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The aim of this research is to investigate and develop methods for building con-

fidence intervals (CIs) for parameter functions of discrete choice models, with

a special focus on the CIs for willingness-to-pay measures. CIs are more than

simply statistical measures. Rather, they are a convenient and easily under-

stood means by which the variability of a parameter or sample statistic can

be reported, especially because they can be presented graphically. CIs should

be reported for all random statistics, and especially so in applied work where

one cannot assume that the estimated parameter would exactly equal the true

(unknown) parameter. Yet, when presenting willingness-to-pay values, the CIs

are often neglected. This is partially because building CIs for willingness-to-

pay values is not a trivial task, due to the possibility of discontinuity in the

willingness-to-pay measure and its unknown probability distribution a priori.

In addition, the methods used to build these intervals are debated greatly, with

no consensus as to the best method to use. This research consolidates the con-

tradictory results and presents reasons for the disparity currently present in the

literature. It also extends the work of building CIs beyond willingness-to-pay

measures to other parameter functions; in particular, this research demonstrates

how CIs can be built for the probability that an airline passenger cancels his

ticket.

The methods of building CIs are studied using Monte Carlo simulations and



case studies. Results indicate that when sample sizes or the price parameter is

large (i.e. there are fewer chances for discontinuity to occur), all the preference

space methods studied work equally well. However, under weak identification

(when the price parameter is small), the Fieller method performs best. Hence,

in general, the Fieller method should be the preferred method for building CIs

for willingness-to-pay values.

This research also proposes the use of the Bayesian post-processing method

to build CIs. This method, though a viable option, is not often discussed. The

Bayesian method also has an edge over the other methods studied for several

reasons, including the ease of constructing individual CIs and the ability to in-

corporate factors such as historical data into the model.
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CHAPTER 1

INTRODUCTION

Confidence intervals (CIs) have long been used in all types of data analysis and

statistical studies. Even before they were formally introduced by Jerzy Neyman

in 1937, statisticians were reporting parameter estimates together with an inter-

val created using estimated variances of the parameter. CIs have been applied

to all types of research, from science and engineering to the social sciences.

As described by Neyman (1937), CIs first arose out of necessity. If one con-

siders a true parameter θ and its estimate θ̃, it is impossible to assume that these

would be exactly equal. Hence a statistician would require some way to mea-

sure the accuracy of estimate θ̃. The generally accepted method was to calculate

the estimate s2
θ̃

of the variance σ2 of θ̃, and write the estimated result as θ̃ ± sθ̃.

The underlying understanding was that the true value θ would fall within this

interval a majority of the time. Seeing how often this ±sθ̃ was reported, it could

be said that statisticians were in fact not trying to estimate one unique value θ̃,

but two estimates having the form
¯
θ = θ̃ − k1s and θ̄ = θ̃ + k2s, where k1, k2

are constants to be defined, and
¯
θ, θ̄ indicates the limits within which θ could be

found.

Following this very practical use of intervals, Neyman (1937) formalized the

theory of CIs to be as follows. Consider some confidence level α where 0 < α <

1. Then, (
¯
θ, θ̄) forms a CI if

Pr(
¯
θ ≤ θ ≤ θ̄|θ) = 1− α (1.1)

As a statistical means of interpreting results and evaluating model estimates,

CIs are just one type among many different options. Why, then, are CIs impor-
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tant? In fact, CIs have often been disregarded in favor of hypothesis testing,

where p-values are reported and the researcher concludes whether or not to

reject a predefined hypothesis at a certain confidence level. However, CIs can

not only be used to answer the same questions as a hypothesis test, they go

beyond the test to provide other useful information as well. This was the con-

clusion within the medical field, where for many years hypothesis testing was

used to formulate some conclusion about the effect of the factor being stud-

ied in a clinical trial. Several researchers began advocating for CIs, proposing

several reasons for the use of CIs rather than other statistical measures (Gardner

and Altman, 1986; Borenstein, 1994; Thompson, 2002; Masson and Loftus, 2003).

Their conclusions can be summarized in the following points:

1. Hypothesis tests can only give a binary conclusion: whether there is an

effect, or not. They cannot be used to determine magnitude of the effect

(or whatever parameter is being studied). In contrast, CIs give a range of

plausible values for the parameter of interest.

2. Sample statistics are imprecise due to both a degree of variability of the

parameter and the limited sample size. Hypothesis tests are unable to

capture the effect of sample size, as it is possible for any parameter to meet

the criterion for significance with a large enough sample size. In contrast,

both of these causes are reflected using CIs.

3. There is a tendency to equate statistical significance with medical impor-

tance or biological relevance.

4. CIs are able to perform the same hypothesis tests as p-values (by observing

whether the CI contains 0).

5. CIs can be presented graphically, which tends to allow for better under-
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stand on the parts of readers.

In 1999, the American Psychological Association (APA) Task Force on Statis-

tical Inference issued a report in which they recommended the reporting of CIs

(Wilkinson, 1999). In addition, the 2001 APA Publication Manual suggests that

CIs represent ”in general, the best reporting strategy”.

The medical field is not unique in its support of the use of CIs. Within the

education sector, the use of CIs came into focus when schools and districts had

to report performance statistics after the implementation of the No Child Left

Behind policy. There was no uniformity to the use of CIs in these reports, and

Coladarci (2003) commented on this, arguing for the use of CIs based on many

of the same reasons as those listed above. He gave special focus to the impor-

tance of CIs when the sample size is small. If only mean values were reported,

small schools were more likely to be penalized for not having reached target

performance levels. However, a small sample size results in higher variability

in the data, which should be captured and reported. This can be done through

the use of a CI, whose width increases as sample size decreases.

In the field of transportation, CIs have also been applied. In Chapter 4, I look

more closely at the literature that advocates for or studies CIs for willingness-

to-pay measures. However, CIs have been reported for many other parameter

estimates as well. Chen et al. (2006) discuss the use of CIs for origin-destination

(OD) demand estimates, and propose a method by which to build these CIs. Ac-

cording to the authors, CIs are especially relevant for OD demand estimates due

to the uncertain nature of these estimates: demand is often estimated in advance

to be used for planning, and there can be incomplete information from which

the OD flows are inferred. This uncertainty makes it all the more important
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for CIs to be built. Other transportation studies in which CIs are used include

analyzing the trade off between travel time and the availability and quality of

bicycle lanes (Tilahun et al., 2007), calculating transportation mode share (Clark

and McKimm, 2005), and forecasting the market share of alternative fuel vehi-

cles (Mau et al., 2008). However, many of these and other studies simply list

the CIs in the results table with at most a cursory mention in the text, and no

explanation of its value or interpretation.

As can be seen, CIs are not only used in a wide variety of research areas,

they are also seen in some as the best means by which to interpret the results

of a study. Due to its importance and the mounting interest in building these

intervals, this research looks at the specific application of CIs within the context

of discrete choice models, with a majority focus on the CIs of willingness-to-pay.

1.1 Focus on Willingness-to-pay

Willingness-to-pay (WTP) measures provide a means to understanding how

much value consumers place on the unit improvement of any particular at-

tribute. They are important when reporting results of discrete choice models

(McFadden, 2001), and in applications to policy analysis, especially aiming at

welfare-improving scenarios. They are also especially useful in analyzing the

feasibility and potential outcomes of implementing a proposed policy, and for

this reason are often reported in cost-benefit analysis studies.

As a result of their widespread use and importance in applied work, inter-

est in the accurate estimation and portrayal of WTP measures is high. For a

linear-in-attributes discrete choice model, the WTP is the ratio of two parameter
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values (this formulation will be further discussed in chapter 2). It is thus easy to

calculate and report this value along with other results of discrete choice exper-

iments. Using WTP measures also allows for the easy comparison of attributes.

For example, individuals often do not regard the different aspects of time (such

as travel and waiting time) equally, but trying to observe this inequality simply

from the values of marginal utility is difficult (what does it mean to raise one’s

utility by 0.1?). By using WTP, these aspects of time gain a monetary value,

allowing for a more understandable comparison (being willing to pay, for in-

stance, $5 to reduce one’s waiting time by one hour versus $3 to reduce one’s

travel time by one hour).

WTP measures are also often applied in policy analysis, especially those aim-

ing at welfare-improving scenarios. In cost-benefit analyses, the marginal cost

of an improvement is compared to the WTP for said improvement, and deci-

sions are made based on this comparison. For example, consider a proposal to

improve the driving range of battery electric vehicles, which at current technol-

ogy contain batteries which allow the car to travel an average of 100-200 miles

before it needs to be recharged (U.S. Department of Energy, 2014). Suppose

the current marginal cost of producing a battery with an additional mile is esti-

mated to be $175/mile, and the WTP for this one-mile improvement in driving

range is estimated to be $130/mile. Cost-benefit analysis would conclude that

since the marginal cost outweighs the WTP, the proposal should be rejected.

However, since WTP is itself a random variable, reporting its standard errors

or CIs is an important task, though often overlooked in applied work. Return-

ing to the example of the battery electric vehicle, the conclusion to reject the

proposal should be questioned if the CIs of the marginal cost and WTP over-
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lap. This would imply that consumers could be willing to pay for an improve-

ment to the driving range, and further analysis is required as to the viability of

the proposal. In addition, different policy options being evaluated using mean

WTP values could potentially result in inaccurate conclusions. Two WTP val-

ues, while numerically different, might have overlapping CIs, indicating that

they are not statistically significantly different (cf. Park et al., 1991, for a similar

argument concerning benefit estimates).

As a result, this work begins the analyses of building CIs with building those

for WTP measures. Building CIs for WTP measures, and ratio measures in gen-

eral, contain their own set of difficulties. I then move beyond WTP measures to

analyze how CIs can be built for other functions of model parameters.
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CHAPTER 2

RANDOM UTILITY MAXIMIZATION AND CHOICE BEHAVIOR

MODELS

The purpose of this chapter is to give an introduction to random utility maxi-

mization (RUM) models, how they are structured, and how they can be solved.

In particular, RUM models will be discussed in the context of the choice behav-

ior of consumers facing discrete alternatives. Much of the content of this chapter

is taken from the Nobel Laureate lecture delivered by McFadden (2001).

Prior to the 1960s, consumer theory was rarely applied empirically, and

when used it was applied to national-level or market-level data. At such high

levels of application, the theory was developed for a representative agent, and

market level behavior was described according to this representative. If any

observations were found to deviate from the representative’s behavior, it was

attributed to disturbances or data measurement errors, rather than to the unob-

served differences among individuals. Clearly this was not an adequate means

by which to understand individual behavior, as even individuals with simi-

lar demographics would have seemingly unaccounted-for differences in choices

and preferences.

With the advent of digital computers and an growing amount of data con-

cerning individual behavior in the 1960s, more emphasis was placed on the

variation between individuals. It became increasingly important to explore and

model these variations rather than attributing them to errors or disturbances.

Daniel McFadden, working in the area of transportation, was the first to intro-

duce many of the solutions and tools we use in solving these models today.

McFadden also investigated and showed how the choice behavior models were
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consistent with RUM models.

In discrete choice, behavior models differ from the standard consumption

theory in the demand function used. Standard consumption theory has a con-

tinuous demand function, but in discrete choice models, individuals choose a

discrete quantity of goods. For example a consumer can only buy a discrete

quantity of cars, and not some fraction of a car. An individual’s satisfaction, or

utility, increases upon acquiring goods, and more precisely, is dependent on the

characteristics or attributes of the good. This is called the hedonic approach. Such

attribute differentiation is necessary because often times goods can perform the

same function. For example, all cars can fulfill the need for transportation. If

choice were based purely on functionality of a good, then all goods fulfilling

the same function would be chosen with equal probability. Yet it is clear from

data that certain goods are chosen over others. Hence the hedonic approach is

necessary in order to differentiate between products which an individual might

be facing.

The discrete choice model is thus characterized as follows. An individual

n faces a choice set Cn of of Jn different alternatives. He thus chooses alterna-

tive i ∈ Cn = {1, . . . , Jn}. Each alternative has a set of attributes xin(qin, cin),

where qin are the characteristics of the alternative and cin is the cost of the alter-

native. Socio-economic characteristics of the individual, sn, may also be added

to account for individual heterogeneity. Finally, the individual obtains utility

Uin, which is the indirect utility conditional on the choice. Uin is a function of

consumer preferences β, xin and sn.

Discrete choice models are shown to be consistent with RUM models in two

ways. Firstly, an individual makes his choice based on utility maximization.
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RUM works on the idea of rational consumer behavior, in which a rational indi-

vidual would work to maximize his satisfaction, or utility. Hence, in order for

an alternative i to be chosen, its utility Uin must be greater than (or equal to) the

utility Ujn obtained from each of the other alternatives in the choice set Cn.

RUM also introduces the notion that the utility is random. The basis of the

RUM model came from the work of Thurstone in 1927, who wrote on psy-

chophysical discrimination. In his seminal paper, Thurstone (1927) theorized

that an alternative i, with true stimulus level Vi, would instead be perceived

with a normal error as Vi + σεi. When this ’stimulus’ is replaced by levels of

utility, the model can be interpreted as an economic choice model. Marschak

(1960) introduced this work into the economics literature, calling it the RUM

model and using it to explore the theoretical implications for the choice proba-

bilities of the maximization of utilities that contained random elements.

Another important study in the choice behavior literature was by Luce, who

introduced an Independence of Irrelevant Alternatives (IIA) axiom. IIA states

that for every choice set C that contains both alternatives i and j, the ratio of

the choice probabilities of these alternatives is the same. Luce (1959) showed

that for positive choice probabilities, IIA implies strict utilities Ui such that the

probability of choosing alternative i, PC(i) = Ui∑
k∈C Uk

. Marschak (1960) then

linked this theory with the concept of random utility.

In choice behavior models, the notion of random utility is important for two

reasons. Firstly, individual choice behavior contains variation and is intrinsi-

cally probabilistic. Secondly, the modeler often obtains only incomplete infor-

mation. That is, the analyst is unable to fully observe all variables that influence

the decision of the individual. These two reasons make it essential to view indi-
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vidual utility as random rather than deterministic.

The remainder of the chapter will be focused on introducing the different

models, in particular fixed coefficient and random coefficient models. The solu-

tions for these discrete choice models will also be outlined, differing according

to the distributional assumptions of the error term. In addition, how WTP mea-

sures are formed from the coefficient estimates will be discussed.

2.1 Fixed Coefficient Models

As outlined above, consider a standard choice situation in which an individual n

chooses an alternative i ∈ Cn = {1, . . . , J} by maximizing the utility Uin among

the random utility vector Un = [U1n . . . UJn]. Because the utility is random, the

analyst can decompose this into a deterministic utility Vn and an error term

εn. In practice, the deterministic utility is often further assumed to be linear-in-

attributes:
Vn = Xnβ

= x
′

cnβc + x
′

1nβ1 + · · ·+ x
′

KnβK

(2.1)

where Xn is a matrix of observable exogenous attributes, x′cn is the attribute of

cost (or purchase price) and x′kn, k ∈ {1, . . . , K} are the remaining K attributes.

Note that in this fixed coefficient model, all individuals are assumed to have the

same consumer preferences, i.e., β does not differ by individual.

An individual chooses alternative i if Uin ≥ max
j 6=i

Ujn ∀ i, j ∈ Cn. However,

since the εn terms are random, the analyst can only ascertain the choice proba-

bility of the individual. The probability that an individual chooses alternative i

10



is given by

Pin = P(i|Cn) = P(Uin > Ujn,∀ j ∈ Cn, j 6= i)

= P(Vin + εin > Vjn + εjn,∀ j ∈ Cn, j 6= i)

= P(εjn − εin < Vin − Vjn, ∀ j ∈ Cn, j 6= i)

(2.2)

Supposing that εn has probability density function f(εn), the choice proba-

bility can be written as

Pin =

∫
ε

I(εjn − εin < Vin − Vjn,∀ j ∈ Cn, j 6= i)f(εn)dεn, (2.3)

where I(·) is the indicator function.

There are two important aspects of the choice decision process that affect

the specification and estimation of choice models. Firstly, only utility differ-

ences matter. This can be seen from equation (2.2), where the choice probability

depends on the difference in utilities Vin and Vjn. In practical terms, this also

makes sense. The numerical value of Uin does not matter to an individual; what

matters is whether one good is providing a higher utility than another good,

i.e. the difference in these utilities. That only utility differences matter implies

that only attributes that capture differences across alternatives can be estimated.

For example, if the same socio-economic variable enters the utility of all alter-

natives, then the effect of that variable on each alternative cannot be estimated.

Instead, only the relative differences can be estimated. The same applies for

alternative-specific constants that enter into the utility function. Train (2009)

contains specific examples of these problems.

Secondly, the overall scale of the utility does not matter. That is, multiplying

the utilities of every alternative by the same constant does not change the indi-

vidual’s choice. As a result, the analyst must normalize the scale of the utility.
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In practice, this is usually done by normalizing the variance of the error term,

or setting the scale of the utility to equal 1.

Different discrete choice models are derived from different assumptions over

the error term. Sections 2.1.1 and 2.1.2 assume that the error term is distributed

extreme value and normal, and are called the multinomial logit model (MNL)

and multinomial probit model (MNP) respectively.

2.1.1 Multinomial Logit Model

Assuming that each error term εin is independently and identically distributed

extreme value, i.e. εin
iid∼ EV(0, λ), gives the MNL model. In practice, the scale is

typically normalized by setting λ = 1. With this normalization, the probability

of individual n choosing alternative i can be expressed by the following closed

form equation:

Pin =
exp(x′inβ)∑J
j=1 exp(x′jnβ)

, ∀ i ∈ Cn (2.4)

The most common frequentist, or classical, method of solving the MNL

model is via maximum likelihood estimation (MLE). Specifically, consider that

we have choice indicators y such that

yin =


1, if individual n chooses alternative i

0, otherwise
(2.5)

Then the probability of individual n actually choosing alternative i can be ex-

pressed as
∏

i∈Cn(Pin)yin . Assuming that each individual makes his choice in-

dependently from all other individuals, then the probability of each individual

actually choosing the alternative which he was observed to have chosen (also
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called the likelihood), is given by

L(β) =
N∏
n=1

∏
i∈Cn

(Pin)yin (2.6)

MLE searches for the β that maximizes the value of the likelihood function,

or alternatively, the log-likelihood function which is given by the log of equa-

tion (2.6):

LL(β) = ln

(
N∏
n=1

∏
i∈Cn

(Pin)yin

)

=
N∑
n=1

∑
i∈Cn

yinlnPin

(2.7)

MNL models are useful for a number of reasons. Firstly, it is by far the sim-

plest model to use and estimate. Since the choice probabilities can be expressed

as a closed-form equation, MLE can be easily applied in order to solve for the

required β values. Secondly, MNL models exhibit the IIA property (Luce, 1959).

Note that for any two alternatives i and k,

Pin
Pkn

=
exp(Vin)/

∑
j∈Cn exp(Vjn)

exp(Vkn)/
∑

j∈Cn exp(Vjn)

=
exp(Vin)

exp(Vkn)

= exp(Vin − Vkn) ,

that is the ratio of the choice probabilities of two alternatives is independent of

the choice probability of any other alternative.

When IIA accurately represents the reality of the situation being modeled,

then MNL models provide significant advantages. IIA makes it possible to con-

sistently estimate the model parameters on a subset of alternatives for each in-

dividual. This can greatly improve the computational time, especially if the

original data set contains so many alternatives as to be impossible to solve. In
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addition, if the analyst is only interested in the choices between a subset of al-

ternatives (even though others might exist), then she can save time and effort

by only collecting the data for the alternatives in question, rather than for the

entire spectrum of possible alternatives.

However, there are also three main reasons for which MNL models are lim-

ited. Firstly, IIA is often not an accurate representation of the choice situation.

A oft-quoted example of a situation in which it is inappropriate to assume IIA is

the red-bus-blue-bus problem. Suppose that an individual has a choice of travel

modes between a red bus and a car, and that the choice probabilities are equal,

i.e. Pred bus = Pcar = 1
2
. Now suppose a blue bus, which is identical to the red bus

in every way except color, is introduced as a travel mode option. In this choice

situation, one would expect (logically) that the choice probabilities would be-

come Pred bus = Pblue bus = 1
4
, Pcar = 1

2
. However, due to IIA, the MNL model

would predict that the choice probabilities be Pred bus = Pblue bus = Pcar = 1
3
. This

situation, and many others, do not follow the IIA property, and thus using the

MNL model imposes inaccurate representations of the choice situation.

Secondly, MNL models cannot represent random taste variation. In partic-

ular, if consumer preferences β varies randomly, the randomness will be sub-

sumed by the error term ε, which would then contradict the IID assumptions of

the error term. As such, random taste variation cannot be modeled using MNL.

Finally, MNL models cannot be used with panel data where, for each indi-

vidual, there are unobserved variables which are correlated over time. This is

because the unobserved variables are also subsumed, as with random taste vari-

ation, by the error term, which is assumed to be independently distributed. As

a result, the time correlation will not be accounted for by the MNL model.
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In order to benefit from the closed form equations of the MNL model yet

account for the fact that IIA is often not an accurate representation of the choice

situation, an analyst can use a generalized extreme value (GEV) model. GEV

models contain all models which assume that the error terms ε are jointly dis-

tributed generalized extreme value. Apart from this rule, GEV models can al-

low for any variety of substitution patterns between the alternatives. In this

way, the often incorrect assumption of IIA can be overcome. Note that if there

are no correlations between alternatives, then the GEV model is the standard

MNL model.

The most commonly used GEV model is the Nested Logit (NL) model. This

model allows alternatives to be placed into different groups, or nests. Alter-

natives within the same nest are better substitutes of each other, and IIA holds

within nests. However, alternatives in different nests are not good substitutes,

or are correlated to other alternatives in the two nests. Hence IIA does not exist

between nests. Consider, for example, an individual who is deciding how to

travel to work. He has the alternative of either driving alone, carpooling, taking

the bus, or taking the train. One way to partition these alternatives into nests

would be to place the first two into one nest and the next two into a different

nest, as shown in Figure 2.1. Since both driving alone and carpooling involves

cars, while taking the bus or train are transit options, it makes sense that the

alternatives within each nest would be good substitutes of each other, but not

alternatives between nests.

While GEV models can relax the assumption of IIA, the other limitations of

the MNL model cannot be so easily overcome will still maintaining the extreme

value distribution of the error terms. The MNP model, as described in the fol-
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drive alone

car

carpool bus train

transit

Figure 2.1: Example of 2-level nested logit model

lowing section, is a model that can overcome these restrictions.

2.1.2 Multinomial Probit Model

MNP models, unlike GEV models, handle all three restrictions of MNL mod-

els. Unfortunately this comes with a price, because MNP models assume that

error terms follow a normal distribution. As a result, the choice probabilities de-

pend on an integral for which there is no closed form, making estimation more

difficult.

