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The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been
investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure.
Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared
to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger
hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free
nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts.
Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing
diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order.
Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with
decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the
long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction
where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle
space. © 2012 American Institute of Physics. [doi:10.1063/1.3679442]

I. INTRODUCTION

Nanoparticles are important both from a fundamental
perspective and a practical point of view, being central to
the development of novel photonic or structural materials.1–3

Small amounts of nanoscale inorganic additives in polymers
can lead to disproportionate improvements in properties1

ranging from mechanical4 to fire resistance.5 Exotic behav-
iors such as defect “self-healing” are also possible.6 Despite
significant progress in understanding nanocomposites, issues
of poor miscibility and inadequate dispersion still prevent
their widespread use. A common strategy to suppress aggre-
gation is a functionalization by grafting polymer chains on
the nanoparticles, typically using a polymer chemically iden-
tical to the matrix chains.7, 8 Characteristics of the particles,
such as the length and surface density of the grafted chains,
not only influence the particle–polymer compatibility, but also
affect the interparticle interactions and thereby the dynamical
behavior of the whole system.8, 9

An issue of fundamental importance, which has not been
addressed previously in simulations, is the dynamical behav-
ior of grafted nanoparticles in the absence of free chains or
solvent. Experimental realization of such solvent-free com-
posite systems has been recently demonstrated in the form
of “nanoparticle organic hybrid materials” (NOHMs).10–15

These are core-shell systems consisting of a hard (inorganic)
core and a soft (organic) oligomer corona. By varying the
molecular weight and grafting density of the arms (corona),
and the core particle size, they can display properties that span
from glasses, stiff waxes, and gels (at high volume fractions),
to simple liquids comprised of molecular building blocks (at
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low volume fractions). A highly attractive feature of these sys-
tems is the combination of inorganic and organic components
to create hybrid particles as building blocks for the design
of novel materials. The grafted chains prevent nanoparticle
aggregation due to van der Waals attractions or depletion in-
teractions, and also play the role of solvent. In recent studies,
NOHMs structural features were obtained by field-theoretic
methods16 and simulations.17 Recently, the structure and dy-
namics of solvent-free grafted nanoparticles subject to sim-
ple shear flows were examined in constant strain-rate and
constant stress simulations.18 Solvent-free oligomer-grafted
nanoparticles are significantly different from nanoparticles in
a polymer matrix. In solvent-free conditions, the surround-
ing environment is composed of other grafted nanoparticles.
For high enough grafting densities, the corona chains keep the
nanoparticles well dispersed, and thus the nanoparticles can
only interact with neighboring nanoparticles via their over-
lapping coronas.19 The parameters for the present study are
the same as in previous work,17 in which the structure of bulk
grafted nanoparticles was investigated. It was found that the
corona chain length significantly influences the structure. For
short chains, the systems displayed rich structural character-
istics, while for longer chains the nanoparticles maintained
a liquid-like structure over the whole temperature range ex-
plored. The primary aim of the present study is to investigate
the dynamics of these systems.

Aside from our earlier work,16, 17 previous theoretical
and computational studies of oligomer-grafted nanoparticles
mainly focused on self-assembly in solution, and often in-
corporated some degree of asymmetry in the shape of the
core building blocks (e.g., spheres,20, 21 disks,22 cubes,23 and
rods24, 25). Oligomer-grafted nanoparticles have been consid-
ered in previous theoretical studies in a phantom solvent to
determine the effects of single26 and multiple grafted chains27
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on their structure, and calculations of the particle-particle
potential of mean force of grafted particles have been per-
formed in an explicit polymer matrix.28 There have been sev-
eral experimental demonstrations of controlled self-assembly
using oligomer-grafted nanoparticles.22, 29, 30 Nevertheless, a
full description of the dynamical behavior of particles with
a core-shell architecture in bulk conditions is still lacking.
In the present study, we report on the dynamical properties
of bulk oligomer-grafted nanoparticles using molecular dy-
namics (MD) simulations at zero-pressure conditions. We fo-
cus on the impact of particle architecture on the properties.
This is accomplished by keeping the grafting density and core
size fixed, and varying the length of the end-grafted poly-
mer chains. In addition to bulk solvent-free nanoparticle flu-
ids, we also study the dynamical behavior of nanoparticles
with or without grafted chains in a polymer matrix. Compar-
isons among these three cases highlight differences between
NOHMs and conventional nanocomposite systems.

