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Investigation of the data rate, blocklength and error probability interplay for the op-

timum block code(s) on a discrete memoryless channel is a fundamental problem of

information theory. Because of the intricacy of the problem, it is ubiquitous to allow

blocklength to grow unboundedly, which, in turn, gives informative optimality results.

Although there are classical asymptotic regimes to investigate this interplay, they have

certain limitations. This thesis is about two new asymptotics in channel coding, pro-

posed to address these limitations.

In moderate deviations, we consider the optimal error performance of the sequence

of codes with rates increasing to the capacity with a speed between the classical asymp-

totic regimes of error exponents and normal approximation and prove that error proba-

bility vanishes sub-exponentially fast with a rate related to the dispersion of the channel.

This conclusion is in contrast with the classical asymptotic regimes, in which either er-

ror probability vanishes or rate increases to the capacity, but not simultaneously. We

believe that this contrast makes moderate deviations more relevant to practical code de-

sign, since the goal of the channel coding is to attain a rate that is close to capacity and

an error probability that is close to zero.

In exact asymptotics, we concentrate on the sub-exponential factors of the well-

known exponentially decaying bounds on the error probability to improve their orders.

The reason of this quest is the fact that the exponent of these bounds vanishes as rate

approaches the capacity, which, in turn, makes the sub-exponential terms to play a sig-



nificant role in the approximation of the error probability for this range of rates. The

sharpened orders of the sub-exponential factors of these refinements are close to each

other in general, and are equal for symmetric channels. Moreover, we reveal a phase

transition of the optimal order of the pre-factor for this class of channels.
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CHAPTER 1

INTRODUCTION

1.1 Channel coding

Information theory, which is founded by Shannon in his seminal paper [61], aims to

characterize the fundamental limits of data compression and reliable communication,

in its essence. Arguably the most important contribution of [61] is the mathematical

abstraction of reliable communication problem, also known as channel coding. Despite

(or perhaps thanks to) its simplicity, Shannon’s model has stood the test of time and

might justly be considered as the foundation of any modern communication system.

In channel coding, a transmitter wants to communicate a message, which takes val-

ues in a finite setM, to a receiver through an unreliable medium, called channel. Typ-

ically, the statistics of the imperfection due to the channel, which is called noise, are

assumed to be known to both transmitter and receiver. Instead of using the channel

once, transmitter and receiver use it multiple times to reduce the error by exploiting

their knowledge of the noise statistics. Moreover, in order to further reduce the error,

transmitter (resp. receiver) uses specialized algorithms called encoder (resp. decoder).

The number of channel uses is called latency or blocklength. Since the channel is used

multiple times, one should scale the size of the message set, from which the transmitted

message is drawn, with the latency, which is called data rate or simply rate. Because

of the uncertainty introduced by the channel, there is a chance that receiver can not

correctly recover the transmitted message, which is characterized by the probability of

error.

There are various different channel models in the literature. In this thesis, we con-
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sider discrete memoryless instance of channel coding, in which, the channel is assumed

to be a stochastic matrix from a finite set, say X, to another finite set, say Y. X (resp.

Y) is called the input (resp. output) alphabet of the channel and the channel is usually

denoted by W(·|·). The set of discrete channels from a finite set X to another finite set

Y will be denoted by P(Y |X) in the sequel. Moreover, it is assumed that the transition

probabilities at each time instance is independent from any past and future transitions,

i.e., for all1 N ∈ Z+ and2 (xN , yN) ∈ XN × YN , W(yN | xN) =
∏N

n=1 W(yn | xn). Given

a discrete memoryless channel (DMC) W, an (N,R) code consists of a message set3

M := {1, . . . , deNRe}, an encoder fN :M→ XN and a decoder ϕN : YN →M. Typically,

it is assumed that the message is distributed uniformly overM. In words, encoder maps

a message m to a vector in the input space of the channel, which is called the codeword

and typically denoted by xN(m). The collection of all the codewords, i.e., {xN(m)}m∈M,

is called the codebook and assumed to be available at transmitter and receiver. Upon re-

ceiving the channel output, receiver declares an estimate of the transmitted message by

utilizing its knowledge of the channel statistics and the codebook. This operation is cap-

tured by decoder mapping. Given an (N,R) code ( fN , ϕN), its maximal error probability,

Pe( fN , ϕN), is defined by

Pe( fN , ϕN) := max
m∈M

W
{
ϕN(YN) , m | xN(m)

}
. (1.1)

Similarly, average error probability, P̄e( fN , ϕN), is defined by

P̄e( fN , ϕN) :=
1
|M|

∑
m∈M

W
{
ϕN(YN) , m | xN(m)

}
. (1.2)

1Throughout the thesis, Z+, R, R+ and R+ denotes the set of positive integers, the set of real numbers,
non-negative real numbers and positive real numbers, respectively.

2In the sequel, boldface letters denote vectors, letters with subscripts denote individual components of
vectors. Furthermore, capital letters represent random variables and lowercase letters denote individual
realizations of the corresponding random variable.

3The base of the exponent determines the unit of information that can be communicated per channel
use. For example, the unit associated with base-2 and the natural base is called bit/channel use and
nat/channel use, respectively. Although bit is the standard unit for the most applications, working with
natural base is more convenient for the purposes of this thesis and hence we opt for using nat as our unit
of information.
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Given any N ∈ Z+ and R ∈ R+, Pe(N,R) (resp. P̄e(N,R)) denotes the optimum (or

minimum) average (resp. maximal) error probability attainable by any (N,R) code.

There is a fundamental interplay between blocklength, rate and the optimum er-

ror probability. Given the intricacy of determining the tradeoff for each value of these

parameters, resorting to a relaxation is almost inevitable. A ubiquitous relaxation in in-

formation theory is to let some parameter grow unboundedly. Typically, blocklength is

assumed to grow unboundedly4. Passing to this asymptotic, in turn, gives crisp, infor-

mative optimality results that serve as halting rules for the quest for designing optimal

communication systems.

The most important instance of the aforementioned interplay is determining the max-

imum amount of rate that can be sustained such that error probability is arbitrarily small,

as the blocklength grows. The answer is the capacity of the channel:

C := max
P∈P(X)

I(P; W), (1.3)

where

I(P; W) :=
∑

(x,y)∈X×Y

P(x)W(y | x) ln
W(y | x)∑

z∈X P(z)W(y | z)
, (1.4)

is the mutual information between input and output of the channel W when the input has

the distribution P and the maximization5 is over all probability measures on X, denoted

by P(X).

The following result of Shannon6 shows that channel capacity constitutes the thresh-

4Because of the significance of the short to moderate blocklengths in practice, one can seek finite
blocklength bounds on the error probability for a given rate. This can be done for a general class of chan-
nels (e.g., [52], [70], [71]) or particular channels (e.g., [52, Theorem 35], [52, Theorem 38]). Although
these bounds are useful to assess the performance of practical codes, typically they are not conceptually
illuminating. We shall adopt the asymptotic approach in this thesis.

5The maximum is well-defined since I(·; W) is a concave function (e.g., [20, Lemma 1.3.5]).
6To be precise, Shannon has discovered the capacity formula in (1.3) and stated channel coding the-

orem, along with an outline of the proof for the direct part. The first published rigorous proof of the
theorem is due to Feinstein [28] in which he attributes the proof of the converse part to Fano.

3



old for the maximum reliable rate.

Theorem (Channel coding theorem [61]). Fix a DMC W ∈ P(Y |X). For any R < C,

lim supN→∞ Pe(N,R) = 0. Conversely, for any R > C, lim infN→∞ P̄e(N,R) > 0. �

Although quite important, channel coding theorem provides a crude measure of the

interplay between blocklength, rate and the error probability. For example, it does not

address how fast error probability decays if rate is below the capacity or how fast rate

can increase to the capacity as the blocklength increases for a given error probability. In

order to address this type of refined questions, other asymptotical characterizations are

devised, which we overview next.

1.1.1 Normal approximation

Given a DMC W ∈ P(Y |X), for any ε ∈ (0, 1) and N ∈ Z+, define the following7

R∗(N, ε) := max{R ∈ R+ : Pe(N,R) ≤ ε}. (1.5)

In words, R∗(N, ε) characterizes the maximum rate possible given a blocklength and tar-

get error probability. Besides its mathematical importance, in the sense of being a refine-

ment of the channel coding theorem, R∗(N, ε) has also practical significance, especially

for modern applications that requires low latency, such as multimedia communications.

For the practically interesting case ε ∈ (0, 1/2), Strassen’s normal approximation result8

gives an asymptotic characterization of R∗(N, ε).

7For the purposes of this section, it is immaterial whether we use average or maximal error probability.
8Recently, Polyanskiy et al. has discovered a small mistake in Strassen’s arguments for a small class

of channels when ε ∈ (1/2, 1) (cf., [52, Section IV.A]). Besides fixing this error, they also improve the
third-order term and extend the result to different channel models, most notably additive white gaussian
noise channel.
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Theorem (Normal approximation [66]). Fix a DMC W ∈ P(Y |X) and ε ∈ (0, 1/2).

Asymptotically,

R∗(N, ε) = C +

√
V
N

Φ−1(ε) + O
(
ln n
n

)
, (1.6)

where

V := min
P∈P(X) : I(P;W)=C

∑
(x,y)∈X×Y

P(x)W(y | x)
[
ln

W(y | x)∑
z∈X P(z)W(y | z)

− I(P; W)
]2

, (1.7)

is the dispersion of the channel. �

We shall refer to this asymptotic regime as the large error probability regime in the

sequel.

1.1.2 Error Exponents

Given a DMC W ∈ P(Y |X), for any ε ∈ (0, 1) and N ∈ Z+, define the following9

N∗(R, ε) := min{N ∈ Z+ : Pe(N,R) ≤ ε}. (1.8)

In words, N∗(R, ε) characterizes the minimum blocklength required to sustain a target

error probability for a fixed rate. Intuitively, N∗(R, ε) can be thought as the “dual” of

R∗(N, ε), defined in (1.6). Moreover, N∗(R, ε) is a fundamental performance metric of

block codes.

A classical approach to approximate N∗(R, ε) is to fix a rate below the capacity and

then to characterize Pe(N,R) asymptotically. From the early days of the field, it has been

known that error probability decays exponentially fast in blocklength (e.g., [24], [27],

[62]). Moreover, the best possible exponent, which is called reliability function of the

9One can either use average or maximal error probability in (1.8).
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channel, has also been investigated thoroughly. The classical upper and lower bounds

on the reliability function10 by Gallager and Shannon et al. are the following:

Theorem (Random coding bound [34]). Fix a DMC W ∈ P(Y |X). For any R ≤ C,

Pe(N,R) ≤ 4e−NEr(R), (1.9)

where the random coding exponent of the channel is defined by

Er(R) := max
Q∈P(X)

max
0≤ρ≤1

{−ρR + Eo(ρ,Q)} , (1.10)

with

Eo(ρ,Q) := − ln
∑
y∈Y

∑
x∈X

Q(x)W(y | x)
1

1+ρ

1+ρ

. (1.11)

�

Theorem (Sphere–packing bound [63]). Fix a DMC W ∈ P(Y |X). For any R ≤ C,

Pe(N,R) ≥ e−N[ESP(R−o1(N))+o2(N)], (1.12)

where the sphere–packing exponent of the channel is defined by

ESP(R) := max
Q∈P(X)

sup
ρ≥0
{−ρR + Eo(ρ,Q)} , (1.13)

o1(N) :=
ln 8
N

+
|X| ln N

N
, (1.14)

o2(N) :=
ln 8
N

+

√
2
N

ln
e2

Pmin
, (1.15)

and Pmin is the minimum positive element of W. �

Remark 1. Both ESP(·) and Er(·) are positive, non-increasing and convex functions on

(0,C) (e.g., [35, Theorem 5.6.4] and [35, pg. 158]). Moreover, sphere-packing and
10There are low rate improvements of both the lower and upper bound (e.g., [35, Theorem 5.7.1] and

[35, Theorem 5.8.2]). Unfortunately, none of these improvements give the reliability function for low
rates, except R = 0, and it is a long-standing open problem to determine the reliability function for
all rates. Since our focus in this thesis will be on high rates, for which random coding and sphere-
packing exponents coincide to give the reliability function, we do not introduce the aforementioned low-
rate improvements.

6



random coding exponents agree for high rates and hence giving the reliability function,

denoted by E(R). Specifically, the critical rate of the channel, denoted by Rcr, is defined

as the minimum of such rates, i.e., ESP(R) = Er(R) if and only if (iff) Rcr ≤ R (e.g., [35,

pg. 160]). Further, ESP(R) can grow unboundedly below a certain rate. Specifically,

R∞ is defined as the minimum R such that for all R > R∞, ESP(R) is finite (e.g., [20,

pg. 170]). See Figure 1.1 for a graphical representation of the aforementioned notions

for a typical channel. ^

Figure 1.1: Random coding and sphere–packing exponents for a typical channel.

Remark 2. Random coding bound was first discovered by Fano with a more involved

proof (e.g., [27, pp. 324–331]). Also, Fano’s exponent has a different algebraic form

than the one given in (1.10), which can be shown to be equal to Gallager’s form. Fano’s

method of proving random coding bound is generally viewed as obsolete within infor-

mation theory community, because of the simplicity of Gallager’s proof.
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Sphere–packing bound was independently discovered by Haroutunian with a differ-

ent proof [38]. Haroutunian’s arguments give the following form of the sphere-packing

exponent11

ESP(R) := max
P∈P(X)

min
V∈P(Y |X):I(P;V)≤R

D(V ||W |P), (1.16)

where D(V ||W |P) :=
∑

x∈X P(x)D(V(· | x)||W(· | x)) and D(V(· | x)||W(· | x)) is the relative

entropy between probability distributions V(· | x) and W(· | x) (e.g., [18, pg. 19]). We

call (1.13) (resp. (1.16)) Shannon-Gallager-Berlekamp (resp. Haroutunian) form of the

sphere-packing exponent. ^

We shall refer to this asymptotic regime as the small error probability regime in this

thesis.

1.2 Motivation

Although small and large error probability regimes are deservedly celebrated, they have

at least two limitations. The first limitation is about the nuisance factors in small error

probability regime. Traditionally, these factors are ignored in the results that are con-

sidered to be conclusive for this regime, however they play a significant role in their

practical usage. The second limitation is that neither small nor large error probabil-

ity regime aims to explain the case where rate approaches the capacity and the error

probability vanishes, simultaneously. However, this regime is arguably more relevant to

practical code design than either small or large error probability regime, since the goal

in channel coding is, after all, to attain a rate that is close to capacity and an error prob-

ability that is close to zero. Next, we discuss these two limitations and how to address

them.
11It is well-known that the right sides of (1.13) and (1.16) are equal (e.g., [12]).
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In order to demonstrate the first limitation, consider data storage, in which having

an extremely small error probability, at the expense of working at rates strictly below

the capacity, is crucial. However, the existing results only determine the exponent of

error probability decay by washing out the sub-exponential factors. In particular, until

recently, the tightest pre-factor for the upper bound on the error probability was Θ(1),

due to Fano [27] and Gallager [34]. The best12 pre-factor in the lower bound for constant

composition codes13 was Θ(N−|X||Y|), due to Haroutunian [38], where |X| and |Y| are

the cardinalities of the input and output alphabets, respectively14. Clearly, there is a

considerable gap between the orders of the pre-factors in the upper and lower bounds.

This brings a sizable practical limitation, because the resulting bounds are not precise,

especially for rates close to capacity, where the error exponent is close to zero, and hence

sub-exponential term plays a significant role15. To address this limitation, one needs a

more refined analysis to deduce a sharper characterization of the sub-exponential term

associated with the small error probability results. We note that a by-product of this

refined analysis is a more accurate characterization of the optimal error probability for

small to moderate blocklength. As noted before, this regime of latency is becoming

more important in contemporary applications, such as multimedia communications and

control over imperfect channels, where having a small latency is vital.

12The version by Shannon et al., which is mentioned in Section 1.1.2, has an Θ
(
e−
√

N
)

pre-factor.
13A code is a constant composition code provided that all of the codewords has the same empirical

distribution (e.g., [20, pg. 117]). It is well-known that (e.g., [63]) any (N,R) code includes a constant
composition code with the same maximal error probability and rate not smaller than R− |X| ln N

N , where |X|
is the cardinality of the input alphabet.

14There are recent attempts to improve the sphere-packing bound, most notably [70] and [71], for
small to moderate blocklengths. In these works, the methodology is essentially the same with Shannon
et al. [63], but the analysis is tightened at the expense of a more complicated bound. Further, it is
computationally demonstrated that the derived bounds improve the sphere-packing bound of Shannon et
al. for binary symmetric and binary erasure channels. However, neither of them give the order of the
sub-exponential term explicitly and it appears that the order of the pre-factor for these improvements are
the same as that of Shannon et al.

15For example, see [52, Section V] for a discussion on the inaccuracy of using the random coding
bound to approximate N∗(R, ε) (cf., (1.8)) when R is close to C.
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To demonstrate the second limitation, recall that although small error probability

regime allows for vanishing error probabilities, rate is bounded away from the capacity.

In large error probability regime, on the other hand, the rate approaches the capacity but

error probability is bounded away from zero. Evidently, these two regimes correspond to

two extreme ways of using available latency. Indeed, small (resp. large) error probability

regime uses all the blocklength to minimize (resp. maximize) error probability (resp.

rate) at the expense of fixing rate below the capacity (resp. having a non-vanishing error

probability). However, none of the approaches is a balanced way of using the latency.

To address this limitation, one needs to consider the asymptotic regime that lies between

them, in which one requires the rate to approach the capacity and error probability to

simultaneously tend to zero. Assessing the performance of codes in this regime, which

we call medium error probability regime in the sequel, gives a more balanced (in terms

of the latency usage) performance metric compared to the existing asymptotic regimes.

Figure 1.2 provides a graphical representation of the small, medium and large error

probability regimes.

The main goal of this study is to address the aforementioned two limitations of the

existing asymptotic regimes. We give a summary of our main findings in Section 1.3.

Before proceeding further, however, it is helpful to consider the more-elementary setup

of the sum of independent and identically distributed (i.i.d.) random variables to place

the aforementioned notions into context. If we scale the sum with 1/N, it converges

to the mean by the law of large numbers. Cramér’s Theorem (e.g., [19], [21, Theo-

rem 2.2.3]) characterizes the probability that the unnormalized sum makes an order-N

deviation from its mean. This probability decays exponentially in N, and Cramér’s char-

acterization of the exponent is now termed a large deviations result. The central limit

theorem, on the other hand, characterizes the probability that the unnormalized sum

makes an order-
√

N deviation. As N tends to infinity, this probability converges to a
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positive constant that is governed by the Gaussian distribution. The small error proba-

bility regime in channel coding is analogous to large deviations for i.i.d. sums, in that

they both characterize exponentially small probabilities using similar techniques. The

large error probability regime is akin to the central limit theorem; as the term normal

approximation already suggests.

Continuing the analogy with the i.i.d. sum of random variables, the medium er-

ror probability regime is analogous to the one in which the goal is to characterize the

probability that the unnormalized sum makes a deviation whose size lies between two

extremes of large deviations and the central limit theorem [21, Theorem 3.7.1], which

is now called a moderate deviations result. Similarly, the refined analysis suggested to

address the accuracy issue in small error probability regime resembles the exact asymp-

totics problem in large deviations (e.g., [7], [21, Theorem 3.7.4]). This problem aims to

determine the pre-factor of the exponentially vanishing term in the large deviations the-

orem. Bahadur and Rao characterized this pre-factor, Θ(1/
√

N), including the constant,

Figure 1.2: Graphical representation of small, medium and large probability
regimes.
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under some regularity conditions [7].

1.3 Summary of the results

In Chapter 2, we analyze the medium error probability regime. In particular, we charac-

terize the optimal error probability when rate increases to the capacity, by proving that

if this increase is slower than the one in large error probability regime, then the opti-

mal error probability goes to zero sub-exponentially fast. Further, we show that the rate

of this sub-exponential decay is inversely proportional to the dispersion of the channel,

defined in (1.7), and hence giving another operational significance to this fundamental

quantity.

The rest of the thesis is devoted to the more refined analysis in the small error prob-

ability regime, i.e., improvement of the sub-exponential term in the random coding and

sphere-packing bounds.

In Chapter 3, we prove a lower bound for constant composition codes for rates be-

tween R∞ and C with a pre-factor of Ω
(
N−

1
2 (1+ε+ρ∗R)

)
, for any ε > 0, where ρ∗R is the

maximum absolute-value subgradient of ESP(R).

Chapter 4 is devoted to prove the counterpart of the aforementioned result. Specifi-

cally, we prove the following:

1. If a positive dispersion DMC satisfies a certain regularity condition, then for rates

between Rcr and C, there exists an (N,R) code with maximal error probability

smaller than K1e−NEr(R)

N
1
2 (1−ε+ρ̃∗R) , for any ε > 0, where K1 is a positive constant and ρ̄∗R is

related to the subdifferential of the random coding exponent Er(R). Further, if the

12



channel is positive, then ρ̄∗R is the maximum absolute value subgradient of Er(R)

and one can drop ε.

2. If a positive dispersion DMC does not satisfy the aforementioned regularity con-

dition, then for rates between Rcr and C, there exists an (N,R) code with maximal

error probability smaller than K2e−NEr(R)
√

N
, where K2 is a positive constant.

The order of the improved pre-factors are close to each other, but not exactly the

same. However, when restricted to a specific class of channels, namely symmetric chan-

nels16, we characterize the optimal order of the sub-exponential term, which constitutes

Chapter 5. To be specific, for rates between Rcr and C, the optimal order of the pre-factor

for the typical symmetric channels is Θ(N−0.5(1+|E′(R)|)), where E′(R) is the slope of the

reliability function at rate R, whereas for the remaining symmetric channels, Θ(N−0.5) is

the optimal order of the pre-factor. This dichotomy of the sub-exponential term appears

to be a noteworthy observation.

1.4 Notation

In the sequel, boldface letters denote vectors, letters with subscripts denote individual

components of vectors. Capital letters represent random variables and lowercase letters

denote individual realizations of the corresponding random variable. Z+, R, R+ and R+

denotes the set of positive integers, the set of real, non-negative real and positive real

numbers, respectively. Given two finite sets X and Y, P(X) (resp. P(Y|X)) denotes the

set of all probability measures onX (resp. the set of all stochastic matrices fromX toY).

Φ and φ denotes the distribution and density of the standard Gaussian random variable,

respectively. Given a set S, Sc, cl(S ), S◦, ri(S) and |S| denotes the complementary set of

16See Definition 9 for the definition of symmetric channels.
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S, the closure of S, the relative interior of S and the cardinality of S, respectively. S(P)

denotes the support of the probability distribution P. 1{·} denotes the standard indicator

function. Given a matrix A, AT (resp. det(A)) denotes its transpose (resp. determinant).
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CHAPTER 2

MODERATE DEVIATIONS IN CHANNEL CODING

Moderate deviations have been a fixture of probability theory for some time (e.g., [29],

[30], [31, Sec. XVI.7], [45, Chapter 8], [49] and references therein). However, their

appearance in information literature is recent. In particular, Slepian-Wolf problem, also

known as source coding with side information problem (e.g., [65]), appears to be the first

classical information theory setup investigated from moderate deviations perspective

(cf., the work of He et al. [17], [39], [40], [41]). Altuğ and Wagner introduced moderate

deviations in channel coding by proving the main result of this chapter for positive1

discrete memoryless channels [1]. Polyanskiy and Verdú [53] extended the result in

[1] by relaxing the positivity assumption for discrete memoryless channels and proving

an analogous result for Gaussian channels. More recently, moderate deviations in lossy

source coding and binary hypothesis testing problems have been investigated by Tan [67]

and Sason [57], respectively.

The result provided here improves upon [1] by relaxing the positivity assumption

and simplifying the argument. The proof is different from that of Polyanskiy and Verdú,

who rely on methods from [52] and powerful results from probability theory. It is also

different from that of He et al. and Tan, who use type theory. It is worth noting that

standard finite block length bounds on the rate and error probability from small error

probability regime are insufficient to obtain a conclusive moderate deviations result, so

we develop new bounds that are tailored for the particular regime at hand.

1A discrete channel is positive if all of its transition probabilities are positive.
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2.1 Statement of the results

Theorem 1. For any DMC W ∈ P(Y|X) with V > 0,2 for any sequence of real numbers

{εN}N≥1 satisfying

(i) εN → 0, as N → ∞,

(ii) εN

√
N → ∞, as N → ∞, (2.1)

there exists a sequence of codes {( fN , ϕN)}N≥1 that satisfies RN := ln |ϕN |

N ≥ C − εN , for all

N ∈ Z+ and

lim sup
N→∞

1
Nε2

N

ln Pe( fN , ϕN) ≤ −
1

2V
, (2.2)

where Pe( fN , ϕN) denotes the maximal error probability of ( fN , ϕN). �

Theorem 2. For any DMC W ∈ P(Y|X) with V > 0, for any sequence of real numbers

{εN}N≥1 satisfying (2.1) and for any sequence of codes {( fN , ϕN)}N≥1 satisfying RN =

ln |ϕN |

N ≥ C − εN , we have

lim inf
N→∞

1
Nε2

N

ln P̄e( fN , ϕN) ≥ −
1

2V
, (2.3)

where P̄e( fN , ϕN) denotes the average error probability of ( fN , ϕN). �

Remark 3. Polyanskiy and Verdú [52] show that the assumption V > 0 is necessary in

order for 1
Nε2

N
ln Pe( fN , ϕN) to have a finite limit. If V = 0, then it is tempting to conjecture

that 1
NεN

ln Pe( fN , ϕN) has a finite limit (see [52, Theorem 4]). ^

Remark 4. Our achievability proof follows from Gallager’s random coding bound (e.g.,

[35, Corollary 2, pg. 140]), which states that for any rate R and block length N, there

exists an (N,R) code ( fN , ϕN) such that

Pe( fN , ϕN) ≤ 4e−NEr(R). (2.4)
2Since V > 0 implies that C > R∞(W) ≥ 0 (e.g., [35, pg. 160]) we have C > 0.
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Since N and R are arbitrary, we can let R = C − εN and approximate Er(·) around C

via a Taylor series to obtain Theorem 1. This line of reasoning is made rigorous in

Section 2.2.1.

The achievability argument is deceptively simple in that it obscures issues that

should be addressed to prove the converse. To prove the converse, we would like to

show that for any εN satisfying the hypothesis of the theorem and any α > 1, there exist

sequences βN and γN satisfying

βN

εN
→ 0, (2.5)

1
Nε2

N

ln γN → 0, (2.6)

such that for all sufficiently large N and all (N,C − εN) codes ( fN , ϕN), we have

Pe( fN , ϕN) ≥ γNe−NαESP(C−εN−βN ). (2.7)

If one could prove such a bound, then she could obtain Theorem 2 by expanding ESP(·)

as a Taylor series around C and taking the appropriate limit.

