how climate change may affect turtle populations, but most studies focus on 

recorded temperatures and turtle development (Schwanz et al. 2008). Past studies monitoring the sex 

ratios of Loggerhead nests in southern Florida have recorded primarily female-based clutches (Hanson et 

al. 2014).  

Laloë et al. (2014) estimated the percentage of male hatchlings as a function of temperature. This 

sigmoidal curve was used to predict the sex ratio from the resulting average middle third of incubation 

temperature.  

The goal for this project is to model heat flow through sand and eggs in order to better understand how 

temperature affects the sex of Loggerhead sea turtles. Applying this knowledge, the increase in air 

temperature due to global warming will indicate the change in nest temperature and subsequent risk to 

turtle sex ratio and survival. Through analysis of the environmental factors leading to altered sex ratios, 

this study will give insight into possible preventative techniques for turtles populations as well as for 

other species.     

2.1 Problem Statement 

The objective of this study is to determine what effect climate change will have on the sex ratio of 

Loggerhead turtle egg clutches in Southern Florida.       

2.2 Design Objective 

The goal for this project is twofold: 

1) To accurately model the temperature variation within and around the egg chamber of a nest, 

using real weather and climate data for Southern Florida. 

2) To use this model to investigate the potential impact of climate change on the sex distribution 

of Loggerhead turtle populations. 
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3.0 METHODS    

3.1 Schematic    

The geometry of the model and boundary conditions are shown in Figure 1. The two domains in the 

model are the sand and nest.     

      

Fig. 1: Problem schematic. The eggs are contained in a spherical egg chamber buried below the beach 

surface. The sand is treated as a semi-infinite domain surrounding the eggs, which are modeled as a single 

axisymmetric region.     

The sand has a top boundary condition specified by solar radiation and convective air flow. The bottom 

boundary is considered to be held at a constant temperature of 25 °C. The right boundary, as well as the 

left boundary at the axis, are insulated with zero heat flux moving across. The nest was approximated as 

one spherical homologous domain 0.35 m below the surface of the sand, consisting of egg and air, with a 

diameter of 0.25 m.  

3.2 Governing Equations   

The physics of the model is heat transfer via conduction through a solid domain, with the sand and the 

egg area making up two subdomains. Our model includes the transient temperature term to account for 
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changing conditions above the surface, and the eggs produce an increasing amount of metabolic heat 

during the course of their incubation. The governing equations for the egg and sand domain are given 

below in Equations 1 and 2.  

Egg domain: 

 

        (1) 

      

Where the thermal properties keggs, cpeggs, and ρeggs are the thermal conductivity, specific heat, and density 

of the eggs, respectively, T is the temperature of the eggs, r is the distance from the left boundary axis, z 

is the distance from the surface of the sand, and Qmetabolic is the metabolic heat generated by the eggs.  

Sand domain:  

     

        (2) 

 

Where the thermal properties ksand, cpsand, and ρsand are the thermal conductivity, specific heat, and density 

of the sand, respectively. These values are dependent on the moisture content of the sand, which in turn 

varies with depth, which is accounted for later in the COMSOL implementation. T is the temperature of 

the sand, r is the distance from the left boundary axis, and z is the distance from the surface of the sand. 

Sex determination occurs during the middle third of embryonic development. Incubation time is 

dependent on temperature, with nest development occurring more quickly at increased temperatures. For 

simplicity, our model assumes incubation time to be 50 days (1200 hours). Assuming that thermal 

sensitive period as the middle third of development, the nest was examined between Hour 400 and Hour 

800. To find the sex ratio, a sigmoidal curve developed by Laloe et al. (2014) was used: 

 

        (3) 

                                                            

Where sr(T) is sex ratio (proportion male) at a temperature T (in °C), S equals -0.033621 and defines the 

shape of the temperature transition, P is the pivotal temperature (29.2 °C for Florida loggerheads), and K 

is a coefficient equal to 0.1. This equation is visualized in Figure 2. 
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Fig. 2: Plot of sex ratio of the nest versus incubation temperature. 

The sex distribution follows a sigmoidal curve with a pivotal temperature of 29.2°, where the nest is 50% 

male. Temperature fluctuations near this pivotal point can have a large effect on the sex ratio of the nest. 

The average temperature of the nest during the thermal sensitive period is used as a constant temperature 

equivalent for the purposes of sex determination. 