The MNP model is derived as follows. Assume that the error term ε is

distributed multivariate normal, i.e. ε ∼ MVN(0,Σ), where Σ is the general

variance-covariance matrix

Σ =



σ2
1 σ12 · · · σ1J

σ21 σ2
2 · · · σ2J

... . . . ...

σJ1 σJ2 · · · σ2
J


(2.8)

Following equation (2.3), the probability of individual n choosing alternative
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i then becomes

Pin =

∫
varepsilon

I(εjn − εin < Vin − Vjn,∀ j ∈ Cn, j 6= i)φ(εn)dεn, (2.9)

where φ(·) is the probability density function of the multivariate normal distri-

bution.

In order to estimate this integral, we express the choice probability in the

following way. Since only utility differences matter, consider (without loss of

generality) the model in differences with respect to the first alternative; i.e., con-

sider the model

Ũn = ∆1Un =


U2n − U1n

...

UJn − U1n

 =


x
′
2n − x

′
1n

...

x
′
Jn − x

′
1n

β +


ε2n − ε1n

...

εJn − ε1n

 , (2.10)

where ∆1 is the matrix difference operator that creates the vectors above. Note

that with this specification, the probability that individual n chooses alternative

1 is now P1n = P(U1n > Ujn, ∀ j ∈ Cn, j > 1) = P(∆1Ujn < 0,∀ j ∈ Cn, j > 1).

Since the difference between two normals is normal, ∆1εn is multivari-

ate normally distributed. It can be shown that the covariance matrix of the

model becomes Σ̃1 = ∆1Σ∆
′
1. Then the choice probability becomes a (J − 1)-

dimensional integral

Pin = P(Uin > Ujn,∀ j ∈ Cn, j 6= i)

= P(Uin − U1n > Ujn − U1n,∀ j ∈ Cn, j 6= i)

= P(Ũin > Ũjn,∀ j ∈ Cn, j 6= i)

= P(Ṽin + ε̃in > Ṽjn + ε̃jn,∀ j ∈ Cn, j 6= i)

= P(ε̃jn − ε̃in < Ṽin − Ṽjn,∀ j ∈ Cn, j 6= i)

=

∫
I(ε̃jn − ε̃in < Ṽin − Ṽjn,∀ j ∈ Cn, j 6= i)φ(ε̃n)dε̃n

(2.11)
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In order to estimate the MNP model using MLE, the choice probabilities

have to be effectively calculated. (J − 1)-dimensional integrals, with no closed

form, are difficult to evaluate, and numerical evaluation is possible for only

up to 3 alternatives. Hence, simulation is used to calculate the choice prob-

abilities. Rather than maximizing the likelihood as similar to equation (2.7),

we instead maximize the simulated log-likelihood (SLL), which uses simulated

choice probabilities, i.e.

SLL =
N∑
n=1

∑
i∈Cn

yinlnP̂in (2.12)

This is maximized over both β and Σ.

The simulated choice probabilities P̂in can be obtained using a variety of

methods, but the most widely used is the GHK simulator, named after Geweke

(1989, 1991), Hajivassiliou (as reported in Hajivassiliou and McFadden (1998)),

and Keane (1990, 1994), who are credited for having developed this simulator.

This simulator works on utility differences, as described above. In addition,

which utility is subtracted from the others depends on the choice probability

being simulated, i.e. if P1n is being simulated, than utility U1n is subtracted from

all other utilities U2n, . . . , UJn, and so forth. Hence, without loss of generality,

suppose one is simulating the choice probability for alternative 1. Then the

model in differences is as described above in equation (2.10). One obtains the

Cholesky decomposition L1 of the new covariance matrix Σ̃1 = L1L
′
1, where

L1 =


c11 0 . . . . . . 0

c21 c22 0 . . . 0

...
...

...
...

...

 (2.13)

With the Cholesky decomposition, Ũn = Ṽn + ε̃n = Ṽn + L1ηn, where ηn is

a Jn − 1 vector whose elements are IID standard normal. Written explicitly, this
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becomes
Ũ2n = Ṽ2n + c11η1n

Ũ3n = Ṽ3n + c12η1n + c22η2n,

(2.14)

and so on. The probability of individual n choosing alternative 1 is then

P1n = P(Ũjn < 0,∀ j ∈ Cn, j > 1)

= P

(
η1n <

−Ṽ2n
c11

)
× P

(
η2n <

−Ṽ3n − c12η1n
c22

∣∣∣∣∣ η1n < −Ṽ2nc11

)
× · · ·

(2.15)

Using this probability, the GHK simulator proceeds as follows:

1. Calculate P
(
η1n <

−Ṽ2n
c11

)
= Φ

(
−Ṽ2n
c11

)
.

2. Draw ηs1n from a truncated standard normal distribution, truncated at −Ṽ2n
c11

.

3. Calculate P
(
η2n <

−Ṽ3n−c12η1n
c22

∣∣∣ η1n = ηs1n

)
= Φ

(
−Ṽ3n−c12ηs1n

c22

)
.

4. Draw ηs2n from a truncated standard normal distribution, truncated at
−Ṽ3n−c12ηs1n

c22
.

5. Continue for all alternatives j ∈ Cn, j > 1.

6. Simulated probability for sth draw is P̂ s
1n = Φ

(
−Ṽ2n
c11

)
×Φ

(
−Ṽ3n−c12ηs1n

c22

)
×· · · .

7. Repeat above steps for s = 1, . . . , S.

8. Simulated choice probability P̂1n = 1
S

∑
s

P̂ s
1n.

2.2 Random Coefficient Model

Motivation for a random coefficient model is rather logical. It is not possible

to claim that all individuals in a sample, or population, have exactly the same

preferences, which is the assumption of the fixed coefficient model. Instead,
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variations exist between groups of people for almost all products, and these

are called taste variations. These differences are often the concern of analysts

trying to perform market segmentation, or understand the preferences of certain

groups of people.

There are several ways to analyze taste variations. The first is in a determin-

istic way, in which certain market segments are pre-identified by the analyst,

and fixed coefficients are added to the model to account for this. For example,

supposed the analyst thinks that men and women will have different prefer-

ences for some attribute xk. One common strategy is to use a different coeffi-

cient for men and women, i.e. βkm and βkw. An alternative strategy is to add a

coefficient representing the taste variation of one group relative to another, e.g.

using (βk +βkwIwn)xkn, where Iwn is the indicator representing whether individ-

ual n is a woman. Then the marginal utility of attribute k for men is βk, while

that for women is βk + βkw.

While deterministic taste variations can test the validity of pre-identified

market segments, it cannot on its own identify these segments. As can be imag-

ined, there are many possible segments that could exist, and it would be ex-

tremely time consuming for the analyst to individually test each of these seg-

ments deterministically. The analyst would more likely test the segments which

are either observable, or which she knows would exist from past experience

(such as by gender, age, income group). However, there may also be many un-

observable taste variations that should be accounted for.

To account for these, random taste variations can be applied. This assumes

that variations in taste cannot be explained in some systematic way (as with

deterministic taste variations). A common approach to this problem is to ap-
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ply a parametric assumption to the distribution of taste preferences, i.e. assume

that the coefficients are random variables following some parametric distribu-

tion, βk ∼ f(βk|θβk), where θβk are the parameters describing the parametric

distribution. With this approach, each individual n has taste preferences βkn for

attribute k, and each βkn is drawn from the distribution of βk. Hence, the utility

of individual n for choosing alternative i becomes

Uin = x
′

inβn + εin, (2.16)

where xin is the vector of attributes associated with alternative i and individual

n, εin is the random term, and βn the vector of coefficients representing the taste

preferences unique to individual n.

In line with RUM, the individual, who knows his own preferences, chooses

alternative i if and only if Uin > Ujn∀ j 6= i. However, the analyst cannot actu-

ally observe the individual’s βn. If she did, in fact, know the individual’s taste

preferences, then the choice probability would be identical to that of the fixed

parameter case in equation (2.3). Thus, in order to obtain the choice probability,

it is necessary to consider all possible values of βn:

Pin =

∫ (∫
ε

I(εjn − εin < Vin − Vjn, ∀ j ∈ Cn, j 6= i)f(εn)dεn

)
f(β)dβ (2.17)

There are often no closed forms for equation (2.17). In addition, depending

on how many parameters are assumed to be random, the integral can contain

many dimensions. As a result, random coefficient models are most often solved

using simulation methods.

As with fixed coefficient models, the different discrete choice models are

derived from different assumptions over the error term ε. Subsections 2.2.1
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and 2.2.2 assume that the random term is distributed extreme value and normal

respectively.

2.2.1 Mixed Logit Model

The mixed multinomial logit (MMNL) model, also known as the mixed logit

(ML) model, is derived by assuming that each error term εin is IID distributed

extreme value, i.e. εin
iid∼ EV(0, λ). As before, the scale is typically normalized

by setting λ = 1. If the analyst could observe the individual’s taste preferences

(i.e., conditional on taste preferences β), then the probability that an individual

n chooses alternative i is

Pn(i|β) =
exp(x′inβ)∑J
j=1 exp(x′jnβ)

, ∀i ∈ Cn (2.18)

Hence the unconditional choice probability thus becomes

Pin =

∫
Pn(i|β)f(β)dβ

=

∫
exp(x′inβ)∑J
j=1 exp(x′jnβ)

f(β)dβ, ∀i ∈ Cn
(2.19)

The ML model is an extremely flexible model which, under regularity condi-

tions, is able to approximate any RUM model to any degree of accuracy (McFad-

den and Train, 2000). It also overcomes the three limitations of the MNL model,

while maintaining the assumption of a logit error distribution, which is why

the conditional choice probability can be expressed in a closed form as with the

MNL model. This eliminates one stage of simulation needed in the estimation

process.

The flexibility of the ML model can be seen in the expression of f(β). The

analyst can specify any distribution for the taste preferences, and then estimate
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the parameters of this distribution. Taste preferences are often assumed to be

distributed normal or lognormal. Lognormal distributions are advantageous

when the coefficient is known to have the same sign over all individuals. For

example, the cost coefficient can be assumed to distributed lognormal because

all individuals should have a negative sign for this coefficient (a positive sign

would indicate that paying more gives higher utility). Other distributions in-

cluding triangle and uniform distributions have also been used. The ML model

also allows the analyst to apply different distribution assumptions to different

coefficients in the model.

Estimation of the ML model again proceeds via MLE. Using the same nota-

tion as before, the log-likelihood function is given by

LL(β) =
N∑
n=1

∑
i∈Cn

yinlnPin

=
N∑
n=1

∑
i∈Cn

yinln

(∫
exp(x′inβ)∑J
j=1 exp(x′jnβ)

f(β)dβ

) (2.20)

The analyst wants to find the β that maximizes this equation. However,

there are two problems to doing this directly. Firstly, there is no closed form

equation to the integral, and thus simulation is necessary to calculate the choice

probabilities. Secondly, β is random, and thus the analyst needs to specify some

distribution f(β|θ) for β. She is then trying to find the values of θ that maximizes

the log-likelihood function. For some given value of θ, the choice probabilities

are simulated as follows:

1. Draw βs from f(β|θ).

2. Calculate P̂ s
in =

exp(x′inβ
s)∑J

j=1 exp(x′jnβs)
.

3. Repeat above steps for s = 1, . . . , S.
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4. Simulated choice probability P̂in = 1
S

∑
s

P̂ s
in.

These simulated choice probabilities are then used in the simulated log-

likelihood equation, which is maximized over θ.

SLL =
N∑
n=1

∑
i∈Cn

yinlnP̂in (2.21)

2.2.2 Random Coefficient Probit Model

The random coefficient probit model works similarly to the ML model, except

that the error term is assumed to follow a normal distribution. The conditional

choice probability is thus that of the MNP model (equation (2.9)). As with the

MNP model, this means that there is no closed form expression for the condi-

tional choice probability, let alone the unconditional choice probability.

Little work has been done with the random coefficient probit model. While

an extremely useful and highly flexible model, it faces the difficulties of estima-

tion. Even without considering the additional integral dimensions arising from

the random coefficients, estimation of the MNP model requires a high compu-

tational cost. The MSL method for estimating the MNP model as described

in subsection 2.1.2 has been criticized for several reasons (Bhat, 2011). Firstly,

accuracy of any simulation technique is known to degrade as the number of di-

mensions of integration increases, which also results in simulation noise rising

substantially. In addition, the covariance matrix of the estimator is often numer-

ically estimated with low accuracy. Evaluating this with a high accuracy further

increases computational cost to the point of being infeasible for research.

Despite these difficulties, using a random coefficient probit model gives ad-
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vantages even beyond those of the ML model. Bhat and Sidharthan (2012) high-

light several of these advantages. Firstly, in cases when the utility of individuals

have a spatial dependency component, the parametric covariance that results is

infeasible, or at best extremely inefficient to incorporate over a restrictive EV

kernel covariance surface. Secondly, if the random coefficients take on an as-

sumption of being normally distributed, then the resulting random parameter

model collapses into a regular MNP model. However, this is still difficult to

solve using the MSL method. As such, Bhat (2011) proposes a method called the

“Maximum Approximate Composite Marginal Likelihood (MACML)” method

as an alternative to the MSL method. The MACML procedure uses an analytic

approximation method rather than simulation to evaluate the cumulative dis-

tribution function of the multivariate normal, which improves on the accuracy

of the parameter and covariance matrix estimates.

The Bhat (2011) version of the MACML procedure was only applicable for

the special case when the random parameters were distributed normally. How-

ever, Bhat and Sidharthan (2012) derived the model for cases when the random

parameters can take on other distribution assumptions, in particular the multi-

variate skew-normal distribution function. It is clear that much more work can

be done in this area, and might happen as technology improves to accommodate

the high computational costs necessary for estimation.

2.3 Willingness-to-pay Measures

In all the models discussed above, the deterministic utility Vin is assumed to be

linear-in-attributes. As a result, the derivative of Uin with respect to changes in
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attribute xkin and cost xcin is given by dUin = βkdxkin + βcdxcin. Equating this to

zero and solving for dxcin/dxkin gives the change in cost that would allow total

utility to remain constant given a change in some attribute xkin, or the WTP

for an improvement in attribute xkin. This is also known in Economics as the

marginal rate of substitution.

dxcin
dxkin

= WTPk = −βk
βc

(2.22)

As has been discussed above, parameters of a discrete choice model are usu-

ally estimated using MLE. Using this estimation method implies that the es-

timated parameters are asymptotically distributed multivariate normal. This

means that the WTP is a random variable, since it is a ratio of two random vari-

ables. In addition, as the ratio of two normally distributed variables, WTP is

governed by an unknown probability distribution a priori. This results in a host

of complications when estimating these measures and building CIs for them, as

will be detailed in Chapter 3.
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CHAPTER 3

METHODOLOGY

This chapter gives an introduction to the various method of building CIs, in

particular for WTP measures. The standard equation for CIs uses the estimated

mean and standard errors of the random variable obtained from the model.

Hence for some random variable θ that is assumed to follow a normal distri-

bution, the CIs are given by

(θ̂ − zα/2sθ, θ̂ + zα/2sθ), (3.1)

where θ̂ and sθ are the estimated mean and standard error of θ respectively, α

is the confidence level chosen and zα/2 is the inverse of the cumulative standard

normal distribution at probability level (1 − α
2
); i.e. the value zα/2 such that

P(Z ≤ zα/2) = 1− α
2

.

However, WTP measures are computed as the ratio of the model parameter

estimates, rather than estimated directly from the model. As a result, the stan-

dard equation above cannot be applied wholesale to the building of their CIs.

One can easily see a problem posed by these ratio measures: a ratio will have a

singularity where its denominator is equal to zero. Hence if the denominator is

close to zero (i.e. when weak identification exists), it becomes difficult to accu-

rately estimate the model parameters, consequently resulting in inaccurate ratio

estimates and CIs (Dufour, 1997). In addition, parameter estimates obtained us-

ing MLE result in a random WTP variable with an unknown a priori probability

distribution. Thus, it is not a trivial matter to obtain the mean and standard

error of the WTP variable.
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Two situations exist in which the WTP measure does follow a known prob-

ability distribution a priori. First, WTP follows a Cauchy distribution when the

parameters are independently distributed standard normal (Arnold and Brock-

ett, 1992). However, a Cauchy distribution has no moments, and thus standard

methods of interval estimation cannot be used. In addition, it is unlikely for the

parameters to be independently distributed standard normal. Second, when

the coefficient of variation of the denominator (for the WTP, this is the cost co-

efficient βc) is negligible, i.e., when the standard error of βc is small compared

to its mean, then the distribution of WTP is likely to be approximately normal

(Fieller, 1932; Hinkley, 1969). This is still a strong assumption that might not

always hold; however, in deriving the CIs for WTP measures, it is usually as-

sumed that the WTP measure is distributed normal, as will be made clear below.

The most prevalent methods of constructing CIs of WTP in the fields of Eco-

nomics and Transportation Science are the Delta method, the Fieller method,

and the Krinsky-Robb method. This chapter will explain these three methods,

and also include a variety of other methods, namely the use of WTP-space, the

Bayesian post-processing method, and the use of the Bayes Factor. These three

methods have not been widely used in the literature to construct CIs. Working

in WTP-space has been shown to produce more accurate results than working

in preference space (Sonnier et al., 2007), but has not been used before to build

CIs. The Bayesian post-processing method is rarely used or considered in the

existing literature, despite the fact that it involves only at most as much work

as the other commonly used methods. The Bayes factor is a test statistic used in

Bayesian hypothesis testing to compare null and alternative hypotheses. While

it has been used in this capacity for many years, it has only recently been used

in building CIs (Guerron-Quintana et al., 2013).
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The remainder of this chapter describes the different basic assumptions, for-

mulation, and advantages and disadvantages of each method. The list below

describes the notation used in the equations following:

β: mean of asymptotic normal distribution of parameter estimates

Σβ : covariance matrix of asymptotic normal distribution of parameter esti-

mates

β̂k: point estimate of the parameter of attribute xk

β̂c: point estimate of the parameter for cost xc

ŴTPk: willingness-to-pay for attribute xk, calculated as β̂k
β̂c

Σ̂kc: submatrix of Σ̂β corresponding to β̂k and β̂c, written explicitly as
[
ν̂k ν̂kc
ν̂kc ν̂c

]
α: confidence level of intervals produced

The methods for building CIs can be split into those used for fixed or random

coefficient models, and then further into frequentist and Bayesian methods. The

following sections classify the methods according to these categories as in Ta-

ble 3.1.

Table 3.1: Different methods of building confidence intervals

Frequentist Bayesian
Delta (Mean) Post-Processing

Fixed Fieller WTP-Space
Parameter Krinsky-Robb Bayes Factor

WTP-Space

Random
Parameter

Delta (Mean) Post-Processing
Delta (Median)
Krinsky-Robb
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3.1 Fixed Coefficient Models

There are many well established methods in the literature for building CIs of

ratio measures that can be applied to the WTP measures obtained from fixed

coefficient models. Recall that the fixed coefficient model assumes a priori that

all individuals have the same (fixed) taste preferences. As a result, there is also

only one WTP measure to account for, rather than WTP values that vary across

individuals.

3.1.1 Frequentist Methods

Within the Transportation Science and Economics literature, the Delta method,

Fieller Method, and Krinsky-Robb methods are the most often used. Also in-

cluded in this section of frequentist methods is the WTP-space method.

Delta Method

In general, the Delta method estimates the variance of a non-linear function of

two or more random variables by first taking the first-order Taylor expansion

around the mean value of the variables, then calculating the variance of this

expression (see example in Greene, 2003). By using this method, the variance of

the WTP is thus:

var(ŴTPk) = (ŴTPβk)
2var(β̂k) + (ŴTPβc)

2var(β̂c)

+ 2ŴTPβkŴTPβccovar(β̂k, β̂c)

=

(
−1

β̂c

)2

ν̂k +

(
β̂k

β̂2
c

)2

ν̂c + 2

(
−1

β̂c

)(
β̂k

β̂2
c

)
ν̂kc,

(3.2)

30



where ŴTPβk and ŴTPβc are the partial derivatives of WTPk with respect to βk

and βc respectively, evaluated at the point estimates.

The Delta method then assumes that the WTP is normally distributed, and

thus symmetrical about its mean. As such, confidence intervals are created in

the conventional manner:

CIdelta = ŴTPk ± z1−α/2
√

var(ŴTPk), (3.3)

The Delta method is simple to use due to its linear approximation. It often

produces CIs that are comparatively narrower than those of other methods, and

so is seen as more accurate. In addition, though the variance of the WTP is given

here (and in much of literature) as the first order Taylor expansion, Daly et al.

(2012) argues that this variance obtained is in fact the accurate, exact variance

of the ratio of parameters. However, as discussed above, the assumption that

the WTP is normally distributed only holds when a sufficiently large sample

is used, and the standard error of βc is small compared to its mean. As these

conditions might not necessarily hold, the assumption of normality of the WTP

is strong. The Delta method also depends on a continuous cost coefficient, and

fails in the presence of weak identification. In addition, there is an assumption

that the CI is symmetric about its mean, which often does not occur in practice.

Finally, a narrow CI might not necessarily be beneficial as it might result in low

coverage.

Fieller Method

As with the Delta method, the Fieller method (Fieller, 1944, 1954) assumes the

consistent asymptotic normal distribution of the parameter values. However, it
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does not assume that the WTP is itself normally distributed, but that the coeffi-

cients are joint normally distributed. The Fieller method relies on the fact that

a linear combination of normal random variables is itself normal. In particular,

WTPk = δ = β̂k
β̂c

implies that β̂k − δβ̂c = 0, and thus

β̂k − δβ̂c ∼ N(0, σ2
WTP ) (3.4)

where σ2
WTP = δ2νc − 2δνkc + νk and δ is used in place of WTPk for brevity.

Dividing by the estimator of the standard deviation of WTP gives the statis-

tic:

T0 =
β̂k − δβ̂c√

(δ̂2kν̂c − 2δ̂kν̂kc + ν̂k)
(3.5)

which follows approximately or exactly a Student t-distribution with df degrees

of freedom. In most cases, however, the relationship is approximate, with the t-

distribution corresponding to a normal distribution with df =∞. Franz (2007)

describes the following conditions that need to be met for an exact relationship:

1. (β̂k, β̂c) is exactly normally distributed

2. The covariance matrix is known up to a proportionality constant σ2

3. σ2 can be estimated by σ̂2 independent of (β̂k, β̂c), such that dfσ̂2

σ2 is dis-

tributed chi-square with df degrees of freedom

If these three conditions are met, then the t-distribution in equation (3.5) has df

degrees of freedom. However, discrete choice models contain no finite-sample

counterpart for this test, hence the relationship is approximate and the normal

distribution is used.

The (1 − α) CI corresponds to inverting the test β̂k − δβ̂c = 0 with respect

to δ, i.e. finding the values of δ such that T 2
0 ≤ z2α/2. Let A = β̂2

c − z2α/2ν̂c,
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B = −β̂kβ̂c + z2α/2ν̂kc and C = β̂2
k − z2α/2ν̂k. Then there are three cases which must

be considered.

