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Large software systems are often constructed by reusing existing code. This dissertation

describes several approaches that address the limitations of existing code reuse mecha-

nisms such as class inheritance. The Polyglot design pattern enables software systems

to be extended in a scalable way: the code required to extend the system is propor-

tional to the amount of new functionality provided. This design pattern has been used to

implement an extensible compiler framework. Nested inheritance is an object-oriented

programming language mechanism that supports scalable extensibility in a safer, more

natural way than the design pattern approach. Nested inheritance permits modular, type-

safe extension of a package (including nested packages and classes), while preserv-

ing existing type relationships. Nested intersection extends nested intersection to enable

composition and extension of two or more packages, combining their types and behav-

ior while resolving conflicts with a relatively small amount of code. Nested intersection

is implemented in the language J&. The utility of J& is demonstrated by using it to

construct two composable, extensible frameworks: a compiler framework for Java, and

a peer-to-peer networking system. Both frameworks support composition of extensions.

For example, two compilers adding different, domain-specific features to Java can be

composed to obtain a compiler for a language that supports both sets of features.
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members, particularly Dexter Kozen, José Martı́nez, Radu Rugina, Greg Morrisett, Gün

Sirer, and Alan Demers. Michael Clarkson Steve Chong, and Xin Qi were great friends

and colleagues and contributed much to this thesis. Matthew Fluet, Vicky Weissman,

Riccardo Pucella, Jed Liu, Lantian Zheng, Ranveer Chandra, Rama, Hubie Chen, Filip
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Chapter 1

Introduction

Today’s software systems consist of millions or tens of millions of lines of code and

thousands of interacting functions, modules, and libraries. Developing this code from

scratch is infeasible; instead, large software systems are constructed by reusing existing

code. Yet, in practice, techniques for code reuse today are often ineffective, messy and

unmaintainable, or unsafe.

When implementing new functionality, it is often tempting to copy existing code

that performs a similar function and then edit the copy in-place to achieve the desired

behavior. Indeed, entire software systems have been implemented this way. This ap-

proach is popular because it is both simple and effective; however, “copy and paste”

reuse has serious limitations. Over time, both the original code and the code derived

from the copy—the derived code—may be upgraded with bug fixes and new function-

ality. Changes to one version of the code are not automatically applied to the other. De-

velopers must carefully patch the derived code with the changes made to the base code,

leading to duplication of effort and code maintenance problems. Patching becomes an

increasingly arduous task as the two code bases evolve and diverge from each other.

Automatic patching tools can help, but are often fragile and can introduce errors. Con-
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flicting changes to the base and derived code often must be reconciled by hand, with

considerable programmer effort.

Programming languages and design patterns have been developed for extending

software without duplicating code, thus avoiding the maintenance problems duplication

introduces. In this thesis, we focus on a particular form of reuse: software extension.

Software extension enhances or refines the behavior of an existing code base without

violating its abstractions. Examples of code reuse that violates abstractions include

reusing fragments of a procedure body, or reusing a data structure or part of a data

structure with different, incompatible types. Abstraction-violating reuse that does not

require code duplication is a challenging problem beyond the scope of this work.

Making code extensible requires careful design so that the extension implementer

has available the proper hooks: interposition points at which new behavior or state can be

added. Even with well-structured code, software may not be extensible simply because

the right hooks for extension are not available. Design patterns [43] for extensibility

structure the code to better expose these hooks to the developer. Programming languages

enable more effective reuse by allowing developers to easily create new hooks for ex-

tension. For example, in object-oriented languages, methods act as hooks: programmers

can extend a class with new functionality by creating a subclass and then overriding

methods of the base class. Simply by declaring a method, the programmer of the base

system creates a hook that permits the system to be extended with new behavior.

We identify the following requirements for general extension and composition of

software systems.

1. Orthogonal extension. The base code should be able to be extended with both

new data types and new operations on those data types.

2. Scalability. Extension of a body of code should require code proportional only to

the amount of new functionality provided.
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3. Modularity. Changes to the extended system should not require recompilation or

modification of the base system, and should not change the behavior of existing

clients of the base system.

4. Type safety. Extensions cannot create run-time type errors.

5. Ease of use. Reuse mechanisms should not clutter or obfuscate the code. Ideally,

reuse mechanisms should be at least as easy to use as copy-and-paste reuse.

6. Composition of extensions. Multiple extensions should be able to be used to-

gether, combining their functionality.

This dissertation describes both a design pattern and an object-oriented programming

language for scalable, orthogonal extension and composition of large software systems.

The design pattern meets the first three requirements listed above: orthogonal extension,

scalability, and modularity. The language mechanism, nested intersection, meets all of

the above requirements.

The design pattern, described in Chapter 2, enables scalable, modular, orthogonal

extension of a base system. Using the design pattern, we have implemented an extensible

compiler framework called Polyglot [84]. The Polyglot framework provides a source-

to-source Java compiler that language implementers can extend to compile extended

versions of Java. More than 20 compilers for Java language extensions have been

implemented with Polyglot; even so, the design pattern has a number of limitations that

prevent it from satisfying all of the requirements enumerated above: it is not type-safe,

it can be difficult to use, and it does not easily support composition of extensions. These

limitations are addressed by the language-based approach.

Nested inheritance is a language mechanism for simultaneously extending a collec-

tion of classes with new functionality. Nested inheritance is designed to be applicable

to object-oriented languages that, like Java [45] or C++ [107], support nested classes

or other containment mechanisms such as packages or namespaces. Using nested in-
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heritance, a large system with multiple interacting classes can be extended safely by

writing code only for the new functionality. Nested intersection builds on nested inheri-

tance to allow the composition of collections of classes to obtain a software system that

combines their types and behavior.

With normal class inheritance, methods act as hooks for extension; nested inheri-

tance builds on this idea by enabling nested classes to be used as hooks too. Nested

inheritance creates an interaction between containment and inheritance: when a name-

space such as a class or package is inherited, all of its components—even nested classes

and packages—are inherited too. Inheritance and subtyping relationships among these

components are preserved in the derived namespace, where individual methods, classes,

and even packages can be refined to add new behavior in a scalable, modular way.

We have designed a new language named J& (pronounced “Jet”) that adds nested

inheritance and nested intersection to Java [45]. J& demonstrates that nested intersection

integrates smoothly into an existing object-oriented language. Nested intersection is a

lightweight mechanism that supports type-safe, scalable extensibility and composition,

yet it is hardly noticeable to the novice programmer.

We ported the Polyglot framework to J&, stripping out the code for the Polyglot

design pattern because it is no longer needed to provide scalable extensibility. Unlike the

original Java-based framework, extensions in the new framework are type safe, simpler

to write, and can be composed via nested intersection.

1.1 Extensible compilers

To motivate our requirements, we consider the building of an extensible compiler with

composable extensions. Compilers are a particularly challenging domain because a

compiler has several different interacting dimensions along which it can be extended.
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Compilers contain complex data structures representing the source and target code as

well as intermediate code and metadata such as types and dataflow analysis values.

Analyses, optimizations, and code transformations operate on these data structures. An

extension may need to extend both the data types and the operations.

Domain-specific extension or modification of an existing programming language en-

ables more concise, maintainable programs. However, programmers infrequently con-

struct domain-specific language extensions because building and maintaining a compiler

is onerous. When developing a compiler for a language extension, it is clearly desirable

to build upon an existing compiler for the base language. Furthermore, by composing

extensions of the base compiler, one can obtain a compiler tailored for a particular appli-

cation domain by choosing useful language features from a “menu” of available options.

1.2 Scalable, orthogonal extension

Compiler frameworks must support orthogonal extension, the addition of both new data

types (e.g., abstract syntax, types, dataflow analysis values) and operations on those

types (e.g., type checking, optimization, translation). However, traditional programming

languages permit orthogonal extension by sacrificing scalability: adding new abstract

syntax requires changes to all passes, even if the new node types are relevant to only a

few passes. Similarly, adding a new pass may require changes to all nodes. This conflict

between extending procedures and types creates an incentive to structure a compiler as

a few complex passes rather than as a larger number of simple passes, resulting in a less

modular compiler that is harder to understand, maintain, and reuse.

John Reynolds [96] observed that there are two complementary ways to organize

code: by data representation or by operation. These two approaches often make it

difficult to provide orthogonal extension in a scalable, modular way [117]. In the
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first case, called data-directed programming [1, 30], all operations on a particular

representation are grouped together. This form of code organization is exemplified by

abstract data types and by objects. In the alternative organization, operation-directed

programming [30], each operation is implemented as a function with cases for each

representation. This form of organization is typical of functional programming.

The two styles can be illustrated by considering a table of data types and operations

on those types. A compiler, for example, performs a series of passes over an intermediate

representation such as abstract syntax trees (ASTs). The following table shows the

implementation of several compiler passes for several AST node types.

AST Node Types
Operations + == if x e.f

Resolve names no-op no-op no-op lookupVar lookupField

Check exceptions no-op no-op no-op no-op throwNull

Fold constants foldAdd foldEq no-op no-op no-op
Emit code emitAdd emitEq emitIf emitVar emitField

In data-directed programming, code is grouped by type or by type constructor—by

column in the table. In operation-directed programming, code is grouped by operation—

by row.

Operations are often sparse in the sense that they have interesting behavior for only

a few data types. Because non-trivial code need be written for only a few types, sparse

operations can treat the other types in a default, boilerplate way. In the table above, the

“Resolve names”, “Check exceptions”, and “Fold constants” operations are sparse; they

are implemented as no-ops for AST nodes that contain no names, throw no exceptions,

or contain no foldable expressions, respectively. Ideally, when a new sparse operation

or a new data type is added, code need only be written where non-boilerplate behavior

is required. Standard programming methods, however, cannot exploit this sparsity.

The weakness of data-directed programming is that when a new operation is added,

it may be necessary to modify several existing data abstractions to support the new
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operation. Adding a new operation corresponds to adding a new row to the table. Code

needs to be written for each column, adding code for each existing type. In an object-

oriented language, new data types are added by writing new classes, and new operations

are added by writing new methods. To add new methods for existing data types, it is

necessary to modify the classes implementing those types. In a compiler implemented

using the data-directed approach in an object-oriented language, each AST node class

implements a method for each compiler pass. This technique suffers from the problem

that adding a new pass requires adding a method to all existing node classes.

In contrast, with operation-directed programming, the implementation of an opera-

tion must be modified each time a new representation is installed. Adding a new data

type corresponds to adding a new column and code must be written for each row of the

table; that is, existing functions must be modified to support the new data type. Thus, in

functional programming languages, it is straightforward to add new functions, but not to

add new data types. Data types in functional languages such as ML [80] and Haskell [56]

are implemented as tagged variants. Functions perform pattern matching to implement

functionality for each variant. If a new variant is added, existing functions that operate

on that data type must be rewritten to handle the new variant.

The Visitor design pattern [43] is an instance of operation-directed programming

in an object-oriented language. This pattern is commonly used to implement compiler

passes over abstract syntax trees. There is a hierarchy of classes representing the abstract

syntax: an AST node class for each syntactic construct in the source language (e.g.,

statements, expressions, declarations, types). Each AST node class is a subclass of a

base Node class. Compiler passes are implemented as visitors, objects that encapsulate

a traversal over the AST. Each compiler pass is implemented as a subclass of a base

Visitor class. To allow specialization of visitor behavior for both the AST node type
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and the visitor itself, each concrete visitor subclass implements a separate callback, or

visit, method for every node type.

In a non-extensible compiler, the set of AST nodes is usually fixed. The Visitor

pattern works well in this case because it permits scalable addition of new passes,

although it sacrifices scalable addition of AST node types. Since each visitor class

implements a separate callback method for every node type, visitors written without

knowledge of the new node class cannot be used with the new node because they do not

implement the callback.

Ordinary class inheritance does not provide scalable extensibility because it operates

one class at a time, making it difficult to extend sets of mutually dependent classes

that interact through some protocol. New classes can be added at the leaves of the

class hierarchy, but in general, more significant changes may be needed to construct

the extended software.

For instance, class inheritance does not permit addition of a visitor callback method

to the base visitor class; instead, each visitor subclass must be extended individually

with the new method. If operations are sparse, most visitor classes will have duplicate

implementations of the same boilerplate functionality.

The reuse mechanisms described in this thesis, address this problem, in part, by

enabling new functionality to be added into a base class and then automatically inherited

by its subclasses. Other language mechanisms such as mixins [14, 40], open classes [28],

and virtual superclasses [34] also permit this kind of extension; however, ordinary

inheritance does not.
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1.3 Type safety

Many systems aim to be extensible, but sacrifice type safety in the process. These

systems often load extensions at run time and check for type errors either dynamically

or not at all. For example, web browsers such as Firefox [42] can be extended with

a wide range of plugins for handling multimedia, managing passwords, enhancing the

user interface, and diverse other uses; however, these plugins are not statically type-

checked against the base system. The extended system may therefore be fragile and

prone to crash because of run-time type errors. Software testing to eliminate these run-

time errors can be expensive, and, because they can occur after the software is deployed,

fixing the errors can be even more expensive. Static type safety allows a large class of

errors to be detected during compilation rather than at run time, thus reducing the cost

of software development and maintenance while increasing the reliability of software.

Static typing is also desirable because it provides programmers with machine-checkable

documentation and enables optimizations.

Because class inheritance does not provide scalable orthogonal extensibility, static

type safety is often sacrificed even when using traditional strongly typed object-oriented

languages like Java. Design pattern approaches such as the Polyglot design pattern use

dynamic type checks to allow base system and extended system code to coexist. Objects

created by the extended system can be stored in base system data structures that are

unaware of the extended types. For the extended system to use these objects, run-time

type checks are performed to coerce the objects from their base system types to the

appropriate extended type. These checks may fail at run time.
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1.4 Modularity

Modularity is an important requirement for building, maintaining, and deploying large

systems. Extension of the base system should not require modification or recompilation

of the base system. Separate compilation—compiling code only if a signature on which

it depends changes—reduces compile time, accelerating software development and

lowering its cost. By enabling the base system to be distributed in binary form, separate

compilation also has social and business advantages. The base system can be extended

without access to its source code, which may not be available because of intellectual

property concerns or because it is too costly.

A related aspect of modularity is that base system code should be available for use

within the extended system. Non-destructive extension enables existing clients of the

base system and the extended system itself to interoperate with code and data of the

base system and with other extensions. Non-destructive extension is also important for

allowing several extensions of the base system to coexist within the same application.

In an extensible compiler, it should be possible for an extension to compile both

extended language source code and base language source code, or to compile source

code for several different extensions of the base language. It may also be convenient

to implement the extended language by translating it into the base language and using

the existing base compiler framework to generate code. In addition, a compiler for an

extended language may need the results of existing base-language analyses (e.g., must-

return analysis) to generate correct output. The extension compiler may need to run an

extended version of the analysis on the source code and the base-language version of

the analysis on the target code.
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1.5 Ease of use

To make code extensible, it is essential to provide hooks for the extension implementer

to add new behavior and state. Design patterns and programming languages enable the

implementer of the base system to create these hooks. However, these hooks can often

clutter or obfuscate the base code.

One way to provide hooks is through language mechanisms that provide some kind

of parametric genericity, such as parameterized types [65], parameterized mixins [14],

and functors [80, 67]. Explicit parameterization over types, classes, or modules precisely

describes the ways in which extension is permitted. However, it is often an awkward

way to achieve extensibility, especially when a number of modules are designed in

conjunction with one another and have mutual dependencies. It is often difficult to

decide which explicit parameters to introduce for purposes of future extension, and the

overhead of declaring and using parameters can be cumbersome. The parameters may

be numerous and unintuitive, and it is difficult to instantiate all the generic framework

parameters in a consistent way.

Inheritance embodies a different approach to extensibility. By giving names to meth-

ods, the programmer creates less obtrusive, implicit parameters that can be overridden

when the code is reused. Nested inheritance builds on this insight by enabling use of

nested classes as hooks too.

Implicit hooks reduce the amount of planning required for later extension. The

base system developer can concentrate more on the functionality of the system rather

than on how it might be extended. By allowing hooks to be created implicitly, simply

by declaring a nested class, nested inheritance allows extensions to refine any nested

class with new functionality. Existing code can use the refined nested class without

modification.
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1.6 Composition

When a system is extended multiple times, it is natural to want to reuse several of these

extensions simultaneously within a single combined system. For example, web browsers

are often run with several extensions for blocking ads, enhancing the UI, or handling

video and audio files.

Composition of extensions is not just a matter of linking. Linking works when the

composed software components offer disjoint, complementary functionality. In the gen-

eral case, two components are not disjoint, but instead may offer similar functionality,

because they both extend a common ancestor component. Nested intersection integrates

their extensions rather than duplicating the extended components.

While nested inheritance allows extension of entire class hierarchies, nested inter-

section enables composition of these class hierarchies. When the hierarchies contain

common nested packages or classes, these too are composed.

Composed extensions may also provide conflicting functionality. Consequently, it

may not be possible to integrate their types and behavior automatically. In this case, the

programmer must resolve the conflict; the compiler should report potential conflicts to

the programmer and require that they be resolved.

1.7 Outline

The rest of this thesis is organized as follows. Chapter 2 describes the Polyglot design

pattern, which supports scalable, modular, orthogonal extension of a base system.

This pattern is used in the Polyglot extensible compiler framework; however, it is not

statically type safe and, because it is not integrated into the programming language, can

also be harder to use than a language-based approach.
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To address these concerns, Chapter 3 describes nested inheritance and nested inter-

section. These mechanisms meet all of the requirements enumerated above. Chapter 4

presents J&, an extension of Java with nested intersection, and also discusses technical

challenges, such as the problem of resolving conflicts among composed packages.

Chapter 5 then describes how nested intersection can be used to extend and compose

compilers and presents a design pattern for implementing extensible translation passes

in J&.

Chapter 6 presents a formal operational semantics and type system for a Java-like

calculus extended with nested intersection. This calculus is proved sound in Chapter 7.

Two alternative implementations of J& are described in Chapter 8, and Chapter 9

describes experience using J& to implement and compose extensions in the Polyglot

compiler framework [84] and in the Pastry framework for building peer-to-peer sys-

tems [99].

Related work is discussed in Chapter 10. Open issues and future directions are

presented in Chapter 11. Finally, Chapter 12 concludes.
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Chapter 2

The Polyglot Design Pattern

Polyglot is an extensible compiler framework for Java [84]. The framework provides

a source-to-source Java base compiler that can be extended to construct compilers for

languages with new syntax and new semantics. This chapter describes the design pattern

used by the framework to provide scalable, orthogonal extensibility. While we illustrate

the pattern for an extensible compiler, its utility is not limited to this application.

2.1 Compiling in Polyglot

The compilation process offers several opportunities for the language extension imple-

menter to customize the behavior of the base compiler framework. This process, includ-

ing the eventual compilation to Java bytecode [64], is shown in Figure 2.1. The Polyglot

framework permits both syntactic and semantic extensions of the base compiler.

The first step in compilation is parsing input source code to produce an abstract syn-

tax tree (AST). The extended AST may contain new kinds of nodes either to represent

syntax added to the base language or to record new information in the AST. The core of

the compilation process is a series of compilation passes applied to the AST. Both se-

mantic analysis and translation to Java may comprise several such passes. Programmers
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Figure 2.1: Extensible compiler Architecture

can extend existing AST node classes to implement new abstract syntax, and can extend

compiler passes to implement new semantics, analyses, and optimizations, or to trans-

late source-language ASTs into target-language (i.e., Java) ASTs. Compilation passes

may transform the AST and may modify the symbol table and other data structures that

define characteristics of the source and target languages. After all compilation passes

complete, a Java AST is produced, from which Java code can be generated. A Java com-

piler such as javac is invoked to compile the Java code to bytecode. To enable separate

compilation, source-language type information may be embedded into the bytecode.

The Polyglot compiler framework enables the scalable, orthogonal extension of

a base Java compiler. The programmer effort required to add or extend a pass is

proportional to the number of AST nodes non-trivially affected by that pass; the effort

required to add or extend a node is proportional to the number of passes the node must

implement in an interesting way.

2.2 The Polyglot design pattern

There are two common alternatives for implementing compiler passes in an object-

oriented language: the data-directed approach where each AST node class implements

a method for each compiler pass, and the operation-directed approach using the Visitor

pattern. Neither of these approaches is scalable.
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Figure 2.2: Delegates and extensions

Polyglot achieves scalable extensibility by modifying the data-directed approach to

allow subclasses to inherit any changes made to their base classes. Compiler passes

are implemented by traversing the AST and invoking a method at each node in the

tree. Polyglot introduces a delegation mechanism, illustrated in Figure 2.2, that enables

orthogonal extension and method override of AST nodes. The figure shows a base

compiler Node class extended with functionality to implement a new language, called

SpecLang, which adds formal specification annotations to the base language.

Because ordinary class inheritance does not permit new methods and new fields to

be added into a base class and then automatically inherited by its subclasses, subclassing

of node classes does not permit scalable extension of methods in classes with multiple

subclasses. Polyglot addresses this problem by adding to each node object a field,

labeled ext in Figure 2.2, that points to a (possibly null) node extension object.

This field acts as a hook for extending the AST node class. The extension object

(SpecLangExt in the figure) provides implementations of new methods and fields, thus

extending the node interface without subclassing. In effect, a node and its extension

object together act as a single AST node. These additional members are accessed by

following the ext pointer and casting to the extension object type. In the example,

SpecLangExt extends Node with specCheck() and rewrite() methods. Each AST

node class to be extended with a given implementation of these members uses the same
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extension object class. Thus, several node classes can be orthogonally extended with

a single implementation, avoiding code duplication. Since an extension of the base

compiler should be open to further extension, each extension object has an ext field

similar to the one located in the node object.

Extension objects alone, however, are not sufficient to handle all extensions of an

AST node. An extension of the base system may need to override the implementation

of an existing pass. As with adding a new method, overriding an existing method can be

done by implementing an extension object class and associating it with several AST

node classes. The problem is that the node itself or any one of a node’s extension

objects can implement the overridden method; a mechanism is needed to invoke the

correct implementation. Polyglot’s solution to this problem is to introduce a level of

indirection. For each method in the Node interface, a field in the node points to a delegate

implementing that method, possibly back to the node itself. Because maintaining one

object per method is cumbersome, delegate objects are combined by the programmer

when possible. In Figure 2.2, the node object has a single del field pointing to a delegate

(BaseDelegate) for both of its methods. Rather than calling a Node method directly,

calls are made through its delegate object. Language extensions can override a method

simply by replacing the delegate with an object containing the new implementation

or code to dispatch to a new implementation in an extension object; non-overridden

methods can be implemented by dispatching back to the node itself. In Figure 2.2, the

BaseDelegate overrides the typeCheck method with new behavior; the emit method

dispatches back to the node. Extension objects also have delegates used to override

methods declared in the extension object interface.

Java code illustrating the pattern is shown in Figure 2.3. In the pattern, calls to all

node methods are made through the delegate pointer, thus ensuring that the correct im-

plementation of the method is invoked if the delegate object is replaced by a language
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interface Base {

void typeCheck();

void emit();

}

class Node implements Base {

Base del; Object ext; ...

Node typeCheck() { ... }

void emit() { ... }

}

class Rewriter {

Node visit(Node n) { return n; } ...

}

class TypeChecker extends Rewriter {

Node visit(Node n) { return n.del.typeCheck(); } ...

}

class BaseDelegate implements Base {

Node node; ...

Node typeCheck() { ... }

void emit() { node.emit(); }

}

interface Spec {

Node specCheck();

Node rewrite();

}

class SpecLangExt implements Spec {

Node node; Spec del; Object ext; ...

Node specCheck() { ... }

Node rewrite() { ... }

}

class SpecChecker {

Node visit(Node n) { return ((Spec) n.ext).del.specCheck(); } ...

}

Figure 2.3: Polyglot design pattern in Java
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extension. In our example, the TypeChecker class invokes the node n’s typeCheck

method via n.del.typeCheck(); similarly, SpecChecker invokes the specCheck

method by following the node’s ext pointer and invoking through the extension object’s

delegate: ((Spec) n.ext).del.specCheck(). An extension of SpecLang could re-

place the extension object’s delegate to override methods declared in the extension, or it

could replace the node’s delegate to override methods of the node. To access SpecLang’s

type-checking functionality, this new node delegate may be a subclass of SpecLang’s

node delegate class or may contain a pointer to the old delegate object.

An important aspect of the design pattern is the use of factory methods [43] to create

objects, extensions, and delegates. In the Polyglot compiler, each language extension has

a node factory object that constructs AST nodes for the extension, installing extension

objects and delegates as appropriate. The factory contains methods for constructing

instances of each AST node class. Factories are important for extensibility since they

permit code in the base system to create instances of classes defined by the extension.

Hard-coding the names of classes into the base system limits the scalability of the

framework by requiring the extension to override all methods whose code contains the

name of the class to be refined. By using factories, only a short factory method needs to

be overridden when a class is refined.

Node factories for a base compiler and a SpecLang compiler are shown in Figure 2.4

using classes and interfaces declared in Figure 2.3. The factory method createCall

in NodeFactory creates a Call AST node. The invocation of the Call constructor

is wrapped in a call to extCall, which decorates the new object with extension and

delegate objects. The base implementation of extCall invokes extExp and extNode.

The base implementation of extNode initializes the ext field of the node to null and

the del field to the node itself. The SpecNodeFactory subclass of NodeFactory that

overrides extCall to initialize the del field to a CallDel object, which overrides the
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base Call’s typeCheck method, and delegates back to the base emit method. The

SpecNodeFactory class also overrides extNode to decorate all AST node classes

created by the factory with a SpecLangExt object that adds new functionality to these

classes.

Most passes in the Polyglot compiler are structured as non-imperative AST rewriting

passes. These passes take an AST as input and produce a new AST as output, leaving the

input AST unchanged. Factoring out AST traversal code eliminates the need to duplicate

this code when implementing new passes. Each pass is implemented as an AST rewriter

object that traverses the AST and at each AST node invokes a pass-specific method of

the node. This design in shown in Figure 2.5, which shows the code for a Call node a

type-checker for the SpecLang language. Figure 2.2. At each node, the rewriter invokes

a visitChildren method to recursively rewrite the node’s children using the rewriter

and to reconstruct the node if any of the children are modified. A key implementation

detail is that when a node is reconstructed, rather than allocating a new node using the

node factory, the old node is cloned and updated with the new children. Since the base

compiler is unaware of any new children added by extensions, cloning ensures these

new children are correctly copied into the new node. The node’s delegate and extension

objects are cloned with the node.

To summarize, running a rewriting pass on an AST proceeds as follows. First, a

Rewriter for the pass is created and its visitNode method is called on the root

node of the AST, for example: new TypeChecker().visitNode(ast). This call will

eventually return the new AST. The rewriter’s visitNode method calls the node’s

visitChildren method to rewrite the node’s children and reconstruct the node, as

described above, and calls the rewriter’s visitmethod on the result. The visitmethod

is pass-specific: TypeChecker’s visit method takes a node n and invokes typeCheck

on n’s delegate. For base compiler nodes, n’s delegate is n itself. Extensions may
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class NodeFactory {

Call createCall(Exp receiver, String name, List args) {

return extCall( new Call(receiver, name, args) );

}

Call extCall(Call n) {

return (Call) extExp(n);

}

Exp extExp(Exp n) {

return (Exp) extNode(n);

}

Node extNode(Node n) {

n.ext = null;

n.del = n;

return n;

}

...

}

class SpecNodeFactory extends NodeFactory {

Node extCall(Call n) {

n = super.extCall(n);

n.del = new CallDel(n);

return n;

}

Node extNode(Node n) {

n.ext = new SpecLangExt(n);

return n;

}

...

}

class CallDel implements Base {

Call node; ...

Node typeCheck() { ... node.typeCheck(); ... }

void emit() { node.emit(); }

...

}

Figure 2.4: Node factories
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class Node {

Object clone() {

Node n = (Node) super.clone();

... // clone ext and del

return n;

} ...

}

class Exp extends Node { Type type; ... }

class Call extends Exp {

Exp receiver;

String name;

List args;

...

Node visitChildren(Rewriter v) {

Exp receiver = (Exp) v.visitNode(this.receiver);

List args = v.visitList(this.args);

if (receiver != this.receiver || args != this.args) {

Call c = (Call) this.clone(); // copy only if changed

c.receiver = receiver;

c.args = args;

return c;

}

return this;

}

Node typeCheck() {

// set the type from the method’s declared return type

Call c = (Call) this.clone();

c.type = ...;

return c;

}

}

class Rewriter {

Node visitNode(Node n) {

return visit( n.visitChildren(this) );

}

Node visit(Node n) { return n; } ...

}

class TypeChecker extends Rewriter {

Node visit(Node n) { return n.del.typeCheck(); } ...

}

Figure 2.5: Fragment of Polyglot type-checking code
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create a delegate object to override the behavior of the given pass for a set of node

classes. For instance, the SpecLang compiler installs a CallDel delegate for all Call

nodes. CallDel overrides the typeCheck method and dispatches back to the node’s

typeCheck method as part of its implementation. Passes may also be implemented in

an extension object: the SpecChecker rewriter invokes the specCheck method in the

extension object of the node it is passed.

2.3 Scalable extensibility in Polyglot

A language extension may extend the interface of an AST node class through an

extension object interface. To add a new pass, an extension object interface is created;

the node factory installs instances of the interface into each AST node when the node

is created. The compiler pass traverses the AST and invokes the method at each node

in the tree. For most nodes, a single extension object class is implemented to define the

default, boilerplate, behavior of the pass, typically just an identity transformation on the

AST node. This class is overridden for individual node classes where non-trivial work

is performed for the pass.

To change the behavior of an existing pass at a given node, the programmer creates

a new delegate class implementing the new behavior and associates the delegate with

the node at construction time. Like extension classes, the same delegate class may be

used for several different AST node classes, allowing functionality to be added to node

classes at arbitrary points in the class hierarchy without code duplication.

New kinds of nodes are defined by new node classes; existing node types are

extended by adding an extension object to instances of the class. A factory method for

the new node type is added to the node factory to construct the node and, if necessary,

its delegate and extension objects. The new node inherits default implementations of
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all compiler passes from its base class and from the extension’s base class. The new

node may provide new implementations using method override, possibly via delegation.

Methods need be overridden only for those passes that need to perform non-trivial work

for that node type.

2.4 Discussion

Because of the limitations of inheritance, design patterns in traditional object-oriented

languages provide scalable, orthogonal extensibility by sacrificing type safety. In the

Polyglot design pattern, extension objects and delegates must be cast to the appropriate

type before use. For instance, in Figure 2.3, the method SpecChecker.visit casts the

node’s extension object to the Spec interface to access its specCheck method. Because

the Java type system is not expressive enough to ensure that the pattern is used correctly,

these casts can fail with a run-time type error. Moreover, the casts clutter and obfuscate

the code.