3.3 Boundary Conditions  

There are four boundary conditions necessary for the model. The 2D axisymmetric model allows for a 

zero flux boundary condition at the left boundary, along the line of symmetry. Heat conduction from the 

surface was assumed to occur downward only, allowing for a zero flux boundary at the right edge, which 

was defined at a sufficient distance from the nest to be unaffected by any lateral heat transfer due to 

metabolic heating. The top boundary represents the surface of the sand, which has both radiative heat 

flow from sunlight and convective heat transfer due to air flow. Because temperature remains relatively 

constant at large depths, a constant boundary condition of T = 25 °C has been applied for the bottom 

boundary. This value is consistent with literature values for ground temperatures in Florida (EPA 2001), 

and the boundary depth of 3m is consistent with depths at which very little temperature variation occurs 

(Florides).  

3.4 Model Implementation  

The implementation of the full model used 2D axisymmetric transient heat transfer via conduction 

through two domains: the sand and the egg mass. Air temperature, wind, and radiation data was imported 

into COMSOL using empirical data for Southern Florida (see Appendix). Since loggerhead nests are 

typically laid near the vegetation line (Hays et al. 1995), many nests receive shading during at least part of 

the day. To account for this, shading was approximated by implementing a shading coefficient in front of 

the radiative flux boundary condition. The heat created by the metabolism of the eggs was also accounted 

for in this model using empirical data. The problem was run for 50 days, or 1200 hours, choosing 

midnight on July 1st, which is during peak nesting season (Hanson et al. 1998), as a starting point. The 

problem was implemented in COMSOL using the physics for heat transfer in solids. Radiation, ambient 

air temperature, and wind speed were defined as functions of the imported data.  
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4.0 RESULTS AND DISCUSSION 

The baseline model represents an average nest laid during peak nesting season in Southern Florida. Figure 

3 shows the temperature distributions. Cut points were taken at the top, bottom, and center of the nest to 

examine spatial variation. A cut point was also taken in the adjacent sand at the edge of the domain to 

visualize the metabolic heating of the nest in comparison to the surrounding sand. 

  

Fig. 3: Temperature profile for nest laid July 1 with 50% shading.  

The implementation of empirical weather data at the top boundary resulted in variations reflective of 

conditions at the top surface. After equilibration from the input initial temperature, the temperature of the 

nest began to fluctuate around a fairly consistent average temperature. There was variation in different 

sections of the nest, with the top of the nest experiencing more fluctuation due to its proximity to the 

surface. The metabolic heating in the eggs resulted in an increase in the temperature of the nest compared 

to the adjacent sand, which can be particularly seen in the center of the nest. 

As a result of changing boundary conditions, small variations in the temperature were expected. 

Decreases in nest temperature occurred directly after a decrease in radiative flux or air temperature, as 

shown in Figure 4. 
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Fig. 4: Average nest temperature and air temperature over middle period of incubation. The temperature 

of the nest shows a damped response to changes in air temperature, with a delay time for heat conduction 

through the domain. 

The nest temperature behaves as expected, with a dampened and delayed response to variations in the 

surrounding air temperature. The nest is also warmer than the surrounding air due to additional inward 

heat flux from solar radiation. 

4.1 Sex Determination   

The average temperature of the nest during the thermal sensitive period (TSP) was 33.63 °C, which 

corresponds to a 1.51% male clutch using the methodology developed by Laloe et al. (2014) (Equation 3).  

4.2 Variation within Nest 

To examine the effect of heat conduction from the surface and metabolic heating in different regions of 

the nest, cut points were taken at the top, bottom, and side edges of the nest in addition to the center. 

Results are summarized in Table 1. 

Table 1: Calculated sex ratios for different regions of the nest using Equation 3. 

Nest Location Average Temperature (°C) % Male 

Top 33.90 1.18 

Middle 33.33 1.94 

Bottom 31.91 6.72 

Side 32.88 2.88 

 

The top of the nest is the warmest, as heat from the sand surface reaches it more easily. The middle of the 

nest experiences the greatest effect due to metabolic heating, which, combined with effects of conduction 

from the surface, make it the next warmest region. Both regions have very low proportions of male 

hatchlings. However, the other regions of the nest, particularly the bottom, have slightly higher 

proportions of males, showing that variation within different regions of the nest affects the overall sex 

ratio. 
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4.3 Impact of Global Warming 

To simulate global warming, the air temperature was increased by 1, 2, 3, and 4 °C over all time points. 