A > 0. This is equivalent to saying that β̂c is significantly different from 0

(i.e. β̂2
c

ν̂c
> z2α/2). Then the following bounded CI is obtained:

(
¯
δ, δ̄) = (

−B −
√
B2 − AC
A

,
−B +

√
B2 − AC
A

) (3.6)

A < 0 andB2 −AC > 0. If β̂c is not significantly different from 0, then we

can differentiate between two cases. This first case results in a CI that includes

all values except those between
¯
δ and δ̄ as they are defined above.

A < 0 andB2 − AC < 0. This final case produces a CI that is the entire

real line.

Note that no other case would exist, i.e. A > 0 andB2−AC < 0 cannot occur

at the same time (Bolduc et al., 2010). This is because of the Cauchy-Schwartz

inequality (Rao, 1973, pg. 55), where ν̂2kc − ν̂kν̂c < 0. In particular, consider

B2 − AC < 0 ⇒ (−β̂kβ̂c + z2α/2ν̂kc)
2 − (β̂2

c − z2α/2ν̂c)(β̂2
k − z2α/2ν̂k)

= z4α/2(ν̂
2
kc − ν̂kν̂c) + z2α/2(β̂

2
k ν̂c + β̂2

c ν̂k − 2β̂kβ̂cν̂kc) < 0

⇔ z2α/2(β̂
2
k ν̂c + β̂2

c ν̂k − 2β̂kβ̂cν̂kc) < −z4α/2(ν̂2kc − ν̂kν̂c)

⇔ β̂2
k ν̂c + β̂2

c ν̂k − 2β̂kβ̂cν̂kc
ν̂kν̂c − ν̂2kc

< z2α/2

(3.7)
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Let z∗ =
β̂2
kν̂c+β̂

2
c ν̂k−2β̂kβ̂cν̂kc
ν̂kν̂c−ν̂2kc

, and consider

β̂2
c

ν̂c
− z∗ =

β̂2
c

ν̂c
− β̂2

k ν̂c + β̂2
c ν̂k − 2β̂kβ̂cν̂kc

ν̂kν̂c − ν̂2kc

=
−β̂2

c ν̂
2
kc + 2β̂kβ̂cν̂cν̂kc − β̂2

k ν̂
2
c

ν̂c(ν̂kν̂c − ν̂2kc)

= −(β̂cν̂kc − β̂kν̂c)2

ν̂c(ν̂kν̂c − ν̂2kc)
< 0

⇒ β̂2
c

ν̂c
< z∗

(3.8)

Thus B2−AC < 0⇒ β̂2
c

ν̂c
< z∗ < z2α/2 ⇒

β̂2
c

ν̂c
< z2α/2 ⇒ β̂2

c −z2α/2ν̂c < 0⇒ A < 0.

As a result, A > 0⇒ B2 − AC > 0.

The Fieller method is not constrained by the assumption that the WTP is

normally distributed, nor does it assume that the point estimate must be at the

center of the CI. However, because it relies on an asymptotic distribution, its

reliability might be questionable under finite samples. In addition, there is a big

debate regarding the practical interpretation of the unbounded CIs produced

when β̂C is not significantly different from 0. Section 4.1 will further analyze the

question of bounded versus unbounded CIs.

In his original paper, Fieller (1954) discusses the general case of inverting a

Wald-type test associated with a hypothesis of more than one degree, i.e. when

looking at equations of the type

β1F1(α) + β2F2(α) + · · · = 0 (3.9)

When looking at a single WTP measure, we are thus inverting the univariate

Wald test.

Some authors (Armstrong et al., 2001; Bernard et al., 2007) have also sug-

gested the inversion of the Likelihood Ratio test (which I will call the LR
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method), as an alternative to the Fieller method. Armstrong et al. (2001) found

that the Fieller and LR method gives comparable results. However, recall that

the Wald test, LR test and the Lagrange Multiplier (LM) test are asymptotically

equivalent. It can thus be argued that the LR method is essentially equivalent

to, or an extension of, the Fieller method.

Krinsky-Robb Method

The Krinsky-Robb (KR) method (Krinsky and Robb, 1986, 1990) creates a mul-

tivariate normal distribution using the mean and covariance matrix of the esti-

mated coefficients, namely β̂ and Σ̂kc. A large number of draws is taken from

this distribution, with WTP estimates calculated from each draw. Sorting the

estimates and taking the 100(α/2)th and 100(1 − α/2)th percentile values give the

KR (1− α) CI.

While the KR method also assumes a joint normal distribution for the co-

efficients, it is versatile as one can apply this method to any utility function

specification. It can also be used for any linear or nonlinear function of the

estimated parameters, and accounts for (co-)variability associated with all coef-

ficients. However, this is perhaps the most computationally demanding of all

frequentist methods studied in this paper due to resampling.

The KR method is in fact just one sampling technique classified under the

family of bootstrap methods. In general, bootstrap methods simulate a distri-

bution of the variable in question, here the WTP measure. The most common

bootstrap sampling method does not assume a multivariate normal distribu-

tion for the coefficients, but draws a large number of samples, say N , from the

35



data with replacement. Each sample is then solved and the WTP measure is

calculated using equation (2.22). The CI is then calculated using percentiles.

This general bootstrap has a clear advantage in that it assumes nothing about

the symmetry of the WTP distribution, or the distribution of the estimated co-

efficients. However, it is even more computationally demanding than the KR

method, since the model has to be estimated N times. In addition, research

within the Economics and Transportation Science fields have found the boot-

strap to be either worse or no different from other methods being used in this

work (Armstrong et al., 2001; Hole, 2007; Bolduc et al., 2010).

WTP-Space Method

Working in WTP-space involves re-parameterizing the full conditional likeli-

hood so that WTP can be directly measured. Consider the indirect utility func-

tion:

Uin = Vin + εin = xcinβc + x1inβ1 + . . .+ xKinβK + εin (3.10)

Rewriting this equation gives the utility model in WTP-space, i.e.

Uin = xcinβc + x1in
β1
βc
βc + . . .+ xKin

βK
βc
βc + εin

= βc(xcin + x1inWTP1 + . . .+ xKinWTPK) + εin

(3.11)

Note that this is equivalent to the consumer surplus model, in which equa-

tion (3.10) is divided throughout by the coefficient of cost βc to obtain the con-

sumer surplus of individual n for alternative i, Cin:

Uin
βc

= xcin + x1in
β1
βc

+ . . .+ xKin
βK
βc

+
εin
βc

Cin = xcin + x1inWTP1 + . . .+ xKinWTPK + ηin

(3.12)
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As before, the individual chooses an alternative that maximizes his utility

(or surplus) among the J alternatives available. The MNL choice probability

associated with this model is given by

Pin =

[
exp{βc(xcin + x′in,−cWTP)}∑J
j=1 exp{βc(xcjn + x′jn,−cWTP)}

]
, (3.13)

where x′in,−c are all the attributes excluding the attribute of cost. Equation (3.13)

allows the WTP measures to be directly estimated from the model. The frequen-

tist CIs are then obtained using standard CI equations:

CIWTP Space = ŴTPk ± zα/2
√

var(ŴTPk) (3.14)

where ŴTPk is the point estimate of the WTP of attribute k estimated directly

from the consumer surplus model.

An obvious benefit to re-parameterizing the model into WTP-space is the

ability to directly implement a prior for the WTP measure. No additional steps

are needed to calculate WTP from model estimates, and the CIs are easy to build.

Sonnier et al. (2007) show that solving a model in WTP-space also gives a more

accurate recovery of the true WTP than solving it in preference space, even if

the data was originally produced using the preference space. However, since to

our knowledge this method has not been used to build CIs, it is as yet unknown

how beneficial this method will prove to be.

3.1.2 Bayesian Methods

Bayesian methods are not often discussed or used in estimating discrete choice

models, let alone in building CIs for WTP measures. Yet the portrayal of CIs
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in the Bayesian context is in fact more intuitive than that in the frequentist con-

text. The Bayesian model assumes that the parameter is random, which differs

from the frequentist context where the parameter is assumed to be a fixed, true

parameter. This plays into the interpretation of the CI that is built. Consider

α = 0.05, or a 95% confidence level. In the frequentist context, the “95% con-

fidence interval” means that over repeated sampling, 95% of the CIs built will

contain the fixed parameter. However, in the Bayesian context, the random pa-

rameter has a 95% probability of falling into the interval (called credible interval).

This latter interpretation is actually how many people think of all CIs, though it

is not an accurate portrayal of the CI in the frequentist context.

There are some who might argue that the frequentist CI and the Bayesian

credible interval should not be compared. In this work I compare between

Bayesian and frequentist methods by using a “frequentist” aproach, i.e. the

simulation is repeated multiple times, and a coverage is calculated over this

repetitions. This simulated coverage gives us one basis of comparison between

the different methods.

There are two main Bayesian methods being discussed in this section. The

first is the Bayesian post-processing method, while the second is the method of

inverting the Bayes Factor.

Bayesian Post-Processing Method

The Bayesian post-processing method can be used either in preference space or

WTP-space. In either space, the respective model is solved using the Bayesian

method, which uses Markov Chain Monte Carlo (MCMC) simulations. The
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(a) Symmetric interval (b) HPD interval

Figure 3.1: Comparing symmetric and HPD intervals

posterior solutions are generated by R iterations of the MCMC sample. In the

preference space, the WTP estimate for each realization of the MCMC chain

r = 1, . . . , R can be calculated as WTP r
k =

β̃rk
β̃rc

, while in the WTP-space, the WTP

estimates are directly solved by the model. The credible interval is then calcu-

lated by taking the highest probability density (HPD) 1− α interval of the WTP

estimates.

This method of building CIs can be thought of as the Bayesian counterpart

to the KR method. However, the Bayesian method is less involved because esti-

mating the model parameters uses realizations of the MCMC sample. Hence, no

additional sampling is needed as in the KR method; instead the MCMC sample

can be used directly. In addition, no assumptions are made regarding the dis-

tribution of WTP, and like the KR method, the Bayesian method can be applied

to any utility function specification and any linear or nonlinear function of the

estimated parameters. Finally, the MCMC chain is sampled directly from the

posterior distribution of the parameters, and so does not require a large sam-

ple size in order to obtain an asymptotic distribution as with estimates obtained

through MLE.
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Note that there are many ways in which intervals can be formed. The stan-

dard method of deriving the credible interval would be to take the 100(α/2)th

and 100(1− α/2)th percentile values of the sorted WTP estimates. This method

is accurate when the distribution of the random variable is symmetric. How-

ever, because it chooses the interval bounds such that there is an equal amount

of probability mass on either side of the interval (here α/2), it gives a less plau-

sible interval for when the distribution itself is not symmetric. Instead, the HPD

interval can be used, which accounts for the asymmetry and has been shown to

give the shortest interval for any specific probability 1− α (Box and Tiao, 1992).

As can be seen from Figure 3.1, the HPD interval is shifted further to the right as

compared to the symmetric credible interval, due to the fact that the right side

of the probability distribution has a greater probability mass. In addition, if the

distribution is in fact symmetric, then the HPD and symmetric intervals will be

identical. Hence in order to account for possible asymmetrical variable distribu-

tions, and also to compare with the shortest interval possible, I construct HPD

intervals in this work.

Inverting the Bayes Factor1

The Bayes factor was first developed by Jeffreys (1935, 1961), and well explained

and reviewed by Kass and Raftery (1995). Supposing, as in the Bayesian context,

we have data D that is assumed to have come about under either hypothesis

H1 or H2 according to probability densities P(D|H1) and P(D|H2) respectively

(these are also known as the marginal likelihoods). Given prior probabilities

P(H1) and P(H2), we can obtain the posterior probabilities using Bayes Theo-

1Note that this method is here explained as a possible method for building CIs, but is not

studied in this research due to computational constraints.
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rem,

P(H1|D) =
P(D|H1)P(H1)

P(D)
=

P(D|H1)P(H1)

P(D|H1)P(H1) + P(D|H2)P(H2)
(3.15)

Taking the ratio of the posterior probabilities gives

P(H1|D)

P(H2|D)
=

P(D|H1)

P(D|H2)

P(H1)

P(H2)
, (3.16)

where the Bayes factor in favor of H1 is the ratio of the marginal likelihoods, i.e.

B12 = P(D|H1)
P(D|H2)

. In words, posterior odds = Bayes factor × prior odds.

Note that one of the advantages of the Bayes factor is that, in contrast to

frequentist hypothesis testing, the Bayes factor provides a way of evaluating

evidence in favor of the null hypothesis. In frequentist hypothesis testing, an

analyst can only conclude one of two things: either she rejects the null hypothe-

sis in favor of the alternative, or she fails to reject the null hypothesis. However,

the Bayes factor allows the analyst to favor the null hypothesis.

Consider a case where the two hypotheses being tested are simple, i.e. a

hypothesis that is a single distribution with no free parameters. An example

would be a test where H0 : θ1 = 0.2 vs. H1 : θ1 = 0.3. In this simplest case, the

Bayes factor is simply the likelihood ratio. When either one or both hypotheses

are not simple, then the probability density P(D|Hk) is obtained by integrating

(rather than maximizing) over the parameter space, as in

P(D|Hk) =

∫
P(D|θk, Hk)P(θk|Hk)dθk (3.17)

where θk is the parameter under hypothesis Hk.

Obtaining the marginal likelihood is often computationally intractable, and

many authors have written and proposed methods with which to calculate this
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value. Oft-used methods include Laplace’s method of approximation (de Bruijn,

1970, sec. 4.4; Tierney and Kadane, 1986) and the weighted likelihood bootstrap

(Newton and Raftery, 1994). The accurate computation of the marginal likeli-

hood is beyond the scope of this paper, and a good review can be found in Kass

and Raftery (1995).

Specific to this problem of building CIs for WTP values, we consider the

following hypotheses:

H0 :
β̂k

β̂c
= δ vs. H1 :

β̂k

β̂c
6= δ (3.18)

The asymptotic distribution of −2 ln(B01) is χ2
1,1−α. Assuming that this Bayes

factor has been obtained, the CI is then built by inverting the test statistic with

respect to δ, i.e. finding the values of δ such that B01 ≤ eχ
2
1,1−α/2. The minimum

and maximum values of δ that follow this criterion are the lower and upper

bounds of the CI respectively.

While in theory this method appears to work well, studying all possible val-

ues of δ over the entire parameter space is impossible. Hence the space from

which δ is chosen can be taken from the posterior MCMC sample to reduce

the computational burden. Using the MCMC realizations is justified because

these become dense in the parameter space as the number of draws increases

(Guerron-Quintana et al., 2013). The steps for building a CI using the Bayes

factor proceeds as follows:

1. Estimate the unrestricted (H1) model Un = x
′
cnβc + x

′
1nβ1 + . . . + x

′

knβk +

. . .+ x
′
KnβK and obtain posterior sample β̃r for realizations r = 1, . . . , R.

2. Calculate WTP r
k =

β̃rk
β̃rc

.
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3. Estimate the null (H0) model Un = βc(x
′
cn + WTP r

kx
′

kn) + x
′
1nβ1 + . . . +

x
′

k−1,nβk−1 + x
′

k+1,nβk+1 + . . .+ x
′
KnβK .

4. Calculate the Bayes factor B01 = P(D|H0)
P(D|H1)

.

5. If B01 ≤ eχ
2
1,1−α/2, then keep WTP r

k . Else discard.

6. Repeat steps 2 - 5 for all r = 1, . . . , R.

7. CIBF = (min(r)WTP
(r)
k ,max(r)WTP

(r)
k ) for all (r) that were kept in step 5.

Similar to the Fieller method, building CIs this way involves inverting a test

statistic, and hence this method can be seen as equivalent to the Fieller method,

or the LR method. In fact, under certain conditions, inverting the Bayes factor

is exactly the LR test. One might actually think of this method as a frequentist

one, due to the type of hypothesis being studied in this problem (equation 3.18).

Under Bayesian assumptions, where model parameters are assumed random,

the probability that the null hypothesis holds is 0. Hence, it does not actually

make sense to invert this test statistic from a Bayesian point of view. One is thus

applying a frequentist method to a Bayesian statistic with this method.

Having said that, I classify this as a Bayesian method since it not only uti-

lizes the Bayes factor, which is a Bayesian statistic used to compare models and

hypotheses, but it also uses the the MCMC realizations of the posterior sample

as described above.

3.2 Random Coefficient Models

This section investigates the methods by which CIs can be built for WTP mea-

sures obtained under assumptions for unobserved heterogeneity. Using ran-
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dom coefficients adds difficulty to the problem, as WTP is no longer a single

ratio of coefficient estimates, and hence the methods used must be modified

appropriately. The Delta method has been modified and proposed in the lit-

erature, while other modifications (such as to the Krinsky-Robb and Bayesian

post-processing methods) are easily applied, though computationally intensive.

3.2.1 Frequentist Methods

Delta Method

The Delta method for random parameter models has been applied in the Trans-

portation Science primarily by Bliemer and Rose (2012), who adapt the Delta

method for random coefficient logit models. Suppose we have independently

distributed random coefficients, and let each βk and βc follow some distribution

with a vector of parameters θk. For example, if βk ∼ N(µk, σ
2
k), then θk = (µk, σ

2
k).

Estimating the random coefficient model will then give estimates of these dis-

tributional parameters, θ̂k.

In order to use the Delta method, we first map the standard errors (and co-

variances) of θ̂k to a standard error of βk, and determine the standard error of

βk/βc. This is done by rewriting the coefficients βk and βc into functions of θk and

θc using parameter free distributions (i.e. standard distributions), as in

βk = βk(ak|θk), (3.19)

where ak is a standard probability distribution. In the example where βk ∼

N(µk, σ
2
k), we can write βk = µk + σkak, where ak ∼ N(0, 1). Then, the WTP can
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be written as

WTPk(ak, ac|θk, θc) =
βk(ak|θk)
βc(ac|θc)

(3.20)

Conditional on some draw of ak, ac, we apply the Delta method to obtain

ŴTPk(ak, ac)
D→ N

WTPk,

∇θkWTPk

∇θcWTPk


T

Ωθkc

∇θkWTPk

∇θcWTPk


 , (3.21)

where ∇θkWTPk and ∇θcWTPk are the Jacobians of the WTP with respect to θk

and θc, evaluated at the true values of the parameters, respectively, and Ωθkc is

the submatrix of the variances and covariances of distributional parameters θk

and θc.

The Jacobians can be calculated

∇θkWTPk =
1

βc
∇θkβk

∇θcWTPk = −WTPk
βc
∇θcβc

, (3.22)

and thus (3.21) can be written as

ŴTPk(ak, ac)
D→ N

WTPk,
1

β2
c

 ∇θkβk

−WTPk∇θcβc


T

Ωθkc

 ∇θkβk

−WTPk∇θcβc



(3.23)

Since this is the WTP estimate conditional on ak, ac, the unconditional expected

WTP estimate is then defined by integrating over the whole parameter space of

ak, ac, as follows

ŴTPk =

∫
ak

∫
ac

ŴTPk(ak, ac)dFk(ak)dFc(ac), (3.24)

where dFk(ak) and dFc(ac) are the cumulative distribution functions of ak and

ac respectively. Depending on the assumed parameter distribution, this can be
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a multidimensional integral that is difficult to evaluate. As such, it is often ap-

proximated by the Monte Carlo simulation

ŴTPk ≈
1

R

R∑
r=1

ŴTPk(a
(r)
k , a(r)c ) (3.25)

Since, by the assumptions of the Delta method, ŴTPk(a
(r)
k , a

(r)
c ) is asymptot-

ically normally distributed, ŴTPk will be normally distributed with the follow-

ing simulated variance:

var(ŴTPk) ≈
1

R

R∑
r=1

 1

(β
(r)
c )2

 ∇θkβ
(r)
k

−WTPk∇θcβ
(r)
c


T

Ωθkc

 ∇θkβ
(r)
k

−WTPk∇θcβ
(r)
c


 ,

(3.26)

and the (1− α) confidence interval then becomes

CIDelta, Mean = ŴTPk ± z1−α/2
√

var(ŴTPk) (3.27)

Due to the normality assumption of the WTP value, the integral in equa-

tion (3.24) becomes undefined at βc = 0. This problem can be avoid either by

assuming a parameter distribution for cost that has no probability mass at βc = 0

(e.g. lognormal distribution), or by using the median rather than the mean to

obtain the WTP estimate, i.e. equations (3.25) and (3.26) respectively become

ŴTPk ≈ median
r

(
ŴTPk(a

(r)
k , a(r)c )

)
(3.28)

var(ŴTPk) ≈ median
r

 1

(β
(r)
c )2

 ∇θkβ
(r)
k

−WTPk∇θcβ
(r)
c


T

Ωθkc

 ∇θkβ
(r)
k

−WTPk∇θcβ
(r)
c




(3.29)

The assumptions of the Delta method for the fixed coefficient model hold

also for the random coefficient model. In addition to those assumptions, the
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Delta method requires less simulation than other methods (in particular, the

KR method). In the example where the coefficients are distributed normal, the

Delta method requires only two dimensions of simulation (simulating normal

variates zk and zc), while the KR method requires six (as described below). As

such, the Delta method is computationally less intensive than the KR method.

Krinsky-Robb Method

Adapting the KR method for random coefficient models is not difficult. As with

the Delta method for random coefficient models, the coefficients βk and βc are

written in terms of the distributional parameters θk, θc such that the WTP mea-

sure can be expressed as equation (3.20).

The KR method then creates a multivariate normal distribution using the

mean and covariance matrix of the estimated distributional parameters, i.e. θ̂

and Σ̂θ. Note that this includes the estimated means and covariance matrix of

all the distributional parameters. As with the fixed coefficient model, a large

number of draws are taken from this distribution. In addition, random draws

from the standard probability distribution must be taken for each draw from

the multivariate normal distribution. The WTP measure is then calculated for

each draw as in equation (3.20), and as before these estimates are sorted and the

100(α/2)th and 100(1− α/2)th percentile values give the KR(1− α) CI.

Note how, as argued by Bliemer and Rose (2012), the KR method is much

more computationally intensive. For the example where the coefficients are nor-

mally distributed, the KR method requires six dimensions of simulation (2 for

each coefficient, and 2 for the simulated normal variates).
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3.2.2 Bayesian Methods

Bayesian Post-Processing Method

As with the KR method, adapting the Bayesian post-processing method for ran-

dom coefficient models is not difficult. Individual draws are taken from the

MCMC posterior sample for those attributes that are assumed to be random.

That is, the Bayesian estimation would take R draws per individual for each

random attribute. The WTP measure can then be calculated using these indi-

vidual draws following equation (3.20), resulting in N ×R WTP values.

There is no fixed way by which to generate the aggregate CI from these val-

ues. Following the example of Daziano and Achtnicht (2014), I treat all WTP

samples as having come from one Markov Chain sample of the same posterior.

Hence the HPD interval is taken over all N × R WTP samples to obtain the

aggregate CI.