Design patterns also require careful planning when designing the base system to

ensure the hooks for extension provided by the pattern are available for use. The

Polyglot base compiler was intended to be extended with new AST nodes and new

compiler passes; the pattern was applied to these classes. However, the pattern was not

applied to types, dataflow analysis values, and other data structures used in the base

compiler. These data structures can be extended via normal class inheritance, but the

extensibility may not scale and often requires duplication of code. For example, if a

language extension needs to add a field to both method type objects and constructor

type objects to implement procedure pre- and post-conditions, then the two classes

implementing method and constructor types each need to be extended with identical

code. The Polyglot base compiler does not provide a hook for identical changes to both
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classes to be made in one place. Because the design pattern was not applied to type

objects, there is no convenient way to add code to a class representing type information

so that it is inherited by all subclasses. Despite this limitation, the Polyglot compiler

framework has been successfully used to extend the Java type system; this success is

due in part to the flatness of the class hierarchy representing Java types: most extensions

can be applied to the leaves of the class hierarchy using normal class inheritance.

Because they are not part of the programming language, design patterns can also be

cumbersome to use. In Polyglot, factories, extension objects, and delegates complicate

both the base compiler and extensions, making them more difficult to use and main-

tain. If the pattern is not used correctly—particularly, if node factories are not set up

correctly—an extension compiler can exhibit unexpected behavior at run time and be

difficult to debug. Furthermore, in many cases, class inheritance alone is sufficient to

implement a given extension, but the programmer is burdened with implementing the

pattern anyway in order to ensure future extensibility. The extension implementer must

provide factory methods for new AST node classes, and must remember to call methods

through delegates.

To address these limitations, Chapter 3 introduces nested inheritance and nested in-

tersection and the programming language J&. Like the Polyglot design pattern, J& sup-

ports scalable, modular, orthogonal extension of a base system. Moreover, the language

does so without sacrificing type safety or ease of use. Nested intersection also allows

extensions to be composed. Chapter 5 describes how J& can be used to implement an

extensible compiler framework, and Chapter 9 describes a port of the Polyglot frame-

work to J&.
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Chapter 3

Nested Inheritance and Nested
Intersection

Nested inheritance and nested intersection support scalable extension of a base system

and scalable composition of those extensions. Nested inheritance [83] builds on the ideas

behind virtual classes [68, 69, 52, 38] to enable more code reuse; it is implemented in the

language Jx, an extension of the Java programming language. Nested intersection [85]

extends nested inheritance with the ability to compose extensions; it is implemented in

the language J&, an extension of Jx.

3.1 Nested inheritance

Nested inheritance is inheritance of namespaces: packages and classes. In J&, packages

are treated like classes with no fields, methods, or constructors. A namespace may con-

tain other namespaces. A namespace may also extend another namespace, inheriting all

its members, including nested namespaces. As with ordinary inheritance, the meaning

of code inherited from the base namespace is as if it were copied down from the base. A
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class A {

class B { int x; }

class B2 extends B { B next; }

int m(B b) {

return b.x;

}

B2 n() {

return new B2();

}

}

class A2 extends A {

class B { int y; }

int m(B b) {

return b.x + b.y;

}

}

Figure 3.1: Nested inheritance example

derived namespace may override any of the members it inherits, including nested classes

and packages.

Figure 3.1 shows a simple example of nested inheritance. Class A contains nested

classes B and B2. A’s subclass A2 inherits B and B2. Class A2 explicitly declares a nested

class B, overriding A.B. Class A.B2 is inherited into A2 as the implicit class A2.B2:

although there is no class declaration for A2.B2, the programmer can refer to the class.

As with virtual classes [68, 69, 38], overriding of a nested class does not replace

the original class, but instead refines, or further binds [68], it. The nested class A2.B

further binds A.B. A2.B is a subclass of A.B, and declarations within A2.B (e.g., the

field y) extend A.B as if A2.B were an explicitly declared subclass of A.B. In general, if

a namespace T ′ extends T , which contains a nested namespace T.C, then T ′.C inherits

members from T.C as well as from T ′.C’s explicitly named base namespaces (if any).

Further binding thus provides a limited form of multiple inheritance: explicit inheritance
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from the named base of T ′.C and induced inheritance from the original namespace T.C.

Unlike with virtual classes, T ′.C is a subtype as well as a subclass of T.C.

The key feature of nested inheritance that enables scalable extensibility is late

binding of type names. When the name of a class or package is inherited into a new

namespace, the name is interpreted in the context of the namespace into which it was

inherited, rather than where it was originally defined. When the name occurs in a method

body, the type it represents may depend on the run-time value of this.

In Figure 3.1, the unqualified type names B and B2 are late bound. Thus, the

constructor call new B2() in the body of method A.n allocates an instance of A.B2

when n is invoked on an object of class A, and an instance of A2.B2 when n is invoked

on an object of class A2. Late binding of type names ensures subclass and subtype

relationships are preserved by inheritance into a new containing namespace. The class

A2.B2 is a subclass of A2.B because A.B2 is a declared to be a subclass of B.

The argument of the method m in the class A has type B, which is also late bound.

When called on an instance of A, m expects an A.B; when called on an instance of

A2, m expects an A2.B. The name B is reinterpreted in the inheriting context. With this

change, A2might not seem to conform to A because a formal parameter type has changed

covariantly. However, subtyping between A2 and A is still sound because the type system

ensures the mmethod can only be called when its argument is known to be from the same

implementation of A as the method receiver.

Figures 3.2 and 3.3 show a more elaborate example, fragments of J& code for a

simple compiler for the lambda calculus extended with pair expressions. This compiler

translates the lambda calculus with pairs into the lambda calculus without pairs. In the

example, the pair package extends the base package, further binding the Visitor,

TypeChecker, and Compiler classes, as illustrated by the base and pair boxes in

the inheritance hierarchy of Figure 3.4. The class pair.TypeChecker is a subclass
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package base;

abstract class Exp {

Type type;

abstract Exp accept(Visitor v);

}

class Abs extends Exp {

String x; Exp e; // λx.e
Exp accept(Visitor v) {

e = e.accept(v);

return v.visitAbs(this);

}

}

class Visitor {

Exp visitAbs(Abs a) {

return a;

}

}

class TypeChecker extends Visitor {

Exp visitAbs(Abs a) { ... }

}

class Emitter extends Visitor {

Exp visitAbs(Abs a) {

print(...);

return a;

}

}

class Compiler {

void main() { ... }

Exp parse() { ... }

}

Figure 3.2: Lambda calculus compiler
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package pair extends base;

class Pair extends Exp {

Exp fst, snd;

Exp accept(Visitor v) {

fst.accept(v);

snd.accept(v);

return v.visitPair(this);

}

}

class Visitor {

Exp visitPair(Pair p) { return p; }

}

class TypeChecker extends Visitor {

Exp visitPair(Pair p) { ... }

}

class TranslatePairs extends Visitor {

Exp visitPair(Pair p) {

return ...;

// (λx.λy.λ f . f x y) Jp.fstK Jp.sndK
}

}

class Compiler {

void main() {

Exp e = parse();

e.accept(new TypeChecker());

e = e.accept(new TranslatePairs());

e.accept(new Emitter());

}

Exp parse() { ... }

}

Figure 3.3: Lambda calculus + pairs compiler
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Figure 3.4: Inheritance hierarchy for compiler composition

of both base.TypeChecker and pair.Visitor and contains both the visitAbs and

visitPair methods.

The unqualified name Visitor is late bound. In the context of the base package,

Visitor refers to base.Visitor. When a reference to Visitor is inherited into

pair, Visitor refers to pair.Visitor. Thus, when the method accept is called

on an instance of pair.Pair, it must be called with a pair.Visitor, not with a

base.Visitor. This allows Pair’s accept to invoke the visitPair method of the

parameter v.
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Late binding applies to supertype declarations as well. Thus, pair.Emitter ex-

tends pair.Visitor and inherits its visitPair method. Late binding of supertype

declarations thus provides a form of virtual superclasses [69, 34], permitting inheritance

relationships among the nested namespaces to be preserved when inherited into a new

enclosing namespace. The class hierarchy in the original namespace is replicated in the

derived namespace, and in that derived namespace, when a class is further bound, new

members added into it are automatically inherited by subclasses in the new hierarchy.

Sets of mutually dependent classes may be extended at once by grouping them

into a namespace. For example, the classes Exp and Visitor in the base package

are mutually dependent. With ordinary class inheritance, because the extended classes

need to know about each other, the pair compiler could define Pair as a new subclass

of Exp, but references within Exp to class Visitor would refer to the old base

version of Visitor, not the appropriate one that understands how to visit pairs. With

nested inheritance of the containing namespace, late binding of type names ensures that

relationships between classes in the original namespace are preserved when these classes

are inherited into a new namespace.

In general, the programmer may want some references to other types to be late

bound, while others should refer to a particular fixed class. Late binding is achieved

by interpreting unqualified type names like Visitor as sugar for types nested within

dependent classes and prefix types. The semantics of these types are described in more

detail in Section 4.1. Usually, the programmer need not write down these desugared

types; most J& code looks and behaves like Java code.
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package sum extends base;

class Case extends Exp {

Exp test, ifLeft, ifRight; ...

}

class Visitor {

Exp visitCase(Case c) {

return c;

}

}

class TypeChecker extends Visitor { ... }

class TranslateSums extends Visitor { ... }

class Compiler {

void main() { ... }

Exp parse() { ... }

}

Figure 3.5: Lambda calculus + sums compiler

3.2 Nested intersection

To support composition of extensions, J& provides nested intersection: new classes and

packages may be constructed by inheriting from multiple packages or classes; the class

hierarchies nested within the base namespaces are composed to achieve a composition

of their functionalities.

For two namespaces S and T , S & T is the intersection of these two namespaces.

Nested intersection is a form of multiple inheritance implemented using intersection

types [97, 29]: S&T inherits from and is a subtype of both S and T .

Nested intersection is most useful when composing related packages or classes.

When two namespaces that both extend a common base namespace are intersected,

their common nested namespaces are themselves intersected: if S and T contain nested

namespaces S.C and T.C, the intersection S & T contains (S & T ).C, which is equal to

S.C &T.C.
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package pair_and_sum extends pair & sum;

// Resolve conflicting versions of main

class Compiler {

void main() {

Exp e = parse();

e.accept(new TypeChecker());

e = e.accept(new TranslatePairs());

e = e.accept(new TranslateSums());

e.accept(new Emitter());

}

Exp parse() { ... }

}

Figure 3.6: Compiler composition and conflict resolution

Consider again the lambda calculus compiler from Figure 3.3. Suppose that we had

also extended the base package to a sum package implementing a compiler for the

lambda calculus extended with sum types. This compiler is shown in Figures 3.5.

The intersection package pair & sum, shown in Figure 3.4, composes the two

compilers, producing a compiler for the lambda calculus extended with both prod-

uct and sum types. Since both pair and sum contain a class Compiler, the new

class (pair & sum).Compiler extends both pair.Compiler and sum.Compiler. Be-

cause both pair.Compiler and sum.Compiler define a method main, the class

(pair&sum).Compiler contains conflicting versions of main. The conflict is resolved

in Figure 3.6 by creating a new derived package pair and sum that overrides main,

defining the order of compiler passes for the composed compiler. A similar conflict

occurs with the parse method.
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3.3 Extensibility requirements

Nested intersection in J& meets all of the requirements listed in Chapter 1, making it a

useful language for implementing highly extensible systems.

3.3.1 Orthogonal extension

As explained in Chapter 1, it is well known that there is a tension between extending

types and extending the procedures that manipulate them [96]. Nested inheritance solves

this problem because late binding of type names causes inherited methods to operate

automatically on data types further bound in the inheriting context.

3.3.2 Type safety

Nested inheritance is also type-safe [83]. Dependent classes ensure that extension code

cannot use objects of the base system or of other extensions as if they belonged to the

extension, which could cause run-time errors. A formal proof of soundness is presented

in Chapter 7.

3.3.3 Modularity and scalability

Extensions are subclasses (or subpackages), and hence they are modular. The base code

does not need to be modified to extend the system.

Extension is scalable for several reasons; one important reason is that the name of

every method, field, and class provides a potential hook that can be used to extend

behavior and data representations.

Nested inheritance does not affect the base code, so it is a non-destructive exten-

sion mechanism, unlike open classes [28] and aspects [60]. Therefore, base code and
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extended code can be used together in the same system, which is important for main-

taining backward compatibility with existing clients of the base system.

3.3.4 Ease of use

A strength of nested inheritance as an extension mechanism is that it requires less

advance planning to reuse code. Since every class and method provides an implicit hook

for further extension, little programmer overhead is needed to identify the possible ways

in which the code can be extended. The base system programmer can concentrate on

implementing the system’s functionality rather than on parameterizing the system for

further extension. Nested inheritance allows extensions to refine any nested class with

new functionality. Existing code can use the refined nested class without modification.

Nested inheritance largely eliminates the need for factory methods [43] and other

design patterns such as the Polyglot pattern that address the problem of scalable exten-

sibility.

J& is largely backward compatible with Java, making it easy for novice programmers

to pick up the language and to port existing Java code to the language. In most cases,

advanced type system features such as dependent classes and prefix types are hidden

from the programmer and need not be written down explicitly.

3.3.5 Composition

Nested intersection enables a namespace to be constructed by inheriting from two or

more base namespaces. The class hierarchies nested within the base namespaces are

composed to achieve a composition of their functionalities. As described in Section 4.6,

the J& compiler detects conflicts between composed class hierarchies and requires the

programmer to resolve them.
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Chapter 4

The J& Language

This chapter gives an overview of the static and dynamic semantics of J&. A formal

semantics is presented in Chapter 6 and proved sound in Chapter 7.

4.1 Dependent classes and prefix types

In most cases, J& code looks and behaves like Java code. However, unqualified type

names are really syntactic sugar for nested classes of dependent classes and prefix types,

which we introduced in Jx [83]. Figure 4.1 shows a desugared version of the code in

Figure 3.1.

In Figure 4.1, the type this.class is an example of a dependent class. The

dependent class p.class represents the run-time class of the object referred to by the

final access path p. Thus, this.class is a the run-time class of this: if this points

to an A, expressions with type this.class are members of the class A, and if this

points to an A2, these expressions are members of the class A2. A final access path p is

either a final local variable, including this and final formal parameters, a field access

p′.f, where p′ is itself a final access path and f is a final field of p′, or a final static

field access T.f. The class represented by p.class is, in general, statically unknown,
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class A {

class B { int x; }

class B2 extends thisclass.B { A[this.class].B next; }

int m(this.class.B b) {

return b.x;

}

this.class.B2 n() {

return new this.class.B2();

}

}

class A2 extends A {

class B { int y; }

int m(this.class.B b) {

return b.x + b.y;

}

}

Figure 4.1: Desugared nested inheritance example

but is fixed: for a particular p, all instances of p.class have the same run-time class,

and not a proper subclass, as the object referred to by p. Therefore, if this points to an

A, instances of this.class all have class A and not class A2.

The type A[this.class] in the body of A.B2 is an example of a prefix type. The

prefix type P[T] represents the enclosing namespace of the class or interface T that is

a subtype of the namespace P. Thus, if this points to an A.B or A.B2, expressions with

type A[this.class] have class A, and if this points to an A2.B or A2.B2, expressions

with type A[this.class] have class A2. Similarly, if this points to an A2.B, then the

field next with type A[this.class].B must point to an A2.B (or A2.B2) and not an A.B

It is required that P be a non-dependent type: either a top-level namespace C or a

namespace of the form P′.C. In typical use T is a dependent class. P may be either

a package or a class. Prefix types provide an unambiguous way to name enclosing

classes and packages of a class without the overhead of storing references to enclosing

instances in each object, as is done in virtual classes. Indeed, if the enclosing namespace
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is a package, there are no run-time instances of the package that could be used for this

purpose.

Late binding of types is provided by interpreting unqualified names as members of

the dependent class this.class or of a prefix type of this.class. For example, the

types in Figure 3.1 are interpreted as the desugared types in Figure 4.1. The compiler

resolves the name C to the type this.class.C if the immediately enclosing class

contains or inherits a nested namespace named C. Similarly, if an enclosing namespace P

other than the immediately enclosing class contains or inherits C, the name C resolves to

P[this.class].C. Derived namespaces of the enclosing namespace may further bind

and refine C. The version of C selected is determined by the run-time class of this.

Figure 4.2 shows a portion of the lambda calculus compiler from Figures 3.2 and 3.3.

The name Visitor in this code is sugar for base[this.class].Visitor. The depen-

dent class this.class represents the run-time class of the object referred to by this.

The prefix package base[this.class] is the enclosing package of this.class that

is a derived package of base. Thus, if this is an instance of a class in the package

pair, base[this.class] represents the package pair.

Both dependent classes and prefixes of dependent classes are exact types [18]: all

instances of these types have the same run-time class, but that class is statically unknown

in general. Simple types like base.Visitor are not exact since variables of this type

may contain instances of any subtype of Visitor.

4.2 Static contexts

The variable this is not in scope in static contexts such as the body of static method

or a superclass declaration. Consequently, this.class cannot be used in these con-
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package base;

abstract class Exp {

Type type;

abstract Exp accept(Visitor v);

}

class Abs extends Exp {

String x; Exp e; // λx.e
Exp accept(Visitor v) {

e = e.accept(v);

return v.visitAbs(this);

}

}

class Visitor {

Exp visitAbs(Abs a) {

return a;

}

}

class TypeChecker extends Visitor {

...

}

package pair extends base;

class Pair extends Exp {

Exp fst, snd;

Exp accept(Visitor v) {

fst.accept(v);

snd.accept(v);

return v.visitPair(this);

}

}

class Visitor {

Exp visitPair(Pair p) { return p; }

}

Figure 4.2: Lambda calculus + pairs compiler
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texts. However, support for virtual superclasses requires late binding of types in static

contexts.

J& provides the types thisclass and thispackage for use in static contexts.

These types represent the enclosing class or package into which the type reference

is inherited. In Figure 4.1, the class A.B2 extends thisclass.B; therefore, A.B2 is a

subclass of A.B and A2.B2 is a subclass of A2.B. In non-static contexts in the body of

some class, the type thisclass is equivalent to this.class; the type thispackage

is equivalent to P[this.class], where P is the name of the enclosing package of the

current class. Like this.class, thisclass and thispackage and their prefixes are

exact types.

4.3 Virtual classes and family polymorphism

Nested classes in J& are similar to virtual classes [68, 69, 38]. A virtual class is a

nested class that can be further bound in a subclass. A key difference between J& nested

classes and virtual classes is that a virtual class is nested within an object, the enclosing

instance: given an expression e of an object type, e.C is a virtual class nested within e,

and the implementation of e.C is determined at run time from the value of e. In contrast,

nested classes in J& are nested within their enclosing class or package, and late binding

of types is achieved by using dependent classes. This allows further binding of classes

and packages without requiring the programmer to keep track of enclosing instances,

which can clutter the code as they are passed between methods.

Like recent type-safe variants of virtual classes [34, 38], J& provides a form of

family polymorphism [36]. All types indexed by a given dependent class—the depen-

dent class itself, its prefix types, and its nested classes—are members of a family

of interacting classes and packages. By initializing a variable with instances of dif-
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ferent classes, the same code can refer to classes in different families with different

behaviors. In the context of a given class, other classes and packages named using

this.class are in the same family as the actual run-time class of this. In Figure 3.3,

pair.Pair.accept’s formal parameter v has type base[this.class].Visitor. If

this is a pair.Pair, base[this.class].Visitor must be a pair.Visitor, ensur-

ing the call to visitPair will not cause a run-time type error.

The type system ensures that types in different families (and hence indexed by

different access paths) cannot be confused with each other accidentally: a base object

cannot be used where a pair object is expected, for example. However, casts with run-

time type checks allow an escape hatch that can enable wider code reuse. When an object

is cast to a dependent class p.class, a run-time check is done to ensure the object has

the same run-time class as p. This feature allows objects indexed by different access

paths to be explicitly coerced into another family of types, which is not possible with

virtual class mechanisms.

Nested inheritance can operate at every level of the containment hierarchy. A J&

class nested within one namespace can be subclassed by a class in a different namespace;

virtual classes, in contrast, only support subclassing of other classes nested within the

same containing object. For example, suppose a collections library util is implemented

in J& as a set of mutually dependent interoperating classes. A user can extend the

class util.LinkedList to a class MyList not nested within util. A consequence of

this feature is that a prefix type P[T] may be defined even if T is not directly nested

within P or within a subtype of P. When the current object this is a MyList, the prefix

type util[this.class] is well-formed and refers to the util package, even though

MyList is not a member class of util.
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4.4 Non-final access paths

To ensure soundness, the type p.class is well-formed only if p is final. However, to

improve expressiveness and to ease porting of Java programs to J&, a non-final local

variable x may be implicitly coerced to the type x.class under certain conditions. When

x is used as an actual argument of a method call, a constructor call, or a new expression,

or as the source of a field assignment, and if x is not assigned in the expression, then it

can be implicitly coerced to type x.class. Consider the following code fragment using

the classes of Figure 4.2:

base.Exp e = new pair.Pair();

e.accept(new base[e.class].TypeChecker());

In the call to accept, e is never assigned and hence its run-time class does not change

between the time e is first evaluated and the time control is transferred to the method

body. If e had been assigned, say to a base.Exp, the new expression would have

allocated a base.TypeChecker and passed it to pair.Pair.accept, leading to a run-

time type error. Implicit coercion is not performed for field paths, since it would require

reasoning about aliasing and is in general unsafe for multithreaded programs.

4.5 Intersection types

Nested intersection of classes and packages in J& is provided in the form of intersection

types [97, 29]. An intersection type S &T inherits all members of its base namespaces

S and T . With nested intersection, the nested namespaces of S and T are themselves

intersected.

To support composition of classes and packages inherited more than once, J&

provides shared multiple inheritance: when a subclass (or subpackage) inherits from

multiple base classes, the new subclass may inherit the same superclass from more
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class A {

class B { void n() { } }

class B2 { void n() { } }

void m() { }

}

class A1 extends A { class A2 extends A {

class B { } class B { void n() { } }

class C { } class C { }

void m() { } void m() { }

void p() { } void p() { }

} }

abstract class D extends A1 & A2 { }

Figure 4.3: Multiple inheritance with name conflicts

than one immediate superclass; however, instances of the subclass will not contain

multiple subobjects for the common superclass. For instance, pair and sum.Visitor

in Figure 3.6 inherits from base.Visitor only once, not twice through both pair

and sum. Similarly, the package pair and sum contains only one Visitor class, the

composition of pair.Visitor and sum.Visitor.

Since an intersection class type does not have a class body in the program text, its

inherited members cannot be overridden by the intersection itself; however, subclasses

of the intersection may override members.

4.6 Name conflicts

When two namespaces declare members with the same name, a name conflict may

occur in their intersection. How the conflict is resolved depends on where the name

was introduced and whether the name refers to a nested class or to a method.
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J& distinguishes between two kinds of name conflicts, identified by Borning and

Ingalls [10], depending on where the name was introduced into the class hierarchy. If

the name was introduced in a common ancestor of the intersected namespaces, members

with that name are assumed to be semantically related. Otherwise, the name is assumed

to refer to distinct members that coincidentally have the same name, but different

semantics. For a given member name M, if T1.M and T2.M are semantically related,

but refer to different implementations, then T1 & T2 has an implementation conflict for

M. On the other hand, if T1.M and T2.M are semantically distinct, then T1 &T2 has an

unintentional conflict for M.

4.6.1 Conflicts between nested namespaces

Implementation conflicts for nested namespaces are resolved by intersecting the nested

namespaces; that is, when two namespaces are intersected, their corresponding nested

namespaces are also intersected. In Figure 4.3, both A1 and A2 contain a nested class B

inherited from A. Since a common ancestor introduces B, A1.B and A2.B are semantically

related. The intersection type A1 & A2 contains a nested class (A1 & A2).B, which is

equivalent to A1.B & A2.B. The subclass D has an implicit nested class D.B, a subclass

of (A1&A2).B.

On the other hand, A1 and A2 both declare independent nested classes C. Even though

these classes have the same name, they are assumed to be unrelated; thus, A1&A2 has an

unintentional conflict for C. The class (A1&A2).C is ambiguous. In fact, A1&A2 contains

two nested classes named C, one that is a subclass of A1.C and one a subclass of A2.C.

Class D and its subclasses can resolve the ambiguity by exploiting prefix type notation:

A1[D].C refers to the C from A1 and A2[D].C refers to the C from A2. In A1, references

to the unqualified name C are interpreted as A1[this.class].C. If this is an instance
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of D, these references refer to the A1.C. Similarly, references to C in A2 are interpreted

as A2[this.class].C, and when this is a D, these references refer to A2.C.

4.6.2 Conflicts between methods

A similar situation occurs with the methods A1.p and A2.p, which have an unintentional

conflict in A1&A2 and therefore in D also. As with nested classes D inherits both versions

of p. Callers of D.p must resolve the ambiguity by up-casting the receiver to specify

which one of the methods to invoke. This solution is also used for “super” calls. If the

superclass is an intersection type, the call may be ambiguous. The ambiguity is resolved

by up-casting the special receiver super to the desired superclass.

Finally, two or more intersected classes may declare methods that override a method

declared in a common base class, causing an implementation conflict for that method.

In Java, method calls are dispatched to the method body in the most specific class of

the receiver that implements the method. When there is an implementation conflict for a

method, there is not a most specific implementation of the method. J& distinguishes

between explicit inheritance from a declared superclass and induced inheritance via

further binding.

In the explicit case, illustrated by the method m in Figure 4.3, the method in the

intersection type A1 & A2 is considered abstract. Because it has no class body, the

intersection type cannot override the abstract method, and so is an abstract class cannot

be instantiated. Subclasses of the intersection type—D in the example— must override

m to resolve the conflict, or else also be declared abstract.

Another name conflict occurs with the method n in the implicit class A2.B2. Since

both A2.B and A.B2 override A.B’s implementation of n, A2.B2 has an implementation

conflict for n. However, treating method dispatch conflicts between explicit superclasses

(e.g., A2.B) and induced superclasses (A.B2) as a compiler-time error would effectively

46



A2

A.B2

A.B

A

A.B2

A.B

A2.B2

A2.B

Figure 4.4: Dispatch order for A.B2 and A2.B2

prevent a class from overriding any methods of a class it further binds; its implicit sub-

classes would inherit both implementations, resulting in an ambiguity the programmer

must resolve.

Instead, we exploit the structure of the nested inheritance mechanism and prioritize

explicit inheritance over induced inheritance. If a class explicitly inherits only one

implementation of a method, the method is not considered ambiguous. In the example

of Figure 4.3, the method A.B2.n is given priority over A2.B.n because the B2 classes are

specializations of the B classes. All B2 classes are regarded as being more specific than

any B class. The dispatch order for n for an A2.B2 object is thus: A2.B2, A.B2, A2.B, A.B.

This dispatch order is depicted in Figure 4.4.

4.7 Anonymous intersections

An instance of an intersection class type A & B may be created by explicitly invoking

constructors of both A and B:

new A() & B();
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class C { void n() { ... } }

class A1 {

class B1 extends C { }

class B2 extends C { }

// B1 & B2 do not conflict

void m() {

new A1[this.class].B1() & A1[this.class].B2();

}

}

class A2 extends A1 {

class B1 extends C { void n() { ... } }

class B2 extends C { void n() { ... } }

// B1 & B2 conflict

}

Figure 4.5: Conflicts introduced by late binding

This intersection type is anonymous. As in Java, a class body may also be specified in

the new expression, introducing a new anonymous subclass of A&B:

new A() & B() { ... };

If A and B have a name conflict that causes their intersection to be an abstract class,

a class body must be provided to resolve the conflict.

Further binding may also introduce name conflicts. For example, in Figure 4.5,

A1.B1 and A1.B2 do not conflict, but A2.B1 and A2.B2 do conflict. Since the anonymous

intersection in A1.m may create an intersection of these two conflicting types, it should

not be allowed. Because the type being instantiated is statically unknown, it is a

compile-time error to instantiate an anonymous intersection of two or more dependent

types (either dependent classes or prefixes of dependent classes); only anonymous

intersections of non-dependent, non-conflicting classes are allowed. This restriction

ensures the anonymous intersection is a non-empty type.

48



4.8 Prefix types and intersections

Unlike with virtual classes [38], it is possible in J& to extend classes nested within other

namespaces. Multiple nested classes or a mix of top-level and nested classes may be

extended, resulting in an intersection of several types with different containers. This

flexibility is needed for effective code reuse but complicates the definition of prefix

types. Consider this example:

class A { class B { B m(); ... } }

class A1 extends A { class B { B x = m(); } }

class A2 extends A { class B { } }

class C extends A1.B & A2.B { }

As explained in Section 4.1, the unqualified name B in the body of class A.B is sugar for

the type A[this.class].B. The same name B in A1.B is sugar for A1[this.class].B.

Since the method m and other code in A.B may be executed when this refers to an

instance of A1.B, these two references to B should resolve to the same type; that is,

it must be that A[this.class] is equivalent to A1[this.class]. This equivalence

permits the assignment of the result of m() to x in A1.B. Similarly, the three types A[C],

A1[C], and A2[C] should all be equivalent.

By defining prefix types as follows, we ensure the desired type equivalence. Two

types P1 and P2 are related by further binding if they both contain nested types C

introduced in a common ancestor P0; that is, P1.C and P2.C are induced subclasses of

P0.C. For example, A, A1, A2 are related by further binding since they all contain a class

B that further binds A.B. We write P1 ∼ P2 for the symmetric, transitive closure of this

relation. In general, if P1 ∼ P2, then P1[T] and P2[T] should be equivalent; otherwise,

P1 or P2 might contain an unqualified type name that is late bound differently in the

different classes, which can be confusing for the programmer. For example, if A[C] and

A1[C] are not equivalent, then the assignment of the result of m() to x in A1.B should

not be allowed, even though both x and m() have type B.
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The prefix type P[T] is defined as the intersection of all types P2, where P ∼ P2

where T has a supertype nested in P and a supertype nested in P2. Using this definition

A, A1 and A2 are all transitively related by further binding. Thus, A[C], A1[C], and

A2[C] are all equivalent to A1&A2.

Prefix types impose some restrictions on which types may be intersected. If two

classes T1 and T2 contain conflicting methods, then their intersection is abstract, pre-

venting the intersection from being instantiated. If T1 or T2 contain member classes,

a prefix type of a dependent class bounded by one of these member classes could re-

solve to the intersection T1 &T2. To prevent these prefix types from being instantiated,

all member classes of an abstract intersection are also abstract.

