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ABSTRACT 

The tensile response to uniaxial deformation of polyethylene-based (Tetra-PE) and polyethylene 

glycol-based (Tetra-PEG) networks of various strand lengths with idealized diamond 

connectivity have been studied via atomistic molecular dynamics simulations. Tetra-PE and 

Tetra-PEG diamond networks with the same strand length show comparable maximum 

extensibility but the Young’s moduli and tensile strength of the former are significantly lower 

than those of the latter, consistent with stronger intersegmental attractions in the amorphous 

Tetra-PEG networks. The stress-strain curves show that the stress in short-stranded networks 

increased rapidly and monotonically with strain while for long-stranded networks it increased 

very little at small strain, in a non-monotonic fashion at intermediate strains, and then very 

sharply as the limit of extensibility was approached. Spontaneous partial crystallization of a 

long-stranded Tetra-PE diamond network under supercooling was demonstrated, and the 

resulting system was used to: (1) Estimate its melting point as the temperature where any 

crystalline material disappeared abruptly, and (2) show that the presence of crystalline material 

in the undeformed state leads to higher stress responses upon deformation compared to 

amorphous samples, a result consistent with experimental observations. The spontaneous 

crystallization of Tetra-PEG networks at large supercooling was unsuccessful due to the slow 

motions of the network beads and the prohibitively long crystal nucleation times entailed.



 

 iii 

 

BIOGRAPHICAL SKETCH 

The author, Endian Wang, born in Fujian, China, attended his middle school and high school in 

Karamay, Xinjiang in the northwest of China after moved out from his hometown with his 

parents in 1999. After entering to Dalian University of Technology in 2007, he majored in 

process control in chemical engineering. In 2010, he exchanged to study chemical and bio-

molecular engineering in University of Sydney, Australia. With the help from his undergraduate 

thesis adviser Prof. Tim Langrish, he coauthored with Dr. Debolina, published a research paper, 

entitled “Solid-phase crystallization of spray-dried glucose powders”, which awarded with John 

Brodie Medal. He graduated and received two bachelor degrees from these two universities in 

2013. He obtained his Master of Engineering degree from Cornell University in 2014. He started 

his research under the supervision of Prof. Fernando Escobedo in the same year. 

He studied and enjoyed sketching and oil painting during middle school and high school, and 

would like to continue painting in the near future.  

  



 

 iv 

ACKNOWLEDGEMENTS 

I would like to first thank my thesis advisor, Prof. Fernando Escobedo. He has helped and 

encouraged me throughout the research, his support and wisdom led me to the right way. His 

enthusiasm for scientific research and teaching has greatly motivated me. 

I also would like to thank my thesis committee advisor, Prof. Claude Cohen, who, although 

approaching his retirement, has come to my committee meeting and challenged me with out-of-

expectation questions that reminded me of the gaps in my knowledge. He reviewed my thesis 

paper and kindly offered insightful comments. 

I also would like to thank the current and former Escobedo group members, including Sushmit, 

Sai Pooja, Poornima, Vikram, Mohammed, Christ and Unmukt. Some of them shared their rich 

knowledge in simulation and software, and others expanded my exposure to wider topics and 

research techniques outside my own thesis topics. 

I want to thank my parents. Without their unconditional love and sacrifice, I could have never 

been here today. 

Last but not the least, I want to acknowledge the financial support from the NSF (National 

Science Foundation). 

  



 

 v 

Table	of	Contents	
ABSTRACT	........................................................................................................................................	1	

1.	 INTRODUCTION	.......................................................................................................................	1	

2.	 SIMULATION METHODOLOGY	.............................................................................................	5	
2.1.	 POLYMER DIAMOND NETWORK SYSTEMS	....................................................................................	5	
2.2.	 SIMULATION PROTOCOLS	..............................................................................................................	6	
2.3.	 FORCE FIELD AND POTENTIAL MODEL	.........................................................................................	8	

2.3.1.	 Force Field Parameters for Tetra-PE Systems	......................................................................	8	
2.3.2.	 Force Field Parameters for Tetra-PEG Systems	.................................................................	10	
2.4.	 Order Parameter and Crystal Fraction	..................................................................................	11	

3.	 RESULTS AND DISCUSSION	.................................................................................................	14	
3.1.	 TETRA-PE DIAMOND NETWORK SIMULATIONS	..........................................................................	14	

3.1.1.	 Crystallization behavior	.......................................................................................................	14	
3.1.2.	 Melting Point Estimation in the n=100 Tetra-PE	................................................................	19	
3.1.3.	 Influence of Crystal Content on Stress-Strain Relation	.......................................................	21	
3.1.4.	 Influence of Chain Length on the Stress-Strain Relation	.....................................................	22	

3.2.	 TETRA-PEG DIAMOND NETWORK SIMULATIONS	.......................................................................	27	
3.2.1.	 Mean-Squared-Displacement of the Middle Atoms of Strands and the Crosslinks	..............	28	
3.2.2.	 Uniaxial Stress-Driven Deformation	...................................................................................	30	

4.	 CONCLUSIONS	........................................................................................................................	33	

ACKNOWLEDGEMENTS	..............................................................................................................	35	

REFERENCE:	..................................................................................................................................	36	
SUPPLEMENTAL INFORMATION	.............................................................................................................	41	



 

 1 

 

1. INTRODUCTION 

Branched and crosslinked polymers such as elastomers (rubbers), thermoplastics and organic and 

inorganic gels have played an increasingly important role not only in the traditional fields (i.e., 

textile, automotive and construction industries) [1], but also in more modern biomedical 

applications (i.e., contact lenses, drug delivery systems and artificial articular cartilage) [2]. The 

unique properties of polymer networks have stimulated extensive research to elucidate the 

connection between the microscopic structure and the elastic properties of the material. The 

chemistry and molecular weight of the precursor chains and the extent of interchain connectivity 

of these systems leads to materials with a tunable combination of liquid-like and solid-like 

properties [3], which has fueled a large and still growing number of practical applications in 

various fields.  

It is known that the physical properties of crosslinked polymers are strongly dependent on the 

chemical structure and spatial homogeneity of the network [4]. Therefore, control of the network 

structure of crosslinked polymers has long been investigated by various methods in order to 

improve their thermophysical properties. Several approaches have been advanced in the quest for 

eliminating the inhomogenities in a polymer network. In particular, an idealized class of polymer 

networks of homogeneous and uniform structure denoted as “diamond networks” has been 

studied [5, 6] over the past two decades. In this “chemically” defect-free polymer network, the 

mean topological locations of its crosslinks correspond to those of a diamond lattice sites, with 

each network strand corresponding to the  “bond” between such lattice sites [7]. This diamond 

polymer network has been studied not only in computer simulations [3, 8-11], but it appears to 
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have also been approximated by a synthetic approach [12] that uses the programmed self-

assembly of molecular building blocks made of branched polyethylene glycol (PEG) moieties. 

By combining two symmetrical tetrahedron-like macromonomers of the same size, the resultant 

so-called Tetra-PEG gel is posited to be a fairly homogeneous diamond-like network [13], which 

has been shown to have a high mechanical strength comparable to human articular cartilage [14]. 

Its facile synthesis and high mechanical strength make Tetra-PEG a valuable candidate for many 

biomedical applications, such as drug delivery systems [15] and regenerative medicine [16].  

While many studies have focused on the theoretical and experimental aspects of the diamond-

like polymer networks, our understanding of such systems is still incomplete [8, 17-19]. In 

particular, there are no atomistic simulation studies that have explored how specific chain 

chemistries and interactions influence the mechanical properties of diamond networks. Although 

various simulation techniques have been used in order to model the polymer network of 

diamond-like connectivity, many of the results tend to be rather limited in scope. Escobedo and 

de Pablo [1] investigated the swelling behavior of such networks by using Mote Carlo 

simulations technique. Sugimura et al. [19] developed a network model using a worm-like chain 

(WLC) potential to evaluate the relationship between spatial inhomogenities and mechanical 

properties of Tetra-PEG diamond networks. Aguilera-Mercado et al. [8] studied the uniaxial 

tensile response of a diamond networks made up of semiflexible and block copolymer chains 

using coarse-grained models and showed that such systems can give rise to a novel saw-tooth 

shaped response associated with multiple ordering transitions. While these results have provided 

valuable insights into the microscopic origin of the network elastic behavior, both the coarse-

grained model and the WLC-chain model may not accurately capture some of the important 

details about the molecular interactions that determine their structure and dynamics. As such, 
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those models are inherently inadequate to study processes where, e.g., crystal-to-amorphous 

phase transitions may occur. To the best of our knowledge, no atomistic simulation has been 

reported that employs realistic force-fields to probe the mechanical properties of perfect diamond 

networks, which could be compared with experimental observations on diamond-like networks.  