The paper is organized as follows. Section II contains de-
tails of the coarse-grained model, and the simulation meth-
ods. Results for the structure and dynamics of nanoparticles
are presented in Sec. III. Section IV concludes the report.

II. MODELS AND SIMULATION METHODS

The grafted nanoparticle model is that of Ref. 17. Par-
ticles consist of a spherical core and f attached oligomer
chains. Each oligomer is composed of M spherical beads
(or monomers) connected to form a chain. The core and
monomers have different radii, Rc and Rb, respectively. We set
the diameter of the monomers as our unit of length, 2Rb = σ .
The core radius is Rc = 2.5σ . The oligomer grafting density is
fixed as ρs = f/(4πR2

c ) = 0.32σ−2 unless stated otherwise.
Interactions between all pairs of monomers are described by a
cut-and-shifted Lennard-Jones potential with cutoff distance,
rc = 2.5σ and potential well depth ε. The first bead of each
chain is rigidly attached to the core surface. The rest of the
monomers along a chain are connected to their neighbors via
a harmonic spring, VH(r) = k(r − l0)2, where r is the bead–
bead separation, l0 = σ is the natural length of the spring, and
k = 10 000ε/σ 2 is the spring constant.

The core–core and core–monomer interactions are mod-
eled by the purely repulsive Weeks-Chandler-Andersen
(WCA) potential,31 taking into account the difference in par-
ticle size,32

VWCA(r)=

⎧⎪⎨
⎪⎩

4ε

[(
σ

r − �ij

)12

−
(

σ

r − �ij

)6

+ 0.25

]
r ≤ rm

0 r > rm,

(1)
where rm = 21/6(Rc + Rc) and �cc = 2(Rc − Rb) for
core–core interaction, and rm = 21/6(Rc + Rb) and �cb = (Rc

− Rb) for core–monomer interaction. The energy and inter-
action range parameters were chosen to be the same for all
three interactions, so that εcc = εcb = ε and σ cc = σ cb = σ .
The mass of a particle scales linearly with volume, so that the
ratio of core to polymer bead mass is R3

c /R
3
b . The concentra-

tion of the cores can be described using the volume fraction,
φc = N (4π/3)R3

c /L
3.

SN G

FIG. 1. Schematic illustrations of the three classes of systems studied. From
left to right we show an ungrafted particle in a polymer matrix, a grafted
particle in a polymer matrix, and a neat (solvent-free) system consisting of
many grafted particles. All simulations were for three-dimensional systems.

Simulations were performed in cubic boxes of length L;
periodic boundary conditions and the minimum-image con-
vention were applied in all three directions. The time step was
set to δt = 0.004τ , where τ is the unit of time, τ = σ

√
m/ε,

where m is the mass of a polymer bead. The simulations were
performed using the large-scale atomic/molecular massively
parallel simulator,33 which takes advantage of a neighbor-
list construction and communication algorithm, speeding up
simulations when the ratio of sizes of the particles becomes
large.34

The three classes of systems studied are shown schemat-
ically in Fig. 1.

The first class (denoted by “N”) corresponds to a sin-
gle nanoparticle without grafted oligomers in a polymer ma-
trix of varying chain length. The second class (“G”) consists
of a grafted nanoparticle in a polymer matrix with chains of
length equal to that of the grafted chains. The third type en-
tails oligomer-grafted nanoparticles in the bulk (“S”). For all
grafted particles we fix the number of attached chains, f, but
vary their length, M, and temperature T. Temperature is mea-
sured in units of ε/kB, where kB is Boltzmann’s constant. We
have studied chain lengths M of 5, 10, and 15 and temper-
atures from T = 1.0 to 4.5, always at a density correspond-
ing to atmospheric pressure (P = 0) at the corresponding
temperature.

To construct the system of interest we used the follow-
ing process. For a nanoparticle in a polymer matrix we place
randomly 1000 polymer chains and a nanoparticle in a simu-
lation box with box size L = 200σ such that there are no over-
laps between the particles. Then we slowly compress the sys-
tem (0.01σ per time step) until the desired density is reached.
We then equilibrate the system for 2 × 106 time steps at a
temperature such that the pressure is zero (atmospheric con-
ditions). The production runs were 2 × 107 time steps. The
process is the same for nanoparticles with and without grafted
oligomers. For bulk conditions up to N = 450 nanoparticles
were used. The equilibration period for bulk systems was of
O(107δt) and the production period of O(107δt).