The resulting temperature distributions for the center of the nest are shown in Figure 5. 

 

Fig. 5: Impact of varying amounts of global warming on the temperature profile of the center of the nest 

for eggs laid July 1st. 

Beyond the initial equilibration, the nest quickly shows an increase in temperature over all time points 

directly correlated with the increase in air temperature. To examine the effects in more quantitative detail, 

the average temperature of the nest for each climate change scenario was calculated along with the 

resulting sex ratios. Results are summarized in Figure 6. 
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Fig. 6: Global warming and its effects on the average nest temperature during the thermal sensitive period 

and the percentage of male hatchlings. As the temperature due to global warming increases, the 

percentage of males in the nest falls to negligible levels.  

For a nest laid in July, at the peak of hatching season, global warming has the potential to shift nests 

already laid near the upper limit of the sex-determining range of temperatures not only into temperature 

regions where virtually no male hatchlings will be produced, but that will significantly impact the health 

and survival of the hatchlings. 

One potential adaptation for turtle populations faced with global warming is to nest during parts of the 

season where temperatures are cooler. To examine the effects of warming on a cooler nest, the model was 

run for a nest laid on April 1st, at the beginning of the nesting season (Sea Turtle Nesting). The resulting 

temperature distributions for the center of the nest are shown in Figure 7.  

 

Fig. 7: Impact of varying amounts of global warming on the temperature profile of the center of the nest 

for a nest laid April 1st. 
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The nest laid earlier in the season has lower temperatures corresponding to the cooler weather, but shows 

a similar response to increasing temperatures as the July nest. The effects of the warming on the average 

nest temperature and the sex ratio are summarized in Figure 8. 

 

Fig. 8: Global warming and its effects on the average nest temperature during the thermal sensitive period 

and the percentage of male hatchlings for a nest laid April 1st. The increasing temperatures cause a drastic 

shift in the sex distribution. 

For a nest laid at the beginning of the nesting season, the effects of global warming can be even more 

clearly seen. The baseline nest is reasonably balanced, with 27.42% male hatchlings, but a 1 °C increase 

in the air temperature causes the sex ratio to drop to only 16.1% male. The number of male hatchlings 

continues to decrease under more extreme climate scenarios; under the most extreme conditions, even 

nests laid in the coolest part of the nesting season may shift to almost entirely female. However, 

compared to the July nest, where global warming may threaten the survival of the hatchlings, nests laid in 

cooler weather may be able to retain a less skewed sex ratio and healthier hatchlings. This offers some 

opportunity for loggerhead populations to adapt to all but the most extreme global warming scenarios if 

the nesting season is shifted towards cooler parts of the year. 

4.4  Effect of Shading 

The most realistic and least invasive conservation strategy to counteract rising temperatures' effects on 

turtle populations is to introduce additional shading to nests. Since the radiation of the sun is the deciding 

factor in the core temperature of the nest, reducing the radiation in the model can be used to determine the 

effects of introducing shade to the nest. The results are shown in Figure 9. 
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. 

Fig. 9: The average value of the nest temperature over the July incubation period with different amounts 

of radiation. As the shading of the nest increases, the temperature in the nest decreases and causes a 

greater percentage of males. This shows that shading the nest can have a significant effect on the male to 

female ratio in the nest and could be used for conservation purposes. 

Introducing shade to the nest can be advantageous for situations where the radiation levels could prove 

lethal for the nest. A difference of several degrees in the nest could be easily achieved by only letting a 

quarter of the sun's radiation hit the sand. The future for loggerhead turtles may be dire if the global 

temperature continues to rise as predicted, and drastic conservation efforts will have to be made in order 

to ensure the survival of the species. To examine the effects of shading on nests under climate change 

scenarios, the model was run through multiple tests to simulate an increase in air temperature with 

varying amounts of shading. Results are shown in Figure 10. 

a)      
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     b)  

Fig. 10(a-b): Change in core nest temperature for different levels of nest shading (a) and change in 

percentage of male hatchlings for different levels of shading with increasing global temperatures (b). The 

model was run over a typical July nesting period.  