As ca be seen, it is also straightfoward to build the CIs on the individual

level. The HPD interval can be taken over the R draws for each individual to

obtain the individual level CI. This will be demonstrated in Chapter 6.
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CHAPTER 4

LITERATURE REVIEW

The interval estimation problem has been studied in a variety of fields and re-

search areas, including biomedical science, information science, transportation

and economics. This chapter gives an in-depth review to some of these studies

that have been undertaken. In applied work, each field appears to use a specific

method of building CIs by default, though few papers give a reason for using

that method as opposed to others. Table 4.1 gives a few examples to highlight

the wide range of methods used.

Table 4.1: Methods used to build confidence intervals

Author Field Method Primarily Used
Park et al. (1991) Land Economics Krinsky-Robb
Armstrong et al. (2001) Transportation Fieller
Franz (2003) Psychology “index” method
Beyene and Moineddin (2005) Biomedical Generalized linear modeling

There is an even greater contrast within the literature that compare differ-

ent methods through simulation. Table 4.2 gives a quick outline of the conclu-

sions reached by a number of authors who, through simulation, have studied

the different methods of building CIs for WTP measures. It is clear that while

many of them study the same methods of building CIs, few of them agree with

each other. These differences are not due to the preference for a certain method

within a field, as even within areas of study, the authors do not agree on the best

method.

Other authors aim to introduce fresh interpretations to methods that have

been disregarded, and often include reasons as to why this method is superior.
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Table 4.2: Conclusions from studies of confidence intervals. BS = bootstrap, D =
Delta, F = Fieller, KR = Krinsky-Robb, LR = likelihood-ratio test, GLM
= generalized linear model

Author Field Methods Used Conclusion
Armstrong et al. (2001) Transportation BS, D, F, KR, LR KR, F, LR give similar results; supe-

rior to BS, D
Beyene and Moineddin
(2005)

Biomedical Science D, F, GLM All give similar results for large
samples; GLM performs best for
small samples

Hole (2007) Health Economics BS, D, F, KR Any method can be used in most
situations

Bernard et al. (2007) Econometrics D, F, LR F performs better than D
Franz (2007) Psychology BS, D, F, others Fieller or Hwang-bootstrap for in-

significant cost coef; any (of these
3) for significant cost coef

Bolduc et al. (2010) Transportation BS, D, F F performs extremely well; BS,
D have poor coverage, should be
avoided

Gatta et al. (2013) Statistical Science BS, D, F, KR, LR F is generally the best; use LR
if model is known to be correctly
specified; with large sample size,
all methods perform equally

Table 4.3 cites some of these papers, and the conclusions drawn from them.

Of particular interest are the claims of Daly et al. (2012) and Bliemer and Rose

(2012) in support of the Delta method, which prior to this had mostly been

disregarded for the reasons listed in section 3.1.1 (most of the authors in Ta-

ble 4.2 conclude that the Delta method performs poorly, or at best as well as the

other methods being compared). However, Daly et al. (2012) supports the Delta

method, showing through the work of Cramer (1986) that the Delta method

gives exact standard errors, rather than approximate as is often claimed. They

also demonstrated the superiority of the Delta method to simulation methods

of obtaining the standard errors. Bliemer and Rose (2012) build on this argu-

ment, stating that the Delta method is preferable not only for its exact standard

errors, but also because it typically produces narrower CIs (indicating greater

accuracy) and it requires less simulation (as compared to the KR method).
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Table 4.3: Proposals for new methods of building confidence intervals / new
interpretations of methods. BS = bootstrap, D = Delta, F = Fieller, KR
= Krinsky-Robb, WTP-Sp = WTP-space

Author Field Method Proposed Additional claims
Siani and de Peretti
(2003)

Health Economics Geometric interpre-
tation of F

F is applicable in all situations

Sonnier et al. (2007) Marketing & Eco-
nomics

WTP-Sp WTP-Sp is superior to prefer-
ence space

von Luxburg and Franz
(2009)

Psychology Geometric interpre-
tation of F

F is superior to BS

Daly et al. (2012) Transportation D D is superior to KR
Bliemer and Rose (2012) Transportation D for mixed logit

model
D is easier to implement than
KR

Adding to the confusion in the literature is the fact that what one author

claims to be a benefit for a method is seen as a disadvantage by other authors.

For example, Bliemer and Rose (2012) praise the Delta method for having nar-

row CIs, while Armstrong et al. (2001) claim that the Delta method produces

CIs that are, in contrast, too narrow, and Bernard et al. (2007) agree, saying that

the Delta method may have “zero coverage probability”, i.e. the probability that

the CI does not contain the true parameter may be one (Dufour, 1997).

Perhaps the most comprehensive discussion concerning this topic to date is

by Gatta et al. (2013). These authors conduct an excellent review and analysis

of various methods of building CIs, though only for the frequentist methods.

In particular, the authors explain and analyze the Delta, Fieller (or asymptotic

t-test), likelihood ratio, as well as eight different bootstrap methods (Table 4.4).

In addition, they also explain the different algorithms of drawing samples for

the bootstrap methods; these are the parameteric bootstrap, the non-parametric

bootstrap, and the Krinsky-Robb algorithms. In order to analyze these meth-

ods of building CIs, the authors conducted simulations similar to that of Hole

(2007). They simulated a number of individuals each facing 16 choice situations

where they had to choose between 2 alternatives, each containing 3 attributes
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Table 4.4: Summary of findings by Gatta et al. (2013)

Method Findings
Delta Produces symmetric CIs by construction, thus cannot account for

asymmetry of WTP distribution
Fieller (t-test) Good performance, not affected by small cost parameter, simple,

time-saving to calculate
Likelihood-ratio Good performance, not affected by small cost parameter, simple,

time-saving to calculate; usually narrower than Filler CIs, but more
sensitive to heteroscedasticity

non-Studentized bootstrap Inaccurate with low coverage rates; might be affected by small cost
parameter

Bootstrap-t Inaccurate with low coverage rates; might be affected by small cost
parameter

Normal-theory bootstrap Produces symmetric CIs by construction, thus cannot account for
asymmetry of WTP distribution; gives low coverage rates, and might
be affected by small cost parameter

Bootstrap percentile Accurate, generally performed well but might be affected by small
cost parameter

Bias-corrected bootstrap
percentile

Accurate, generally performed well but might be affected by small
cost parameter; better than general bootstrap percentile

Bias-corrected, accelerated
bootstrap percentile

Accurate, generally performed well but might be affected by small
cost parameter; better than general bootstrap percentile

Test-inversion bootstrap Not affected by small cost parameter but sometimes does not give
satisfactory results

Studentized test-inversion
bootstrap

Not affected by small cost parameter but sometimes does not give
satisfactory results

(including cost). The utilities were generated based on the MNL model. Their

simulations analyzed the different cases of correct model specification, incor-

rect model specification and weak identification. The methods were compared

based on the coverage, length, and shape of the CIs produced. In addition, they

also applied these methods to a dataset to analyze what CIs were built. Table 4.4

gives a brief summary of their conclusions.

Gatta et al. (2013) conclude that the Fieller method is the best method to use

in general, while the LR method is a good alternative if it is known that the

model is being specified correctly. In this, they support the findings of Arm-

strong et al. (2001) and Bolduc et al. (2010). Note however that the conclusions
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concerning weak identification (i.e. the effect of a small cost parameter) is ex-

trapolated from their actual findings and that of Bolduc et al. (2010). The authors

were unable to observe an effect of weak identification, concluding that this was

due to their not actually using small enough cost parameter values.

While much has already been analyzed in the literature, and especially by

Gatta et al. (2013), there are still areas for further investigation which this work

aims to address. Firstly, I maintain that Bayesian methods are also an equally

viable and useful method for building CIs, and propose that they be included

as a mainstream method for interval estimation and construction. Secondly, I

look deeper into the effect of weak identification, specifically looking at which

methods perform well, and how the CIs built are affected. Thirdly, I study how

these CI intervals can be built under assumptions of unobserved heterogeneity,

i.e. when random parameter models are assumed. Finally, I investigate the

building of CIs for functions of parameter estimates other than ratio measures,

i.e. looking beyond WTP measures to other functions of parameter estimates,

such as choice probabilities.

4.1 Bounded and Unbounded Confidence Intervals

One of the biggest contentions with the Fieller method is the possibility of con-

structing unbounded CIs. Certain authors see this as a reason for not using

the Fieller method (Hole, 2007). Others say that any bounded CI can have zero

coverage probability, and thus a method for building CIs must be able to pro-

duce unbounded CIs by necessity (Bernard et al., 2007). Even if unbounded

CIs are accepted, there still remains the practical problem of interpreting these
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unbounded CIs.

While bounded CIs might be more useful in practical applications, the fact

that unbounded CIs exist is merely a consequence of studying a ratio function.

Several researchers (Gleser and Hwang, 1987; Koschat, 1987; Hwang, 1995) have

shown that any method which cannot produce unbounded CIs for a ratio might

instead produce arbitrarily large deviations from the intended confidence level.

In fact, among the methods studied in this paper, only the Fieller method is

able to produce unbounded CIs and will not result in these large deviations.

(While the Bayesian or KR method can potentially also lead to unbounded CIs,

the probability that a sample will have a cost parameter estimate of exactly 0 is

0. However, in such situations, these methods might potentially produce seem-

ingly “unreasonably” large CIs.)

As discussed in section 3.1.1, the Fieller method will only produce un-

bounded CIs if the denominator of the ratio is not significantly different from

0. For a discrete choice model, this implies that the parameter of cost should

not be significantly different from 0, i.e. a consumer is insensitive to changes in

cost. Mathematically, this is sensible; if the cost parameter is not significantly

different from zero, then the value of WTP can be arbitrarily large, resulting in

an unbounded CI. To understand this empirically, consider separately the cases

of having a CI that is bounded on one side (case 2 in section 3.1.1) and having a

CI that is the entire real line (case 3 in section 3.1.1). Following the argument of

Siani and de Peretti (2003), the former case implies that the WTP is not statisti-

cally distinguishable from infinity, and the Fieller method is useful in detecting

this. For the latter case, obtaining the entire real line implies that the WTP ratio

is poorly defined; this results either from the fact that having an improvement to
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the attribute in question is equivalent to not having said improvement, or that

the sample size is not large enough to distinguish between these two situations

(i.e., we can learn nothing from our data).

Even with these interpretations, there is difficulty in understanding how to

report the CI and its coverage. In particular, if the CI is the entire real line, then

it will definitely contain the true parameter ratio, while not contributing much

qualitative meaning as a CI. There are several methods that have been adopted

to solve this problem. The first is to ignore the unbounded CIs, and only report

those which are bounded; doing this effectively gives us a conditional confi-

dence level (Buonaccorsi and Iyer, 1984). However, this would result in a low

coverage, as demonstrated in the results following. Another solution, as pro-

posed by Tsao and Hwang (1998), is to estimate the confidence as 1 in the un-

bounded case, and as 1 − α in the bounded case. In this paper, the percentage

of “real line” CIs produced by the Fieller method is reported separately from

the coverage rate of the remaining CIs produced. In addition, examples are also

given to demonstrate the coverage rates that would occur if using a conditional

confidence level.

55



CHAPTER 5

BUILDING CONFIDENCE INTERVALS FOR WILLINGNESS-TO-PAY

In this chapter I describe the simulation and case studies conducted to compare

and contrast the different methods of building CIs for WTP (ratio) measures.

In each simulation and case study, I build CIs using each method described in

Chapter 3. In addition, the performance of these methods are compared under

different model assumptions (fixed parameter versus random parameter mod-

els) and in the presence of weak identification.

5.1 Simulation Studies

This simulation extends the work of Bolduc et al. (2010), who consider a

simple choice situation in which an individual n chooses from two alterna-

tives i ∈ {1, 2}, with each alternative containing three attributes. The at-

tributes consist of one constant value and two independently drawn from the

standard normal distribution. Parameter values, β =


1

3.3

β3

, where β3 ∈

{2, 1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001}. The choice model is as

follows:
Uin = Xinβ + εin

εn =

1 0

0 1

 ξn
ξn

iid∼ N


0

0

 ,
1 0

0 1




(5.1)
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which gives the simple binary probit model. Again, choice is made by maxi-

mizing utility, such that

yin =


1 if Uin ≥ Ujn for j = 1, 2

0 otherwise
(5.2)

Bolduc et al. (2010) use their simulation to compare the Delta, Fieller and

Bootstrap methods over four different sample sizes. In this study, I compare all

the methods listed in chapter 3 (other than the method of inverting the Bayes

factor), and also study the effect of one more sample size, choosing individual

sample sizes from N ∈ {100, 250, 1000, 5000, 100000}. This provides a total of

50 different simulation cases. For each case, CIs for the ratio β2/β3 is constructed

forM = 1000 trials. Only 1000 trials were conducted after comparing the results

obtained using 1000 trials and 10000 trials (as conducted by Bolduc et al. (2010)),

and finding very minor differences between them.

Supposing that for each trialm ∈ 1, . . . , 1000 we build CI (ŴTP
(m)

L , ŴTP
(m)

U ).

Then in order to access the performance of the different methods, the following

statistics are evaluated:

Coverage: This calculates the fraction of CIs that contain the true WTP value.

Since we begin with a known WTP value (denoted WTP = β2/β3), coverage can

be computed as

Coverage =
1

M

M∑
m=1

I(ŴTP
(m)

L ≤ WTP ≤ ŴTP
(m)

U ) (5.3)

where I(·) is the indicator function. The ideal coverage depends on the confi-

dence level chosen for the simulation. In this study, the confidence level is set at

α = 0.05, and thus an accurate method would give a coverage of 0.95. Having

a coverage either too low or too high indicates some inaccuracy in the means
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by which the CI is being constructed; in particular, while one might assume a

higher coverage to be better, this might indicate that the CIs being constructed

are too wide and thus every CI built contains the true WTP value.

Average Width: In general, the narrower the width of the CI, the more accu-

rate it is said to be. However, CIs might be built so narrow as to exclude the true

WTP value, thus losing out in coverage. This is the complaint that a number of

previous studies have with the Delta Method. Average width is computed as

follows:

Average Width =
1

M

M∑
m=1

(ŴTP
(m)

U − ŴTP
(m)

L ) (5.4)

Shape: This gives an insight into the asymmetry of the CI built. Shape can

be computed as follows:

Shape =
1

M

M∑
m=1

ŴTP
(m)

U − ŴTP
(m)

ŴTP
(m)
− ŴTP

(m)

L

(5.5)

The WTP value used here is that estimated by each method. For example, the

estimated WTP value used by the Delta and Fieller methods is the ratio of the

estimated parameters by the frequentist model. The shape index is the ratio

of the difference between the estimated WTP value and the upper and lower

bounds of the CI respectively. If the ratio is exactly equal to 1, then the CI built

is symmetric. Having a shape index different from 1 indicates asymmetry in the

CI built.

5.1.1 Fixed Coefficients Model

For the first simulation study, a fixed coefficient model was assumed. Using the

same parameter values as those studied by Bolduc et al. (2010), a binary probit
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model was estimated, and CIs were built for the WTP of the second attribute

(with the third attribute acting as price). The range of price values studied al-

lows us to also analyze the effect of weak identification on the CIs built.

Table 5.1 shows the coverage of each method of building CIs. In this table,

the total coverage for the Fieller method is reported, i.e. the total coverage for

both bounded and unbounded intervals (excluding those intervals which are

the < line).

Table 5.1: Coverage of confidence intervals for fixed coefficient model

Sample Size β3 2 1 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001

100

Delta 0.926 0.913 0.894 0.868 0.832 0.773 0.620 0.225 0.070 0.025
Fieller 0.960 0.959 0.960 0.961 0.954 0.957 0.954 0.957 0.956 0.955
KR 0.957 0.954 0.972 0.982 0.970 0.963 0.929 0.035 0.000 0.000
FQ WTP-Sp 0.934 0.917 0.784 0.710 0.586 0.458 0.298 0.041 0.002 0.000
BayesPP 0.942 0.947 0.955 0.943 0.937 0.935 0.916 0.025 0.000 0.000
BA WTP-Sp 0.810 0.897 0.934 0.932 0.925 0.848 0.683 0.039 0.000 0.000

250

Delta 0.940 0.940 0.917 0.904 0.886 0.855 0.740 0.284 0.089 0.030
Fieller 0.949 0.950 0.953 0.952 0.953 0.949 0.951 0.950 0.950 0.953
KR 0.949 0.952 0.971 0.973 0.979 0.971 0.963 0.291 0.000 0.000
FQ WTP-Sp 0.948 0.944 0.878 0.821 0.710 0.546 0.314 0.027 0.000 0.000
BayesPP 0.946 0.953 0.956 0.956 0.952 0.949 0.938 0.285 0.000 0.000
BA WTP-Sp 0.801 0.910 0.900 0.861 0.819 0.623 0.205 0.000 0.000 0.000

1000

Delta 0.945 0.948 0.946 0.937 0.925 0.905 0.861 0.431 0.129 0.040
Fieller 0.945 0.948 0.952 0.948 0.949 0.949 0.953 0.951 0.953 0.953
KR 0.950 0.952 0.945 0.952 0.958 0.975 0.970 0.787 0.000 0.000
FQ WTP-Sp 0.949 0.954 0.939 0.935 0.911 0.787 0.421 0.010 0.000 0.000
BayesPP 0.947 0.952 0.957 0.957 0.961 0.956 0.955 0.785 0.000 0.000
BA WTP-Sp 0.810 0.835 0.609 0.427 0.214 0.030 0.000 0.000 0.000 0.000

5000

Delta 0.949 0.952 0.948 0.946 0.946 0.942 0.577 0.577 0.198 0.078
Fieller 0.949 0.953 0.948 0.949 0.947 0.954 0.948 0.951 0.951 0.950
KR 0.951 0.953 0.948 0.954 0.948 0.954 0.973 0.915 0.000 0.000
FQ WTP-Sp 0.949 0.950 0.954 0.958 0.946 0.884 0.488 0.006 0.000 0.000
BayesPP 0.948 0.953 0.948 0.948 0.950 0.960 0.926 0.926 0.000 0.000
BA WTP-Sp 0.858 0.851 0.443 0.210 0.016 0.000 0.000 0.000 0.000 0.000

10000

Delta 0.949 0.950 0.950 0.950 0.950 0.949 0.930 0.653 0.226 0.080
Fieller 0.949 0.948 0.950 0.952 0.951 0.950 0.949 0.949 0.955 0.953
KR 0.950 0.952 0.964 0.945 0.945 0.945 0.965 0.934 0.017 0.000
FQ WTP-Sp 0.941 0.944 0.953 0.964 0.941 0.900 0.498 0.009 0.000 0.000
BayesPP 0.949 0.947 0.949 0.948 0.950 0.954 0.958 0.934 0.001 0.000
BA WTP-Sp 0.874 0.832 0.342 0.128 0.010 0.000 0.000 0.000 0.000 0.000

The patterns in the coverage values of the Delta and Fieller methods fol-
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low those reported by Bolduc et al. (2010). In general, increasing the sample

size causes an improvement in the coverage values of the CIs built, while weak

identification causes a decrease in the coverage of the CIs built by each method,

i.e. as β3 decreases, coverage rates also decrease.

There is a relationship between the effect of the sample size and the value of

β3, together, on the coverage value. Increasing the sample size can override the

effect of weak identification on the coverage rates. For example, with a sample

size of 100 individuals, the coverage rate of the Delta method is less than 0.90 for

any β3 ≤ 0.4. However, with a sample size of 10000 individuals, the coverage

rate of the Delta method is around the expected 0.95 even until β3 = 0.1.

The poor coverage rates of the Delta method can be explained by the poor

estimation of the WTP value itself. Since the Delta method produces symmetric

intervals by construction, its accuracy is highly dependent on the accuracy of the

parameter estimates. Table 5.2 gives the mean estimates of the WTP value of the

second attribute as estimated by the frequentist method under preference space

assumptions and WTP-space assumptions. The former values are the average

midpoints of the CIs built by the Delta method. As can be seen, these estimates

tend to become inaccurate as β3 decreases, hence directly contributing to the

poor coverage rates. It is interesting to note that this is in spite of the huge

average widths of the CIs (see Table 5.7), which further decreases the usability

of these CIs.

The coverage rates of the CIs built when the model is estimated in WTP-

space are on par with or worse than that of the Delta method. Again, one

can observe the same trend when comparing the estimated WTP values. Re-

call that in WTP-space, the estimates of the model are the WTP values directly.
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Table 5.2: Mean estimates of WTP under parameter and WTP-space

Sample Size
β3 2 1 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001

True WTP 1.65 3.3 6.6 8.25 11 16.5 33 330 3300 33000

100
Frequentist 1.68 3.62 9.6 10.4 9.6 12.6 -9.0 -38.8 9.9 16.3
FQ WTP-Sp 1.67 -4.65 -54.2 -78.7 -87.0 -66.7 -33.0 2.7 9.8 4.98
BA WTP-Sp 1.86 5.36 15.2 18.1 23.0 27.6 35.5 38.4 40.0 40.4

250
Frequentist 1.66 3.37 7.5 10.1 10.2 22.9 13.1 120.7 -133.3 -6.2
FQ WTP-Sp 1.66 3.37 -37.7 -54.8 72.8 -74.6 -50.3 -24.9 4.77 2.42
BA WTP-Sp 1.70 3.56 7.33 8.88 10.6 12.3 14.6 17.2 17.1 16.9

1000
Frequentist 1.65 3.32 6.7 8.6 11.3 22.8 46.3 243.7 0.32 -46.9
FQ WTP-Sp 1.65 3.31 6.7 5.4 -7.6 -44.4 -71.9 -24.2 -4.38 -0.65
BA WTP-Sp 1.63 3.15 5.58 6.41 7.40 8.58 10.0 11.4 11.6 11.6

5000
Frequentist 1.65 3.30 6.6 8.3 11.1 16.9 38.4 127.8 67.7 106.3
FQ WTP-Sp 1.65 3.30 6.6 8.3 11.2 15.1 -0.42 -8.50 2.51 -1.75
BA WTP-Sp 1.63 3.16 5.62 6.50 7.52 8.78 10.2 11.6 11.8 11.8

10000
Frequentist 1.65 3.30 6.6 8.3 11.1 16.7 34.9 -164.2 -168.0 -160.4
FQ WTP-Sp 1.65 3.31 6.6 8.3 11.1 16.7 23.7 16.7 -0.22 -5.43
BA WTP-Sp 1.64 3.17 5.65 6.53 7.61 8.86 10.3 11.8 12.0 12.0

In contrast to the conclusions of Sonnier et al. (2007), the WTP estimates from

the model in WTP-space do not appear any more accurate than those estimates

from the model in preference space; in fact, estimating the model with Bayesian

methods produces far less accurate estimates of the WTP values. Comparing

first the estimates obtained from the frequentist method of estimation under

parameter and WTP-space, there are several possible reasons for the disparity.