The dynamical behavior was obtained by calculating the
mean-square displacement of the core particles,

�r2
c (t) = 1

N

〈
N∑

i=1

∣∣ri(t) − ri(0)
∣∣2

〉
, (2)

where the angled brackets denote an average over time ori-
gins. Once the mean-square displacement starts to exhibit a
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linear dependence on time, the diffusion coefficient can be
obtained from the Einstein relation

Di = d(�r2
c )

6dt
, (3)

where the Di is the diffusion coefficient with index i denoting
the type of the system, i = N, G, and S.

III. RESULTS AND DISCUSSION

The simulations of an ungrafted nanoparticle in a melt
involved a single particle diffusing in a unit cell with periodic
boundary conditions. The Stokes-Einstein relationship

D = T

ημRc
(4)

implies that the diffusivity of a particle in a fluid matrix is
related to the drag coefficient η resisting the translational mo-
tion of the particle. Here, μ is the fluid viscosity and ημRc

is the ratio of the drag force on a translating particle and its
translational velocity (η = 6π for a rigid particle in a con-
tinuum, unbounded fluid). Owing to the slow decay of the
fluid velocity field due to a moving particle, Ladd showed
that it was important to include the effects of periodic images
on the drag when simulating particle diffusivity with periodic
boundary conditions.35 The ratio of the diffusivity of a parti-
cle in a periodic cell to that in unbounded fluid is inversely
proportional to the corresponding ratio of drag coefficients
which has been calculated by Hasimoto36 and Sangani and
Acrivos.37 When the volume fraction of the single core within
the unit cell is small but finite, their results can be expressed
as,

DNbounded

DNunbounded
= 6π

ηbounded
= 1 − 1.76φ1/3

c + φc − 1.56φ2
c .

(5)
Results for the diffusivity for a single nanoparticle without
grafted chains in a polymer matrix are shown in Fig. 2. As one
might expect, the diffusion coefficient of bare nanoparticles
increases with increasing temperature and decreasing matrix
chain length. The DN and DG were found to increase expo-
nentially with T; we have fitted the simulations to exponential
functions and when necessary use this fit to obtain the diffu-
sion coefficient at the desired temperature. Small variations in
simulated temperature obtained for different chain lengths are
observed in Fig. 2. This occurred because the simulations for
system types N and G with different chain lengths were per-
formed at the same polymer bead number density rather than
the same temperature.

We use the diffusivity DN of an ungrafted nanoparticle in
an unbounded melt as a reference value to which we compare
the diffusivities of grafted particles. Thus, in Fig. 3, we plot
the ratio DG/DN and DS/DN, where DG is the diffusivity of a
grafted particle in a melt and DS is the diffusivity of a grafted
particle under bulk conditions.38 It can be seen that grafting
chains to a particle leads to a moderate decrease in its diffusiv-
ity in a melt, but that the diffusivity of grafted particles under
bulk conditions is reduced by one to two orders of magnitude.

It is known that the state of swelling of the brush on a
particle is influenced by the ratio of the grafted chain length
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T
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N

 / 
σ2 τ−1

FIG. 2. Diffusion coefficients versus temperature for bare particles in a poly-
mer matrix (system “N”) with (solid symbols) and without (open symbols)
corrections for periodicity according to Eq. (5). Circles are for chain length
M = 5, squares for M = 10, and diamonds for M = 15. The dashed lines
are exponential fits of the form DN = αexp (T/β), where α and β are fitting
parameters.

to the polymer matrix chain length with smaller matrix chains
swelling the brush (wet brush) and larger matrix chains ex-
pelled from the brush (dry brush).8, 39, 40 However, we consid-
ered only the case of equal brush and matrix chain lengths
which is at the transition between wet and dry brushes, since
this case is most comparable to the bulk grafted nanoparticle
case where the chains of one particle interact with chains of
equal length tethered to neighboring particles.

A grafted nanoparticle in a melt, for the same temper-
ature, has a lower diffusivity than a bare nanoparticle in
the same polymer matrix. This is understandable, since the
grafted chains on a nanoparticle increase its effective size and
thus its hydrodynamic radius. To determine the total size of
the particle, including the core and the polymer brush, we
calculated the mean square end-to-center distance of grafted
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FIG. 3. Temperature dependence of the ratios of diffusivities of grafted par-
ticles in a polymer matrix, DG (open symbols) and bulk grafted particles,
DS (solid symbols) to the diffusivity of bare particles, DN. Chain lengths are
denoted using the same convention as for Fig. 2.
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nanoparticles 〈R2
ec〉 defined as

〈
R2

ec

〉 = 1

f N

〈
N∑

i=1

f∑
j=1

∣∣ri
c − rij

e

∣∣2

〉
, (6)

where ri
c is the position of core i and rij

e is the free end of
chain j of core i. The angle brackets correspond to an average
over time.