It is well established that the mechanical behavior of polymers is closely coupled to their 

morphology, which in turn is determined by the conditions during processing [20]. A number of 

polymers have the ability to form crystalline materials at appropriate conditions. To explore the 

mechanical properties of the diamond network whose precursor chains are below or near their 

melting temperature, one can validly consider processing conditions where the undeformed 

sample generated has either (i) an amorphous structure or (ii) a (partially) crystalline structure. 

Although crystallization of polymers has been extensively investigated through various 

experimental techniques including optical microscopy, light scattering, X-ray scattering, and 

atomic force microscopy, the existing results from computer simulations are mainly concentrated 

on small linear n-alkane molecules [21-24] and polyethylene [25, 26]. The effects of crystal 

content on the strength of a polymer diamond network are yet unknown; moreover, it is unclear 

in such systems how chains would fold into crystal lamellae and how the crosslinks could affect 

the extent of crystallization. 

This work aims at exploring the mechanical properties of homogeneous diamond networks of 

specific strand chemistries through molecular dynamics (MD) simulations. Among the many 

appealing chemistries, we have selected first n-alkanes as network strands since they have been 

extensively studied in the literature and are the building block of polyethylene and of other 

important polymers and oligomers [23]. Such networks will be referred to as Tetra-PE networks. 

The second chemistry selected is based on Poly(ethylene oxide) (PEO) as the network strands, 
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motivated by the many experimental studies of Tetra-PEG networks [12].  To study the influence 

of chain length (or degree of polymerization) on the mechanical properties of Tetra-PE and 

Tetra-PEG diamond networks, we perform uniaxial deformation simulations for systems of 

various strand lengths. For selected cases, we also explore the crystallization behavior of the 

network since the difference between the temperature of interest and the melting temperature has 

a significant effect on the proclivity of the networks to undergo strain-induced crystallization. 

Overall, this work attempts to quantify the effects of chain length and polymer morphology on 

the mechanical properties of atomistic models of polymer diamond networks made from simple 

but important monomers, and to provide insights into designs that could enhance such properties. 

The remainder of this manuscript is organized as follows. In sections 2.1 and 2.2 we introduce 

the network system details and modeling protocols, while in section 2.3 we describe the force 

field potential adopted. In section 2.4 we describe the local order parameter used to characterize 

the crystal fraction of the Tetra-PE and Tetra-PEG systems. In section 3.1 we present the results 

for the crystallization of a selected Tetra-PE system and for uniaxial deformation of Tetra-PE 

systems of various chain lengths. In section 3.2 we discuss the effect of chain length of Tetra-

PEG systems on (i) the proclivity to undergo strain-induced crystallization and (ii) the stress 

response to uniaxial deformation, including a comparison with experimental data of the Young’s 

modulus. Finally, we give in section 4 some concluding remarks. Additional details on the 

simulations and results are given in a Supplementary Information (SI). 
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2. SIMULATION METHODOLOGY 

2.1. Polymer Diamond Network Systems  

2.1.1. Tetra-PE Diamond Network 

A total of 7 Tetra-PE diamond network systems were built with degree of polymerization [or 

number of methylene (−CH! −) groups on each network strand] n  = 6, 12, 18, 30, 39, 75 and 

100. Each network consisted of 8 units of diamond cell, so that 64 tetra-functional crosslinks and 

128 chains in each system formed a cubic periodic structure. The n=100 system was simulated 

for studying the isothermal spontaneous crystallization process and the strain-induced 

crystallization. Due to its long chains, this system consisted of only 4 diamond cell units, 32 

crosslinks and 64 strands (the initial dimensions of the simulation box along each axis are such 

that Lx = Ly = 2×Lz) and the uniaxial deformation was performed along the z axis. 

2.1.2. Tetra-PEG Diamond Network  

Consistent with the structure of the ideal network that could be achieved by the experiments with 

Tetra-gels [4, 12, 17-19], we created seven Tetra-PEG ideal diamond networks corresponding to 

different degrees of polymerization of the network strands. The network chains were made of 

poly(ethylene oxide) PEO oligomers; i.e., each end of a −CH!O− [CH!CH!O]! − CH! − chain 

was connected to a carbon atom functioning as a tetra-functional crosslink. The systems had 

degree of polymerization (the number of −CH!CH!O− groups) n ranging from 1 to 40.  The 

systems with n = 1, 3, 5, 9 and 12, contained eight units of diamond cell (64 tetra-functional 

crosslinks and 128 chains), while the systems with n = 24 and 40 contained only four diamond 

unit cells (32 crosslinks and 64 chains).  
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2.2. Simulation Protocols 

All the simulations were performed using the molecular dynamics (MD) simulator LAMMPS 

[27]. The idealized diamond-like network was created with all crosslinks initially lying on the 

lattice points of a diamond lattice. Periodic boundary conditions were used in all directions of the 

orthorhombic simulation box. Each system was initially prepared using an isothermal isochoric 

NVT ensemble to randomize the coordinates of the molecules in the simulation box at 450 K for 

1 ns at density of 0.5 	g ⋅cm
−3 , followed by equilibration in an isothermal isobaric NPT ensemble 

at 303.15 K and 1 atm using the Nosé-Hoover thermostat [28, 29] and Nosé-Hoover barostat  for 

2 ns or until converged values were observed (i.e., properties such as the system density and 

average bending angle reached plateau values). The damping and drag parameters for both 

barostat and thermostat were 100 and 0 respectively. The MD simulation was performed via the 

leapfrog algorithm using a time step of 1 fs.  

To estimate the network melting point for the n=100 Tetra-PE, an amorphous system initially 

prepared at 303 K was equilibrated at 260 K and 1 atm in the NPT ensemble while allowing the 

nucleation and growth of crystalline material. The changes in crystal fraction over the simulation 

time were monitored through changes of a local order parameter (as defined in Subsection 2.4) 

for all beads in the system. After the total crystal fraction in the n=100 Tetra-PE system reached 

a plateau value, the system was taken as the initial configuration to perform NPT simulations at 

different temperatures from 280 K to 360 K. Using this technique (which has been used before 

with linear alkanes [21-23]), an upper bound for the melting point temperature was identified as 

the lowest temperature at which the solid melts completely into a liquid.  

For uniaxial deformation simulations, the stress-strain curve can be obtained via either a strain-

driven (at constant total volume) ensemble or a stress-driven ensemble. In the latter, a constant 
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pressure > 1 bar is applied in the deformation direction (z) while a pressure of 1 bar is applied 

along the orthogonal directions of the simulation box (where deformations are coupled so that 

the box cross section is always a square, i.e., Lx = Ly). We found that stress-strain curves 

obtained via either ensemble were almost indistinguishable as long as the density in the stress-

driven simulations is consistent with the average density of the strain-driven simulations (see Fig. 

S1 in the SI for a relevant comparison). Although the stress-driven ensemble is a better 

representation of typical experimental conditions, the strain-driven ensemble (which assumes a 

material with a Poisson ratio = 0.5) is often favored in deformation simulations [30-32] as it 

allows for faster simulations (noting that, for a given strain, it corresponds to an isothermal 

isochoric or NVT ensemble). Hence, for the results reported hereon, only strain-driven or 

canonical (NVT) ensemble results are reported for the deformation of the Tetra-PE and Tetra-

PEG diamond networks.  