4.9 Constructors

Like Java, J& initializes objects using constructors. Since J& permits allocation of

instances of dependent types, the class being allocated may not be statically known.

Constructors in J& are inherited and may be overridden like methods, allowing the

programmer to invoke a constructor of a statically known superclass of the class being

allocated.

When a class declares a final field, it must ensure the field is initialized. Since

constructors are inherited from base classes that are unaware of the new field, J&

requires that if the field declaration does not have an explicit initializer, all inherited

constructors must be overridden to initialize the field.

To ensure fields can be initialized to meaningful values, constructors are inherited

only via induced inheritance, not via explicit inheritance. That is, the class T ′.C inherits

constructors from T.C when T is a supertype of T ′, but not from other superclasses

of T ′.C. If a constructor were inherited from both explicit and induced superclasses,
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then every class that adds a final field would have to override the default Object()

constructor to initialize the field. Since no values are passed into this constructor, the

field may not be able to be initialized meaningfully.

Since a dependent class p.classmay represent any subclass of p’s statically known

type, a consequence of this restriction is that p.class can only be explicitly instantiated

if p’s statically known class is final; in this case, since p.class is guaranteed to

be equal to that final class, a constructor with the appropriate signature exists. The

restriction does not prevent nested classes of dependent classes from being instantiated.

A constructor for a given class must explicitly invoke a constructor of its declared

superclass. If the superclass is an intersection type, it must invoke a constructor of each

class in the intersection. Because of multiple inheritance, superclass constructors are

invoked by explicitly naming them rather than by using the super keyword as in Java.

In Figure 4.6, B.C invokes the constructor of its superclass A by name.

Because J& implements shared multiple inheritance, an intersection class may

inherit more than one subclass of a shared superclass. Invoking a shared superclass

constructor more than once may lead to inconsistent initialization of final fields,

possibly causing a run-time type error if the fields are used in dependent classes. There

are two cases, depending on whether the intersection inherits one invocation or more

than one invocation of a shared constructor.

In the first case, when the intersection inherits only one invocation of the shared

constructor, then all calls to the shared superclass’s constructor originate from the

same call site. Thus, every inherited call to the shared constructor will pass the same

arguments. In this case, the programmer need do nothing; the operational semantics of

J& will ensure that the shared constructor is invoked exactly once.

For example, in Figure 4.6, the implicit class D.C is a subclass of B1.C & B2.C and

shares the superclass A. Since B1.C and B2.C both inherit their C(int) constructor from
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class A { A(int x); }

class B {

class C extends A { C(int x) { A(x+1); } }

}

class B1 extends B {

class C extends A { void m(); }

}

class B2 extends B { }

class C extends A { void p(); }

}

class D extends B1 & B2 { }

Figure 4.6: Constructors of a shared superclass

B.C, both inherited constructors invoke the A constructor with the same arguments.

There is no conflict and the compiler need only ensure that the constructor of A is

invoked exactly once, before the body of D.C’s constructor is executed. Similarly, if

the programmer invokes:

new (B1 & B2).C(1);

there is only one call to the A(int) constructor and no conflict.

If, on the other hand, the intersection contains more than one call site that invokes

a constructor of the shared superclass, or of the intersection itself is instantiated so that

more than one constructor is invoked, then the programmer must resolve the conflict by

specifying the arguments to pass to the constructor of the shared superclass. The call

sites inherited into the intersection will not be invoked. It is up to the programmer to

ensure that the shared superclass is initialized in a way that is consistent with how its

subclasses expect the object to be initialized.

In Figure 4.6, if one or both of B1 and B2 were to override the C(int) constructor,

then B1.C and B2.C would have different constructors with the same signature. One
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of them might change how the C constructor invokes A(int). To resolve the conflict,

D must further bind C to specify how C(int) should invoke the constructor of A. This

behavior is similar to that of constructors of shared virtual base classes in C++.

There would also be a conflict if the programmer were to invoke:

new B1.C(1) & B2.C(2);

The A(int) constructor would be invoked twice with different arguments. Thus, this

invocation is illegal; however, since B1.C & B2.C is equivalent to (B1 & B2).C, the inter-

section can be instantiated using the latter type, as shown above.

4.10 Type substitution

Because types may depend on final access paths, type-checking method calls requires

substitution of the actual arguments for the formal parameters. A method may have a

formal parameter whose type depends upon another parameter, including this. The

actual arguments must reflect this dependency. For example, the class base.Abs in

Figure 4.2 contains the following call:

v.visitAbs(thisA);

to a method of base.Visitor with the signature:

void visitAbs(base[thisV.class].Abs a);

For clarity, each occurrence of this has been labeled with an abbreviation of its declared

type. Since the formal type base[thisV.class].Abs depends on the receiver thisV,

the type of the actual argument thisA must depend on the receiver v.

The type checker substitutes the actual argument types for dependent classes

occurring in the formal parameter types. In this example, the receiver v has the
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type base[thisA.class].Visitor, which when substituted for thisV.class in

base[thisV.class].Abs yields base[base[thisA.class].Visitor].Abs. This

type is equivalent to base[thisA.class].Abs.

The type substitution semantics of J& generalize the original Jx substitution rules [83]

to increase expressive power. However, to ensure soundness, some care must be taken.

If the type of v were base.Visitor, then vmight refer at run time to a pair.Visitor

while at the same time thisA refers to a base.Abs. Substitution of base.Visitor for

thisV.class in the formal parameter type would yield base[base.Visitor].Abs,

which is equivalent to base.Abs. Since the corresponding actual argument has type

base[thisA.class].Abs, which is a subtype of base.Abs, the call would incorrectly

be permitted, leading to a potential run-time type error. The problem is that there is no

guarantee that the run-time classes of thisA and v both have the same enclosing base

package.

To remedy this problem, type substitution must preserve exact types; that is, when

substituting into an exact type—a dependent class or a prefix of a dependent class—the

resulting type must also be exact. This ensures that the run-time class or package repre-

sented by the type remains fixed. Substituting the type base[thisA.class].Visitor.

for thisV.class is permitted since both base[thisV.class] and base[thisA.class]

are exact. However, substituting base.Visitor for thisV.class is illegal since base

is not exact; therefore, a call to visitAbs where v is declared to be a base.Visitor is

not permitted.

Implicit coercion of a non-final local variable x to dependent class x.class, de-

scribed in Section 4.4, enhances the expressiveness of J& when checking calls by en-

abling x.class to be substituted for a formal parameter or this. Since this substitution

preserves exactness, the substitution is permitted. If x’s declared type were substituted

for the formal instead, exactness might not have been preserved.
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package pair;

class TargetExp = base.Exp;

class Rewriter {

TargetExp rewrite(Exp e) { ... }

}

package pair_and_sum extends pair;

class TargetExp = pair.Exp;

class Rewriter {

TargetExp rewrite(Exp e) { ... }

}

Figure 4.7: Static virtual types

4.11 Static virtual types

Dependent classes and prefix types enable classes nested within a given containment

hierarchy of packages to refer to each other without statically binding to a particular

fixed package. This allows derived packages to further bind a class while preserving its

relationship to other classes in the package. It is often useful to refer to other classes

outside the class’s containment hierarchy without statically binding to a particular fixed

package. J& provides static virtual types to support this feature. Unlike virtual types in

BETA [68], a static virtual type is an attribute of an enclosing package or class rather

than of an enclosing object.

In Figure 4.7, the package pair declares a static virtual type TargetExp repre-

senting an expression of the target language of a rewriting pass, in this case an ex-

pression from the base compiler. The rewrite method takes an expression with type

pair[this.class].Exp and returns a base.Exp. The pair and sum package extends

the pair package and further binds TargetExp to pair.Exp. A static virtual type can be

further bound to any subtype of the original bound. Because pair and sum.TargetExp
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class A { }

class A1 extends A { }

class A2 extends A { }

class B { class T = A; }

class B1 extends B { class T = A1; }

class B2 extends B { class T = A2; }

// (B1 & B2).T is A1 & A2

Figure 4.8: Static virtual types and intersections

is bound to pair.Exp, the method pair and sum.Rewriter.rewrite must return a

pair.Exp, rather than a base.Exp as in pair.Rewriter.rewrite.

With intersections, a static virtual type may be inherited from more than one super-

class. Consider the declarations in Figure 4.8. Class B1&B2 inherits T from both B1 and

B2. The type (B1&B2).Tmust be a subtype of both A1 and A2; thus, (B1&B2).T is bound

to A1&A2.

To enforce exactness preservation by type substitution, static virtual types can be

declared exact. For a given container namespace T , all members of the exact virtual

type T.C are of the same fixed run-time class or package. Exact virtual types can be

further bound in a subtype of their container. For example, consider these declarations:

class B { exact class T = A; }

class B2 extends B { exact class T = A2; }

The exact virtual type B.T is equivalent to the dependent class (new A).class; that is,

B.T contains only instances with run-time class A and not any subtype of A. Similarly,

B2.T is equivalent to (new A2).class. If a variable b has declared type B, then an

instance of b.class.T may be either a A or a A2, depending on the run-time class of b.
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4.12 Genericity

Like virtual types in BETA [68], static virtual types in J& can be used as a genericity

mechanism. For example, the following code fragment implements a generic List class

and a List of Integers, IntList:

class List {

static abstract class T = Object;

void add(this.class.T x) { ... }

}

class IntList extends List {

static class T = Integer;

}

By declaring IntList.T to be an alias for Integer, the add method may be called

with an argument of type Integer. An alternative implementation, using only nested

classes might declare IntList.T as

class IntList extends List {

class T extends Integer { }

}

However, because IntList.T and Integer are not equal in this case, only instances of

IntList.T can be added to an IntList, not instances of the Integer class itself.

Nested inheritance is intended to be a mechanism for extensibility and not for gener-

icity. J& is an extension of Java, which as of version 1.5, Java already has a genericity

mechanism, namely parameterized types. Using parameterized types, a list of Integer

can be implemented more succinctly as the parameterized type List<Integer>.

4.13 Supertype declarations

To simplify the semantics and the implementation of J&, a class or package may not

extend any of its containing namespaces. This restriction prevents the class or package
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from containing or further binding itself. For the same reason, the supertype declaration

cannot be an exact type or a type dependent on a field path, including static fields.

Therefore, a namespace may not extend thisclass or thispackage or their prefixes;

however, to enable virtual superclasses, a namespace may extend a nested namespace of

thisclass or thispackage (e.g., thisclass.B in Figure 4.1).

When further binding a class in a containing namespace, the programmer can change

the superclass. This feature allows new functionality to be mixed in to several classes in

the new containing class without code duplication. The superclass can only be changed

covariantly; that is, it is required that the new superclass be a subtype of the old. This

ensures that calls to the superclass using super do not cause a type error when inherited

into the further bound class.

4.14 Conformance

In J&, a class conforms to its superclass under the same rules as in Java 1.4: a method’s

parameter types and return type must be identical in both classes. In principle, this rule

could be relaxed to permit covariant refinement of method return types and contravariant

refinement of method parameter types, but we have not explored this relaxation.

4.15 Final binding

As in Java, classes in J& may be declared final to prevent the class from being

subclassed. This naturally extends to nested inheritance be requiring that a final nested

class can be neither subclassed explicitly with an extends declaration nor overridden

in a subclass of its enclosing class. This final binding of nested classes is useful for

enabling optimizations and for modeling purposes. In addition, virtual classes in BETA
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may be subclassed only if they are final bound. Since J& does not permit inheritance

from dependent classes, this restriction is not needed in J&.

Final classes also enable backward compatibility with Java; if all nested classes are

final, a J& program is a legal Java program.

4.16 Run-time type checking

As in Java, J& code can test the run-time type of an expression using instanceof

and cast expressions. An expression may also be checked to see if it is a member of a

dependent type. To check if an expression e is a member of p.class, the e’s run-time

class is compared for equality with p’s run-time class. Run-time types checks for cast

expressions are handled similarly.

4.17 Exceptions

Exceptions in J& are treated similarly to Java: Any subclass of java.lang.Throwable

can be thrown. Methods must declare the set of exceptions they throw. In J&, the throws

set may include dependent types. For instance, in the following code the method m

throws exceptions dependent on this and on the formal parameter d.

class A {

class E extends Exception { }

class B { }

void m(final A.B b) throws this.class.E, A[b.class].E {

...

}

}

A catch statement may also catch dependent exceptions. As with Java, a run-time type

check is performed on the exception object. The semantics of the check are similar to

the instanceof expression described in Section 4.16.
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class A1 {

static class B1 {

void m() throws Exception { throw new Exception(); }

}

static class B2 extends B1 {

void m() throws Exception { throw new Exception(); }

}

}

class A2 extends A1 {

static class B1 {

void m() { } // throws nothing: not allowed in J&

}

}

Figure 4.9: Throws sets

Subclasses may refine the set of exceptions a method throws by removing an

exception from the set or by adding a subclass of a declared exception. To ensure

modularity, a further bound class may not refine the set of exceptions thrown; that

is, if T2.C further binds T1.C, the throws set of T2.C.m must equal the throws set of

T1.C.m. Without this restriction, in the code in Figure 4.9, the implicit class A2.B2

would inherit A1.B2.m, which throws an exception and A2.B1.m, which does not. As

described in Section 4.6.2, the J& dispatch order for A2.B2 invokes A1.B2.m before

A2.B1.m. Requiring A2.B1.m to have the same throws set as A1.B1.m allows A2 to by

type-checked without checking each of its implicit classes.

4.18 Packages

J& supports inheritance of packages, including multiple inheritance. In fact, the most

convenient way to use nested inheritance is usually at the package level, because large

software is usually contained inside packages, not classes. The semantics of prefix pack-

ages and intersection packages are similar to those of prefix and intersection class types,
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described above. Since packages do not have run-time instances, the only exact pack-

ages are prefixes of a dependent class nested within the package, e.g., pkg[x.class],

where x is an instance of class pkg.C.

To specify package inheritance relationships, the programmer creates a file named

thispackage.jx in the package directory. This file typically contains a one-line pack-

age declaration of the form:

package p extends T;

The superpackage T is interpreted in the context of the containing namespace of p.

Thus, T may mention thispackage, enabling T to be a virtual superpackage. Packages

declarations may also contain static virtual types and static virtual package declarations,

as shown in the following example:

package p2 extends thispackage.p1 {

exact package q = thispackage;

}

In this case, p2.q is bound to p2 and can be used as an alias for p2.

Package declarations may also be nested within classes. Packages in classes may

not themselves contain nested class declarations, but may declare static virtual types

and nested packages (which are similarly restricted).
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Chapter 5

An Extensible Compiler in J&

Using the language features described in Chapter 4 we can construct composable,

extensible systems. In this section, we sketch the design of a composable, extensible

compiler. Most of the design described here was used in our port to J& of the Polyglot

compiler framework [84] except where necessary to maintain backward compatibility

with the Java version of Polyglot.

The base package and packages nested within it contain all compiler code for

the base language: Java, in the Polyglot framework. The nested packages base.ast,

base.types, and base.visit contain classes for AST nodes, types, and visitors

that implement compiler passes, respectively. All AST nodes are implemented as

subclasses of base.ast.Node; compiler passes are implemented as subclasses of

base.visit.Visitor.

5.1 Orthogonal extension

Scalable, orthogonal extension of the base compiler with new data types and new

operations is achieved through nested inheritance. To extend the compiler with new

syntax, the base package is extended and new subclasses of Node can be added to the
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ast package. New passes can be added to the compiler by creating new subclasses of

visit.Visitor subclasses.

Because the Visitor design pattern [43] is used to implement compiler passes, when

a new AST node class is added to an extension’s ast package, a visit callback method

for the class must be added to the extension’s Visitor class. Because the classes

implementing the compiler passes extend base[this.class].visit.Visitor, this

visitmethod is inherited by all Visitor subclasses in the extension. Visitor classes in

the framework can transform the AST by returning new AST nodes. The Visitor class

implements default behavior for the visitmethod by simply returning the node passed

to it, thus implementing an identity transformation. Visitors for passes affected by the

new syntax can be overridden to support it.

5.2 Composition

Independent compiler extensions can be composed using nested intersection with mini-

mal effort. If the two compiler extensions are orthogonal, as for example with the prod-

uct and sum type compilers of Section 3.2, then composing the extensions is trivial: the

main method needs to be overridden in the composing extension to specify the order in

which passes inherited from the composed extensions should run.

If the language extensions have conflicting semantics, this will often manifest as

a name conflict when intersecting the classes within the two compilers. These name

conflicts must be resolved to be able to instantiate the composed compiler, forcing the

compiler developer to reconcile the conflicting language semantics.

However, even without name conflicts, there may be semantic conflicts in the

composed compiler. The composed compiler will run, but might not implement the
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language the programmer expects. In general, it is up to the programmer to detect and

resolve semantics conflicts between the composed compilers.

5.3 Extensible rewriters

One challenge for building extensible software systems is to provide extensible data pro-

cessing, particularly when the input and output data have complex structure. Extensions

to the software need to be able to scalably and modularly extend both the transfor-

mations performed on the data and the data being transformed. Compilers exhibit this

difficulty, because compiler passes perform complex transformations on complex data

structures representing program code. For scalable extensibility, it should not be nec-

essary to change data transformers (e.g., compiler passes) if the extensions to the data

representation do not interact with the transformation in question.

One challenge for building an extensible compiler is to implement transformations

between different program representations. For example, the pair compiler from Chap-

ter 3 (Figure 3.3) transforms expressions with pairs into lambda calculus expressions.

For a given transformation between two representations, compiler extensions need to

be able to scalably and modularly extend both the source and target representations and

the transformation itself. However, if the extensions to the source and target represen-

tations do not interact with a transformation, it should not be necessary to change the

transformation.

A partial solution to this problem is the Visitor design pattern [43], which supports

scalable extension of data processing. It allows boilerplate traversal of the input data

structure to be factored out and shared. With minor extensions, visitors also support the

generation of structured output data.
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Figure 5.1: AST transformation

Consider an abstract syntax tree (AST) node representing a binary operation. As

illustrated in Figure 5.1, most compiler transformations for this kind of node would

recursively transform the two child nodes representing the operands, then invoke pass-

specific code to transform the binary operation node itself, in general constructing a

new node using the new children. The generic code for invoking the pass recursively on

the children and constructing a new node can be shared across most compiler passes,

avoiding duplication of code for every pass.

However, code for a given base compiler transformation might not be aware of

the particular extended AST form used by a given compiler extension. The extension

may have added new children to the node in the source representation of which the

transformation is unaware. It is therefore hard to write a reusable compiler pass; the

pass may fail to transform all the node’s children or attributes.

In the pair compiler of Figure 3.3, the TranslatePairs pass transforms pair

AST nodes into base AST nodes. If this compiler pass is reused in a compiler in which

expressions have, say, additional type annotations, the source and target languages node

will have children for these additional annotations, but the pass will not be aware of

them and will fail to transform them.

Static virtual types (Section 4.11) are used to make a pass aware of any new children

added by extensions of the source language, while preserving modularity. The solution

is for the compiler to explicitly represent nodes in the intermediate form as trees with
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package base.ast_struct;

exact package child = ast_struct;

abstract class Exp { }

class Abs extends Exp {

String x; Exp e; // λx.e
}

package base.ast extends ast_struct;

exact package child = base.ast[this.class];

abstract class Exp {

abstract v.class.target.Exp accept(Visitor v);

void childrenExp(Visitor v, v.class.tmp.Exp t) { }

}

class Abs extends Exp {

v.class.target.Exp accept(Visitor v) {

v.class.tmp.Abs t = new v.class.tmp.Abs();

childrenAbs(v, t);

return v.visitAbs(this, t);

}

void childrenAbs(Visitor v, v.class.tmp.Abs t) {

childrenExp(v, t);

t.x = this.x;

t.e = e.accept(v);

}

}

package base.visit;

class Visitor {

// source language = base[this.class].ast

// target language <= base.ast;

exact package target = base.ast;

package tmp extends ast_struct {

exact package child = target;

}

...

}

Figure 5.2: Extensible rewriting example: base compiler
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a root in the source language but children in the target language, corresponding to the

middle tree of Figure 5.1. A fragment of a base lambda calculus compiler using this

pattern is shown in Figure 5.2. An extension of the base compiler with pairs is shown

in Figure 5.3. In this example, a node in intermediate form is an instance of Pair (or

another class in the pair package) with children in the package base.

The packages base.ast struct and pair.ast struct define just the structure of

each AST node. The ast struct packages are then extended to create ast packages for

the actual AST nodes. In the ast struct package, children of each AST node reside

in a child virtual package. The ast package extends the ast struct package and

further binds child to the ast package itself; the node classes in ast have children in

the same package as their parent. By further binding child differently, ast struct can

be extended to create node classes in which the children are in a different language.

In the pattern, a visitor implementing a transformation pass rewrites a source lan-

guage AST into target language AST. For example, TranslatePairs in Figure 5.3

transforms pair.ast nodes into base.ast nodes. The key to the design is to cre-

ate a package tmp inside each visitor class for the intermediate form nodes of that

visitor’s specific source and target language. The Visitor.tmp package extends the

ast struct package, but further binds child to the target package, which repre-

sents the target language of the visitor transformation. Thus, AST node classes in the

tmp package have children in the target package, but parent nodes are in the tmp pack-

age. Since tmp is a subpackage of ast struct in the same enclosing package, nodes

in this package have the same structure as nodes in the visitor’s ast struct package.

Thus, if the ast struct package is overridden to add new children to an AST node

class, the intermediate nodes in the tmp package will also contain those children.

Each AST node class contains an acceptmethod that takes a Visitor and invokes a

callback in the visitor to transform the node. code to traverse the children of the node. In
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package pair extends base;

package pair.ast_struct; // extends base.ast_struct

class Pair extends Exp {

child.Exp fst, snd;

}

package pair.ast extends ast_struct; // and extends base.ast

class Pair extends Exp {

v.class.target.Exp accept(Visitor v) {

v.class.tmp.Pair t = new v.class.tmp.Pair();

childrenPair(v, t);

return v.visitPair(this, t);

}

void childrenPair(Visitor v, v.class.tmp.Pair t) {

childrenExp(v, t);

t.fst = fst.accept(v);

t.snd = snd.accept(v);

}

}

package pair.visit;

class TranslatePairs extends Visitor {

exact package target = base.ast;

target.Exp visitPair(ast.Pair old, tmp.Pair t) {

return new target.App(... t.fst ... t.snd ...);

// ((λx.λy.λ f . f x y) t.fst) t.snd
}

}

Figure 5.3: Extensible rewriting example: pair compiler
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pair.ast.Pair, the acceptmethod constructs a new tmp.Pair specific to the visitor,

applies the pass to the pair’s children nodes to initialize the intermediate pair object, then

invokes the visitPair callback with both the original pair and the intermediate pair. In

pair.visit.TranslatePairs, the callback method uses the tmp.Pair to access the

rewritten children and creates a new node in the target (that is, base.ast) package.

Both the child and target virtual packages are declared to be exact. This ensures

that the children of a tmp node are in the target package itself (in this case base.ast)

and not a derived package of the target (e.g., pair.ast).
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Chapter 6

Formal Semantics

This chapter presents a formal semantics for the core J& type system and sketches a

soundness proof for the semantics. Several language features are not modeled formally,

including packages, constructors, and static virtual types. The treatment here is based

on the semantics of Jx [83] and uses some ideas from the formal semantics of Tribe [27]

and Ernst et al.’s vc calculus [38].

6.1 Preliminaries

A grammar for the calculus is shown in Figure 6.1. Throughout the semantics, we use

the notation a for the list a1, . . . ,an for n ≥ 0. The length of a is written |a|, and the

empty list is written nil. We write {a} for the set containing the members of the list a.

A term with a list subterm should be interpreted as a list of terms; for example, f = e

should be read f1 = e1, . . . , fn = en. We also write i.. j for the set {i, i+1, . . . , j}.

Programs Pr consist of a list of class declarations L and a “main” expression e.

To avoid cluttering the semantics, we assume a fixed program Pr; all inference rules

are implicitly parameterized on Pr. A class declaration L contains a class name C, a

superclass declaration T , member classes L, fields F , and methods M. A field declaration
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programs Pr ::= 〈L,e〉
class declarations L ::= classC extends T {L F M}
field declarations F ::= [final] T f = e
method declarations M ::= T m(T x) {e}
types T ::= ◦ | T.C | p.class | P[T] | &T
non-dependent types S ::= ◦ | S.C | P[S] | &S
classes P ::= ◦ | P.C
values v ::= null | `
access paths p ::= v | x | p. f
expressions e ::= v | x | e. f | e0. f = e1

| e0.m(e) | new T ( f = e) | e1; e2
typing contexts Γ ::= /0 | Γ,x :T | Γ, ` :S | Γ, p1 = p2
heaps H ::= /0 | H, ` 7→ o
objects o ::= S { f = v}

Figure 6.1: Grammar

F may be final or non-final and consists of a type, field name, and default initializer

expression. Methods M have a return type, formal parameters, and a method body; all

formal parameters are final.

Following the semantics of Tribe [27], all classes are nested within a single top-level

class ◦. Types T are either the top-level class ◦, nested classes T.C, dependent classes

p.class, prefix types P[T], or intersection types &T . The intersection type &T can be

read T1 & · · · & Tn. A nested class ◦.C of the top-level class is abbreviated as C. Non-

dependent types are written S and class names are written P. In the calculus, the prefix

type P[T] is well-formed only if some supertype of T is immediately enclosed by a

subclass of P. More general prefix types can be constructed by desugaring to this form:

for example, if c has type A.B.C, then A[c.class] desugars to A[A.B[c.class]].

A value is either null or a location `, which maps to an object on the heap of type

S. A final access path p is either a value, a parameter x, or a final field access p. f .

Expressions are values, parameters x, field accesses, field assignments, calls, allocation

expressions, or sequences. Constructors are not modeled in the semantics; instead, a

new expression may explicitly initialize fields of the new object. Fields not explicitly
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CT(P)

Pr = 〈L,e〉
CT(◦) = class ◦ extends &nil {L}

CT(P) = classC′ extends T ′ {L′ F ′ M′}
classC extends T {. . .} ∈ L′

CT(P.C) = classC extends T {. . .}

Figure 6.2: Class table

initialized by the new expression are initialized by the default initializer in the field

declaration.

Type checking is performed in a typing context Γ, which is a list of variable bindings

x :T , location bindings `:S, and path equivalence constraints p1 = p2. Location bindings

are used to type-check the heap during evaluation. Path equivalence constraints are

used to assert equivalence of dependent types during evaluation. They are similar to

the aliasing equations in the Tribe type system [27].

A heap H maps locations ` to objects o. An object is simply a record labeled with a

non-dependent type S.

6.2 Non-dependent types

We begin by presenting definitions for classes P and non-dependent types S. All depen-

dent types are bounded by a non-dependent type, which is used for looking up nested

classes, fields, and methods.
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` P :class

CT(P) 6=⊥
` P :class

(DEF-CT)

` P1 :class ` P1 @P2 ` P2.C :class
` P1.C :class

(DEF-INH)

Figure 6.3: Well-formed classes

` S :nondep

mem(S) 6= /0

` S :nondep

Figure 6.4: Well-formed non-dependent types

6.2.1 Class lookup

The class table, CT , defined in Figure 6.2, maps class names P to class declarations.

The class declaration for the top-level class ◦ simply contains the program’s class

declarations. We write CT(P) =⊥ if P has no definition.

The judgment ` P : class, shown in Figure 6.3, states that P is a well-formed class;

the judgment holds either when P is a class in the class table or when P further binds a

defined class. The rule DEF-CT says a class is well-formed if it is in the class table CT .

The rule DEF-INH states that P1.C is well-formed if P2.C is well-formed and if P1 is a

subclass of P2, which is written ` P1 @P2 and defined in Figure 6.6 in Section 6.2.2.

The judgment ` S : nondep, defined in Figure 6.4, states that S is a well-formed

non-dependent type. The definition uses the mem function, defined in Figure 6.5, which

returns the set of classes P comprising a non-dependent type S. The subtyping rules,

described in Section 6.3.10, ensure type S is equivalent to the intersection of all classes

in mem(S). The mem function for P[S] uses the prefix function, defined in Section 6.2.3.
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mem(S)

` P :class
mem(P) = {P}

D = {Pi ∈mem(S)| ` Pi.C :class}
mem(S.C) =

S
Pi∈D Pi.C

mem(P[S]) = prefix(P,S)

mem(&S) =
S

Si∈S mem(Si)

Figure 6.5: Class membership

6.2.2 Subclassing and further binding

Inheritance among classes is defined in Figure 6.6. The rules are similar to those defined

for the language Tribe [27]. The judgment ` P1 @sc P2 states that P1 is a declared

subclass of P2. The rule SC simply looks up the superclass using the class table

CT , substituting the container for occurrences of this.class in the superclass. Type

substitution is defined in Figure 6.17. By the program well-formedness rules, described

in Section 6.3.12, the only access path allowed in a superclass declaration is the this

path, ensuring that the result of substituting for this is a non-dependent type.

The judgment ` P1.C @fb P2.C in rule FB states that P1.C further binds P2.C when

P1 inherits from P2 and P2.C is well-formed. The @ relation is derived from the explicit

subclassing and further binding relations: ` P1 @ P2 if P1 either explicitly subclasses or

further binds P2. The reflexive, transitive closure of @ is @∗.

The function supers(S) returns the set of all superclasses of S.

The relation∼ in Figure 6.8 is an equivalence relation between classes that contain a

common nested class C. This relation is used to define membership in a non-dependent

prefix type P[S].
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` P1 @sc P2

` P1 @∗P
CT(P.C) = classC extends T {. . .}

T{{ /0; P1/this}}= S
P2 ∈mem(S)
` P1.C @sc P2

(SC)

` P1 @fb P2

` P1 @P2 ` P2.C :class
` P1.C @fb P2.C

(FB)

` P1 @P2

` P1 @sc P2

` P1 @P2
(INH-SC)

` P1 @fb P2

` P1 @P2
(INH-FB)

Figure 6.6: Subclassing and further binding

supers(S) =
[

P∈mem(S)

{P′| ` P@∗P′}

Figure 6.7: Superclasses
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` P1 ∼ P2

` P1.C @fb P.C ` P2.C @fb P.C
` P1 ∼ P2

(REL-FB)

` P ∼ P (REL-REFL)

` P1 ∼ P2

` P2 ∼ P1
(REL-SYM)

` P1 ∼ P2 ` P2 ∼ P3

` P1 ∼ P3
(REL-TRANS)

Figure 6.8: Related by further binding

prefix(P,S) = {P′ | ∃C,C′.