It is common practice to use measurements of transport
properties of particles in dilute suspensions to characterize the
size of the particles. The diffusivity of the particle determined
by dynamic light scattering or the intrinsic viscosity measured
using capillary rheometry8, 41, 42 provides two common means
of determining particle size. Using the measured diffusivity
of a grafted particle in an unbounded polymer melt, we can
define the effective hydrodynamic radius, as

DGunbounded = T

6πμRh
. (7)

Accounting for periodicity effects using Eq. (5).

DGbounded/DNunbounded =
(

Rc

Rh

) (
1 − 1.76φ

1/3
h

+φh − 1.56φ2
h

)
, (8)

φh = 4

3
π (Rh/L)3. (9)

Using the simulated value of DGbounded, Eqs. (8) and (9) can be
solved to determine Rh.

The low Reynolds number flow in the melt induced by
a polymer-grafted particle would be expected to resist rapid
variations in fluid velocity, so that the solvent within the poly-
mer brush would move with the particle and its brush. As a
result, one might expect the hydrodynamic radius of the par-
ticle to provide a good estimate of the size of the nanopar-
ticle and its polymer brush. The results shown in Fig. 4
indicate that the hydrodynamic radius, Rh, is indeed compara-
ble with 〈R2

ec〉1/2 and both increase with increasing length of
the polymer brush. The root-mean-square end-to-center dis-
tance, 〈R2

ec〉1/2, is nearly independent of temperature for T
< 2 and grows with temperature for T > 2. As the temper-
ature increases, the void space between the polymer beads in-
creases and this void space may be considered to be filled
with a phantom solvent that swells the polymer brush. In Ref.
17, we showed that one effect of this phantom solvent was
to swell the polymer brushes in a bulk nanoparticle system
and decrease the tendency of neighboring brushes to overlap
one another. The hydrodynamic radius, Rh, does not increase
with increasing T as much as 〈R2

ec〉1/2. It is possible that the
phantom solvent that swells the polymer brushes expels the
melt polymers and induces a slip between the particle and
the polymer melt that increases the diffusivity and decreases
Rh/〈R2

ec〉1/2.
In bulk conditions, the grafted nanoparticles interact with

each other in the absence of free chains. Figure 3 shows the
ratio of the diffusivity of bulk grafted nanoparticles to that of
bare nanoparticles in a polymer chain melt, DS/DN. Grafted
nanoparticles in bulk conditions have significantly smaller
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FIG. 4. The hydrodynamic radius, Rh, of a single grafted nanoparticle in a
polymer matrix (open symbols) and the root-mean-square end-to-center dis-
tance, 〈R2

ec〉1/2 (solid symbols and dotted lines). Circles are for chain length
M = 5, squares for M = 10, and diamonds for M = 15.

diffusion coefficients than in a polymer matrix, but are still
diffusive liquids despite the absence of solvent. The diffusiv-
ity ratio, DS/DN, is larger for longer grafted polymer chains.
This surprising trend can be understood qualitatively in terms
of the density-functional theory of Ref. 17. In that theory, the
grafted polymer chains are required to fill the interstitial space
between the cores. Short stiff polymers experience a higher
entropic penalty when satisfying this constraint than longer
polymers with the result that shorter polymers lead to stronger
polymer-induced particle–particle interactions. Longer poly-
mers which can more easily fill the interstitial space lead to a
more fluid environment.

The temperature dependence of the dynamical behavior
in bulk conditions differs significantly from that in a polymer
matrix. For M = 5 at high values of temperature, there is little
variation in diffusion coefficient ratio, but for T < 3, the ra-
tio decreases rapidly with decreasing temperature. The lowest
temperature computationally accessible for this system was
T = 2.25 at which solid-like characteristics were manifested
with a highly pronounced first peak and a split in the second
peak, of the pair correlation function, as shown in Fig. 5. A
detailed discussion of the structural behavior of bulk grafted
nanoparticles can be found in Ref. 17. We include in Fig. 5
peaks for a perfect body-centered cubic (BCC) crystal struc-
ture, scaled so that the first peak coincides with the first peak
of the radial distribution function of the grafted nanoparti-
cles. The agreement in location of higher order peaks suggests
that the nanoparticles organized in a body-centered-cubic
structure.