But it is not clear whether a bound like (2.7) holds. The refinement of the sphere–

packing bound that is given in Chapter 3 (see also [5], [6]) states the following: for

all ε > 0, all fixed rates R below the capacity, and all sufficiently large N, any constant

composition (N,R) code ( fN , ϕN) satisfies3

Pe( fN , ϕN) ≥
K(R)
√

N
exp

−NESP

R − (1 + ε) ln
√

N
N

 . (2.8)

Moreover, the N-dependence on the right side is essentially the best possible for a fixed

R, owing to the refinement of the random coding bound given in Chapter 4 (see also [3]).

Although the rate backoff in this bound clearly satisfies (2.5), whether the pre-factor

satisfies (2.6) hinges on R dependence of K(R). This dependence is not currently known,
3Strictly speaking, (2.8) is not the same as the one given in Chapter 3. The latter is more involved than

the former. The difference between them, however, is immaterial as far as the following discussion goes.
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but it can be postulated via the following reasoning. In large error probability regime,

in which the rate approaches the capacity at a speed of 1/
√

N, the error probability

is asymptotically constant [66], and a Taylor series expansion of the sphere-packing

exponent shows that the exponential factor in (2.8) is also asymptotically constant in

this regime. If we assume that (2.8) holds in this regime, then it follows that the pre-

factor must also be asymptotically constant, which suggests that K(R) might behave as

1/(C − R). If this is true, then the pre-factor would satisfy (2.6), so (2.7) would hold.

We show that (2.7) indeed holds, although our proof does not involve characterizing

how K(R) varies with R.4 Instead we prove (2.7) directly by using a particular set of

classical information theory results, which do not appear to have been used in combina-

tion before, to prove a version of the sphere-packing exponent that is especially tight at

finite block lengths and rates near capacity. The fact that our proof is similar to existing

derivations of the sphere-packing exponent and uses well-known ingredients might give

the impression that the result is routine. In fact, the required bounds are quite delicate,

as the above discussion illustrates, and many conceptually-similar approaches to prov-

ing the sphere-packing exponent fail to give a conclusive moderate deviations result.

^

2.2 Proofs

Given any W ∈ P(Y|X), let

V(P) := VarP×W

[
ln

W(Y |X)∑
z∈X P(z)W(Y |z)

]
, (2.9)

where (P ×W)(x, y) = P(x)W(y|x). Using (2.9), note that (1.7) can also be written as

V = min
P∈P(X) : I(P;W)=C

V(P), (2.10)

4Determining how K(R) varies with R is an interesting subject for future work.
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and let P̃ denote some element of P(X) that achieves the minimum in (2.10).

We note a couple of auxiliary results5 that will be used in the sequel.

Lemma 1. Given any W ∈ P(Y|X) with no all-zero column, Eo(ρ, P) possesses the

following properties:

1) Given any P ∈ P(X), Eo(ρ, P) is concave in ρ ∈ R+.

2) Given any P ∈ P(X),
∂Eo(ρ, P)

∂ρ

∣∣∣∣∣
ρ=0

= I(P; W). (2.11)

3) Given any P ∈ P(X),
∂2Eo(ρ, P)

∂ρ2

∣∣∣∣∣∣
ρ=0

= −V(P). (2.12)

4) Given any P ∈ P(X),

∂Eo(ρ, P)
∂ρ

≤ I(P; W), ∀ ρ ∈ R+. (2.13)

5) ∂Eo(ρ,P)
∂ρ

is continuous over (ρ, P) ∈ R+ × P(X).

6) ∂2Eo(ρ,P)
∂ρ2 is continuous over (ρ, P) ∈ R+ × P(X).

7) ∂3Eo(ρ,P)
∂ρ3 is continuous over (ρ, P) ∈ R+ × P(X). �

Proof. The proof is given in Appendix A.1. �

5The proof of the results are straightforward calculations. Further, items 1) through 4) have been noted
before (e.g., [35, Theorem 5.6.3]). However, we have not encountered a proof for the remaining ones.
Since the first four items directly follows from the calculations needed to deduce the last three, we opted
to include them in Lemma 1 for the sake of reader’s convenience.

19



2.2.1 Proof of Theorem 1

Let W ∈ P(Y|X) be an arbitrary stochastic matrix satisfying the conditions stated in the

theorem. Without loss of generality, suppose that W has no all-zero columns. Further,

let {εN}N≥1 be an arbitrary sequence of real numbers, satisfying (2.1). By (2.1) and the

fact that C > 0, we have

C − εN > 0, (2.14)

for all sufficiently large N ∈ Z+. Next, fix such an N. Gallager’s random coding bound

(e.g., [35, Corollary 2, pg. 140]) implies that there exists ( fN , ϕN), such that ln |ϕN |

N :=

RN ≥ C − εN and

Pe( fN , ϕN) ≤ 4 exp
{
−N

[
max
0≤ρ≤1

{Eo(ρ, P) − ρRN}

]}
, (2.15)

for all P ∈ P(X). Therefore, (2.15) implies the existence of a sequence of codes

{( fN , ϕN)}N≥1, s.t. for all N ∈ Z+, RN ≥ C − εN and

1
Nε2

N

ln Pe( fN , ϕN) ≤
ln 4
Nε2

N

−
1
ε2

N

max
0≤ρ≤1

{Eo(ρ, P) − ρRN} , (2.16)

for all sufficiently large N and any P ∈ P(X). Hence, it suffices to prove that (2.2) holds

for this particular sequence of codes in order to conclude the result.

Using Taylor’s Theorem, along with (2.11) and (2.12) (cf., items 2) and 3) of

Lemma 1), for any ρ ∈ R+, we have

Eo(ρ, P̃) = ρC −
ρ2

2
V +

ρ3

6
∂3Eo(ρ, P̃)

∂ρ3

∣∣∣∣∣∣
ρ=ρ̄

, (2.17)

for some ρ̄ ∈ [0, ρ], where as noted before P̃ is some dispersion attaining input distribu-

tion. Next, let ρN = εN
V , for all N ∈ Z+. Then, (2.17) yields,

max
0≤ρ≤1

{
Eo(ρ, P̃) − ρRN

}
≥
ε2

N

2V
−

ε3
N

6V3

∣∣∣∣∣∣∣ ∂3Eo(ρ, P̃)
∂ρ3

∣∣∣∣∣∣
ρ=ρ̄N

∣∣∣∣∣∣∣ , (2.18)

for all sufficiently large N and for some ρ̄N ∈ [0, ρN].
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Next, note that ρN ≤ 1, for all sufficiently large N, since limN→∞ εN = 0 (cf., (i) of

(2.1)) and V > 0. We define

M := max
(ρ,P) ∈ [0,1]×P(X)

∣∣∣∣∣∣∂3Eo(ρ, P)
∂ρ3

∣∣∣∣∣∣ . (2.19)

Owing to item 7) of Lemma 1, the maximum in (2.19) is well-defined and finite. There-

fore, (2.18) and (2.19) imply that

max
0≤ρ≤1

{
Eo(ρ, P̃) − ρRN

}
≥
ε2

N

2V
−

ε3
N

6V3 M, (2.20)

for all sufficiently large N.

Substituting (2.20) into (2.16) yields

1
Nε2

N

ln Pe( fN , ϕN) ≤
ln 4
Nε2

N

−
1

2V

(
1 − M

εN

3V2

)
, (2.21)

which, in turn, implies (recall (2.1) and (2.19))

lim sup
N→∞

1
Nε2

N

ln Pe( fN , ϕN) ≤ −
1

2V
, (2.22)

which is (2.2). �

2.2.2 Proof of Theorem 2

Let W and {εN}N≥1 be as in Section 2.2.1. Further, let {( fN , ϕN)}N≥1 be an arbitrary

sequence of codes with ln |ϕN |

N := RN ≥ C − εN , for all N ∈ Z+. Observe that owing

to standard arguments used to switch from the maximum to average error probability

(e.g., [63, eq. (4.41)]), it is sufficient to show the conclusion for the maximum error

probability, i.e.,

lim inf
N→∞

1
Nε2

N

ln Pe( fN , ϕN) ≥ −
1

2V
, (2.23)
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in order to prove (2.3). By similar reasoning [20, pg. 171], we can assume that the code

is constant composition.

Next, we briefly outline the rest of the proof, which consists of three steps. The first

step is to prove a strong converse theorem, Lemma 2, tailored to the particular situation

at hand. The second step is to use Lemma 2 and “change of measure” to prove (2.7) (cf.,

Remark 4). The final step is to approximate the exponent in (2.7) via a Taylor series to

conclude the result.

Remark 5. Lemma 2, which could be of independent interest, is derived from Wol-

fowitz’s converse to the channel coding theorem [72]. Although our version requires

that the code be constant composition, an assumption not required by Wolfowitz, it

shows that the error probability must be near unity if the rate exceeds the mutual in-

formation induced by the code. Wolfowitz requires the rate to exceed capacity. ^

Remark 6. One of the well-known change of measure arguments is Marton’s [48, eq.

(12)]. Although Marton originally applied it to rate distortion, the application to chan-

nel coding is obvious. It does not seem sufficient to prove (2.7), however. Instead, we

use a change of measure argument based on the log-sum inequality, given by Csiszár

and Körner [20, pg. 167]. ^

Define the constant A as follows:

A := max
(P×V) ∈P(X)×P(Y|X)

Var
[
ln

V(Y |X)
Q(Y)

]
+ 1, (2.24)

where Q(y) :=
∑

x∈X P(x)V(y|x), ∀y ∈ Y. Note that, since the cost function is continuous

in the optimization variable and we work with finite alphabets, the maximum in (2.24)

is well-defined and finite.

Lemma 2 (Strong Converse). Let ( f , ϕ) be an arbitrary constant composition code with

block length N, common type P, and rate R > 0. Let V ∈ P(Y|X) be an arbitrary
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stochastic matrix satisfying I(P; V) ≤ R − 2δ, for some δ > 0. Then, we have

P̄e( f , ϕ) ≥ 1 −
A

Nδ2 − e−Nδ, (2.25)

where A is defined in (2.24) and the error probability is due to DMC V. �

Proof. The proof follows similar steps to that of [35, Theorem 5.8.5]. Let ( f , ϕ), V ∈

P(Y|X) and δ > 0 be as in the statement of the lemma. Define

G(m) :=
{

ln
V(YN |xN)

Q(YN)
> N [I(P; V) + δ]

}
, (2.26)

for any m ∈ M :=
{
1, . . . , deNRe

}
, where Q(yN) :=

∏N
n=1 Q(yn), ∀yN ∈ YN along with

Q(y) :=
∑

x∈X P(x)V(y|x). Also, for the sake of notational convenience, define i(x, y) :=

ln V(y|x)
Q(y) , for any (x, y) ∈ X × Y. Note that we have

ln
V(yN |xN(m))

Q(yN)
=

N∑
n=1

ln
V(yn|xn(m))

Q(yn)
=

N∑
n=1

i(xn(m); yN), (2.27)

for all m ∈ M, where xN(m) denotes the codeword of the code corresponding to the

message m. Hence, for any m ∈ M, we have

EV(·|xN (m))

[
i(xN(m),YN)|xN(m)

]
=

N∑
n=1

EV(·|xn(m)) [i(xn(m),Yn)|xn(m)] (2.28)

=
∑
x∈X

N(x|xN(m))
∑
y∈Y

V(y|x) ln
V(y|x)
Q(y)

(2.29)

= N
∑
x∈X

P(x)
∑
y∈Y

V(y|x) ln
V(y|x)
Q(y)

(2.30)

= NI(P; V), (2.31)

where (2.28) follows from (2.27), (2.29) follows from the definition of N(x|xN), which

denotes the number of occurrences of the symbol x ∈ X in the string xN , and (2.30)

follows from the definition of the type P.
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Next, let ϕ−1(m) ⊂ YN denote the decoding regions of ( f , ϕ), ∀m ∈ M. We have

1 − P̄e( f , ϕ) =
∑
m∈M

1
|M|

∑
yN∈ϕ−1(m)

V(yN |xN(m)) (2.32)

=
∑
m∈M

1
|M|

∑
yN∈ϕ−1(m)∩G(m)

V(yN |xN(m)) +
∑
m∈M

1
|M|

∑
yN∈ϕ−1(m)∩G(m)c

V(yN |xN(m)),

(2.33)

Recalling (2.26), for any yN ∈ G(m)c, we have

V(yN |xN(m)) ≤ Q(yN) exp {N [I(P; V) + δ]} , (2.34)

which, in turn, implies that

∑
m∈M

1
|M|

∑
yN∈ϕ−1(m)∩G(m)c

V(yN |xN(m)) ≤
∑
m∈M

1
|M|

∑
yN∈ϕ−1(m)∩G(m)c

Q(yN)eN[I(P;V)+δ] (2.35)

≤
∑
m∈M

1
|M|

∑
yN∈ϕ−1(m)

Q(yN)eN[I(P;V)+δ] (2.36)

=
exp {N [I(P; V) + δ]}

deNRe

∑
m∈M

∑
yN∈ϕ−1(m)

Q(yN) (2.37)

≤ exp {−N [R − I(P; V) − δ]} (2.38)

≤ e−Nδ, (2.39)

where (2.38) follows from the fact that the decoding regions are disjoint and Q is a

probability measure on YN and (2.39) follows from I(P; V) ≤ R − 2δ assumption.

Next, note that for any m ∈ M

∑
yN∈ϕ−1(m)∩G(m)

V(yN |xN(m)) ≤
∑

yN∈G(m)

V(yN |xN(m)) (2.40)

= V
{
G(m)|xN(m)

}
. (2.41)

Further, using Chebyshev’s inequality (recall (2.26), (2.27) and (2.31)), for any m ∈ M
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we have

V
{
G(m)|xN(m)

}
≤

∑N
n=1 Var [i(xn(m); Yn)|xn(m)]

N2δ2 (2.42)

=
1

Nδ2

 1
N

N∑
n=1

∑
y∈Y

V(y|xn(m)) ln2 V(y|xn(m))
Q(y)

−
1
N

N∑
n=1

∑
y∈Y

V(y|xn(m)) ln
V(y|xn(m))

Q(y)


2 (2.43)

≤
1

Nδ2

 1
N

N∑
n=1

∑
y∈Y

V(y|xn(m)) ln2 V(y|xn(m))
Q(y)

−

 1
N

N∑
n=1

∑
y∈Y

V(y|xn(m)) ln
V(y|xn(m))

Q(y)


2 (2.44)

=
1

Nδ2

∑x∈X P(x)
∑
y∈Y

V(y|x) ln2 V(y|x)
Q(y)

−

∑
x∈X

P(x)
∑
y∈Y

V(y|x) ln
V(y|x)
Q(y)


2 (2.45)

=
Var

[
ln V(Y |X)

Q(Y)

]
Nδ2 , (2.46)

where (2.44) follows from Jensen’s inequality and (2.45) follows from the definition of

P. Plugging (2.46) into (2.41) and recalling (2.24) yields

∀m ∈ M,
∑

yN∈ϕ−1(m)∩G(m)

V(yN |xN(m)) ≤
A

Nδ2 . (2.47)

Plugging (2.39) and (2.47) into (2.33), we deduce that

P̄e( f , ϕ) ≥ 1 −
A

Nδ2 − e−Nδ, (2.48)

which is (2.25). �

Next, fix some 0 < γ < 1/2. Let ψ ∈ R+ be defined as

ψ2 :=
2A
γ
. (2.49)
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Note that for all sufficiently large N,

0 < C −
(
εN +

2ψ
√

N

)
, (2.50)

e−ψ
√

N ≤ γ/2. (2.51)

As a direct consequence of the Strong Converse lemma (with the choice of δ = ψ/
√

N),

for any V ∈ P(Y|X) satisfying I(PN; V) ≤ RN −
2ψ
√

N
, we have

∃m ∈ M =
{
1, . . . , deNRN e

}
, s.t. 1 − V

{
ϕ−1

N (m)|xN(m)
}
≥ 1 − γ, (2.52)

for all sufficiently large N ∈ Z+, such that (2.50) and (2.51) hold. Here, PN denotes the

composition of the code. Note that N does not depend on the specific choice of V . Fix

a sufficiently large N such that (2.50) and (2.51) hold.

Lemma 3 (Change of Measure). Let ( f , ϕ) be an arbitrary constant composition code

with block length N and composition PN . Then

Pe( f , ϕ) ≥ exp

−N

 min
V∈P(Y|X) : I(PN ;V)≤RN−

2ψ
√

N

{
D(V ||W |PN)

1 − γ
+

h(1 − γ)
N(1 − γ)

}
 , (2.53)

for all sufficiently large N ∈ Z+ such that (2.50) and (2.51) hold, where h(·) is the binary

entropy function, i.e., h(p) := p ln(1/p)+ (1− p) ln(1/(1− p)), ∀ p ∈ [0, 1], and the error

probability is due to DMC W. �

Proof. The argument is due to Csiszár and Körner (e.g., [20, pg. 167]), and we state it

for the sake of completeness. Fix N and let V be any channel such that

I(Pn; V) ≤ Rn −
2ψ
√

n
. (2.54)

By the log-sum inequality (e.g., [20, pg. 48]), for any message m, we have

V(ϕ−1(m)|xN(m)) ln
V(ϕ−1(m)|xN(m))
W(ϕ−1(m)|xN(m))

+ V((ϕ−1(m))c|xN(m)) ln
V((ϕ−1(m))c|xN(m))
W((ϕ−1(m))c|xN(m))

≤ D(V ||W |xN(m)), (2.55)
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where ϕ−1(m) denotes the decoding region for the m-th message and (ϕ−1(m))c denotes

its complement. This, in turn, implies that

V((ϕ−1(m))c|xN(m)) ln
1

W(ϕ−1(m)|xN(m))
≤ D(V ||W |xN(m)) + h(V(ϕ−1(m)|xN(m))).

(2.56)

Applying this inequality to a message satisfying (2.52) gives (2.53). �

By recalling the definition of Haroutunian form of the sphere-packing exponent (cf.,

(1.16)), (2.53) implies that

Pe( fN , ϕN) ≥ e−
h(1−γ)
(1−γ) exp

{
−N

(
ESP (C − δN ,W)

1 − γ

)}
, (2.57)

where

δN := εN

1 +
2ψ√
Nε2

N

 , (2.58)

for all N ∈ Z+. Note that this establishes (2.7). We define

αN := 1 +
2ψ√
Nε2

N

, ∀N ∈ Z+, (2.59)

and note that since εN
√

N → ∞ as N → ∞ (cf., item (ii) of (2.1)), αN → 1 as N → ∞.

Therefore, δN → 0 as N → ∞ (cf., item (i) of (2.1)).

The third and final step of the proof is to approximate the exponent on the right side

of (2.57). To this end, first note that if the rate is above the critical rate6, i.e., R ≥ Rcr,

then ESP(R) = Er(R) (e.g., Remark 1), which, in turn, implies that

ESP (R) = Er(R) = max
P ∈P(X)

max
0≤ ρ≤ 1

{−ρR + Eo(ρ, P)} , (2.60)

by recalling the definition of the random coding exponent (e.g., (1.10)).

6See Remark 1 for the definition of Rcr.
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Further, since V > 0, one can infer that (e.g., [35, pg. 160]) Rcr < C and hence for

all sufficiently large N, C−δN > Rcr. This observation, coupled with (2.60), ensures that

for all sufficiently large N, we have

ESP (C − δN) = Er (C − δN) = max
P ∈P(X)

max
0≤ ρ≤ 1

{−ρ[C − δN] + Eo(ρ, P)} . (2.61)

Proposition 1. (Sphere–packing exponent around C)

lim sup
n→∞

ESP (C − δN ,W)
δ2

N

≤
1

2σ2(W)
. (2.62)

�

Proof. Let QN and ρN achieve the maxima in (2.60) at rate C − δN , i.e.,

ESP(C − δN) = −ρN(C − δN) + Eo(ρN ,QN). (2.63)

Now ESP(C − δN) > 0 for all N, since the sphere-packing exponent is positive for all

rates below the capacity (e.g., Remark 2). This implies that ρN > 0 for all N. Since

Eo(ρ, P) is concave in ρ, it follows that

C − δN =
∂Eo(ρ,QN)

∂ρ

∣∣∣∣∣
ρ=ρN

, (2.64)

for all N.

Our proof of Proposition 1 will use the following lemma.

Lemma 4.

(a) Any limit point of {QN} is capacity achieving.

(b) limN→∞ ρN = 0.

(c) lim supN→∞
ρN
δN
≤ 1

V . �
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Proof. Consider arbitrary subsequences {QNn}n≥1 and {ρNn}n≥1 and note that, owing to

the compactness of P(X) and [0, 1] (switching to a further subsequence, if necessary),

we may assume that

lim
n→∞

QNn = P0, lim
n→∞

ρNn = ρ0, (2.65)

for some P0 ∈ P(X) and ρ0 ∈ [0, 1].

Now (2.64) and item 5) of Lemma 1 together imply that

C =
∂Eo(ρ, P0)

∂ρ

∣∣∣∣∣
ρ=ρ0

. (2.66)

On the other hand, item 4) of Lemma 1 implies that

∂Eo(ρ, P0)
∂ρ

∣∣∣∣∣
ρ=ρ0

≤ I(P0; W) ≤ C. (2.67)

It follows that P0 is capacity achieving. Since the subsequence was arbitrary, this estab-

lishes (a).

Since P0 is capacity achieving, the assumption that V > 0 implies that ∂2Eo(ρ,P0)
∂ρ2

∣∣∣∣
ρ=0

<

0 by part 3) of Lemma 1. Then, items 1) and 2) of Lemma 1 imply that the first inequality

in (2.67) holds with equality if and only if ρ0 = 0. Since the subsequence was arbitrary,

this establishes (b).

Next consider ∂Eo(ρ,QNn )
∂ρ

, viewed as a function of ρ. This function equals I(QNn; W) at

ρ = 0 by part 2) of Lemma 1, and it equals C − δNn at ρNn by (2.64). It is differentiable

in ρ by item 6) of Lemma 1. Thus, by the mean value theorem, there must exist a ρ̂Nn in

[0, ρNn] such that

−
∂2Eo(ρ,QNn)

∂ρ2

∣∣∣∣∣∣
ρ=ρ̂Nn

=
I(QNn; W) −C + δNn

ρNn

(2.68)

≤
δNn

ρNn

. (2.69)
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Now by items 3) and 6) of Lemma 1,

lim
n→∞

∂2Eo(ρ,QNn)
∂ρ2

∣∣∣∣∣∣
ρ=ρ̂Nn

=
∂2Eo(ρ, P0)

∂ρ2

∣∣∣∣∣∣
ρ=0

= −V(P0) ≤ −V. (2.70)

Combining the last two inequalities gives

lim sup
n→∞

ρNn

δNn

≤
1
V
. (2.71)

Since the subsequence was arbitrary, this establishes (c). �

We are now in a position to prove Proposition 1. For any sufficiently large N, Tay-

lor’s Theorem gives (recalling items 2) and 3) of Lemma 1)

ESP(C − δN) = −ρN[C − δN] + Eo(ρN ,QN) (2.72)

= ρN [I(QN; W) −C + δN] −
(ρN)2

2
V(QN) +

(ρN)3

6
∂3Eo(ρ,QN)

∂ρ3

∣∣∣∣∣∣
ρ=ρ̄N

,

(2.73)

for some ρ̄N ∈ [0, ρN]. If we use the constant M defined in (2.19), then we eventually

have

ESP(C − δN) ≤ ρN [I(QN; W) −C + δN] −
(ρN)2

2
V(QN) +

(ρN)3M
6

. (2.74)

Since we must have I(QN; W) ≤ C, this yields

ESP(C − δN) ≤ ρNδN −
(ρN)2

2
V(QN) +

(ρN)3M
6

(2.75)

≤ sup
ρ ∈R+

{
ρδN −

ρ2

2
V(QN)

}
+

(ρN)3M
6

(2.76)

=
δ2

N

2V(PN)
+

(ρN)3M
6

. (2.77)

Using (2.77) and items (b) and (c) of Lemma 4, we deduce that

lim sup
N→∞

ESP(C − δN)
δ2

N

≤ lim sup
N→∞

1
2V(QN)

(2.78)

≤
1

2V
, (2.79)
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where (2.79) follows from the continuity of V(·) on P(X) (item 3) and 6) of Lemma 1),

item (a) of Lemma 4 and the definition of V (cf., (2.9)). �

Equipped with Proposition 1, we conclude the proof as follows. Recall that δN =

εNαN , where αN > 0, for all N ∈ Z+ and αN → 1 as N → ∞. Hence,

lim sup
N→∞

ESP (C − δN)
δ2

N

= lim sup
N→∞

ESP (C − δN)
ε2

N

. (2.80)

Since limN→∞ Nε2
N = ∞ (cf., item (ii) of (2.1)), (2.57), (2.61) and (2.80) imply that

lim inf
N→∞

1
Nε2

N

ln Pe( fN , ϕN) ≥ −
1

2V
1

1 − γ
. (2.81)

Since 0 < γ < 1/2 is arbitrary, letting γ → 0 in the right side of (2.81) yields (2.23). �
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CHAPTER 3

REFINEMENT OF THE SPHERE-PACKING BOUND

In this chapter, we improve the sub-exponential term in the sphere-packing lower bound.

As noted before, this can be thought as the analogous of the exact asymptotics problem

in large deviations (e.g., [7], [21, Theorem 3.7.4]) for channel coding. Exact asymp-

totics problem in large deviations aims to determine the pre-factor of the exponentially

vanishing term in the large deviations theorem. Bahadur and Rao [7] characterized this

pre-factor, Θ(1/
√

N), including the constant, under some regularity conditions. Their

result, in the form stated by Dembo and Zeitouni [21, Theorem 3.7.4], is the following:

Theorem (Bahadur-Rao). Let λN denote the law of Ŝ N = 1
N

∑N
i=1 Zi, where Zi are i.i.d.

real valued random variables with logarithmic moment generating function Λ(δ) :=

ln E[eδZ1]. Consider the set A = [a,∞), where a = Λ′(η) for some positive η ∈ {δ :

Λ(δ) < ∞}◦. If the law of X1 is non-lattice1, then limN→∞ JNλN(A) = 1, where

JN := eNΛ∗(a)η
√

Λ′′(η)2πN

and Λ∗(·) is the Fenchel-Legendre transform of Λ(·), i.e., Λ∗(a) := supδ∈R {aδ − Λ(δ)}. �

If X1 is a lattice random variable, then the order of the pre-factor is the same, but the

constant is different.