Each deformation simulation in the strain-driven NVT ensemble is conducted so that for any 

elongation along the strain axis the cross-section of the simulation box (perpendicular to the 

applied stress direction) was concertedly contracted. The instantaneous length of the simulation 

box parallel to the direction of applied tension is defined as: 

  (1) 

where  is the strain rate constant (in units of fs-1),  denotes the initial length of the simulation 

box prior to the application of tension and t is the elapsed time (in units of fs). The strain at each 

time step can be calculated as: 

  (2) 

L t( ) = L0 1+ !r ⋅ t( )

	 !r 		L0

ε t( ) = L t( )− L0
L0



 

 8 

During the deformation process, the pressure tensor components ,  and  on each 

dimension of the simulation box were monitored every 2000 time steps, the net tension along the 

deformation direction (z axis) was calculated from [7, 19]: 

  (3) 

where a Poisson ratio  = 0.5 was assumed (appropriate for incompressible rubberlike materials 

[7]). The stress values reported in the stress-strain plots are the averages of the instantaneous 

values taken over strain intervals of Δ = 0.05. 

2.3. Force Field and Potential Model 

2.3.1. Force Field Parameters for Tetra-PE Systems 

The TraPPE- UA (United Atom) force field [33] was chosen for the MD simulation of the Tetra-

PE system. It has been demonstrated that this transferable force field is computationally efficient 

for linear and branched alkanes, and can accurately predict a wide range of thermo-physical 

properties [34]. The TraPPE-UA force field employs pseudo-atoms for all CH! groups 

(0 ≤ x ≤ 4). For our simulations, the non-bonded interactions for CH! united atom and the 

crosslinks carbon followed the simple pairwise-additive Lennard-Jones (LJ): 

  (4) 

The pair-wise LJ diameter  and the energy well depth ε parameter values are tabulated in 

Table S1 in the SI. The cutoff distance  is taken as 0.9 nm. All united atoms in these systems 

Pxx 	
Pyy 	Pzz

σ zz = λ Pzz −
Pxx + Pyy
2

⎛
⎝⎜

⎞
⎠⎟

λ

ε

		

Unonbonded = 4ε ij
σ ij

rij

⎛

⎝
⎜

⎞

⎠
⎟

12

−
σ ij

rij

⎛

⎝
⎜

⎞

⎠
⎟

6⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, rij < rc

σ

rc



 

 9 

have no partial change. The unlike LJ interactions are determined using Lorentz-Berthelot 

combining rules: 

  (5) 

The standard TraPPE non-bonded potential is calculated for all intermolecular interactions 

involving pseudo-atoms separated by four or more bonds. All alkyl group and functional groups 

are typically treated as having fixed bond lengths in the TraPPE-UA force field. However, 

because LAMMPS limits the use of the SHAKE algorithm [35] to restrain the bond lengths [36],  

we adopt here a harmonic potential for the interaction  between bonded pairs of united atoms: 

  (6) 

For all bond types, the 𝑘! constant is 1004.239kJ ∙mol!! ∙ nm!! based on the PYS united atom 

force field described by Paul et al. [37], with equilibrium bond length [34, 38] 𝑟! CH! −

CH! !,!!!,!
= 0.154 nm. Beads separated by two bonds forming the angle θ interact via a 

harmonic bending potential [33]: 

  (7) 

The equilibrium angle 𝜃! = 114° for CH! − CH! − CH!, 𝜃! = 109.47° for CH! − C− CH!, the 

force constants 𝑘! = 1039.302 kJ ∙mol!! for both types of bending angle. The torsional angle 

(φ) potential follows the OPLS force field dihedral function, which is defined as [33]: 

  (8) 

The values for the dihedral force constant were obtained from Stubbs et al. [33]. 

σ ij =
1
2
σ ii +σ jj( ) and ε ij = ε iiε jj( )

1
2

Ubond r( ) = kr2 r − r0( )2

Ubend θ( ) = kθ2 θ −θ0( )2

		
Utorsional φ( ) = 12k1 1+ cos φ( )⎡⎣ ⎤⎦+

1
2k2 1− cos 2φ( )⎡⎣ ⎤⎦+

1
2k3 1+ cos 3φ( )⎡⎣ ⎤⎦+

1
2k4 1− cos 4φ( )⎡⎣ ⎤⎦
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2.3.2. Force Field Parameters for Tetra-PEG Systems 

To simulate Tetra-PEG polymer networks consisting of Poly(ethylene oxide) (PEO) chains, we 

used the modified TraPPE-UA force field [33] with a corrected dihedral potential proposed by 

Fischer et al. [39] [Eq. (9)], which was found  to reproduce well experimental thermodynamics 

properties of liquid 1,2-dimethoxyethane (DME) in Ref. [39] and the diffusion coefficients and 

viscosities [40] of CH!O(CH!CH!O)!CH! PEO chains in Ref. [38]. 

Interactions between the three types of united atoms in the chains (i.e., CH!,CH!,O) were 

described by the TraPPE-UA force field [34]; the corresponding LJ parameters are shown in 

Table S2 in the SI. For Coulombic pairwise interactions, partial charges of 0.25 e, 0.25 e and -0.5 

e were used at the centers of the  CH!,CH! and O united atoms. The van der Waals and 

electrostatic interactions were both truncated at 0.9 nm, while long-tail dispersion corrections 

were treated analytically. The standard Coulombic Ewald method was used to perform the long-

range dispersion summation [27]. A harmonic potential [Eq. (6)] was used for the interactions 

between bonded pairs of united atoms, with equilibrium bond length 𝑟!  of 0.154 nm for 

CH! − CH! !,!!!,!
 and 0.141 nm for CH! − O , consistent with the TraPPE-UA force field [34, 

38]. The bond stretching constant 𝑘!  was 2.92× 105 kJ ∙mol!! ∙ nm!! for both types of bonds 

[23]. Beads separated by two bonds interacted via a harmonic bending potential with energy 

constants 𝑘!  and equilibrium angle 𝜃!  of 𝑘! = 1004.239 kJ ∙mol!!  and 𝜃! = 112°  for 

CH! − CH! − O and 𝑘! = 836.436 kJ ∙mol!! and 𝜃! = 112° for CH! − O− CH!. 

The torsional potential in the TraPPE-UA force field was modified by Fischer et al. [39] by  in 

order to match the conformer population distribution from ab initio data for 1,2-dimethoxyethane 

(DME, n=1), the new torsion potential parameters are listed in Table S3 in the SI: 
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  (9) 

The original TraPPE-UA torsional force field does not describe accurately the gauche energy for 

the COCC dihedral. The modification proposed by Fischer et al. [39] dramatically improves the 

description of conformer equilibria in both bulk liquid and aqueous solution of DME by the 

TraPPE-UA force field. For the Tetra-PE network, we also needed to include a torsional 

potential involving the crosslinking C atom; for this we adopted a TraPPE-UA force field which 

follows the dihedral function in Eq. (8). The relevant torsional potential parameters are tabulated 

in Table S4 in the SI. 

The pair-wise LJ diameter σ for the carbon atom at the crosslinks was σ C = 0.64 nm and the 

energy well depth ε was ε C = 0.004157 kJ ∙mol!! [41]. There is no partial charge for this 

type of carbon atom. 

We have built two systems (each contains 50 and 150 PEO molecules for n = 5 and n = 9) to 

validate the implementation of force filed described above for simulating the Tetra-PEG systems. 

After each system reached equilibrium in an NVT ensemble (T = 303.15 K, with densities set 

corresponding to 10 bar), the mean square end-to-end distance  of the PEO chains were 

calculated by averaging 100 configurations from the last 1 ns. The simulation values agreed well 

with those from the literature [42] (see Table S5 in the SI).  