For the two longer chain lengths of M = 10 and 15, the
ratio DS/DN exhibits a minimum at a certain temperature, Tmin

≈ 2.5. In our previous work,17 we found that these nanoparti-
cle systems underwent important structural transitions at the
same temperature. The height of the first peak of the pair
distribution function was larger at this temperature than at
either higher or lower temperatures, suggesting that particle
interactions mediated by the polymer brush or corona are
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FIG. 5. Radial distribution function for bulk grafted nanoparticles with M =
5 at T = 2.25, at which a BCC crystal structure is formed. The nanoparticle
volume fraction was φc = 0.2.

particularly strong at this intermediate temperature. As the
temperature increases, the system expands and the volume
fraction of the core particles decreases, as shown in Fig. 6(a).
The corona surrounding the particles also expands in the bulk
system. However, the interpenetration between the brushes of
neighboring nanoparticles remains nearly constant for T <

2.5 and decreases with increasing temperature for T > 2.5.17

When the temperature increases from T = 1 to 2.5, the vol-
ume fraction decreases and the chains on neighboring parti-
cles expand in a cooperative fashion to fill the interparticle
space. The entropic penalty for filling an increased interstitial
space is larger so that the particle interactions are stronger at
lower volume fractions.16 At temperatures larger than Tmin,
the polymer brushes can be thought of as being swollen by
the phantom solvent so that they tend to expel the polymer
brushes from the neighboring particles. This may decrease
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FIG. 6. (a) Nanoparticle volume fraction, φc versus temperature. (b) Volume
fraction of the core and corona, φs versus temperature. Symbols are the same
as in Fig. 2.
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FIG. 7. Mean-square displacement of bulk grafted nanoparticles for M = 10
at different temperatures.

the coupling between the motion of neighboring particles in a
manner consistent with the decreased Rh/〈R2

ec〉1/2 for grafted
nanoparticles in a melt evident in Fig. 4.

The mean-square displacement (MSD) only achieves dif-
fusive behavior after particles have moved a distance compa-
rable to their core diameter. At low temperatures, this process
requires an extended period of time, as illustrated in Fig. 7
where the mean-square displacement of the particles is plot-
ted as a function of time for M = 10 at different temperatures
T. At short times, the particle motion is ballistic. At low tem-
peratures, this regime is followed by an extended period of
sub-diffusive behavior where the MSD grows as t1/2. Finally
at long times, the diffusive behavior, MSD ∼ t is observed.
The density-functional theory of Ref. 17 showed that space
filling polymer brushes can lead to a more attractive poten-
tial of mean force between core particles. This attraction may
account in part for the sub-diffusive behavior. The frictional
interaction of the interpenetrating polymer brushes may also
play a role. At high temperatures, the interpenetration of the
polymer brushes is reduced and the swollen polymer brush
induced particle interactions are repulsive as indicated by the
outward shift of the first peak of the pair probability in Fig.
(6) of Ref. 17. The reduced interaction among the brushes
may account for the simple transition of the MSD transitions
from ballistic to diffusive regime with no intermediate sub-
diffusive regime.

The dynamical behavior of a particle suspension such
as the bulk nanoparticle system can be described by the
Van Hove self-correlation function, which is an experimen-
tally observable quantity that measures the decay of density
fluctuations.43 The function is written as

F (q, t) = 1

N

N∑
j=0

〈exp{iq · [rj (t + t ′) − rj (t ′)]}〉. (10)

The wave number q in F(q, t) can take on a range of val-
ues to reflect the decay of different Fourier modes of the
particle density correlations. However, following a common
choice, we consider the wavenumber corresponding to the
first maximum in the static structure factor S(q). Consistent
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FIG. 8. Structural relaxation time of bulk oligomer-grafted nanoparticles for
different chain lengths versus (a) temperature; (b) volume fraction of the core
and corona, φs. The dashed line in (a) is a fit of the VFT relation as described
by Eq. (11). The dashed lines in (b) are fitting lines based on Eq. (14) and
their values are listed in Table I. Symbols are the same as in Fig. 2.