In our analysis leading to improved pre-factors, the essential idea is to reduce the

error event of a code to a sum of independent random variables. However, Bahadur-

Rao theorem is not directly applicable, because after the aforementioned reduction, the

threshold a must vary slightly with N, as will be evident in the sequel2. So, we need a
1X1 is called lattice random variable if there exist constants d and h ∈ R+ such that X1 ∈ {d + kh : k ∈

Z} − (a.s.) [23, pg. 129].
2We note that this slight variation is the reason to have the slope related term, in addition to Θ(N−

1
2 )

factor, in the pre-factor of our result. For a concrete example regarding this, see the discussion at the end
of Section 3.2.1.
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varying threshold version of this result. Although there are extensions of this kind (e.g.,

[15]), these results also depend on the lattice nature of the random variables to deduce

sharp constants. However, our focus in this study is on the order of the sub-exponential

term, not the constants, so in order to prevent the technicalities associated with differen-

tiating between lattice and non-lattice random variables, we prove the following result,

that will be frequently used in the sequel.

Let {Zi}i≥1 be independent, real-valued random random variables with law λi and

assume
∑n

i=1 Var[Zi] > 0. Define Λi(δ) := ln E
[
eδZi

]
and assume the existence of a q ∈ R

with a corresponding η > 0 satisfying

(i) There exists a neighborhood of η such that 1
n

∑n
i=1 Λi(δ) < ∞, for all δ in this

neighborhood.

(ii) 1
n

∑n
i=1 Λ′i(η) = q.

Let Λ∗n(·) denote the Fenchel-Legendre transform of 1
n

∑n
i=1 Λi(·). Define dλ̃i

dλ (z) :=

eηz−Λi(η), Ti := Zi − Eλ̃i
[Zi], m2,n :=

∑n
i=1 Varλ̃i

[Ti], m3,n :=
∑n

i=1 Eλ̃i
[|Ti|

3]. Define

Ŝ n := 1
n

∑n
i=1 Zi and let µn (resp. µ̃n) denote the law of Ŝ n when Zi are independent

with laws λi (resp. λ̃i). Set Kn(q) := 2
√

2πm3,n

m2,n
and tn(a, q) := a2

√
2πηm3,n

m2,n
for any a ≥ 1.

Lemma 5 (Concentration lemma). For any n ∈ Z+ and a > 1,

µn ([q,∞)) ≤
e−nΛ∗n(q)[1 +

tn(a,q)
a ]

η
√

2πm2,n

, (3.1)

µn ([q,∞)) ≥
e−nΛ∗(q)e−tn(a,q)

(
1 − 1

a

)
(1 + tn(a, q))

η
√

2πm2,n

1 −
[1 + (1 + tn(a, q))2]

(1 + tn(a, q))η
(
1 − 1

a

)
2
√

em2,n

 .
(3.2)

Moreover, if η ≤ 1, then

µn ([q,∞)) ≥
e−Kn(η)√
2πm2,n

(
1 −

1 + (1 + Kn(η))2

2
√

m2,n

)
. (3.3)

33



Further, if the random variables are also identically distributed, then (3.1) still holds

with tn(a, q) replaced with a
√

2πηm3,n

m2,n
. �

Proof. The proof is given in Appendix B.1. �

3.1 Definitions and statement of the result

Throughout the chapter, let W be a DMC satisfying R∞ < C. For any P ∈ P(X), define

ESP(R, P) := min
V ∈P(Y|X) : I(P;V)≤R

D(V ||W |P), (3.4)

and note that ESP(R) = maxP∈P(X) ESP(R, P).

The following can be shown3 to be the maximum absolute value subgradient of the

sphere packing exponent at point R

ρ∗R := max
P ∈P(X):ESP(R,P)=ESP(R)

∣∣∣E′SP(R, P)
∣∣∣ , (3.5)

where E′SP(R, P) denotes the slope4 of ESP(·, P) at point R.

Given any (N,R) code ( f , ϕ), let em( f , ϕ) denotes the error probability of the m-th

message.

Let Z be a finite set and Q, Q̂ ∈ P(Z). A deterministic hypothesis test, T : Z →

{0, 1}, over the set Z in which Q is the null hypothesis (H0) and Q̂ is the alternate
3Since ESP(·, P) is convex for all P ∈ P(X), ESP(·, ·) is continuous on (R∞,∞)×P(X) (cf., Lemma 30 in

Appendix B.7) andP(X) is compact, one can invoke the characterization of the subdifferential of the max-
imum function (e.g., [56, Theorem 2.87]) to deduce that ∂ESP(R) = conv

(
∪P:ESP(R,P)=ESP(R){∂ESP(·, P)(R)}

)
,

where conv(·), ∂ESP(R) and ∂ESP(·, P)(R) denotes the convex hull, subdifferential of ESP(·) at point R and
subdifferential of ESP(·, P) at point R, respectively. This observation, coupled with the differentiability of
ESP(·, P), i.e., Proposition 4, and the continuity of E′SP(R, ·), i.e., Proposition 5, suffices to conclude the
claim.

4One can show that ESP(R, P) is differentiable with respect to R, for given P, provided that R∞ < R < C
and ESP(R, P) > 0, e.g., Proposition 4.
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hypothesis (H1) is defined as

T (z) =


0, if z ∈ UT ,

1, if z ∈ Uc
T ,

(3.6)

where {UT ,U
c
T } are called the decision regions of the test. Let T (Q, Q̂) denote the set

of all deterministic tests between Q and Q̂. The error probabilities associated with T are

defined as αT := Q{Uc
T } and βT := Q̂{UT }. For any r > 0, define

α∗Q,Q̂(r) := min
T∈T (Q,Q̂):βT≤e−r

αT . (3.7)

Theorem 3. Consider any R ∈ (R∞,C) and ζ ∈ R+. Then, for any sufficiently large N,

depending on R, W and ζ and any (N,R) constant composition code ( f , ϕ),

Pe( f , ϕ) ≥ K
e−NESP(R)

N
1
2 (1+(1+ζ)ρ∗R)

, (3.8)

where K ∈ R+ is a constant that depends on R, W and ζ. �

3.2 Proof of Theorem 3

3.2.1 Overview

There are at least three proofs of the sphere-packing bound in the literature: that of Shan-

non et al. [63], Haroutunian [38] and Blahut [12]. Of these, Blahut’s argument seems to

be the most natural starting point for obtaining improved pre-factors, as it allows one to

convert the error event of a code into an event involving a sum of i.i.d. random variables,

to which one can apply the Bahadur-Rao result. The Shannon et al. argument is similar

to Blahut’s in some ways, but it is less amenable to exact asymptotics. The Haroutunian

argument is combinatorial and even farther removed from i.i.d. sums.
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Blahut’s argument proceeds as follows. Assume R∞ < R < C and let ( f , ϕ) be

an (N,R) code. Let {Um}m∈M denote the decision regions of ϕ corresponding to each

message m ∈ M. Let Q ∈ P(Y) be an auxiliary output distribution. Let W(yN |xN) :=∏N
n=1 W(yn|xn) and Q(yN) :=

∏N
n=1 Q(yn). Since

∑
yN∈YN Q(yN) = 1 and |M| ≥ eNR, there

must be a message m ∈ M such that Q{Um} ≤ e−NR. Let xN := f (m) be the codeword

for this message. It is clear that Pe( f , ϕ) ≥ em( f , ϕ) = W
{
Uc

m|xN
}
.

Now consider the hypothesis test over the setYN in which W(·|xN) is the null hypoth-

esis (H0) and the i.i.d. output distribution Q is the alternate hypothesis (H1). One feasible

test is to accept H0 onUm and H1 onUc
m, resulting in type-I and type-II error probabil-

ities of W(Uc
m|xN) = em( f , ϕ) and Q{Um}, respectively. Since α∗W(·|xN ),Q(NR) denotes the

minimum type-I error probability, optimized over all tests, subject to the constraint that

the type-II error probability does not exceed e−NR (cf., (3.7)), we evidently must have

Pe( f , ϕ) ≥ α∗W(·|xN ),Q(NR). (3.9)

The error exponent of this test can be expressed via the following definition. For any

V ∈ P(Y|X), P ∈ P(X) and Q ∈ P(Y), define D(V ||Q|P) :=
∑

x∈X P(x)D(V(·|x)||Q).

Definition 1. For any P ∈ P(X) and Q ∈ P(Y)

eSP(Q, P, r) := inf
V∈P(Y|X) : D(V ||Q|P)≤r

D(V ||W |P). (3.10)

for all r ∈ R+. ♦

Then the optimal type-I error exponent can be shown to be (e.g., [12, Section V])

eSP(Q, P,R), where P is the empirical distribution of xN .

Note that this exponent depends on the output distribution Q, which is to be selected.

This distribution can be chosen to depend on P, since it can depend on the code, although

allowing such dependence necessitates a restriction to constant composition codes. In
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the original argument [12, Section V], this freedom is not used, and Q depends on R

(and the channel) but not P. Pre-factors aside, it is not clear that this choice yields the

standard sphere-packing exponent when (3.10) is maximized over P. This is asserted to

be the case in [12, Theorem 19] and [13, Theorem 10.1.4], but each of these proofs has

a nontrivial gap5. Moreover, a numerical study indicates that for the Z-channel and for

this choice of Q, ESP(R) < maxP eSP(Q, P,R), for a broad range of rates. For symmetric

channels, Q can indeed be chosen independently of P [2], and so the code need not

be constant composition. But in the general case, it appears that some dependence is

necessary if one hopes to obtain the sphere-packing exponent.

Our choice of Q will depend on P and give the sphere-packing exponent. Thus, one

of the ancillary contributions of this chapter is to give a complete proof that the hypoth-

esis testing reduction described can be used to obtain the sphere-packing exponent. In

fact, using the hypothesis testing reduction, we shall prove the stronger result that the

exponent on the error probability of any constant-composition code with composition P

is upper bounded by ESP(R, P); previously, the only proof of this fact used combinatorial

techniques.

It is worth noting that the Shannon et al. proof also involves the choice of an output

distribution. Their choice of output distribution also depends on P, but it is defined

differently from ours. Our choice yields the ESP(R, P) exponent, whereas Shannon et al.

only establish an exponent of ESP(R).

Before concluding this section, it is instructive to consider a binary symmetric chan-

nel (BSC) with crossover probability p ∈ (0, 1/2) in order to see why the slope related

term arises in Theorem 3. One can check that the output distribution mentioned in [2,

5Specifically, the argument for [12, Theorem 19] seems to proceed as if Lagrange multipliers of
maxP ESP(R, P) and maxP eSP(Q, P,R) are the same, which is not evident. For [13, Theorem 10.1.4],
only eSP(Q, P∗R,R) = maxP ESP(R, P) is shown, where P∗R attains maxP ESP(R, P), which does not imply
the claim.
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Eq. 9] reduces to the uniform distribution and for these particular choices,

α∗W(·|xN ),Q(NR) ≥
N∑

n=n∗R+1

(
N
n

)
pn(1 − p)N−n = Pr

 1
N

N∑
n=1

Zn ≥
n∗R + 1

N

 , (3.11)

where {Zn}
N
n=1 are i.i.d. Bernoulli random variables with parameter p and n∗R is the largest

k ∈ Z+ satisfying

e−NR ≥

k∑
n=0

(
N
n

)
2−N = Pr

 1
N

N∑
n=1

Z̃n ≤
k
N

 , (3.12)

where {Z̃n}
N
n=1 are i.i.d. Bernoulli random variables with parameter 1/2. Provided that

k/N < 1/2, one can apply Bahadur-Rao theorem to the right side of (3.12) to have

Pr

 1
N

N∑
n=1

Z̃n ≤
k
N

 ≥ K1
√

N
e−ND( k

N ||
1
2 ), (3.13)

where D (k/n||1/2) := k/n ln k/n
1/2 +(1−k/n) ln 1−k/n

1/2 and K1 is a positive constant. Plugging

(3.13) into (3.12) and recalling the definition of n∗R, one can verify that

n∗R
N
≤ h−1

ln 2 − R +
ln
√

N
N

−
ln K1

N

 (3.14)

By plugging (3.14) into (3.11), applying Bahadur-Rao theorem on the right side of

(3.11) and carrying out the algebra, one can verify that

α∗W(·|xN ),Q(NR) ≥
K2
√

N
e−NESP

(
R− ln

√
N

N

)
≥

K3

N0.5(1+|E′SP(R)|)
e−NESP(R), (3.15)

where K2,K3 are positive constants and the last inequality follows by expanding ESP(·)

as a power series about R. Note that if n∗R
N were constant in N, then applying Bahadur-

Rao theorem to (3.11) would give a pre-factor with an order of 1/
√

N. But Eq. (3.14)

shows that n∗R
N increases with N at a rate of ln N

N . While this increase is too slow to affect

the exponent, it does affect the order of the pre-factor.

Finally, note that the arguments leading to (3.15) are nothing but the “packing of

Hamming spheres”. To be specific, one can check that (e.g., [24]) for this channel, the

error probability of any (N,R) code is lower bounded by that of a hypothetical “sphere-

packed code” with the same parameters. A sphere-packed code is a code such that
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the decoding region of each codeword is an Hamming sphere of a certain radius, say

dNδ(R)e with δ(R) > 0, possibly excluding some strings in the outermost layer and the

union of these spheres equals {0, 1}N . For the sphere-packed code, an error occurs when

the noise pushes the received signal outside of the Hamming ball of radius n∗R centered

at the codeword, whose probability is precisely the right side of (3.11). By employing

the upper bound given in (3.14), one can deduce (3.15).

By continuing this sphere-packing analogy, one can intuitively view the lower bound

obtained via the hypothesis testing reduction as the error probability of a hypothetical

sphere-packed (N,R) code onYN with ln Q(·)
W(·|xN ) used instead of Hamming distance. Note

that the extra term in the pre-factor essentially stems from the approximation of the

“maximal packing radius” of the spheres under this metric.

3.2.2 Selecting the output distribution

In order to describe our output distribution, we require the following technical results.

For any Q ∈ P(Y) and λ ∈ [0, 1), define

ΛQ,P(λ) :=


EP

[
ln EW(·|X)

[(
Q(Y)

W(Y |X)

)λ]]
, λ ∈ (0, 1),

0, λ = 0.
(3.16)

For any R ∈ R+, define

PR(X) := {P ∈ P(X) : ESP(R, P) > 0}, (3.17)

PP,W(Y) := {Q ∈ P(Y) : ∀x ∈ S(P), S(Q) ∩ S(W(·|x)) , ∅}, (3.18)

P̃P,W(Y) := {Q ∈ P(Y) : ∀x ∈ S(P), Q � W(·|x)}. (3.19)

Further, given any R > R∞ and P ∈ P(X),

KR,P : R+ × PP,W(Y)→ R, s.t. KR,P(ρ,Q) = −ρR − (1 + ρ)ΛQ,P (ρ/(1 + ρ)) , (3.20)
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for all (ρ,Q) ∈ R+ × PP,W(Y).

Proposition 2 (Saddle-point). Consider any R∞ < R < C and P ∈ PR(X).

(i) KR,P(·, ·) has a saddle-point with the saddle-value ESP(R, P).

(ii) Any saddle-point of KR,P(·, ·), say (ρ∗,Q∗), satisfies (ρ∗,Q∗) ∈ R+ × P̃P,W(Y). �

Proof. The proof is provided in Appendix B.2. �

Let S (R, P) denote the set of saddle-points of KR,P(·, ·). Moreover,

S (R, P)|R+
:= {ρ ∈ R+ : ∃Q ∈ PP,W(Y), s.t. (ρ,Q) ∈ S (R, P)}, (3.21)

S (R, P)|PP,W (Y) := {Q ∈ PP,W(Y) : ∃ ρ ∈ R+, s.t. (ρ,Q) ∈ S (R, P)}. (3.22)

Proposition 3 (Uniqueness of the saddle-point). For any R∞ < R < C and P ∈ PR(X),

S (R, P) is a singleton. �

Proof. The proof is given in Appendix B.3. �

Definition 2. Fix any R∞ < R < C.

ρ∗R,· : PR(X)→ R+, s.t. ρ∗R,P = S (R, P)|R+
, (3.23)

Q∗R,· : PR(X)→ PP,W(Y), s.t. Q∗R,P = S (R, P)|PP,W (Y) . (3.24)

♦

Observe that owing to Proposition 3, both (3.23) and (3.24) are well-defined. The

distribution Q∗R,· in (3.24) will be our output distribution.

Proposition 4 (Differentiability of ESP(·, P)). Consider any R∞ < R < C and P ∈ PR(X).

ESP(·, P) is differentiable with ρ∗R,P = −
∂ESP(r,P)

∂r

∣∣∣
r=R

. �
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Proof. The proof is given in Appendix B.4. �

Proposition 5 (Continuity of the saddle-point). Consider any R∞ < R < C. Both ρ∗R,·

and Q∗R,· are continuous on PR(X). �

Proof. The proof is provided in Appendix B.5. �

For any R∞ < R < C and P ∈ PR(X), let eSP(R, P, r) := eSP(Q∗P,R, P, r) and

eSP(R, P) := eSP(R, P,R).

Proposition 6 (Equality of the exponents). For any R∞ < R < C

eSP(R, P) = ESP(R, P), (3.25)

for all P ∈ PR(X). �

Proof. The proof is given in Appendix B.6. �

Remark 7. Recalling the discussion in the previous section, the equality of the expo-

nents proposition, i.e., Proposition 6, ensures that the exponent of the lower bound on

the error probability emerging as a result of binary hypothesis testing reduction in which

Q∗R,· is the alternate distribution matches the sphere-packing exponent. ^

3.2.3 Hypothesis testing reduction

For any ν,R ∈ R+, define PR,ν(X) := {P ∈ P(X) : ESP(R, P) ≥ ν}. Fix some R ∈ (R∞,C)

and some sufficiently small ν > 0 that only depends on W and R. Application of the

hypothesis testing reduction of Section 3.2.1 to an (N,R) constant composition code
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( f , ϕ) with common composition6 P ∈ PR,ν(X) by using Q∗R,P as the auxiliary output

distribution yields (recall (3.9))

Pe( f , ϕ) ≥ αN(R), (3.26)

where αN(R) := αW(·|xN ),Q∗R,P
(NR). On account of (3.26), in order to lower bound the

maximal error probability of our code, it suffices to evaluate αN(R).

However, since Q∗R,P � W(·|xN) (cf., item (ii) of the saddle-point proposition, i.e.,

Proposition 2), but not necessarily7 Q∗R,P ≡ W(·|xN), we need to do little more work. To

this end, we define

T̃ (Q, Q̂) :=
{
T ∈ T (Q, Q̃) : UT ∩ [S(Q̂)\S(Q, Q̂)] = ∅, Uc

T ∩ [S(Q)\S(Q, Q̂)] = ∅
}
,

(3.27)

where S(Q, Q̂) := S(Q) ∩ S(Q̂). Next, we note the following evident observations.

Claim 1. For any r ∈ R+,

α∗Q,Q̂(r) = min
T∈T̃ (Q,Q̂) : βT≤e−r

αT . (3.28)

�

Claim 2. For any T ∈ T̃ (Q, Q̂), we have

αT = Q
{
S(Q, Q̃)

}
Q

{
Uc

T | S(Q, Q̂)
}
, βT = Q̂

{
S(Q, Q̂)

}
Q̂

{
UT | S(Q, Q̂)

}
, (3.29)

where the conditional probabilities are induced by Q and Q̂, respectively. �

Observe that owing to (3.28) we have8

αN(R) = min
T∈T̃ (W(·|xN ),Q∗R,P) : βT≤e−NR

αT . (3.30)

6If P ∈ PR,ν(X)c, then it is possible to prove that (3.8) is true. See Lemma 31 in Appendix B.7.
7We have this equivalence if we consider a positive channel, for example.
8T̃ (W(·|xN),Q∗R,P) is defined as in (3.27).
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In order to apply Claims 1 and 2 to our particular case, we need the following defi-

nition.

Definition 3. Given any C > R > R∞ and P ∈ PR(X),

W−
R,P(·|x) :=


W̃1−,Q∗R,P(·|x), if x ∈ S(P),

W(·|x), else,
(3.31)

where

W̃1−,Q∗R,P(·|x) := lim
λ↑1

W̃λ,Q∗R,P(·|x), ∀ x ∈ S(P). (3.32)

and W̃λ,Q∗R,P(·|x) is the tilted distribution as defined in (B.51) in Appendix B.2. ♦

Remark 8. One can check that for any x ∈ S(P),

W̃1−,Q∗R,P(·|x) =


Q∗R,P(y)

Q∗R,P{S(W(·|x))} , if y ∈ S(W(·|x)),

0, else.
(3.33)

Equation (3.33) and the fact that Q∗R,P � W(·|x), for all x ∈ S(P), ensure that (3.31) is a

well-defined stochastic matrix fromX toY. Moreover, it is clear that W−
R,P(·|x) ≡ W(·|x),

for all x ∈ X. ^

Returning to our application, since Q∗R,P � W(·|xN), (3.29) implies that for any

T̃ ∈ T̃ (W(·|xN),Q∗R,P), we have

αT̃ = W
{
Uc

T̃ |x
N
}
, βT̃ = Q∗R,P

{
S(W(·|xN))

}
W−

R,P

{
UT̃ |xN

}
, (3.34)

where W−
R,P(yN |xN) :=

∏N
n=1 W−

R,P(yn|xn) and W−
R,P is defined in (3.31).

Also,

ln Q∗R,P
{
S(WN(·|xN))

}
=

N∑
n=1

ln Q∗R,P {S(W(·|xn))} (3.35)

= N
∑

x∈S(P)

P(x) ln Q∗R,P {S(W(·|x))} (3.36)

= −ND(W−
R,P||Q

∗
R,P|P), (3.37)

43



where (3.35) follows sinceS(W(·|xN)) = S(W(·|x1))×. . .×S(W(·|xN)) and (3.37) follows

by noting

ln Q∗R,P {S(W(·|x))} = −D(W−
R,P(·|x)||Q∗R,P), (3.38)

which is a direct consequence of (3.31).

Combining (3.34) and (3.37), we conclude that for any T̃ ∈ T̃ (W(·|xN),Q∗R,P)

[
βT̃ ≤ e−NR

]
⇐⇒

[
W−

R,P

{
UT̃ |xN

}
≤ e−Nr(R,P)

]
, (3.39)

where

r(R, P) := R − D(W−
R,P||Q

∗
R,P|P). (3.40)

Observe that the right side of (3.39) defines a non-trivial constraint only if r(R, P) > 0,

which we establish next. To this end, we first define the following set:

P̃P,W(Y|X) := {V ∈ P(Y|X) : ∀ x ∈ S(P), V(·|x) � W(·|x)}. (3.41)

Lemma 6 (Positivity of r(R, P))). Given any R∞ < R < C and P ∈ PR(X),

(i) ∀V ∈ P̃P,W(Y|X), D(V ||Q∗R,P|P) = D(V ||W−
R,P|P) + D(W−

R,P||Q
∗
R,P|P).

(ii) r(R, P) > 0. �

Proof. The proof is given in Appendix B.8. �

Now, consider a binary hypothesis testing setup with the null hypothesis (resp. alter-

nate hypothesis) W(·|xN) (resp. W−
R,P(·|xN)). Owing to (3.26), (3.30), (3.34) and (3.39),

we deduce that

e( f , ϕ) ≥ α̃N(r(R, P)) := min
T ′∈T̃ (W(·|xN ),W−R,P(·|xN )) : βT ′≤e−Nr(R,P)

αT ′ . (3.42)
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On account of (3.42), in order to lower bound the maximal error probability of our

constant composition code, it suffices to evaluate α̃N(r(R, P)). Instead of directly char-

acterizing α̃N(r(R, P)), we give a lower bound on it by means of a test that is easier to

analyze. In order to define this test, we need the following “shifted exponent”.

Definition 4. Given any C > R > R∞, r ∈ R+ and P ∈ PR(X),

ẽSP(R, P, r) := inf
V∈P(Y|X) : D(V ||W−R,P |P)≤r

D(V ||W |P). (3.43)

♦

Lemma 7. (Shifted exponent) For any R > R∞ and P ∈ PR(X) we have

ẽSP(R, P, r − D(W−
R,P||Q

∗
R,P|P)) = eSP(R, P, r), (3.44)

for all r > D(W−
R,P||Q

∗
R,P|P). �

Proof. Fix an arbitrary R > R∞, P ∈ PR(X) and r > D(W−
R,P||Q

∗
R,P|P). Define r̃ := r −

D(W−
R,P||Q

∗
R,P|P). Clearly, r̃ ∈ R+. On account of the fact that ẽSP(R, P, r̃) ≤ ẽSP(R, P, 0) =

D(W−
R,P||W |P) < ∞, it is easy to see that

ẽSP(R, P, r̃) = min
V∈P̃P,W (Y|X) : D(V ||W−R,P |P)≤r̃

D(V ||W |P). (3.45)

Similarly,

eSP(R, P, r) = min
V∈P̃P,W (Y|X) : D(V ||Q∗R,P |P)≤r

D(V ||W |P). (3.46)

Item (i) of Lemma 6 ensures that the feasible regions of the right sides of (3.45) and

(3.46) are the same. Since the cost functions of the two problems are the same, the

lemma follows. �

Fix an arbitrary ζ ∈ R+ and let εN :=
(

1
2 + ζ

)
ln N
N (resp. ε̃N := εN −

1
N ) and define

RN := R − εN (resp. R̃N := R − ε̃N). Note that for all sufficiently large N ∈ Z+,
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C > R̃N > RN > R∞. Throughout, we consider such an N ∈ Z+. Further, similar to

(3.40), define rN(P,R) := RN −D(W−
R,P||Q

∗
R,P|P) (resp. r̃N(P,R) := R̃N −D(W−

R,P||Q
∗
R,P|P)).

Also,

AN :=

yN :
1
N

N∑
n=1

ln
W(yn|xn)

W−
R,P(yn|xn)

> rN(R, P) − ẽSP(R, P, rN(R, P))

 , (3.47)

Ac
N =

yN :
1
N

N∑
n=1

ln
W−

R,P(yn|xn)

W(yn|xn)
≥ ẽSP(R, P, rN(R, P)) − rN(R, P)

 . (3.48)

Equations (3.47) and (3.48) are the decision regions of the test, i.e., the test decides

W(·|xN) if yN ∈ AN and W−
R,P(·|xN) if yN ∈ Ac

N . Let

αN := W
{
Ac

N |x
N
}
, βN := W−

R,P

{
AN |xN

}
, (3.49)

denote the error probabilities of the aforementioned test.