Firstly, Sonnier et al. (2007) perform their simulation with 4500 total choice situ-

ations, for which both models give accurate WTP value estimates up to β3 = 0.2.

Secondly, they are not comparing CIs, but the root mean-squared errors (RMSE)

and mean absolute errors (MAE) between the true and estimated WTP values.

Thirdly, their parameters are not fixed. In particular, the parameter of price

used is not consistently large or small, but ranges so as to allow for some weak

identification. Even in this study, the average RMSE and MAE values for 5000

individuals across all β3 values holds to the conclusions of Sonnier et al. (2007)

(see Table 5.3). However, the estimated WTP values are not reported by Sonnier

et al. (2007), making it impossible to compare between the two.
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Table 5.3: Root mean-squared error and mean absolute error for 5000 individu-
als

β3

RMSE MAE
Parameter-Sp WTP-Sp Parameter-Sp WTP-Sp

2 0.001 0.001 0.026 0.027
1 0.012 0.012 0.088 0.091

0.5 0.019 0.019 0.34 0.34
0.4 0.46 0.45 0.53 0.53
0.3 1.53 1.53 0.96 0.95
0.2 8.13 3452 2.16 3.93
0.1 2873 49690 12.9 46.8

0.01 8.5E7 1.7E5 904 345
0.001 2.4E8 1.1E7 3736 3296

0.0001 1.3E9 1.1E9 33278 33001
Average 1.7E8 1.1E8 3794 3670

It is clear that having lower RMSE and MAE values does not translate to

building CIs that give good coverage. Note, however, that the model in WTP-

space is estimated using MLE, thus assuming an asymptotic normal distribu-

tion of the WTP values. This assumption likely contributes directly to both the

inaccurate WTP estimates (especially under weak identification) and the poor

coverage rates. In fact the WTP values should logically follow a distribution

that is truncated at zero; for example, it is normally assumed that individuals

will have a positive WTP to lower travel time. Hence, the WTP values, being in-

correctly specified, would thus be estimated wrongly. In addition, as with most

other methods, the WTP-space method is simply unable to handle the case of

weak identification.

This could also be the reason for the poor estimation by the Bayesian

method. The Bayesian estimation of the model under WTP-space gives CIs with

extremely poor coverage, and also very inaccurate estimates of the WTP values.

By looking at the WTP estimates as the sample size increases, it appears that
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the Bayesian method is simply converging to the wrong value1. That, in combi-

nation with the narrow widths of the CIs produced (see Table 5.7) translates to

extremely poor coverage.

The Krinsky-Robb and Bayesian post-processing methods display consis-

tently good coverage rates for most of the β3 values. At a certain β3 value,

however, these coverage rates drop dramatically, almost to 0. This occurs at

β3 = 0.01 for n ∈ 100, 250, and at β3 = 0.001 for n ∈ 1000, 5000, 10000. (For

n = 1000, the coverage rate is around 0.79 when β3 = 0.001, which is substan-

tially less than 0.95, but not as dramatic a drop as to 0.) A closer look at the

parameter estimates gives some insight as to why this is happening (Table 5.4).

As can be seen, many of the estimates for these small β3 values are inaccurate,

resulting in inaccurate WTP estimates and thus CIs.

Table 5.4: Mean Bayesian and KR estimates of β3 and WTP

Sample Size True Value
β3 WTP

0.01 0.001 0.0001 330 3300 33000

100
Bayesian 0.0098 -0.0031 0.0015 262 -854 1772
KR 0.0095 -0.0030 0.0096 281 908 304

250
Bayesian 0.0074 0.0016 -0.0014 320 1502 -1648
KR 0.0073 0.0023 -0.00043 340 -1073 -5739

1000
Bayesian 0.0066 -0.0020 0.0022 347 -1154 1036
KR 0.0073 -0.0018 0.0018 326 -1344 1291

5000
Bayesian 0.0076 -0.0012 -0.000017 301 -1972 -138431
KR 0.0078 -0.0012 -0.000062 299 -1892 -37983

10000
Bayesian 0.0071 0.0011 -0.00041 325 2110 -5652
KR 0.0071 0.0012 -0.00040 328 1931 -5797

The Fieller method gives excellent coverage rates of around 0.95 no mat-

ter what sample size or β3 value is being studied. This supports the results of

1This convergence to an incorrect value occurred when the Bayesian method was run with

a diffuse prior. Working with a tight prior around the true WTP values produced fairly accurate

WTP estimates (especially under weak identification). However, coverage rates were still poor,

and almost erratic.
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Bolduc et al. (2010) who find the Fieller method to perform well. These coverage

rates hold even when excluding the cases where the Fieller method produces the

entire < line as the CI. Observe, however, that the coverage rates displayed by

only the bounded intervals mirror those of the Delta method. Table 5.5 com-

pares the difference in coverage between considering all Fieller method CIs,

and only those which are bounded (that is, reporting the conditional confidence

level). It also includes the fraction of CIs which were the < line. As can be

seen, it is the unbounded intervals that are primarily contributing to the supe-

rior coverage of the Fieller method when β3 is small. This supports the work of

researchers like Gleser and Hwang (1987), Koschat (1987) and Hwang (1995), as

the bounded CIs produced hardly contained the true WTP values and thus devi-

ated greatly from the intended confidence level, while the unbounded CIs con-

tained the true WTP values. As discussed in section 4.1, producing unbounded

CIs is a natural consequence of working with ratios, and the use of a conditional

confidence level (as accepting only bounded CIs is) will result in low coverage

rates. Observe also how the value of β3 at which unbounded CIs are built de-

creases as sample size increases. This illustrates how having a large enough

sample size affords the ability to distinguish between the situations of having

an improvement to an attribute (contrary to not), as discussed in section 4.1.

To gain a better understanding of the coverage rates, I analyze the shape

index of the CIs. The Monte Carlo frequentist and Bayesian values reported

in Table 5.6 give the average shape index of CIs built using the WTP estimates

derived directly from the model estimates (note that these shape indexes are

calculated with respect to the true WTP value). These serve as a point of refer-

ence for the accuracy of the other methods. Note that the shape indexes of the

CIs built by the Delta method and the frequentist WTP Space method are not
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Table 5.5: Comparing coverages of all Fieller method confidence intervals and
bounded Fieller method confidence intervals. Note that only sample
size 100 produced < line intervals.

Sample Size β3 2 1 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001

100
All 0.960 0.960 0.954 0.960 0.954 0.957 0.954 0.957 0.956 0.955
Bounded 0.960 0.967 0.956 0.947 0.893 0.818 0.527 0.024 0.002 0.000
< line 0.008 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002

250
All NA 0.953 0.952 0.953 0.949 0.951 0.950 0.950 0.953
Bounded 0.949 0.950 0.974 0.970 0.958 0.912 0.740 0.094 0.010 0.000

1000
All NA 0.948 0.949 0.949 0.953 0.951 0.953 0.953
Bounded 0.945 0.948 0.952 0.948 0.961 0.968 0.918 0.186 0.015 0.000

5000
All NA 0.948 0.951 0.951 0.950
Bounded 0.949 0.953 0.948 0.949 0.947 0.954 0.971 0.391 0.045 0.000

10000
All NA 0.949 0.949 0.955 0.953
Bounded 0.949 0.948 0.950 0.952 0.951 0.950 0.953 0.565 0.085 0.000

reported as these, by construction, produce symmetric CIs, and thus the shape

index will always be 1.

I first analyze the shape indexes for β3 ≥ 0.1. In general, the Monte Carlo in-

tervals of both frequentist and Bayesian model estimates give shape indexes

of slightly larger than 1. This shows that the CIs are asymmetric, with the

upper bound being slightly further away from the true WTP value than the

lower bound. This asymmetry cannot be captured by the Delta and frequen-

tist WTP Space methods, which are symmetric by construction. The Bayesian

and Krinsky-Robb methods build CIs that mostly reflect the same asymmetry

of the Monte Carlo intervals, especially as sample size increases. The Fieller

method tends to build bounded CIs which are very asymmetric, with the up-

per bound being much further away from the mean WTP value than the lower

bound. However, these large shape indexes coincide directly with the existence

of unbounded CIs. In fact, for any combination of sample size and β3 that pro-

duces bounded Fieller CIs having a shape index greater than 2, that combination

would also build unbounded Fieller CIs. This reiterates the point that one can-
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Table 5.6: Shape index of confidence intervals. Note that the shape index re-
ported for the Fieller method are calculated only from bounded inter-
vals.

Sample Size β3 2 1 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001

100

MC Frequentist 1.27 1.77 5.05 1.22 1.03 0.83 0.68 -0.19 -0.87 -0.99
MC Bayesian 1.34 2.90 1.04 1.02 0.78 0.80 0.73 -0.34 -0.90 -0.99
Fieller 1.66 3.95 20.2 46.6 49.1 56.9 34.4 21.1 26.2 17.5
KR 1.10 2.09 19.4 1.84 1.56 -8.49 3.07 1.11 0.72 0.64
BayesPP 1.11 2.14 2.08 0.44 2.79 1.62 0.099 2.36 1.05 1.35
BA WTP-Sp 1.16 1.30 1.31 1.41 1.41 1.46 1.47 1.48 1.52 1.50

250

MC Frequentist 1.09 1.35 2.18 2.94 5.83 0.83 0.75 0.054 -0.81 -0.98
MC Bayesian 1.25 1.49 3.14 1.43 0.87 0.83 0.68 -0.13 -0.84 -0.98
Fieller 1.31 1.82 9.10 24.4 30.5 60.0 41.5 32.7 44.8 29.1
KR 1.22 1.57 2.20 3.19 3.02 0.94 1.27 1.22 1.01 0.93
BayesPP 1.07 1.18 1.54 2.26 1.87 2.39 0.98 1.01 1.27 2.47
BA WTP-Sp 1.15 1.12 0.97 0.98 0.98 1.04 1.04 1.07 1.07 1.07

1000

MC Frequentist 1.07 1.17 1.41 1.39 1.80 2.70 1.20 0.31 -0.65 -0.96
MC Bayesian 1.05 1.26 1.59 1.89 2.90 1.14 0.99 0.14 -0.74 -0.97
Fieller 1.14 1.31 1.79 2.18 3.63 13.8 37.3 39.3 24.0 17.5
KR 1.10 1.23 1.53 1.72 2.10 -13.8 1.80 0.51 1.33 0.87
BayesPP 1.04 1.08 1.18 1.24 1.40 1.66 1.30 0.88 0.95 2.11
BA WTP-Sp 1.16 0.92 0.66 0.64 0.66 0.70 0.74 0.76 0.76 0.77

5000

MC Frequentist 1.06 1.06 1.11 1.15 1.24 1.40 2.36 0.68 -0.32 -0.87
MC Bayesian 1.02 1.13 1.16 1.27 1.24 1.76 2.04 0.60 -0.45 -0.88
Fieller 1.06 1.13 1.28 1.37 1.53 1.94 11.5 95.0 34.3 34.5
KR 1.04 1.09 1.20 1.26 1.35 1.62 2.07 1.07 1.20 1.18
BayesPP 1.02 1.04 1.07 1.08 1.11 1.21 1.66 0.84 -0.93 0.15
BA WTP-Sp 1.38 0.53 0.45 0.49 0.54 0.59 0.66 0.71 0.71 0.70

10000

MC Frequentist 1.06 1.03 1.03 1.14 1.11 1.20 1.59 0.70 -0.19 -0.94
MC Bayesian 1.06 1.12 1.08 1.18 1.18 1.40 2.32 0.68 -0.43 -0.88
Fieller 1.04 1.09 1.19 1.24 1.34 1.57 3.20 52.9 53.5 52.6
KR 1.03 1.07 1.14 1.18 1.25 1.39 2.10 1.76 2.14 1.62
BayesPP 1.01 1.04 1.05 1.06 1.08 1.14 1.40 2.66 0.83 0.98
BA WTP-Sp 1.48 0.43 0.41 0.45 0.51 0.58 0.64 0.71 0.71 0.70

not simply use a conditional confidence level and ignore the unbounded CIs

produced by the Fieller method.

Consider next the shape indexes for β3 ≤ 0.01. Many of the Monte Carlo

intervals have shape indexes of less than 0, especially for the smaller sample

sizes. A shape index of less than 0 indicates that the CI does not even contain

the true WTP value. This is in fact the case, and can also be conjectured from
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Tables 5.2 and 5.4, where the estimated WTP values are far from accurate. Since

these estimates are inaccurate, one cannot expect the shape index to be a good

basis for comparison. Indeed it is not surprising that under weak identification

the estimates are inaccurate, as a cost parameter that is not significantly different

from zero would be difficult to estimate accurately. In addition, as mentioned in

section 4.1, this would produce WTP values which are not significantly different

from infinity, and thus an unbounded CI is necessary.

Aside from several small sample size cases, the CIs built by the Bayesian

method in WTP-space have shape indexes opposite from those built by any

other method. That is, they produce CIs which are asymmetric, but the lower

bound is further away from the mean WTP value than the upper bound. This

probably explains why, unlike the other methods, the Bayesian method in WTP-

space builds CIs with the best general coverage when the sample consists of

only 100 individuals. Since the CIs are not capturing the asymmetry of the

Monte Carlo intervals, it is not surprising that their coverage rates are poor.

Finally, I analyze the average widths of the CIs built (Table 5.7). These tell a

similar story to the coverage values. While all methods produce CIs of increas-

ing width as β3 decreases, the magnitude of those built by the Delta method

is much bigger than those of any other method. It appears that the claim of

the Delta method producing narrower CIs only holds when weak identification

is not an issue. These large widths occur at the same β3 values at which poor

coverage occurs, signifying that the inability of the model to also accurately es-

timate the variance-covariance matrix of the parameters under weak identifica-

tion. The Fieller, Krinsky-Robb and Bayesian post-processing methods all pro-

duce intervals of similar average widths, although the slightly narrower widths
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Table 5.7: Average width of confidence intervals. Note that the average widths
reported for the Fieller method contain only bounded intervals.

Sample Size β3 2 1 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001

100

Delta 1.13 20.1 691.2 3.5E4 1.3E5 1.4E6 9.2E8 2.1E6 3.1E5 7.2E5
Fieller 1.24 12.3 66.6 167.8 167.9 224.8 150.0 166.5 190.9 161.7
KR 1.15 7.71 93.7 136.3 201.8 261.3 306.4 321.0 328.1 322.0
FQ WTP-Sp 1.21 6.47 68.9 97.0 99.4 104.3 171.2 145.3 162.7 138.7
BayesPP 1.13 7.80 86.2 151.2 195.6 264.2 312.6 327.6 319.7 322.1
BA WTP-Sp 1.06 7.71 32.6 40.9 55.5 71.8 99.0 99.6 105.1 108.0

250

Delta 0.58 2.05 25.5 283.6 1.3E4 6.6E4 3.4E5 1.7E7 2.1E7 2.7E6
Fieller 0.61 2.37 41.7 123.5 168.6 326.9 255.7 571.8 418.8 447.6
KR 0.61 2.41 29.0 73.6 172.3 314.7 467.2 514.9 539.3 530.6
FQ WTP-Sp 0.58 2.06 23.3 33.5 51.2 71.9 84.3 112.7 89.6 91.3
BayesPP 0.60 2.20 25.85 68.6 161.9 302.7 447.3 511.4 509.9 512.2
BA WTP-Sp 0.43 1.96 7.80 10.7 14.1 17.6 22.4 27.9 27.6 27.3

1000

Delta 0.29 0.98 3.93 6.42 144.5 5826.1 2.6E5 2.6E7 8.4E5 2.4E6
Fieller 0.29 1.01 4.36 7.85 23.6 144.6 421.6 665.2 1043.0 603.5
KR 0.29 1.00 4.47 7.66 24.6 142.7 658.7 1048.0 1075.2 1060.6
FQ WTP-Sp 0.29 0.98 3.91 6.65 14.6 25.7 46.4 46.3 49.1 46.5
BayesPP 0.29 1.00 4.17 7.19 20.4 136.4 610.7 1023.3 1022.7 1020.1
BA WTP-Sp 0.21 0.96 3.42 4.52 5.84 7.58 9.85 12.2 12.4 12.4

5000

Delta 0.13 0.43 1.67 2.61 4.69 10.9 160.7 2.1E6 8.5E6 4.1E6
Fieller 0.13 0.44 1.70 2.69 4.93 12.5 261.8 3140.9 1509.0 1343.6
KR 0.13 0.43 1.69 2.68 4.91 12.8 207.2 2263.2 2306.7 2381.0
FQ WTP-Sp 0.13 0.43 1.67 2.65 5.01 13.0 18.7 19.2 18.8 22.6
BayesPP 0.13 0.44 1.69 2.65 4.81 11.7 192.8 2249.2 2295.8 2311.9
BA WTP-Sp 0.10 0.74 3.01 4.06 5.45 7.29 9.54 12.0 12.2 12.2

10000

Delta 0.09 0.31 1.17 1.83 3.26 7.47 34.5 1.05E7 2.41E5 1.9E6
Fieller 0.09 0.31 1.18 1.85 3.33 7.89 59.8 2063.0 2091.0 1.1E4
KR 0.09 0.31 1.18 1.85 3.34 7.89 41.3 3196.8 3349.2 3248.8
FQ WTP-Sp 0.09 0.31 1.18 1.84 3.40 8.63 12.5 11.8 12.0 12.0
BayesPP 0.09 0.31 1.18 1.84 3.29 7.67 46.9 3085.3 3285.4 3238.7
BA WTP-Sp 0.08 0.70 2.94 4.02 5.48 7.36 9.68 12.2 12.5 12.5

of the bounded intervals built by the Fieller method under weak identification

might be what contributes to the poorer coverage rates of these bounded inter-

vals. CIs built using the WTP-space method are similar in width to the other

intervals for larger β3 values, however, they are much smaller when there is

weak identification. Since the CIs built by the WTP Space method is symmetric

by construction, the narrow widths and inaccurate estimates of WTP contribute

to the low coverage rates.
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5.1.2 Random Coefficients Model

In this simulation study, a random coefficients model is assumed. As with the

fixed coefficient model, each individual n chooses from 2 alternatives i = {1, 2},

with each alternative containing three attributes. As before, the attributes con-

sist of one constant value and two independently drawn from the standard nor-

mal distribution. The difference with the random coefficients model lies with

the coefficient values. β =


β1

β2

β3

 consists of a constant β1 = 1 and random β2

and β3 values with the following distribution:β2
β3

 ∼ N


3.3

β̂3

 ,
1 0

0 1


 (5.6)

where β̂3 ∈ {2, 0.5, 0.3, 0.1, 0.01, 0.001}. These mean β̂3 values were chosen

based on the results of the fixed coefficient model simulation study, where poor

coverage rates seem to occur around the 0.1 and 0.01 β3 values. As such I focus

on the smaller mean values to study how the CIs built will perform under weak

identification. The choice model follows a mixed logit model, where

Uin = Xinβ + εin

εin
iid∼ EV(0, 1)

(5.7)

As before, choice is made by maximizing utility.

Estimating a random coefficients model assumes that individuals have taste

variations. Mathematically, each individual n has his own set of preferences

βn, which he applies when making his choice over all choice situations. In

order to estimate these accurately and also to more accurately simulate real

surveys conducted, each individual in this simulation answers 10 choice situ-
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ations. Hence, the total sample size (i.e. the total number of choice situations)

N ∈ {100, 250, 1000, 5000, 10000} as before. However, the total number of in-

dividuals is Nind ∈ {10, 25, 100, 500, 1000}. Thus the population used for the

simulation is generated by individual, i.e. the utilities for every 10 choice situ-

ations are calculated using the same βn, and represent the 10 choice situations

faced by that same individual.

Table 5.8: Coverage of confidence intervals for random coefficients model

Sample Size β3 2 0.5 0.3 0.1 0.01 0.001

100

Delta (Mean) 1.000 1.000 1.000 0.999 0.966 0.878
Delta (Median) 0.987 0.805 0.661 0.432 0.107 0.032
KR 1.000 0.996 0.966 0.828 0.107 0.000
BayesPP 0.999 1.000 0.999 0.828 0.000 0.000

250

Delta (Mean) 1.000 1.000 1.000 1.000 0.995 0.932
Delta (Median) 0.980 0.530 0.309 0.092 0.011 0.007
KR 1.000 1.000 0.997 0.925 0.022 0.000
BayesPP 1.000 1.000 1.000 0.948 0.000 0.000

1000

Delta (Mean) 1.000 1.000 1.000 1.000 1.000 0.905
Delta (Median) 0.967 0.034 0.005 0.000 0.000 0.000
KR 1.000 1.000 1.000 0.964 0.000 0.000
BayesPP 1.000 1.000 1.000 0.999 0.000 0.000

5000

Delta (Mean) 1.000 1.000 1.000 1.000 0.973 0.703
Delta (Median) 0.686 0.000 0.000 0.000 0.000 0.000
KR 1.000 1.000 1.000 0.998 0.000 0.000
BayesPP 1.000 1.000 1.000 1.000 0.000 0.000

10000

Delta (Mean) 1.000 1.000 1.000 1.000 1.000 0.708
Delta (Median) 0.953 0.000 0.000 0.000 0.000 0.000
KR 1.000 1.000 1.000 0.991 0.000 0.000
BayesPP 1.000 1.000 1.000 1.000 0.000 0.000

Table 5.8 reports the coverage rates of the CIs built. As in the fixed parameter

model, the coverage of the Krinsky-Robb and Bayesian post-processing meth-

ods drop drastically as β3 decreases from 0.1 to 0.01. Prior to that, however, the

coverage rates of these methods are extremely high, most closer to 100% rather

than the accurate 95%. As the mean estimates of the WTP are not particularly

accurate (Table 5.9), it appears that the widths of the CIs being built are too

large, and as a result too many of the CIs contain the true WTP value.
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Table 5.9: Mean estimates of WTP

Sample Size
β3 2 0.5 0.3 0.1 0.01 0.001

True WTP 1.65 6.6 11 33 330 3300

100

Frequentist (Mean) 1.75 3.78 1.01 6.26 -11.12 76.40
Frequentist (Median) 1.63 1.84 0.94 0.021 0.14 0.27
KR 1.48 -37.44 3.86 523.0 11.95 -19.13
Bayesian -17.51 8.71 -1.21 7.16 -9.24 -143.1

250

Frequentist (Mean) 1.71 5.76 7.06 -7.48 10.85 1.81
Frequentist (Median) 1.66 2.73 1.25 0.80 -0.18 -0.18
KR 1.99 -6.55 4.46 -1.13 12.17 2.79
Bayesian -2.85 4.43 -4.66 -1.00 5.39 -2.11

1000

Frequentist (Mean) 1.66 7.81 -97.8 -135.6 12.26 236.6
Frequentist (Median) 1.62 2.17 1.87 0.76 -0.10 -0.20
KR 1.69 9.28 3.88 6.62 -0.053 1.62
Bayesian 2.27 -20.17 1.82 -12.79 10.55 -10.98

5000

Frequentist (Mean) 1.65 6.68 11.49 12.29 -45.50 -53.14
Frequentist (Median) 1.55 2.28 1.97 1.24 0.059 -0.13
KR -1.61 2.28 1.97 1.24 0.059 -0.13
Bayesian -1.02 63.57 -4.06 2.20 -2.21 4.72

10000

Frequentist (Mean) 1.65 6.65 11.27 42.26 21.81 -362.51
Frequentist (Median) 1.64 2.32 2.17 1.41 -0.28 -0.53
KR 1.67 4.43 -7.09 3.89 3.15 -12.69
Bayesian 1.94 5.21 1.77 -35.65 -4.41 4.90

The two Delta methods give very different results. The Delta (Mean)

method, which uses the mean of the WTP estimates and the mean of the cal-

culated WTP standard errors, builds CIs with high coverage rates but also ex-

tremely large widths (as reported in Table 5.10). In contrast, the Delta (Median)

method builds CIs with low widths, as suggested by Bliemer and Rose (2012),

but also with very low coverage rates. The low widths actually work against

this method, because the median of the WTP estimates are not accurate, and

thus many of the CIs built do not contain the true WTP value.