2.4. Order Parameter and Crystal Fraction 

To characterize the crystal fraction of the Tetra-PE diamond network during the crystallization 

simulations, we adopted the algorithm described by Yi and Rutledge [24] based on a local order 

Utorsional φ( ) = ki 1+ cos iφ( )⎡
⎣

⎤
⎦

i=0

7

∑

r2
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parameter to identify ordered segments in the system. The local 𝑃! 𝑖  order parameter of 𝑖𝑡ℎ 

bead is defined as: 

  (10) 

where 𝜃!" is the angle between the vector from the (𝑖 − 1)th bead to the (𝑖 + 1)th bead, and the 

vector from the (𝑗 − 1)th bead to the (𝑗 + 1)th  bead, and the average is over all the 𝑗 

neighboring beads of bead 𝑖 that lie within a cutoff distance 𝑟!" < 𝑟!!. The beads with local 𝑃! 

near 0 are considered to belong to a disordered amorphous region while beads with 𝑃! = 1 

corresponds to a perfect crystalline state. The global order parameter 𝑃!  was also used to 

quantify the ordering of the system, which is obtained by the following averaging over all pairs 

of  (𝑖, 𝑗) beads in the system regardless of distance: 

  (11) 

Besides the cutoff distance 𝑟!!, a threshold value 𝑃!,!! should be chosen so that beads with local 

𝑃! greater than 𝑃!,!! can be assigned to the crystal phase. The crystal beads 𝑖 and 𝑗 are assigned 

to the same crystal nucleus if the distance between those two beads 𝑟!" is less than a threshold 

value 𝑟!!. Suitable values for these three parameters, 𝑟!!,𝑃!,!! and 𝑟!! have been determined 

based on simulation results for n-eicosane [24]; for this work we used  𝑟!! = 2.5𝜎,𝑃!,!! =

0.4 and 𝑟!! = 1.3𝜎. We built the n-eicosane system using the TraPPE-UA force field to validate 

these parameter values and to reproduce the local order 𝑃! 𝑖  probability distribution for a 

system with one half melted material and the other half crystalline material (see Fig. S2 in the SI), 

following the method described by Yi and Rutledge [24]. 

P2 i( ) =
3cos2θij −1

2
j

		
P2 =

3cos2θij −1
2

i≠ j
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Although the global order parameter of Eq. (11) has been used to determine the melting point of 

a linear alkane system by Yi and Rutledge [23], it did not capture properly the crystallization 

behavior for our Tetra-PE network system. Indeed, low values of the global 𝑃!  may not 

necessary indicate a low crystal fraction in our systems but reflect the presence of multiple 

crystalline clusters with different alignment (see Figs. S8-S9 in the SI), which may arise due to 

the constraints associated with the crosslinked structure. Hence we used the local order 

parameter method to quantify the crystal fraction in the Tetra-PE network, so that all beads with 

𝑃! 𝑖 ≥ 0.4  are considered to belong to the crystal phase.  

While the local P2 order parameter described above is suitable to identify segments in chains that 

crystalize into zig-zag conformations (as in alkanes), it is unsuitable to monitor the extent of 

crystallization in chains packing into helical conformation as in the PEO chains [43]. Hence, for 

Tetra-PEG networks we used a variant of the local 𝑃! order parameter that has been applied to 

describe the orientational order of helical polypeptide liquid crystals [44], wherein  𝜃!" in Eq. (10)  

is defined as angle between the vector from the 𝑖th bead to the (𝑖 + 𝑑) th bead, and the vector 

from the 𝑗th bead to the 𝑗 + 𝑑  th bead, and the average is over all the 𝑗 neighboring beads of 

bead 𝑖 that lie within a cutoff distance 𝑟!" < 𝑟!!. The choice of “d” determines the “coarse-

graining” degree of the helical chains and was found by analyzing a half-melt, half-crystal 

system of 576 PEO (n=3) molecules using the same approach described above for the n-eicosane 

system (see Fig. S3 in the SI). The PEO crystal was equilibrated at 276 K and P = 1 atm while 

the amorphous region was relaxed at T = 500 K and P = 1 atm.  As the value d increases, more 

beads are assigned to the crystal phase (𝑃! 𝑖 ≥ 0.4) as shown by the P2 probability distributions 

shown in Fig. S4 in the SI. For our ensuing simulations of Tetra-PEG networks, we will use d = 
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6 as it is the minimal value (least coarse-graining) that correctly identified all the united atoms 

belonging to the crystalline helical PEO domain. 

3. RESULTS AND DISCUSSION 

3.1. Tetra-PE Diamond Network Simulations 

3.1.1. Crystallization behavior  

While Tetra-PE diamond networks with various strand lengths are of interest, for studying the 

crystallization behavior at temperatures below the melting point, we mainly focus on an n=100 

Tetra-PE system as its strands are sufficiently long to form crystal lamellae structure within a 

reasonable simulation time.  

Fig. 1a shows the initial fully extended configuration of the n=100 Tetra-PE diamond network, 

and Fig. 1b shows the same system upon collapsing into a high-density amorphous network in a 

2 ns simulation at T = 303 K, P = 1 atm.  After equilibration, the probability distribution of bond 

lengths, bending angles and torsional angles were calculated by averaging the last 10 simulation 

snapshots obtained 10000 fs apart. These probability distributions agreed well with the expected 

Boltzmann distributions (see Figs. S5-S7 in the SI).  
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         (a)
              (b)  

Figure 1 (a) The initial fully extended configuration of the n=100 Tetra-PE diamond network. (b) The same system 
upon collapsing into a high-density amorphous melt in a 2 ns simulation at T = 303 K, P = 1 atm. 

To prepare a representative system containing crystalline material, we performed MD 

simulations monitoring the nucleation and growth of crystalline domains in the n=100 Tetra-PE 

diamond network initially in the amorphous state. The crystallization kinetics strongly depends 

on the degree of supercooling which is the difference between the working temperature T and the 

melting point Tm. Using as a rough guide the experimental values of Tm ≈ 388 K [45] and Tg ≈ 

143 K [46] for the glass transition temperature of for linear polyethylene, we chose a supercooled 

state with temperature T = 260 K for our crystallization simulations (initially prepared by 

gradually cooling a pre-equilibrated sample at 303 K). Fig. 2 shows the increase in crystal 

fraction as the system was equilibrated at 260 K and P = 1 atm. After the crystal nucleus emerges 

[see Fig. 3 (left)], the crystal fraction grows approximately linearly with time, up to about 60 ns 

when the growth of lamellae begins to slow down. During crystal growth, the network strands 

begin to align with the neighboring polymer chains, aggregating into several crystal clusters [see 

Fig. 3 (right)]. The size of the crystal clusters continued to increase and merge into larger 
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lamellae. The simulation was stopped when the crystal fraction had reached a plateau, in our case 

corresponding to about 40% crystallinity, as subsequent crystal growth is very slow and would 

require a very large investment of computing resources. Note, however, that one would not 

expect complete crystallization given the topology of the network and the presence of crosslinks, 

which tend to be excluded from ordered domains. Snapshots of the resulting semicrystalline 

network with unwrapped coordinate at 120 ns are shown in Fig. 4a; the hexagonal packing of the 

polyethylene chains formed within a lamellar structure [47] is evident from the side view in Fig. 

4b. 

Since the kinetics of crystallization of the network depend on the state of strain of the sample, we 

also repeated the simulation starting with an amorphous system at a strain of  = 1 (keeping 

constant the length of the box along the deformation direction) at T = 260 K and P = 1 atm. The 

results (also shown in Fig. 2) exhibit a faster crystal growth during the first 80 ns (e.g., to attain 

15% crystallinity it now only took 25 ns while it took 60 ns in the unstrained sample), followed 

by a slow growth thereafter. However, the total crystal fraction at the end of 200 ns (namely ~ 

40%) is essentially the same in both cases.  

Finally, we note that Tetra-PE networks with n<100 are more difficult to (partially) crystallize. 

For example, simulations at 260 K and 1 atm show that an n=30 Tetra-PE network produced less 

than 1% of crystalline material after 190 ns while an n=18 Tetra-PE network formed no 

detectable crystalline trace after 220 ns. This is partially due to the local disordering effect that 

crosslinks have (akin to branching points in PE), and since shorter n networks have a higher 

concentration of crosslinks, they also experience a larger hindrance to crystallization. Besides 

such structural effects, a segmental dynamic slowing down is also detectable in networks with 

shorter strands. This can be quantified by the short time behavior of the mean-squared-

ε
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displacement (MSD) of the middle atoms of the network strands (MSDm) and of the crosslinks 

(MSDx) of the Tetra-PE networks of various strand lengths (Fig. 5) at T = 260 K and P = 1 atm. 