Remark 9. As noted before, the analysis of the events AN and Ac
N would be direct ap-

plications of Bahadur-Rao theorem, but one major complication: the threshold in both

events depends on N. One could define constant-threshold versions of these events by re-

placing rN(R, P) with r(R, P). Applying exact asymptotics to the resulting events would

yield a lower bound on αN of the order 1
√

N
exp(−NESP(R, P)) and show that βN is of

the order 1
√

N
exp(−Nr(R, P)). The problem with this approach is that Pe( f , ϕ) is lower

bounded by the type-I error probability of the optimal test whose type-II probability does

not exceed e−Nr(R,P). From the above expression of βN , we see that the aforementioned

test is not optimal because, although it is a likelihood ratio test, it is “undershooting”

the type-II constraint due to the 1/
√

N pre-factor. By replacing r(R, P) with rN(R, P),

we ensure that βN does not undershoot the constraint (in fact, it will violate it by a small

amount). The rN(R, P) fluctuations will give rise to the slope term in the pre-factor of

the probability of AN . ^
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3.2.4 Analysis of the hypothesis test

In this section, we apply concentration lemma, i.e., Lemma 5, to lower bound αN and

βN given in (3.49). To this end, we begin with the following technical results.

Definition 5. Let C > R > R∞ and P ∈ PR(X) be arbitrary but fixed. Let λ ∈ R be

arbitrary.

Λ0,P,x(λ) := ln EW(·|x)

[
eλ ln

W−R,P(Y |x)

W(Y |x)

]
, (3.50)

Λ0,P(λ) :=
∑
x∈X

P(x)Λ0,P,x(λ), (3.51)

Λ1,P,x(λ) := ln EW−R,P(·|x)

[
e
λ ln W(Y |x)

W−R,P(Y |x)

]
, (3.52)

Λ1,P(λ) :=
∑
x∈X

P(x)Λ1,P,x(λ). (3.53)

♦

Remark 10. We note the following:

(i) Since W−
R,P(·|x) ≡ W(·|x) for all x ∈ X, each quantity given in Definition 5 is well-

defined. Also, one can check that Λ1,P,x(λ) = Λ0,P,x(1 − λ), which, in turn, implies

that Λ1,P(λ) = Λ0,P(1 − λ).

(ii) The fact that W−
R,P(·|x) ≡ W(·|x) for all x ∈ X also ensures that Λ0,P(λ),Λ1,P(λ) ∈ R

and hence both Λ0,P(·) and Λ1,P(·) are smooth functions over the real line, i.e.,

Λ0,P(·),Λ1,P(·) ∈ C∞(R).

(iii) Consider any λ ∈ R. It is easy to verify the following (for the sake of notational

convenience, we denote partial derivatives with respect to λ as the ordinary ones):
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Λ′0,P,x(λ) = EW̃λ,P(·|x)

[
ln

W−
R,P(Y |x)

W(Y |x)

]
, (3.54)

Λ′0,P(λ) =
∑
x∈X

P(x)Λ′0,P,x(λ), (3.55)

Λ′′0,P,x(λ) = VarW̃λ,P(·|x)

[
ln

W−
R,P(Y |x)

W(Y |x)

]
, (3.56)

Λ′′0,P(λ) =
∑
x∈X

P(x)Λ′′0,P,x(λ), (3.57)

where W̃λ,P(·|x) := W̃λ,W−R,P(·|x) (cf., (B.51)) for the sake of notational convenience.

Further, item (ii) above ensures that

Λ′1,P,x(λ) = −Λ′0,P,x(1 − λ), Λ′1,P(λ) = −Λ′0,P(1 − λ), (3.58)

Λ′′1,P,x(λ) = Λ′′0,P,x(1 − λ), Λ′′1,P(λ) = Λ′′0,P(1 − λ), (3.59)

for any λ ∈ R.

(iv) We have

Λ′0,P(0) = −Λ′1,P(1) = −D(W ||W−
R,P|P), (3.60)

Λ′0,P(1) = −Λ′1,P(0) = D(W−
R,P||W |P), (3.61)

as a direct consequence of (3.55) and (3.58). ^

Lemma 8 (Positive variance). Let C > R > R∞ and P ∈ PR(X) be arbitrary. For all

λ ∈ [0, 1], Λ′′0,P(λ) > 0. �

Proof. Consider any C > R > R∞, P ∈ PR(X) and recall that r(R, P) = R −

D(W−
R,P||Q

∗
R,P|P) (cf., (3.40)).

For contradiction, suppose there exists λ ∈ [0, 1] such that Λ′′0,P(λ) = 0. We have[
Λ′′0,P(λ) = 0

]
⇐⇒

[
∀x ∈ S(P), ln

W−
R,P(Y |x)

W(Y |x)
= Λ′0,P,x(λ), W(·|x) − (a.s.)

]
(3.62)

⇐⇒
[
∀x ∈ S(P), W(Y |x) = W−

R,P(Y |x)e−Λ′0,P,x(λ), W(·|x) − (a.s.)
]
, (3.63)
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where (3.62) follows from (3.54), (3.56) and (3.57). Summing the right side of (3.63)

over y ∈ S(W(·|x)) yields

∀x ∈ S(P), Λ′0,P,x(λ) = 0. (3.64)

Combining (3.63) and (3.64) and recalling the definition of W−
R,P (cf., (3.31)), we deduce

that [
Λ′′0,P(λ) = 0

]
⇐⇒

[
∀(x, y) ∈ X × Y, W(y|x) = W−

R,P(y|x)
]
. (3.65)

The right side of (3.65) implies that ẽSP(R, P, r) = 0 for all r ∈ R+ and in particular

ẽSP(R, P, r(R, P)) = 0. This observation, coupled with the equality of the exponents

proposition, i.e., Proposition 6, and the shifted exponent exponent lemma, i.e., Lemma 7,

implies that ESP(R, P) = 0 that contradicts the fact that P ∈ PR(X). �

Definition 6. Let C > R > R∞ be arbitrary. Define

m0,3(λ, P) :=
∑

x∈S(P)

P(x)EW̃λ,P(·|x)

∣∣∣∣∣∣ln W−
R,P(Y |x)

W(Y |x)
− Λ′0,P,x(λ)

∣∣∣∣∣∣3
 , (3.66)

m1,3(λ, P) :=
∑

x∈S(P)

P(x)EW̃1−λ,P(·|x)

∣∣∣∣∣∣ln W(Y |x)
W−

R,P(Y |x)
− Λ′1,P,x(λ)

∣∣∣∣∣∣3
 , (3.67)

for any (λ, P) ∈ [0, 1] × PR(X). ♦

Note that owing to (3.58), (3.66) and (3.67), one can verify that

∀ (λ, P) ∈ [0, 1] × PR(X), m0,3(λ, P) = m1,3(1 − λ, P). (3.68)

Lemma 9 (Continuity). All of the following is true

(i) Λ′0,·(·) is continuous on (0, 1] × PR(X).

(ii) Λ′′0,·(·) is continuous on (0, 1] × PR(X).

(iii) m0,3(·, ·) is continuous on (0, 1] × PR(X).

(iv) D(W−
R,·||Q

∗
R,·|·) is continuous on PR(X). �
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Proof. The proof is given in Appendix B.9. �

Lemma 10. Fix arbitrary C > R > R∞ and P ∈ PR(X). For any r ∈ R+, we have

ẽSP(R, P, r) = max
s∈R+

{−sr + e0(s, P)} , (3.69)

where

e0(s, P) := −(1 + s)
∑

x∈S(P)

P(x) ln
∑

y∈S(W(·|x))

W(y|x)1/(1+s)W−
R,P(y|x)s/(1+s), (3.70)

for any s ∈ R+. �

Proof. We have,

ẽSP(R, P, r) = inf
V∈P(Y|X) : D(V ||W−R,P |P)≤r

D(V ||W |P) (3.71)

= max
s∈R+

min
V∈P(Y|X)

{
D(V ||W |P) + s(D(V ||W−

R,P|P) − r)
}

(3.72)

= max
s∈R+

−sr +
∑

x∈S(P)

P(x) min
V(·|x)

[
D(V(·|x)||W(·|x)) + sD(V(·|x)||W−

R,P(·|x))
]

(3.73)

= max
s∈R+

{−sr + e0(s, P)} , (3.74)

where (3.72) follows since Slater’s condition holds (cf., [55, Corollary 28.2.1]), (3.74)

follows by noting that

V∗P,s(y|x) :=
W(y|x)1/(1+s)W−

R,P(y|x)s/(1+s)∑
ỹ∈YW(ỹ|x)1/(1+s)W−

R,P(ỹ|x)s/(1+s) , (3.75)

attains the minimum in (3.73) for any x ∈ S(P) and recalling (3.70). �

Corollary 1. Consider any C > R > R∞, P ∈ PR(X). For all r ∈ R+, the set of

maximizers of (3.69) is exactly ∂ẽSP(R, P, ·)(r). �

Proof. Proof follows exactly the same lines as that of Claim 14. �
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Lemma 11 (Differentiability of the shifted exponent). Let C > R > R∞ and r ∈ R+ be

given.

s∗(R, ·, r) : PR(X)→ R+, s.t. s∗(R, P, r) := −
∂ẽSP(R, P, r)

∂r
, ∀P ∈ PR(X), (3.76)

is a well-defined function. �

Proof. Consider any P ∈ PR(X). For any s ∈ R+, (3.70), (3.50), (3.51), (3.55) and (3.57)

imply that
∂2eo(s, P)

∂s2 = −
1

(1 + s)3 Λ′′0,P

( s
1 + s

)
< 0. (3.77)

where the inequality follows from the positive variance lemma, i.e., Lemma 8. Equation

(3.77) ensures the strict concavity of the cost function of (3.69) and hence the uniqueness

of the maximizer. Recalling Corollary 1, this implies that (3.76) is well-defined. �

The shifted exponent lemma, i.e., Lemma 7, and the differentiability of the shifted

exponent, i.e., Lemma 11, immediately implies the following result.

Corollary 2. Given any C > R > R∞ and P ∈ PR(X) and ,

∂eSP(R, P, r̃)
∂r̃

∣∣∣∣∣
r̃=r

= −s∗(R, P, r − D(W−
R,P||Q

∗
R,P|P)), (3.78)

for any r > D(W−
R,P||Q

∗
R,P|P). �

Throughout the rest, unless stated otherwise, suppose C(W) > R > R∞ and P ∈

PR(X) be arbitrary and fixed.

Definition 7. Consider any C > R > R∞ and P ∈ PR(X). Given any z ∈ R,

Λ∗0,P(z) := sup
λ∈R

{
λz − Λ0,P(λ)

}
, (3.79)

Λ∗1,P(z) := sup
λ∈R

{
λz − Λ1,P(λ)

}
. (3.80)

♦
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Lemma 12 (Regularity). Fix any C > R > R∞ and P ∈ PR(X). For any 0 < r <

D(W ||W−
R,P|P),

(i) Λ∗0,P(ẽSP(R, P, r) − r) = ẽSP(R, P, r).

(ii) Λ∗1,P(r − ẽSP(R, P, r)) = r.

(iii) There exists a unique η(R, P, r) ∈ (0, 1), such that Λ′0,P(η(R, P, r)) = ẽSP(R, P, r)−r.

In particular, η(R, P, r) =
s∗(R,P,r)

1+s∗(R,P,r) . �

Proof. The proof is given in Appendix B.10. �

Next, we claim that

0 < r(R, P) < I(P; W) − D(W−
R,P||Q

∗
R,P|P) ≤ D(W ||W−

R,P|P). (3.81)

The first inequality follows from the positivity of r(R, P) lemma, i.e., Lemma 6. The

second inequality is clear from the definition of r(R, P) and the fact that P ∈ PR(X). The

last inequality follows by noting

D(W−
R,P||Q

∗
R,P|P) + D(W ||W−

R,P|P) = D(W ||Q∗R,P|P) ≥ min
Q∈P(Y)

D(W ||Q|P) = I(P; W), (3.82)

where the first equality follows from the item (i) of Lemma 6 and the last one follows

from (B.85). Hence, (3.81) follows.

Further, define

Υ(W,R, ν) := max
P∈PR,ν(X)

D(W ||Q∗R,P|P), H :=

 ν
2Υ(W,R,ν)

1 + ν
2Υ(W,R,ν)

, 1

 . (3.83)

Since ESP(·, ·) is continuous (cf., Lemma 30), PR,ν is closed and therefore, by noting

the boundedness of P(X), is compact. Further, owing to the continuity of D(W ||Q∗R,·|·)

(cf., item (iv) of the continuity lemma, i.e., Lemma 9) and the compactness of PR,ν(X),

Υ(W,R, ν) is well-defined and finite.
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Lemma 13. For any P ∈ PR,ν(X)

η(R, P, r) ∈ H, ∀ r ∈ (0, r(P,R)]. (3.84)

�

Proof. Let P ∈ PR,ν(X) be arbitrary. Owing to item (iii) of the regularity lemma, i.e.,

Lemma 12, it suffices to prove that for all r ∈ (0, r(P,R)]

η(R, P, r) ≥
ν

2Υ(W,R,ν)

1 + ν
2Υ(W,R,ν)

. (3.85)

Moreover, the fact that η(R, P, r) = s∗(R, P, r)/(1 + s∗(R, P, r)) (cf., item (iii) of

Lemma 12), (3.81), the convexity and the non-increasing property of ẽSP(R, P, ·), it suf-

fices to show (3.85) for r = r(R, P). The differentiability of the shifted exponent lemma,

i.e., Lemma 11, and Corollary 2 imply that

s∗(R, P, r(R, P)) = −
∂ẽSP(R, P, r)

∂r

∣∣∣∣∣
r=r(R,P)

= −
∂eSP(R, P, r)

∂r

∣∣∣∣∣
r=R

. (3.86)

Moreover, using the convexity and the non-increasing property of eSP(R, P, ·), one can

see that

−
∂eSP(R, P, r)

∂r

∣∣∣∣∣
r=R
≥

ν

2(e−1
SP(R, P, ·)(ν/2) − R)

≥
ν

2Υ(W,R, ν)
, (3.87)

where the last inequality follows by noting that eSP(R, P, r) = 0 for all r ≥ D(W ||Q∗R,P|P).

By combining (3.86) and (3.87), we deduce that

s∗(R, P, r(R, P)) ≥
ν

2Υ(W,R, ν)
. (3.88)

Since η(R, P, r) = s∗(R, P, r)/(1 + s∗(R, P, r)), (3.88) implies (3.84). �

Finally, we define the following:

M(ν,W,R) := max
(λ,P)∈H×PR,ν

m0,3(λ, P)
Λ′′0,P(λ)

, (3.89)

V(ν,W,R) := max
(λ,P)∈H×PR,ν

Λ′′0,P(λ), (3.90)

V(ν,W,R) := min
(λ,P)∈H×PR,ν

Λ′′0,P(λ), (3.91)
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where H is as defined prior to Lemma 13. Recalling the compactness of H and PR,ν(X),

the positive variance lemma, i.e., Lemma 8, and the continuity lemma, i.e., Lemma 9,

ensure that (3.89), (3.90) and (3.91) are well-defined, positive and finite.

Define Kmax := M(ν,W,R)2
√

2π and note that Kmax ∈ R
+. Also, let N ∈ Z+ be

sufficiently large, such that
√

N ≥
1 + (1 + Kmax)2√

V(ν,W,R)
, (3.92)

and consider such an N from now on.

Next, we apply the concentration lemma, i.e., Lemma 5, to αN to deduce a lower

bound. Observe that (3.56), (3.57) and the positive variance proposition, i.e., Proposi-

tion 8, and item (iii) of the regularity lemma, i.e., Lemma 12, ensures the fulfillment of

the assumptions under which Lemma 5 is stated. Hence, we apply (3.3) to W
{
Ac

N |x
N
}

(cf., (3.48), (3.49) and (3.92)) to deduce

αN ≥
K
√

N
exp{−NΛ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P))}, (3.93)

where we define

K :=
e−Kmax

2
√

2πV(ν,W,R)
. (3.94)

Note that K only depends on W, R and ν.

Further, recalling the definition of βN (cf., (3.47) and (3.49)) one can check that

βN ≥ W−
R,P

 1
N

N∑
n=1

ln
W(Yn|xn)

W−
R,P(Yn|xn)

≥ r̃N(R, P) − ẽSP(R, P, r̃N(R, P)) | xN

 . (3.95)

Next, we apply the concentration lemma, i.e., Lemma 5, to the right side of (3.95) by

noting the fact that the explanations provided prior to (3.93) are still valid (recall (3.58)

and (3.59)) and infer the following

βN ≥
K
√

N
e−NΛ∗1,P(r̃N (R,P)−ẽSP(R,P,r̃N (R,P))) =

K
√

N
e−Nr̃N (R,P) =

KNζ

e
e−Nr(R,P), (3.96)
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where the first equality follows from item (ii) of the regularity lemma, i.e., Lemma 12.

If we let N ∈ Z+ to be sufficiently large, so that

KNζ

e
> 1, (3.97)

then (3.96) implies that βN > e−Nr(P,R). Since our test is a likelihood ratio test, by violat-

ing the constraint we can only improve the optimal error performance, and hence (cf.,

(3.93))

α̃N(r(P,R)) ≥ αN ≥
K
√

N
e−NΛ∗0,P(ẽSP(R,P,rN (R,P))−rN (R,P)), (3.98)

which, in turn, implies that (cf., (3.42))

Pe( f , ϕ) ≥
K
√

N
e−NΛ∗0,P(ẽSP(R,P,rN (R,P))−rN (R,P)). (3.99)

3.2.5 Approximation of the exponent

In this final section of the chapter, we approximate the exponent in (3.99) to conclude

the proof.

To begin with, we note that (e.g., [21, Exercise 2.2.24]) Λ∗0,P(·) is a smooth function

over (−D(W ||W−
R,P|P),D(W−

R,P||W |P)), i.e., Λ∗0,P(·) ∈ C∞(−D(W ||W−
R,P|P),D(W−

R,P||W |P)).

Moreover, with the aid of the inverse function theorem and item (iii) of the regularity

lemma, i.e., Lemma 12, one can check that for any r ∈ (0,D(W ||W−
R,P|P)),

Λ∗ ′0,P(ẽSP(R, P, r) − r) = η(R, P, r), Λ∗ ′′0,P(ẽSP(R, P, r) − r) =
1

Λ′′0,P(η(R, P, r))
. (3.100)

Define9

δ(R, ν,W) := R − max
P ∈PR,ν(X)

D(W−
R,P||Q

∗
R,P|P). (3.101)

9Owing to item (iv) of the continuity lemma, i.e., Lemma 9, and the compactness of PR,ν(X), the
maximum is well-defined.
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Observe that owing to Lemma 6, δ(R, ν,W) > 0. Hence, one can choose N ∈ Z+ to be

sufficiently large, such that εN ≤ δ(R, ν,W)/2. Consider such an N from now on.

Using Taylor’s theorem, for some

x̄ ∈ (ẽSP(R, P, r(R, P)) − r(R, P), ẽSP(R, P, rN(R, P)) − rN(R, P)), (3.102)

we have

Λ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P)) = Λ∗0,P(ẽSP(R, P, r(R, P)) − r(R, P)) + {r(R, P)

+ ẽSP(R, P, rN(R, P)) − ẽSP(R, P, r(R, P))

−rN(R, P)}Λ∗ ′0,P(ẽSP(R, P, r(R, P)) − r(R, P))

+
Λ∗ ′′0,P(x̄)

2
{[ẽSP(R, P, rN(R, P)) − rN(R, P)]−

[ẽSP(R, P, r(R, P)) − r(R, P)]}2 (3.103)

= Λ∗0,P(ẽSP(R, P, r(R, P)) − r(R, P))

+ εNΛ∗ ′0,P(ẽSP(R, P, r(R, P)) − r(R, P))

+ Λ∗ ′0,P(ẽSP(R, P, r(R, P)) − r(R, P))

[ẽSP(R, P, rN(R, P)) − ẽSP(R, P, r(R, P))]

+
Λ∗ ′′0,P(x̄)

2
{[ẽSP(R, P, rN(R, P)) − rN(R, P)]−

[ẽSP(R, P, r(R, P)) − r(R, P)]}2 (3.104)

= Λ∗0,P(ẽSP(R, P, r(R, P)) − r(R, P)) + η(R, P, r(R, P))

εN + η(R, P, r(R, P))

[ẽSP(R, P, rN(R, P)) − ẽSP(R, P, r(R, P))]

+
Λ∗ ′′0,P(x̄)

2
{[ẽSP(R, P, rN(R, P)) − rN(R, P)]−

[ẽSP(R, P, r(R, P)) − r(R, P)]}2 , (3.105)

where (3.104) follows by recalling the fact that rN(R, P) = r(R, P) − εN and (3.105)

follows from (3.100) by recalling (3.81).
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Recalling item (i) of the regularity lemma, i.e., Lemma 12, (3.105) implies that

Λ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P))ẽSP(R, P, rN(R, P)) = ẽSP(R, P, rN(R, P))

+ εN
η(R, P, r(R, P))

1 − η(R, P, r(R, P))
+

Λ∗ ′′0,P(x̄)ε2
N

2(1 − η(R, P, r(R, P)))(
1 +

ẽSP(R, P, rN(R, P)) − ẽSP(R, P, r(R, P))
εN

)2

, (3.106)

for some x̄ ∈ (ẽSP(R, P, r(R, P)) − r(R, P), ẽSP(R, P, rN(R, P)) − rN(R, P)).

Note that, since ẽSP(R, P, ·) − (·) is strictly decreasing and continuous, there exists

a unique r̄ ∈ (r(R, P) − δ(R, ν,W)/2, r(R, P)) such that10 x̄ = ẽSP(R, P, r̄) − r̄ and hence

(recall (3.100) and (3.81))

Λ∗ ′′0,P(x̄) = 1/Λ′′0,P(η(R, P, r̄)). (3.107)

Moreover, item (iii) of the regularity lemma, i.e., Lemma 12, implies that

η(R, P, r(R, P))
1 − η(R, P, r(R, P))

= s∗(R, P, r(R, P)). (3.108)

Plugging (3.107) and (3.108) into (3.106), we deduce that

Λ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P)) = ẽSP(R, P, rN(R, P)) (3.109)

= ẽSP(R, P, r(R, P)) + s∗(R, P, r(R, P))εN

+
1 + s∗(R, P, r(R, P))

2Λ′′0,P(η(R, P, r̄))
ε2

N(
1 +

ẽSP(R, P, rN(R, P)) − ẽSP(R, P, r(R, P))
εN

)2

,

(3.110)

Moreover, using exactly the same arguments as above, but this time with a first-order

Taylor series, we infer that

ẽSP(R, P, rN(R, P)) = ẽSP(R, P, r(R, P)) + εN
η(R, P, r̃)

1 − η(R, P, r̃)
, (3.111)

10Actually, r̄ ∈ (rN(R, P), r(R, P)).
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for some r̃ ∈ (rN(R, P), r(R, P)).

On account of the convexity and the non-increasing property of ẽSP(R, P, ·), we have∣∣∣∣∣∂ẽSP(R, P, r′)
∂r′

∣∣∣∣∣ ≤ ẽSP(R, P, 0)
δ(R, ν,W)/2

, (3.112)

for any rN(R, P) ≤ r′ ≤ r(R, P).

By noting that ẽSP(R, P, 0) = D(W−
R,P||W |P) = Λ′0,P(1) and letting11

F := max
P∈PR,ν(X)

Λ′0,P(1) < ∞, (3.113)

(3.112) further implies that

η(R, P, r′)
1 − η(R, P, r′)

= s∗(R, P, r′) =

∣∣∣∣∣∂ẽSP(R, P, r′)
∂r′

∣∣∣∣∣ ≤ F
δ(R, ν,W)/2

=: s̃ < ∞, (3.114)

for any rN(R, P) ≤ r′ ≤ r(R, P).

Plugging (3.91), (3.111) and (3.114) into (3.110) yields

Λ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P)) = ẽSP(R, P, rN(R, P)) (3.115)

≤ ẽSP(R, P, r(R, P)) + s∗(R, P, r(R, P))εN[
1 + εN

(1 + s̃)2[1 + s∗(R, P, r(R, P))]
2V(ν,W,R)s∗(R, P, r(R, P))

]
(3.116)

= ESP(R, P) + s∗(R, P, r(R, P))εN[
1 + εN

(1 + s̃)2[1 + s∗(R, P, r(R, P))]
2V(ν,W,R)s∗(R, P, r(R, P))

]
(3.117)

≤ ESP(R, P) + s∗(R, P, r(R, P))εN[
1 + εN

(1 + s̃)2

2V(ν,W,R)

(
1 +

2Υ(W,R, ν)
ν

)]
, (3.118)

where (3.117) follows from the equality of the exponents proposition, i.e., Proposition 6,

and the shifted exponent lemma, i.e., Lemma 7, and (3.118) follows from (3.108) and

Lemma 13.
11Owing to the continuity lemma, i.e., Lemma 9, the maximum is well-defined and finite.
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Consider ζ ∈ R+ that is fixed in the definition of εN . Since s̃ is bounded, V(ν,W,R)

and Υ(W,R, ν) and the fact that ν > 0, one can deduce that for all sufficiently large N,

εN
(1 + s̃)2

2V(ν,W,R)

(
1 +

2Υ(W,R, ν)
ν

)
≤ ζ, (3.119)

and hence (3.118) reduces to the following, for all sufficiently large N,

Λ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P)) ≤ ESP(R, P) + s∗(R, P, r(R, P))εN(1 + ζ). (3.120)

Next, we claim that

s∗(R, P, r(R, P)) = ρ∗R,P. (3.121)

To prove this, we first claim that ρ∗R,P is a Lagrange multiplier of eSP(R, P). To see this,

first note that

eSP(R, P) = ESP(R, P) (3.122)

= KR,P(ρ∗R,P,Q
∗
R,P) (3.123)

= max
ρ∈R+

KR,P(ρ,Q∗R,P) (3.124)

= max
ρ∈R+

min
V∈P(Y|X)

[
D(V ||W |P) + ρ(D(V ||Q∗R,P|P) − R)

]
, (3.125)

where (3.122) follows from the equality of the exponents proposition, i.e., Proposition 6,

(3.123) follows from the saddle-point proposition, i.e., Proposition 2, and the unique-

ness of the saddle-point proposition, i.e., Proposition 3, (3.124) follows by noting that

(ρ∗R,P,Q
∗
R,P) is the unique saddle-point of KR,P(·, ·) and (3.125) follows by solving the

convex minimization problem. Hence, (3.125) gives the Lagrangian dual of eSP(R, P).