The model indicates that shading is an effective measure to significantly drop the temperature in the nest 

and ensure that some of the population develops into males. This may be achieved by using tents and 

tarps to cover identified nests. Wood et al. (2014) have been experimenting with this concept with 

loggerhead nests in Queensland, Australia by providing their turtle rookeries artificial and natural 

shading. The nests placed in the shade not only were incubated at lower temperatures but also produced 

up to 40% more males than the control.  

By predicting nest temperatures from climate change data with the COMSOL model, conservationists 

would be able to determine the proper core temperature for the nest and control the male to female ratio. 

The model could be used to non-invasively monitor nests of interest and determine the best amount of 

shade to protect the hatchlings from the effects of climate change. 

4.5 Validation  

Hanson et al. (1998) examined several Loggerhead turtle nests laid in June and July on Hutchinson Island, 

Florida. Three nests, laid in mid-June, were equipped with multiple data loggers that measured 

temperature every 1.2 hours in the top, middle, and bottom of the nest, as well as the sand 1m from the 

nest at mid-nest depth, 45 cm from the surface.  
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Fig. 11: Experimental data for mean daily temperatures in three nests on Hutchinson Island, Florida 

compared with mean daily temperatures from the model, starting June 11th with 30% shading. 

For data comparison, the model was run staring mid-June. Daily average temperatures were then 

calculated and plotted with the experimental data (Fig 11). The data from the model follows the same 

overall trends as the experimentally obtained data. Temperature differences between the data sets are 

typically no more than 5 °C, with this maximum difference reached at the top of the nest. The most 

variation is expected here, as weather data used in the model and the experimental data were taken in 

different years. The center of the nest tracks well with the experimental data, indicating that the metabolic 

heating term is accurately represented. 

At most time points, the model resembles the values found in the experimental data, but modeled 

temperatures are consistently warmer. The probable cause of this is that the model does not include the 

effects of rainfall, which may act to decrease temperature.  
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4.6 Mesh Convergence 

A fine sized mesh was created, and is shown in Figure 12.  

Fig. 12: Final mesh build over sand and nest domains. 

A triangular mesh with fine sized elements was chosen for the temperature profile. The mesh is most 

important in regions above and around the nest, where the temperature is most vital to the developmental 

function. 

To ensure that the model had minimal spatial discretization error, a mesh convergence was performed, as 

shown in Figure 13.    

Fig 13: A mesh convergence was performed at a point above the nest in order to determine the minimum 

element size necessary to exclude discretization error from our model. All of the solutions for the 

differing mesh values seem to converge over all times.   
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The mesh appears to converge at all element sizes. However, because computation time was not 

significantly extensive for most mesh choices, a fine mesh was chosen to ensure that discretization error 

would not be a concern. 

4.7 Sensitivity Analysis 

The convective heat transfer coefficient is calculated using the average nesting season air temperature of 

25 °C as well as empirical data for hourly wind speeds. To check whether more detailed, temperature-

dependent properties of air would need to be implemented, the coefficient value was calculated at the 

minimum and maximum temperatures recorded during the nesting season. Using air properties at the 

minimum temperature (19°), the average temperature at the center of the nest decreased by 0.004°. Using 

the maximum temperature (31°), the average temperature at the center of the nest increased by 0.003°. 

This indicates that modifying the properties of air to account for ambient temperature changes has 

negligible effects on the implementation of the convective heat transfer boundary condition, and using the 

average ambient air temperature for the coefficient calculations is sufficient. 

The significance of the thermal properties for each domain was determined by running a sensitivity 

analysis over the density, specific heat, and thermal conductivity of both the sand and the eggs. The 

parameters were varied using values for a 20% increase and decrease, and measured by comparing the 

temperature change at the center of the nest, which can be seen in Figure 14. 

 

Fig. 14: A sensitivity analysis performed on the specific heat, density, and thermal conductivity of the 

eggs and sand shown in the model. Varying the parameters by +/- 20% showed very little effect on the 

average temperature at the center of the nest. The difference in the modified temperatures and the original 

is represented by the bars. The greatest temperature deviation was at most 0.18°.  

The sensitivity analysis ultimately reveals that the above parameters have little impact on the average 

temperature at the center of the nest. In order for the parameters to have a major effect, they would have 

to be drastically increased or decreased. Literature searches have shown that the thermal properties of 

beach sand and turtles eggs do not deviate to this extent. The one atypical part of the sensitivity analysis 

was the increase in temperature that resulted from both a decrease and increase in the thermal 

conductivity. When the thermal conductivity of the eggs rises, it becomes easier for the eggs to be 
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affected by the radiation. Conversely, the eggs are better able to retain the heat from their metabolism 

when the thermal conductivity is lowered.  