Clearly, the segmental mobility (as measured, e.g., by the MSD for a fixed simulation time) - 

needed to cooperatively align multiple strands - decreases rapidly with smaller n. 

 

Figure 1 Evolution of the crystal fraction with time in the n=100 Tetra-PE diamond network at T = 260 K and P = 1 
atm (black: the undeformed sample; red: the pre-deformed amorphous system kept at ε = 1). 
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Figure 2 Spontaneous crystallization in the n=100 Tetra-PE diamond network at T = 260 K and P = 1 atm. Left 
Emergence of aligned bundles after 1 ns of equilibration. Right: Crystal clusters forming a larger lamellae after 250 
ns of equilibration when the system reached about 40% crystallinity. Red/cyan denote amorphous/crystalline 
segments. All atoms have been wrapped into the simulation box.  

 

         (a)
              (b)  

Figure 3 Two orthogonal perspectives of the lamellar structure formed in the n=100 Tetra-PE diamond network at 
260 K (40% crystallinity), with chains shown in unwrapped representation. (a) The polyethylene chains aggregate to 
form locally folded domains. (b) The side view of the system showing the expected hexagonal packing of chains.  
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Figure 5 Mean-squared-displacement of the middle atoms of the network strands (solid line) and of the crosslinks 
(dashed line) of amorphous Tetra-PE diamond networks equilibrated at T = 260 K, P = 1 atm, with degree of 
polymerization n = 6 (red), 18 (yellow), 30 (blue), and 100 (green). All samples were in the amorphous state during 
the simulations. The complete data are shown in Fig. S10 in the SI.  

3.1.2.  Melting Point Estimation in the n=100 Tetra-PE  

The equilibrium melting point Tm is a key reference in analyzing the crystallization behavior of 

the Tetra-PE network system. By monitoring the changes in the degree of crystallinity of a 

network with an initial 40% crystallinity (as described before), we estimated Tm by using MD 

isothermal-isobaric simulations to equilibrate the system at different temperatures (and P = 1 

atm). The simulations were 310 ns long and the equilibrium density and crystal fraction were 

obtained by averaging the last 10 snapshots collected 10000 fs apart. The normalized density and 

the crystal fraction of the system at different temperatures are plotted in Fig. 6 (the evolution of 

crystal fraction over the last 20 ns of simulation is shown in Fig. S9 in the SI). The abrupt change 

in density and crystal fraction in Fig. 6 signals the presence of a phase transition from a stable 



 

 20 

semicrystalline state to a fully amorphous state. Based on these results, the melting point Tm was 

estimated to be between 315 K and 320 K.  

Luo et al. [48] suggested that the melting temperature of polyethylene would decrease with 

increasing of degrees of branching (DB). The simulated equilibrium density of the n=100 Tetra-

PE system is 0.875 	g ⋅cm
−3  at T = 280 K, P = 1 atm. For polyethylene with density of 0.850 

	g ⋅cm
−3 at 273 K and 1 atm, molecular weight of 110.1 kg ⋅mol−1  and DB = 0.258, the 

experimental Tm is 319.3 K [48], a value that suggests that the estimated Tm for our network is 

reasonable. It is worth noting that the TraPPE-UA force field was originally developed to 

reproduce vapor-liquid coexistence properties of fluids [49] (not solid-liquid coexistence 

properties) and hence one should not expect Tm estimates to be very accurate.  

 

Figure 6 The normalized density and crystal fraction of the n=100 Tetra-PE diamond network equilibrated at 
different temperatures. 
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3.1.3. Influence of Crystal Content on Stress-Strain Relation 

To study the effect of crystal content on the stress-strain relation, we performed uniaxial 

deformation simulations on two n=100 Tetra-PE systems having different initial crystal fraction 

in the undeformed state: (1) A purely amorphous sample pre-equilibrated at 360 K and 1 atm, 

and (2) the semi-crystalline system with 40% crystal fraction obtained at 260 K (as described 

above). The uniaxial deformation was performed using an NVT ensemble at T = 260 K and 

strain rate = 2.5 × 10-6 fs-1. This comparison is in line with the assumption that it is 

experimentally possible to process polymer samples to attain different extents of crystal content 

at a temperature below the melting point. 

Our results shown in Fig. 7 indicate that the sample with higher initial crystalline fraction 

exhibits a higher stress at the same strain during deformation. This is consistent with typical 

trends observed experimentally [50]; e.g., the tension in an elongated rubber that has undergone 

crystallization during stretching has been found to be substantially greater than in a similar 

rubber in which no crystallization occurs at the same elongation [51]. This is because the 

presence of crystal domains increases the coupling among the conformations of the multiple 

strands connected to them, causing an additional resistance to deformation. Note that both 

samples gradually increase the amount of crystalline material during elongation, a process whose 

kinetics likely depends on strain rate. 

A distinct feature of the stress-strain curves in Fig. 7 is a drastic increase in the tensile response 

at high strain values (near  = 13), where all chains in the network become highly stretched, 

while the crystal fraction approaches unity. Since all of our simulations use harmonic potential 

for bonding interactions without a bond breakage mechanism, the stress would keep increasing 

as the bonds continue to be stretched further. 

	 !r
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We have observed that the deformation process exhibits large hysteresis; that is, when the system 

is allowed to relax (by removing any strain constraint), the deformed polymer network does not 

recoil back to its unstrained state. For instance, a sample of n=100 Tetra-PE deformed to  = 6 

that was relaxed under constant pressure (P = 1 atm) conditions along all axes at T = 303 K only 

recoiled by 3.5% after 20 ns. This is likely a consequence of the irreversible nature of the strain-

induced crystallization which tend to “freeze” a particular structure for the chains; this 

observation is also consistent with simulation results of Aguilera et al. [8] where pronounced 

hysteresis was also observed between loading and unloading runs of coarse-grained diamond 

networks that formed multiple smectic domains upon straining. 

 

Figure 7 Stress-strain and crystal fraction vs. strain from uniaxial deformation simulations of the n=100 Tetra-PE 
diamond network using an NVT ensemble at T = 260 K and strain rate 𝑟 = 2.5×10!! fs-1. Color identifies 
undeformed state: Black = amorphous sample; red = semi-crystalline system with 40% crystal content.  

3.1.4. Influence of Chain Length on the Stress-Strain Relation 

To understand the effect of chain length on the stress-strain relation, we performed uniaxial 

deformation simulations for 7 different Tetra-PE diamond networks of various strand lengths n 

ε
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in the strain-driven (NVT) ensemble at T = 303 K. Since the melting point temperature typically 

increases with polymer molecular weight for short chain system [52],  the melting point 

temperature of Tetra-PE systems with n<100 would be expected to be lower than that of n=100 

Tetra-PE system. This trend is only a rough guide since its application is questionable to polymer 

networks whose molecular weight can be seen as being essentially “infinite” (regardless of n). 

With such a caveat notwithstanding, we surmise that at 303 K all systems are likely either above 

their Tm or so mildly undercooled that the amorphous states is metastable (and hence it is 

experimentally viable to process them into amorphous samples). Accordingly, the systems 

prepared for our simulations were in a fully amorphous state, i.e., the crystalline fraction is zero 

at the undeformed state. 

The uniaxial deformation simulations were carried out at a constant engineering strain rate of = 

2.5× 10-6 fs-1 until the network strands were fully stretched and aligned with the deformation axis. 

We performed uniaxial deformation simulations for the n=100 Tetra-PE systems at a strain rate 

ten times higher and found that it has some influence in the stress response; i.e., the higher strain 

rate gives higher stress values as well as lower crystal fraction (for a given strain) than those for 

the lower strain rate, an effect that is coupled to the concurrent strain-driven crystallization 

process (see Fig. S11 in the SI). While the stain rate = 2.5× 10-6 fs-1 is still very large compared 

to typical experiments, it is near the lower end of values that have been employed in similar 

simulation studies. Fig. 8 shows the stress-strain curves for Tetra-PE networks of various strand 

lengths. The initial linear regions of the stress-strain curves of the systems tend to overlap, 

suggesting that the Young’s modulus of the diamond networks, measured as the ratio of stress to 

strain at small strains, is weakly dependent on the degree of polymerization of the network 

	 !r

	 !r
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strands (see Table S6 in the SI). The value of n affects primarily the maximum elastic 

extensibility of the diamond network.  