` P ∼ P′

∧P.C ∈ supers(S)
∧P′.C′ ∈ supers(S)}

Figure 6.9: Auxiliary functions

6.2.3 Prefix types

The meaning of a non-dependent prefix type P[S] is defined by the prefix function in

Figure 6.9. The P-prefix of a non-dependent type S is the intersection of all classes P′

where P and P′ transitively share a nested class—that is, P and P′ are equivalent under

the ∼ relation—and S extends nested classes of both P and P′. The intuition behind

the definition is that S extends some class that is contained in the intersection of P and

P′. This definition ensures that if P is a subtype of P′, then P[S] is equal to P′[S], as

desired in Section 4.8.
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Γ ` p :T final

Γ ` S : type

Γ ` null :S final
(F-NULL)

` :S ∈ Γ

Γ ` ` :S final
(F-LOC)

x :T ∈ Γ

Γ ` x :T final
(F-VAR)

Γ ` p :T final
ftype(Γ,T, f ) = final Tf

Γ ` p. f :Tf final
(F-GET)

Figure 6.10: Final access paths

6.3 Static semantics

6.3.1 Final access paths

The judgment Γ ` p :T final in Figure 6.10 states that the access path p is a well-typed

final access path in context Γ. The null path can take on any non-dependent type. A

location path ` has the type declared in the typing context. A variable path x has the type

declared in the context. Finally a field path p. f is final if p is final with type T , and the

type of the field path is determined by looking up the field type.

6.3.2 Aliasing

To type-check field accesses, the type system keeps track of aliases. The judgment

Γ ` p1 = p2, defined Figure 6.11, states that two final access paths are aliases.
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Γ ` p1 = p2

`. f = v ∈ Γ

Γ ` `. f = v
(A-ENV)

Γ ` p1 = p2 Γ ` p1. f :Tf final Γ ` p2. f :Tf final

Γ ` p1. f = p2. f
(A-FIELD)

Γ ` p :T final

Γ ` p = p
(A-REFL)

Γ ` p2 = p1

Γ ` p1 = p2
(A-SYM)

Γ ` p1 = p2 Γ ` p2 = p3

Γ ` p1 = p3
(A-TRANS)

Figure 6.11: Aliasing

6.3.3 Non-dependent bounding types

The judgment Γ ` T CS in Figure 6.12 states that T has a non-dependent bounding type

S. The only interesting rule is for dependent classes, BD-FIN. The rule uses aliasing

to ensure that the type p1.class has the same bound as p2.class if p1 and p2 are

aliases. Aliasing must be considered since if p1 and p2 are aliases, we want p1.class

and p2.class to have equivalent bounds. Because of BD-FIN, the bounding type is not

necessarily unique.

6.3.4 Member lookup

Method and field lookup functions are shown in Figure 6.13. For a class P, ownFields(P)

and ownMethods(P) is the set of fields and methods declared in the class. Using these

definitions, the set of fields and methods declared or inherited by a non-dependent type

S is defined by the fields(S) and methods(S) functions. The function fnames returns the
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Γ ` T CS

Γ ` PCP (BD-SIMP)

Γ ` T CS
Γ ` T.C CS.C

(BD-NEST)

Γ ` p1 = p2
Γ ` p1 :T1 final Γ ` T1 CS1
Γ ` p2 :T2 final Γ ` T2 CS2

Γ ` p1.classCS1 &S2
(BD-FIN)

Γ ` T CS
Γ ` P[T]CP[S]

(BD-PRE)

∀i. Γ ` Ti CSi

Γ ` &T C&S
(BD-MEET)

Figure 6.12: Type bounds

set of field names for a list of fields F . The ftype function returns the declared type of a

field f of an arbitrary type T in typing context Γ. The mtype function provides similar

functionality for methods.

The method body for a method m in type S is returned by mbody. For simplicity, the

formal semantics presented here do not specify what method body to dispatch to when

one method overrides another; precise specification of method dispatch is not necessary

to prove soundness of the type system.

6.3.5 Access paths

The function paths(T ) in Figure 6.14 returns the set of access paths in the structure of

type T . The paths function is used in the well-formedness rule for intersection types, in

Section 6.3.7.
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CT(P) = classC ext T {L F M}
ownFields(P) = F

ownMethods(P) = M

CT(P) =⊥
ownFields(P) = /0

ownMethods(P) = /0

fields(S) =
[

Pi∈supers(S)

ownFields(Pi)

methods(S) =
[

Pi∈supers(S)

ownMethods(Pi)

F = [final] T f = e

fnames(F) = { f}

Γ ` T CS
fields(S) = F

Fi = [final] Tf f = e
ftype(Γ,T, f ) = [final] Tf

Γ ` T CS
fields(S) = F

Fi = [final]T f = e
finit(S, f ) = e

Γ ` T CS
methods(S) = M

Mi = Tn+1 m(T x) {e}
mtype(Γ,T,m) = (x :T )→ Tn+1

Γ ` T CS
methods(S) = M

Mi = Tn+1 m(T x) {e}
mbody(S,m) = Mi

Figure 6.13: Member lookup
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paths(◦) = /0

paths(T.C) = paths(T )
paths(p.class) = {p}

paths(P[T]) = paths(T )

paths(&T ) =
[

Ti∈T

paths(Ti)

Figure 6.14: Access paths

prefixExact(◦,k) = false

prefixExact(T.C,k) =

{
false if k = 0
prefixExact(T,k−1) otherwise

prefixExact(p.class,k) = true

prefixExact(P[T],k) = prefixExact(T,k +1)

prefixExact(&T ,k) =
_

Ti∈T

prefixExact(Ti,k)

exact(T ) = prefixExact(T,0)

Figure 6.15: Prefix exactness

6.3.6 Exactness

When type-checking calls, type substitution must preserve exact types; that is, if an exact

type is substituted into, the result must be exact also. Since a type may have an embedded

exact type, we define exactness using prefixExact(T,k), defined in Figure 6.15. The

function prefixExact(T,k) is true if the kth prefix of T is an exact type for k≥ 0. A type T

is exact if prefixExact(T,0) holds. Since, if T is exact, all of its prefixes (if they exist) are

also exact, if prefixExact(T,k), then prefixExact(T,k+1); thus, prefixExact(p.class,k)

for any k.
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Γ ` T : type

CT(P) 6=⊥
Γ ` P : type

(WF-SIMP)

Γ ` T : type
Γ ` T CS ` S.C :nondep

Γ ` T.C : type
(WF-NEST)

Γ ` p :T final

Γ ` p.class : type
(WF-FIN)

Γ ` P : type Γ ` T : type
Γ ` T CS prefix(P,S) 6= /0

Γ ` P[T] : type
(WF-PRE)

∀i. Γ ` Ti : type
∀pi, p j ∈ paths(&T ). Γ ` pi = p j

∀Ti,Tj ∈ T . prefixExact(Ti,k)⇔ prefixExact(Tj,k)
Γ ` &T : type

(WF-MEET)

Figure 6.16: Type well-formedness

6.3.7 Type well-formedness

Type well-formedness is defined in Figure 6.16. The judgment Γ ` T : type states that

type T is well-formed in a context Γ. A class P is well-formed if it is in the class table

CT . A nested type T.C is well-formed if T is well-formed and has bound S and if S.C is

a well-formed non-dependent type. From the two rules WF-SIMP and WF-NEST, it is

easy to see that if ` P :class then Γ ` P :type for any typing context Γ. A dependent class

p.class is well-formed if p is a final access path. A prefix type P[T] is well-formed

if P and T are both well-formed and if T has simple bound S and prefix(P,S) is not

empty; in other words, there is some superclass of T whose enclosing class is related to

P by further binding. Finally, an intersection type &T is well-formed if all three of the

following conditions hold:
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1. All constituent types Ti are well-formed.

2. All access paths free in &T are aliases, ensuring all paths refer to the same run-

time class. If this condition does not hold, the intersection could be the empty

type.

3. All constituent types Ti have the same level of exactness; that is if prefixExact(Ti,k)

for any i, then prefixExact(Tj,k) for all Tj. Thus, for example, P[p.class] &

p.class is not well-formed, which is desirable since the intersection is empty.

The conditional also helps to ensure that after substituting of an intersection type

into a path preserves exactness.

6.3.8 Type substitution

The rules for type substitution are shown in Figure 6.17. The function T{{Γ; Tx/x}}

substitutes Tx for x in T . The typing context Γ is used to look up field types when

substituting a non-dependent class into a field-path dependent class. Tx should be well-

formed in Γ and a subtype of x’s declared type.

6.3.9 Typing

For arbitrary expressions, the judgment Γ ` e :T , defined in Figure 6.18, states that e has

type T in context Γ.

Any final access path p has type p.class by T-FIN. The subtyping rule S-FIN and

the subsumption rule T-SUB give the standard typing rules for values and parameters x:

` :S ∈ Γ

Γ ` ` :S
x :T ∈ Γ

Γ ` x :T

By T-GET, the type of a field access e. f is obtained by looking up the field in T , the

static type of e. The rule T-SET checks if the source expression in an assignment has the

same type as the target expression.
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T{{Γ; Tx/x}}

◦{{Γ; Tx/x}}= ◦

T.C{{Γ; Tx/x}}= T{{Γ; Tx/x}}.C

v.class{{Γ; Tx/x}}= v.class

x 6= y
y.class{{Γ; Tx/x}}= y.class

x.class{{Γ; Tx/x}}= Tx

p.class{{Γ; Tx/x}}= p′.class
p. f .class{{Γ; Tx/x}}= p′. f .class

p.class{{Γ; Tx/x}}= Tp
Tp 6= p′.class

ftype(Γ,Tp, f ) = [final] Tf

p. f .class{{Γ; Tx/x}}= Tf

T{{Γ; Tx/x}}= T ′

P[T]{{Γ; Tx/x}}= P[T ′]

∀i. Ti{{Γ; Tx/x}}= T ′
i

&T{{Γ; Tx/x}}= &T ′

Figure 6.17: Type substitution
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Γ ` e :T

Γ ` p :T final

Γ ` p : p.class
(T-FIN)

Γ ` e :T
ftype(Γ,T, f ) = [final] Tf

Γ ` e. f :Tf
(T-GET)

Γ ` e0 :T0 Γ ` e1 :Tf
ftype(Γ,T0, f ) = Tf

Γ ` e0. f = e1 :Tf
(T-SET)

Γ ` e0 :T 0
0 ∀i = 1..n. Γ ` ei :T i

i
n = |e|= |x| x0 = this

mtype(Γ,T 0
0 ,m) = (x :T 0)→ T 0

n+1
∀i ∈ 1..n+1, j ∈ 1..i. T j−1

i {{Γ; T j−1
j−1 /x j−1}}= T j

i

∀i ∈ 1..n, j ∈ 1..i. prefixExact(T j−1
i ,k)⇒ prefixExact(T j

i ,k)
∀i ∈ 1..n+1, j ∈ 1..i. p. f ∈ paths(T j−1

i )⇒ p′ ∈ paths(T j
i )∧Γ ` p′ = p{e j−1/x j−1}. f

Γ ` e0.m(e) :T n+1
n+1

(T-CALL)

Γ ` T : type Γ ` e :T
∀ fi ∈ f . ftype(Γ,T, fi) = [final] Ti

Γ ` new T ( f = e) :T
(T-NEW)

Γ ` e1 :T1 Γ ` e2 :T2

Γ ` e1; e2 :T2
(T-SEQ)

Γ ` e :T1 Γ ` T1≤T2

Γ ` e :T2
(T-SUB)

Figure 6.18: Typing
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The most complex rule is the call rule, T-CALL. Calls are checked by looking up

the method type, then substituting in the receiver type and the actual argument types

for this and the formal parameters. Types rather than values are substituted because

the actual arguments may not be final access paths. Type substitution is defined in

Figure 6.17. Formal parameter i has type T 0
i . The type T j

i is the result of substituting the

actuals 0 (the receiver) through j− 1 into T 0
i . For the call to type-check, the actuals ei

must have the same type as the fully substituted formal types T i
i . The call itself has type

T n+1
n+1 , where T 0

n+1 is the method’s declared return type.

To ensure subtyping is preserved by the substitution, substitution must preserve

prefix-exactness, defined in Figure 6.15. This ensures that if the type of formal i is

dependent on another formal j (or this), the ith actual value has a type dependent

on actual j (or the actual receiver). Substitution of the return type need not preserve

exactness since it is in a covariant position and the result of the substitution can be less

precise.

Two different objects used as actuals may have the same dependent type, but may

contain final fields that point to objects of different classes. To ensure that a substituted

field path is dependent on the actual target, not on another object of the same class that

may have initialized the field differently, substitution must also preserve field paths.

A new expression is well-typed via T-NEW if it initializes only declared fields of

a well-formed type. By T-SEQ, a sequence expression takes the type of the second

expression in the sequence. Finally, T-SUB is the standard subsumption rule.

6.3.10 Subtyping and type equivalence

Subtyping rules are defined in Figure 6.19. The judgment Γ ` T1 ≤ T2 states that T1

is a subtype of T2 in context Γ. The rules ensure that syntactically different types
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Γ ` T1≤T2

Γ ` T ≤T (S-REFL)

Γ ` T1≤T2 Γ ` T2≤T3

Γ ` T1≤T3
(S-TRANS)

Γ ` T ≤P
CT(P.C) = classC extends T ′ {. . .}

T ′{{Γ; T/this}}= T ′′

Γ ` T.C≤T ′′

(S-SUP)

Γ ` T : type Γ ` T CS
Γ ` T ≤S

(S-BOUND)

Γ ` T1≤T2 Γ ` T2.C : type

Γ ` T1.C≤T2.C
(S-NEST)

Γ ` p :T final

Γ ` p.class≤T
(S-FIN)

Γ ` T1≤T2
Γ ` P[T2] : type

Γ ` P[T1]≤P[T2]
(S-PRE-1)

` P1 ∼ P2∨` P1 @P2
Γ ` P1[T] : type
Γ ` P2[T] : type

Γ ` P1[T]≈ P2[T]
(S-PRE-2)

Γ ` T ≤P.C
Γ ` T ≤P[T].C

(S-PRE-OUT)

Γ ` P[T.C] : type

Γ ` T ≈ P[T.C]
(S-PRE-IN)

Γ ` &T ≤Ti (S-MEET-LB)

∀i. Γ ` T ≤Ti

Γ ` T ≤&T
(S-MEET-G)

Γ ` p1 = p2

Γ ` p1.class≈ p2.class
(S-ALIAS)

Γ `U1 CS1 Γ `U2 CS2
Γ `U1 : type Γ `U2 : type

exact(U1) /0 ` S1 ≈ S2

Γ `U1≤U2
(S-EVAL)

Figure 6.19: Subtyping
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representing the same sets of values are considered equal. The judgment Γ ` T1 ≈ T2

is sugar for the pair of judgments Γ ` T1≤T2 and Γ ` T2≤T1.

Subtyping is reflexive and transitive. The rule S-SUP states that a type is a subclass

of its declared superclass; the enclosing class of the subtype T is substituted in for this

in the superclass.

S-BOUND states that a type is a subtype of its non-dependent bounding type. The

rule S-NEST states that a nested class C is covariant with its containing class; that is,

further binding implies subtyping. S-FIN states that a dependent class is a subtype of its

declared bound; with F-NULL, this rule also implies that null.class is a subtype of

any well-formed simple type.

Subtyping of prefix types is covariant by the rules S-PRE-1 and S-PRE-2. S-PRE-OUT

and S-PRE-IN, and relate prefix types to non-prefix types.

S-MEET-LB and S-MEET-G are from Compagnoni and Pierce [29] and define sub-

typing for intersection types. Together these two rules imply that intersection types are

associative and commutative and that the singleton intersection type &T is equivalent

to its element type T . With the other rules above, these rules also imply the intuitive

judgments Γ ` P[&T]≤P[Ti] and Γ ` (&T ).C≤Ti.C.

The rule S-EVAL states that a fully evaluated type (i.e., a type containing only value

paths) is a supertype of any fully evaluated exact type with the same bounding type. This

rule ensures, for example, that `1.class ≈ `2.class if `1 and `2 both point to objects

of the same type.

6.3.11 Example

As an example, consider the code in Figure 6.20. For clarity, each occurrence of

this has been labeled with an abbreviation of its declared type. The call to visit in

Exp.accept has the type Compiler[thisE.class].Exp as follows. To type-check the
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class Compiler {

class Exp {

Compiler[thisE.class].Exp

accept(Compiler[thisE.class].Visitor v) {

v.visit(thisE)

}

}

class Visitor {

Compiler[thisV.class].Exp

visit(Compiler[thisV.class].Exp e) { e }

}

}

Figure 6.20: Example code

call to visit, let Γ = /0,thisE :Compiler.Exp,v:Compiler[thisE.class].Visitor.

It is easy to see that:

Γ ` v :Compiler[thisE.class].Visitor
Γ ` thisE :Compiler.Exp

The mtype function returns the declared type of visit:

mtype(Γ,Compiler[thisE.class].Visitor,visit)
= (e :Compiler[thisV.class].Exp)→ Compiler[thisV.class].Exp

By T-CALL, the declared type of the actual receiver v is substituted for thisV in the

formal parameter type and the return type:

Compiler[thisV.class].Exp{{Γ; Compiler[thisE.class].Visitor/thisV}}
= Compiler[Compiler[thisE.class].Visitor].Exp

Therefore, the call can be typed by T-CALL as follows:

Γ ` v.visit(thisE) :Compiler[Compiler[thisE.class].Visitor].Exp

Using subsumption, the result type can be written as an equivalent simpler type. First,

by S-PRE-IN, the following type equivalence can be derived:
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Γ ` Compiler[Compiler[thisE.class].Visitor]
≈ Compiler[thisE.class]

and then by S-NEST, the following equivalence can be derived:

Γ ` Compiler[Compiler[thisE.class].Visitor].Exp
≈ Compiler[thisE.class].Exp

Finally, by T-SUB, the call can be typed as:

Γ ` v.visit(thisE) :Compiler[thisE.class].Exp

Now consider what happens if v were declared to have type Compiler.Visitor.

In this case, the call will not type-check. The substitution of this type for thisV would

have the result type Compiler[Compiler.Visitor].Exp:

Compiler[thisV.class].Exp{{Γ; Compiler.Visitor/thisV}}
= Compiler[Compiler.Visitor].Exp

By S-PRE-IN and S-NEST, this type is equivalent to Compiler.Exp. But, the rule

T-CALL requires that since prefixExact(Compiler[thisV.class].Exp,1) it must be

that prefixExact(Compiler[Compiler.Visitor.class].Exp,1) also. Since this is

not the case, T-CALL cannot be applied, and the call to visit will not type-check.

6.3.12 Program typing

Program typing rules are presented in Figure 6.21. The P-OK says the program Pr is

well-formed if all class declarations are well-formed, if the “main” expression is well-

typed, and if the transitive closure of the inheritance relation @ is acyclic. The last

requirement is needed to ensure that the type system is well-founded.
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◦ ` L ok /0 ` e :T /0 ` T : type @+ acyclic
` 〈L,e〉 ok

(P-OK)

P.C ` L ok P.C ` F ok P.C ` M ok
P ` T super ok

∀Pi ∈ supers(P.C)\{P.C}. ` P.C conforms to Pi

P ` classC extends T {L F M} ok
(L-OK)

T 6= ◦
this :P ` T : type

paths(T )⊆ {this}
¬exact(T )

P ` T super ok

CT(P) = classC extends T {L F M}
CT(P′) = classC′ extends T ′ {L′ F ′ M′}

∀i, j.
(

Li = class D extends Ti {. . .}∧
L′j = class D extends T ′

j {. . .}

)
⇒ this :P ` Ti≤T ′

j

fnames(F)∩ fnames(F ′) = /0

∀i, j.
(

Mi = Tn+1 m(T x) {e}∧
M′

j = T ′
n+1 m(T ′ x′) {e′}

)
⇒ P ` Mi overrides M′

j

` P conforms to P′

M = Tn+1 m(T x) {e}
M′ = T ′

n+1 m(T ′ x′) {e′}
|x|= |x′|= |y| y∩ (x∪ x′) = /0

T{y/x}= T ′{y/x′}
Tn+1{y/x}= T ′

n+1{y/x′}
P ` M overrides method M′

/0 ` T : type /0 ` e :T
P ` [final] T f = e ok

(F-OK)

Γ = this :P,x :T Γ ` env Γ ` T : type Γ ` e :T
P ` T m(T x) {e} ok

(M-OK)

Figure 6.21: Program typing
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By L-OK, a class declaration is well-formed if all its members are well-formed and

its superclass is well-formed in a context containing only this bound to the class’s

container. Additionally, the only access path embedded in the superclass declaration can

be this. The class must also conform to all of its superclasses.

A class P conforms to P′ if all of the following hold:

• If both P and P′ have a member class D, then P.D’s declared superclass is a subtype

of P′.D’s.

• The field names of P and P′ are disjoint. This requirement simplifies the semantics

by ensuring field names are unique.

• If both P and P′ define a method m, then the method in P correctly overrides the

method P′.

Method M in P correctly overrides M′ if the number of formal parameters are equal,

the parameter types of M are supertypes of the parameter types of M′, and the return type

of M is a subtype of M′. Subtyping checks are done with fresh names substituted in for

the parameter names occurring in the types. Using the judgment Γ ` env, it is required

that the type of formal parameter i depends only on this and formal parameters 1

through i−1.

Finally, field and method declarations are well-formed by rules F-OK and M-OK,

respectively, if the types occurring in the signatures well-formed and if the initializer is

method body is well-typed.

6.3.13 Typing contexts

Typing contexts are deemed well-formed by the judgment Γ ` env, defined in Fig-

ure 6.22. The rules disallow rebinding of variables and locations and require that types
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Γ ` env

/0 ` env

Γ ` env x 6∈ dom(Γ) Γ ` T : type

Γ,x :T ` env

Γ ` env ` 6∈ dom(Γ) /0 ` S : type

Γ, ` :S ` env

Γ ` env Γ ` `. f :T final Γ ` v :T
Γ, `. f = v ` env

Figure 6.22: Well-formed typing contexts

Γ{v/x}

/0{v/x}= /0

(Γ,x :T ){v/x}= Γ

(Γ,y :T ){v/x}= Γ{v/x},y :T{v/x}
(Γ, ` :S){v/x}= Γ{v/x}, ` :S

(Γ, p1 = p2){v/x}= Γ{v/x}, p1{v/x}= p2{v/x}

Figure 6.23: Substitution on typing contexts
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be well-formed. Substitution on typing contexts is straightforward and is defined in Fig-

ure 6.23.

6.3.14 Heaps

A heap H is a function from memory locations to objects o; we write H(`) = o if o 7→ `

is in H. We write H[` := o] for H with H(`) remapped to o, that is:

/0[` := o] = ` 7→ o
(H, ` 7→ o′)[` := o] = H, ` 7→ o
(H, `′ 7→ o′)[` := o] = H[` := o], `′ 7→ o′ (` 6= `′)

In the operational semantics and in the soundness proof, run-time values are typed

using a typing context constructed from the heap. A typing context bHc is constructed

from H by inserting location types and aliasing information for fields into the context.

To type the heap properly, the typing context include path aliasing constraints of the

form `. f = v.

b /0c= /0

bH, ` 7→ S { f = v}c= bHc, ` :S, `. f ′ = v′

where f ′ = { fi ∈ f | ftype( /0,S, fi) = final Ti}

The equivalence constraints and S-ALIAS ensure that if `1. f steps to `2, then `2.class

is a subtype of `1. f .class, which is essential for proving type preservation.

Figure 6.24 shows the heap typing rules. The judgment H ` ` : loc states that a

location ` is well-formed for a heap H if it maps to an object of type S containing

all declared fields of S and each value stored in those fields has the correct type and, if

a location, is also well-formed in H. Rule H-NULL states that the null value is always

well-formed.
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H(`) = S { f = v}
fnames( f ields(S)) = { f}

ftype( /0,S, f ) = T
bHc ` v :T

v ⊆ dom(H)∪{null}
H ` ` : loc

(H-LOC)

∀` ∈ dom(H). H ` ` : loc

` H
(HEAP)

` H locs(e)⊆ dom(H)
` e,H

(CONFIG)

Figure 6.24: Well-formed heaps

A heap H is well-formed, written `H, if all locations in its domain are well-formed.

Finally, a configuration is well-formed, written ` e,H if H is well-formed and all free

locations of e, locs(e), are in H.

6.4 Operational semantics

This section presents a small-step operational semantics. The semantics are defined with

a reduction relation −→, which maps a configuration of an expression e and a heap H to

a new configuration. Result configurations consist of a new heap and a result r, which

is either an expression or NullError. The notation e,H −→ r,H ′ means that expression e

and heap H step to result r and heap H ′. The initial configuration for program 〈L,e〉 is

e, /0. Final configurations are of the form v,H or NullError,H.

Figure 6.25 defines additional syntax used in the operational semantics.
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results r ::= e | NullError
evaluated types U ::= ◦ | U.C | `.class | P[U] | &U
evaluation contexts E ::= [·]

| E. f
| new TE( f = e)
| newU( f = v, f = E, f ′ = e)
| E. f = e
| `. f = E
| E.m(e)
| `.m(v,E,e)
| E; e

type evaluation contexts TE ::= TE.C
| E.class
| P[TE]
| &(U ,TE,T )

null errors NE ::= null. f
| null. f = e
| null.m(e)
| new TE[null]( f = e)
| NullError

Figure 6.25: Additional syntax
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6.4.1 Evaluation contexts

Order of evaluation is captured by an evaluation context E, an expression with a hole [·].

Since types are dependent, new expressions need to evaluate the class of the object being

allocated. A type evaluation context TE specifies how dependent types are evaluated.

Fully evaluated types U contain only location paths `.class and not field paths.

6.4.2 Null dereferences

The nonterminal NE in Figure 6.25 specifies expressions with dereferences of the null

value. These expressions all evaluate to the result NullError. Attempting to allocate an

object whose type embedded has an embedded null will also evaluate to NullError.

6.4.3 Reduction rules

The reduction rules are shown in Figure 6.26. Order of evaluation is captured by an

evaluation context E and the congruence rule R-CONG. Since types are dependent,

expressions used in types must be evaluated as well. We write U for a type containing

no redex.

The rule R-NULL propagates a dereference of a null pointer out through the

evaluation contexts to produce a NullError, simulating a Java NullPointerException.

The rules R-GET and R-SET get and set a field in a heap object, respectively.

R-CALL uses the mbody function defined in Figure 6.13 to locate the most specific

implementation of method m. The actual values for the receiver and arguments are then

substituted into the method body.

There are two rules for evaluating new expressions. R-NEW looks up all fields of

the type being allocated and steps to a configuration containing initializers for those

fields. R-ALLOC is applied when all initializers have been evaluated. A new location is
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e,H −→ r,H

e,H −→ e′,H ′

E[e],H −→ E[e′],H ′ (R-CONG)

E[NE],H −→ NullError,H (R-NULL)

H(`) = S { f = v}
`. fi,H −→ vi,H

(R-GET)

H(`) = S { f = v}
H ′ = H[` := S { f1 = v1, . . . , fi = v, . . . , fn = vn}]

`. fi = v,H −→ v,H ′ (R-SET)

` :S ∈ bHc mbody(S,m) = Tn+1 m(T x) {e} n = |v|= |x|
`.m(v),H −→ e{`,v/this,x},H

(R-CALL)

bHc `U CS fnames(fields(S)) = { f , f ′}
| f ′| 6= 0 finit(S, f ′) = e′

newU( f = v),H −→ newU( f = v, f ′ = e′),H
(R-NEW)

bHc `U CS fnames(fields(S)) = { f}
` 6∈ dom(H) H ′ = H, ` 7→ S { f = v}

newU( f = v),H −→ `,H ′ (R-ALLOC)

v; e,H −→ e,H (R-SEQ)

Figure 6.26: Operational semantics
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allocated and the object is installed in the heap. To ensure that all fields are accounted

for, field names are looked up in a typing context containing only location bindings. This

ensures the bounding non-dependent type of the new instance’s type U is unique and is

as tight a bound as possible.
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Chapter 7

Soundness

This chapter presents a soundness proof for the semantics presented in Chapter 6. The

soundness theorem states that the result of evaluating a well-typed program is either a

value or a null dereference error.

Theorem 7.1 (Soundness) If ` 〈L,e〉 ok, and /0 ` e : T , and e, /0 −→∗ r,H where r is in

normal form, then either r = v and bHc ` v :T or r = NullError.

To prove soundness we use the standard technique of proving subject reduction and

progress lemmas [121].

Lemma 7.2 (Subject reduction) If ` e,H, bHc ` e :T , and e,H −→ r,H ′, then either

• r = e′, ` e′,H ′, and bH ′c ` e′ :T , or

• r = NullError.

Lemma 7.3 (Progress) If ` e,H and bHc ` e :T , then either e = v, or there is an r and

an H ′ such that e,H −→ r,H ′.

The subject reduction proof is the more complicated of the two. We first prove

several preliminary lemmas about typing contexts, non-dependent bounding types, and

substitution. The subject reduction proof follows.
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After the subject reduction proof, a few more lemmas needed to prove progress

are presented. Finally, the progress lemma itself is proved and the soundness theorem

follows.

7.1 Typing contexts

We first prove some lemmas about typing contexts. We say a context Γ2 extends Γ1 if

there is a Γ such that Γ2 = Γ1,Γ. The following lemma states that if a judgment holds in

a particular context Γ, it holds in an extended context Γ,Γ′.

Lemma 7.4 (Weakening) If Γ′ extends Γ and Γ′ ` env, then all of the following hold:

1. If Γ ` p :T final, then Γ′ ` p :T final.

2. If Γ ` T : type then Γ′ ` T : type.

3. If Γ ` T CS then Γ′ ` T CS.

4. If ftype(Γ,T, f ) = Tf then ftype(Γ′,T, f ) = Tf .

5. If mtype(Γ,T,m) = (x :T )→ Tn+1, then mtype(Γ′,T,m) = (x :T )→ Tn+1.

6. If T{{Γ; Tv/x}}= T ′ then T{{Γ′; Tv/x}}= T ′.

7. If Γ ` T1≤T2 then Γ′ ` T1≤T2.

8. If Γ ` e :T then Γ′ ` e :T .

Proof. The proof is by induction on the derivation of the appropriate judgment. �

7.2 Heap contexts

During evaluation, the heap is updated as objects are allocated and non-final fields are

assigned. The following definitions and lemmas state that the typing context constructed

from the updated heap extends the context constructed from the original heap.
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Definition 7.5 We say a heap H2 remaps H1 if

• H1 = H2 = /0, or

• H1 = H ′
1, ` 7→ S { f = v}, and H2 = H ′

2, ` 7→ S { f = v′}, and H ′
2 remaps H ′

1, and

for all fi, if ftype( /0,S, fi) = final T , then vi = v′i.