Finally, I analyze the shape index of the CIs built (Table 5.11). The Monte

Carlo CIs built under these heterogeneity assumptions are not similar in shape;

in fact, most of them are asymmetric in different directions. Seeing as how the

frequentist method gives better WTP estimates, I compare the other shape in-
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Table 5.10: Average width of confidence intervals for random coefficients model

Sample Size β3 2 0.5 0.3 0.1 0.01 0.001

100

Delta (Mean) 1.5E6 1.4E9 1.2E10 1.8E9 2.0E8 3.1E8
Delta (Median) 32.3 4800 2922 9793 2929 1517
KR 55.4 254.1 292.1 306.9 290.2 291.1
BayesPP 18.0 88.5 95.4 101.7 102.3 105.2

250

Delta (Mean) 1.6E9 6.3E9 2.6E8 9.2E8 2.9E9 5.3E12
Delta (Median) 6.04 1204 4929 236.1 162.5 1616
KR 23.0 137.2 150.6 163.2 171.0 169.3
BayesPP 16.7 87.6 97.1 104.7 106.6 107.0

1000

Delta (Mean) 6.9E6 3.5E8 1.2E8 1.4E9 4.3E8 2.3E8
Delta (Median) 0.84 3.82 4.17 4.37 4.25 4.45
KR 11.7 86.8 100.8 108.9 106.0 106.6
BayesPP 12.7 93.7 100.6 108.4 110.3 110.9

5000

Delta (Mean) 2.0E6 1.5E7 6.0E6 1.9E7 3.1E8 4.7E7
Delta (Median) 0.27 1.51 1.66 1.81 1.81 1.81
KR 11.7 107.9 107.8 115.6 112.7 113.0
BayesPP 10.8 92.5 101.7 107.0 107.2 107.8

10000

Delta (Mean) 1.5E6 2.1E9 5.0E7 2.7E7 2.1E9 9.7E6
Delta (Median) 0.21 1.06 1.20 1.30 1.31 1.32
KR 10.04 76.2 86.0 89.4 103.4 105.3
BayesPP 8.94 88.2 105.9 105.8 107.3 107.5

dexes to these. As the Delta method builds symmetric CIs by definition, they

are unable to capture the asymmetry of the distribution of the WTP estimates,

as illustrated by the shape indexes of the frequentist Monte Carlo CI. The shape

indexes of both the Krinsky-Robb and Bayesian post-processing methods also

do not match that of the Monte Carlo CI, even in direction of asymmetry (i.e.

whether the shape index is greater than or less than 1). While this does not

seem to reduce coverage, I attribute that more to the large widths rather than an

accurate portrayal of the distribution of the WTP.
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Table 5.11: Shape index of confidence intervals for random coefficients model

Sample Size β3 2 0.5 0.3 0.1 0.01 0.001

100

MC Frequentist 1.22 0.68 1.00 0.62 -0.50 -0.93
MC Bayesian 1.62 1.37 0.81 0.60 -0.54 -0.92
KR 3.14 1.04 1.04 1.37 1.13 0.88
BayesPP 1.51 0.88 0.33 1.01 1.49 0.82

250

MC Frequentist 1.56 2.01 1.23 0.80 -0.27 -0.90
MC Bayesian 1.03 0.62 0.56 0.37 -0.65 -0.96
KR 1.48 0.89 1.28 1.02 1.01 1.20
BayesPP 2.18 0.27 0.89 1.40 0.22 1.14

1000

MC Frequentist 1.01 2.23 4.19 0.69 0.17 -0.81
MC Bayesian 1.23 0.70 0.43 0.62 -0.70 -0.97
KR 2.55 1.00 0.86 0.90 1.19 0.71
BayesPP 2.31 0.92 0.68 1.41 1.07 1.48

5000

MC Frequentist 1.35 1.15 1.52 0.86 0.39 -1.89
MC Bayesian 1.06 0.74 0.52 0.30 -0.72 -0.97
KR 2.94 0.92 1.04 0.86 1.11 1.01
BayesPP 2.81 1.89 0.91 1.31 1.14 -0.24

10000

MC Frequentist 0.88 1.21 1.19 4.42 0.40 -0.34
MC Bayesian 1.73 0.57 0.51 0.19 -0.70 -0.97
KR 11.3 1.05 0.90 1.07 1.02 1.06
BayesPP 3.90 0.99 1.14 0.80 0.94 0.83

5.2 Quasi-simulation

In order to illustrate the use of these methods in building CIs for specific

data sets, a quasi-simulation and two case studies are performed. The quasi-

simulation was performed to take advantage of existing survey data, while still

having a basis with which to compare the WTP estimates and CIs built. At-

tribute data is taken from an unlabeled vehicle choice survey of vehicle own-

ers in California (Train and Hudson, 2000; Sándor and Train, 2004; Train and

Sonnier, 2005; Hess et al., 2006). The original data set contains 500 individu-

als responding to up to 15 choice experiments regarding their choice among

three unspecified vehicles. This was duplicated 25 times to attain a total pop-

ulation of 12,500 individuals. Assuming a linear MNL model with a subset of

the attributes, namely purchase price, operating cost, range, and engine type
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(whether gasoline, electric or hybrid), pre-determined coefficient values are

then used to generate the choice indicators (Table 5.12). These coefficient val-

ues are obtained by solving a MNL model using the full original data set.

Table 5.12: Parameter values used in quasi-simulation

Attribute Mean(β)
Purchase Price (1000$) -0.053
Operating Cost ($/mth) -0.027
Range (mi) 0.442
Electric -1.436
Hybrid 0.414

Figure 5.1 outlines the flow of the quasi-simulation, which constructs the CIs

of the WTP of operating cost and range over 1,000 trials. The quasi-simulation

begins by initializing the individual sample size (with a choice from 10, 40, 70

or 100 individuals) and setting nTrial = 1. Following this, a sample from the

dataset is taken, and CIs are built according to each of the six defined methods.

The Bayesian model is solved using 1,000 MCMC sample iterations, while the

Krinsky-Robb method uses 1,000 resamples from the multivariate normal distri-

bution. The simulation is repeated for each nTrial ∈ {1, . . . , 1000}, upon which

the simulation ends. As before, I analyze the CIs by calculating their coverage,

average widths and shape indexes.

Table 5.13: Coverage and average width of WTP for operating cost

Coverage Average Width Shape Index
Sample Size 10 40 70 100 10 40 70 100 10 40 70 100
MC Frequentist 0.95 1.041 0.462 0.371 0.313 1.016 1.039 1.027 1.022
MC Bayesian 0.95 1.106 0.470 0.373 0.315 1.041 1.030 1.059 1.027
Delta 0.206 0.092 0.096 0.075 0.154 0.033 0.019 0.013 1.000
Fieller 0.946 0.960 0.949 0.943 1.211 0.514 0.381 0.315 1.569 1.215 1.156 1.127
KR 0.945 0.960 0.944 0.946 1.203 0.511 0.379 0.314 1.382 1.155 1.117 1.091
FQ WTP-Sp 0.772 0.758 0.807 0.806 0.740 0.346 0.385 0.255 1.000
BayesPP 0.953 0.963 0.954 0.942 1.109 0.503 0.376 0.311 1.103 1.048 1.031 1.028
BA WTP-Sp 0.780 0.877 0.873 0.881 0.410 0.235 0.178 0.152 1.016 1.039 1.027 1.022

Tables 5.13 and 5.14 give the coverage rates, average widths and shape in-
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Figure 5.1: Path Flow for Quasi-simulation
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Table 5.14: Coverage and average width of WTP for range

Coverage Average Width Shape Index
Sample Size 10 40 70 100 10 40 70 100 10 40 70 100
MC Frequentist 0.95 44.2 21.6 15.4 12.6 0.885 0.977 1.005 1.133
MC Bayesian 0.95 46.4 21.8 15.5 12.5 0.851 0.896 0.987 1.162
Delta 1.000 1.000 0.999 0.999 256.7 56.4 31.6 21.9 1.000
Fieller 0.949 0.942 0.947 0.954 48.5 21.2 15.7 13.0 0.913 0.946 0.960 0.967
KR 0.947 0.940 0.946 0.950 48.3 21.1 15.7 13.0 0.931 0.959 0.972 0.975
FQ WTP-Sp 0.732 0.707 0.841 0.776 34.4 16.6 18.0 11.8 1.000
BayesPP 0.950 0.945 0.949 0.954 46.0 20.8 15.5 12.9 0.982 0.959 0.972 0.975
BA WTP-Sp 0.455 0.433 0.416 0.414 0.593 0.454 0.369 0.325 1.041 1.030 1.059 1.027

dexes of the CIs built by each of the methods for the WTP of operating cost

and range respectively. These are also compared to the results from the CIs

built from the WTP estimates derived directly from the frequentist and Bayesian

model estimates (i.e. the Monte Carlo CIs). Note that the coverage of the Monte

Carlo CIs are 0.95 by construction. As can be seen, the Fieller, Krinsky-Robb

and Bayesian post-processing methods all perform well, and give comparable

results. They also match the results from the Monte Carlo CIs very closely. Re-

call that in the fixed coefficient model simulation, the coverage rates of the CIs

built by the Krinsky-Robb method and the Bayesian method dropped dramati-

cally when the magnitude of price was 0.01, and that a sample size of 100 gave

Fieller CIs spanning the entire < line. In the quasi-simulation, the smallest sam-

ple size is around 150 choice situations, while the magnitude of the price coef-

ficient is around 0.05. This appears to be just the right combination to garner

good coverage results from all three methods, without producing unbounded

Fieller CIs.

The coverage rate of the CIs produced by the Delta method for the WTP of

operating cost is extremely low. Unlike in the fixed coefficient model simulation

conducted, the mean frequentist WTP estimates are extremely accurate. How-

ever, observe how the average width of the CIs produced by the Delta method
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are extremely small, much more so than that of the CIs built by the other meth-

ods. The narrowness of the CI built is reflective of the fact that the Delta Method

can produce CIs with narrower widths than other methods; however, it is also

contributing directly to the low coverage, as argued by Bernard et al. (2007). The

problem is compounded by the fact that the Delta method produces symmetric

CIs by construction. The shape index of the Monte Carlo CIs in Table 5.13 show

that the distribution of the WTP is asymmetric, with shape indexes slightly more

than 1. Hence, the symmetric CI in addition to the small widths results in the

low coverage rates.

In contrast, the coverage rate of the CIs produced by the Delta method for

the WTP of range is approximately 1 across all sample sizes. This is also not

accurate, especially when the average widths are also taken into account. Here,

the average widths of the CIs are much larger than those produced by the other

methods; this results in the high coverage rate where every CI contains the true

WTP value. Hence the CI being built is not specific enough to be of any use to

the practitioner.

Finally, the CIs built by re-parameterizing the utilities into WTP-space again

have lower coverage rates. The CIs for the WTP for operating cost have similar

coverage rates, whether they were estimated by frequentist or Bayesian meth-

ods. However, the coverage rate of the CIs for the WTP for range built using the

Bayesian model estimates are much lower than those built using the frequentist

model estimates. Note also that while the CIs from both methods have average

widths narrower than those built in preference space, the Bayesian WTP-space

CIs for the WTP for range is extremely narrow, even up to a tenth of the widths

of the other methods. This suggests that the method of building CIs from the
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Figure 5.2: Mean WTP estimates in Bayesian WTP-space for 1000 individuals

Bayesian WTP-space model estimates need to be rethought. As can be seen,

since the mean WTP for range is much larger (in magnitude) than that for oper-

ating cost, the widths of the CIs naturally increased as well. However, the width

of the Bayesian WTP-space CIs for the WTP for range remained small. This nar-

rowness combined with the large range of estimated WTP values (Figure 5.2)

resulted in many of these CIs not containing the true WTP value, despite the

fact that the mean WTP estimate is close to the true WTP value. (Note that this

low coverage rate occurred even if the percentile CI was used rather than the

HPD CI.)

5.3 Case Studies

5.3.1 Travel Mode Choice

The revealed-preference data used for this case study contains 600 individuals

choosing between two different modes of travel. Each alternative contains two
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Figure 5.3: Confidence intervals for willingness to pay for time under travel
mode choice

attributes, namely travel time and cost. The data set is of interest because the

cost parameter is not significantly different from 0, when an alternative specific

constant is included. As a result, weak identification is present, and hence we

can observe the types of CIs built using the six different methods.

Figure 5.3 show that the intervals produced for this data set follow the pat-

terns discovered in the simulation conducted in section 5.1. The WTP-space

methods produce intervals that gives the shortest widths, followed by that built

using the Delta Method. The Fieller method gives an unbounded interval. It

is interesting to note that despite the interval being unbounded, it still contains

the calculated value of time.

Note also that the intervals produced by the Delta, Krinsky-Robb and

Bayesian post-processing methods contain 0. These three methods conclude

that the consumer’s value of time cannot be statistically distinguished from 0; a

conclusion which should not logically be the case if the consumer is insensitive

to cost. Hence, it is the Fieller and WTP-space methods that produce sensible
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CIs. As the coverage rate of the intervals produced in WTP-space do not meet

the required confidence level, it seems reasonable to conclude that the Fieller

method produces the best CIs when weak identification is present.

5.3.2 Itinerary Choice

The stated preference data (Garrow et al., 2007) used for this case study con-

tains 2907 responses from customers who were searching flight itineraries from

an internet-based airline ticket booking service. The choice question was tai-

lored to fit the origin and destinations that they had just searched for, and

only customers who were looking for flights within the continental USA were

recruited. Customers were asked to rank three different itineraries based on

choice of airline, price, fare level of service (i.e., non-stop, single connection on

the same airline, and single connection on a different airline), arrival and de-

parture times, airplane type, and amount of legroom. Only the itinerary of the

outbound flight was provided (no return or inbound itinerary was given). In

addition, customers were asked whether they would continue to fly, take a dif-

ferent transportation mode (e.g. car, bus, train), or not make the trip at all, if they

were only given these three itinerary options. Table 5.15 gives a description of

the attributes that were used to generate the choice survey.

In addition to the itinerary attributes used in the choice survey, other so-

cioeconomic, demographic, and trip context information was asked. Socioeco-

nomic and demographic information included annual household income, gen-

der, education, occupation and prior air travel experience, while trip context

information included trip purpose, the number of people travelling together,
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Table 5.15: Description of attributes in survey

Variable Description
Departure time This is the departure time of the first flight of the itinerary. Eight different levels

are used and are applied based on the flight length and direction of travel to ensure
realistic arrival times at connecting airports and destinations.

Flight time The flight time of a connecting itinerary is assumed to be 30 minutes more than
the flight time of a non-stop. These times were determined a priori based on the
average non-stop flight time in a origin-destination pair (hence this does not vary
between pairs).

Stop penalty Increases the total travel time on connecting itineraries by 60, 90, 120 or 150 minutes
(four levels).

Arrival time Sum of departure time, stop penalty time, and non-stop flight time, adjusted for
time zone changes.

Airline Dummy variable for one of 11 airlines: American, Continental, Delta, Northwest,
United, US Airways, Southwest, Alaska, AirTran, America West, and Frontier.

Airplane Dummy variable for one of eight airplane types: regional jet, DC9, MD80, Airbus
320, and Boeing 717, 737, 757, 767.

Legroom Dummy variable for one of four different legrooms: 2 inches less than typical, typ-
ical, 2 inches more than typical, or 4 inches more than typical.

Base fare Equal to the average round-trip fare in the origin-destination pair multiplied by
0.75, 1.0, 1.25 or 1.5 (four levels); this is equal for all itineraries in the same choice
set.

Fare premium One of eight levels: 0.85, 0.9, 0.95, 1.0, 1.05, 1.10, 1.15 or 1.20. This is multiplied by
the base fare to create the different fares for the itineraries in the survey.

and whether the trip was being paid for by a third party. The trip purpose al-

lowed for the study and comparison of price sensitivities between passengers

travelling for business as compared to leisure.

The passenger’s decision to fly and their itinerary choice was modeled un-

der both fixed and random coefficient model assumptions. For the fixed coef-

ficient model, both logit and probit error assumptions are applied to achieve a

comprehensive picture of the CIs that would be obtained. For the random co-

efficient models, two distributions are assumed for the coefficients of time and

cost, namely the normal and lognormal distributions. However, only a logit er-

ror is assumed. CIs were built for the WTP of business and leisure passengers

separately for travel time and legroom.
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Fixed Coefficient Model

Table 5.16: Parameter estimates of fixed coefficient model (standard errors re-
ported in brackets)

Variables
MNL MNP

Frequentist Bayesian Frequentist Bayesian
Constants (reference: no air travel)
Nonstop 0.87 (0.13) 0.88 (0.13) 0.63 (0.08) 0.58 (0.07)
Same airline connection -0.01 (0.20) -0.01 (0.20) 0.53 (0.09) 0.43 (0.09)
Diff airline connection -0.16 (0.20) -0.16 (0.20) 0.50 (0.09) 0.38 (0.09)
Price (hundreds of dollars)
Leisure Avg -0.47 (0.03) -0.47 (0.03) -0.24 (0.02) -0.23 (0.02)
Leisure Deviation -1.69 (0.09) -1.69 (0.09) -0.29 (0.08) -0.43 (0.07)
Business Avg -0.25 (0.04) -0.25 (0.04) -0.13 (0.02) -0.13 (0.02)
Business Deviation -0.91 (0.17) -0.92 (0.17) -0.15 (0.05) -0.23 (0.05)
Incremental flight time (hours)
Leisure -0.42 (0.08) -0.42 (0.09) -0.05 (0.02) -0.08 (0.02)
Business -0.70 (0.11) -0.70 (0.11) -0.10 (0.03) -0.15 (0.03)
Deviation from preferred departure time
Leisure: Departs 4 or more hours before -0.47 (0.15) -0.48 (0.15) -0.16 (0.06) -0.16 (0.06)
Leisure: Departs 4 hours before - 2 hours after 0.12 (0.11) 0.12 (0.11) -0.07 (0.06) -0.03 (0.05)
Leisure: Departs 2 - 4 hours after -0.24 (0.17) -0.24 (0.17) -0.14 (0.06) -0.12 (0.06)
Leisure: Departs 4 or more hours after -0.77 (0.13) -0.77 (0.13) -0.25 (0.06) -0.29 (0.06)
Business: Departs 4 or more hours before -0.65 (0.24) -0.67 (0.24) -0.10 (0.09) -0.16 (0.10)
Business: Departs 4 hours before - 2 hours after 0.73 (0.18) 0.73 (0.19) 0.12 (0.08) 0.18 (0.08)
Business: Departs 2 - 4 hours after -0.22 (0.29) -0.23 (0.29) -0.01 (0.08) -0.02 (0.10)
Business: Departs 4 or more hours after -0.42 (0.21) -0.42 (0.21) -0.09 (0.09) -0.13 (0.09)
Others
Distance (hundreds of miles) 0.06 (0.01) 0.06 (0.01) 0.03 (0.004) 0.03 (0.004)
Income greater than $100K 0.26 (0.09) 0.26 (0.09) 0.13 (0.05) 0.13 (0.05)
Booking within 7 days of departure 0.26 (0.13) 0.26 (0.13) 0.12 (0.08) 0.11 (0.07)
Booking more than 30 days from departure 0.23 (0.09) 0.23 (0.09) 0.10 (0.05) 0.09 (0.05)
Staying more than five nights 0.16 (0.09) 0.16 (0.09) 0.10 (0.05) 0.09 (0.05)
Leg Room 0.07 (0.01) 0.07 (0.01) 0.01 (0.004) 0.02 (0.004)

Table 5.16 show the mean and standard errors of the coefficients as esti-

mated by frequentist and Bayesian methods under both logit and probit error

assumptions in preference space. Observe how, in general, both frequentist and

Bayesian methods give the same coefficient estimates. The coefficients of price

and time have the expected negative signs, while that of leg room has the ex-

pected positive sign. There are slight disparities between the estimates under
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logit and probit error assumptions, a difference that will also be reflected in the

WTP estimates.

Table 5.17 report the WTP estimates produced by the frequentist and

Bayesian estimations under both parameter and WTP-space for both leisure and

business passengers. As can be seen, the estimates are all very similar to each

other, whether this be for the WTP for shorter travelling time or extra leg room.

The probit model tends to estimate lower WTP values. For leisure passengers,

the estimates of the WTP tend to be slightly higher when estimated by Bayesian

methods in WTP-space. However, these differences are slight, and as will be

seen, do not result in much differences in the CIs built.

Table 5.17: Willingness-to-pay estimates

Leisure Passengers Business Passengers
Travel Time ($) Leg Room ($) Travel Time ($) Leg Room ($)
MNL MNP MNL MNP MNL MNP MNL MNP

Frequentist 24.62 17.88 4.13 4.02 76.78 62.24 7.67 7.43
FQ WTP-Sp 24.62 17.88 4.13 4.02 70.85 63.10 7.27 7.45
Bayesian 24.61 18.08 4.12 3.99 76.90 63.68 7.64 7.26
BA WTP-Sp 26.34 19.56 4.09 4.32 67.69 66.18 7.94 7.82

It is interesting to pause and observe the differences in WTP between busi-

ness and leisure passengers. As can be expected, business passengers are will-

ing to pay much more in order to cut short their travel time by an hour. They are

also willing to pay more for extra leg room. There are several reasons for this.

Probably most importantly, business passengers often do not pay for their own

tickets. Instead, their company covers the amount, and as such these passengers

would be freer to purchase a more expensive ticket since they are less sensitive

to the price. As shorter travel time and more leg room raises utility (both pa-

rameters were statistically different from 0), they would not only be willing to

pay for these advantages, but also be willing to pay more than leisure passen-
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gers, who are more sensitive to price. In addition, business passengers are often

on a tight schedule; they have to arrive by a certain time for meetings or prede-

termined appointments. Hence they would value time more highly than leisure

passengers, who are less likely to have to meet a fixed schedule or be willing to

pay extra simply to shorten their travel. Business passengers are also willing to

pay more for extra leg room; this is a factor perhaps already accounted for by

airlines in that one of the perks of business class is extra space, at a higher cost.