 

Figure 8 The dependence of stress-strain behavior on degree of polyermization of the Tetra-PE diamond network 
strands at T = 303 K. The predictions of Eq. (12) for the strain 𝜀∗ where the upturn in stress occurs are plotted as 
vertical dash lines.  

Despite the noise in the stress data at low strains, it is possible roughly estimate the Young’s 

modulus in the linear regime for 75  n  100: E ~ 0.01 GPa (see Fig. S12 in the SI), a value 

that is comparable to silicone elastomer (E ~ 0.011 GPa) [53] and Ethylene vinyl Acetate (EVA) 

copolymers (E ~ 0.012 GPa) [54]. The stress-strain curves show that as the strand length 

increases, the Young’s modulus decreases slightly, indicating that the network becomes more 

elastic and softer.  

Since the diamond network is homogenous and free of trapped entanglement, the chains can 

unravel and align completely without trapping entanglements upon stretching. Our amorphous 

≤ ≤
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polymer diamond networks hence exhibit a small stress response (i.e., soft response) over a wide 

range of strains where network chains are allowed to stretch while freely inter-dispersing. 

For large deformations where chains become highly aligned with the deformation axis, the 

crosslinks of the diamond network distribute evenly into different segregated groups. For 

example, Fig. 9 shows the n=12 Tetra-PE diamond network at strains of 2.0 and 2.5, where the 

crosslinks segregate into eight distinct domains. This segregation phenomenon begins to happen 

before the stress upturn sets in, and it has been observed for all strand lengths simulated. 

Segregation of crosslinks and smectic chain domains was also observed by Aguilera et al. [8] 

upon uniaxial deformation of a diamond network with coarse-grained semiflexible chains, where 

the number of such domains increased with strain through discrete events, each eliciting a spike 

in stress and hence producing a “saw-tooth” stress response. It is unclear why such a saw-tooth 

behavior is absent in our systems, but it could be a reflection of the importance of molecular 

details in shaping microstructure and in how strain-induced structural rearrangements couple 

with stress. 

 (a)  

 

       (b)  
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Figure 9 Snapshot of an n=12 Tetra-PE diamond network deformed at the strain of: (a)  ε = 2.0 and (b)  ε = 2.5. The 
crosslinks (shown in red) segregate into eight separate domains.  

The rapid upturn in stress signals the point where all network strands are almost completely 

stretched. Since there is no bond breaking mechanism introduced in our systems, the stress keeps 

increasing as all bonds are stretched further. In reality, bond breakage will start occurring some 

time after the stress upturn appears. Note, however, that the absence of topological defects in 

these networks implies that at high elongations no weak links will initiate breakage events and 

hence all chemical bonds will be concurrently engaged, potentially leading to very high ultimate 

stresses.  The tensile strength, which is defined as the maximum tensile stress a sample can take 

before failure, is conservatively estimated for our systems at the point right before the stress 

upturn occurs. For the n=100 Tetra-PE diamond network this corresponds to ~200 MPa, which is 

significantly higher than that of low density polyethylene (LDPE) (𝜌 = 0.925 	g ⋅cm
−3 ) which is  

9.1 MPa [55].  

The strain  where the upturn in stress occurs is a metric of the polymer extensibility and can be 

related to the strand length as follows. Assuming that all Tetra-PE systems have the same 

equilibrium density ρ at 0.875 	g ⋅cm
−3  and that the length of the box L*  along the deformation 

axis at the strain  is equal to the total length of 8 groups of fully stretched strands, then: 

 
 

(12) 

where the bond length lb  is assumed to be 1.2 Å by taking account the zig-zag conformation of 

the chain backbones and the projections of the bonds along the z axis; 𝑀!!! = 14 g ∙mol!!, 𝑁! is 

Avogadro constant; hence the coefficient is ~ 0.635. Equation (12) is in line with the empirical 
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expression often used to determine the experimental elongation ratio at break  for networks 

which can be expressed as [18]:  ~ Nc
0.71 where Nc is degree of polymerization, noting that 

elongation  and strain  are related by: 

   

The predictions of strain  where the stress upturn occurs based on Eq. (12) agree well with 

simulation results (see dashed lines in Fig. 8). 

3.2. Tetra-PEG Diamond Network Simulations 

A total of 7 Tetra-PEG diamond network systems were built with degree of polymerization [or 

number of (−CH!CH!O−) groups on each network strand] n  = 1, 3, 5, 9, 12, 24 and 40. The 

initial fully extended configuration of an n=5 Tetra-PEG diamond network and the configuration 

upon collapsing into an amorphous melt in a 2 ns simulation at T = 303 K, P = 1 atm are shown 

in Fig. S13 in the SI.  

The equilibrium density and box dimension of Tetra-PEG diamond networks after 2 ns 

simulation at T = 303 K and P = 1 atm are shown in Table 1. The equilibrium density of the 

n=40 Tetra-PEG system is close to the experimental density (ρ = 1.17 	g ⋅cm
−3 ) of a dried Tetra-

PEG amorphous material with molecular weight of its pre-polymers Mpre = 10 kg ⋅mol−1

corresponding to degree of polymerization n=110 on each network strand [4]. 

Table 1 Simulation results of Tetra-PEG diamond networks (n = 1 to 40) at T = 303 K and P = 1 atm; N indicates 
the number of united atoms in each system. The equilibrium density is the average of 100 configurations from the 
last 1 ns after the density reached a plateau.   
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3.2.1. Mean-Squared-Displacement of the Middle Atoms of Strands and the 

Crosslinks  

To estimate the melting point Tm of Tetra-PEG diamond networks, we attempted crystallization 

simulations of amorphous Tetra-PEG diamond networks at a supercooled temperature of T = 260 

K at P = 1 atm (for reference, the experimental Tm for PEO with n=68 range between 332.2 K to 

333.5 K, with Tg ≈ 213 K [56]). However, 220 ns long simulations failed to seed any detectable 

amount of crystalline material. This failure correlates with our observation of simulation 

trajectories that show that the motions of the network beads in these systems are significantly 

slower than those of the Tetra-PE systems at the same conditions. To quantify this difference, we 

simulated the mean-squared-displacement of the middle atoms of the network strands (MSDm) 

and of the crosslinks (MSDx) of Tetra-PEG networks at T = 260 K and P = 1 atm (Fig. 10) and 

compared them to those for the Tetra-PE networks shown in Fig. 5. In general, the values for 

either MSDm or MSDx at any given time are over an order of magnitude larger for the Tetra-PE 

systems than for the Tetra-PEG systems (see also comparison in Fig. S15 in the SI). Physically, 

this difference seems to be rooted in the stronger Coulombic intermolecular interactions that 

physically associate the PEO segments (interactions absent in the PE strands). For all strand 

lengths we simulated for the Tetra-PEG networks, the motions of the network beads are 

significantly limited, which hinders chain folding and realignment, thereby inhibiting the 

n N Equilibrium	Density	(g/cm3) Box	Dimension
1 832 1.053	±	0.042
3 1600 1.119	±	0.024
5 2368 1.153	±	0.019
9 3904 1.156	±	0.016
12 5056 1.157	±	0.014
24 4832 1.166	±	0.015
40 7904 1.166	±	0.011

Lx	=	Ly	=	Lz	
(Cubic	Box)

Lx	=	Ly	=	2	x	Lz	
(Half	Cubic	Box)
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crystallization process (not unlike the situation we described before for short-stranded Tetra-PE 

networks). Although we could attempt to simulate Tetra-PEG systems with much longer n, the 

larger system sizes associated with it would create additional challenges (note that the effective 

strand length –in terms of number of united atoms - of an n=40 Tetra-PEG networks is 

comparable to that of an n=123 Tetra-PE network). We hence forsake the estimation of a melting 

transition for Tetra-PEG networks given that spontaneous crystallization simulations at large 

supercooling would involve a prohibitive investment of our current computing resources. As an 

imperfect surrogate, we did estimate the melting temperature Tm of PEO chains with n=30 to be 

between 350 K to 360 K (as described in Figs. S16-S17 of the SI), which suggest that networks 

at room temperature could contain semicrystalline material. 