Further, one can also check that

max
ρ∈R+

min
V∈P(Y|X)

[
D(V ||W |P) + ρ(D(V ||Q∗R,P|P) − R)

]
= min

V∈P(Y|X)

[
D(V ||W |P) + ρ∗R,P(D(V ||Q∗R,P|P) − R)

]
. (3.126)
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(3.125) and (3.126) implies that ρ∗R,P is a Lagrange multiplier of eSP(R, P). More-

over, the sub-differential characterization of the Lagrange multipliers (e.g., [55, The-

orem 29.1]) along with the differentiability of the shifted exponent lemma, i.e.,

Lemma 11, and Corollary 2, implies (3.121).

Plugging (3.121) into (3.120), we deduce that

Λ∗0,P(ẽSP(R, P, rN(R, P)) − rN(R, P)) ≤ ESP(R, P) + ρ∗R,PεN(1 + ζ). (3.127)

DefineP∗R(X) := {P ∈ P(X) : ESP(R, P) = ESP(R)} , ∅. Observe thatP∗R is a compact

set. Also, for any P ∈ P(X), |P − P∗R| := infQ∈P∗R ||Q − P||1. For any θ ∈ R+, Pθ(X) :={
P ∈ PR,ν(X) : |P − P∗R(X)| ≥ θ

}
.

Observe that (recall (3.5) and the differentiability of ESP(·, P) proposition, i.e.,

Proposition 4)

ρ∗R = max
P∈P∗R(X)

ρ∗R,P, (3.128)

where owing to the compactness of P∗R(X) and the continuity of ρ∗R,·, the maximum is

well-defined and finite.

Since PR,ν(X) is compact, ρ∗R,· is uniformly continuous on this set, equivalently

∀υ ∈ R+, ∃ a(υ) ∈ R+, s.t. ∀P,Q ∈ PR,ν(X), ||P − Q||1 < a(υ)⇒ |ρ∗R,P − ρ
∗
R,Q| < ζ.

(3.129)

Consider ζ ∈ R+ that is fixed in the definition of εN and let a(ζ) ∈ R+ be chosen such

that (3.129) holds.

If P ∈ PR,ν(X) − Pa(ζ)(X), then (3.129) ensures that ρ∗R,P ≤ ρ∗R + ζ, which, in turn,

implies that

exp(−NεN(1 + ζ)ρ∗R,P) ≥ N−(1+ζ)( 1
2 +ζ)(ρ∗R+ζ). (3.130)
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Suppose P ∈ Pa(ζ)(X). Since ESP(R) − maxP ∈ cl(Pa(ζ)) ESP(R, P) ∈ R+, one can check

that for all sufficiently large N, uniformly over Pa(ζ)(X), we have

exp
(
−N

[
ESP(R, P) + εN(1 + ζ)ρ∗R,P

])
≥

e−NESP(R)

N(1+ζ)( 1
2 +ζ)ρ∗R

. (3.131)

Equations (3.99), (3.127), (3.130) and (3.131) imply (3.8). �
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CHAPTER 4

REFINEMENT OF THE RANDOM CODING BOUND

In this chapter, we improve the sub-exponential term in the random coding bound. As

noted before, the analysis in this chapter, as well as Chapter 3, can be considered to

be the analogous of Bahadur-Rao theorem for i.i.d. sums of random variables within

channel coding. In light of the analogies of the small, medium and large error probability

regimes to large deviations, moderate deviations and central limit theorem in i.i.d. sums,

which were pointed out in Section 1.2, one might expect the optimal order of the sub-

exponential term for channel coding to be Θ(1/
√

N), in conjunction with Bahadur-Rao

theorem. However, the lower bound derived in Chapter 3 has an extra term related to the

slope of ESP(R) that suggests that Θ(1/
√

N) is a pessimistic conjecture, provided that

one can prove a matching upper bound.

The aim of this chapter is to supply such an upper bound. Specifically, for a large

class of channels, we prove an upper bound on Pe(N,R) with a pre-factor having an extra

term that is related to the slope of Er(R), similar to the result in Chapter 3. However,

our analysis necessitates us to distinguish a small class of channels, for which we prove

an upper bound with O(1/
√

N) pre-factor. Although one might think that this is a defi-

ciency of the analysis, binary erasures channel (BEC) is a concrete example against this

thought, because in his classical paper [24], Elias has proved that for BEC the optimal

order of the pre-factor is Θ(1/
√

N). Hence, there is at least a dichotomy1 of channels as

far as the optimal order of the pre-factor goes.

The main idea to prove the results in this chapter is to reduce the problem of upper

bounding the error probability of a random code to large deviations events involving

1In Chapter 5, we prove that for symmetric channels with positive dispersion, there are exactly two
subclasses of channels, i.e., there is a dichotomy of channels with respect to the optimal order of the
sub-exponential term.
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sums of independent random variables and vectors. Exact asymptotics-type results will

then be applied. This reduction is nontrivial and forms the main technical contribution

of the chapter.

4.1 Definitions and statement of the results

Given a DMC W ∈ P(Y|X), Q ∈ P(X) and R ∈ R+,

Er(R,Q) := max
0≤ρ≤1

{−ρR + Eo(ρ,Q)} . (4.1)

For any W ∈ P(Y|X), Q ∈ P(X), N ∈ Z+ and R ∈ R+ the ensemble average error

probability conditioned on the message m (resp. ensemble average error probability) of

an (N,R) random code with codewords generated by using Q along with a maximum

likelihood decoder2 is denoted by P̄e,m(Q,N,R) (resp. P̄e(Q,N,R)).

Further,

SQ := {(x, y) ∈ X × Y : Q(x)W(y|x) > 0} , (4.2)

S̃Q := {(x, y, z) ∈ X × Y × X : Q(x)W(y|x)Q(z)W(y|z) > 0} , (4.3)

Xy := {x ∈ X : W(y|x) > 0} . (4.4)

Given a (Q,W) ∈ P(X)×P(Y|X) pair, the following property plays a crucial role in our

analysis.

Definition 8 (Singularity3). W(y|x) = W(y|z), for all (x, y, z) ∈ S̃Q. ♦

A (Q,W) ∈ P(X) × P(Y|X) pair is called nonsingular (resp. singular) provided that

2We assume that the ties are broken in such a way that always results in an error. However, this
assumption increases the error probability by at most a factor of 2.

3We thank Alfred Hero for encouraging us to use the name singular.
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Definition 8 does not hold (resp. holds). The set of all nonsingular (resp. singular)

(Q,W) pairs is denoted by Pns (resp. Ps)

A channel W is called nonsingular at rate R provided that there exists Q ∈ P(X)

with Er(R,Q) = Er(R) such that (Q,W) pair is nonsingular. Similarly, a channel is called

singular at rate R if for all Q ∈ P(X) with Er(R,Q) = Er(R), (Q,W) pair is singular.

Remark 11. Consider any (Q,W) ∈ P(X) × P(Y|X) pair.

(i) Definition 8 can be viewed as a condition that ensures that when a random code

with distribution Q is used for transmission through channel W, the optimal de-

coding algorithm, given the channel output, checks feasibility of the codewords.

(ii) In his investigation of the zero undetected error capacity4 of discrete memoryless

channels, Telatar uses a property similar to Definition 8. In particular, he proves

that the zero undetected error capacity is equal to (Shannon) capacity for “chan-

nels for which the non-zero values of W(y|x) depend only on y” [68, pg. 51]. This

result supports the operational interpretation given in item (i) above.

(iii) Singularity also plays a role in the third-order term of the normal approximation

for a DMC [51, Section 3.4.5]. Specifically, Polyanskiy defines [51, Eq. (3.296)]

Vr(Q,W) :=
∑
x,y

Q(x)W(y|x)

ln W(y|x)
q(y)

−
∑

z

Q(z)W(y|z)
q(y)

ln
W(y|z)
q(y)

2

, (4.5)

where q(y) :=
∑

x Q(x)W(y|x), and proves that ln
√

N is an achievable third-order

term in the normal approximation, provided that Vr(Q,W) > 0 [51, Theorem 53].

4For the definition of zero undetected error capacity, see [68, pg. 42].
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By noticing

[Vr(Q,W) = 0]⇐⇒∀ y ∈ Y, ln W(y|x) =
∑

z

Q(z)W(y|z)
q(y)

ln W(y|z), ∀ x with Q(x)W(y|x) > 0

 ,
(4.6)

it is easy to see that

[Vr(Q,W) = 0]⇐⇒
[
W(y|x) = W(y|z), ∀ (x, y, z) ∈ S̃Q

]
. (4.7)

From (4.7), it is evident that Vr(Q,W) = 0 is equivalent to saying (Q,W) pair is

singular. Moreover, in [51, Lemma 52], it is claimed that

[Vr(Q,W) = 0]⇐⇒
[
∀ (x, y, y′) : W(y|x) = W(y′|x) or Q(x)W(y|x) = 0

]
. (4.8)

By choosing Q = UX and W as BEC with parameter δ ∈ (0, 1), one can verify that

Vr(Q,W) = 0, via elementary calculation. Evidently, this (Q,W) pair does not

satisfy the right side of (4.8) and hence (4.8) is incorrect.

(iv) For an explanation of our reasoning for calling Definition 8 singular, see Re-

mark 15. ^

Lastly, given W ∈ P(Y|X) with V > 0,5 R ∈ (Rcr,C) and that W is nonsingular at

rate R, we define6

ρ̄∗R := sup
Q:Er(R,Q)=Er(R) and (Q,W)∈Pns

−
∂Er(r,Q)

∂r

∣∣∣∣∣
r=R

. (4.9)

Theorem 4. Let W ∈ P(Y|X) be arbitrary with V > 0.

5Since V > 0 is equivalent to Rcr < C (e.g., [35, pg. 160]), (Rcr,C) is nonempty.
6Differentiability of Er(·,Q) is proved in Lemma 14.
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(i) If Q ∈ P(X) and R ∈ R+ are such that (Q,W) pair is singular and7 Rcr(Q) < R <

I(Q; W), then there exists K1 ∈ R
+ that depends on W,R and Q such that for any

m ∈ {1, . . . , deNRe}

P̄e,m(Q,N,R) ≤
K1
√

N
e−NEr(R,Q), (4.10)

for all N ∈ Z+. Further, there exists an (N,R) code ( f , ϕ) and K̃1 ∈ R
+ that

depends on W,R and Q such that

Pe( f , ϕ) ≤
K̃1
√

N
e−NEr(R,Q), (4.11)

for all N ∈ Z+.

(ii) If Q ∈ P(X) and R ∈ R+ are such that (Q,W) pair is nonsingular and Rcr(Q) <

R < I(Q; W), then there exists K2 ∈ R
+ that depends on W,R and Q such that for

any m ∈ {1, . . . , deNRe}

P̄e,m(Q,N,R) ≤
K2

N0.5(1+ρ∗R(Q)) e−NEr(R,Q), (4.12)

for all N ∈ Z+ where ρ∗R(Q) := − ∂Er(r,Q)
∂r

∣∣∣
r=R

. Further, there exists an (N,R) code

( f , ϕ) and K̃2 ∈ R
+ that depends on W,R and Q such that

Pe( f , ϕ) ≤
K̃2

N0.5(1+ρ∗R(Q)) e−NEr(R,Q), (4.13)

for all N ∈ Z+. �

Theorem 4 is proved in Section 4.2 and immediately implies the following.

Corollary 3. Let W ∈ P(Y|X) be arbitrary with V > 0 and R ∈ (Rcr,C).

(i) If W is singular at rate R, then there exists an (N,R) code ( f , ϕ) and K3 ∈ R
+ that

depends on R and W such that

Pe( f , ϕ) ≤
K3
√

N
e−NEr(R), (4.14)

7Rcr(Q) := ∂Eo(ρ,Q)
∂ρ

∣∣∣∣
ρ=1

(e.g., [35, pg. 142]).
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for all N ∈ Z+.

(ii) If W is nonsingular at rate R, then for any ε > 0, there exists an (N,R) code ( f , ϕ)

and K4 ∈ R
+ that depends on R,W and ε such that

Pe( f , ϕ) ≤
K4

N0.5(1+ρ̄∗R−ε)
e−NEr(R), (4.15)

for all N ∈ Z+. �

Theorem 5. Let W ∈ P(Y|X) be arbitrary with V > 0 and R ∈ (Rcr,C).

(i) The subdifferential of Er(·) at R, i.e., ∂Er(R), satisfies8

∂Er(R) = conv
({
∂Er(r,Q)

∂r

∣∣∣∣∣
r=R

: Er(R,Q) = Er(R)
})
. (4.16)

(ii) Define ρ∗R := max {|a| : a ∈ ∂Er(R)}. If there exists Q ∈ P(X) such that Er(R,Q) =

Er(R), (Q,W) is nonsingular and − ∂Er(r,Q)
∂r

∣∣∣
r=R

= ρ∗R, then there exists an (N,R)

code ( f , ϕ) and K5 ∈ R
+ that depends on W,R and Q such that

Pe( f , ϕ) ≤
K5

N0.5(1+ρ∗R) e−NEr(R), (4.17)

for all N ∈ Z+. Moreover,

W(y|x) > 0, for all (x, y) ∈ X × Y, (4.18)

is a sufficient condition for the existence of a Q ∈ P(X) with the aforementioned

properties. �

Theorem 5 is proved in Section 4.3

8As usual, for a given set S , conv(S ) denotes the convex hull of S .
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Remark 12. (i) It is evident that ρ∗R, as defined in item (ii) of Theorem 5, is the ab-

solute value of the left derivative of Er(·) at R. Further, it is worth noting that in

Theorem 3, we have proved that for any W ∈ P(Y|X) with V > 0 and R∞ < R < C

and ε > 0, the maximum error probability of any constant composition (N,R)

code is lower bounded by
K5e−NESP(R)

N
1
2 (1+ε+ρ̃∗R)

, (4.19)

for all sufficiently large N, where K5 is a positive constant that depends on W, R

and ε, and ρ̃∗R is the maximum absolute value subgradient of ESP(·) at R, which

also satisfies9 ρ̃∗R = ρ∗R, for all R ∈ (Rcr,C).

(ii) Item (ii) of Theorem 5 corrects an error10 of Dobrushin who claimed that for a

strongly symmetric channel11 with positive dispersion, for rates between Rcr and

C, a pre-factor of O(N−
1

2(1+|E′r(R)|) ) is asymptotically tight [22, pg. 274, Theorem]. A

lower bound of this order is evidently incorrect in light of item (ii) of Theorem 5.

In fact, the invalidity of Dobrushin’s claim can also be concluded by using the

weaker achievable pre-factor of O(1/
√

N) that is reported in [4]. ^

Singularity is also crucial regarding the pre-factor of the ensemble average error

probability for rates below the critical rate.

Theorem 6. Let W ∈ P(Y|X) be arbitrary with C > 0 and R ≤ Rcr.

(i) If for all Q ∈ P(X) with Eo(1,Q) = maxP∈P(X) Eo(1, P), (Q,W) pair is singular,

9Since the non-increasing, convex curves ESP(·) and Er(·) agree on an interval around R, the maximum
magnitude of their subdifferentials at R are also equal.

10We refer to the English translation of the work. We were not able to verify whether the mistake is
present in the original Russian version. Moreover, the aforementioned work has other inaccuracies. For
example, the conditional entropy term in [22, Eq. (1.16)] is off by a minus sign and the BSC result of Elias
(e.g., [24, Theorem 1]) is mistakenly cited with a pre-factor of Θ(N−0.5), instead of the correct pre-factor
of Θ(N−0.5(1+|E′r(R)|)).

11A channel is strongly symmetric if every row (resp. column) is a permutation of every other row
(resp. column).
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then for any such Q ∈ P(X), we have

K6e−NEr(R) ≤ P̄e(Q,N,R) ≤ e−NEr(R), (4.20)

for any N ∈ Z+ and for some 0 < K6 < 1 that depends on W,R and Q.

(ii) (Gallager [36]) If there exists Q ∈ P(X) with Eo(1,Q) = maxP∈P(X) Eo(1, P) and

(Q,W) pair is nonsingular, then

P̄e(Q,N,R) ∼
g
√

N
e−NEr(R), (4.21)

where g is a positive constant that is explicitly characterized in [36]. �

Theorem 6 is proved in Section 4.4

Remark 13. (i) Theorem 6 corrects a small oversight12 by Gallager [37]. Specifi-

cally, in [36], item (ii) of Theorem 6 is claimed to be correct for any W with C > 0

and R ≤ Rcr. It should be noted that the proof provided in [36] is valid under the

nonsingularity assumption mentioned in item (ii) of Theorem 6.

(ii) The abrupt drop in the order of the pre-factor at Rcr highlights a previously unre-

ported role that the critical rate plays in the random coding bound. ^

4.2 Proof of Theorem 4

4.2.1 Overview

From the well-known random coding arguments (e.g., [35, pg. 136]) one can deduce

that for any message m

P̄e,m(Q,N,R) ≤
∑
xm,y

Q(xm)W(y|xm) Pr

⋃
m′,m

{
ln

W(y|xm)
W(y|Xm′)

≤ 0
} . (4.22)

12See Section C.1 for a particular example.
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For the sake of notational convenience, let Em :=
⋃

m′,m

{
ln W(Y|Xm)

W(Y|Xm′ )
≤ 0

}
denote the error

event conditioned on message m.

One obvious way to relax the right side of (4.22) to make it more tractable is to

use union bound. A straightforward application of the union bound is loose, however,

because some realizations of Xm and Y are such that
{
ln W(Y|Xm)

W(Y|Xm′ )
≤ 0

}
is likely to occur

for many m′. One workaround is to define a set of “bad” Xm and Y realizations DN ∈

XN × YN and proceed as follows

P̄e,m(Q,N,R) ≤ Pr(Em ∩DN) + Pr(Em ∩D
c
N) (4.23)

≤ Pr(DN) + (deNRe − 1) Pr
{
Dc

N ∩

{
ln

W(Y|X)
W(Y|Z)

≤ 0
}}

. (4.24)

Remark 14.

(i) Equation (4.24) is Fano’s [27, pg. 307, Theorem], valid for any auxiliary setDN ,

where X,Y and Z are distributed with PX,Y,Z(x, y, z) = Q(x)W(y|x)Q(z). Fano

provides a choice of DN for which a large deviations analysis of the right side of

(4.24) yields the random coding exponent.

(ii) It is evident that the introduction of an auxiliary set in Fano’s bound is not limited

to random code ensembles, but can also be employed to analyze error probability

of a given block code under maximum likelihood decoding. In particular, Gal-

lager used this idea in his analysis of low-density parity-check (LDPC) codes for

the special case of binary input symmetric channels [33, Section 3.3]. After the

invention of turbo codes [8] and the rediscovery of LDPC codes [47], there has

been a considerable interest in deriving efficiently computable bounds on the per-

formance of a given block code (e.g., [43], [58], [60], [64], [69] and references

therein). Researching these bounds for possible refinements, in particular char-

acterizing the pre-factors of the exponentially vanishing terms, is an interesting

future research direction, which is not pursued in this paper.
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(iii) There are other ways to control the aforementioned loss. One alternative is to use

the following bound by Gallager (e.g., [35, eq. (5.6.7)])

P̄e,m(Q,N,R) ≤
∑
xm,y

Q(xm)W(y|xm)

∑
m′,m

Pr
{

ln
W(y|xm)
W(y|Xm′)

≤ 0
}ρ , (4.25)

for any ρ ∈ [0, 1]. Although the bound in (4.25) is sufficient to obtain the ran-

dom coding exponent, the bound in (4.24) seems to be better suited to obtaining

improved pre-factors.

A tighter alternative to (4.24) is (e.g., [35, pg. 137], [52, Theorem 16])

P̄e,m(Q,N,R) ≤
∑
x,y

Q(x)W(y|x) min
{

1, (deNRe − 1) Pr
{

ln
W(y|x)
W(y|Z)

≤ 0
}}

.

(4.26)

Numerical evaluation of (4.26) yields sharp bounds for the special cases of BSC

and BEC [52]. Also, after we reported the results of this chapter in [3], Scarlett

et al. [59] has recently given an alternative proof of Theorem 4 by starting from

(4.26). Although this derivation is simpler than the one based on (4.24), the latter

has the merit of being the starting point for possible refinements of the efficiently

computable error probability bounds for a given block code, which is mentioned

in item (ii) above. ^

Next, one needs to choose an appropriateDN and upper bound the terms on the right

side of (4.24). Our choice will essentially be Fano’s choice for DN and our analysis

will vary depending on whether (Q,W) pair is singular. Specifically, if (Q,W) pair

is singular, then we use Fano’s choice. However, if (Q,W) pair is nonsingular, then a

perturbed version of Fano’sDN gives a better pre-factor and we will use such a perturbed

version.

Before proceeding further, we note the following useful facts that will be used

throughout the chapter.

71



Lemma 14. Let W ∈ P(Y|X) be arbitrary with V > 0.

(i) For any Q ∈ P(X) such that Er(R,Q) > 0 for some R > R∞, we have ∂2Eo(ρ,Q)
∂ρ2 < 0

for all ρ ∈ R+.

(ii) Fix an arbitrary Q ∈ P(X) such that Er(R,Q) > 0 for some R > R∞. For every r

in the non-empty interval
(
∂Eo(ρ,Q)

∂ρ

∣∣∣∣
ρ=1

, I(Q; W)
)
, there exists a unique real number

in (0, 1), say ρ∗r(Q), such that

∂Eo(ρ,Q)
∂ρ

∣∣∣∣∣
ρ=ρ∗r (Q)

= r. (4.27)

Further, ρ∗(·)(Q) is continuous over
(
∂Eo(ρ,Q)

∂ρ

∣∣∣∣
ρ=1

, I(Q; W)
)

and satisfies

ρ∗r(Q) = −
∂Er(a,Q)

∂a

∣∣∣∣∣
a=r

. (4.28)

�

Proof. The proof is given in Appendix C.2. �

To define the auxiliary set, we need the following definitions. First, fix some W ∈

P(Y|X) with V > 0. Consider some Q ∈ P(X) and R ∈ R+ such that Rcr(Q) < R <

I(Q; W). Define

PX,Y,Z(x, y, z) := Q(x)W(y|x)Q(z), (4.29)

for all (x, y, z) ∈ X × Y × X. Also, let

P̃X,Y,Z(x, y, z) :=


PX,Y,Z (x,y,z)
PX,Y,Z{S̃Q}

if (x, y, z) ∈ S̃Q,

0 else.
(4.30)

Let PN
X,Y,Z(x, y, z) :=

∏N
n=1 PX,Y,Z(xn, yn, zn) and SN

Q (resp. S̃ N
Q) denote the N-fold cartesian

product of SQ (resp. S̃Q). Hence,

PN
X,Y,Z

{
x, y, z|S̃N

Q

}
= P̃N

X,Y,Z(x, y, z) :=
N∏

n=1

P̃X,Y,Z(xn, yn, zn). (4.31)
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For any ρ ∈ [0, 1], let13

fρ(y) :=

[∑
x∈X Q(x)W(y|x)1/(1+ρ)

]1+ρ∑
b∈Y

[∑
a∈X Q(a)W(b|a)1/(1+ρ)]1+ρ

,∀ y ∈ Y, (4.32)

Λρ (λ) := ln EPX,Y

[
eλ ln

fρ(Y)
W(Y |X)

]
,∀ λ ∈ R. (4.33)

For any ρ ∈ [0, 1], ln fρ(y)
W(y|x) ∈ R for all (x, y) ∈ SQ, hence Λρ(·) is infinitely differentiable

on R. Thus, for any ρ ∈ [0, 1], the following is well-defined

Do(ρ) := Λ′ρ

(
ρ

1 + ρ

)
. (4.34)

Let {εN}N≥1 be a sequence of nonnegative real numbers such that limN→∞ εN = 0 and

define RN := R − εN . Let N ∈ Z+ be sufficiently large such that RN > Rcr(Q). For the

sake of notational convenience, let

ρ∗N := ρ∗RN
(Q) = −

∂Er(r,Q)
∂r

∣∣∣∣∣
r=RN

, (4.35)

whose existence is ensured by (4.28).

We finally define the auxiliary set as follows:

DN(εN) :=

 1
N

N∑
n=1

ln
fρ∗N (Yn)

W(Yn|Xn)
> Do(ρ∗N)

 . (4.36)

Using the particular set defined in (4.36), equation (4.24) reads

P̄e,m(Q,N,R) ≤ PN
X,Y {DN(εN)}

+ (deNRe − 1)PN
X,Y,Z

 1
N

N∑
n=1

ln
fρ∗N (Yn)

W(Yn|Xn)
≤ Do(ρ∗N),

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 . (4.37)

Remark 15. (i) Setting εN = 0 for all N ∈ Z+ gives Fano’s choice of the auxiliary set.

After this point, he proceeds with Chernoff bound arguments to upper bound the

right side of (4.37) to deduce the random coding upper bound14 with a pre-factor

of O(1) [27, pp. 324–331].
13The following two quantities are defined for any ρ ∈ R+ in items (i) and (v) of Definition 12 in

Appendix C.3, respectively. We reproduce them here for the reader’s convenience.
14Fano’s exponent, EF(·) (e.g., item (iv) of Definition 12 in Appendix C.3) has a different form than

Er(·), yet they can be shown to be equal (e.g., Lemma 33 in Appendix C.3).
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(ii) If (Q,W) is nonsingular, then the evident refinement of Fano’s arguments is to

use exact asymptotics result (e.g., [7], [21, Theorem 3.7.4]) instead of Chernoff

bound. One can verify the conditions necessary to apply this result are satis-

fied and hence such a refinement gives a pre-factor of O(1/
√

N) [4]. Moreover,

O(1/
√

N) is the tightest pre-factor possible if εN = 0, because it can be shown

that PN
X,Y {DN(εN)} ∼ Θ(1/

√
N)e−NEr(R,Q).

(iii) If (Q,W) is nonsingular, setting εN = 0 for all N ∈ Z+ is not the best possible

choice. With this choice, one can prove an upper bound of O(1/N)e−NEr(R,Q) on the

second term of (4.37), provided that the random vector[
ln

fρ∗N (Y)

W(Y |X)
, ln

W(Y |X)
W(Y |Z)

]T

, (4.38)

is nonsingular when it is distributed with P̃X,Y,Z, i.e., the covariance matrix of

this random vector under P̃X,Y,Z is nonsingular. The nonsingularity of this random

vector follows from the nonsingularity of (Q,W). Thus, by appropriately choosing

εN > 0, one can equalize the orders of the pre-factors for both terms of (4.37) to

deduce a tighter pre-factor. This intuition will be made rigorous in Section 4.2.3.