With a large data set and a cost coefficient that is statistically significant from

zero, I expect that the CIs produced by the different methods will contain little

disparity. Figures 5.4, 5.5, 5.6 and 5.7 show, respectively, the CIs for the WTP for

shorter travel time and extra leg room for leisure passengers, followed by busi-

ness passengers. Each figure compares the CIs produced under logit and probit

error assumptions. As can be seen, the CIs built by all methods under most

model assumptions are the same. In addition, it is interesting to observe that

the WTP estimated under each error assumption (logit and probit) is contained

within the CI built under the other error assumption. For example, the CI built

under logit error assumptions for leisure passengers’ WTP for travel time all

contain the WTP value estimated under probit error assumptions. This demon-

strates the viability of either model estimate; it also demonstrates the impor-

tance of CIs. Purely taking the mean WTP estimates from either model accounts

to a difference (for travel time) of $6 - $7 per passenger per hour; an amount that

builds up quickly over time and passengers. However, the CIs show that both

WTP values estimated are plausible candidates for the true WTP value under

95% confidence.

The good data and parameter conditions here even result in a comparable
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(a) MNL (b) MNP

Figure 5.4: Confidence intervals for leisure passengers’ willingness-to-pay for
travel time

(a) MNL (b) MNP

Figure 5.5: Confidence intervals for leisure passengers’ willingness-to-pay for
leg room

CI being built by the Bayesian model estimates under WTP-space. Based on the

simulations conducted, this method does not seem to produce reliable CIs. Even

under the conditions of this data set, the Bayesian WTP-space CIs differ the

most from the other CIs built, especially for the larger WTP values (i.e. business

passengers’ WTP for travel time). This concurs with the results from the quasi-

simulation in section 5.2. Interestingly, the Bayesian WTP-space CIs built under

probit error assumptions for business passengers’ WTP have larger widths than
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(a) MNL (b) MNP

Figure 5.6: Confidence intervals for business passengers’ willingness-to-pay for
travel time

(a) MNL (b) MNP

Figure 5.7: Confidence intervals for business passengers’ willingness-to-pay for
leg room

those built by the other methods, which is counter to what has been seen in the

simulations. This might simply be a result of the MCMC sample used to built

the CIs. Despite all these differences, however, the CIs built still contain the

mean WTP estimates obtained by the other methods of estimation, and illustrate

that under these well behaved conditions, any method can be used to build the

CIs.
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Random Coefficient Model

In this section, two random coefficient models are estimated via frequentist and

Bayesian estimation methods. Both assume that the coefficients for price, time

and leg room are random; however, the first model assumes that these vari-

ables all assume normal distributions, while the second model assumes that the

variables of price and time are lognormally distributed, while that of leg room

remains normally distributed. Often random variables are assumed to take on

normal distributions due to ease of model estimation. However, because the

range of a normal distribution is the entire < line, such an assumption implies

that there exist some passengers who have positive marginal utilities for price

and time, i.e. a higher cost or longer travel time increases their utility. As this

is not often a sensible assumption, lognormal distributions can be assumed for

these variables. The range of the lognormal distribution is the positive < line,

thus forcing all passengers to have the same sign for their marginal utility.

Table 5.18 gives the coefficient estimates of the mean and standard devia-

tions of the ML models estimated in parameter space. Note that the mean and

standard error of the underlying normal distribution is reported in the table.

The primary values of interest are the standard deviation values. These values

being statistically significant (different from 0) indicates that taste variation does

exist among the passengers. In general, both frequentist and Bayesian methods

of estimation show that taste variation does exist among the passengers regard-

ing their preferences for time, price and leg room.

The CIs produced by each of the methods show a great disparity. As with

the simulation, the Delta (mean) method produces extremely wide CIs which

are unpractical for use (the figures do not show the bounds of the Delta (mean)
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Table 5.18: Parameter estimates of random coefficient model (standard errors
reported in brackets)

Variables
Normally distributed Lognormally distributed

Frequentist Bayesian Frequentist Bayesian
Constants (reference: no air travel)
Nonstop 1.35 (0.24) 2.17 (0.32) 0.27 (0.14) 0.61 (0.26)
Same airline connection 0.37 (0.31) 1.02 (0.40) -0.57 (0.30) -1.93 (0.14)
Diff airline connection 0.16 (0.31) 0.68 (0.40) -0.79 (0.30) -2.02 (0.09)
Price (hundreds of dollars)
Leisure Avg -0.84 (0.08) -1.89 (0.29) -3.35 (0.89) -4.96 (0.38)
Leisure Deviation -2.72 (0.20) -4.27 (0.56) 0.14 (0.14) -0.88 (0.03)
Business Avg -0.15 (0.20) 0.47 (0.61) -3.24 (1.78) -1.84 (0.38)
Business Deviation -1.56 (0.32) -1.97 (0.34) 0.06 (0.20) -0.17 (0.04)
Incremental flight time (hours)
Leisure -0.58 (0.12) -0.98 (0.27) -0.34 (0.30) -1.07 (0.08)
Business -1.19 (0.32) -1.44 (0.43) -0.21 (0.49) -1.13 (0.07)
Deviation from preferred departure time
Leisure: Departs 4 or more hours before -0.63 (0.23) -1.56 (0.39) -0.72 (0.18) -0.41 (0.10)
Leisure: Departs 4 hours before - 2 hours after 0.21 (0.18) -0.27 (0.26) 0.01 (0.13) 0.38 (0.09)
Leisure: Departs 2 - 4 hours after -0.31 (0.25) -1.12 (0.26) -0.39 (0.20) -0.18 (0.10)
Leisure: Departs 4 or more hours after -1.11 (0.22) -2.39 (0.39) -1.10 (0.15) -0.69 (0.04)
Business: Departs 4 or more hours before -1.08 (0.41) -1.76 (0.50) -0.34 (0.28) -0.42 (0.09)
Business: Departs 4 hours before - 2 hours after 1.01 (0.29) 1.03 (0.34) 1.05 (0.19) 0.93 (0.18)
Business: Departs 2 - 4 hours after -0.21 (0.40) -1.07 (0.63) 0.05 (0.34) -0.15 (0.13)
Business: Departs 4 or more hours after -0.80 (0.35) -1.93 (0.29) -0.18 (0.22) -0.04 (0.07)
Others
Distance (hundreds of miles) 0.12 (0.02) 0.41 (0.09) 0.003 (0.007) -0.03 (0.01)
Income greater than $100K 0.39 (0.16) 0.88 (0.50) 0.33 (0.10) 0.01 (0.09)
Booking within 7 days of departure 0.40 (0.24) 1.69 (0.36) 0.27 (0.15) -0.33 (0.12)
Booking more than 30 days from departure 0.46 (0.17) 1.68 (0.36) 0.27 (0.10) -0.05 (0.12)
Staying more than five nights 0.30 (0.17) 1.23 (0.29) 0.07 (0.10) 0.08 (0.11)
Leg Room 0.09 (0.02) 0.14 (0.03) 0.08 (0.02) 0.06 (0.19)
Standard Deviations
Leisure Avg Price 0.69 (0.12) 2.82 (0.51) 1.14 (0.60) 2.36 (0.25)
Leisure Deviation Price 2.07 (0.30) 3.37 (0.58) 1.91 (0.08) 0.33 (0.02)
Business Avg Price 0.88 (0.28) 3.67 (0.91) 0.87 (1.77) 2.28 (0.18)
Business Deviation Price 1.42 (0.72) 1.86 (0.39) 0.04 (1.10) 0.40 (0.03)
Leisure Incremental Time 0.11 (0.19) 0.78 (0.25) 1.13 (0.28) 0.50 (0.04)
Business Incremental Time 0.82 (0.32) 1.08 (0.39) 1.89 (1.26) 0.57 (0.04)
Leg Room 0.17 (0.06) 0.14 (0.03) 0.23 (0.06) 0.36 (0.03)
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(a) Normal Distribution (b) Lognormal Distribution

Figure 5.8: Confidence intervals for leisure passengers’ willingness-to-pay for
travel time

(a) Normal Distribution (b) Lognormal Distribution

Figure 5.9: Confidence intervals for leisure passengers’ willingness-to-pay for
leg room

intervals due to its large width compared to the other intervals). The Delta

(median) method builds much narrower intervals in comparison. Interestingly,

the intervals built for leisure passengers are much narrower than those built

for business passengers. Again, as before, the CIs built under WTP space are

generally narrower than those built under preference space.

In general, these CIs are much wider than those built when a fixed coefficient

model is estimated. This is unsurprising given that by construction, the random
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(a) Normal Distribution (b) Lognormal Distribution

Figure 5.10: Confidence intervals for business passengers’ willingness-to-pay
for travel time

(a) Normal Distribution (b) Lognormal Distribution

Figure 5.11: Confidence intervals for business passengers’ willingness-to-pay
for leg room

coefficient model would result in problems of weak identification. It is useful to

note that most of the CIs built under the random coefficient model assumptions

do cover the fixed coefficient model WTP estimates (as indicated by the dashed

line in the figures).

In addition, most of the CIs contain 0, indicating that we cannot reject the hy-

pothesis that the WTP is equal to 0. This is again not surprising due to the fact

that we still assume that the WTP follows a normal distribution despite the co-

90



efficients assuming lognormal distributions. It is here that the Bayesian method

has an advantage over the others; because the Bayesian estimator uses MCMC

samples from the posterior, it avoids the assumption of normality. Hence, as can

be seen, the Bayesian CIs for WTP for less travel time do not contain 0. Those

CIs for WTP for extra leg room still contain 0 due to the assumption of normality

for the leg room coefficient.
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CHAPTER 6

BEYOND WILLINGNESS-TO-PAY: BUILDING CONFIDENCE

INTERVALS FOR INDIVIDUAL LIKELIHOODS

CIs are not just built for WTP measures or other ratio measures of parameter

estimates. Rather, CIs can (and should) be built for all variables that are ran-

dom. I illustrate this with an example in which CIs should be reported, and

has not (so far) been often done. This is in the airline industry, where revenue

management is used to determine the number and price of seats to make avail-

able to customers. Although every aircraft has a maximum capacity, airlines

often sell more seats than are available as some customers will either cancel

their tickets prior to departure or fail to show up on the day of departure. Over-

booking allows airlines to minimize the number of empty seats on a departing

flight. Cancellation and no-show models are used to determine these overbook-

ing levels. These models allow airlines to not only maintain efficiency on each

flight, but also prevent the excessive sale of tickets, which would result in the

need to compensate passengers and thus reduce revenue.

In order to understand a passenger’s reasons for changing his flight, it is

necessary to analyze his behavior. As early as the 1980s, attempts have been

made to integrate discrete choice models of passenger behavior into revenue

management (Garrow, 2010). Examples include Belobaba (1989) and Brumelle

and McGill (1993), who model airline seat allocation with a probabilistic deci-

sion model and multiple nested fare classes respectively. However, with few

exceptions, these attempts gave way to the use of more simplistic probabil-

ity models or time-series methodologies that, while easier to implement, make

strong independence assumptions. For example, most models assumed that
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the demand for a particular booking class for a flight was independent from

that of all other booking classes on that (and other) flights. In recent years, this

and other revenue management algorithm assumptions have been questioned

(Boyd, 2004; Boyd and Kallesen, 2004; Dunleavy and Westermann, 2005; Hor-

nick, 2004; Lieberman, 2004; Oliveira, 2003; Ratliff, 1998; Talluri and van Ryzin,

2004), resulting in a re-examination of how discrete choice models could be used

to model the individual passenger’s behavior. In particular, studies have at-

tempted to apply discrete choice methods to cancellation models. For exam-

ple, Talluri and van Ryzin (2004) model survivals using a binomial distribution;

however, this distribution contains inherent assumptions that are violated when

observing passenger behavior (Westerhof, 1997; Chatterjee, 2001). In particular,

the binomial distribution assumes that customers cancel independently of each

other, that each customer has the same probability of cancellation, and that can-

cellation probabilities are “memoryless”, i.e., they depend only on the time to

flight departure and not on when the ticket was first booked.

In recent years, there has been more work done in integrating passenger

behavior models with revenue management models, and particularly with can-

cellation models (Iliescu et al., 2008; Graham et al., 2010). However, little work

has been done in building CIs for these cancellation probabilities. As with all

random variables, cancellation probabilities are not fixed values which can be

used to precisely predict the number of people who will cancel their air tickets.

Rather, CIs should be reported in order to give a better insight into the reliability

and usefulness of the probability estimates.

In addition, the nature of airline ticketing data is such that the passengers

who bought tickets are identifiable. This allows for two further refinements of
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the model assumptions. Firstly, it allows for an estimate of parameters by in-

dividual (i.e., using a model with random taste variations), which would result

not only in more accurate estimates of cancellation probabilities, but also the

ability to determine such probabilities on an individual level. Secondly, this

makes it possible to trace an individual passenger’s historical cancellation be-

havior. This historical behavior can be applied as a prior to determine the pas-

senger’s current cancellation probabilities. These two aspects can be incorpo-

rated to further refine the estimates of the cancellation probabilities and the CIs

built. In addition, CIs can now be built for the individual cancellation probabil-

ity rather than simply the aggregate.

My methodology for this chapter is as follows. I use a random coefficient

model to study a set of airline ticketing data containing ticket characteristics, as

well as identifiable passengers. CIs are then built for the individual likelihood

of a passenger having performed a certain event, whether this be cancelling or

using his ticket. These CIs are built using the Bayesian post-processing method.

As seen in chapter 5, the Bayesian post-processing method is a viable method

for building CIs, especially with large sample sizes and without the problems of

weak identification. There are other advantages to using the Bayesian estima-

tion process, from which the Bayesian post-processing CIs are built. Firstly, us-

ing a hierarchical Bayes model can generate individual-specific parameters, and

thus individual-specific probabilities. Current probabilities of passenger cancel-

lations being reported are aggregate measures, but it would be of greater use to

have individual passenger probabilities based on the ticket characteristics and

passenger cancellation history. Furthermore, since the Bayesian methods take

draws from the posterior distribution of the parameters, post processing meth-

ods can be used to obtain individual-specific Bayesian confidence intervals for
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these probabilities.

6.1 Literature Review: Discrete Time Proportional Odds Model

Much of this study builds off the research of Iliescu et al. (2008) and Graham et

al. (2010). To study cancellation behavior and incorporate passenger behavior

into the cancellation model, the authors make use of the discrete time propor-

tional odds (DTPO) model (Iliescu et al., 2008). As a survival analysis method,

this model was applied to calculate the hazard probability, i.e. the conditional

probability that a ticket would be cancelled on a certain day given that it had

survived until that day. By using this model, the authors were not only able

to analyze how the cancellation probabilities changed over time and how they

were affected by ticket characteristics, they were also able to find empirical ev-

idence for the violation of the assumptions inherent in the use of the binomial

distribution by Talluri and van Ryzin (2004).

The DTPO model partitions the time-to-event (where the event is either the

ticket being cancelled, the passenger not showing up for the flight, or the pas-

senger using the ticket and departing) of the ith ticket (Ti) into k disjoint time

intervals (t0, t1], (t1, t2], . . . , (tk−1, tk], where (t0, t1, . . . , tk) identify the days from

issue of the ticket, and t0 and tk are the issue date and the time of event respec-

tively. Additionally, the discrete hazard probability (that is, the probability of

the cancellation event) is given by hij = P (Ti = j|Ti ≥ j). By using conditional

probability theory, the likelihood function of the entire sample can be written
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out explicitly. In particular, suppose we have the choice variable yij where

yij =


1, if ticket i is cancelled j days from issue

0, otherwise
(6.1)

Then the likelihood function of the entire sample becomes

L =
n∏
i=1

k∏
j=1

h
yij
ij (1− hij)(1−yij) (6.2)

The DTPO model incorporates the ticket characteristics (known as covari-

ates) into the model through the following formulation. For a set of covariates

Xi, the hazard probability hij is

log
(

hij
1− hij

)
= Ψij + β1Xij1 + β2Xij2 + · · ·+ βlXijl, (6.3)

where Ψij is the baseline hazard function, j = 1, 2, . . . , k time intervals, i =

1, 2, . . . , n observations and l is the number of covariates. Using this formula-

tion, the DTPO model can be solved for the parameters β.

However, since the exact time at which the ticket is cancelled is known and

can be written using a binary variable (yij above), the likelihood function is

equivalent to that of a binary logistic regression model. Recall that the logistic

regression model is described as follows:

y∗i =X ′iβ + ε, where ε ∼ Logistic(0, 1)

yi =


1, if y∗i > 0

0, otherwise

(6.4)

Then the probability that yi = 1 given covariates Xi, pi = P (yi = 1|Xi) = eX
′
iβ

1+eX
′
i
β

.

Again using conditional probability theory, the likelihood function of the entire
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sample becomes

L =
n∏
i=1

(
eX
′
iβ

1 + eX
′
iβ

)yi (
1

1 + eX
′
iβ

)(1−yi)

(6.5)

Note that equations (6.2) and (6.5) are equivalent if the baseline hazard func-

tion Ψij is added as a covariate. Hence the DTPO model is equivalent to that of

a binary logistic regression model, which has known numerical solutions and

thus makes the DTPO model analytically attractive.

Iliescu et al. (2008)’s use of the DTPO model builds on prior research in four

ways. First, while most survival models consider a single time dimension, this

model accounts for multiple time dimensions by accommodating time-varying

covariates. Second, it allows for the analysis of the effect of ticket heterogeneity

on cancellation probability. Third, it assumes that the ticket heterogeneity is

fully contained within the covariates used, and that its effect on cancellation

probability is separate from that of time. Finally, due to the discrete nature of the

time-scale used, the model is able to test for different distributional structures

of the baseline cancellation rate.

The study found that cancellation probabilities depended on multiple time

dimensions; in fact, recently purchased tickets and those with nearer departure

dates tended to have higher cancellation probabilities. In addition, the study

successfully incorporated customer behavior into cancellation models, finding

that certain covariates were associated with lower cancellation rates.

Following this study, Graham et al. (2010) used the DTPO model to examine

business travelers’ cancellation behavior. The nature of the data allowed the

authors to track individual passengers over time, and they found that frequent

travelers were 1.4 times more likely to cancel their tickets than non-frequent
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travelers. In addition, the authors analyzed the effect of specific covariates, such

as whether the ticket was discounted. This study further demonstrated how

passenger behavior plays an important role in cancellation rates and revenue

management.

This chapter aims to build on these previous works through the application

of a random parameter model and the use of historical data. In particular, we are

able to sort ticket purchases according to who made the transaction, and hence

know how many tickets an individual purchased, and how many of these were

cancelled. Graham et al. (2010) found that frequent travelers are more likely

to cancel their tickets than infrequent travelers. However, they did not use the

individual passenger’s past cancellation history, but divided travelers into two

groups (frequent versus infrequent) and determined the percentage of tickets

that were cancelled. In addition, it seems logical that a passenger’s history of

ticket purchase and cancellation behavior should be used to better estimate his

current probability of cancelling a ticket. All these refinements to the model

aim to give accurate estimates of the cancellation probabilities, and also accu-

rate constructions of the confidence interval of the individual likelihood of a

passenger having performed a certain event, whether this is cancelling or using

his ticket.
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6.2 Methodology

6.2.1 Data

The dataset used contains information of 3542 tickets purchased by a dedicated

ticket agency on behalf of Georgia Institute of Technology (Georgia Tech). As a

state institution, individuals travelling on official business on behalf of the uni-

versity are eligible to receive discounts on air travel from the State of Georgia.

Individuals do so by purchasing their ticket through this ticket agency, who is-

sues all discounted air tickets on behalf of the university (with few exceptions).

In addition, they issue a vast majority of the non-discounted air tickets, with an

estimated 70-80% of all Georgia Tech airline travel being handled by this agency.

The dataset contains primarily information about the ticket that was pur-

chased. In particular, only the passenger’s name and a university issued ID

number identify the passenger using that ticket. The remaining variables all

describe the ticket that was purchased, as detailed in Table 6.1. Of particular

interest are the variables showing the time from departure that the ticket was

booked, and the time from issue that an event occurred (either the ticket was

used or cancelled). These were shown by Iliescu et al. (2008) to have a signifi-

cant effect on ticket cancellation rates.

Out of 3542 tickets, 525, or 14.8%, were cancelled prior to departure. In ad-

dition, there are a total of 1870 passengers, 639 (34.2%) of whom bought more

than one ticket (for a total of 2311, or 65.2%, of the tickets). This gives us a

large dataset on which to estimate the cancellation model. Further details of the

dataset can be found in Graham et al. (2010).
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Table 6.1: Attributes in dataset describing ticket characteristics

Variable Distributional Characteristics
Days before departure
that ticket is booked

Ranges from 1 - 60; majority is from 1-7 days

Days after issue that event
occurs

Ranges from 0 - 60; majority is from 1-8 days

Departure Day of Week Sun 16%; Mon 18%; Tues 17%; Wed 18%; Thurs 15%; Fri 9%; Sat 7%
Departure Month Jan 12%; Feb 10%; Mar 2%; Jul 7%; Aug 10%; Sep 14%; Oct 18%; Nov 18%; Dec

9%
Carrier Delta 83%; AirTran 17%
Trip origin in Atlanta 87% originate in Atlanta
State Discount 91% receive state discount
Length of Stay (number of
nights)

Same Day 9%; One 27%; Two 24%; Three 17%; Four 10%; Five 5%; Six 3%; Seven
or more 5%

Departure Hour 89% depart between 8:00 AM - 9:59 PM, and are distributed fairly evenly
Arrival Hour 94% arrive between 8:00 AM - 10:59 PM; most popular times are between 4:00

PM - 7:59 PM

Because the data set contains only information from business travelers, cer-

tain otherwise important variables will be statistically insignificant when the

cancellation model is estimated using this data. For example, Graham et al.

(2010) found that only the variables of days of departure, days from issue state

rate and carrier were statistically significant, while other variables such as de-

parture day of week and length of stay were not. Such variables are generally

useful for distinguishing between leisure and business passengers, hence ac-

counting for their statistical insignificance. While these results are not represen-

tative of a general population and should not be taken as such, they still provide

useful insights into the business travelling community.

6.2.2 Reformulating the DTPO model and Data Manipulation

In order to easily use Bayesian methods to solve the DTPO model, the model

was rewritten into that of a discrete choice model formulation, while maintain-

ing the same assumptions as the DTPO model. The reason for doing this is two-
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fold. Firstly, although the DTPO model formulation is fairly complicated, it is

equivalent to that of a logistic regression model (Iliescu et al., 2008), which is a

standard model that is easy to solve. Secondly, pre-written functions exist (such

as mlogit in the R programming language) which solve discrete choice models.