with the complex temporal behavior of the mean-squared
displacement, we found that F(q, t) does not follow a sim-
ple exponential decay but can be fit by stretched exponen-
tial functions as has been seen in molecular dynamics studies
of other complex fluids near their glass transition.44 To pro-
vide a simpler measure of the decay of density correlation we
define a structural relaxation time, τα , as the time at which
the correlations have decreased by a factor of e, i.e., F(q, τα)
= 1/e. Results for τα plotted in Fig. 8 reveal an interesting dis-
tinction between the behavior of particles with short corona
M = 5 and longer corona M = 10 and 15. The structural re-
laxation time for all chain lengths increases with decreasing
temperature, but whereas the relaxation time diverges for M
= 5 at a temperature near T = 2, the increase in the relaxation
time is much more gradual for M = 10 and 15. The structural
relaxation time for fluids that undergo a liquid-solid transi-
tion is usually fit by the well-known Vogel-Fulcher-Tammann
(VFT) relation

τα = τv exp

(
C

T − T0

)
, (11)

where C and T0 are parameters with dimensions of temper-
ature, and τ v is the characteristic relaxation time for high
values of temperature. T0 is known as the Vogel temperature
and is typically 30–50 K below Tg, the glass transition tem-
perature. For nanoparticles with M = 5 the behavior of the
structural relaxation time follows the VFT relation with T0

= 1.8, C = 4.626, and τ v = 3.226, Fig. 8(a). This indicates
that for M = 5 the nanoparticles have a glass transition tem-
perature in the vicinity of T = 2. This happens because the
length of the chain is rather short leaving the core to domi-
nate the overall behavior and so the nanoparticles have a be-
havior more closely related to hard spheres or colloidal sus-
pensions. Such systems form more compact structures and the
particles rattle in traps formed by their neighbors in accor-
dance with classical liquid dynamics. Moreover, hard-sphere-
like systems are also referred to as “fragile” because they
exhibit rapid changes of the viscosity and α-relaxation time
close to glass transition temperature due to weak inter-particle
forces.45 Soft particles are less sensitive to temperature varia-
tion as observed in recent experiments on soft colloids46 and
are referred to as strong glasses/liquids. From Fig. 8(a) the
structural relaxation time for M = 5 is sensitive to tempera-
ture variation (diverging near T = 2), while for longer chains
τα gradually increases and the grafted nanoparticles are less
sensitive to temperature variation. A softer particle would not
feel frustrated by the decrease of the interparticle space (by
decreasing the temperature), since the soft overlapping coro-
nas provide enough scope for interparticle motion to prevent
caging by the neighboring nanoparticles and thus allow the
nanoparticles to remain in the disordered phase and avoid
crystallization. In particular, no evidence of a glass transition
or crystallization was observed. This indicates the significant
effects of the corona can have in bulk conditions.

The dynamical behavior of colloidal suspensions is usu-
ally studied as a function of particle concentration and for
hard-sphere colloids the particle volume fraction is the only
parameter controlling the dynamics. In NOHMs the volume
fraction of the nanoparticle cores is much smaller than the
volume fraction at which hard spheres start to crystallize, as
discussed above. This suggests that the corona significantly
contributes to the effective size of the particle. In particular,
the current understanding is that soft particles with a small
corona undergo the liquid-solid transition at a critical value
of an effective volume fractions based on the combined size
of the core and the corona.47 We define the effective volume
fraction of the core and corona as

φs = φc

( 〈R2
ec〉1/2

Rc

)3

. (12)

This approach has been discussed in connection with the be-
havior of grafted nanoparticles in a polymer matrix in Ref. 8.
The values of φs may exceed unity due to the interpenetration
of the coronas. Figure 8(b) shows how the structural relax-
ation time grows with increasing φs. Longer grafted chains
display a more gradual increase. This is in good qualitative
agreement with the observations for viscosity measurements
of grafted nanoparticles in a polymer matrix when the effec-
tive volume fraction is varied by adding solvent, see Fig. 7(b)
of Ref. 8. The structural relaxation time gives insights into
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TABLE I. Fitting parameters in Eq. (14) for the structural relaxation time
versus φs.

M τ 0 φsm

5 8.82 1.11
10 6.40 1.96
15 6.21 2.80

the viscosity, since viscosity can be thought of as resulting
from temporal correlations of momentum fluctuations. The
semi-empirical Krieger-Dougherty relation describes the rel-
ative viscosity, ηr, as a function of the volume fraction, and
has been successfully used to understand the viscosity of hard
spheres,

ηr = (1 − φc/φm)−[η]φm , (13)

where φm is the limiting packing fraction and [η] is the in-
trinsic viscosity.48 The Krieger-Dougherty relation has suc-
cessfully predicted the viscosity of soft grafted nanoparticles
in a melt by substituting the effective volume fraction φs in
place of the core volume fraction φc in Eq. (13).49 With this
in mind, we fit the structural relaxation results in Fig. 8(b) to
an equation analogous to Eq. (13),