(iv) If (Q,W) is singular, ln W(Y |X)
W(Y |Z) = 0, P̃X,Y,Z − (a.s.). Hence, the random vector given

in (4.38) is singular when it is distributed with P̃X,Y,Z, i.e., the covariance matrix

of this random vector under P̃X,Y,Z is singular. Therefore, we cannot expect to have

an upper bound on the second term of (4.37) with an O(1/N) pre-factor and hence

we will set εN = 0 for all N ∈ Z+ for this case. The details of the derivation is

given in Section 4.2.2.

(v) As it is evident from items (iii) and (iv) above, whether (Q,W) satisfies Defini-

tion 8 is closely related to the singularity of the covariance matrix of the random

vector in (4.38) under P̃X,Y,Z. This relation is our rationale for calling Definition 8

singular. ^
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Before proceeding further, we define the following quantities

For any ρ ∈ [0, 1], λ ∈ R and v ∈ R2,

P̃λ,ρ
X,Y(x, y) :=


Q(x)W(y|x)1−λ fρ(y)λ∑

(a,b)∈SQ Q(a)W(b|a)1−λ fρ(b)λ , if (x, y) ∈ SQ,

0, else.
(4.39)

Λ1,ρ(v) := ln EP̃X,Y,Z

[
ev1 ln W(Y |X)

fρ(Y) +v2 ln W(Y |Z)
W(Y |X)

]
. (4.40)

Clearly, P̃λ,ρ
X,Y is a well-defined probability measure and Λ1,ρ(·) is infinitely differentiable

on R2. Further,

Lemma 15. Fix an arbitrary r ∈ (Rcr(Q), I(Q; W)). Let ρ := − ∂Er(a,Q)
∂a

∣∣∣
a=r
∈ (0, 1) and

ṽ :=
[

1−ρ
1+ρ
, 1

1+ρ

]T
. We have

(i)  ∂Λ1,ρ(v1, ṽ2)
∂v1

∣∣∣∣∣∣
v1=ṽ1

,
∂Λ1,ρ(ṽ1, v2)

∂v2

∣∣∣∣∣∣
v2=ṽ2

T

= [−Λ′ρ(ρ/(1 + ρ)), 0]T . (4.41)

(ii)

Λ1,ρ(ṽ) = − ln PX,Y,Z

{
S̃Q

}
+ 2Λρ

(
ρ

1 + ρ

)
. (4.42)

�

Proof. The proof is given in Appendix C.4. �

4.2.2 Proof of item (i) of Theorem 4

Assume (Q,W) pair is singular. As pointed out in item (iii) of Remark 15, we use the

quantities given in Section 4.2.1 with εN = 0 for all N ∈ Z+. Specifically, define

ρ∗ := −
∂Er(r,Q)

∂r

∣∣∣∣∣
r=R

. (4.43)
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Let f ∗, Λ(·) and Do denote the quantities defined in (4.32), (4.33) and (4.34), respec-

tively, by choosing ρ = ρ∗. For convenience, letDN denote the set defined in (4.36) with

the aforementioned choices. Particularizing (4.24), we have

P̄e,m(Q,N,R) ≤ PN
X,Y {DN}

+ (deNRe − 1)PN
X,Y,Z

 1
N

N∑
n=1

ln
f ∗(Yn)

W(Yn|Xn)
≤ Do,

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 .
(4.44)

We begin by deriving an upper bound on the first term in the right side of (4.44).

Lemma 16. Λ′′(λ) > 0, for all λ ∈ R. �

Proof. The proof goes by contradiction. One can check that

[
∃ λ ∈ R with Λ′′(λ) = 0

]
⇐⇒

[
ln

f ∗(Y)
W(Y |X)

= Λ′(λ), PX,Y − (a.s.)
]
. (4.45)

Further, define Ỹ := {y ∈ Y : Xy , ∅}. Note that Ỹ , ∅. Since (Q,W) pair is singular,

for some δy ∈ R
+

W(y|x) = δy, ∀x ∈ Xy, (4.46)

which, in turn, implies that

f ∗(y) =
δyQ

{
Xy

}1+ρ∗∑
b∈Ỹ δbQ {Xb}

1+ρ∗
. (4.47)

Equations (4.46) and (4.47) imply that

ln
f ∗(y)

W(y|x)
= ln

Q
{
Xy

}1+ρ∗∑
b∈Ỹ δbQ {Xb}

1+ρ∗
, ∀ (x, y) ∈ S̃Q. (4.48)

Due to (4.48), one can check that the right side of (4.45) is equivalent to saying that

Q
{
Xy

}
is constant for all y ∈ Ỹ. This last observation, coupled with the singularity of

the pair (Q,W), further implies that

Eo(ρ,Q) = −(1 + ρ) ln Q
{
Xy

}
− ln

∑
y

δy, (4.49)
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for all ρ ∈ R+. Evidently, (4.49) implies that ∂2Eo(ρ,Q)
∂ρ2 = 0, for all ρ ∈ R+, which

contradicts item (i) of Lemma 14. �

Equipped with Lemma 16, we can apply the concentration lemma, i.e., Lemma 5.

Specifically, (3.1) implies15 that (recall that our random variables are i.i.d.)

PN
X,Y {DN} ≤ e−NΛ∗(Do) 1

√
N

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η

 , (4.50)

where η := ρ∗

1+ρ∗
, m3 := EP̃η,ρ

∗

X,Y

[∣∣∣∣ln f ∗(Y)
W(Y |X) − Λ′(η)

∣∣∣∣3] with P̃η,ρ∗

X,Y as defined in (4.39), and

Λ∗(Do) is the Fenchel-Legendre transform of Λ(·) at Do, i.e.,

Λ∗(Do) := sup
λ∈R

{Doλ − Λ(λ)} . (4.51)

Since Λ(·) is convex, the definition of Do and (3.80) imply that

Λ∗(Do) = ηΛ′(η) − Λ(η). (4.52)

Moreover, Lemma 33 and (C.42) in Appendix C.3 imply that

Er(R,Q) = ηΛ′(η) − Λ(η). (4.53)

By plugging (4.53) into (4.52), we deduce that

Λ∗(Do) = Er(R,Q), (4.54)

which, in turn, implies that

PN
X,Y {DN} ≤ e−NEr(R,Q) 1

√
N

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η

 . (4.55)

15In the conference paper that we have reported the results of this chapter, the second term in the braces
of (4.50) (resp. (4.66)) is incorrectly written as 1

√
2πη

[3, Eq. (66)] (resp. 1
√

2πη̃
[3, Eq. (69)]). The correct

form is 1√
2πΛ′′(η)η

(resp. 1√
2πΛ′′o (η̃)η̃

), as given in (4.50) (resp. (4.66)).
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In order to upper bound the remaining term in the right side of (4.44), we first note that

βN := PN
X,Y,Z

 1
N

N∑
n=1

ln
f ∗(Yn)

W(Yn|Xn)
≤ Do,

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 (4.56)

= PN
X,Y,Z

{
S̃ N

Q

}
P̃N

X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)

f ∗(Yn)
≥ −Do,

1
N

N∑
n=1

ln
W(Yn|Zn)
W(Yn|Xn)

≥ 0

 (4.57)

= PN
X,Y,Z

{
S̃ N

Q

}
P̃N

X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)

f ∗(Yn)
≥ −Do

 , (4.58)

where (4.58) follows by noting ln W(y|z)
W(y|x) = 0 for all (x, y, z) ∈ S̃ Q, which is a direct

consequence of the singularity of (Q,W) pair.

Next, define

∀ λ ∈ R, Λo(λ) := ln EP̃X,Y,Z

[
eλ ln W(Y |X)

f ∗(Y)

]
, (4.59)

and note that Λo(·) is infinitely differentiable on R. Moreover, one can check that

∀ v ∈ R2, Λo(v1) = Λ1(v), (4.60)

where Λ1(·) denotes Λ1,ρ∗(·) (e.g., (4.40)) for notational convenience. Further, for any

λ ∈ R, define

Q̃λ
X,Y,Z(x, y, z) :=


P̃X,Y,Z (x,y,z)W(y|x)λ f ∗(y)−λ∑

(a,b,c)∈S̃Q
P̃X,Y,Z (a,b,c)W(b|a)λ f ∗(b)−λ if (x, y, z) ∈ S̃Q,

0 else.
(4.61)

It is evident that Q̃λ
X,Y,Z is a well-defined probability measure and equivalent to P̃X,Y,Z.

Lemma 17. Λ′′o (λ) > 0 for all λ ∈ R. �

Proof. One can check that

Λ′o(λ) = EQ̃λ
X,Y,Z

[
ln

W(Y |X)
f ∗(Y)

]
, Λ′′o (λ) = VarQ̃λ

X,Y,Z

[
ln

W(Y |X)
f ∗(Y)

]
. (4.62)

For contradiction, assume there exists λ ∈ R with Λ′′o (λ) = 0. We have[
∃ λ ∈ R with Λ′′o (λ) = 0

]
⇐⇒

[
ln

W(y|x)
f ∗(y)

= Λ′o(λ), ∀ (x, y, z) ∈ S̃Q

]
(4.63)

=⇒

[
ln

W(y|x)
f ∗(y)

= Λ′o(λ), ∀ (x, y) ∈ SQ

]
. (4.64)
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Using exactly the same arguments as in the proof of Lemma 16, one can show that (4.64)

contradicts item (i) of Lemma 14. �

From item (i) of Lemma 15 and (4.60), we deduce that

Λ′o

(
1 − ρ∗

1 + ρ∗

)
= −Do. (4.65)

Lemma 17 and (4.65) enable us to apply the concentration lemma, i.e., Lemma 5, to

obtain

P̃N
X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)

f ∗(YN)
≥ −Do

 ≤ e−NΛ∗o(−Do) 1
√

N

 m̃3

Λ′′o (η̃)3/2 +
1√

2πΛ′′o (η̃)η̃

 ,
(4.66)

where η̃ := 1−ρ∗

1+ρ∗
, m̃3 := EQ̃η̃

X,Y,Z

[∣∣∣∣ln W(Y |X)
f ∗(Y) − Λ′o(η̃)

∣∣∣∣3] with Q̃η̃
X,Y,Z as defined in (4.61), and

Λ∗o(−Do) = sup
λ∈R

{−Doλ − Λo(λ)} . (4.67)

Since Λo(·) is convex, (4.65) and (4.67) imply that

Λ∗o(−Do) = −η̃Do − Λo (η̃) (4.68)

= −η̃Do − Λ1([η̃, 1/(1 + ρ∗)]T ), (4.69)

where (4.69) follows from (4.60). Item (ii) of Lemma 15 yields

Λ1([η̃, 1/(1 + ρ∗)]T ) = − ln PX,Y,Z

{
S̃Q

}
+ 2Λ

(
ρ∗

1 + ρ∗

)
. (4.70)

Equations (4.69) and (4.70) imply that

Λ∗o(−Do) = ln PX,Y,Z

{
S̃Q

}
+

[(
ρ∗

1 + ρ∗

)
Λ′

(
ρ∗

1 + ρ∗

)
− Λ

(
ρ∗

1 + ρ∗

)]
(4.71)

−

[
1

1 + ρ∗
Λ′

(
ρ∗

1 + ρ∗

)
+ Λ

(
ρ∗

1 + ρ∗

)]
(4.72)

= ln PX,Y,Z

{
S̃Q

}
+ Er(R,Q) −

[
1

1 + ρ∗
Λ′

(
ρ∗

1 + ρ∗

)
+ Λ

(
ρ∗

1 + ρ∗

)]
(4.73)

= ln PX,Y,Z

{
S̃Q

}
+ Er(R,Q) + R, (4.74)
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where (4.73) follows from (4.52) and (4.54), and (4.74) follows since

−R =
1

1 + ρ∗
Λ′

(
ρ∗

1 + ρ∗

)
+ Λ

(
ρ∗

1 + ρ∗

)
, (4.75)

which is (C.43) in Appendix C.3.

Equations (4.58), (4.66) and (4.74) imply that

βN ≤ e−N(Er(R,Q)+R) 1
√

N

 m̃3

Λ′′o (η̃)3/2 +
1√

2πΛ′′o (η̃)η̃

 , (4.76)

which, in turn, implies that

(deNRe − 1)PN
X,Y,Z

 1
N

N∑
n=1

ln
f ∗(Yn)

W(Yn|Xn)
≤ Do,

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 ≤
e−NEr(R,Q)

√
N

 m̃3

Λ′′o (η̃)3/2 +
1√

2πΛ′′o (η̃)η̃

 . (4.77)

Plugging (4.55) and (4.77) into (4.44) implies (4.10).

The proof of (4.11) follows from the well-known expurgation idea (e.g., [35,

pg. 140]) and is included for completeness. To this end, generate a random code with

2deNRe codewords using Q as specified in the beginning of this section. Using exactly

the same arguments leading to the proof of (4.10), one can verify that for any message

m

P̄e,m

(
Q,N,R +

ln 2
N

)
≤

e−NEr(R,Q)

√
N

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η


+

e−NEr(R,Q)

√
N

 2m̃3

Λ′′o (η̃)3/2 +
2√

2πΛ′′o (η̃)η̃


{

1 +
e−NR

2

}
. (4.78)

Clearly, (4.78) guarantees the existence of a code, say ( f̃ , ϕ̃), with blocklength N, 2deNRe

messages, and average error probability upper bounded by the right side of (4.78). Now,

if we throw out the worst (in terms of the corresponding conditional error probability)

half of the codewords of this code, the resulting expurgated code, say ( f , ϕ), becomes

an (N,R) code with Pe( f , ϕ) not exceeding twice the right side of (4.78), which, in turn,

implies (4.11). �
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4.2.3 Proof of item (ii) of Theorem 4

Assume (Q,W) pair is nonsingular. Let {εN}N≥1 be such that εN = ln
√

N
N for all N ∈ Z+

and RN := R − εN . Consider a sufficiently large N such that RN > Rcr(Q). For notational

convenience, let

ρ∗ := −
∂Er(r,Q)

∂r

∣∣∣∣∣
r=R

, ρ∗N := −
∂Er(r,Q)

∂r

∣∣∣∣∣
r=RN

. (4.79)

Let f ∗,Λ(·) and Do denote the quantities defined in (4.32), (4.33) and (4.34), respec-

tively, by choosing ρ = ρ∗. Similarly, let f ∗N , ΛN(·) and Do(N) denote the quantities

defined in (4.32), (4.33) and (4.34), respectively, by choosing ρ = ρ∗N . Let DN denote

the set defined in (4.36). Using these choices, (4.37) reads

P̄e,m(Q,N,R) ≤ PN
X,Y {DN}

+ (deNRe − 1)PN
X,Y,Z

 1
N

N∑
n=1

ln
f ∗N(Yn)

W(Yn|Xn)
≤ Do(N),

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 . (4.80)

In order to conclude the proof, we must upper bound the two terms on the right side

of (4.80). We begin with the first term.

Let ηN := ρ∗N
1+ρ∗N

and η := ρ∗

1+ρ∗
. Item (ii) of Lemma 14 ensures that ρ∗(·)(Q) is continuous

over (Rcr(Q), I(Q; W)) and hence, we have

lim
N→∞

ρ∗N = ρ∗. (4.81)

lim
N→∞

ηN = η. (4.82)

lim
N→∞

f ∗N(y) = f ∗(y). (4.83)

lim
N→∞

P̃ηN ,ρ
∗
N

X,Y = P̃η,ρ∗

X,Y . (4.84)

Lemma 18. Fix an arbitrary ρ ∈ [0, 1]. For any λ ∈ R, we have Λ′′ρ (λ) ∈ R+. �
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Proof. Via elementary calculation, one can check that

Λ′ρ(λ) = EP̃λ,ρX,Y

[
ln

fρ(Y)
W(Y |X)

]
, Λ′′ρ (λ) = VarP̃λ,ρX,Y

[
ln

fρ(Y)
W(Y |X)

]
≥ 0, (4.85)

where P̃λ,ρ
X,Y is defined in (4.39). The inequality in (4.85) ensures that it suffices to prove

Λ′′ρ (·) , 0. For contradiction, assume this is not the case. Then,[
∃ λ ∈ R s.t. Λ′′ρ (λ) = 0

]
⇐⇒

[
ln

fρ(Y)
W(Y |X)

= Λ′ρ(λ), ∀(x, y) ∈ SQ

]
(4.86)

=⇒
[
W(y|x) = W(y|z), ∀(x, y, z) ∈ S̃Q

]
. (4.87)

The right side of (4.87) is equivalent to saying (Q,W) pair is singular, which is a con-

tradiction. Hence, we conclude that Λ′′ρ (λ) > 0. �

Lemma 18 ensures that Λ′′(·),Λ′′N(·) ∈ R+, thus we can apply the concentration

lemma, i.e., Lemma 5, to obtain16

PN
X,Y {DN} ≤ e−NΛ∗N (Do(N)) 1

√
N

 m3,N

Λ′′N(ηN)3/2 +
1√

2πΛ′′N(ηN)ηN

 , (4.88)

where m3,N := E
P̃
ηN ,ρ

∗
N

X,Y

[∣∣∣∣ln f ∗N (Y)
W(Y |X) − Λ′N(ηN)

∣∣∣∣3] and Λ∗N(Do(N)) is the Fenchel-Legendre

transform of ΛN(·) at Do(N).

Since ΛN(·) is convex, one can verify that

Λ∗N(Do(N)) = ηNΛ′N(ηN) − ΛN(ηN). (4.89)

Lemma 33 and (C.42) in Appendix C.3 imply that

Er(RN ,Q) = ηNΛ′N(ηN) − ΛN(ηN). (4.90)

By plugging (4.90) into (4.89), we deduce that

Λ∗N(Do(N)) = Er(RN ,Q). (4.91)
16In the conference paper that we have reported the results of this chapter, the second term in the braces

of (4.88) is incorrectly written as 1
√

2πηN
[3, Eq. (29)]. The correct form is 1√

2πΛ′′N (ηN )ηN
, as given in (4.88).
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By using (4.81)–(4.85), along with the continuity of | · |3 and (·)2, and the fact that

X,Y are finite sets, we conclude that

lim
N→∞

Λ′′N(ηN) = Λ′′(η), (4.92)

lim
N→∞

m3,N = m3 := EP̃η,ρ
∗

X,Y

[∣∣∣∣∣ln f ∗(Y)
W(Y |X)

− Λ′(η)
∣∣∣∣∣3] . (4.93)

Due to (4.82), (4.92) and (4.93), one can choose a sufficiently large N with

m3,N

Λ′′N(ηN)3/2 +
1√

2πΛ′′N(ηN)ηN
≤ 2

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η

 . (4.94)

By plugging (4.91) and (4.94) into (4.88), we deduce that

PN
X,Y {DN} ≤

2
√

N

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η

 e−NEr(RN ,Q). (4.95)

Next, we upper bound the second term on the right side of (4.37). To begin with,

note that for any (x, y, z) with Q(x)W(y|x)Q(z) > 0, if (x, y, z) < S̃Q, then ln W(y|x)
W(y|z) = ∞,

which, in turn, implies that

αN := PN
X,Y,Z

 1
N

N∑
n=1

ln
f ∗N(Yn)

W(Yn|Xn)
≤ Do(N),

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 (4.96)

= PN
X,Y,Z

{
S̃N

Q

}
α̃N , (4.97)

where, in (4.97) we define

α̃N := P̃N
X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)

f ∗N(Yn)
≥ −Do(N),

1
N

N∑
n=1

ln
W(Yn|Zn)
W(Yn|Xn)

≥ 0

 . (4.98)

Given any v ∈ R2 let Λ1,N(v) and Λ1(v) denote Λ1,ρ∗N (v) and Λ1,ρ∗(v), respectively,

where Λ1,ρ(v) is defined in (4.40). Further, define

v∗(N) :=
[
1 − ρ∗N
1 + ρ∗N

,
1

1 + ρ∗N

]T

, v∗ :=
[
1 − ρ∗

1 + ρ∗
,

1
1 + ρ∗

]T

. (4.99)
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Note that v∗1, v
∗
1(N) ∈ (0, 1) and v∗2, v

∗
2(N) ∈ (1/2, 1). Also, by using (4.81)–(4.83), one

can verify that

lim
N→∞

v∗(N) = v∗, (4.100)

lim
N→∞

Λ1,N(v∗(N)) = Λ1(v∗). (4.101)

Given any ρ ∈ [0, 1] and v ∈ R2, define

Q̃v,ρ
X,Y,Z(x, y, z) :=


P̃X,Y,Z (x,y,z)W(y|x)v1−v2 fρ(y)−v1 W(y|z)v2∑

(a,b,c)∈S̃ Q
P̃X,Y,Z (a,b,c)W(b|a)v1−v2 fρ(b)−v1 W(b|c)v2

if (x, y, z) ∈ S̃ Q

0 else.
(4.102)

Note that Q̃v,ρ
X,Y,Z is a well-defined probability measure and equivalent to P̃X,Y,Z. For nota-

tional convenience, let Q̃v∗(N)
X,Y,Z and Q̃v∗

X,Y,Z denote Q̃v∗(N),ρ∗N
X,Y,Z and Q̃v∗,ρ∗

X,Y,Z, respectively.

From (4.83), (4.100) and (4.102), we deduce that

lim
N→∞

Q̃v∗(N)
X,Y,Z = Q̃v∗

X,Y,Z. (4.103)

In the remaining part of the proof, we need the following result whose validity heavily

depends on the nonsingularity of the pair (Q,W).

Lemma 19. Fix an arbitrary r ∈ (Rcr(Q), I(Q; W)). Let ρ := − ∂Er(a,Q)
∂a

∣∣∣
a=r
∈ (0, 1) and

ṽ :=
[

1−ρ
1+ρ
, 1

1+ρ

]T
. We have

det
covQ̃ṽ,ρ

X,Y,Z ,ρ

[ln W(Y |X)
fρ(Y)

, ln
W(Y |Z)
W(Y |X)

]T  > 0. (4.104)

�

Proof. The proof is given in Appendix C.5. �

Define

b(N) := [−Do(N), 0]T , b := [−Do, 0]T , B(N) := [−Do(N),∞) × [0,∞). (4.105)

Λ∗1,N(d) := sup
v ∈R2

{
〈v,d〉 − Λ1,N(v)

}
, (4.106)
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for any d ∈ R2.

For notational convenience, let

SN := covQ̃v∗(N)
X,Y,Z

[ln W(Y |X)
f ∗N(Y)

, ln
W(Y |Z)
W(Y |X)

]T  ,S := covQ̃v∗
X,Y,Z

[ln W(Y |X)
f ∗(Y)

, ln
W(Y |Z)
W(Y |X)

]T  ,
(4.107)

and note that (4.104) ensures that λmin(SN), λmin(S) ∈ R+, where λmin(SN) (resp. λmin(S))

denotes the minimum eigenvalue of SN (resp. S).

Lemma 20. For all sufficiently large N that depends on Q, W and R,

α̃N ≤ e−NΛ∗1,N (b(N)) c
2λmin(ΣN)N

(
k(R,W,Q)2 +

2
v∗1(N)2 +

2
v∗2(N)2

)
, (4.108)

where c ∈ R+ is a universal constant and k(R,W,Q) ∈ R+ is a constant that depends on

R,W and Q. �

Proof. The proof is given in Appendix C.6. �

Remark 16. Although we state Lemma 20 for our particular case, its extension to i.i.d.

random vectors satisfying usual regularity conditions associated with strong large devi-

ations results is evident. Moreover, it gives a more general upper bound than the existing

vector exact asymptotics results of Chaganty and Sethuraman [16] and Petrovskii [50].

In particular, [16] and [50] handles strongly non-lattice random vectors17 and lattice

random vectors18, respectively. As opposed to random variables, however, these two

cases don’t exhaust all random vectors, and we are not aware of a result in the spirit of

Lemma 20 that would give an upper bound of O(1/N) for our case. ^

The following is a consequence of elementary linear algebra, whose proof is given

in Appendix C.7 for completeness.
17A random vector is strongly non-lattice if the magnitude of its characteristic function is bounded

away from 1 everywhere, except the origin.
18A random vector is lattice if it only takes values on a lattice.
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Lemma 21. For all sufficiently large N,

λmin(SN) ≥
λmin(S)

2
√

2
. (4.109)

�

Further, due to (4.100) and v∗1, v
∗
2 ∈ R

+, we have

1
v∗1(N)2 +

1
v∗2(N)2 ≤

2
(v∗1)2 +

2
(v∗2)2 , (4.110)

for all sufficiently large N.

Plugging (4.109) and (4.110) into (4.108), we finally deduce that

α̃N ≤ e−NΛ∗1,N (b(N)) 4
√

2c
λmin(Σ)N

(
k(R,W,Q)2

4
+

1
(v∗1)2 +

1
(v∗2)2

)
, (4.111)

for all sufficiently large N.

Next, we deal with the exponent in (4.111). First of all, owing to the convexity of

Λ1,N(·) and item (i) of Lemma 15, one can show that

Λ∗1,N(b(N)) = −v∗1(N)Do(N) − Λ1,N(v∗(N)). (4.112)

Item (ii) of Lemma 15 and (4.112), along with the definitions of Do(N) and v∗(N), imply

that

Λ∗1,N(b(N)) = ln PX,Y,Z

{
S̃Q

}
+

[(
ρ∗N

1 + ρ∗N

)
Λ′N

(
ρ∗N

1 + ρ∗N

)
− ΛN

(
ρ∗N

1 + ρ∗N

)]
−

[
1

1 + ρ∗N
Λ′N

(
ρ∗N

1 + ρ∗N

)
+ ΛN

(
ρ∗N

1 + ρ∗N

)]
(4.113)

= ln PX,Y,Z

{
S̃Q

}
+ Er(RN ,Q) −

[
1

1 + ρ∗N
Λ′N

(
ρ∗N

1 + ρ∗N

)
+ ΛN

(
ρ∗N

1 + ρ∗N

)]
(4.114)

= ln PX,Y,Z

{
S̃Q

}
+ Er(RN ,Q) + RN , (4.115)
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where (4.114) follows from (4.89) and (4.91), and (4.115) follows from (C.43) in Ap-

pendix C.3.