Definition 7.6 H2 extends H1 if H2 remaps H1, or there is an H such that H extends H1

and H2 = H, ` 7→ o and ` 6∈ dom(H).

The remapped and extended heaps extend the typing context derived from the

original heap, allowing the extension lemma (Lemma 7.4) above to be used.

Lemma 7.7 If H2 remaps H1, then bH2c extends bH1c.

Proof. The proof is by structural induction on H2.

Case H2 = /0:

Then H1 = /0. Trivial.

Case H2 = H ′
2, ` 7→ S { f = v}:

Then H2 = H ′
1, ` 7→ S { f = v′}. By the induction hypothesis, bH ′

2c = bH ′
1c. For all

final fields f of S, H1(`)[ f ] = H2(`)[ f ]. Therefore, bH2c= bH1c by construction. �

Lemma 7.8 If H2 extends H1, then bH2c extends bH1c.

Proof. The proof is by structural induction on H.

• If H2 remaps H1, then bH2c= bH1c by Lemma 7.7.

• Otherwise, there is an H such that H extends H1 and H2 = H, ` 7→ S { f = v} and

` 6∈ dom(H). By the induction hypothesis, bHc extends bH1c and by construction

bH2c= bHc, ` :S, `. f ′ = v′ where f ′ are the final fields of S. �
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7.3 Non-dependent bounding types

Next, we want to show that if T1 is a subtype of T2, then the non-dependent bound of T1

extends a bound of T2. We first show that type substitution and bounding types commute.

The lemma will only be applied to declared supertypes, which can contain only the this

access path; hence, to simplify the proof, the lemma is restricted to types with access

paths containing a single variable x.

Lemma 7.9 If Γ ` T1 CS1, paths(T )⊆ {x}, T{{Γ; T1/x}}= T2, and T{{Γ; S1/x}}= S2,

then Γ ` T2 CS2.

Proof. The proof is by induction on the structure of T .

Case T = ◦:

Then T2 = ◦= S2.

Case T = T ′.C:

Let T ′{{Γ; T1/x}} = T ′
2 and T ′{{Γ; S1/x}} = S′2. Then T2 = T ′

2.C and S2 = S′2.C. By

the induction hypothesis, Γ ` T ′
2 CS′2. By BD-NEST, Γ ` T ′

2.C CS′2.C.

Case T = x.class:

Then T2 = T1 and S2 = S1. Trivial.

Case T = P[T ′]:

Let T ′{{Γ; T1/x}} = T ′
2 and T ′{{Γ; S1/x}} = S′2. Then T2 = P[T ′

2] and S2 = P[S′2].

By the induction hypothesis, Γ ` T ′
2 CS′2. By BD-PRE, Γ ` P[T ′

2]CP[S′2].
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Case T = &T :

Follows from the induction hypothesis and BD-MEET. �

Then, we show that subtyping tightens the non-dependent bound.

Lemma 7.10 If Γ ` T1≤T2 and Γ ` T1 C S1, then there is an S2 such that Γ ` T2 C S2

and ` S1 @∗ S2.

Proof. The proof is by induction on the subtyping derivation.

Case S-REFL:

Trivial.

Case S-TRANS:

Trivial via the induction hypothesis.

Case S-SUP:

Then T1 = T.C, and there is a P where CT(P.C) = class C extends T ′ {. . .}, Γ `

T ≤P, and T ′{{Γ; T/this}}= T2. By BD-NEST, S1 = S.C where Γ ` T CS. By the

induction hypothesis, ` S@∗P, and by FB, ` S.C @∗P.C. Let T ′{{Γ; S/this}}= S′.

Then by SC, ` P.C @∗ S′. By Lemma 7.9, S′ = S2. Therefore, by transitivity of @∗,

we have ` S1 @∗ S2.

Case S-BOUND:

Trivial since T2 = S1 = S2.

Case S-NEST:

Follows from the induction hypothesis.
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Case S-FIN:

Follows from BD-FIN.

Case S-PRE-1:

Follows from definition of prefix and BD-PRE.

Case S-PRE-2:

Follows from definition of prefix and BD-PRE.

Case S-PRE-OUT:

Follows from the induction hypothesis.

Case S-PRE-IN:

Follows from definition of prefix and BD-PRE.

Case S-MEET-LB:

Follows from BD-MEET.

Case S-MEET-G:

Follows from the induction hypothesis.

Case S-ALIAS:

Then T1 = p1.class and T2 = p2.class and Γ ` p1 = p2. Also, Γ ` p1 :T ′
1 final and

Γ ` p2 :T ′
2 final, where Γ ` T ′

1 CS′1 and Γ ` T ′
2 CS′2. By BD-FIN, Γ ` T1 CS′1 &S′2 and

Γ ` T2 CS′2 &S′1. The case holds since supers(S′1 &S′2) = supers(S′2 &S′1).
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Case S-EVAL:

Trivial since S1 = S2. �

A corollary of Lemma 7.10 is that a field lookup on a subtype returns the same type.

Lemma 7.11 and Γ ` T1≤T2, and ftype(Γ,T1, f ) = [final] Tf , then ftype(Γ,T2, f ) =

[final] Tf .

Proof. Follows immediately from Lemma 7.10 and the definition of ftype. �

7.4 Final access paths

This lemma states that if a final access path p has a given type T , that type must be a

supertype of p.class.

Lemma 7.12 If Γ ` p :Tp final and Γ ` p :T , then Γ ` p.class≤T .

Proof. The proof is by induction on the height of the subtyping derivation. There are

only two ways to derive Γ ` p :T :

Case T-FIN:

Then T = p.class and the case holds by S-REFL.

Case T-SUB:

Then Γ ` p : T ′ and Γ ` T ′≤ T . By the induction hypothesis, Γ ` p.class≤ T ′.

Therefore by S-TRANS, Γ ` p.class≤T . �

A related lemma for location paths states that the declared type S of a location is a

subtype of any other typing with a non-dependent type S′.

Lemma 7.13 If Γ ` ` :S′ and Γ ` ` :S final, then Γ ` S≤S′.
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Proof. Since Γ ` ` : S final, by F-LOC we must have ` : S ∈ Γ. The only way to derive

Γ ` ` : S′ is to use T-FIN to derive Γ ` ` : `.class, and then to derive Γ ` `.class≤ S′,

and then S-TRANS to derive Γ ` ` : S′. The only way to derive Γ ` `.class≤ S′ is to

derive Γ ` `.class≤S by S-FIN and then to derive Γ ` S≤S′, which is assumed. This

proves the lemma. �

7.5 Type substitution

We next prove some lemmas about type substitution. We want to show that type

substitution preserves type well-formedness. First, we show that the result of a type

substitution has a tighter non-dependent bound.

Lemma 7.14 If x : Tx ∈ Γ, and Γ ` Tv ≤ Tx, and Γ ` T C S, and Γ ` Tv : type, and

T{{Γ; Tv/x}}= T ′, then there is an S′ such that Γ ` T ′CS′ and S′@∗ S.

Proof. The proof is by induction on type substitution derivation.

Case T = ◦:

Trivial since T ′ = T .

Case T = T0.C:

Then T ′ = T ′
0.C where T0{{Γ; Tv/x}}= T ′

0.

Let Γ ` T0 C S0. By the induction hypothesis, Γ ` T ′
0 C S′0 and ` S′0 @∗ S0. By

BD-NEST, Γ ` T ′
0.C CS′0.C. The case holds by the definitions of mem and supers.

Case T = p1.class:

Then by BD-FIN, Γ ` p1 = p2, Γ ` p1 : T1 final, Γ ` p2 : T2 final, Γ ` T1 C S1,

Γ ` T2 CS2, and S = S1 &S2. We consider p1 by cases.
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Case p1 = v:

Then T ′ = T .

Case p1 = y:

Then T ′ = T .

Case p1 = x:

Then T ′ = Tv and Γ ` Tv C S′. Since x : Tx ∈ Γ, Γ ` x : Tx final by F-VAR. Since

T = x.class, we have Tx = T1 and Tx ` S1C. Since Γ ` Tv≤Tx, by Lemma 7.10,

` S′@∗ S1. Since Γ ` x = p2, by S-ALIAS we have Γ ` x.class≈ p2.class. By

Lemma 7.10, ` S1 @∗ S2. Therefore ` S′@∗ S1 &S2.

Case p1 = p0. f :

Let p0.class{{Γ; Tv/x}} = Tp. By F-GET, we have Γ ` p0 : Tp final, and

ftype(Γ,Tp, f ) = final Tf , and Γ ` p0. f : Tf final. By BD-FIN, we have

Γ ` Tf CS.

Case Tp = p′0.class:

Then T ′ = p′0. f .class. By F-GET, we have Γ` p′0 :T ′
p final, ftype(Γ,T ′

p, f ) =

final Tf , and Γ ` p′0. f : Tf final. Since Γ ` Tf C S, by BD-FIN, Γ ` T ′C S

and S = S′.

Otherwise:

Tp is not a path type. Then by the definition of type substitution, T ′ = Tf

where ftype(Γ,Tp, f ) = Tf . Since Γ ` Tf CS, we have Γ ` T ′CS and S = S′.

Case T = P[T0]:

Let Γ ` T0 C S0. By the induction hypothesis, Γ ` T ′
0 C S′0 and ` S′0 @∗ S0. Thus,

by BD-PRE, Γ ` P[T ′
0]CS′ where S′ = prefix(P,S′0). Since S = prefix(P,S0), by the

definition of prefix, ` S′@∗ S.
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Case T = &T :

Then T ′ = &T ′. Let Γ ` Ti CSi. By the induction hypothesis, for all i Γ ` T ′
i CS′i and

` S′i @
∗ Si. By BD-MEET, Γ ` T ′

i CS′i. The case holds by the definitions of mem and

supers. �

A corollary of the Lemma 7.14 is that field lookups have the same result on a

substituted type.

Lemma 7.15 If x :Tx ∈ Γ, and Γ ` Tv≤Tx, and ftype(Γ,T, f ) = [final] Tf , and Γ ` Tv :

type, and T{{Γ; Tv/x}}= T ′, then ftype(Γ,T ′, f ) = [final] Tf .

Proof. Follows from Lemma 7.14 and the definition of ftype. �

Next, we prove a few lemmas needed to show type well-formedness is preserved by

type substitution.

Lemma 7.16 If ` S1 @∗ S0, then prefix(P,S1)⊇ prefix(P,S0).

Proof. By the definition of @∗, supers(S1) ⊇ supers(S0) and from the definition of

prefix, it follows that prefix(P,S1)⊇ prefix(P,S0). �

Lemma 7.17 If Γ ` p1 = p2, then either p1 = p2 or p1 and p2 have no free variables.

Proof. The proof is by induction on the derivation of Γ ` p1 = p2. �

Lemma 7.18 Assume x :Tx ∈ Γ, and Γ ` Tv≤Tx, and Γ ` T : type, and Γ ` Tv : type, and

T{{Γ; Tv/x}}= T ′. If for all p1 and p2 in paths(T ), Γ ` p1 = p2, then for all p′1 and p′2

are in paths(T ′), Γ ` p′1 = p′2,
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Proof. If p1 = p2, then necessarily p′1 = p′2. Otherwise, by Lemma 7.17, p1 and p2

have no free variables and therefore p1 = p′1 and p2 = p′2; the lemma then holds by the

induction hypothesis. �

Lemma 7.19 If x : Tx ∈ Γ, and Γ ` Tv≤Tx, and Γ ` T1 &T2 : type, and Γ ` Tv : type, and

T1 &T2{{Γ; Tv/x}} = T ′
1 &T ′

2, and for all p1 and p2 in paths(T1 &T2), Γ ` p1 = p2, and

prefixExact(T1,k)⇔ prefixExact(T2,k), then prefixExact(T ′
1,h)⇔ prefixExact(T ′

2,h) for

some h.

Proof. By Lemma 7.18, for all p′1 and p′2 are in paths(T ′
1 & T ′

2), Γ ` p′1 = p′2. If x is

not free in T , then T ′
1 = T1 and T ′

2 = T2 and the lemma holds with h = k. Otherwise, by

Lemma 7.17, p1 = p2. The lemma holds by induction on the structure of p1. �

Lemma 7.20 If x : Tx ∈ Γ, and Γ ` Tv ≤ Tx, and Γ ` T : type, and Γ ` Tv : type, and

T{{Γ; Tv/x}}= T ′, then Γ ` T ′ : type.

Proof. The proof is by induction on type substitution derivation.

Case T = ◦:

Trivial.

Case T = T0.C:

Then T{{Γ; Tv/x}} = T ′
0.C = T0{{Γ; Tv/x}}.C. By the induction hypothesis, T ′

0 is

well-formed. Let Γ ` T0 CS0 and Γ ` T ′
0 CS′0. By Lemma 7.14, ` S′0 @∗S0. Therefore

` S′0.C :nondep, and by WF-NEST, Γ ` T ′
0.C : type.

Case T = p.class:

We consider p by cases.
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Case p = v:

Trivial.

Case p = y 6= x:

Trivial.

Case p = x:

Then T{{Γ; Tv/x}}= Tv and the case follows from the assumption that Tv is well-

formed.

Case p = p0. f :

Let p0.class{{Γ; Tv/x}} = Tp. Then, by Lemma 7.15, ftype(Γ,Tp, f ) = Tf =

ftype(Γ, p0.class, f ). There are two cases:

Case Tp = p′0.class:

Then T ′ = p′0. f .class. Since by Lemma 7.15, ftype is unchanged by the

substitution, we can derive Γ ` p′0. f :Tf final by F-GET. Hence, by WF-FIN,

we have Γ ` p′0. f .class : type.

Otherwise:

Assume Tp 6= p′0.class. Then T ′ = Tf . By the induction hypothesis, Γ ` Tf :

type.

Case T = P[T0]:

Then T ′ = P[T ′
0] where T0{{Γ; Tv/x}}= T ′

0. By the induction hypothesis, T ′
0 is well-

formed. Let Γ ` T0 C S0 and Γ ` T ′
0 C S1. By Lemma 7.14, ` S1 @∗ S0. Therefore,

by Lemma 7.16, prefix(P,S1) ⊇ prefix(P,S0). Hence, prefix(P,S1) 6= /0. Finally, by

WF-PRE, we can derive Γ ` T ′ : type.

Case T = &T :
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Then T ′ = &T ′ where for all i, Ti{{Γ; Tv/x}} = T ′
i . By WF-MEET, for all i, Γ ` Ti :

type. Therefore, by the induction hypothesis, for all i, Γ ` T ′
i :type. If x is not free in

T , then T = T ′ and the case holds trivially. So, assume x is free in T .

By WF-MEET, all p in paths(T ) are aliases. By Lemma 7.18, all p′ in paths(T ′)

are aliases.

By WF-MEET, for all i and j, prefixExact(Ti,k) ⇒ prefixExact(Tj,k). Thus,

by Lemma 7.19, prefixExact(T ′
i ,h) ⇒ prefixExact(T ′

j ,h) for some h. Thus, we can

derive by WF-MEET, Γ ` T ′ : type. �

7.6 Value substitution

We now prove several value substitution lemmas. First, we show that after substituting

v for x in a final access path, the new path’s declared type is a subtype of the original

path’s declared type.

Lemma 7.21 If x :Tx ∈ Γ, and Γ{v/x} ` v :Tv and Γ{v/x} ` Tv≤Tx , and Γ ` p :T final,

then Γ{v/x} ` p{v/x} :Ts final. where Γ{v/x} ` Ts≤T{v/x}.

Proof. The proof is by induction on the derivation of Γ ` p :T final. Let p′ = p{v/x}

Case F-NULL:

Then p = p′. By F-NULL, Γ{v/x} ` null :T{v/x} final.

Case F-LOC:

Then p = p′ and T = T{v/x}.
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Case F-VAR:

Let p = y 6= x. Then p = p′. Then y : T ∈ Γ. If x is not free in T , then T{v/x} = T .

If, on the other hand, x is free in T , then y : T{v/x} ∈ Γ{v/x} and we can derive

Γ{v/x} ` y : T{v/x} final by F-VAR. Now, let p = x. Then p′ = v and T = Tx and

T{v/x}= Ts = Tv. Since we assumed Γ{v/x} ` Tv≤Tx, the case holds trivially.

Case F-GET:

Then p = p0. f , Γ ` p0 : T0 final, ftype(Γ,T0, f ) = Tf , and T = Tf . By the induction

hypothesis, Γ{v/x} ` p0{v/x} : T ′
0 final, where Γ{v/x} ` T ′

0 ≤T0{v/x}. By Lemma

7.26, ftype(Γ,T0{v/x}, f ) = Tf ; therefore, ftype(Γ,T ′
0, f ) = Tf . Thus, we can derive

by F-GET, Γ ` p0{v/x}. f : Tf {p0{v/x}/this} final, which can be rewritten: Γ `

p0. f{v/x} :(Tf {p0/this}){v/x} final. �

Next, we prove a useful pair of lemmas that allows many of the type substitution (T

for x) lemmas proved above in Section 7.5 to be used easily to prove value substitution

(v for x) lemmas.

Lemma 7.22 If x :Tx ∈ Γ, and Γ{v/x} ` v :Tv and Γ{v/x} ` Tv≤Tx , and Γ ` p.class :

type, then p.class{{Γ; v.class/x}}= p{v/x}.class.

Proof. The proof is by structural induction on p. Let p′ = p{v/x}.

Case p = x:

Then p′ = v. The case follows trivially since x.class{{Γ; v.class/x}}= v.class.

Case p = p0. f :

Then p′ = p0{v/x}. f , and by the induction hypothesis, p0.class{{Γ; v.class/x}}=

p0{v/x}.class. Thus, p0. f .class{{Γ; v.class/x}}= p0{v/x}. f .class.
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Otherwise:

p′ = p and the case holds trivially. �

Lemma 7.23 (Type substitution lifting) If x :Tx ∈ Γ, and Γ{v/x} ` v :Tv and Γ{v/x} `

Tv≤Tx , and Γ ` T : type, then T{{Γ; v.class/x}}= T{v/x}.

Proof. The proof is by structural induction on T .

Case T = ◦:

Trivial.

Case T = T0.C:

Follows from the induction hypothesis and definition of type substitution.

Case T = p.class:

Then T{v/x}= p′.class where p′ = p{v/x}. The case follows from Lemma 7.22.

Case T = P[T0]:

Then T{v/x} = P[T0{v/x}]. By the induction hypothesis, T0{{Γ; v.class/x}} =

T0{v/x}. Since exact(P[T0]), we also have exact(P[T0{v/x}]). Hence, the case

holds by the definition of type substitution,

Case T = &T :

Follows from the induction hypothesis and definition of type substitution. �

Using the lifting lemma, we can show that value substitution preserves type well-

formedness, tightens the non-dependent bound of a type, and preserves the result of

field and method lookups.
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Lemma 7.24 If x : Tx ∈ Γ, and Γ{v/x} ` v : Tv and Γ{v/x} ` Tv≤Tx , and Γ ` T : type

then Γ{v/x} ` T{v/x} : type.

Proof. Follows from Lemma 7.23 and Lemma 7.20. �

Lemma 7.25 If x : Tx ∈ Γ, and Γ{v/x} ` v : Tv and Γ{v/x} ` Tv≤Tx , and Γ ` T C S,

then Γ{v/x} ` T{v/x}CS′ where ` S′@∗ S.

Proof. Follows from Lemma 7.14 and Lemma 7.23. �

Lemma 7.26 If x:Tx ∈Γ, and Γ{v/x} ` v:Tv and Γ{v/x} ` Tv≤Tx , and ftype(Γ,T, f ) =

[final] Tf , then ftype(Γ{v/x},T{v/x}, f ) = [final] Tf .

Proof. Follows from Lemma 7.25 and the definition of fields. �

Lemma 7.27 If x:Tx ∈Γ, and Γ{v/x} ` v:Tv and Γ{v/x} `Tv≤Tx , and mtype(Γ,T,m)=

(x :T )→ Tn+1, then mtype(Γ{v/x},T{v/x},m) = (x :T )→ Tn+1.

Proof. Follows from Lemma 7.25 and the definition of methods. �

Next, we want to show that value substitution on a type preserves the subtyping

relation. We first show that exactness is preserved by value substitution.

Lemma 7.28 If x :Tx ∈ Γ, and Γ{v/x} ` v :Tv and Γ{v/x} ` Tv≤Tx , and exact(T ), then

exact(T{v/x}).

Proof. By inspection of definition of exact. �

Next we show that type substitution is preserved by value substitution if variable

capture is avoided.

Lemma 7.29 If x:Tx ∈ Γ, and Γ{v/x} ` v:Tv and Γ{v/x} ` Tv≤Tx , and T{{Γ; Ty/y}}=

T ′, and x is not free in T , then T{{Γ{v/x}; Ty{v/x}/y}}= T ′{v/x}.
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Proof. The proof is by induction on type substitution derivation.

Case T = ◦:

Trivial.

Case T = T0.C:

Follows from the induction hypothesis.

Case T = p.class:

We prove the case by structural induction on p.

Case p = v:

Trivial.

Case p = z 6= y:

Trivial.

Case p = y:

Then T ′ = Ty and T ′{v/x} = Ty{v/x}. By the definition of type substitution,

y.class{{Γ{v/x}; Ty{v/x}/y}}= Ty{v/x}.

Case p = p0. f :

Let p0.class{{Γ; Ty/y}} = Tp. and p0.class{{Γ{v/x}; Ty{v/x}/y}} = T ′
p. By

the induction hypothesis, we have T ′
p = Tp{v/x}.

Case Tp = p1.class:

Then T ′
p = p1{v/x}.class and p0. f .class{{Γ; Ty/y}}= p1. f .class. There-

fore, p0. f .class{{Γ{v/x}; Ty{v/x}/y}} = p1{v/x}. f .class, which equals

p1. f .class{v/x}.
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Otherwise:

Then, Tp 6= p1.class. Since ftype(Γ,Tp, f ) = Tf , by Lemma 7.26, we have

ftype(Γ{v/x},Tp{v/x}, f ) = Tf . Since by F-OK, /0 ` Tf :type, x is not free in

Tf , and hence Tf {v/x}= Tf .

Case T = P[T0]:

Follows from the induction hypothesis.

Case T = &T :

Follows from the induction hypothesis. �

Using the above lemmas, we can finally show that value substitution preserves

subtyping.

Lemma 7.30 If x : Tx ∈ Γ, and Γ{v/x} ` v : Tv and Γ{v/x} ` Tv≤Tx , and Γ ` T1≤T2,

then Γ{v/x} ` T1{v/x}≤T2{v/x}.

Proof. The proof is by induction on the derivation of Γ ` T1≤T2.

Case S-REFL:

Trivial.

Case S-TRANS:

Trivial via the induction hypothesis.

Case S-SUP:

Follows from the induction hypothesis and Lemma 7.29. and S-TRANS.
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Case S-BOUND:

By Lemma 7.24 and Lemma 7.25 and S-TRANS.

Case S-NEST:

Follows from the induction hypothesis and Lemma 7.24.

Case S-FIN:

Lemma 7.21.

Case S-PRE-1:

Follows from the induction hypothesis and Lemma 7.24.

Case S-PRE-2:

By Lemma 7.24.

Case S-PRE-OUT:

Follows from the induction hypothesis.

Case S-PRE-IN:

By Lemma 7.24.

Case S-MEET-LB:

By Lemma 7.24.

Case S-MEET-G:

Follows from the induction hypothesis.
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Case S-ALIAS:

Follows from definition of Γ{v/x}.

Case S-EVAL:

Trivial since Ui{v/x}= Ui. �

This lemma is the main substitution lemma and states that typing is preserved by

substitution.

Lemma 7.31 (Substitution) If x :Tx ∈ Γ, and Γ{v/x} ` v :Tv and Γ{v/x} ` Tv≤Tx , and

Γ ` e :T , then Γ{v/x} ` e{v/x} :T{v/x}.

Proof. The proof is by induction on the derivation of Γ ` e :T .

Let e′ = e{v/x} and T ′ = T{v/x}.

Case T-FIN:

Then e = p and T = p.class and e′ = p{v/x} and T ′ = p{v/x}.class. The case

follows from Lemma 7.21.

Case T-GET:

Then e = e0. f , Γ ` e0 : T0, ftype(Γ,T0, f ) = [final] Tf , and T = Tf , and e′ =

e0{v/x}. f = e′0. f .

Since Γ ` e0 : T0, by the induction hypothesis we have Γ{v/x} ` e0{v/x} :

T0{v/x}. By Lemma 7.26, and ftype(Γ{v/x},T0{v/x}, f ) = [final] Tf . Since by

F-OK, /0 ` Tf : type, x is not free in Tf , and hence T ′ = Tf {v/x}= Tf = T . The case

holds by T-GET.

Case T-SET:

The proof of this case is similar to the proof of the previous case for T-GET.
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Case T-SEQ:

Follows from the induction hypothesis.

Case T-NEW:

Follows from Lemma 7.24, Lemma 7.26, and the induction hypothesis.

Case T-CALL:

Follows from the induction hypothesis, Lemma 7.27, Lemma 7.29, and Lemma 7.28.

Case T-SUB:

Then Γ ` e : T ′′ where Γ ` T ′′≤T . By the induction hypothesis, Γ{v/x} ` e{v/x} :

T ′′{v/x}. By Lemma 7.30, Γ{v/x} ` T ′′{v/x}≤T{v/x}. Thus, by T-SUB, Γ{v/x} `

e{v/x} :T{v/x}. �

The following lemma relates type and value substitution. It states that a value

substitution of v for x in a type T results in a subtype of the type substitution of v’s

static type Tv for occurrences of x in T .

Lemma 7.32 If x :Tx ∈ Γ, and Γ{v/x} ` v :Tv and Γ{v/x} ` Tv≤Tx , and Γ ` env, and

T{{Γ{v/x}; Tv/x}}= T ′, then Γ{v/x} ` T{v/x}≤T ′.

Proof. The proof is by induction on type substitution derivation.

Case T = ◦:

Trivial.

Case T = T0.C:

Then T{v/x} = T0{v/x}.C and T ′ = T ′
0.C where T0{{Γ{v/x}; Tv/x}} = T ′

0. By

the induction hypothesis Γ{v/x} ` T0{v/x}≤T ′
0; therefore, by S-NEST, Γ{v/x} `

T0{v/x}.C≤T ′
0.C.
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Case T = p.class:

Then T{v/x}= p{v/x}.class. We consider p by cases.

Case p = v:

Trivial.

Case p = y 6= x:

Trivial.

Case p = x:

Then T = x.class and T ′ = Tv and T{v/x} = v.class. Since Γ{v/x} ` v : T ′,

Γ{v/x} ` v.class≤T ′ by Lemma 7.12.

Case p = p0. f :

Then T = p0. f .class and T{v/x}= p0{v/x}. f .class. Applying the definition

of type substitution, let p0.class{{Γ{v/x}; Tv/x}}= Tp. Then, by the induction

hypothesis, Γ{v/x} ` p0{v/x}.class≤Tp. There are two cases for Tp.

Case Tp 6= p′0.class for any p′0:

Then, ftype(Γ{v/x},Tp, f ) = Tf . By F-GET, we have Γ{v/x} ` p0{v/x}. f :

Tf final. Therefore, by Lemma 7.12, we can derive the subtyping judgment

Γ{v/x} ` p0{v/x}. f .class≤Tf {p0{v/x}/this}. Since Tf has no free vari-

ables, Tf = Tf {p0{v/x}/this}.

Case Tp = p′0.class:

It must be that p′0 = p0{v/x}. The case follows trivially from S-REFL.

Case T = P[T0]:

Then T{v/x} = P[T0{v/x}]. and T ′ = P[T ′
0] where and T0{{Γ{v/x}; Tv/x}} = T ′

0.

By the induction hypothesis we have Γ{v/x} ` T0{v/x}≤T ′
0; therefore, by S-PRE-1

we have Γ{v/x} ` T{v/x}≤T ′.
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Case T = &T :

Then T{v/x}= &T{v/x} and T ′ = &T ′ where for all i, Ti{{Γ{v/x}; Tv/x}}= T ′
i . By

the induction hypothesis we have Γ{v/x} ` Ti{v/x}≤T ′
i ; therefore, by S-MEET-G

we have Γ{v/x} ` T{v/x}≤T ′. �

7.7 Inheritance and subtyping

Here we prove some lemmas about inheritance and subtyping.

Lemma 7.33 If ` P1 @P2, then /0 ` P1≤P2.

Proof. The proof is by induction on the derivation of ` P1 @P2. There are two cases:

Case INH-SC:

If ` P1 @sc P2, then P1 = P′1.C and there is a P such that ` P′1 @∗ P, and CT(P.C) =

class C extends T {. . .}, and T{{ /0; P′1/this}} = S, and P2 ∈ mem(S). By the

induction hypothesis and S-TRANS, /0 ` P′1 ≤ P. Thus, by S-SUP, we can derive

/0 ` P′1.C≤P2.

Case INH-FB:

If ` P1 @fb P2, then P1 = P′1.C and P2 = P′2.C and ` P′1 @ P′2. By the induction

hypothesis, /0 ` P′1≤P′2. By S-NEST, /0 ` P1≤P2. �

Lemma 7.34 If P ∈ supers(S), then /0 ` S≤P.

Proof. Trivial from Lemma 7.33. �
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7.8 Method lookup agreement

This lemma states that a method type lookup and a method body lookup on the same

type S agree with each other.

Lemma 7.35 If mtype( /0,S,m) = (x :T )→ Tn+1, then mbody(S,m) = Tn+1 m(T x) {e}.

Proof. Follows immediately from definition of mtype and mbody. �

7.9 Subject reduction

The subject reduction lemma states that a well-formed configuration steps to another

well-formed configuration or to a configuration containing NullError. We first show that

if a final access path p steps to p′, then p′ is also a final access path and furthermore it

is an alias of p.

Lemma 7.36 If ` p,H, and bHc ` p :T final, and p,H −→ p′,H, and bHc ` p′ :T ′ final,

then bHc ` p = p′.

Proof. The proof is by induction on the derivation of bHc ` p :T final.

Since p can make a step, p = p0. f . We consider p0 by cases.

Case p0 = null:

Then p = null. f and R-NULL is the only rule that can apply.

Case p0 = `:

Then p = `. f and R-GET is the only rule that can apply, p′ = vi = H(`)[ fi] where

H(`) = S { f = v}. By the construction of bHc, bHc must include `. fi = vi.
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Case p0 6= v:

Then R-CONG is the only rule that can apply and p0,H −→ p′0,H. By F-GET,

bHc ` p0 :T0 final. By the induction hypothesis, bHc ` p0 = p′0. Thus, by A-FIELD,

bHc ` p0. f = p′0. f . �

We also prove that if p steps to p′, then the declared type of p′ is a subtype of the

declared type of p.