τα = τ0(1 − φs/φsm)−2.73φsm+1.62, (14)

where τ 0, φsm are fitting parameters. We find Eq. (14) to fit
well with our results, see Fig. 8(b). The values of the fitting
parameters are listed in Table I. The parameter φsm represents
the volume fraction of the combined core and corona at which
the relaxation time diverges. This may be expected to provide
a rough estimate of the concentration at which the viscos-
ity diverges. The values of φsm increase as the grafted chain
length increases. For grafted nanoparticles in a melt, the ef-
fective volume fraction is changed by adding or removing sol-
vent. In the bulk nanoparticle system studied here, however,
φs varies due to changes in temperature and chain length as
illustrated in Fig. 6(b). The effective volume fraction varies
approximately linearly with temperature at low T and it can
be seen from Fig. 6(b) that the effective volume fraction φs

= 2.80 at which the structural relaxation time would diverge
for M = 15 cannot be achieved even as T → 0. This indicates
that even at low temperatures, the interpenetrating coronas are
able to maintain a liquid state in which the cores relax to a dis-
ordered equilibrium configuration. We might then expect this
system to become glassy only near the glass transition tem-
perature of non-entangled polymer chains, at about T = 0.4.
A similar picture applies for M = 10 although the effective
volume fraction achieved as T → 0 is only slightly smaller
than φsm.

The discussion above highlights the features that govern
the behavior of grafted nanoparticles and other core–shell ar-
chitecture systems, namely a hard core and a fluid corona.
It is possible that a portion of the corona may contribute
to an enhanced effective hard core size. Reference 8 con-
siders the viscosity of grafted nanoparticles in solvents and
notes that nanoparticles whose corona size is small enough
(about 0.3 times of the core radius) exhibit a viscosity that
diverges at effective volume fractions comparable to that for

hard spheres. For the bulk nanoparticle systems the ratio of
the corona size to the radius of the core takes the values (av-
eraged over the different temperatures explored) 0.85, 1.37,
and 1.8 for M = 5, 10, and 15, respectively. For the short-
est chains the bulk system resembles the behavior for hard
spheres but the divergence occurs at a value of φs ≈ 1.1 that
is higher than that for hard spheres (0.64). Polymer brushes
in a good solvent create a purely repulsive interparticle po-
tential so that the brushes of neighboring particles tend not to
overlap.47 However, corona-induced interparticle potentials in
bulk nanoparticle systems exhibit both attractive and repulsive
components so that the corona of neighboring particles over-
lap substantially especially at low temperatures.17 Thus, a por-
tion of the corona contributes to the effective hard-sphere size
while another portion acts as a fluid layer that suspends the
nanoparticles.

In Fig. 3, we plotted the diffusivity in a solvent-free
NOHMs system as a function of temperature. We have sub-
sequently noted that the particle concentration varies with
temperature and that the variation of the structural correla-
tion time can be understood in terms of its dependence on an
effective particle concentration. It is interesting then to con-
sider the dependence of the diffusivity on particle concentra-
tion. Figure 9 shows the ratio of the diffusivity of solvent-free
grafted nanoparticles to the diffusivity of an ungrafted parti-
cle in a melt as a function of the core volume fraction. It can
be seen that the diffusivity for M = 5 decreases monotoni-
cally with volume fraction and approaches zero at φc = 0.21.
The diffusivity ratios for M = 10 and 15 are larger and have a
non-monotonic dependence on particle volume fraction. The
dependence of the diffusivity of hard-sphere systems or sys-
tems with repulsive interactions on particle volume fraction
is often fit with the Doolittle equation which is based on free
volume theory,50, 51

DS

DN
= ζ exp

(
− κ

(φc)−1 − φ−1
cp

)
, (15)

0 0.05 0.1 0.15 0.2
φ

c

0.0001

0.001

0.01

0.1

D
S
 / 

D
N

FIG. 9. Ratio of diffusion coefficient of DS over DN versus nanoparticle vol-
ume fraction, φc. The lines are fits of the data to Eq. (15) with φcp = 0.21.
The dashed line has κ = 1.041 and ζ = 0.0144, and the dotted-dashed line
has κ = 1.6 and ζ = 0.054. Symbols are the same as in Fig. 2.
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where κ is a parameter and φcp is the nanoparticle volume
fraction at which the diffusivity goes to zero. We have in-
cluded a pre-factor ζ to account for the fact that DS dif-
fers from DN even at low particle concentrations due to the
frictional and potential interactions of overlapping polymer
brushes. For hard spheres κ = 1.6, φcp = 0.65, and ζ = 1.
For M = 5 the Doolittle equation provides a good fit with κ =
1.041, φcp = 0.21, and ζ = 0.0144. This suggests an effective
hard-sphere radius that is larger than the core radius, Reff/Rc