By using (4.111), (4.115) and the fact that εN = ln N
2N , we have

α̃N ≤ PX,Y,Z

{
S̃Q

}−N 4
√

2c

λmin(Σ)
√

N

(
k(R,W,Q)2

4
+

1
(v∗1)2 +

1
(v∗2)2

)
e−N(Er(RN ,Q)+R). (4.116)

Since PN
X,Y,Z

{
S̃N

Q

}
= PX,Y,Z

{
S̃Q

}N
, (4.97) and (4.116) imply that

αN ≤
4
√

2c

λmin(Σ)
√

N

(
k(R,W,Q)2

4
+

1
(v∗1)2 +

1
(v∗2)2

)
e−N(Er(RN ,Q)+R). (4.117)

Equation (4.117) finally implies that

(deNRe − 1)PN
X,Y,Z

 1
N

N∑
n=1

ln
f ∗N(Yn)

W(Yn|Xn)
≤ Do(N),

1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0


= (deNRe − 1)αN ≤

4
√

2c

λmin(Σ)
√

N

(
k(R,W,Q)2

4
+

1
(v∗1)2 +

1
(v∗2)2

)
e−NEr(RN ,Q). (4.118)

Plugging (4.95) and (4.118) into (4.37) yields,

P̄e,m(Q,N,R) ≤
2
√

N

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η

 e−NEr(RN ,Q)

+
4
√

2c

λmin(Σ)
√

N

(
k(R,W,Q)2

4
+

1
(v∗1)2 +

1
(v∗2)2

)
e−NEr(RN ,Q). (4.119)

Evident convexity of Er(·,Q), along with its continuous differentiability over [RN ,R],

which is ensured by item (ii) of Lemma 14, enables us to deduce that (e.g., [14,

eq. (3.2)])

Er(RN ,Q) ≥ Er(R,Q) −
ln N
2N

∂Er(r,Q)
∂r

∣∣∣∣∣
r=R

. (4.120)

Equations (4.119) and (4.120) imply (4.12).

The proof of (4.13) follows from the same arguments leading to the proof of (4.11),

which are given below for completeness. First, generate a random code with 2deNRe
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codewords using Q as specified in the beginning of this section. Using exactly the same

arguments leading to the proof of (4.12), one can verify that for any message m

P̄e,m

(
Q,N,R +

ln 2
N

)
≤

2
√

N

 m3

Λ′′(η)3/2 +
1√

2πΛ′′(η)η

 e−NEr(RN ,Q) +
8
√

2c

λmin(Σ)
√

N

×

(
k(R,W,Q)2

4
+

1
(v∗1)2 +

1
(v∗2)2

) (
1 +

e−NR

2

)
e−NEr(RN ,Q). (4.121)

Clearly, (4.121) guarantees the existence of a code, say ( f̃ , ϕ̃), with blocklength N,

2deNRe messages and average error probability upper bounded by the right side of

(4.121). Now, if we throw out the worst (in terms of the corresponding conditional

error probability) half of the codewords of this code, the resulting expurgated code,

say ( f , ϕ), becomes an (N,R) code with Pe ( f , ϕ) not exceeding twice the right side of

(4.121), which, in turn, implies (4.13). �

4.3 Proof of Theorem 5

Let W ∈ P(Y|X) be arbitrary with V > 0 and R ∈ (Rcr,C).

(i) Write Er(R) as

Er(R) = max
(ρ,Q)∈[0,1]×P(X)

{−ρR + Eo(ρ,Q)} . (4.122)

Since the cost function of (4.122) is linear in R, continuous in (ρ,Q) (e.g.,

Lemma 1) and [0, 1] × P(X) is compact, we can apply a well-known result from

convex analysis, namely subdifferential of the maximum function (e.g., [56, The-

orem 2.87]), to deduce that

∂Er(R) = conv
(
∪Q:Er(R,Q)=Er(R)∂Er(·,Q)(R)

)
(4.123)

= conv
({
∂Er(r,Q)

∂r

∣∣∣∣∣
r=R

: Er(R,Q) = Er(R)
})
, (4.124)
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where (4.124) follows from item (ii) of Lemma 14. Equation (4.124) implies

(4.16).

(ii) Since Er(·) is a real-valued, convex function over [Rcr,C] and R ∈ (Rcr,C), its

subdifferential at R, i.e., ∂Er(R), is a nonempty, convex and compact set (e.g., [56,

Theorem 2.74]), thus ρ∗R is well-defined. Equation (4.17) is an evident conse-

quence of item (ii) of Theorem 4 by invoking it with the Q ∈ P(X) whose ex-

istence is assumed in the statement of the theorem. The proof of the claim that

(4.18) is a sufficient condition for the existence of a Q with the stated properties

follows by contradiction. To this end, let Q ∈ P(X) be such that Er(R,Q) = Er(R),

ρ∗R = −
∂Er(r,Q)

∂r

∣∣∣
r=R

and (Q,W) pair is singular. Owing to these assumptions, along

with the positivity of the channel, one can check that there exists δy ∈ R
+ such

that W(y|x) = δy for all y ∈ Y and x ∈ X with Q(x) > 0. This observation, cou-

pled with the positivity of the channel, implies that Eo(ρ,Q) = − ln
∑

y δy for all

ρ ∈ R+, which contradicts item (i) of Lemma 14. Hence, we conclude that (Q,W)

pair should be nonsingular, which suffices to conclude the proof. �

4.4 Proof of Theorem 6

As pointed out in the statement of the theorem, item (ii) is due to Gallager and hence

we only prove item (i). Let W ∈ P(Y|X) with C > 0 and R ≤ Rcr be arbitrary. Assume

that for all Q ∈ P(X) with Eo(1,Q) = maxP∈P(X) Eo(1, P), the (Q,W) pair is singular.

Consider any such Q ∈ P(X). For this (Q,W) pair, let PX,Y,Z and P̃X,Y,Z be as given in

(4.29) and (4.30), respectively. Let S̃Q and Xy be as in (4.3) and (4.4), respectively, for

this choice of (Q,W).

89



First, we show that

ln PX,Y,Z

{
S̃Q

}
= −Eo(1,Q). (4.125)

To see this, note that

ln PX,Y,Z

{
S̃Q

}
= ln

∑
(x,y,z)∈S̃Q

Q(x)W(y|x)Q(z) (4.126)

= ln
∑

(x,y,z)∈S̃Q

Q(x)W(y|x)1/2Q(z)W(y|z)1/2 (4.127)

= ln
∑

y

 ∑
x∈S(Q)∩Xy

Q(x)W(y|x)1/2


 ∑

z∈S(Q)∩Xy

Q(z)W(y|z)1/2

 (4.128)

= −Eo(1,Q), (4.129)

where (4.127) follows from the singularity of (Q,W).

Further, for any message m

P̄e,m(Q,N,R) ≤
(
deNRe − 1

)
PN

X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 (4.130)

=
(
deNRe − 1

)
PX,Y,Z

{
S̃Q

}N
P̃N

X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 (4.131)

=
(
deNRe − 1

)
PX,Y,Z

{
S̃Q

}N
(4.132)

≤ e−N(−R+Eo(1,Q)) (4.133)

= e−NEr(R), (4.134)

where (4.131) follows from the fact that for any (x, y, z) with Q(x)W(y|x)Q(z) > 0, if

(x, y, z) < S̃Q, then ln W(y|x)
W(y|z) = ∞, (4.132) follows from the singularity of (Q,W), (4.133)

follows from (4.125) and (4.134) is true because of the choice of Q ∈ P(X) and the fact

that R ≤ Rcr (e.g., [36, pg. 245]). Hence, the upper bound of (4.20) follows.

In order to establish the lower bound of (4.20), one can use Gallager’s arguments
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[36, pg. 245-246] by noting

PN
X,Y,Z

 1
N

N∑
n=1

ln
W(Yn|Xn)
W(Yn|Zn)

≤ 0

 = e−NEo(1,Q). (4.135)

�
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CHAPTER 5

EXACT ASYMPTOTICS OF THE ERROR PROBABILITY IN CHANNEL

CODING: SYMMETRIC CHANNELS

In this chapter, we restrict our attention to an important special class of channels, namely

symmetric channels1.

As pointed out before, in his classical paper [24], Elias has proved that the optimal

pre-factor for BSC (resp. BEC) is Θ(N−0.5(1+|E′SP(R)|)) (resp. Θ(N−0.5)), hence implying

that there is at least a dichotomy of symmetric channels with respect to their pre-factors.

Our findings in this chapter establishes that this is indeed the case. In particular,

for rates between the critical rate and capacity, we prove that for the typical2 symmetric

channel, Θ(N−0.5(1+|E′SP(R)|)) is the pre-factor of the error probability of the optimal (N,R)

code, whereas for a small class of channels, Θ(N−0.5) is the order of the pre-factor.

The main technical contribution of this chapter is the converse result for this small

class of channels. Moreover, the method we employ to handle this type of channels

can be modified to analyze any symmetric channel. Via this methodology, it is possible

to prove converse results for the average error probability directly, without explicitly

reducing the channel coding problem to a binary hypothesis testing problem, as our

proof of the converse result for the typical case illustrates.

1For the definition symmetric channels, see Definition 9 below.
2Precise definition of the property that defines aforementioned dichotomy is given in Definition 10

below.
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5.1 Definitions and statement of the results

Throughout this chapter UX denotes the uniform input distribution over X. For conve-

nience, we recall the two forms3 of the sphere-packing exponent and the random coding

exponent

ESP(R,Q) := min
V:I(Q;V)≤R

D(V ||W |Q), ESP(R) := max
Q∈P(X)

ESP(R,Q), (5.1)

ẼSP(R,Q) := sup
ρ≥0
{−ρR + Eo(ρ,Q)} , ẼSP(R) := max

Q∈P(X)
ẼSP(R,Q), (5.2)

Er(R,Q) := max
0≤ρ≤1

{−ρR + Eo(ρ,Q)} , Er(R) := max
Q∈P(X)

Er(R,Q), (5.3)

where

Eo(ρ,Q) := − ln
∑
y∈Y

∑
x∈X

Q(x)W(y|x)1/(1+ρ)

1+ρ

. (5.4)

It is well-known that (e.g., [20, Ex. 2.5.23]) ESP(R, P) ≥ ẼSP(R, P) for any P ∈ P(X).

Definition 9 (Gallager [35]). A discrete channel is symmetric if the channel outputs

can be partitioned into subsets such that within each subset, the matrix of transition

probabilities satisfies the following: each row (resp. column) is a permutation of each

other row (resp. column). ♦

Definition 10. A channel W ∈ P(Y|X) is singular, provided that

∀ (x, y, z) s.t. W(y|x)W(y|z) > 0, W(y|x) = W(y|z). (5.5)

A channel that is not singular is called nonsingular. ♦

Remark 17. Definition 10 might be thought as a special case of the one given in the

previous chapter by using uniform input distribution. ^

3As noted before, the Haroutunian form and the Shannon-Gallager-Berlekamp form of the sphere-
packing exponent are equal to each other, i.e., ESP(R) = ẼSP(R). However, for our purposes in this
chapter, it is appropriate to distinguish them hence we denote the latter with ẼSP(R).
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Theorem 7. Let W be a symmetric and nonsingular channel with positive dispersion4.

(i) For any Rcr < R < C,

Pe(N,R) ≤
K1

N0.5(1+|E′r(R)|)
e−NEr(R), (5.6)

where K1 is a positive constant that depends on W and R.

(ii) For any R∞ < R < C and for all sufficiently large N,

P̄e(N,R) ≥
K̃1

N0.5(1+|E′SP(R)|)
e−NESP(R), (5.7)

where K̃1 is a positive constant that depends on W and R. �

Theorem 7 is proved in Section 5.2.1.

Theorem 8. Let W be a symmetric and singular channel with positive dispersion.

(i) For any Rcr < R < C,

Pe(N,R) ≤
K2
√

N
e−NEr(R), (5.8)

where K2 is a positive constant that depends on W and R.

(ii) For any R∞ < R < C and for all sufficiently large N,

P̄e(N,R) ≥
K̃2
√

N
e−NESP(R), (5.9)

where K̃2 is a positive constant that depends on W and R. �

Theorem 8 is proved in Section 5.2.2.

4Positive dispersion assumption ensures that R∞ ≤ Rcr < C (e.g., [35, pg. 160]).
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5.2 Proofs

First, we provide the main idea behind the proof of the converse results. Consider any

(N,R) code ( f , ϕ), and let SR,N ∈ Y
N denote an arbitrary set to be chosen later. One can

write P̄e( f , ϕ) as

P̄e( f , ϕ) = Pr
{
SR,N

}
P̄e( f , ϕ|SR,N), (5.10)

where P̄e( f , ϕ|SR,N) denotes the average error probability of the code ( f , ϕ) conditioned

on SR,N . If one can choose SR,N , potentially by using an auxiliary output distribution,

such that its probability is a good approximation5 of the probability of error event of

the code and can prove that P̄e( f , ϕ|SR,N) = Θ(1), then (5.10) will give sphere-packing

lower bound. The last step might intuitively be thought similar to the (strong) converse

to the channel coding theorem (e.g., [72]), but an appropriate choice of SR,N in the first

step is not evident.

If the channel is nonsingular, then we might expect to benefit from our analysis in

Chapter 3, because the sought-after optimal order of the pre-factor has the slope-related

term and Theorem 3 basically give the result if the restriction of constant composition

codes can be dropped. We will do so, by choosing SR,N similar to (3.48) and exploiting

the symmetry of the channel6.

It should be noted that the threshold of the aforementioned choice of SR,N varies

with a speed of O
(

ln
√

N
N

)
. Hence, using this particular choice cannot give a pre-factor of

Θ(N−0.5), which is the one we would like to prove for singular channels. By exploiting

the singularity and the symmetry of the channel, which gives it a special structure, we

choose a set SR,N that involves deviations of a certain scaled sum of independent random

5For example, a prerequisite of a good approximation is vanishing exponentially fast with an exponent
not larger than ESP(R).

6The fact that for symmetric channels it is possible to drop the constant composition step in the original
derivations of the sphere-packing exponent has been observed in [71].
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variables from a constant threshold7 and prove that its probability vanishes exponentially

fast with the exponent ESP(R). Recalling Bahadur-Rao result, it will not be surprising to

have an Θ(N−0.5) sub-exponential term for the probability of such a set, although how to

choose a set with these properties is not evident.

In the rest of the chapter, we make the aforementioned intuition rigorous. To this

end, we begin with a result that will be used in the proofs of both Theorem 7 and 8.

Lemma 22. Fix a symmetric channel W ∈ P(Y|X) with positive dispersion. Consider

any R∞ < R < C.

(i) ESP(R) = ESP(R,UX) = ẼSP(R,UX) = ẼSP(R).

(ii) For any ρ ∈ R+,

∑
y∈Y

W(y|x)
1

1+ρ

∑
z∈X

UX(z)W(y|z)
1

1+ρ


ρ

=
∑
y∈Y

∑
z∈X

UX(z)W(y|z)
1

1+ρ


1+ρ

, (5.11)

for all x ∈ X.

(iii) ρR(UX) := − ∂ESP(r,UX)
∂r

∣∣∣
r=R
∈ R+ is well-defined and attains the supremum in the

definition of ẼSP(R,UX) (cf., (5.2)).

(iv) qR(y) :=

(∑
x∈X UX(x)W(y|x)

1
1+ρR(UX)

)1+ρR(UX)

∑
b∈Y

(∑
a∈X UX(a)W(b|a)

1
1+ρR(UX)

)1+ρR(UX) is a minimizer of the following optimiza-

tion problem

min
q∈P(Y)

−ρR(UX)R − (1 + ρR(UX))
∑
x∈X

UX(x) ln
∑
y∈Y

W(y|x)
1

1+ρR(UX) q(y)
ρR(UX)

1+ρR(UX)

 .
(5.12)

�

Proof. The proof is given in Appendix D.1. �

7To be specific, threshold varies with a speed of O(1/N). However, this variation only changes the
constant in the final bound.
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5.2.1 Proof of Theorem 7

We begin with the proof of (5.6). Owing to the symmetry of the channel, Er(·,UX) =

Er(·) on (Rcr,C) (e.g., [35, pg. 145]). Since Er(·,UX) is continuously differentiable over

(Rcr,C) (e.g., item (ii) of Lemma 14) and (UX,W) pair is non-singular (e.g., Defini-

tion 8), (5.6) is a direct consequence of item (ii) of Theorem 5.

To prove (5.7), let qR and ρR(UX) be as defined in Lemma 22. For convenience, we

drop8 UX dependence in ρR(UX) from now on. Evidently9, qR(y) > 0 for all y ∈ Y.

For any R∞ < r ≤ R, we define

eSP(r,R) := inf
V∈P(Y|X):D(V ||qR |UX)≤r

D(V ||W |UX). (5.13)

For any xN and r ∈ R+, let

S
(
xN , r

)
:=

 1
N

N∑
n=1

ln
W(Yn|xn)

qR(Yn)
≤ r − eSP(r,R)

 . (5.14)

Lemma 23. For any λ ∈ R, Mx(λ) :=
∑

y:W(y|x)>0 W(y|x)1−λqR(y)λ is finite and constant

in x ∈ X. �

Proof. Mx(λ) ∈ R is an evident consequence of the fact that W(·|x) � qR for any x ∈ X,

which is a direct consequence of the fact that S(qR) = Y. Let {Yl}
L
l=1 be a partition10 of

the columns of W mentioned in Definition 9. Since each column is a permutation of any

other column within the partition,
(∑

x∈XUX(x)W(y|x)1/(1+ρR)
)1+ρR

has the same value for

any y ∈ Yl. This observation, coupled with the fact that all rows are permutations of

each other row, suffices to conclude the proof of the second assertion. �

8Since ∂ESP(a,UX)
∂a

∣∣∣
a=R = −

∂ESP(a)
∂a

∣∣∣
a=R, which is a direct consequence of items (i) and (iii) of Lemma 22,

this dependence is redundant, indeed.
9Without loss of generality, we assume that W has no all-zero column.

10The choice of the partition is immaterial in what follows.
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Remark 18. The fact that we can lower bound error probability of an arbitrary code,

as opposed to an arbitrary constant composition code, is essentially due to Lemma 23.

However, its proof heavily depends on the symmetry of the channel and an analogous

result for asymmetric channels is not evident to us. ^

Using Lemma 23, along with the uniqueness theorem for moment generating func-

tions (e.g., [11, Ex. 26.7]), we deduce that for any xN and r ∈ R+,

W
{
S

(
xN , r

)
| xN

}
= W

 1
N

N∑
n=1

ln
W(Yn|xo)

qR(Yn)
≤ r − eSP(r,R) | xN

o

 , (5.15)

where xN
o is an N-tuple consisting of all xo ∈ X and the choice of xo is immaterial. For

any λ ∈ R, we define

Λ(λ) := ln EW(·|xo)

[
eλ ln qR(Y)

W(Y |xo)

]
. (5.16)

As a direct consequence of Lemma 23, Λ(·) ∈ R over the real line, which, in turn,

ensures that Λ(·) is smooth on R.

For any x ∈ X, define

WR(y|x) :=


qR(y)

qR(S(W(·|x))) , if y ∈ S(W(·|x)),

0, else.
(5.17)

Evidently, WR(·|x) ≡ W(·|x), for all x ∈ X.

Lemma 24. (i) R > D(WR||qR|UX).

(ii) For any r ∈ (D(WR||qR|UX),R], eSP(r,R) = maxρ∈R+

{
−ρr − (1 + ρ)Λ

(
ρ

1+ρ

)}
.

(iii) eSP(R,R) = ESP(R). �

Proof. The proof is given in Appendix D.2. �
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For any x ∈ X and λ ∈ [0, 1), we define

W̃λ(y|x) :=
W(y|x)1−λqR(y)λ∑

b:W(b|x)>0 W(b|x)1−λqR(b)λ
. (5.18)

By elementary calculation, one can verify that

Λ′(λ) = EW̃λ(·|xo)

[
ln

qR(Y)
W(Y |xo)

]
, Λ′′(λ) = VarW̃λ(·|xo)

[
ln

qR(Y)
W(Y |xo)

]
. (5.19)

Similarly, for any λ ∈ [0, 1), we define

m3(λ) := EW̃λ(·|xo)

[∣∣∣∣∣ln qR(Y)
W(Y |xo)

− Λ′(λ)
∣∣∣∣∣3] . (5.20)

From (5.18), (5.19) and (5.20), one can verify that Λ′(·),Λ′′(·) and m3(·) are continuous

over [0, 1).

For any b ∈ R, let Λ∗(b) denote the Fenchel-Legendre transform of Λ(·) at b, i.e.,

Λ∗(b) := sup
λ∈R

{λb − Λ(λ)} . (5.21)

Lemma 25. (i) Λ′′(λ) > 0, for any λ ∈ [0, 1).

(ii) For any r ∈ (D(WR||qR|UX),R], sr := − ∂eSP(a,R)
∂a

∣∣∣
a=r

is a well-defined, continuous,

positive and strictly decreasing function.

(iii) Fix some D(WR||qR|UX) < r ≤ R. Λ∗(eSP(r,R) − r) = eSP(r,R). Moreover, there

exists a unique ηr ∈ (0, 1) such that Λ′(ηr) = eSP(r,R) − r and ηr = sr/(1 + sr). �

Proof. The proof is given in Appendix D.3. �

Define

R̄ := (R + D(WR||qR|UX))/2. (5.22)

Due to item (i) of Lemma 24, R̄ ∈ (D(WR||qR|UX),R). Moreover, as a direct consequence

of items (ii) and (iii) of Lemma 25,

0 < ηR < ηr < ηR̄ < 1, (5.23)
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for any r ∈ (R̄,R). Fix an arbitrary a > 1 and define

tmax := a2
√

2πηR̄ max
λ∈[0,ηR̄]

m3(λ)
Λ′′(λ)

, (5.24)

m2,min := min
λ∈[0,ηR̄]

Λ′′(λ), (5.25)

m2,max := max
λ∈[0,ηR̄]

Λ′′(λ). (5.26)

Evidently, all of the aforementioned quantities are well-defined and tmax,m2,min,m2,max ∈

R+. Finally, define

ko :=
e−tmax

(
1 − 1

a

)
ηR̄2

√
2πm2,max

∈ R+. (5.27)

Fix k1, k2 ∈ R
+ that satisfy k2 − k1 = ln ko. For any N ∈ Z+, define RN := R − ln

√
N

N −
k1
N .

Consider a sufficiently large N, such that

RN ≥ R̄ and
[1 + (1 + tmax)2]

ηR

(
1 − 1

a

)
2
√

eNm2,min

≤
1
2
. (5.28)

Consider any (N,R) code, say ( fN , ϕN), with decoding regions {Am}
|M|

m=1 and codewords{
xN(m)

}|M|
m=1

, where M := {1, . . . , deNRe} denotes the set of messages. Let P̄e( fN , ϕN)

denote the average error probability of ( fN , ϕN). We have

P̄e( fN , ϕN) =
1
|M|

∑
m∈M

∑
yN∈Ac

m

W(yN |xN(m)). (5.29)

For any m ∈ M, we have

W
{
S(xN(m),RN)|xN(m)

}
= W

{
S(xN

o ,RN)|xN
o

}
(5.30)

≥

ko

(
1 + a2

√
2πηRN

m3(ηRN )
Λ′′(ηRN )

)
√

N
e−NeSP(RN ,R) (5.31)

≥
ko
√

N
e−NeSP(RN ,R) (5.32)

> 0, (5.33)

where (5.30) follows from (5.15), along with the definition of S(xN
o ,RN), i.e., (5.14),

(5.31) follows from the concentration lemma, i.e. Lemma 5, whose applicability is

ensured by items (i) and (iii) of Lemma 25, coupled with (5.28).
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Continuing from (5.29), we have

P̄e( fN , ϕN) ≥
∑
m∈M

W
{
S(xN(m),RN)|xN(m)

}
|M|

∑
yN∈Ac

m∩S(xN (m),RN )

W(yN |xN(m))
W {S(xN(m),RN)|xN(m)}

(5.34)

≥
ko
√

N
e−NeSP(RN ,R) 1

|M|

∑
m∈M

∑
yN∈Ac

m∩S(xN (m),RN )

W(yN |xN(m))
W {S(xN(m),RN)|xN(m)}

, (5.35)

where (5.35) follows from (5.33).

For all m ∈ M, define11

PY |X,S(xN (m),RN )(yN |xN(m)) :=


W(yN |xN (m))

W{S(xN (m),RN )|xN (m)}
, if yN ∈ S(xN(m),RN),

0, else.
(5.36)

PY |S(xN (m),RN )(yN) :=


qR(yN )

qR{S(xN (m),RN )}
, if yN ∈ S(xN(m),RN),

0, else.
(5.37)

Using (5.36) in (5.35), we have

P̄e( fN , ϕN) ≥
ko
√

N
e−NeSP(RN ,R) 1

|M|

∑
m∈M

∑
yN∈Ac

m

PY |X,S(xN (m),RN )(yN |xN(m)) (5.38)

=
ko
√

N
e−NeSP(RN ,R)

1 − 1
|M|

∑
m∈M

∑
yN∈Am

PY |X,S(xN (m),RN )(yN |xN(m))

 . (5.39)

Lemma 26. For any m ∈ M,

1
N

ln
PY |X,S(xN (m),RN )(yN |xN(m))

PY |S(xN (m),RN )(yN)
≤ R −

k2

N
, (5.40)

for all yN with PY |X,S(xN (m),RN)(y
N |xN(m)) > 0. �

11Since qR � W(·|x), (5.33) ensures that both of the following are well-defined probability measures.
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Proof. Fix any m ∈ M and yN ∈ S
(
xN(m),RN

)
with W(yN |xN(m)) > 0. We have

1
N

ln
PY |X,S(xN (m),RN )(yN |xN(m))

PY |S(xN (m),RN )(yN)
=

1
N

ln
W(yN |xN(m))

qR(yN)
+

1
N

ln
qR

{
S(xN(m),RN)

}
W {S(xN(m),RN)|xN(m)}

(5.41)

≤
1
N

ln
W(yN |xN(m))

qR(yN)
+ eSP(RN ,R) +

ln
√

N
N

−
ln ko

N

(5.42)

≤ R −
k2

N
, (5.43)

where (5.41) follows from the definitions of PY |X,S(xN (m),RN ) and PY |S(xN (m),RN ), i.e., (5.36)

and (5.37), (5.42) follows from (5.32) and (5.43) follows from the definition of

S
(
xN(m),RN

)
, i.e., (5.14), along with the fact that k2 − k1 = ln ko. �

By using Lemma 26, along with the fact that decoding regions are disjoint and

PY |S(xN (m),RN ) is a probability measure, (5.39) further implies that

P̄e( fN , ϕN) ≥

(
1 − e−k2

)
ko

√
N

e−NeSP(RN ,R). (5.44)

Lemma 27. Let εN := ln
√

N
N + k1

N . We have

eSP(RN ,R) ≤ ESP(R) + εN |E′SP(R)| + ε2
N

(1 + |E′SP(R)|)
2m2,min

(1 + sR̄)2. (5.45)

�

Proof. The proof is given in Appendix D.4. �

Let N ∈ Z+ be sufficiently large such that e−Nε2
N

(1+|E′SP(R)|)
2m2,min

(1+sR̄)2

≥ 1/2. Then, Lemma 27

and (5.44) imply that

P̄e( fN , ϕN) ≥
ko(1 − e−k2)e−k1 |E′SP(R)|

2
e−NESP(R)

N0.5(1+|E′SP(R)|)
. (5.46)

Since the code is arbitrary, (5.46) implies (5.7). �
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5.2.2 Proof of Theorem 8

Due to the symmetry of the channel, Er(·,UX) = Er(·) on (Rcr,C) (e.g., [35, pg. 145]).