Lemma 7.37 If ` p,H, and bHc ` p : T final, and p,H −→ p′,H, then ` p′,H and

bHc ` p′ :T ′ final, where bHc ` T ′≤T .

Proof. The proof is by induction on the derivation of bHc ` p :T final.

Since p can make a step, p = p0. f . We consider p0 by cases.

Case p0 = null:

Then p = null. f and R-NULL is the only rule that can apply.

Case p0 = `:

Then p = `. f and R-GET is the only rule that can apply. Then, p′ = vi = H(`)[ fi]

where H(`) = S { f = v}. By F-GET, bHc ` ` : T0 final, and ftype(bHc,T0, f ) = T .

By F-OK, T must be of the form S f .

If vi = null, then bHc ` vi :Si final by F-NULL for any Si. Specifically, let Si = T .

Since ` p,H, by CONFIG and HEAP, we have H ` ` : loc. Thus, by H-LOC, we have

bHc ` vi :T .

If vi = `i, then bHc ` vi :Si final by F-LOC where `i :Si ∈ bHc. By Lemma 7.13,

bHc ` Si≤T . By H-LOC, we can also derive vi ∈ dom(H)∪{null}. If vi = `i, then

vi ∈ dom(H). Therefore by CONFIG, ` vi,H.
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Case p0 6= v:

Then R-CONG is the only rule that can apply and p0,H −→ p′0,H. By F-GET,

bHc ` p0 : T0 final, and ftype(bHc,T0, f ) = T . By the induction hypothesis, bHc `

p′0 : T ′
0 final and bHc ` T ′

0 ≤T0. By Lemma 7.11, ftype(bHc,T ′
0, f ) = T . Hence, we

can derive by F-GET, bHc ` p′0. f :T final.

By the induction hypothesis, ` p′0,H. Therefore, since locs(p′0. f ) = locs(p′0), by

CONFIG we can derive ` p′0. f ,H. �

This lemma states that if a dependent type steps to another dependent type, the bound

on the result type is tighter.

Lemma 7.38 If bHc ` TE[p] C S and p,H −→ p′,H, then bHc ` TE[p′] C S′ where

` S′@∗ S.

Proof. The proof is by induction on bHc ` TE[p]CS.

Case TE = TE0.C:

Then TE[p] = TE0[p].C. By BD-NEST, bHc ` TE0[p] C S0 where S = S0.C. By

the induction hypothesis, bHc ` TE0[p′] C S′0. Thus, we can derive by BD-NEST.

bHc ` TE0[p′]C S′0.C. Also, by the induction hypothesis, ` S′0 @∗ S0. We therefore

have ` S′0.C @∗ S0.C by the definition of INH-FB.

Case TE = E.class:

Then TE[p] = E.class[p] = E[p].class. By BD-FIN, bHc `E[p] = p2, bHc `E[p]:

T1 final, bHc ` p2 :T2 final, bHc ` T1 CS1, bHc ` T2 CS2, and S = S1 &S2.

By Lemma 7.37, bHc ` E.class[p′] :T ′ final where bHc ` T ′≤T .

Let bHc ` T ′C S′. By BD-FIN, we can derive bHc ` E[p′].classC S′ & S2, By

Lemma 7.10, ` S′@∗ S1. Therefore, ` S′ &S1 @∗ S1 &S2.
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Case TE = P[TE0]:

Then TE[p] = P[TE0[p]]. By BD-PRE, bHc ` TE0[p]C S0, and S = P[S0]. By the

induction hypothesis, bHc ` TE0[p′]C S′0 where ` S′0 @∗ S0. By BD-PRE, we have

S′ = P[S′0].

By Lemma 7.16, prefix(P,S′0) ⊇ prefix(P,S0). Therefore S′ @∗ S. Thus, by

BD-PRE, bHc ` P[TE0[p′]]CS′.

Case TE = &(U ,TE0,T ):

Then TE[p] = &(U ,TE0[p],T ). By WF-MEET, bHc ` TE0[p] :type. By the induction

hypothesis, bHc ` TE0[p′] : type. All other components of the intersection do not

change and therefore remain well-formed. Thus, we can derive by WF-MEET,

bHc ` &(U ,TE0[p′],T ) : type. �

This lemma states that if a dependent type steps to another dependent type, the result

type is well-formed.

Lemma 7.39 If bHc ` TE[p] : type and p,H −→ p′,H, then bHc ` TE[p′] : type.

Proof. The proof is by induction on bHc ` TE[p] : type.

Case TE = TE0.C:

Then TE[p] = TE0[p].C. By WF-NEST, bHc ` TE0[p] : type, bHc ` TE0[p]CS, and

` S.C :nondep. By the induction hypothesis, bHc ` TE0[p′] : type. By Lemma 7.38,

bHc ` TE0[p′]CS′ where ` S′@∗ S. Since ` S′@∗ S and since ` S.C :nondep, we also

have ` S′.C :nondep. Thus, we can derive by WF-NEST. bHc ` TE0[p′] : type.

Case TE = E.class:
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Then TE[p] = E.class[p]. By WF-FIN, bHc `E.class[p]:T final. By Lemma 7.37,

bHc ` E.class[p′] :T ′ final. Hence, by WF-FIN, we can derive bHc ` E.class[p′] :

type.

Case TE = P[TE0]:

Then TE[p] = P[TE0[p]]. By WF-PRE, bHc ` P : type, bHc ` TE0[p] : type, bHc `

P[TE0[p]]CS, and prefix(P,S) 6= /0.

By the induction hypothesis, bHc ` TE0[p′] : type. By Lemma 7.38 bHc `

TE0[p′]CS′0, where ` S′0 @∗ S0. By Lemma 7.16, prefix(P,S′0)⊇ prefix(P,S0). There-

fore prefix(P,S′0) 6= /0. Hence, by WF-PRE, we can derive bHc ` P[TE0[p′]] : type.

Case TE = &(U ,TE0,T ):

Then TE[p] = &(U ,TE0[p],T ). By WF-MEET, bHc ` TE0[p] :type. By the induction

hypothesis, bHc ` TE0[p′] : type. All other components of the intersection do not

change and therefore remain well-formed.

Since the structure of TE0[p] and TE0[p′] are the same, it is easy to see that

prefixExact(TE0[p],k)⇔ prefixExact(TE0[p′],k).

Since all Ti in exacts(TE[p]) are equivalent up to aliasing, and since by Lemma

7.36 bHc ` p = p′, we have all Ti in exacts(TE[p′]) are equivalent up to aliasing,

Thus, we can derive by WF-MEET, bHc ` &(U ,TE0[p′],T ) : type. �

The following lemma states that if one well-formed configuration steps to another

well-formed configuration without changing the heap, then the result configuration in

an evaluation context is also well-formed.

Lemma 7.40 If ` E[e],H, and e,H −→ e′,H, and ` e′,H, then ` E[e′],H.
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Proof. Since locs(E[e′])⊆ locs(E[e])∪ locs(e′), and locs(E[e])⊆ dom(H), and locs(e′)⊆

dom(H), we have locs(E[e′])⊆ dom(H). Since ` e′,H, we have `H. Thus, by CONFIG,

` E[e′],H. �

Next, we show that if a type T is exact and has a subtype that is a location dependent

type `.class, that T is a subtype of `.class; thus, the two types are equivalent.

Lemma 7.41 If bHc ` `.class≤T and exact(T ), then bHc ` T ≤ `.class.

Proof. The proof is by induction on the derivation of bHc ` `.class≤T .

Case S-REFL:

Trivial.

Case S-TRANS:

Follows from the induction hypothesis.

Case S-SUP:

Vacuous.

Case S-BOUND:

Vacuous.

Case S-NEST:

Vacuous.

Case S-FIN:

Vacuous since S-FIN requires T be an S, which is not exact.
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Case S-PRE-1:

Vacuous.

Case S-PRE-2:

Vacuous.

Case S-PRE-OUT:

Vacuous.

Case S-PRE-IN:

Then T = P[`.class].C. Trivial by S-PRE-IN.

Case S-MEET-LB:

Vacuous.

Case S-MEET-G:

Then T = &T and bHc ` `.class≤Ti for all i. By WF-MEET, all Ti are exact. By

the induction hypothesis, bHc ` Ti ≤ `.class. Therefore, bHc ` T ≤ `.class by

S-MEET-LB.

Case S-ALIAS:

Trivial.

Case S-EVAL:

Trivial. �

Finally, we prove the subject reduction lemma.
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Lemma 7.2 (Subject reduction) If ` e,H, bHc ` e :T , and e,H −→ r,H ′, then either

• r = e′, ` e′,H ′, and bH ′c ` e′ :T , or

• r = NullError.

Proof. The proof is by induction on the typing derivation bHc ` e :T . We first consider

the case where the derivation of bHc ` e : T ends with an application of T-SUB. Then

bHc ` e :T ′ where bHc ` T ′≤T .

If r = e′, then by the induction hypothesis, bH ′c ` e′ :T ′. By Lemma 7.4, since bH ′c

extends bHc. bH ′c ` T ′≤T . Thus, by T-SUB we can derive bH ′c ` e′ :T . Thus, for the

remainder of the proof we need only consider typing derivations ending in a rule other

than T-SUB.

We consider e by cases depending on the reduction rule used. First, note that since

bHc contains no x :T , and since bHc ` e :T , e contains no free variables. Also, note that

by Lemma 7.8, bH ′c extends bHc.

For the cases below where e = E[e0] and R-CONG applies, to show that ` e,H ′, we

need only show that the typing derivation for e includes bHc ` e0 : T0. Then, by the

induction hypothesis, ` e′0,H
′, and by Lemma 7.40, we can derive ` E[e′0],H

′. For the

cases below where e = NE, R-NULL applies and r = NullError.

Case e = v:

Vacuously true since v cannot take a step.

Case e = x:

Vacuously true since e contains no free variables.

Case e = e0. f :
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Case e = `. fi:

Then R-GET is the only rule that can apply, H ′ = H, and r = vi = H(`)[ fi] where

H(`) = S { f = v}. Besides T-SUB, handled above, there are two cases for the

derivation of bHc ` `. fi :T .

Case T-FIN:

Then T = `. fi.class and fi is a final field By the definition of bHc,

since H(`) = S { f = v}, it must that `. fi.class = vi.class ∈ bHc. Thus,

by S-ALIAS, bHc ` vi.class≤ `. fi.class. Thus, by T-SUB, bHc ` vi :

`. fi.class. Note that this is the place where we use the fact that fields are

final. If fi is not final, `. fi.class= vi.class will not be in bHc. Since bH ′c

extends bHc, By Lemma 7.4 we have bHc ` vi :`. fi.class.

Case T-GET:

By F-LOC and T-FIN, bHc ` `:`.class. Let ftype(bHc, `.class, fi) = Tf . By

T-GET, Tf = T and we can derive bHc ` `. fi :T . Since `H, and H(`)[ fi] = vi,

we have by H-LOC, bHc ` vi :Tf .

Case e = null. f :

Then R-NULL is the only rule that can apply.

Case e = e0. f where e0 6= v:

Then R-CONG is the only rule that can apply and e0,H −→ e′0,H
′. Again, there

are two cases for the derivation of bHc ` e0. fi :T .

Case T-FIN:

Then e0 = p and e′0 = p′ and T = p. f .class. By T-FIN, bHc ` p. f :Tp final.

By Lemma 7.36 and Lemma 7.37, H = H ′, and bHc ` p′. f : T ′
p final, and

bHc ` p. f = p′. f . Thus, we can derive by T-FIN, bHc ` p′. f : p′. f .class,

and by S-ALIAS, bHc ` p. f .class ≈ p′. f .class. and by S-SUB, bHc `

p′. f : p. f .class.
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Case T-GET:

Then bHc ` e0 : T0 and ftype(bHc,T0, f ) = Tf = T . Since bHc ` e0 : T0,

by the induction hypothesis, bH ′c ` e′0 : T0. By Lemma 7.4, since bH ′c

extends bHc, we have ftype(bH ′c,T0, f ) = Tf . Thus, we can derive by T-GET,

bH ′c ` e′0. f :T .

Case e = e0. f = e1:

Case e = null. f = e1:

Then R-NULL is the only rule that can apply.

Case e = `. f = v:

Then R-SET is the only rule that can apply and e′ = v and H ′(`)[ f ] = v. The

judgment bHc ` v :T follows trivially from T-SET. Let H(`) = S { f = v}. Since

` e,H, we have ` H and H ` v : loc and also H ` v : loc. By F-LOC and T-FIN,

bH ′c ` ` : `.class. Let ftype(bHc, `.class, f ) = Tf . To show that H ′ is well-

formed, we need to show that bH ′c ` v : Tf . By T-SET, T = Tf and therefore

bHc ` v : T . Therefore by Lemma 7.4, bH ′c ` v : T . Since H ′ is equal to H

except for the value stored in H ′(`)[ f ], namely v, and since both bHc ` v : T

and bH ′c ` v :T , and since H ` v : loc, it must be that ` H ′.

Case e = `. f = e1 where e1 6= v:

Then R-CONG is the only rule that can apply and e1,H −→ e′1,H
′. By T-SET,

bHc ` ` :T0, ftype(bHc,T0, f ) = Tf = T , and bHc ` e1 :T . By Lemma 7.4, since

bH ′c extends bHc, we have ftype(bH ′c,T0, f ) = Tf = T and bH ′c ` ` :T0. By the

induction hypothesis bH ′c ` e′1 :T . Thus we can derive by T-SET, bH ′c ` e′ :T .

Case e = e0. f = e1 where e0 6= v:

Then R-CONG is the only rule that can apply and e0,H −→ e′0,H
′. By T-SET,

bHc ` e0 : T0, ftype(bHc,T0, f ) = Tf = T , and bHc ` e1 : T . By the induction
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hypothesis bH ′c ` e′0 : T . By Lemma 7.4, since bH ′c extends bHc, we have

ftype(bH ′c,T0, f ) = Tf = T and bH ′c ` e1 : T . Thus we can derive by T-SET,

bH ′c ` e′ :T .

Case e = e0.m(e):

By T-CALL, all of the following hold:

• bHc ` e0 :T 0
0

• mtype(bHc,T 0
0 ,m) = (x :T 0)→ T 0

n+1

• x0 = this

• ∀i = 1, . . . ,n+1. ∀ j = 1, . . . , i. T j−1
i {{bHc; T j−1

j−1 /x j−1}}= T j
i

• ∀i = 1, . . . ,n. ∀ j = 1, . . . , i. prefixExact(T j−1
i ,k)⇒ prefixExact(T j

i ,k)

• ∀i = 1, . . . ,n. ∀ j = 1, . . . , i. p. f ∈ paths(T j−1
i )⇒ p{e j−1/x j−1}. f ∈ paths(T j

i )

• ∀i = 1, . . . ,n. bHc ` ei :T i
i .

• T = T n+1
n+1 .

We consider e by cases.

Case e = null.m(e):

Then R-NULL is the only rule that can apply.

Case e = `.m(v):

Then R-CALL is the only rule that can apply and H = H ′. By R-CALL, bHc `

T 0
0 C S, and mbody(S,m) = Tn+1 m(T x) {em}. By M-OK, Γ ` em : Tn+1 where

Γ = this :P,x :T for some P ∈ supers(S). By Lemma 7.4, (bHc,Γ) ` em :Tn+1.

Let e0 = em and T 0
e = Tn+1, and let e1 = em{`/this} and T 1

e = Tn+1{`/this},

and for j = 1, . . . ,n, let e j+1 = e j{v j/x j} and T j+1
e = T j

e {v j/x j}. Note e′ = en+1.

We want to show that bHc ` en+1 : T n+1
n+1 . We do this in two steps. First, we

show (1) by Lemma 7.31, bHc ` en+1 :T n+1
e . Then we show (2) by Lemma 7.32,

bHc ` T n+1
e ≤T n+1

n+1 . By T-SUB, bHc ` en+1 :T n+1
n+1 .
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To apply the two lemmas, we need to show that the types of the actual values

are subtypes of the (substituted) declared formal types; that is, when the lemmas

are applied to a substitution of v for x in some Γ, if x :Tx ∈ Γ and Γ{v/x} ` v :Tv,

we must have Γ{v/x} ` Tv≤Tx. Specifically, we need to show:

1. bHc ` T 0
0 ≤P

2. for i = 1, . . . ,n and j = 1, . . . , i, bHc ` T j
i ≤T j−1

i {v j−1/x j−1}, with x0 = this

and v0 = `.

We first prove (1). Since by T-CALL, bHc ` ` : T 0
0 , we need to show that

bHc ` T 0
0 ≤P. We do so as follows: Since bHc ` T 0

0 CS, we have bHc ` T 0
0 ≤S by

S-BOUND. Since ` S @∗ P, by Lemma 7.34, /0 ` S≤P. Therefore, by S-TRANS,

bHc ` T 0
0 ≤P. This proves (1).

To prove (2), we fix i and j. The proof is by structural induction on T j−1
i .

Case T j−1
i = ◦:

Then T j
i = T j−1

i {v j−1/x j−1}= T j−1
i .

Case T j−1
i = T ′

i .C:

Follows from the induction hypothesis and S-NEST.

Case T j−1
i = p.class:

We consider p by cases.

If p = v or p = x 6= x j−1, then T j
i = T j−1

i {v j−1/x j−1}= T j−1
i .

If p = x j−1, then T j−1
i = x j−1.class, and T j

i = T j−1
i {{bHc; T j−1

j−1 /x j−1}}=

T j−1
j−1 and T j−1

i {v j−1/x j−1} = v j−1.class. Since exact(T j−1
i ), by T-CALL

we have exact(T j
i ), and hence exact(T j−1

j−1 ). Thus, since bHc ` v j−1.class≤

T j−1
j−1 , we have bHc ` T j−1

j−1 ≤ v j−1.class by Lemma 7.41.

Finally, assume p = p0. f and let Tp = p0.class{{bHc; T j−1
j−1 /x j−1}}. If

Tp is not a path type, then T j
i = ftype(bHc,Tp, f ), which is not exact by F-OK.

Hence, this case holds vacuously. Otherwise, if Tp = p′0.class, then T j
i =
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p′0. f .class. We need to show bHc ` p′0. f .class≤ p0{v j−1/x j−1}. f .class.

Since T-CALL requires field paths be preserved and since p0. f ∈ paths(T j−1
i ),

we must have p′ ∈ paths(T j
i ) where bHc ` p′ = p0{v j−1/x j−1}. f . By

S-ALIAS, bHc ` p′0. f .class≤ p0{v j−1/x j−1}. f .class.

Case T j−1
i = P[T ′

i ]:

Follows from the induction hypothesis and S-PRE-1.

Case T j−1
i = &T :

Follows from the induction hypothesis and S-MEET-G.

Therefore, for all i = 1, . . . ,n and for all j = 1, . . . , j, we have bHc ` T j
i ≤

T j−1
i {v j−1/x j−1}. This proves (2).

Now that we have proved (1) and (2), a simple application of Lemma 7.31

and Lemma 7.32 gives us bHc ` e′ :Tn+1. Thus, by T-SUB, bHc ` em{`,v/this,x}:

T .

Case e = `.m(e) where some ei 6= v:

Then R-CONG is the only rule that can apply. WLOG let ei be the first ei that is

not a value. Then, ei,H −→ e′i,H
′. By the induction hypothesis, bH ′c ` e′i :T i

i .

By applying Lemma 7.4 to all other subexpressions, we have for all j 6= i,

bH ′c ` e j : T j
j and bH ′c ` ` : T 0

0 . By Lemma 7.4, since bH ′c extends bHc,

we have mtype(bH ′c,T 0
0 ,m) = (x : T 0) → T 0

n+1. Also, by Lemma 7.4, for all

j = 1, . . . ,n+1 and all k ≤ j, T k−1
j {{bH ′c; xk/T k

k }}= T k
j .

Since the types of all e are preserved, and since prefixExact(T j−1
i ,k) if and

only if prefixExact(T j
i ,k) before the step, then this property also holds after the

step.

Since the types of all e are preserved, paths(T j−1
i ) and paths(T j

i ) are also

preserved. Thus, we can derive by T-CALL bH ′c ` e′ :T .
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Case e = e0.m(e) where e0 6= v:

Then R-CONG is the only rule that can apply and e0,H −→ e′0,H
′. By the

induction hypothesis, bH ′c ` e′0 :T 0
0 . By Lemma 7.4, we have for all i≥ 0 bH ′c `

ei : T i
i . By Lemma 7.4, since bH ′c extends bHc, we have mtype(bH ′c,T 0

0 ,m) =

(x : T 0) → T 0
n+1. Also, by Lemma 7.4, for all j = 1, . . . ,n + 1 and all k ≤ j,

T k−1
j {{bH ′c; xk/T k

k }}= T k
j .

Since the types of all e are preserved, and since prefixExact(T j−1
i ,k) if and

only if prefixExact(T j
i ,k) before the step, this property also holds after the step.

Since the types of all e are preserved, paths(T j−1
i ) and paths(T j

i ) are also

preserved. Thus, we can derive by T-CALL bH ′c ` e′ :T .

Case e = new T ( f = e):

Case e = newU( f = v):

Then R-NEW and R-ALLOC are the only rules that can apply. Let bHc `U CS.

• If |fields(S)| < | f |, then R-NEW is the only rule that can apply and e′ =

new U( f = v, f ′ = e′) and H = H ′ and T = U . By the definition of fields, for

all f ′i ∈ f ′, we have ftype(bHc,U, f ′i ) = [final] T ′
i By F-OK, for all f ′i ∈ f ′,

we have /0 ` e′i :T ′
i . By Lemma 7.4, for all i, bH ′c ` e′i :T ′

i . Thus, we can derive

by T-NEW we have bHc ` e′ :T .

• If |fields(S)| = | f |, then R-ALLOC is the only rule that can apply and e′ = `

and H ′ = H, ` 7→ S { f = v}. Since H ′(`) = S { f = v}, ` :S ∈ bH ′c. Therefore,

by F-LOC, bH ′c ` ` : S final, and by T-FIN, bH ′c ` ` : `.class. Since bH ′c `

`.classCS, we have by S-EVAL, bH ′c ` `.class≤U . Therefore, by S-SUB,

bH ′c ` e′ :U . Since ` e,H, we have `H. Thus, H ` `′ : loc for all `′ ∈ dom(H).

Since the only new location is `, we just need to show that H ′ ` ` : loc. By

R-ALLOC, we have H ′(`) = S { f = v}. Since ` e,H, all locs(e) ⊆ dom(H).
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Therefore v ⊆ dom(H)∪{null}. By T-NEW, for all i, ftype(bHc,U, fi) = Ti

and bHc ` vi :Ti.

By Lemma 7.4, for all i, bH ′c ` vi : Ti. Thus, we can derive H ′ ` ` : loc

by H-LOC. Since ` ∈ dom(H ′), and e′ = `, we have locs(e′) ⊆ dom(H ′).

Therefore, we can derive by CONFIG, ` e′,H ′.

Case e = newU( f = e) where some ei 6= v:

Then R-CONG is the only rule that can apply. WLOG let ei be the first ei that

is not a value. Then, ei,H −→ e′i,H
′. By T-NEW, ftype(bHc,U, f ) = T . By

Lemma 7.4, since bH ′c extends bHc, we have ftype(bH ′c,U, f ) = T . By T-NEW,

bHc ` ei : Ti. Therefore, by the induction hypothesis, bH ′c ` e′i : Ti. With this

judgment and by Lemma 7.4 for all other subexpressions, we have bH ′c ` e :T .

Thus, by T-NEW, we can derive bH ′c ` e′ :T .

Case e = new TE[null]( f = e):

Then R-NULL is the only rule that can apply.

Case e = new TE[p]( f = e) where p 6= null and TE[p] 6= U :

Then R-CONG is the only rule that can apply and p,H −→ p′,H. By T-NEW, we

have bHc ` e :T . By Lemma 7.4, we have bH ′c ` e :T . Since bHc ` TE[p] :type,

by Lemma 7.39, bHc ` TE[p′] : type. Thus, by T-NEW, we can derive bH ′c ` e′ :

TE[p′].

Case e = e1; e2:

Case e = v1; e2:

Then R-SEQ is the only rule that can apply, and H = H ′ and r = e2. By T-SEQ,

since bHc ` v1; e2 :T , we have bHc ` e2 :T . Since H = H ′, ` e2,H.

Case e = e1; e2 where e1 6= v:
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Then R-CONG is the only rule that can apply and r = e′1; e2. By T-SEQ, since

bHc ` e1; e2 : T , we have bHc ` e1 : T1 and bHc ` e2 : T . By the induction

hypothesis, bH ′c ` e′1 : T1. By Lemma 7.4, bH ′c ` e2 : T . Thus we can derive,

by T-SEQ, bH ′c ` e′1; e2 :T . �

7.10 Progress

The progress lemma states that for any well-formed configuration e,H, either e is a value

or e,H steps to a new configuration r,H ′.

Lemma 7.3 (Progress) If ` e,H and bHc ` e :T , then either e = v, or there is an r and

an H ′ such that e,H −→ r,H ′.

Proof. The proof is by structural induction on e.

Case e = null:

Trivial since e is a value.

Case e = `:

Trivial since e is a value.

Case e = x:

Vacuous since x is not in dom(bHc).

Case e = e0. f :

• If e0 = null, then the configuration can take a step by R-NULL.

• If e0 = `, then since ` e,H, H(`) = S { f = v} and f ∈ f , and so the configuration

can take a step by R-GET.

• Otherwise, e can take a step by R-CONG.
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Case e = e0. f = e1:

• If e0 = null, then the configuration can take a step by R-NULL.

• If e0 = ` and e1 = v, then since ` e,H, H(`) = S { f = v} and f ∈ f , and so the

configuration can take a step by R-SET.

• Otherwise, e can take a step by R-CONG.

Case e = e0.m(e):

• If e0 = null, then the configuration can take a step by R-NULL.

• Assume e0 = ` and e are all values. Since ` e,H, ` : S ∈ bHc for some S.

Therefore, bHc ` ` : S by F-LOC and T-FIN. Since bHc ` e : T , by T-CALL

we have mtype(bHc,S,m) is defined. Since /0 ` S : type, mtype( /0,S,m) =

mtype(bHc,S,m). Hence, by Lemma 7.35, mbody(S,m) is defined and, there-

fore, a step can be taken by R-CALL.

• Otherwise, e can take a step by R-CONG.

Case e = new T ( f = e):

• If T = U , and e are all values, then since ` e,H, there is an S such that bHc `

U C S. If |fields(S)| = | f |, then a step can be taken by R-ALLOC; otherwise, if

|fields(S)|< | f |, then a step can be taken by R-NEW.

• Otherwise, e can take a step by R-CONG.

Case e = e1; e2:

If e1 = v, a step can be taken by R-SEQ. Otherwise, e can take a step by R-CONG. �

7.11 Soundness

Soundness follows directly from the subject reduction and progress lemmas.
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Theorem 7.1 (Soundness) If ` 〈L,e〉 ok, and /0 ` e : T , and e, /0 −→∗ r,H where r is in

normal form, and either r = v and bHc ` v :T or r = NullError.

Proof. Follows from Lemma 7.2 and Lemma 7.3 by induction on the number of steps.

�
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Chapter 8

Implementation

This chapter describes two alternative implementations of J&. Both were implemented

in Java using the Polyglot framework [84]. The two compilers translate J& to Java and

share parsing and semantic checking code. The compilers differ only in their translation

strategies.

The main difference between the two implementations is how implicit classes are

translated. A class is implicit if it is inherited from another namespace, but not further

bound. An explicit class is a class declared in the source program. In the static implicit

class (SIC) translation class declarations are generated for both explicit and implicit

classes. In the dynamic implicit class (DIC) translation no code is generated for implicit

classes; data structures for method dispatching and run-time type discrimination for

these classes are constructed on demand at run time.

The static implicit class translation has better run-time performance and a smaller

memory footprint, but generates code proportional to the number of classes, explicit

and implicit, in the source code. The main advantage of the dynamic implicit class

translation is that it generates code proportional only to the number of explicit classes

in the source code. The generated code is therefore much smaller, but there is a

performance cost. Neither translation duplicates code to implement inheritance.
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Figure 8.1: Static implicit class translation

8.1 Static implicit class translation

8.1.1 Translating classes

As illustrated in Figure 8.1, each J& class is represented by four classes: an instance

class, an instance interface, a class class, and a class interface.

References to a class or interface T are translated to references to T ’s instance

interface, II(T ). The interface contains signatures for all instance methods of T as well

as field getters and setters to allow access to fields from contexts where the actual run-

time class is unknown. II(T ) extends the instance interfaces of each of T ’s supertypes.

Dependent classes, prefix types, and static virtual types are translated to the instance

interface of their most precise statically known non-dependent supertype.

At run time, an object of the J& class T is represented as a single object of the

instance class, IC(T ), which implements the instance interface II(T ). Instance classes

are generated for implicit classes and intersection classes as well as for explicit classes.

For a non-intersection class T with explicit superclass T ′ (which may be an intersection

class), the instance class IC(T ) extends IC(T ′). If the least common ancestor of the

classes T1 and T2 is Tlca, then the instance class IC(T1 &T2) extends IC(Tlca). Note that

since all classes are subclasses of Object, the least common ancestor must exist. IC(T )

contains, or inherits from its superclass, all fields declared in T or inherited from any of

the superclasses of T .
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For every J& class, there is a class class, CC(T ). The class class is a singleton

object instantiated at run time. The instance class IC(T ) contains a reference to its

class class CC(T ). Static methods of T are translated to instance methods of CC(T ) to

allow static methods to be invoked on dependent types, where the actual run-time class

is unknown. To support super calls in the presence of multiple inheritance, instance

methods of T are also translated to methods of the CC(T ). The instance class IC(T )

contains short one-line methods to dispatch to the implementation of the method in the

appropriate class class. The class class also provides functions for accessing run-time

type information to implement instanceof and casts, for constructing instances of the

class, and for accessing the class class of prefixes and members classes, including static

virtual types. The code generated for expressions that dispatch on a dependent class

(e.g., new A[x.class].B()) evaluates the dependent class’s access path to locate the

class class for the type. For prefix types, the class class is used to navigate to the class

class of the prefix.

The class class CC(T ) implements the class interface CI(Ti) of each of T ’s super-

types T1, . . . ,Tn (including T itself). The class interface contains signatures for all static

methods of the class and also a factory method for each constructor.