 

 

Figure 10 Mean-squared-displacement of the middle atoms of the network strands (solid line) and of the crosslinks 
(dash line) of amorphous Tetra-PEG systems equilibrated at T = 260 K, P = 1 atm, with degree of polymerization n 
= 3 (red), 9 (blue), 12 (yellow), and 40 (green). The complete data are shown in Fig. S14 in the SI. 
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3.2.2. Uniaxial Stress-Driven Deformation 

Based on the simulation protocol described in Section 2.2 for simulating Tetra-PE diamond 

networks, we performed uniaxial deformation simulations for 7 different amorphous Tetra-PEG 

diamond networks to investigate the effect of the chain length on the stress-strain relation. Fig. 

11 shows the stress-strain curves obtained for a strain rate of = 2.5× 10-6 fs-1 at 303 K. The 

predictions for the strain  where the upturn in stress occurs suggests that the Tetra-PEG 

networks have an extensibility similiar to the Tetra-PE networks having same strand molecular 

weight (see also Fig. 11). Similar to Tetra-PE networks, the initial partial overlap in the stress-

strain cuves of the Tetra-PEG networks shows that at low strain, the Young’s modulus is weakly  

dependent on the length of the network strands (see also Table S7 in the SI). 

However, the Young’s moduli of Tetra-PEG diamond networks are nearly 10 times larger than 

those of Tetra-PE systems having similar strand molecular weight, which suggests that Tetra-

PEG diamond networks are significantly stiffer than their Tetra-PE conterparts at the amorphous 

state. The Young’s modulus of an n=40 Tetra-PEG diamond network (E ~ 0.14 GPa) (see Fig. 

S18 in the SI) is comparable to that of the ionomer Nafion (E ~ 0.1 GPa) [57]. Katashima et al. 

[18] reported that the Young’s modulus for a completely dried amorphous Tetra-PEG (Mpre = 10 

K, n ≈ 110) obtained at 55 oC was about 4 MPa, which is significantly smaller than 140 MPa for 

our n=40 Tetra-PEG network. The stress-strain curves for Tetra-PEG systems of various strand 

lengths show that systems with longer chain length have lower elastic Young’s modulus, hence 

the Young’s modulus of the n=40 Tetra-PEG network is expected to be much larger than that of 

the experimental amorphous, dried sample of Tetra-PEG having n=110. Moreover, as the amount 

of defects in a network increases, the stress response to strain decreases [19];  since a well 
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synthesized Tetra-PEG material typically has at least 5% of topological defects [13], one would 

expect a higher Young’s modulus from our defect-free Tetra-PEG diamond network. 

Our Tetra-PEG diamond networks have estimated tensile strengths (the maximum stress a 

network can take “before” the stress upturn occurs in the stress-strain curve) between 4 and 6 

GPa, which is much larger than the 0.2 GPa of Tetra-PE diamond networks. The tensile strength 

of Tetra-PEG diamond network would also be larger than previously reported values for 

composite fibers of single-walled nano-tubes (SWNTs, with tensile strength of 1.8 GPa [58]), 

and for spider silk with 1.1 GPa [59]. 

  

Figure 11 The dependence of stress-strain behavior on degree of polyermization of the Tetra-PEG diamond 
networks. The predictions of Eq. (12) for strain ε* where the upturn in stress occurs are plotted as vertical dash lines. 

An interesting feature in Fig. 11 is the “stress hump” that appears in the stress-strain curve 

between the linear region and the stress upturn. To understand the origin of this feature, we 

monitored the change in crystal fraction during deformation for the n=24 Tetra-PEG diamond 
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network at 303 K, using the modified local order parameter described in Section 2.3.3, as shown 

in Fig. 12. The point when the value of crystal fraction reaches unity indicates that all the helical 

PEO chains have aligned with the deformation axis and have fully crystallized. Further 

deformation causes a transition of the network strands from helical into zig-zag conformation [43, 

60] (see also Fig. 13). The “stress hump” in the stress-strain curve is hence due to the resistance 

associated with the deformation of helical PEO chains which act like “springs”. Note that these 

“stress humps” would tend to be smeared out for longer chain lengths and for larger systems 

sizes. Finally, we note that at the high strains where these humps happen, the crosslinks 

segregate into 8 groups in a manner similar to that seen before for the Tetra-PE networks (in Fig. 

13 the crosslink groups do not appear as only a small portion of the sample is shown for clarity).  

 

Figure 12 Stress-strain curve (black) and crystal fraction (red) during the elongation of an n=24 Tetra-PEG diamond 
network at T = 303 K. 
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 (a)   

(b)  

Figure 13 Network strands of the n=24 Tetra-PEG diamond network: (a) at strain ε = 9.3 showing helical 
conformations and (b)  at strain ε = 12 showing zig-zag conformations. In both cases the left panel shows a view 
into the deformation axis and the right panel shows a partial side view along the deformation axis. 

 

4. CONCLUSIONS 

In this study, we investigated the mechanical properties of Tetra-PE and Tetra-PEG diamond 

networks of various strand lengths using atomistic molecular dynamics simulations based on 

realistic force field potentials. Since such properties are affected by the presence of or proclivity 

to form crystalline material in the undeformed samples, we examine first whether (semi) 

crystalline networks could be prepared and their melting behavior characterized. To estimate the 

melting point of the Tetra-PE diamond networks, we prepared a semi-crystalline sample of an 

n=100 Tetra-PE diamond network and identified the temperature at which the crystal fraction in 

the system changed abruptly (signaling a phase transition from a stable semi-crystalline state to a 



 

 34 

fully amorphous state). The melting point Tm thus obtained was consistent with experimental Tm 

values for branched polyethylene-based materials.  

Through the exploration of the effect of crystal content on the stress-strain relation of the Tetra-

PE networks, we found that the sample with higher crystal fraction exhibits higher stress at the 

same strain during deformation, a result consistent with experimental observations with 

elongated rubbers undergoing crystallization during stretching.  

Examination of the mean-squared-displacement of the middle atoms of the network strands and 

of the crosslinks of Tetra-PE and Tetra-PEG diamond networks showed that short strand lengths 

hinder chain folding and inhibit the crystallization process in unstrained amorphous samples. It 

also revealed that the chain motions of Tetra-PEG diamond networks, necessary for spontaneous 

chain ordering, are significantly slower than those of Tetra-PE diamond networks having similar 

strand molecular weight. Crystallization simulations of Tetra-PEG networks at supercooled 

conditions were unsuccessful for the system sizes and simulation lengths that were practicable 

with available computational resources.  

Simulations of the stress-strain relation obtained from uniaxial deformation of Tetra-PE and 

Tetra-PEG networks of various strand lengths revealed that the Young’s modulus weakly depend 

on the length of the network strands at low strain for both chemistries. Tetra-PE and Tetra-PEG 

diamond networks with the same strand length have comparable maximum extensibility but the 

Young’s moduli of the former are significantly lower than those of the latter, a reflection of 

stronger intersegmental interactions in the amorphous Tetra-PEG networks. The high tensile 

strength that such defect-free diamond networks could attain, suggests that these materials would 

exhibit super-toughness qualities that hold great appeal in a broad range of applications. 
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Our highly idealized model provides a starting point for the systematic study of near-perfect 

diamond networks to assess the effect of topological defects, chain length polydispersity, trapped 

entanglements, and different monomer chemistries. Future studies could therefore consider 

realistically generated network samples by using molecular simulations to mimic the 

crosslinking process [61-63]. Ultimately, this and follow-up studies will provide guidance to the 

design and analysis of novel polymer networks with desirable super tensile properties.  

Since most of the reported experimental results of Tetra-PEG have been obtained for samples 

swollen in water (i.e., gels), we are unable to use them for comparisons with our results (which 

are restricted to completely dried systems). It would be of interest to develop simulation models 

that would allow studying the swelling behavior and mechanical properties of Tetra-PEG gels; 

e.g., by using suitable parameterized force fields that account for solvation of chains in (implicit) 

water. Research along these lines is under way.  
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Supplemental Information 

Table S1 Lennard-Jones Potential for Tetra-PE systems. 