By rewriting the DTPO model equations, the existing computer functions can

be used to estimate the DTPO model.

To use these existing computer functions for solving discrete choice models

via Bayesian methods, the model must be reformulated into one with two latent

variables. In particular, the cancellation data can be modeled as an individual

making a choice, in each time period, whether to cancel his ticket (alternative 1),

or not (alternative 2). This reformulation of the logistic regression model into a

sequence of binary choice situations provides an intuitive representation of the

cancellation behavior of a passenger. Specifically, as the days pass from the pur-

chase of a ticket, a passenger can decide whether or not to cancel his ticket. This

is clearly modelled in the sequence of binary choices, where for every time pe-

riod (day), the individual chooses between two alternatives - whether to cancel

his ticket or not. In addition, since some of the covariates (in particular, those

associated with the number of days before departure and the number of days

after issue) are time dependent, this model represent a dynamic choice prob-

lem. Hence this model, unlike other survival models, is also able to represent

multiple time dimensions due to its inclusion of time-dependent covariates.

For each binary choice situation, the individual has a utility associated with

each choice:
U1 = X ′1β + ε1

U2 = X ′2β + ε2

, where ε1, ε2 ∼ EV1 (6.6)

As is standard in random utility maximization models, the only concern is with
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the utility in differences, i.e., the difference in the utilities obtained from choos-

ing alternative 1 or 2. Hence the following model is achieved:

U = U1 − U2 = (X1 −X2)
′β + (ε1 − ε2), where ε1 − ε2 ∼ Logistic (6.7)

Setting all X2 variables to 0 makes this discrete choice model equivalent to the

logistic regression model, and thus the original DTPO model.

Using the discrete choice model involves expanding the original data set to

include the attributes of the second alternative. Table 6.2 shows how the dataset

is created, with Table 6.2(a) being the original dataset used when estimating

the DTPO model, and Table 6.2(b) being the dataset used for estimating the

equivalent discrete choice model.

Table 6.2: (a) Original dataset used for DTPO model in Graham et al. (2010).
Table shows customer ID, their choice (to cancel or not), and variables
of ticket characteristics; (b) Dataset used for discrete choice model,
where the variables of ticket characteristics have been expanded to
include those of alternative 2 (not cancelling)

Customer choice DFI DFI 0 3 DFI 4 7 DFD ... A22
52463 2 0 1 0 6 1
52463 2 1 1 0 5 1
52463 2 2 1 0 4 1
52463 2 3 1 0 3 1
52463 2 4 0 1 2 1
52463 2 5 0 1 1 1
52463 1 6 0 1 0 1

(a)

Customer choice DFI.1 DFI.2 DFI 0 3.1 DFI 0 3.2 DFI 4 7.1 DFI 4 7.2 DFD.1 DFD.2 ... A22.1 A22.2
52463 2 0 0 1 0 0 0 6 0 1 0
52463 2 1 0 1 0 0 0 5 0 1 0
52463 2 2 0 1 0 0 0 4 0 1 0
52463 2 3 0 1 0 0 0 3 0 1 0
52463 2 4 0 0 0 1 0 2 0 1 0
52463 2 5 0 0 0 1 0 1 0 1 0
52463 1 6 0 0 0 1 0 0 0 1 0

(b)

To my knowledge, setting allX2 variables to 0 in this way to model the logis-

tic regression (and thus the DTPO) model has not been done before. However,
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much of the literature which involves an opt-out alternative uses this method

of setting all variables for that alternative to 0. An opt-out alternative is where

the individual taking a survey is given the option to choose either one of the

scenarios portrayed or to choose none of the scenarios portrayed. Hence, the

individual ”opts out” of choosing an available scenario or alternative. Many

surveys include the opt-out alternative as a means of better simulating a real

life situation. Examples include Garrow et al. (2007) and Veldwijk et al. (2014).

6.3 Results

Although the focus of this chapter are the results from the random coefficient

model, I first estimated the data using a MNL model. This being the simplest

model to estimate, I also wanted to compare my results to that reported in Gra-

ham et al. (2010), who do not study random coefficients. In addition, the data

obtained for this study was updated from that used by Graham et al. (2010), and

hence I felt it necessary to have some basis for comparison also with the random

coefficient model.

6.3.1 Multinomial Logit Model

In estimating the MNL model, the fact that certain individuals purchased mul-

tiple tickets was not taken into account. Hence, each ticket purchase is regarded

as having been bought by a separate individual. Results from both the frequen-

tist and Bayesian model estimates are reported in Table 6.3.

As can be seen most of the results obtained from the two methods are fairly
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Table 6.3: Parameter estimates of multinomial logit model estimated using both
frequentist and Bayesian methods. DFI = number of days from issu-
ing the ticket, and DFI 0 3, DFI 4 7 = binary variables for 0-3 and 4-7
days from issue respectively. DFD = number of days from departure.
FL = carrier binary variable (Delta airlines as base). ATLDST = Atlanta
origin binary variable. STATE = state rate binary variable. Significant
codes: *** = 99.9%; ** = 99%; * = 95%

Parameters Frequentist Bayesian Parameters Frequentist Bayesian
CONST -8.47 -8.80 *** D9 -0.57 -0.48 **
DFI 0.0083 0.0066 D10 -0.68 -0.55 **
DFI 0 3 0.99 0.96 *** D11 -0.94 -1.15 ***
DFI 4 7 0.80 0.80 *** D12 -0.87 -0.76 **
DFD -0.031 -0.025 *** D13 -0.40 -0.30 *
SUN -0.18 -0.12 D14 -0.86 -0.90 ***
MON -0.26 -0.12 D15 -0.53 -0.50 *
TUES -0.01 0.14 D16 -0.71 -0.79 ***
WED 0.14 0.31 D17 -0.61 -0.53 **
THURS -0.13 -0.03 D18 -0.62 -0.51 *
FRI 0.09 0.31 D19 -0.71 -0.50 **
JAN -0.20 0.01 D20 -0.36 -0.06
FEB -1.10 -0.96 *** D21 0.54 0.55
MAR -1.62 -1.62 *** A8 -0.42 -0.58
JUL -0.92 -0.66 ** A9 0.71 0.52 **
AUG -0.47 -0.32 * A10 0.32 0.06
SEP -0.11 0.10 A11 0.51 0.14
OCT -0.31 -0.18 A12 0.26 0.12
NOV -0.19 0.10 A13 -0.37 -0.47
FL -0.74 -0.69 *** A14 -0.26 -0.28
ATLDST -0.11 -0.13 A15 -0.52 -0.74
STATE 0.70 0.58 ** A16 0.11 -0.18
LOS1 4.17 4.43 *** A17 -0.30 -0.51
LOS2 3.95 4.08 *** A18 -0.41 -0.60
LOS3 3.96 4.14 *** A19 -0.11 -0.30
LOS4 4.07 4.28 *** A20 1.34 1.03 ***
LOS5 4.18 4.13 *** A21 0.04 0.25
LOS6 3.84 4.31 *** A22 -0.19 -0.30
LOS7P 4.97 5.08 ***
D8 -0.45 -0.26 * LLH -2713.6 -2752.7
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similar, and differences tend to exist in those variables which are not statistically

significant with at least 95% confidence. Log-likelihood values have also been

reported for the two models, but note that the Bayes estimator does not seek to

maximize the likelihood function, and thus these should not be used as a basis

for comparison.

There are many variables which affect the cancellation rate. In particular,

binary variables indicating number of days from ticket issue being 0-3 and 4-

7 (DFI 0 3 and DFI 4 7 respectively), number of days from departure (DFD),

whether the plane was Delta or AirTran (FL), and whether the ticket was state

discounted (STATE) were all significant with at least 95% confidence, in agree-

ment with Graham et al. (2010). There are also many other variables that are

significant, in contrast to the results of Graham et al. (2010). However, as the

dataset in this paper is slightly different from that used by Graham et al. (2010),

it is to be expected that there will be some differences.

Table 6.4 shows the odds ratio for those variables listed above that were also

found to be significant by Graham et al. (2010). Cancellations are about three

times more likely to occur 3 days or less from issue date, and about two times

more likely to occur 4-7 days from issue date (as opposed to 8-60 days from issue

date). Similarly, tickets are more likely to be cancelled as the date of departure

approaches. There is a clear difference between travelling on a legacy carrier

(Delta) as opposed to a budget carrier (Air Tran), with tickets purchased on Air

Tran being approximately half as likely to be cancelled (as illustrated by the

variable FL). In addition, tickets receiving a state discount are about two times

more likely to be cancelled than those not receiving the state discount.
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Table 6.4: Odds ratios of significant variables

Variables Frequentist Bayesian
DFI 0 3 2.70 2.64
DFI 4 7 2.22 2.22
DFD 0.97 0.97
FL 0.48 0.50
STATE 2.02 1.79

6.3.2 Mixed Logit Model

By identifying passengers who have bought more than one ticket with this ticket

agency, I was able to estimate a ML model in order to test for random taste

variation among passengers. Based on the results of estimating the MNL model

and Graham et al. (2010), only the variables concerning date from issue, date

from departure, carrier type, and state were assumed to be randomly normally

distributed.

The ML model was estimated with the Bayesian method using only the ticket

data from passengers who purchased multiple tickets. This resulted in a data

set containing 639 passengers having purchased 2311 tickets. Passengers pur-

chased between 2 to 23 tickets, with the majority (293 passengers, or 45.8%)

having purchased two tickets.

Table 6.5: Mean and standard errors of the estimated standard deviation val-
ues of normally distributed random variables. Significant codes:
***=99.9%; **=99%

Variable Mean Std Err
DFI 0 3 0.59 0.18 **
DFI 4 7 0.49 0.09 ***
DFD 0.16 0.0032 ***
FL 0.65 0.25 **
STATE 0.54 0.14 ***
Log-likelihood -1824.06

The assumption that the variables are normally distributed is proven accu-
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rate if the estimated standard deviations are found to be significant. As can be

seen in Table 6.5, these standard deviations were found to be statistically signif-

icant with at least 99% confidence, hence affirming that random taste variation

exists amongst passengers for these variables.

As stated at the beginning of this chapter, one of the reasons for using the

Bayesian method of estimation is so that individual-specific probabilities can be

estimated. I illustrate how these can be used to create individual probabilities

for certain events happening, as well as CIs for these events. I create a hypothet-

ical situation in which a passenger books a ticket five days before the scheduled

departure date. The flight is booked with Delta airlines, and originates from

Atlanta. It is scheduled to depart at 5:15 PM and arrive at its destination at

7:45 PM. Finally, the passenger is staying away from home for two nights, and

receives a state rate when purchasing the ticket.

With this hypothetical ticket, I investigate the probability that an individual

will cancel his ticket on the day before departure. This probability and accom-

panying CI are calculated for all the individuals who were included in the taste

variations model. Figure 6.1 gives the means and CIs for 100 sampled individ-

uals’ probabilities of cancelling the ticket described one day before departure.

It is also possible to calculate the probabilities and CIs of a particular in-

dividual’s decision process on a daily basis. As an example, I again use the

hypothetical ticket as described above. For any given individual, knowing his

taste preferences, I can build the CIs (as in Figure 6.2) for the probability that

he cancels on any given day from the time he purchased his flight to the day

he flies (technically a no-show), and also the probability that he does use the

ticket (this was not included in the figure due to the large difference in magni-
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Figure 6.1: Individual means and confidence intervals for probability of cancel-
lation

Figure 6.2: Means and confidence intervals for probability of cancellation by
day

tudes, which would have made it impossible to see the CIs of the probabilities

of cancellation).
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CHAPTER 7

CONCLUSION

The primary goal of this research was to investigate and develop methods for

the building of CIs, with a large focus on building CIs for WTP measures. Build-

ing and reporting CIs are important endeavors due to the importance and prac-

tical uses of CIs. CIs are important as a statistical measures of uncertainty for

random variables, and while some may claim that hypothesis testing serves the

same purpose, CIs are superior on many counts, including that they account for

the imprecision of the statistic in question that arises both from the variability

of the parameter and the limited sample size. This last is an important push

for using CIs within the social sciences and transportation science, which of-

ten makes use of data from surveys that have been conducted with a limited

number of people.

The reporting of CIs for unknown coefficients is important, but in particular,

CIs should be reported for WTP measures. In the context of a linear-in-attributes

discrete choice model, the WTP for a certain attribute is calculated as the ratio

of the coefficients of the attribute in question and cost. Since WTP is associated

with the model coefficients, it is easy to recognize the necessity of CIs when

using a random coefficient model. However, many people do not remember

or realize that even the coefficients of a supposedly “fixed” coefficient model is

asymptotically distributed normal. Hence, the WTP is not a fixed variable, but

random, following an a priori unknown distribution, and as a result, CIs should

be reported along with the mean value of the WTP.

Since CIs are necessary, especially in applied work, the accurate building of

CIs is also of great importance. This is not a trivial problem to solve. Particularly
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when building CIs for WTP (or in general, any ratio measure), one runs into two

main problems: the unknown probability distribution of WTP, and the possible

discontinuity as the coefficient of cost approaches zero. These causes difficulties

when one is trying to estimate both the mean and standard error of the WTP

measure.

There are a host of different methods that have been proposed by which CIs

are built for WTP measures. These include the Delta method, Fieller method

and Krinsky-Robb (or bootstrap) method, among other less commonly known

methods. With so many methods existing, there has been no consensus in the

literature over the best method by which to build CIs. In fact, many papers con-

tradict each other, claiming one method to be better and providing reasons why

the other methods fail. However no paper (other than Gatta et al. (2013), who

still focus primarily on bootstrap methods) gives a comprehensive analysis of all

the popular methods used. In addition, there is a distinct lack of attention to the

Bayesian methods of model estimation, by which CIs can also be built. Hence

this research aims to fill this gap by giving a comprehensive analysis of the

most commonly used methods of building CIs in the transportation science and

economics literature. In addition, this work proposes three further methods of

building CIs: estimation of WTP measures in WTP-space using both frequentist

and Bayesian methods, and Bayesian post-processing. Attention is given to the

conditions under which each method works or does not work. Doing so would

give a better understanding towards the reasons for such disparity within the

literature, and help to consolidate all the different views. In addition, this re-

search also aims to investigate methods by which CIs can be built when taste

variations are assumed, i.e. when a random coefficient model is used. There is

currently little discussion in the literature on the building of CIs for WTP under
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these model assumptions, even though it is extremely important. Not only is it

logical to assume that individuals will have different taste preferences (and thus

taste variations would exist in a model), the mixed logit model is also growing

in popularity within the discrete choice model literature. Especially if used in

applied work, CIs should be reported and thus there needs to be a clear method

by which to build them.

In order to do this, simulations were run for both fixed and random coeffi-

cient models. Simulations are useful because they contain predetermined coef-

ficient values, and thus the end goal is not only known, it is possible to calculate

such useful statistics as coverage rates of the CIs built in order to see if one is

meeting the stated confidence level. Under both model assumptions, CIs were

built for varying sample sizes and cost coefficient values in order to study the

effect of both sample size and weak identification.

The following main points can be concluded from the simulations. With a

fixed coefficient model, all the methods work equally well under standard con-

ditions (i.e. in the absence of weak identification). This concurs with the results

of papers like Hole (2007). In the presence of weak identification, the Fieller

method maintains a high coverage rate due to the formation of unbounded

CIs. In contrast, all other methods perform poorly, with the Delta method per-

forming especially badly. Since the Delta method builds symmetric CIs by con-

struction, they are unable to capture the asymmetry of the WTP distribution as

demonstrated by the Monte Carlo CIs obtained. The Bayesian post-processing

and Krinsky-Robb methods give similar results, and hence under fairly stan-

dard conditions (and even allowing for fairly small cost coefficients if the sam-

ple size is large enough), the Bayesian post-processing is a viable method for

111



building CIs.

In contrast, working in WTP-space builds incorrect CIs, with the Bayesian

estimation faring worse than the frequentist method of estimation. The widths

of the CIs built are much narrower than those of the other methods, indicat-

ing that the estimated standard error is smaller. However, coverage rates are

extremely poor. Although not a definitive explanation, I suggest that working

in WTP-space fares poorly due to the inherent assumptions involved. Under

the frequentist method of estimation, we assume that the coefficients (here the

WTP) being estimated are asymptotically normally distributed. However, this

is an incorrect assumption, and thus would lead to inaccuracy in estimation of

both the mean and standard error of the coefficient, by which the CIs are built.

Under the Bayesian method of estimation, a closer look at the convergence of

the estimators shows erratic convergence. Often times the Bayesian results do

not converge to a single value, or seemingly converges to the wrong value, thus

leading to inaccuracy in the credible intervals built.

With a random coefficient model, weak identification again causes inaccu-

rate CIs to be built. However, the random coefficients result in CIs with much

wider widths being built by the Bayesian post-processing and Krinsky-Robb

methods, bringing about coverage rates that are too high. In contrast, the Delta

method produces CIs which are either extremely wide or extremely narrow, de-

pending on whether the mean or median of the WTP estimates and standard

errors are used. Hence while it is true that using the median of WTP standard

errors will produce narrower CIs (as concluded by Bliemer and Rose (2012)), it

still does not result in accurate CIs due to the inaccurate median WTP estimates

used.
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To obtain a sense of how these methods can be used, several data sets were

employed on which CIs were built for various WTP measures. The first quasi-

simulation utilized vehicle choice data, where individuals had a choice between

three different vehicles, whether standard gasoline, hybrid, or electric. The sec-

ond used a data set where individuals chose between two travel modes that dif-

fered in travel time and cost. Finally, a third study used a data set where individ-

uals ranked three different flight itineraries in order of their preference. The CIs

built in each of these studies demonstrated the results of the simulation, and a

comparison between them especially highlights the effect of weak identification

on the building of CIs. In particular, the travel mode choice case study demon-

strates the CIs that are built under weak identification, with the Fieller method

even producing an unbounded CI. In contrast, the itinerary choice case study

resulted in CIs which were all comparable, demonstrating that under good con-

ditions, any method can be used to build the CI.

Based on the results of the simulations and case studies, I find that in the

absence of weak identification and with a large sample size, any of the methods

that build CIs in preference space work equally well, including the Bayesian

post-processing method. In general, however, the Fieller method is the most

versatile method as it also performs well in the presence of weak identifica-

tion. However one must consider whether the unbounded CI is useful in ap-

plied work, or whether it should just be used as an indication of an insignificant

marginal utility of cost.

The remainder of this research delves into building CIs for other functions of

parameters; in particular, it looks at the example of building CIs for the proba-

bility that an airline passenger will cancel his ticket. These estimates are of value
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because the probability of cancellation is used in airline cancellation models, in

which an airline estimates the number of tickets by which to overbook a flight

so as to maximize their revenue. Building a CI would allow the airline to better

understand not only the amount of trust they should put in the probability es-

timate, but also be able to incorporate these interval bounds into their revenue

management models. In addition, I incorporate taste variation into the model,

through which it is possible to build CIs of the individual cancellation proba-

bilities. This allows for a greater understanding of the actions and decisions of

individual airline customers.

Using a revealed preference data set containing information regarding pas-

sengers who purchased tickets and then subsequently used or cancelled them, I

estimated both a MNL and a ML model. The taste variations incorporated into

the ML model were statistically significant, indicating the importance of incor-

porating these taste variations into cancellation models. In addition, I demon-

strated how CIs can be built not only for the individual’s probability of can-

celling his ticket on one particular day, but also every day from when he first

purchased his ticket to the day of departure. The results of this work not only

demonstrates how the method works, but also promotes the use of the Bayesian

post-processing method due to the ease by which the individual CIs can be con-

structed.

This research takes a step forward in consolidating the many methods for

building CIs for WTP measures, and also in promoting the use of Bayesian post-

processing methods for building CIs, especially under heterogeneity conditions.

It also identifies areas in which improvements can be made. In particular, I be-

lieve that more thought should be put into the use of WTP-space and its effec-
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tiveness. In addition, seeing the performance of the Fieller method in the fixed

parameter model causes one to wonder if a similar method can be developed

for the random parameter model.

Finally, more work can also be done to further improve on the CIs built

for the cancellation probabilities of airline passengers. In particular, since the

Bayesian method of estimation is being used, it is possible to more intuitively

incorporate historical ticketing data. Taking advantage of the fact that certain

individuals have purchased more than one ticket should further increase the

accuracy of the Bayesian model estimates.
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Armstrong, P., Garrido, R., Ortúzar, J.D., 2001. Confidence intervals to bound

the value of time. Transportation Research Part E 37, 143-161.

Arnold, B., Brockett, P., 1992. On distributions whose component ratios are

Cauchy. The American Statistician 46, 25-26.

Belobaba, P.P., 1989. Application of a probabilistic decision model to airline seat

inventory control. Operations Research 37(2), 183-197.

Bernard, J.-T., Idoudi, N., Khalaf, L., Yélou, C., 2007. Finite sample inference

methods for dynamic energy demand models. Journal of Applied Economet-

rics 22, 1211-1226.

Beyene, J., Moineddin, R., 2005. Methods for confidence interval estimation of a

random parameter with application to location quotients. BMC Medical Re-

search Methodology 5, 32.

Bhat, C.R., 2011. The maximum approximate composite marginal likelihood

(MACML) estimation of multinomial probit based unordered response choice

models. Transportation Research Part B 45(7), 923-939.

Bhat, C.R., Sidharthan, R., 2012. A new approach to specify and estimate non-

normally mixed multinomial probit models. Transportation Research Part B

46(7), 817-833.

116



Bliemer, M.C.J., Rose, J.M., 2012. Confidence intervals of willingness-to-pay for

random coefficient logit models. Presented at the 13th International Confer-

ence on Travel Behaviour Research, Toronto, Canada.

Bolduc, D., Khalaf, L., Yélou, C., 2010. Identification robust confidence set meth-

ods for inference on parameter ratios with application to discrete choice mod-

els. Journal of Econometrics 157, 317-327.

Borenstein, M., 1994. The case for confidence intervals in controlled clinical tri-

als. Controlled Clinical Trials 15, 411-428.

Box, G.E.P., Tiao, G.C., 1992. Bayesian inference in statistical analysis. Wiley,

New York, NY.

Boyd, E.A., 2004. Dramatic changes in distribution will require renewed focus

on pricing and revenue management models. Journal of Revenue & Pricing

Management 3(1), 100-103.

Boyd, E.A., Kallesen, R., 2004. The science of revenue management when pas-

sengers purchase the lowest available fare. Journal of Revenue & Pricing Man-

agement 3(2), 171-177.

Brumelle, S.L., McGill, J.I., 1993. Airline seat allocation with multiple nested fare

classes. Operations Research 41(1), 127-137.

Buonaccorsi, J.P., Iyer, H.K., 1984. A comparison of confidence regions and de-

signs in estimation of a ratio. Communications in Statistics - Simulations and

Computations 13, 723-741.

Chatterjee, H., 2001. Forecasting for cancellations. Presented at AGIFORS Reser-

vations and Yield Management Study Group, Bangkok, Thailand.

117
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