8.1.2 Method and constructor dispatching

Method declarations are translated in two steps. First, an instance method declaration

m(...) of a J& class T is transformed to a static method m(T self, ...), by adding

a parameter self that points to this. The this reference is translated to a reference to

the instance class object. Then, like all static methods, the method is translated into an

instance method of the class class. Method calls are dispatched to the implementation

of the appropriate class class.
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Normally a reference to J& type T is translated to II(S) for T ’s most precise non-

dependent supertype S. However, for this.class, the non-dependent bound varies

with the enclosing class. To implement correct method overriding, when this.class

occurs in a method signature, it is translated to the instance interface of the class

that introduced the method. This ensures that all overriding methods are translated to

methods with the same signature. The method body casts the this reference to the

instance interface of the actual enclosing class.

Constructors are similarly translated to become methods of the class class. All

instance field initializations in a J& class are collected to form a field initialization

method of the class class. The field initialization method is called immediately after

invoking the translated superclass constructor.

8.1.3 Translating packages

To support package inheritance and composition, the representation of a package p

includes a package interface and a package class that implements the interface. The

package interface and package class are analogous to the class interface and class class.

The package class provides type information about the package at run time and access to

the class class or package class singletons of its members and prefixes. Both the package

class and package interface of p are members of package p; packages have no instance

classes or instance interfaces.

8.1.4 Java compatibility

Since J& is translated to Java, the generated code can only use single inheritance. To

interact with Java code, a J& class may have only one most-specific Java superclass. The

generated instance class is a subclass of this Java class. Because the instance interface is
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package pair_and_sum extends pair & sum;

// Resolve conflicting versions of main

class Compiler {

void main() {

Exp e = parse();

e.accept(new TypeChecker());

e = e.accept(new TranslatePairs());

e = e.accept(new TranslateSums());

e.accept(new Emitter());

}

}

Figure 8.2: Example J& source code

not a subtype of any Java class (except Object), when passing J& objects to a method

expecting a Java class, the object must be cast from the instance interface type to the

expected Java supertype.

8.2 Dynamic implicit class translation

The compiler is a 2700-LOC (lines of code, excluding blank and comment lines)

extension of the Jx compiler [83], itself a 22-kLOC extension of the Polyglot base Java

compiler.

8.2.1 Translating classes

Each explicit J& class is translated into four classes: an instance class, a subobject class,

a class class, and a method interface. Recall the pair & sum compiler from Chapter 1.

The composed compiler is shown again in Figure 8.2. Figure 8.3 shows a simplified

fragment of the translation of the code in Figure 8.2. Several optimizations, discussed

below, are not shown.
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At run time, each instance of a J& class T is represented as an instance of T ’s

instance class, IC(T ). Each explicit class has its own instance class. The instance class

of an implicit class or intersection class is the instance class of one of its explicit

superclasses. An instance of IC(T ) contains a reference to an instance of the class

class of T , CC(T ). The class class contains method and constructor implementations,

static fields, and type information needed to implement instanceof, prefix types, and

type selection from dependent classes. If J& were implemented natively or had virtual

machine support, rather than being translated to Java, then the reference to CC(T ) could

be implemented more efficiently as part of IC(T )’s method dispatch table. All instance

classes implement the interface JetInst.

8.2.2 Subobject classes and field accesses

Each instance of IC(T ) contains a subobject for each explicit superclass of T , including

T itself if it is explicit. The subobject class for an explicit class T contains all instance

fields declared in T ; it does not contain inherited fields. The instance class maintains

a map from each explicit superclass of T to the subobject for that superclass. The

static view method in the subobject class implements the map lookup function for that

particular subobject. If J& were implemented natively, the subobjects could be inlined

into the instance class and implemented more efficiently.

To get or set a field of an object, the viewmethod is used to lookup the subobject for

the superclass that declared the field. The field can then be accessed directly from the

subobject. The view method could be inlined at each field access, but this would make

the generated code more difficult to read and debug.
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package base;

// method interfaces for Exp

interface Exp$methods {

interface Accept { JetInst accept(JetInst self, JetInst v); }

}

// class class of Exp

class Exp$class implements Exp$methods.Accept {

JetInst accept(JetInst self, JetInst v) {

// abstract method: cannot be called

}

static JetInst accept$disp(JetClass c, JetInst self, JetInst v) {

JetClass r = ... // find the class class with the

// most specific implementation

return ((Exp$methods.Accept) r).accept(self, v);

} ...

}

// class class of Abs

class Abs$class implements Exp$methods.Accept {

JetInst accept(JetInst self, JetInst v) {

Abs$ext.view(self).e =

Exp$class.accept$disp(null, Abs$ext.view(self).e, v);

return Visitor$class.visitAbs$disp(null, v, self);

} ...

}

// instance class of Abs

class Abs implements JetInst {

JetSubobjectMap extMap; // subobject map

JetClass jetGetClass() {

// get the class class instance

} ...

}

// subobject class of Abs

class Abs$ext {

String x; JetInst e;

static Abs$ext view(JetInst self) {

// find the subobject for Abs in self.extMap

}

}

Figure 8.3: Fragment of translation of code in Figure 3.6
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8.2.3 Class classes and method dispatch

For each J& class, there is a singleton class class object that is instantiated when the

class is first used. A class class declaration is created for each explicit J& class. For

an implicit or intersection class T , CC(T ) is the runtime system class JetClass; the

instance of JetClass contains a reference to the class class object of each immediate

superclass of T .

The class class provides functions for accessing run-time type information to im-

plement instanceof and casts, for constructing instances of the class, and for ac-

cessing the class class object of prefix types and member types, including static vir-

tual types. The code generated for expressions that dispatch on a dependent class (a

new x.class() expression, for example) evaluates the dependent class’s access path

(i.e., x) and uses the method jetGetClass() to locate the class class object for the

type.

All methods, including static methods, are translated to instance methods of the class

class. This allows static methods to be invoked on dependent types, where the actual run-

time class is statically unknown. Nonvirtual super calls are implemented by invoking

the method in the appropriate class class instance.

Each method has an interface nested in the method interface of the J& class that first

introduced the method. The class class implements the corresponding interfaces for all

methods it declares or overrides. The class class of the J& class that introduces a method

m also contains a method m$disp, responsible for method dispatching. The receiver

and method arguments as well as a class class are passed into the dispatch method.

The class class argument is used to implement nonvirtual super calls; for virtual calls,

null is passed in (to prevent the receiver from being evaluated more than once) and the

receiver’s class class is used.
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Single-method interfaces allow us to generate code only for those methods that

appear in the corresponding J& class. An alternative, an interface containing all methods

declared for each class, would require class classes to implement trampoline methods

to dispatch methods they inherit but do not override, greatly increasing the size of the

generated code.

As shown in Figure 8.3, all references to J& objects are of type JetInst. The

translation mangles method names handle overloading. To improve readability, name

mangling is not shown in Figure 8.3.

8.2.4 Allocation

A factory method in the class class is generated for each constructor in the source class.

The factory method for a J& class T first creates an instance of the appropriate instance

class, and then initializes the subobject map for T ’s explicit superclasses, including

T itself. Because constructors in J& can be inherited and overridden, constructors are

dispatched similarly to methods.

Initialization code in constructors and initializers are factored out into initializa-

tion methods in the class class and are invoked by the factory method. A superclass-

constructor call is translated into a call to the appropriate initialization method of the

superclass’s class class.

8.2.5 Translating packages

To support package inheritance and composition, a package p is represented as a

package class, analogous to the class class. The package class provides type information

about the package at run time and access to the class class or package class instances

of its member types. The package class of p is a member of package p. Since packages
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cannot be instantiated and contain no methods, package classes have no analogue to

instance classes, subobject classes, or method interfaces.

8.2.6 Java compatibility

To leverage existing software and libraries, J& classes can inherit from Java classes.

The compiler ensures that every J& class has exactly one most specific Java superclass.

When the J& class is instantiated, there is only one super constructor call to some

constructor of this Java superclass.

In the translated code, the instance class IC(T ) is a subclass of the most specific

Java superclass of T . When assigning into a variable or parameter that expects a Java

class or interface, the instance of IC(T ) can be used directly. A cast may need to be

inserted because references to IC(T ) are of type JetInst, which may not be a subtype

of the expected Java type; these inserted casts always succeed. The instance class also

overrides methods inherited from Java superclasses to dispatch through the appropriate

class class dispatch method.

8.2.7 Optimizations

One problem with the translation described above is that a single J& object is repre-

sented by multiple objects at run time: an instance class object and several subobjects.

This slows down allocation and garbage collection.

A simple optimization is not to create subobjects for those J& classes that do

not introduce instance fields. The instance class of explicit J& class T can inline the

subobjects into IC(T ). Thus, at run time, an instance of an explicit J& class can be

represented by a single object; an instance of an implicit class or intersection class is
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represented by an instance class object and subobjects for superclasses not merged into

the instance class object. We expect this optimization to improve efficiency greatly.

8.3 Performance results

To compare the performance of the two translations, we implemented several mi-

crobenchmarks. The results are presented in Table 8.1. All benchmarks were run on

the Java HotSpot Client VM 1.5.0 running under Mac OS X 10.4.7 on an Apple iMac

G5 with a 1.8 GHz PowerPC and 1 GB RAM. The VM was run with a 512MB heap.

Each benchmark consisted of executing a single operation in a loop. The loop was ex-

ecuted 10 million times for the allocation benchmarks and 100 million times for all

other benchmarks. The Java method System.currentTimeMillis was used to time

the runs. Each benchmark was run 15 times; outliers more than 1.5 standard deviations

from the mean were discarded, resulting in 10–13 data points per benchmark. Table 8.1

shows the mean run time in nanoseconds and the standard deviation for each operation

after outliers were discarded. For the non-discarded runs, the standard deviation was

within 3% of the mean.

All J& benchmarks were run on the classes shown in Figure 8.4. The Java bench-

marks were run on the same classes, but with A2.B2 made explicit and with its super-

classes linearized A2.B2, A2.B1, A1.B2, A1.B1.

The explicit class allocation microbenchmark allocates an instance of A2.B1 in a loop

with 10 million iterations. The implicit class allocation benchmark allocates an instance

of A2.B2. The times include invoking the constructor and initializing the object. The

object is dead immediately after allocation, so garbage collection time is also included.

HotSpot uses a generational garbage collector with a copying collector for the nursery,
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Table 8.1: Microbenchmark results (nanoseconds)
Java Jx SIC Jx DIC

Benchmark Time Time Jx/Java Time Jx/Java
Allocation
(explicit class) 39.4± 1.09 45.3± 0.67 1.2 1402.3± 2.26 35.6

Allocation
(implicit class) 39.4± 0.97 51.6± 0.85 1.3 2113.0± 21.33 53.6

Virtual call
(cache hit)

8.05± 0.16 46.23± 0.06 5.7 57.82± 0.15 7.2

Virtual call
(cache miss)

3.83± 0.05 118.63± 2.18 31.0

Static call
(explicit class) 8.08± 0.06 4.01± 0.04 0.50 14.27± 0.12 1.8

Static call
(implicit class) 8.19± 0.07 4.65± 0.08 0.57 104.17± 0.19 12.7

Field write 7.64± 0.05 23.11± 0.05 3.0 19.54± 0.24 2.6

Field read 7.49± 0.07 13.85± 0.10 1.8 15.98± 0.18 2.1

class A1 {

static class B1 {

int x;

void m() { }

static void s() { }

}

static class B2 extends B1 { }

}

class A2 extends A1 {

static class B1 {

int y;

void m() { }

}

}

Figure 8.4: Microbenchmark classes
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the youngest generation. For most collections in the loop, the collector should only need

to swap the to- and from-space pointers since there are no live objects in the nursery.

The SIC constructor implementation has a 20–30% overhead versus Java due to extra

method dispatching in the object initialization code. The translation of a constructor

for a class C does not itself contain the translation of the constructor body. Instead,

it first invokes an instance field initialization method in the class class of each of C’s

superclasses, and then invokes a method of C’s class class containing the constructor

body.

The DIC implementation has a much larger slowdown. The translated constructor

allocates not only an instance of the instance class for the J& object, but also a subobject

map and subobjects for each superclass. The implicit class has an even larger overhead

because it has more superclasses than the explicit class: to allocate a single J& A2.B2,

the DIC implementation allocates a subobject map (implemented as two objects) and

four subobjects.

Virtual calls in both implementations are 5–7 times slower than Java. This is the

overhead of dispatching to the implementation in the class class. The DIC implemen-

tation has a higher overhead because it does a method map lookup to determine the

appropriate class class. The overhead is larger (31x) when there is a method map cache

miss. The Java time for the cache miss benchmark differs from the cache hit benchmark

because different code is run in the loop body to force a cache miss in the translated

code.

Static calls, surprisingly, are faster in the SIC implementation than with Java. Static

calls are translated to virtual calls on the class class. We conjecture that these calls are

inlined in the SIC translation, whereas the static Java calls are not inlined.

In the DIC translation, the calls are not inlined and the extra call indirection accounts

for the slowdown. Calling a static method of an implicit class has a larger slowdown
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(12.7x) because of a table lookup to locate the class class, which is passed to the method

to allow it to access elements of thisclass.

Field accesses in both translation schemes are implemented as method calls, result-

ing in a 2-3x slowdown.

The results show that J& can be implemented reasonably efficiently with the SIC

implementation. Explicit control over memory layout would enable large performance

improvements. This is discussed in more detail in Section 11.5.
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Chapter 9

Experience

To demonstrate the utility of nested inheritance and nested intersection, we ported two

extensible Java frameworks to J&: the Polyglot compiler framework and the FreePastry

peer-to-peer networking system. Both ported frameworks support composition of exten-

sions. For example, two compilers adding different, domain-specific features to Java can

be composed to obtain a compiler for a language that supports both sets of features.

9.1 Polyglot

Following the approach described in Chapter 5, we ported the Polyglot compiler frame-

work and several Polyglot-based extensions, all written in Java, to J&. The Polyglot base

compiler is a 31.9 kLOC program that performs semantic checking on Java source code

and outputs equivalent Java source code. Special design patterns make Polyglot highly

extensible [83]; more than a dozen research projects have used Polyglot to implement

various extensions to Java (e.g., JPred [76], JMatch [66], as well as Jx and J&). We

ported six extensions ranging in size from 200 to 3000 LOC.

The extensions are summarized in Table 9.1. The parsers for the base compiler,

extensions, and compositions were generated from CUP [49] or Polyglot parser genera-
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Table 9.1: Ported Polyglot extensions

Name Extends Java 1.4 . . . LOC original LOC ported % original
polyglot with nothing 31888 27984 87.8
param with infrastructure for param-

eterized types
513 540 105.3

coffer with resource management fa-
cilities similar to Vault [32]

2965 2642 89.1

j0 with pedagogical features 679 436 64.2
pao to treat primitives as objects 415 347 83.6
carray with constant arrays 217 122 56.2
covarRet to allow covariant method re-

turn types
228 214 93.9

tor (PPG) [84] grammar files. Because PPG supports only single grammar inheritance,

grammars were composed manually; line counts do not include parser code.

The port of the base compiler was our first attempt to port a large program to J&, and

was completed by one of the authors within a few days, excluding time to fix bugs in the

J& compiler. Porting of each of the extensions took from one hour to a few days. Much

of the porting effort could be automated, with most files requiring only modification of

import statements. Porting issues are described below.

The ported base compiler is 28.0 kLOC. The code becomes shorter because it

eliminates factory methods and other extension patterns which were needed to make the

Java version extensible, but which are not needed in J&. We eliminated only extension

patterns that were obviously unnecessary, and could remove additional code with more

effort.

The number of type downcasts in each compiler extension is reduced in J&. For

example, coffer went from 192 to 102 downcasts. The reduction is due to (1) use of

dependent types, obviating the need for casts to access methods and fields introduced

in extensions, and (2) removal of old extension pattern code. Receivers of calls to
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Table 9.2: Polyglot composition results: lines of code

j0 pao carray covarRet

coffer 63 86 34 66
j0 46 34 37
pao 34 53
carray 31

conflicting methods sometimes needed to be upcast to resolve the ambiguities; there

are 19 such upcasts in the port of coffer.

Table 9.2 shows lines of code needed to compose each pair of extensions, producing

working compilers that implemented a composed language. The param extension was

not composed because it is an abstract extension containing infrastructure for parame-

terized types, and it does not change the language semantics; however, coffer extends

the param extension.

The data show that all the compositions can be implemented with very little code;

further, most added code straightforwardly resolves trivial name conflicts, such as

between the methods that return the name and version of the compiler. Only three of

ten compositions (coffer & pao, coffer & covarRet, and pao & covarRet) required

resolution of nontrivial conflicts, for example, resolving conflicting code for checking

method overrides. The code to resolve these conflicts is no more 10 lines in each case.

9.2 Pastry

We also ported the FreePastry peer-to-peer framework [99] version 1.2 to J& and com-

posed a few Pastry applications. The sizes of the original and ported Pastry extensions

are shown in Table 9.3. Excluding bundled applications, FreePastry is 7100 LOC.

Host nodes in Pastry exchange messages that can be handled in an application-

specific manner. In FreePastry, network message dispatching is implemented with
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instanceof statements and casts. We changed this code to use more straightforward

method dispatch instead, thus making dispatch extensible and eliminating several down-

casts. Messages are dispatched to several protocol-specific handlers. For example, there

is a handler for the routing protocol, another for the join protocol, and others for any

applications built on top of the framework. The Pastry framework allows applications

to choose to use one of three different messaging layer implementations: an RMI layer,

a wire layer that uses sockets or datagrams, and an in-memory layer in which nodes of

the distributed system are simulated in a single JVM. Family polymorphism enforced

by the J& type system statically ensures that messages associated with a given handler

are not delivered to another handler and that objects associated with a given transport

layer are not used by code for a different layer implementation.

Pastry implements a distributed hash table. Beehive and PC-Pastry extend Pastry

with caching functionality [95]. PC-Pastry uses a simple passive caching algorithm,

where lookups are cached on nodes along the route from the requesting node to a

node containing a value for the key. Beehive actively replicates objects throughout the

network according to their popularity. We introduced a package (“cache”) containing

functionality in common between Beehive and PC-Pastry; the CorONA RSS feed

aggregation service [94] was modified to extend the cache package rather than Beehive.

Using nested intersection, the modified CorONA was composed first with Beehive,

and then with PC-Pastry, creating two applications providing the CorONA RSS aggrega-

tion service but using different caching algorithms. Each composition of CorONA and

a caching extension contains a single main method and some configuration constants

to initialize the cache manager data structures. The CorONA–Beehive composition also

overrides some CorONA message handlers to keep track of each cached object’s popu-

larity. We also implemented and composed test drivers for the CorONA extension, but

line counts for these are not included since the original Java code did not include them.
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Table 9.3: Ported Pastry extensions and compositions

Name LOC original LOC ported
Pastry 7082 7363
Beehive 3686 3634
PC-Pastry 695 630
CorONA 626 591
cache N/A 140
CorONA–Beehive N/A 68
CorONA–PC-Pastry N/A 28

The J& code for FreePastry is 7400 LOC, 300 lines longer than the original Java

code. The additional code consists primarily of interfaces introduced to implement

network message dispatching. The Pastry extensions had similar message dispatching

overhead; since code in common between Beehive and PC-Pastry was factored out into

the cache extension, the size of the ported extensions is smaller. The size reduction

in CorONA is partially attributable to moving code from the CorONA extension to the

CorONA–Beehive composition.

9.3 Porting Java to J&

Porting Java code to J& was usually straightforward, but certain common issues are

worth discussing.

9.3.1 Type names

In J&, unqualified type names are syntactic sugar for members of this.class or a pre-

fix of this.class, e.g., Visitor might be sugar for base[this.class].Visitor.

In Java, unqualified type names are sugar for fully qualified names; thus, Visitorwould
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resolve to base.Visitor. To take full advantage of the extensibility provided by J&,

fully qualified type names sometimes must be changed to be only partially qualified.

In particular, import statements in most compilation units are rewritten to allow

names of other classes to resolve to dependent types. For example, in Polyglot the

import statement import polyglot.ast.*; was changed to import ast.*; so that

imported classes resolve to classes in polyglot[this.class].ast rather than in

polyglot.ast.

9.3.2 Final access paths

To make some expressions pass the type checker, it was necessary to declare some vari-

ables final so they could coerced to dependent classes. In many cases, non-final access

paths used in method calls could be coerced automatically by the compiler, as described

in Section 4.4. However, non-final field accesses were not coerced automatically because

the field might be updated (possibly by another thread) between evaluation and method

entry. The common workaround is to save non-final fields in a final local variable and

then to use that variable in the call.

This issue was not as problematic as originally expected. In fact, in 30 kLOC

of ported Polyglot code, only three such calls needed to be modified. In most other

cases, the actual method receiver type was of the form P[p.class].Q and the formal

parameter types were of the form P[this.class].R. Even if an actual argument were

updated between its evaluation and method entry, the type system ensures its new

value is a class enclosed by the same run-time namespace P[p.class] as the receiver,

ensuring that the call is safe.

To illustrate why most calls do not need to be modified, consider the following

typical call in the Polyglot source code:

this.ts.canOverride(this, mj);
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The relevant context for the call is:

this : polyglot.ext.jl.types.MethodInstance_c

this.ts : polyglot[this.class].types.TypeSystem

mj : polyglot[this.class].types.MethodInstance

The signature of canOverride is:

boolean

canOverride(polyglot[this.class].types.MethodInstance mi,

polyglot[this.class].types.MethodInstance mj)

Even though the receiver is a non-final field this.ts, and the formal parameters depend

on the receiver, the call is safe because the this.ts’s declared type is a dependent type.

The formal parameter mj depends only on the polyglot prefix of the receiver’s run-

time class, not on the run-time class itself. Since the ts field can only be updated with

a value of polyglot[this.class].types.TypeSystem, the polyglot prefix of the

run-time class of the field cannot be changed to another package.

9.3.3 Path aliasing

The port of Pastry and its extensions made more extensive use of field-dependent classes

(e.g., this.thePastryNode.class) than the Polyglot port. Several casts needed to be

inserted in the J& code for Pastry to allow a type dependent upon one access path to be

coerced to a type dependent upon another path. Often, the two paths refer to the same

object, ensuring the cast will always succeed. Implementing a simple local alias analysis

should eliminate the need for many of these casts.

9.3.4 Inheriting constructors

To support allocation of instances of dependent classes, where the class being allocated

is statically unknown, J& requires that a subclass implement constructors with the same
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signatures as its superclasses’ constructors, unless the superclass constructor is declared

nonvirtual. When porting the base compiler to J&, 36 constructors out of 278 were

declared nonvirtual.
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Chapter 10

Related Work

Many language features and design patterns have been proposed to enable more effective

code reuse. As discussed in Chapter 1, neither of the two programming models described

by Reynolds [96] supports scalable, orthogonal extensions with both data types and new

operations: Data-oriented programming typical of traditional object-oriented program-

ming languages permits extension with new data types, but not scalable extension with

new operations; operation-directed programming as used in functional languages per-

mits scalable extension with new operations, but not with new data types.

10.1 The expression problem

Much of the recent work on supported extensibility in programming languages was

prompted by Phil Wadler’s expression problem [117]. The problem is to extend a

system with both new data types and new operations in a statically type safe language

that supports separate compilation. Wadler originally suggested that Java extended

with parameterized types [15] was expressive enough to solve the expression problem,

but soon realized this solution was insufficient. Subsequent papers proposed various
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solutions. The expression problem emphasizes the challenge of supporting orthogonal

extension in a type safe, modular way.

10.2 Mixins

One approach to enhancing the scalability of class-based inheritance is mixins [14,

40]. A mixin, or abstract subclass, is a class with an unspecified or parameterized

superclass. By instantiating on multiple different superclasses, a mixin can provide

uniform extension, adding new fields or methods, to a large number of classes.

Mixins can be simulated using explicit multiple inheritance. Because mixins them-

selves provide a form of multiple inheritance, instantiating a mixin can introduce name

conflicts.

J& provides additional mixin-like functionality through virtual superclasses [34].

Additionally, nested inheritance allows the implicit subclasses of the new base class

to be instantiated without writing any additional code. Mixins have no analogous

mechanism.

Mixins are composed linearly; that is, an instantiated mixin’s superclass is the class

(possibly an instantiated mixin itself) on which it was instantiated. An instantiated mixin

may not be able to access a member of a given superclass because the member is

overridden by another mixin. Explicit multiple inheritance such as in J& imposes no

ordering on composition of superclasses.

Mixins originated as a coding convention in the Common Lisp Object System

(CLOS) [33]. The CLOS implementation of multiple inheritance uses a linearization

algorithm that violated the principle of encapsulation [105]. One of the earliest imple-

mentations of mixins was in the language Jigsaw [14, 13]. Recent work has extended

Java with mixin functionality [71, 4, 2].
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A design for mixins in Java appeared in the language MixedJava [40]. MixedJava

replaces classes with mixins, allows mixins to both extend and implement interfaces,

and allows composition of mixins. Extension of an interface allows the mixin to use

the super keyword to access members of its abstract superclass. The method name

conflict problem is solved by maintaining a run-time view of the object that is a tail

of the full chain of mixins that defines the object. The view is used to select which

method to dispatch. Type soundness is proved for MixedJava, but no implementation

was produced. The authors speculate that an implementation would require double-wide

references for objects, one for the object pointer and one for the run-time view.

Jam [4] is an extension of Java with mixins. It is implemented as source-to-source

translation to Java 1.0. Mixins can implement interfaces, but do not extend any types,

nor can they be composed. Jam allows mixins to require that their abstract superclass

contain certain members, thus making it possible to refer to the superclass member from

within the mixin. Jam resolves the name conflict problem by always overriding, even

when the conflict is unexpected, thus introducing the potential for the generated Java

code to be illegal. Jam uses a heterogeneous translation [86] that produces a new Java

class for each unique mixin instantiation. This can cause a large increase in the size of

the generated class files, similar to the code bloat problem with C++ templates.

MixGen [2] extends the Java type system with mixins. In MixGen, mixins are

implemented as parameterized superclasses, similar to the example code in Figure 10.1.

Because nested inheritance has no type parametricity, it cannot provide a mixin that can

be applied to many different, unrelated classes.

The treatment of the super keyword in J& is reminiscent of (though much simpler

than) the CLOS [33] algorithm for linearizing superclasses in the presence of multiple

inheritance.
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class M<T> extends T {

class A extends T.A { ... }

class B extends T.B { ... }

}

class C {

class A { ... }

class B { ... }

}

Figure 10.1: Mixin layers example

A problem with mixins is that instantiating multiple superclasses on a mixin is not

scalable and can quickly become cumbersome [113, 114]. Mixin layers [102, 103] are

a design pattern that address this scalability problem by using nested mixins, that is,

mixins nested within a mixin. The pattern is illustrated using MixGen-like syntax. in

Figure 10.1, in which M is a mixin with superclass parameter T, containing nested mixins

A and B, each of which extends a nested class of T. Instantiating the outer mixin M with

the superclass C simultaneously instantiates all enclosed mixins on nested classes of C;

that is, M<C>.A extends C.A, and M<C>.B extends C.B. Nevertheless, while mixin layers

do address the scalability issue, they sacrifice separate compilation and are not modular.

The semantics of layer composition is still an open problem.

10.3 Open classes

The language MultiJava [28] provides open classes. An open class is a class to which

new methods can be added without needing to edit the class directly or recompile code

that depends on the class. Classes that inherit from the augmented class inherit the

new methods. Open classes thus provide a mechanism for scalable extension with new

operations. Nested inheritance provides similar functionality through class overriding in
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an extended container. However, open classes do not enable scalable extension with new

state: new fields cannot be added to an open class in the same way as new methods can.

Open classes are modular: code that referenced the unmodified class does not need

to be recompiled after the changes. However, since open classes modify existing class

hierarchies, extension of open classes is destructive. The original behavior of an open

class to clients of the augmented class. In contrast, nested inheritance creates a new class

hierarchy by extending the container of the classes in the hierarchy, permitting use of

the original hierarchy in conjunction with the new one.

Nested inheritance provides additional extensibility that open classes do not, such

as the “virtual” behavior of constructors, and the ability to extend an existing class with

new fields that are automatically inherited by its subclasses.

Similar to open classes, expanders [118] are a mechanism for extending existing

classes. They address some of the limitations of open classes by enabling classes to be

updated not only with new methods, but also with new fields and superinterfaces. Like

open classes, expanders do not change the behavior of existing clients of the classes

being extended.

Existing classes are extended with new state using wrapper objects. One limitation

of this approach is that object identity is not preserved, which may cause run-time type

checks to return incorrect results.

10.4 Virtual classes

Virtual classes [68, 69, 38]. are a language-based extensibility mechanism that can pro-

vide functionality similar to open classes for both methods and fields. They were origi-

nally introduced in the language BETA [68] as a mechanism for supporting genericity.

Virtual classes are similar to nested classes in J& in that they can be further bound in
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a subclass; that is, a subclass can refine a virtual class inherited from its superclass by

extending it with new members.

Virtual classes in BETA are not statically type safe. BETA allows covariant method

parameter types, which can lead to an unsound type system. BETA performs run-time

type checks on method entry to avoid program crashes and permit the program to

continue running after it has recovered from the error. Recent work on type-safe variants

of virtual classes has limited method parameter types to be invariant [111] or uses self

types [20], discussed below in Section 10.12.

Erik Ernst’s generalized BETA (gbeta) language [34, 35] uses path-dependent types,

similar to dependent classes in J&, to ensure static type safety. Type-safe virtual classes

using path-dependent types were formalized by Ernst et al. in the vc calculus [38].

A virtual class is nested within an object, the enclosing instance: given an expression

e of an object type, e.C is a virtual class nested within e. The implementation of e.C

is determined at run time from the value of e. In contrast, nested classes in J& are

nested within their enclosing class. Late binding of types is achieved by using dependent

classes: the implementation of e.class.C is determined at run time from the value of e.

Each virtual class may only have one enclosing instance. For this reason, a virtual class

can extend only other classes nested within the same object; it may not extend a more

deeply nested virtual class. This can limit the ability to extend components of a larger

system. J& does not have this limitation. Because it is unique, the enclosing instance

of a virtual class can be referred to unambiguously with an out path: this.out is the

enclosing instance of this’s class. J& uses prefix types to refer to enclosing classes of

dependent classes.

Recent implementations of virtual classes such as gbeta [34] support scalable,

orthogonal extension using virtual superclasses [34], subclassing another virtual class

nested within the same object. As illustrated in Figure 10.2, virtual superclasses provide
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class C {

class A { ... }

class B extends this.A { ... }

}

class D extends C {

class A { int f; ... }

// this.B inherits this.A’s f field

}

Figure 10.2: Virtual superclasses example

open-class-like extensibility: when new members are added to a further-bound virtual

superclass, its inherited subclasses inherit the new members.