 

5.0 CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Future Improvements 

One potential improvement to the model would be to incorporate a mass transfer physics to account for 

varying water content in the sand due to precipitation and evaporation. To begin exploring the impact of 

evaporative heat loss on the nest, an approximate boundary condition was incorporated for evaporative 

heat loss. The boundary condition assumes a constant relative humidity of 75%, consistent with average 

values for Miami (Florida Climate Center), and the convective mass transfer coefficient is calculated 

using an approximate air temperature of 298 K and the empirical wind speed data. In reality, the water 

content of the sand would vary drastically with precipitation events, so to explore the effect of different 

levels of saturation, a parametric sweep was run to compare the current surface conditions (dry sand; no 

evaporative heat loss) with varying levels of saturation (Figure 15). Note that for the implementation of 

the sand parameters (thermal conductivity, specific heat, and density), water content is not altered; the 

surface is still treated as dry with increasing saturation with depth for the calculations of these properties, 

and only the boundary condition treats the surface as having different saturations. 

 

Fig. 15: Impact of approximated evaporative heat loss on the temperature profile of the center of the nest. 

"No evaporation" represents the current conditions of the nest (laid July 1st, with 50% shading). 

If the surface of the sand is treated as damp, at a 4% water content equivalent to the water content at nest 

depth, there is a slight decrease in the overall nest temperature. The temperature decreases further with 

increasing water content, and at fully saturated values (33% water content), the temperature at the center 

of the nest drops by nearly 3°. In reality, the sand would only be fully saturated during heavy 

precipitation, and would then equilibrate to a drier surface due to evaporation and downward water flow, 

but these results give a good indication that the inclusion of precipitation events would have a cooling 

effect on the nest, increasing the accuracy of the model. Future studies should consider a mass transfer 
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physics to account for water accumulation and flow in the sand domain, which would give more accuracy 

to the model and allow for better predictions of nest conditions. 

5.2 Conclusions 

The goal of this project was to develop a predictive model for the development of Loggerhead sea turtle 

nests and to use this model to examine the potential effects of climate change on the population. The 

model developed uses a novel incorporation of 2D axisymmetric heat transfer with empirical weather 

conditions, metabolic heat generation, and depth-dependent thermal properties to achieve these goals. 

With future work to implement the effects of mass transfer and evaporative heat loss due to precipitation 

events, this model has the potential to become a highly accurate way to non-invasively monitor and 

research Loggerhead turtle nests. It can also be easily adapted to other species for which incubation 

temperature is an interest. As climate change becomes an increasing concern for conservationists, 

computational modeling should be considered as a powerful tool to examine the impact of a changing 

environment on vulnerable species around the globe. 
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7.0 APPENDIX A: INPUT PARAMETERS   

Constant Parameters 

Table A1: Constant parameters found from literature. Thermal properties of the egg domain were 

calculated as a weighted average by volume of eggs and air. 

Input Parameter  Value/Expression  Source  

Qmetabolic (egg metabolic heat 

generation)   

Based on empirical data (W/m3)   Sandoval,S., et al (2011)  

keggs (thermal conductivity of 

eggs)  

0.203 W/m K      Poppendieck et al (1966) 

cpeggs (specific heat of eggs)  1542.7 J/kg*K  Sandoval, S., et al (2011)  

ρeggs (density of eggs)  58.161 kg/m3     Limpus (1985)  

ksand (thermal conductivity of 

sand)  

Based on empirical data 

(W/m*K)   

Smits (2010)  

  

cpsand (specific heat of sand)  Based on empirical data 

(J/kg*K)  
Alnefaie and Abu-Hambae 

(2013)  

  

ρsand (density of sand)  Based on weighted average 

(kg/m3)   
Handham, I.N., Clarke, B.G. 

(2010)  

Θ (water content)  Based on empirical data  Lutz, Peter L., Musick, John A. 