 

Table S2 Lennard-Jones Potential for Tetra-PEG systems. 

 

Table S3 Dihedral parameters in the Modified TraPPE-UA force field. 

 

Table S4 Dihedral parameters for crosslinks. 

 

Table S5 Validation of modified TraPPE-UA force field using mean squared end-to-end distance 𝑟!  of the PEO 
chains. 

 

Table S6 The Young’s moduli of Tetra-PE systems and different polymer materials (a: [64], b: [54] and c: [53]). 

ε"(kJ/mol) σ"(nm)
CH2 0.3825 0.395
C 0.004157 0.640

ε"(kJ/mol) σ"(nm)
C 0.004157 0.640
CH2 0.3825 0.395

CH3 0.8148 0.375
O 0.4593 0.280

i!=!0 1 2 3 4 5 6 7
CHx.O.CHy.CHy .0.2539 .5.15997 .0.69711 5.35013 0.80312 0.28307 0.09526 .0.05797
O.CHx.CHx.O .7.75967 7.58526 6.70523 8.40071 0.63221 0.11063 0.35962 0.01683

ki(kJ/mol)

i !=!1 2 3 4
O(CH2(C(CH2 12.28832 (0.88701 12.80304 0
C(CH2(O(CH2 12.06164 (2.72295 9.282204 0

ki(kJ/mol)

PEO (n) number of chains ρ (g/cm3) <r2> (nm2) ρ (g/cm3) <r2> (nm2)
n=5 N=50 1.016 1.724 1.014 1.691
n=9 N=150 1.056 3.419 1.056 3.396

 Published Results Simulations Results
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Table S7 The Young’s moduli of Tetra-PEG systems and different polymer materials (a: [65], b: [57]).  

 

 

Figure S1 Stress-strain curves obtained from uniaxial deformation simulations of an n=9 Tetra-PEG amorphous 
network using (i) strain-driven ensemble at T = 303 K (black line), and (ii) stress-driven ensemble at T = 303 K, 
𝑃!! = 𝑃!! = 1 bar (red line). 

Number	of	
CH2	Unit

Molecular	Weight	of	
Network	Strand

Young's	Modulus	
(GPa)

Comparing	Polymer	
Materials

Young's	Modulus	
(GPa)

6 85 0.191
12 170 0.0762
18 255 0.0492
30 425 0.0261
39 553 0.0254
75 1063 0.0122
100 1417 0.0116

Ethylene-Vinyl	
Acetate	(EVA) 0.012c

Rigid	Polymer	Foam	
(HD) 0.138	a

Silicone	Elastomers 0.011b

Number	of	

CH2CH2O	Unit

Molecular	Weight	

of	Network	Strand

Young's	Modulus	

(Gpa)
	Polymer	Materials

Young's	Modulus	

(GPa)

1 88 1.613

3 176 0.437

5 264 0.36

9 440 0.238

12 572 0.212

24 1100 0.151

40 1804 0.141

Polyethylene 1.56
a

Ionomer	Nafion 0.1
b
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Figure S2 Local order 𝑃! 𝑖  probability distribution for the n-eicosane system with a half-crystal, half-melt 
configuration. The bimodal distribution calculated based on the protocols and parameter values described by Yi and 
Rutledge [24] correctly capture the physical state of the system. 

 

Figure S3 Left: a half-crystal, half-melt n=3 PEO system having 576 PEO molecules, with the crystal region formed 
at T = 276 K and P = 1 atm, and the amorphous region was relaxed at T = 500 K, P = 1 atm. Right: the crystal (pink) 
and amorphous (cyan) regions are clearly discerned from each other by using the modified local order parameter, 
with degree of coarse-graining d = 6. 

 



 

 44 

 

Figure S4 Probability distribution of n=3 PEO system with a half-crystal, half-melt state using a modified local 
order parameter 𝑃! 𝑖 , with degree of coarse-graining d = 3 (red), 4 (yellow), 5 (blue), 6 (green), 7 (black) and 8 
(magenta). 

 

Figure S5 Probability distribution of CHx-CHx bond length of the n=100 Tetra-PE diamond network equilibrated at 
T = 303 K and P = 1 atm; the results were obtained by averaging 10 simulation configurations collected 10, 000 fs 
apart.  
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 Figure S6 CH2-C-CH2 angle probability distribution of the n=100 Tetra-PE diamond network equilibrated 
at 303 K and P = 1 atm; the results were obtained by averaging 10 simulation configurations collected 10, 000 fs 
apart. 

 

Figure S7 CHx-CHx-CHx-CHx torsional angle probability distribution of the n=100 Tetra-PE diamond network 
equilibrated at 303 K and P = 1 atm; the results were obtained by averaging 10 simulation configurations collected 
10, 000 fs apart. 
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Figure S8 Global order parameter of the n=100 Tetra-PE diamond network equilibrated at different temperatures [P 
= 1 atm, T = 300 K (green), 310 K (red), 315 K (blue), 320 K (black)]. 

 

Figure S9 Crystal fraction of the Tetra-PE (n=100) diamond network at various temperatures [P = 1 atm. T = 280 K 
(green), 300 K (red), 310 K (blue), 315 K (yellow), 320 K (black)]. The calculation was based on the local order 
parameter method. 
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Figure S10 Mean-squared-displacement of the middle atoms of the network strands (solid line) and of the crosslinks 
(dashed line) of amorphous Tetra-PE diamond networks equilibrated at T = 260 K, P = 1 atm, with degree of 
polymerization n=6 (red), 12 (yellow), 18 (blue), 30 (green), 39 (black), 75 (cyan) and 100 (magenta).  

 

Figure S11 Stress-strain and crystal fraction vs. strain from uniaxial deformation simulations of the n=100 Tetra-PE 
diamond network using an NVT ensemble at T = 303 K and strain rate of 𝑟 = 2.5×10!! fs!!(red) and 𝑟 =
2.5×10!! fs!!(black).  
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Figure S12 Estimation of the Young’s modulus from a linear fit of the low-strain regime of the stress-strain curves 
for n=75 and 100 Tetra-PE diamond networks; the slope of the fitting line (red) corresponds to a Young’s modulus 
of E = 0.012 ± 0.005 GPa. The inset shows the low strain region after using a digital filter to eliminate high-
frequency noise. 

  

Figure S13 Left: the initial fully extended configuration of the n=5 Tetra-PEG diamond network. Right: the same 
system upon collapsing into a high-density amorphous melt in a 2 ns simulation at T = 303 K, P = 1 atm. 
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Figure S14 Mean-squared-displacement of the middle atoms of the network strands (solid line) and of the crosslinks 
(dashed line) of amorphous Tetra-PEG diamond networks equilibrated at T = 260 K, P = 1 atm, with degree of 
polymerization n=1 (red), 3 (yellow), 5 (green), 9 (cyan), 12 (blue), 24 (black) and 40 (magenta). 

 

Figure S15 Mean-squared-displacement of the middle atoms of the network strands of amorphous Tetra-PE (dash 
lines) [with n=6 (red), 12 (yellow), 18 (blue), 30 (green), 39 (black), 75 (cyan) and 100 (magenta)] and Tetra-PEG 
networks (solid lines) [with n=1 (red), 3 (yellow), 5 (green), 9 (cyan), 12 (blue), 24 (black) and 40 (magenta)] 
equilibrated at T = 260 K, P = 1 atm.  
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Figure S16 The crystal fraction of 100 PEO (n=30) chains at various temperatures [P = 1 atm. T = 320 K (green), 
330 K (red), 340 K (blue), 350 K (yellow), 360 K (black)]. The calculation was based on the modified local order 
parameter. 

 

Figure S17 Normalized density and crystal fraction of 100 PEO (n=30) molecules equilibrated at different 
temperatures. 
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Figure S18 Estimation of the Young’s modulus by a linear fit of the low-strain regime of the stress-strain curves for 
n=24 and 40 Tetra-PEG diamond networks; the slope of the fitting line (red) corresponds to a Young’s modulus of E 
= 0.14 ± 0.05 GPa. The inset shows the low strain region after using a digital filter to eliminate high-frequency 
noise. 