The enclosing instance contains a hierarchy of classes that can be refined by sub-

classing the containing object’s class [37]. When the enclosing instance’s class is ex-

tended via inheritance, the derived namespace replicates the class hierarchy of the orig-

inal namespace, forming a higher-order hierarchy [37]. Unlike in J&, because virtual

classes are contained in an object rather than in a class, there is no subtyping relation-

ship between classes in the original hierarchy and further bound classes in the derived

hierarchy. There is an induced subclass relationship, however.

Virtual classes can also be multiply inherited [34, 35]; however, all superclasses of

a given class must be contained within the same object: a virtual class e.C can only

extend other virtual classes in e. This restriction limits the compositional power of

virtual classes. As in J&, commonly named virtual classes inherited into a class are

themselves composed [35]. However, multiple inheritance is limited to other classes

nested within the same enclosing instance.

Unlike in J&, in the vc calculus, new fields cannot be added into a further bound

class, limiting the ability to add state into a non-leaf class of a hierarchy.

In gbeta, each object defines a family of classes: the collection of mutually depen-

dent virtual classes nested within it. Virtual classes in gbeta support family polymor-
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phism [36]: two virtual classes enclosed by distinct objects cannot be statically confused.

When a containing namespace is extended, family polymorphism ensures the static type

safety of the classes in the derived family by preventing it from treating classes belong-

ing to the base family as if they belonged to the extension. Because nested classes in

J& are attributes of their enclosing class, rather than an enclosing object, J& supports

nested inheritance supports what Clarke et al. [27] call class-based family polymor-

phism. With virtual classes, all members of the family are named from a single “family

object”, which must be accessible throughout the system. In contrast, with class-based

family polymorphism, each dependent class defines a family. By using prefix types, any

member of the family can be used to name the family.

Delegation layers [91] use virtual classes and delegation to provide family poly-

morphism, solving many of the problems of mixin layers. With normal inheritance and

virtual classes, when a method is not implemented by a class, the call is dispatched to

the superclass. With delegation, the superclass view of an object may be implemented

by another object. Methods are dispatched through a chain of delegate objects rather

than through the class hierarchy. Delegation layers provide much of the same power as

nested inheritance. Since delegates are associated with objects at run-time rather than at

compile-time, delegation allows objects to be composed more flexibly than with mixins

or with nested inheritance. No formal semantics has been given for delegation layers.

10.5 Virtual types

Virtual types, also introduced in BETA [68], are similar to virtual classes. A virtual type

is a type binding nested within an enclosing instance. Virtual types are illustrated in

Figure 10.3. In the figure, the class List introduces a virtual type T. T is not bound to a

particular type, but is declared to extend Object. Subclasses of List may further bind
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abstract class List {

type T extends Object;

void add(T x) { ... }

...

}

class IntList extends List {

final type T = Integer;

}

Figure 10.3: Virtual types

T to a subclass of T’s bounding type, Object. The subclass IntList final binds T to

the class Integer. Final binding prevents subclasses of IntList from further binding

T. Thus, if e is an IntList (or a subclass), e.T and Integer are aliases. Because T is

bound to Integer in IntList, only instances of Integer can be passed to IntList’s

add method. In contrast, a virtual class may only be declared a subtype of another type

(via the class’s extends clause), not equal to another type.

As can be seen from the example, virtual types may be used to provide genericity.

Indeed, Thorup [110] proposed extending Java with virtual types, with final binding, as

a genericity mechanism.

To ensure inheritance relationships can be determined statically, a virtual type in

BETA may be inherited from only if it is final bound. J& does not permit inheritance

from dependent classes, ensuring a static inheritance hierarchy.

Igarashi and Pierce [52] model the semantics of virtual types and several variants in

a typed lambda-calculus with subtyping and dependent types.

10.6 Tribe

Tribe [27] is another language that provides a variant of virtual classes. By treating a

final access path p as a type, nested classes in Tribe can be considered attributes of an
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enclosing class as in J& or as attributes of an enclosing instance as in BETA and its

derivatives. This flexibility allows a further bound class to be a subtype of the class

it overrides, like in J& but unlike with virtual classes. Tribe also supports multiple

inheritance. However, superclasses of a Tribe class must be nested within the same

enclosing class, limiting extensibility. This restriction allows the enclosing type to be

named using an owner attribute: T.owner is the enclosing class of T .

10.7 Concord

Concord [55] also provides a type-safe variant of virtual classes. In Concord, mutually

dependent classes are organized into groups, which can be extended via inheritance.

References to other classes within a group are made using types dependent on the

current group, MyGrp, similarly to how prefix types are used in J&. Relative supertype

declarations provide functionality similar to virtual superclasses. Groups in Concord

cannot be nested, nor can groups be multiply inherited.

10.8 Nested types

Nested classes originated with Simula [31], and have been implemented in many subse-

quent object-oriented programming languages such as Java [45] or C++ [107].

Igarashi and Pierce [54] present a formalization of Java’s inner classes, using Feath-

erweight Java [53]. An instance of a Java inner class holds a reference to its enclosing

instance. Igarashi and Pierce present a translation that transforms inner classes into top-

level classes. J& implements inner classes using a similar translation.

Odersky and Zenger [87] propose nested types, which combine the abstraction prop-

erties of ML-style modules with support, via encoding, for object-oriented constructs
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like virtual types, self types, and covariant families of classes. Nested types provide

witness types, similar to path-dependent types in Scala and dependent classes in J&.

10.9 Multiple inheritance

J& provides multiple inheritance through nested intersection. Intersection types were

introduced by Reynolds in the language Forsythe [97] and were used by Compagnoni

and Pierce to model multiple inheritance [29]. Cardelli [24] presents a formal semantics

of multiple inheritance.

The distinction between name conflicts among methods introduced in a common

base class and among methods introduced independently with possibly different seman-

tics was made as early as 1982 by Borning and Ingalls [10]. Many languages, such as

C++ [107] and Self [25], treat all name conflicts as ambiguities to be resolved by the

caller. Jigsaw [13] provides merging operators that require the programmer to specify

manually how to resolve name conflicts. Jigsaw, as well as other languages [72, 100],

also allows methods to be renamed or aliased to resolve conflicts.

10.10 Traits

Traits [100] are collections of abstract and non-abstract methods that may be composed

with state to form classes. Since traits do not have fields, many of the issues introduced

by multiple inheritance (for example, whether to duplicate code inherited through more

than one base trait) are avoided. The code reuse provided by traits is largely orthogonal

to that provided by nested inheritance and could be integrated into J&.
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Traits are parameterized on other methods, which must be provided to create a class

using the trait. Using a trait-like mechanism to compose large collections of mutually-

dependent classes or traits could lead to parameter explosion.

Unlike with mixins, the order of trait composition does not matter.

10.11 Scala

Scala [88] is another language that supports scalable extensibility and family poly-

morphism through a statically safe virtual type mechanism based on path-dependent

types. However, Scala’s path-dependent type p.type is a singleton type containing only

the value named by access path p; in J&, p.class is not a singleton. For instance,

new x.class(...) creates a new object of type x.class distinct from the object re-

ferred to by x. This difference gives J& more flexibility, while preserving type sound-

ness. Scala provides virtual types, but not virtual classes. It has no analogue to prefix

types, nor does it provide virtual superclasses, limiting the scalability of its extension

mechanisms. Scala supports composition using traits. Since traits do not have fields,

new state cannot be easily added into an existing class hierarchy.

10.12 Self types and matching

Bruce et al. [21, 18] introduce matching as an alternative to subtyping, with a self

type, or MyType, representing the type of the method’s receiver. The dependent class

this.class is similar but represents only the class referred to by this and not

its subclasses. Type systems with MyType decouple subtyping and subclassing; in

PolyTOIL and LOOM, a subclass matches its base class but is not a subtype. With

nested inheritance, subclasses are subtypes. Bruce and Vanderwaart [22, 19] propose
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type groups as a means to aggregate and extend mutually dependent classes, similarly

to Concord’s group construct, but using matching rather than subtyping.

With MyType, an instance of a subtype of the MyType may be assigned to a variable

of the MyType. A variable of type p.classmay only contain instances of exactly p’s run-

time class since no other type is a subtype of p.class, In addition, the use of dependent

types is more flexible than MyType because it allows this.class to escape the body of

its class by assigning this.class into another variable.

Bruce et al. [20] use matching to provide a statically safe virtual type mechanism.

10.13 Aspect-oriented programming

An aspect [60] is a unit of functionality that cuts across modular boundaries. Aspect

weaving applies an aspect to a set of classes to produce executable code. Aspects modify

existing class hierarchies, whereas nested inheritance creates a new class hierarchy,

allowing the new hierarchy to be used alongside the old.

Caesar [73] is an aspect-oriented language that also supports family polymorphism,

permitting application of aspects to mutually recursive nested types.

In AspectJ [59] weaving can be performed at compile time either on the source code

or on binaries, or at load time. With compile-time weaving, aspects are applied to a

whole program, outputting a new program. Separate compilation is not supported. With

load-time weaving, aspects are applied when classes are loaded into the virtual machine.

Since errors may not be detected until a class is loaded, the program may fail at run-time.

Nested inheritance provides limited aspect-like extensibility: an extension of an

enclosing class or package may implement functionality that cuts across the class

boundaries of the nested classes. However, nested inheritance provides only static cross-

cutting, the ability to modify the static nature of the program, as opposed to dynamic
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cross-cutting, the ability to change the way a program executes. Much of the recent

work on aspect-oriented programming appears to focus on dynamic cross-cutting.

10.14 Program composition

It is undecidable to determine precisely whether two programs, including compilers,

have conflicting semantics that prevent their composition [48].

Several conservative algorithms based on program slicing [120] have been proposed

for integrating programs [48, 9, 70]. These algorithms merges two programs A and B

into a program C that produces the same outputs as A and B for identical inputs. The two

programs interfere and cannot be integrated when A and B produce different outputs for

the same input.

Interprocedural program integration [9] requires the whole programs of A and B and

it is unclear whether the algorithm can scale up to large programs. A type system similar

to one used for information-flow checking [116, 82] may offer a way to achieve modular

program integration at the expense of additional programmer annotations.

10.15 Class hierarchy composition

Ossher and Harrison [90] propose an approach in which extensions of a class hierarchy

are written in separate sparse extension hierarchies containing only new functionality.

Extension hierarchies can be merged and naming conflicts detected. However, semantic

incompatibilities between extension hierarchies are not detected. Unlike with nested

intersection, hierarchies do not nest and there is no subtyping relationship between

classes in different hierarchies.
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Tarr et al. [108] define a specification language for composing class hierarchies.

Rules specify how to merge “concepts” in the hierarchies. Nested intersection supports

composition with a rule analogous to merging concepts by name. These ideas were

implemented for Java in the specification language Hyper/J [108], which allows the

programmer to specify how to merge units: classes, interfaces, and methods. Unlike

in J&, methods can be merged by ordering one after the other, or by selecting one

implementation over another. In addition, differently named units can be merged.

Snelting and Tip [104] present an algorithm for composing class hierarchies and a

semantic interference criterion. If the hierarchies are interference-free, the composed

system preserves the original behavior of classes in the hierarchies. J& reports a conflict

if composed class hierarchies have a static interference, but makes no effort to detect

dynamic interference.

10.16 Algebraic datatypes

The functional language community has also addressed the extensibility problem. Much

of this work focuses on making algebraic datatypes more extensible [122, 44].

Zenger and Odersky [122] describe a mechanism for extending algebraic datatypes.

To ensure exhaustive pattern matching, all functions on extensible datatypes must

provide a default case. Functions are not extensible: if a new datatype variant is added

that requires overriding a function case, a new function must be created and callers must

be modified to invoke the new function. Object-oriented languages avoid this problem

through method overriding.

Garrigue [44] describes polymorphic variants, which are variants defined indepen-

dently of a datatype. Functions are not extensible.
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Millstein, Bleckner, and Chambers [77] describe EML, an extension of ML that

supports scalable, orthogonal extensibility with modular type-checking. Unlike Zenger

and Odersky’s language, EML provides extensible functions. Both EML and MultiJava

are based on Dubious [78, 79], an object calculus with multimethods.

10.17 Jiazzi

Jiazzi [71] is a module system for Java. Programmers define components similar to

units [39], a module system in which programmers explicitly specify imports and

exports for each unit; a linker wires up the units to produce a closed program. Jiazzi

components may be Java classes or composites of several components. Components

import and export classes and packages. To support separate compilation, programmers

specify package signatures, and Jiazzi generates stubs for imported components to allow

classes to be compiled with a standard Java compiler. An external linker checks Java

classes and packages against their signatures and performs class file symbol rewriting

to update references to imported classes. Jiazzi units are expressive enough to specify

mixins naturally; open classes can be simulated with a design pattern. However, Jiazzi

components do not provide scalable extensibility since the programmer must specify

how components are linked together: if a component is extended, linking code needs to

be written for all other components in the system the original component linked with.

10.18 Classboxes

A classbox [8] is a module-based reuse mechanism. Classes defined in one classbox

may be imported into another classbox and refined to create a subclass of the imported

class. By dispatching based on a dynamically chosen classbox, names of types and
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methods occurring in imported code are late bound to refined versions of those types

and methods. This feature provides similar functionality to the late binding of types

provided by this-dependent classes and prefix types in J&. As presented, classboxes are

dynamically typed; it is unclear if they can be defined in a statically type-safe manner.

Since reuse is based on import of classboxes rather than inheritance, classboxes

do not support multiple inheritance, but they do allow multiple imports. When two

classboxes that both refine the same class are imported, the classes are not composed

like in J&. Instead, one of the classes is chosen over the other.

10.19 Software components

Component systems are a popular means of code reuse. Components are self-contained

abstractions intended to be reused multiple times in different contexts. Examples of

component systems include Microsoft’s COM [98] and .NET [93], CORBA [89], Sun

Microsystems’ JavaBeans [74], and IBM’s System Object Model [23].

Components are often language-neutral and may be distributed. Clients are not

statically linked against components; instead, a reflection API allows clients to access a

component’s interface. Hence, run-time errors may occur when a component’s interface

is not used correctly.

10.20 Macro systems and preprocessors

Another approach to enhancing extensibility is to use macro systems [119, 12, 5, 6] and

preprocessors [51, 61, 109]. These systems enable programmers to extend the syntax of

the programming language. Semantic checking is typically not performed on the code

written in the extended syntax. A syntax-directed translation transforms the extended
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source into the base language, on which further syntactic and semantic checks are

performed. This limits the ability to extend the static semantics of the base language.

The Extensible Java Preprocessor Kit (EPP) [51, 50] allows type system extensions

by providing an extensible type checker [50]. Type system extensions are limited to

preserve separate compilation. EPP has been used to extend Java with mixins with

multiple inheritance [50].

Many preprocessors such as the C preprocessor (CPP) [58], are non-hygienic:

expanded macros may not parse correctly or may evaluate an actual argument more than

once, often causing the repetition of side effects and leading to unexpected behavior. By

contrast, macros systems such as those for Lisp [106], Dylan [101], or Scheme [57]

are hygienic. Recent preprocessors and macro systems for Java such as the Extensible

Java Preprocessor Kit (EPP) [51], the Java Syntactic Extender (JSE) [5], and the Java

Pre-processor (JPP) [61] are also hygienic.

Programmable syntax macros [119] provide non-hygienic macros for the C lan-

guage. However, the macro syntax is restricted to ensure expanded macros are syn-

tactically correct. Metamorphic syntax macros [12] improve on programmable syntax

macros to allow more expressive macros.

Maya [6] is a generalization of macro systems that uses generic functions and

multimethods to allow extension of Java syntax. Semantic actions can be defined as

multimethods on those generic functions. It is not clear how these systems scale to

support semantic checking for large extensions to the base language.

OpenJava [109] uses a meta-object protocol (MOP) similar to Java’s reflection

API [75] to allow manipulation of a program’s structure. OpenJava allows very limited

extension of syntax, but through its MOP exposes much of the semantic structure of the

program. OpenC++ [26] is similar.
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The Jakarta Tools Suite (JTS) [7] is a toolkit for implementing Java preprocessors

to create domain-specific languages. Extensions of a base language are encapsulated

as components that define the syntax and semantics of the extension. New compiler

passes are added using the data-directed approach, implementing new methods in a

node definition [103]. Mixin layers are used to achieve composability in JTS [102].

JTS is concerned primarily with syntactic analysis of the extension language, not with

semantic analysis. This makes JTS more like a macro system in which the macros are

defined by extending the compiler rather than by declaring them in the source code.

10.21 Plugins

Several recent applications are designed to be extended via plugin architectures. Plugins

are linked into the application at load time.

Much of the Firefox web browser [42] is implemented in JavaScript and XUL,

an XML-based UI description language. Browser extensions can be written in the

same languages to extend or override the browser’s behavior. Because JavaScript is an

interpreted language, Firefox extensions may fail to load or run correctly. Extensions are

not isolated from each other or from the base system. Interfering extensions can cause

each other or the browser itself to behave incorrectly or to crash. Firefox supports binary

plugins.

Eclipse [41, 47] is an extensible platform for building development environments.

The system consists of a set of core plugins to bootstrap the system; most application

functionality is provided by extension plugins. Plugins in Eclipse are dynamically linked

components [11]. A plugin can provide extension points to enable other plugins to

further extend it. A contract specifies the programmatic interface between the host

plugin and the extender plugin at each extension point.
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10.22 Extended visitor patterns

Data-oriented programming is the natural programming model in object-oriented lan-

guages. The Visitor pattern [43] is used to provide an operation-directed programming

model, making the addition of new operations easy, but limiting the ability to add new

data types. The Visitor pattern therefore enables a different kind of extensibility, but

does not enable scalable, orthogonal extension. The original Visitor design pattern has

led to many refinements.

The Extensible Visitor [62] pattern is a composite design pattern that uses the Visitor

and the Factory Method patterns [43] to enable extension of both nodes and passes. A

problem with the Visitor pattern is that it cannot explicitly use constructors (e.g., via a

new expression) to create new visitors because the constructor call ties the new visitor to

a particular implementation that may not be aware of new nodes added by an extension.

Extensible Visitors solve this problem using factory methods. Nested inheritance deals

with this problem through virtual dispatch of constructor calls. The pattern does not

address extension of existing visitors with a callback for new nodes.

Staggered Visitors [115] use multiple inheritance to extend visitors with support for

new nodes. When a new node class is added, a callback for the new node is added to

existing visitors by writing a class containing the callback and then multiply inheriting

that class with each existing visitor class. The amount of code that needs to be written

is therefore proportional to the number of existing visitor classes.

Walkabouts [92] are a generalization of the Visitor pattern that uses reflection [75]

to find all objects in the data structure being traversed. This solves the extensibility

problem, but incurs a large runtime penalty due to the use of reflection.
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Chapter 11

Future Directions

This chapter discusses future directions for research on scalable extension and compo-

sition.

11.1 Unanticipated reuse

Often existing code provides needed functionality, but because of how the code is

organized, that functionality may not be readily available for reuse. Consequently,

developers are forced to either copy code from the base system or refactor the base

system to enable reuse. More effective mechanisms for unanticipated code reuse are

needed.

11.1.1 Restructuring

In nested inheritance, the interaction between inheritance and containment can some-

times prevent effective code reuse. To preserve mutual dependencies among a set of

classes as they are simultaneously extended, those classes must be nested within the

same namespace. For example, for the Visitor design pattern to be type safe in an ex-
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package visit;

class Visitor {

void visitVar(ast.Var v) { ... }

...

}

class TypeChecker extends Visitor { ... }

package ast;

class Node {

void accept(visit.Visitor v) { ... }

}

class Var extends Node { ... }

Figure 11.1: A non-extensible compiler

tended compiler, both the visitor classes and the AST node classes must be contained

within a common namespace that is inherited by the extended compiler.

To illustrate the problem, suppose a compiler is implemented as separate visit and

ast packages, as shown in Figure 11.1. If the compiler is extended by adding a new AST

node class in a derived package of ast, for example pair ast.Pair in Figure 11.2, then

a new callback method (visitPair) must be added to the Visitor class. To ensure the

new method is inherited by subclasses of Visitor such as TypeChecker, the callback

is added by further binding Visitor in a derived package of visit (pair visit).

However, ast.Node.accept is statically bound to the visit.Visitor class. Because

it would be unsound, the J& type system does not allow subclasses of ast.Node

like pair ast.Pair to override accept to refer to the derived pair visit package.

Hence, the new AST class must downcast the visitor passed into its accept method in

order to invoke the appropriate callback.
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package pair_visit extends visit;

class Visitor {

void visitPair(pair_ast.Pair v) { ... }

...

}

package pair_ast extends ast;

class Pair extends Node {

void accept(visit.Visitor v) {

((pair_visit.Visitor) v).visitPair(this);

}

}

Figure 11.2: Extending a non-extensible compiler

J& needs a mechanism for safely extending mutually dependent classes span-

ning multiple namespaces. One possible approach is to allow extensions to restruc-

ture the base system so that mutually dependent classes are nested within a com-

mon namespace that can be extended. This could be accomplished with a mecha-

nism syntactically similar to static virtual types, as shown in Figure 11.3. The package

restructured compiler contains nested packages my ast and my visit; derived

packages can further bind my ast or my visit or their nested classes. However, with

static virtual types as currently designed, since the original visit and ast code used

hard-coded names to refer to other types, those types are not late bound, but they need

to be late bound to enable reuse. For example, when Visitor is further bound in

pair compiler.my visit, the accept methods of pair compiler.my ast.Node

continues to refer to visit.Visitor, not to the new version of Visitor.
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package restructured_compiler;

package my_ast = ast;

package my_visit = visit;

package pair_compiler extends restructured_compiler;

package pair_compiler.my_visit;

// further bind restructured_compiler.my_visit.Visitor

class Visitor {

void visitPair(my_ast.Pair p) { ... }

}

package pair_compiler.my_ast;

class Pair extends Node {

void accept(my_visit.Visitor v) {

v.visitPair(this);

}

}

Figure 11.3: A restructured compiler
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11.1.2 Reparameterization

As another example of unanticipated reuse, suppose a data structure is needed and a

library provides code for a similar, but not identical, data structure. For example, a

system might require a list of integers, and the library contains code for a list of strings.

One could copy and adapt the existing code, but a better alternative would be to reuse it

by providing code to adapt it to its new use. In this example, the extension needs to be

able to identify string-specific code, including code dependent on string-specific code,

and replace it with integer-specific code.

One approach might be for the extension to abstract the original code by adding

explicit type parameters. In the example, the code for the list of strings is abstracted to

parameterize it on the list element type, thus turning a list of strings into a list of T . The

parameter can then be instantiated on a new type, integers in this case.

11.2 Multiple families

Nested inheritance supports family polymorphism, which ensures that classes indexed

by different final access paths cannot be confused. This is essential for ensuring the J&

type system is sound. However, as demonstrated with the extensible rewriting pattern

described in Section 5.3, writing code that operates over more than one family can be

onerous. When translating an AST from an extended language to its base language,

all nodes in the extended AST must be copied to create a base language AST, even

though the base AST classes are superclasses of the extended AST classes. It should be

possible to simply implicitly coerce the extended nodes to base nodes without copying.

The difficulty is that to provide the desired behavior as well as to ensure soundness,

extended code cannot be executed for the coerced nodes. Traditional object-oriented

method dispatch may violate soundness in this case.
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One possible approach is to introduce multimethods to J&. This would allow the

family (e.g., the compiler’s object language) to be decoupled from the class within the

family (e.g., an AST node or visitor class). Rather than reconstructing the entire AST in

the target language, the same AST could be used, but methods dispatched on an object

representing the source language as well as the AST node. Multimethods have the added

benefit of obviating the need for the visitor design pattern.

11.3 Composition

The composition of Polyglot compiler extensions in described in Section 9.1 was rela-

tively easy because the language extensions did not have many semantic conflicts. J&

detects only naming conflicts between composed class hierarchies. However, semantic

conflicts between classes may occur even in the absence of naming conflicts. As a sim-

ple example, the J& code in Figure 11.4 has a semantic conflict in the class A3. Both A1

and A2 expect the method m2 to print “1”; however, A3.m2 prints “2”.

Greater programmer control over how classes and methods are composed and an

analysis that detects and reports semantic conflicts would greatly help programmers

compose large extensions. Several algorithms based on program slicing [120] have

been proposed for integrating programs [48, 9, 70]. Because precise semantic conflict

detection is undecidable, these algorithms are conservative and may therefore report

false conflicts. In addition, interprocedural program integration [9] requires the whole

program. It is unclear how well these algorithms perform in practice, particularly for

large programs. Construction of a precise analysis that avoids most false conflicts, but

that can also be implemented modularly is an open problem.

A type system might be used to make the analysis modular, but at the cost of

precision. When there is a conflict, the type system would have to help the programmer
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class A {

int x;

void run() {

m1();

m2();

}

void m1() { x = 0; }

void m2() { print(x); }

}

class A1 extends A {

void m1() { x = 1; }

}

class A2 extends A {

void m2() { print(x+1); }

}

class A3 extends A1 & A2 {

// no name conflict, but m2 prints 2,

// which is not expected by either A1 or A2

}

Figure 11.4: A semantic conflict
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identify code that depends on the conflict so it can be reconciled. The type system

would also have to summarize the effects of methods precisely enough so that when

a method is overridden without changing the effects, it is guaranteed that the behavior

of the method’s callers does not change.

In the example of Figure 11.4, it is the effects of methods m1 and m2 on the variable x

that cause the semantic conflict. One possible effect system that could be used to detect

semantic conflicts is to consider each access to label each method with the heap locations

accessed by its statements. Thus, m1 and run are labeled with the effect writes x, and

m2 and run are labeled with reads x, as shown in Figure 11.5. Detecting a possible

semantic conflict between two classes can be performed by checking if the two classes

both define methods with conflicting effects. In this case, A1 and A2 conflict because

they both define methods that access x.

Since a method might access a variable only on certain paths through the method, or

the conflicting methods might be called only in contexts where there is no dependency

between them, the proposed effect system presented here is therefore too imprecise

to be used in a practical setting. However, it does suggest an approach to detecting

semantic conflicts. Tracking dependencies between methods might be achieved using a

type system based on information flow [116, 82].

One problem with effects systems is that a subtype can refine the effects of a method

only by removing effects: effects must be contravariant with respect to the subtyping

relationship. However, in practice, subtypes often need to add effects, particularly to

access new fields introduced by the subtype. Nested inheritance suggests a solution:

dependent types. Dependent classes are used to allow method parameter types to be

refined covariantly in subclasses rather than contravariantly. A similar solution, virtual

effects, could be used to allow effects to be refined covariantly. A virtual effect is an

effect contained in a class that can be further bound by subclasses, just as a nested class
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class A {

int x;

void run() reads x, writes x {

m1();

m2();

}

void m1() writes x { x = 0; }

void m2() reads x { print(x); }

}

class A1 extends A {

void m1() writes x { x = 1; }

}

class A2 extends A {

void m2() reads x { print(x+1); }

}

class A3 extends A1 & A2 {

// A1 and A2 conflict since they both

// define methods that access x

}

Figure 11.5: Semantic conflict with effects
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class A {

int x;

effect E = writes x;

void m() : this.class.E {

x = 1;

}

}

class B extends A {

int y;

effect E = super.class.E, writes y;

void m() : this.class.E {

x = 1;

y = 2;

}

}

Figure 11.6: Virtual effects example

in J& or a virtual type can be further bound. Figure 11.6 shows two classes with virtual

effects. Class B refines the effect E declared in A to write the new field y. Intersecting

two classes T1 and T2 unions the corresponding effects T1.E and T2.E.

11.4 Programming language composition

As described in Chapter 5 and demonstrated with the port of Polyglot described in

Chapter 9, J& can be used to compose compilers. The composed compiler implements

a composition of the languages implemented by the constituent compilers. It should

be possible to derive formal semantics for the composed language from the formal

semantics of the constituent languages.

Several frameworks have been developed for constructing modular formal systems

including type systems and structural operational semantics (e.g., [63, 81, 16, 17]). One

of these frameworks might be adapted for describing the semantics of a programming
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language constructed via nested intersection. The system should be capable of detecting

semantic conflicts between the two languages. A useful property the framework should

guarantee is that the composition of two sound programming languages is also sound.

Work in this area may also help with the design of an analysis for statically detecting

semantic conflicts in composed programs, as described in the previous section.

11.5 A J& virtual machine

The performance of the J& implementations described in Chapter 8 could be improved

with greater control over the memory layout of objects. This can be achieved by

implementing a J& virtual machine. One approach to implementing a J& VM is to port

to J& an existing Java VM written in Java and then to extend the ported VM using nested

inheritance to support J&-specific bytecode. A good candidate for a Java VM to port is

Jikes RVM [3]. A translation of J& to J&-specific bytecode must be implemented.

A virtual machine written in J& would also offer another platform for investigat-

ing the effectiveness and usability of nested intersection as a mechanism for scalable

extension and composition.

Rather than implementing a J& virtual machine, another approach to improving

performance is to use bytecode rewriting. As with the virtual machine approach, J& is

translated to J&-specific bytecode. But, instead of having the VM interpret the extended

bytecode, a class loader could be installed to translate the J& bytecode to Java bytecode

as it is loaded. With this approach, the compiler need only generate code for explicit

classes, as with the dynamic implicit class translation. Bytecode for implicit classes

could be generated at run-time, thus achieving performance comparable, if not better,

than the static implicit class translation.
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Chapter 12

Conclusions

This thesis describes mechanisms for scalably extending code with new data types and

new operations. The design pattern approach used in Polyglot is effective, but requires

care to use correctly, does not ensure type safety of extensions, and does not support

composition of extensions.

Nested intersection is a more effective language mechanism for extending and

composing large bodies of software. Extension and composition are scalable because

new code needs to be written only to implement new functionality or to resolve conflicts

between composed classes and packages. Novel features like prefix types and static

virtual types offer important expressive power.

Nested intersection has been implemented in an extension of Java called J&. We have

described the static and dynamic semantics of J& and presented a formal semantics and

proof of soundness for a core calculus with nested intersection.

Using J&, we implemented a compiler framework for Java, and showed that different

domain-specific compiler extensions can easily be composed, resulting in a way to

construct compilers by choosing from available language implementation components.

We demonstrated the utility of nested intersection outside the compiler domain by

porting the FreePastry peer-to-peer system to J&. The effort required to port Java
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programs to J& is not large. Ported programs were smaller, required fewer type casts,

and supported more extensibility and composability.

Nested intersection is a powerful and convenient mechanism for building highly

extensible software. We expect it to be useful for a wide variety of applications.
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