= 1.45, and smaller than the root-mean-square end-to-center
distance, e.g., Reff/〈R2

ec〉1/2 = 0.786 for T = 3.0. The behav-
ior of the diffusivity for nanoparticles with longer chains M
= 10 and 15 is poorly described by the Doolittle equation
even if we increase ζ to 0.054 to account for the larger ra-
tio DS/DN exhibited by the long chain particles at low volume
fraction. As noted above, the minimum in the diffusivity at an
intermediate volume fraction which corresponds to an inter-
mediate temperature arises because the particle interaction is
strongest at intermediate temperatures. The subtle changes in
the interactions of interpenetrating polymer brushes cannot be
modeled by an effective hard-sphere system.

Star polymers are the limiting case of grafted nanopar-
ticles when Rc/〈R2

ec〉1/2 
 1 and can display polymer- and
colloidal-like behavior by tuning the number and length of the
grafted chains.52–54 To our knowledge pure polymer star melt
systems, the equivalent of our solvent-free grafted nanopar-
ticles as Rc → 0, have not been studied. However, there are
many experimental and theoretical studies of star polymers in
both small molecule solvents and linear polymer melts.53, 55–57

The softness of star polymers in solution affects their dynam-
ical behavior as seen in measurements of relative viscosity
versus the effective volume fraction in solution as seen, for
example, in Fig. (6) of Ref. 57 (compare with Fig. 8(b)). Star
polymers with a large number of arms exhibit that diverges at
a critical concentration in a manner similar to hard-sphere col-
loids, but softer star polymers (smaller number of arms) dis-
play a slower viscosity increase. In our study of NOHMs we
have tuned particle softness by varying 〈R2

ec〉1/2/Rc and seen
a similar transition from hard-sphere-like divergence of the
structural relaxation time at small 〈R2

ec〉1/2/Rc to a more grad-
ual increase of relaxation time with concentration for longer
chained NOHMs. The dynamical behavior of star polymers
is currently understood in terms of the Milner-McLeish the-
ory, which models the release of constraints on a test grafted
chain, as other grafted chains reptate or retract away from its
environment.58 Such an approach may potentially describe
the grafted nanoparticles when chain length becomes very
large.

IV. CONCLUSIONS

In this work, computer simulations of bead-spring mod-
els have been used to gain insights into the dynamical be-
havior of polymer-grafted nanoparticles. The study was moti-
vated by the unique physical features of NOHMs systems.

The transport properties of bulk oligomer-grafted
nanoparticles were studied and valuable insights obtained by
comparisons of the behavior of nanoparticles with and with-
out grafted chains in a polymer matrix. In particular, grafted

nanoparticles in bulk conditions have lower diffusivities than
in a polymer matrix. In a polymer matrix, grafted nanoparti-
cles have higher diffusivities relative to their bare nanoparticle
counterparts when tethered oligomers are shorter. The oppo-
site trend is observed for grafted-nanoparticles in bulk condi-
tions where the diffusivity relative to a bare particle is larger
for nanoparticles with longer oligomers. The diffusivity and
structural relaxation time for solvent-free nanoparticles with
shorter chains resemble those of hard spheres but with an en-
hanced effective particle size that includes a portion of the
polymer brush. These systems experience an order-disorder
transition even if the nanoparticles are too small to create
ordered structures on their own. Longer grafted chains cre-
ate a larger and softer corona, which filters the caging effects
from neighboring nanoparticles so that no order forms within
the parameter space explored. For soft grafted nanoparticles,
the corona dominates the overall behavior. The diffusivity of
these particles is higher at both low temperatures, where the
chains can easily fill the intercore space, and high temper-
atures, where the polymer brushes of neighboring particles
have little overlap than at an intermediate temperature, where
the brushes overlap but the chains must stretch to fill the inter-
particle space. Overall, the chain length of the grafted chains
on the nanoparticles tunes the size and the softness of the
corona. For small and hard corona the particles behave similar
to hard spheres, while for large and soft corona the nanoparti-
cle character disappears in favor of a polymer melt of hyper-
branched chains, with the nanoparticles acting as branching
points.
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