(1996)  

h (convective heat transfer 

coefficient)  

4.5286(uair)0.5
 W/m2*K     (uair based on empirical data, see 

Fig. 9)   

εsand (emissivity)  0.75 Bolz and Tuve (1973) 

Ti, sand  (initial sand 

temperature)  

298.15 K      

Ti, eggs (initial egg temperature)  298.15 K      

  

Surface Conditions 

Empirical data for hourly average air temperature and wind speed for several sites in Florida was obtained 

from the National Centers for Environmental Information and was imported from Excel into COMSOL. 

The heat transfer coefficient for the convective boundary condition was calculated from Miami wind 

speed data and average air temperature during the nesting season. Hourly data from 2016 values of solar 

radiation (W/m2) for the Everglades was obtained from the USDA Natural Resources Conservation 

Service National Water and Climate Center and was imported from Excel into COMSOL.  
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c)              d) 

 

 

 

 

 

 

e)              f) 

 

 

 

 

 

 

Fig. A1(a-f): Weather data for external air temperature (a-b), wind speed (c-d), and solar radiation (e-f) 

used in the model. The duration of incubation beginning July 1 is shown in (a), (c), and (e), and the first 

72 hours of incubation are shown in detail for easier visualization in (b), (d), and (f). 

Metabolic Heat Generation  

In order to determine metabolic heat generation, we applied the metabolism trends identified by Sandoval 

et al. (2011) on metabolic heat estimation of the sea turtle Lepidochelys olivacea over forty days. Based 

on the data, we approximated metabolic heat generation as 0 W for the first half, increasing by .03 W per 

day for the third quarter, and increasing by .9 W per day for the fourth quarter of incubation. These values 

were divided by the volume in order to determine the heat flux generated by each egg in the nest.    
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Sand Properties  

Thermal properties of sand are highly sensitive to moisture content. For this reason, the thermal 

conductivity and specific heat of the sand were implemented based on a water content function (Fig. 16). 

The sand is treated as very dry at the surface, then rapidly increases to a moisture content of about 4% 

(Lutz 96). The 4% moisture content is approximated as constant until the depth approaches the estimated 

water table depth of 2 m (Alves and Pezzuto 2009), where it reaches saturated levels of 33% water 

content.  

 

Fig. A2: Water content of the sand domain. Water content increases as distance from the surface (at 3 m) 

increases.  

A function for specific heat as a function of water content was interpolated from a value for specific heat 

of dry sand and a value for specific heat of sand saturated with water. The specific heat was assumed to 

change linearly with water content between those two values (Alnefaie and Abu-Hambae 2013).  
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Figure A3: Specific heat as a function of water content. The specific heat assumed to change linearly 

between the values for fully dry sand and fully saturated sand.  

A function for thermal conductivity as a function of moisture content was based on a graph from a paper 

by Smits et al showing thermal conductivity as a function of moisture content of sand.  

 

Figure A4: Thermal conductivity as a function of water content of sand.  

To accommodate cpsand and ksand changing with moisture content, a function was interpolated for each. The 

sand was assumed to follow the water content graph given above, starting at zero at the surface and 

quickly reaching 4% saturation through the middle. Using the functions of cpsand and ksand, their values at 

the depths in the model given the water content were determined. When moisture content was constant, 

below a depth of 2m, thermal conductivity was also assumed to be constant. The data points for thermal 

conductivity as a function of moisture were taken from an article (Smits et al, 2010) with the assumption 

that the sand was tightly packed. This data was implemented in COMSOL with the function thermal 

conductivity as it varied with moisture content. 
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8.0 APPENDIX B: COMPUTATIONAL METHODS 

8.1 Computation Time 

Computation of a typical solution, such as 1200 h for a nest laid July 1 with 50% shading, took 116 s (1 

minute, 56 seconds), using a physical memory of 1 GB and virtual memory of 1.14 GB.  

8.2 Computational Methods 

When initially running the model with the default free time stepping used by COMSOL, the model 

sometimes encountered an error where the boundary conditions were not incorporated for the full duration 

of the simulation. To resolve this, the solver was switched to a strict time step. The model was run at 

varying maximum time steps to determine the necessary step size where temporal discretization error was 

minimized. 

 

Fig. A5: A time step convergence was performed at a point above the nest in order to determine the 

necessary maximum step size. The default size of 0.1 h does not diverge from smaller step sizes. 

Because all examined maximum step sizes converged, COMSOL's default value of 0.1 h for maximum 

time step was used. Default settings for absolute and relative tolerance were left unchanged. 
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