Since (UX,W) is singular (e.g., Definition 8), (5.8) is a direct consequence of item (i) of

Corollary 3.

To prove item (ii), define q(y) :=
∑

x∈XUX(x)W(y|x). Due to the singularity of W,

given any y ∈ Y, W(y|·) is either zero or a positive constant that depends on y, say δy.

Hence,

q(y) = δyαy with αy :=
∑

x:W(y|x)>0

UX(x). (5.47)

Evidently,12 q(y) > 0 for all y ∈ Y and hence q � W(·|x) for any x ∈ X.

For any r ∈ R+, define

S(r) :=

yN :
1
N

N∑
n=1

ln
1
αyn

≤ r

 . (5.48)

Let R̄ := R+R∞
2 . Fix some k ∈ R+ and define RN := R − k

N . Consider a sufficiently large

N, such that RN ≥ R̄.

Lemma 28. (i) For any xN ,

W
{
S(RN)|xN

}
= W

{
S(RN)|xN

o

}
, (5.49)

where xN
o is an N-tuple consisting of all xo, for some xo ∈ X.

(ii) For some K̃ ∈ R+ that depends on R, R̄ and W,

W
{
S(RN)|xN

o

}
≥

K̃
√

N
e−NESP(R) > 0, (5.50)

for all sufficiently large N. �

Proof. The proof is given in Appendix D.5. �

12Without loss of generality, we assume that W has no all-zero column.
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Remark 19. Similar to the nonsingular case, item (i) of Lemma 28 enables us to directly

bound error probability of any code instead of restricting the analysis to the constant

composition codes. ^

Consider any (N,R) code, say ( fN , ϕN), with decoding regions {Am}
|M|

m=1 and code-

words {xN(m)}|M|m=1, where M denotes the set of messages. Let P̄e( fN , ϕN) denote the

average error probability of this code. We have

P̄e( fN , ϕN) =
1
|M|

∑
m∈M

∑
yN∈Ac

m

W(yN |xN(m)) (5.51)

≥
K̃
√

N
e−NESP(R) 1

|M|

∑
m∈M

∑
yN∈Ac

m∩S(RN )

W(yN |xN(m))
W {S(RN)|xN(m)}

, (5.52)

where (5.52) follows from Lemma 28.

For all m ∈ M, define13

PY |X,S(RN )(yN |xN(m)) :=


W(yN |xN (m))

W{S(RN )|xN (m)}
, if yN ∈ S(RN),

0, else.
(5.53)

PY |S(RN )(yN) :=


qR(yN )

qR{S(RN )} , if yN ∈ S(RN),

0, else.
(5.54)

Using (5.53) in (5.52), we deduce that

P̄e( fN , ϕN) ≥
K̃
√

N
e−NESP(R)

1 − 1
|M|

∑
m∈M

∑
yN∈Am

PY |X,S(RN )(yN |xN(m))

 . (5.55)

Lemma 29. For any m ∈ M,

1
N

ln
PY |X,S(RN )(yN |xN(m))

PY |S(RN )(yN)
≤ R −

k
N
, (5.56)

for all yN with PY |X,S(RN )(yN |xN(m)) > 0. �

13From item (ii) of Lemma 28 and the fact that q � W(·|x), both of the following are well-defined
probability measures.
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Proof. Fix any m ∈ M and yN ∈ S(RN) with W(yN |xN(m)) > 0. First, we claim that

q(S(RN)) = W
{
S(RN)|xN(m)

}
. (5.57)

To see this,

q(S(RN)) =
∑
xN

UXN (xN)
∑
yN

W(yN |xN)1

yN :
1
N

∑
n=1

ln
1
αyn

≤ RN


=

∑
xN

UXN (xN)W
{
S(RN)|xN

}
=

∑
xN

UXN (xN)W
{
S(RN)|xN

o

}
(5.58)

= W
{
S(RN)|xN(m)

}
, (5.59)

where both (5.58) and (5.59) follow from item (i) of Lemma 28. Hence,

1
N

ln
PY |X,S(RN )(yN |xN(m))

PY |S(RN )(yN)
=

1
N

ln
W(yN |xN(m))

q(yN)
=

1
N

N∑
n=1

ln
1
αyn

≤ R −
k
N
, (5.60)

where the first equality follows from (5.57), the second equality follows from the fact

that whenever W(y|x) > 0, W(y|x)
q(y) = 1

αy
, which is a direct consequence of the singularity

of the channel, and the inequality follows from the definition of S(RN), i.e., (5.48). �

By using Lemma 29, along with the fact that decoding regions are disjoint and

PY |S(RN ) is a probability measure, (5.55) implies that

P̄e( fN , ϕN) ≥
K̃

(
1 − e−k

)
√

N
e−NESP(R). (5.61)

Since the code is arbitrary, (5.61) implies (5.9). �
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we considered two asymptotic setups regarding the blocklength, rate and

error probability interplay of the optimum block code(s) on a discrete memoryless chan-

nel.

In the first setup, we introduced moderate deviations (medium error probability

regime) in channel coding, as a more balanced way of using available blocklength com-

pared to the classical small and large error probability regimes. We proved that when

the rate increases to the capacity with a slower speed than the large error probability

regime, error probability decays sub-exponentially fast and showed that the rate of this

decay is inversely proportional to the channel dispersion.

In the second setup, we took a closer look at the small error probability regime to im-

prove the sub-exponential terms in the classical error probability bounds, to address the

accuracy issue of the error exponent results that limits their practical usage, especially

for rates around the capacity. Our improved pre-factor orders are close to each other

and coincide for symmetric channels. Further, for symmetric channels with positive

dispersion, we discovered a phase transition of the optimal pre-factor order.

Before we conclude, we present a list1 of possible research directions related to the

results in this thesis:

1. In Chapter 2, our focus was on the leading order term in the error probability

decay. An analysis similar to the remaining chapters to improve the lower-order

terms might be an interesting topic for future work.

1The following list is not meant to be exhaustive and the ordering is not with respect to significance
or elegance.
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2. In Chapter 2, we proved a moderate deviations result for positive dispersion chan-

nels. Extending the analysis to zero-dispersion channels might be interesting from

a theoretical perspective, since the order of the sub-exponential decay is likely to

be different.

3. Dropping the constant composition code restriction in Theorem 3 appears to be a

compelling, yet challenging direction to research.

4. The main result of Chapter 3 does not distinguish between singular and non-

singular channels. In light of the results of Chapter 4 and 5, one would expect

that a lower bound with a pre-factor of Θ(1/
√

N) holds (at least for constant com-

position codes) for singular, asymmetric channels.

5. Researching the role of singularity on the third-order term in the normal approxi-

mation regime is an interesting topic to investigate.

6. Extending the refined analysis for the small error probability regime in channel

coding to other information theory problems is an evident avenue to research.

Lossy source coding seems to be a tempting starting point for such a study.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1 Proof of Lemma 1

Consider any W ∈ P(Y|X). For all y ∈ Y, define

Xy := {x ∈ X : W(y|x) > 0}. (A.1)

Observe that owing to the no all-zero column assumption on W and (A.1), for all y ∈ Y,

Xy , ∅. Moreover, for any P ∈ P(X), there exists y ∈ Y with Xy ∩ S(P) , ∅.

For all y ∈ Y, define

fy : R+×P(X)→ R+, s.t. fy(ρ, P) :=
∑
x ∈X

P(x)W(y|x)
1

(1+ρ) , ∀ (ρ, P) ∈ R+×P(X). (A.2)

Evidently fy(·, ·) is continuous on R+ × P(X). Also, straightforward calculation reveals

that

∂ fy(ρ, P)
∂ρ

= −
1

(1 + ρ)2

∑
x ∈Xy

P(x)W(y|x)
1

(1+ρ) ln W(y|x), (A.3)

∂2 fy(ρ, P)
∂ρ2 =

1
(1 + ρ)3

∑
x ∈Xy

P(x)W(y|x)
1

(1+ρ) ln W(y|x)
[
2 +

ln W(y|x)
(1 + ρ)

]
, (A.4)

∂3 fy(ρ, P)
∂ρ3 = −

1
(1 + ρ)4

∑
x∈Xy

P(x)W(y|x)
1

(1+ρ) ln W(y|x)
[
6 +

6 ln W(y|x)
(1 + ρ)

+
(ln W(y|x))2

(1 + ρ)2

]
.

(A.5)

Further,

∀ P ∈ P(X), s.t. S(P) ∩ Xy = ∅, fy(·, P) = 0. (A.6)

Equation (A.6), coupled with (A.3), (A.4) and (A.5), implies that ∂ fy(ρ,P)
∂ρ

, ∂2 fy(ρ,P)
∂ρ2 and

∂3 fy(ρ,P)
∂ρ3 are continuous for all (ρ, P) ∈ R+ × P(X).
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For all y ∈ Y, define

gy : R+ × P(X)→ R+, s.t. gy(ρ, P) := fy(ρ, P)(1+ρ), (A.7)

where fy(·, ·) is defined in (A.2). It follows that gy(·, ·) is continuous on R+ × P(X).

Note that

∀ P ∈ P(X), s.t. S(P) ∩ Xy = ∅, gy(·, P) = 0. (A.8)

Consider any P ∈ P(X) with S(P) ∩ Xy , ∅. By noting gy(ρ, P) = e(1+ρ) ln fy(ρ,P), one

can check that

∂gy(ρ, P)
∂ρ

= gy(ρ, P)

(1 + ρ)
∂ fy(ρ,P)
∂ρ

fy(ρ, P)
+ ln fy(ρ, P)

 , (A.9)

∂2gy(ρ, P)
∂ρ2 =

∂gy(ρ, P)
∂ρ

(1 + ρ)
∂ fy(ρ,P)
∂ρ

fy(ρ, P)
+ ln fy(ρ, P)

 +

gy(ρ, P)

2
∂ fy(ρ,P)
∂ρ

fy(ρ, P)
+ (1 + ρ)


∂2 fy(ρ,P)
∂ρ2

fy(ρ, P)
−


∂ fy(ρ,P)
∂ρ

fy(ρ, P)


2

 , (A.10)

∂3gy(ρ, P)
∂ρ3 =

∂2gy(ρ, P)
∂ρ2

(1 + ρ)
∂ fy(ρ,P)
∂ρ

fy(ρ, P)
+ ln fy(ρ, P)

 +
∂gy(ρ, P)

∂ρ

4
∂ fy(ρ,P)
∂ρ

fy(ρ, P)
+

2(1 + ρ)


∂2 fy(ρ,P)
∂ρ2

fy(ρ, P)
− 2


∂ fy(ρ,P)
∂ρ

fy(ρ, P)


2

 + gy(ρ, P)




∂2 fy(ρ,P)
∂ρ2

fy(ρ, P)
−


∂ fy(ρ,P)
∂ρ

fy(ρ, P)


2
×3 − 2

∂ fy(ρ,P)
∂ρ

fy(ρ, P)

 + (1 + ρ)


∂3 fy(ρ,P)
∂ρ3

fy(ρ, P)
−

∂2 fy(ρ,P)
∂ρ2

∂ fy(ρ,P)
∂ρ

fy(ρ, P)2


 . (A.11)

For any y ∈ Y, define

ωmin(y) := min
y ∈Y

min
x ∈Xy

W(y|x), (A.12)

ωmax(y) := max
y ∈Y

max
x ∈Xy

W(y|x). (A.13)
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From (A.3), by using (A.12) and (A.13), we infer that

∂ fy(ρ, P)
∂ρ

≤
fy(ρ, P)
(1 + ρ)2 ln

1
ωmin(y)

, (A.14)

∂ fy(ρ, P)
∂ρ

≥
fy(ρ, P)
(1 + ρ)2 ln

1
ωmax(y)

. (A.15)

Consider any sequence {(ρk, Pk)}k≥1 in R+×P(X) with S(Pk)∩Xy , ∅ for all k ∈ Z+ and

(ρk, Pk) → (ρo, Po) for some (ρo, Po) ∈ R+ × P(X) with S(Po) ∩ Xy = ∅. Using (A.14)

and (A.15), we deduce that

R+ 3
1

(1 + ρo)2 ln
1

ωmax(y)
≤ lim inf

k→∞

∂ fy(ρ,Pk)
∂ρ

∣∣∣∣
ρ=ρk

fy(ρk, Pk)

≤ lim sup
k→∞

∂ fy(ρ,Pk)
∂ρ

∣∣∣∣
ρ=ρk

fy(ρk, Pk)
≤

1
(1 + ρo)2 ln

1
ωmin(y)

∈ R+. (A.16)

Note that (A.16) is evident if S(Po) ∩ Xy , ∅.

Claim 3. Given any y ∈ Y, ∂gy(ρ,P)
∂ρ

is continuous for all (ρ, P) ∈ R+ × P(X). �

Proof. Fix any y ∈ Y. Consider any (ρo, Po) ∈ R+ × P(X).

Note that if S(Po) ∩ Xy , ∅, then by recalling the continuity of fy(·, ·),
∂ fy(ρ,P)
∂ρ

and

gy(·, ·), (A.9) ensures that ∂gy(ρ,·)
∂ρ

is continuous at (ρo, Po). Hence, supposeS(Po)∩Xy = ∅.

Let {(ρk, Pk)}k≥1 be arbitrary with limk→∞(ρk, Pk) = (ρo, Po). Observe that (A.8),

along with (A.2) and (A.7), ensures that

∂gy(ρ, Pk)
∂ρ

∣∣∣∣∣∣
ρ=ρk

= 0, if S(Pk) ∩ Xy = ∅. (A.17)

Consider any subsequence {(ρkn , Pkn)}n≥1. Now, if all but a finite number of Pkn satisfy

S(Pkn) ∩ Xy = ∅, then

lim
n→∞

∂gy(ρ, Pkn)
∂ρ

∣∣∣∣∣∣
ρ=ρkn

= 0, (A.18)
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owing to (A.17). Suppose this is not the case. One can verify1 that

lim
n→∞

∂gy(ρ, Pkn)
∂ρ

∣∣∣∣∣∣
ρ=ρkn

= 0, (A.19)

by using the continuity of fy(·, ·) and gy(·, ·), along with (A.6), (A.8), (A.9) and (A.16).

Combining (A.18) and (A.19), we conclude that

lim
k→∞

∂gy(ρ, Pk)
∂ρ

∣∣∣∣∣∣
ρ=ρk

= 0 =
∂gy(ρ, Po)

∂ρ

∣∣∣∣∣∣
ρ=ρo

, (A.20)

that implies the continuity if S(Po) ∩ Xy = ∅. �

For any y ∈ Y, define

ω(y) := max{| lnωmin(y)|, | lnωmax(y)|} ∈ R+, (A.21)

where ωmin(y) and ωmax(y) are as defined in (A.12) and (A.13), respectively.

From (A.4), by using (A.21), we infer that

∂2 fy(ρ, P)
∂ρ2 ≤

2 fy(ρ, P) lnωmax(y)
(1 + ρ)3 +

fy(ρ, P)ω(y)2

(1 + ρ)4 , (A.22)

∂2 fy(ρ, P)
∂ρ2 ≥

2 fy(ρ, P) lnωmin(y)
(1 + ρ)3 . (A.23)

Consider any sequence {(ρk, Pk)}k≥1 in R+×P(X) with S(Pk)∩Xy , ∅ for all k ∈ R+ and

(ρk, Pk) → (ρo, Po) for some (ρo, Po) ∈ R+ × P(X) with S(Po) ∩ Xy = ∅. Using (A.22)

and (A.23), we deduce that

R 3
2

(1 + ρo)3 lnωmin ≤ lim inf
k→∞

∂2 fy(ρ,Pk)
∂ρ2

∣∣∣∣
ρ=ρk

fy(ρk, Pk)

≤ lim sup
k→∞

∂2 fy(ρ,Pk)
∂ρ2

∣∣∣∣
ρ=ρk

fy(ρk, Pk)
≤

2 lnωmax(y)
(1 + ρo)3 +

ω(y)2

(1 + ρo)4 ∈ R
+. (A.24)

Note that (A.24) is evident if S(Po) ∩ Xy , ∅.

1Passing to a further subsequence {Pknm
}m≥1 such that S(Pknm

) ∩ Xy , ∅, for all m ∈ Z+, if necessary.
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Claim 4. Given any y ∈ Y, ∂2gy(ρ,P)
∂ρ2 is continuous for all (ρ, P) ∈ R+ × P(X). �

Proof. Fix any y ∈ Y. Consider any (ρo, Po) ∈ R+ × P(X).

Note that if S(Po) ∩ Xy , ∅, then, by using the continuity of fy(·, ·),
∂ fy(ρ,·)
∂ρ

, ∂2 fy(ρ,·)
∂ρ2 ,

gy(·, ·) and ∂gy(ρ,·)
∂ρ

, (A.10) implies the continuity of ∂2gy(ρ,·)
∂ρ2 at the point (ρo, Po). Hence,

suppose S(Po) ∩ Xy = ∅.

Let {(ρk, Pk)}k≥1 be arbitrary with limk→∞(ρk, Pk) = (ρo, Po). Observe that (A.8),

along with (A.2) and (A.7), ensures that

∂2gy(ρ, Pk)
∂ρ2

∣∣∣∣∣∣
ρ=ρk

= 0, if S(Pk) ∩ Xy = ∅. (A.25)

Consider any subsequence {(ρkn , Pkn)}n≥1. Now, if all but a finite number of Pkn satisfy

S(Pkn) ∩ Xy = ∅, then

lim
n→∞

∂2gy(ρ, Pkn)
∂ρ2

∣∣∣∣∣∣
ρ=ρkn

= 0, (A.26)

owing to (A.25). Suppose this is not the case. We also have2

lim
n→∞

∂2gy(ρ, Pkn)
∂ρ2

∣∣∣∣∣∣
ρ=ρkn

= 0, (A.27)

by using the continuity of fy(·, ·), gy(·, ·) and ∂gy(ρ,·)
∂ρ

, along with (A.6), (A.8), (A.9),

(A.10), (A.16) and (A.24).

Combining (A.26) and (A.27), we conclude that

lim
k→∞

∂2gy(ρ, Pk)
∂ρ2

∣∣∣∣∣∣
ρ=ρk

= 0 =
∂2gy(ρ, Po)

∂ρ2

∣∣∣∣∣∣
ρ=ρo

, (A.28)

which implies the continuity if S(Po) ∩ Xy = ∅. �

2Passing to a further subsequence {Pknm
}m≥1 such that S(Pknm

) ∩ Xy , ∅, for all m ∈ Z+, if necessary.
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Note that from (A.5), by using (A.12), (A.13) and (A.21), one can show that

∂3 fy(ρ, P)
∂ρ3 ≤

1
(1 + ρ)4

∑
x∈Xy

P(x)W(y|x)
1

(1+ρ)

[
6 ln

1
ωmin(y)

−
(lnωmin(y))3

(1 + ρ)2

]
, (A.29)

∂3 fy(ρ, P)
∂ρ3 ≥

1
(1 + ρ)4

∑
x∈Xy

P(x)W(y|x)
1

(1+ρ)

[
6 ln

1
ωmax(y)

−
6ω(y)2

(1 + ρ)
−

(lnωmax(y))3

(1 + ρ)2

]
.

(A.30)

Consider any sequence {(ρk, Pk)}k≥1 in R+ ×P(X) with S(Pk)∩Xy , ∅ for all k ∈ R+

and (ρk, Pk) → (ρo, Po) for some (ρo, Po) ∈ R+ × P(X) with S(Po) ∩ Xy = ∅. Using

(A.29) and (A.30), we deduce that

R 3
1

(1 + ρ)4

[
6 ln

1
ωmax(y)

−
6ω(y)2

(1 + ρ)
−

(lnωmax(y))3

(1 + ρ)2

]
≤ lim inf

k→∞

∂3 fy(ρ,Pk)
∂ρ3

∣∣∣∣
ρ=ρk

fy(ρk, Pk)

≤ lim sup
k→∞

∂3 fy(ρ,Pk)
∂ρ3

∣∣∣∣
ρ=ρk

fy(ρk, Pk)
≤

1
(1 + ρ)4

[
6 ln

1
ωmin(y)

−
(lnωmin(y))3

(1 + ρ)2

]
∈ R+. (A.31)

Note that (A.24) is evident if S(Po) ∩ Xy , ∅.

Claim 5. Given any y ∈ Y, ∂3gy(ρ,P)
∂ρ3 is continuous for all (ρ, P) ∈ R+ × P(X). �

Proof. Fix any y ∈ Y. Consider any (ρo, Po) ∈ R+ × P(X).

We observe that if S(Po) ∩ Xy , ∅, then, by employing the continuity of

fy(·, ·),
∂ fy(ρ,·)
∂ρ

,
∂2 fy(ρ,·)
∂ρ2 ,

∂3 fy(ρ,·)
∂ρ3 , gy(·, ·),

∂gy(ρ,·)
∂ρ

and ∂2gy(ρ,·)
∂ρ2 , (A.11) implies the continuity of

∂3gy(ρ,·)
∂ρ3 at the point (ρo, Po). Hence, suppose S(Po) ∩ Xy = ∅.

Let {(ρk, Pk)}k≥1 be arbitrary with limk→∞(ρk, Pk) = (ρo, Po). Observe that (A.8),

along with (A.2) and (A.7), ensures that

∂3gy(ρ, Pk)
∂ρ3

∣∣∣∣∣∣
ρ=ρk

= 0, if S(Pk) ∩ Xy = ∅. (A.32)
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Consider any subsequence {(ρkn , Pkn)}n≥1. Now, if all but a finite number of Pkn satisfy

S(Pkn) ∩ Xy = ∅, then

lim
n→∞

∂3gy(ρ, Pkn)
∂ρ3

∣∣∣∣∣∣
ρ=ρkn

= 0, (A.33)

owing to (A.32). Suppose this is not the case. Further, we have (passing to a further

subsequence {Pknm
}m≥1 such that S(Pknm

) ∩ Xy , ∅, for all m ∈ Z+, if necessary)

lim
n→∞

∂3gy(ρ, Pkn)
∂ρ3

∣∣∣∣∣∣
ρ=ρkn

= 0, (A.34)

by using the continuity of fy(·, ·), gy(·, ·),
∂gy(ρ,·)
∂ρ

and ∂2gy(ρ,·)
∂ρ2 , along with (A.6), (A.8), (A.9),

(A.10), (A.11), (A.16), (A.24) and (A.31).

Combining (A.32) and (A.33), we conclude that

lim
k→∞

∂3gy(ρ, Pk)
∂ρ3

∣∣∣∣∣∣
ρ=ρk

= 0 =
∂3gy(ρ, Po)

∂ρ3

∣∣∣∣∣∣
ρ=ρo

, (A.35)

that implies the continuity if S(Po) ∩ Xy = ∅. �

Lastly, recalling the definition of Eo(ρ, P) and (A.7), it is easy to see that

Eo(ρ, P) = − ln
∑
y∈Y

gy(ρ, P). (A.36)

Using (A.36), one can check that

∂Eo(ρ, P)
∂ρ

= −

∑
y∈Y

∂gy(ρ,P)
∂ρ∑

ỹ∈Y gỹ(ρ, P)
, (A.37)

∂2Eo(ρ, P)
∂ρ2 = −

∑
y∈Y

∂2gy(ρ,P)
∂ρ2∑

ỹ∈Y gỹ(ρ, P)
+

(
∂Eo(ρ, P)

∂ρ

)2

, (A.38)

∂3Eo(ρ, P)
∂ρ3 = −

∑
y∈Y

∂3gy(ρ,P)
∂ρ3∑

ỹ∈Y gỹ(ρ, P)
+ 3

∂Eo(ρ, P)
∂ρ

∂2Eo(ρ, P)
∂ρ2 −

(
∂Eo(ρ, P)

∂ρ

)3

. (A.39)

The assertions of the lemma now follow:
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1) For any given P ∈ P(X), the concavity of Eo(·, P) on R+ can either be proven

by checking the non-positivity of ∂2Eo(ρ,P)
∂ρ2 , given in (A.38), or directly applying

Hölder’s inequality (e.g., [35, Appendix 5B]).

2) By evaluating (A.2), (A.3), (A.7) and (A.9) at ρ = 0 and then plugging the result

into (A.37), one can easily check the validity of the claim.

3) By evaluating (A.2), (A.3), (A.4), (A.7), (A.9) and (A.10) at ρ = 0 and plugging

the result into (A.38), one can check the validity of the claim after some algebra.

4) Fix any P ∈ P(X). The concavity of Eo(·, P) on R+ (recall item 1) above) ensures

that ∂2Eo(ρ,P)
∂ρ2 ≤ 0, for all ρ ∈ R+. This, coupled with item 2) above, implies the

claim.

5) The continuity of gy(·, ·) on P ∈ P(X)×R+ and Claim 3, along with (A.37), imply

the claim.

6) The continuity of gy(·, ·) on P ∈ P(X)×R+, Claim 4 and item 5) above, along with

(A.38), imply the claim.

7) The continuity of gy(·, ·) on P ∈ P(X) × R+, Claim 5 and items 5) and 6) above,

along with (A.39), imply the claim. �
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APPENDIX B

APPENDICES OF CHAPTER 3

B.1 Proof of Lemma 5

The content of this section resembles Dembo-Zeitouni’s proof of Bahadur-Rao theorem

(cf., [21, Theorem 3.7.4]). The main difference is the usage of the Berry-Esseen the-

orem, instead of the asymptotic expansions related to the central limit theorem. The

usage of the latter results in the dependence of the lattice nature of the random variable

and we choose to use the former in order to avert this technicalities.

First of all, note that since Λi(·) is finite in a neighborhood of η, Λi(·) is smooth at η.

Moreover, the defining assumption of η (i.e., property (ii) above) implies that

Λ∗n(q) = qη −
1
n

n∑
i=1

Λi(η), (B.1)

since 1
n

∑n
i=1 Λi(δ) is convex.

Next, as an immediate consequence of the definition of λ̃i,

Eλ̃i
[Zi] =

1
Mi(η)

∫
zeηzdλi(z). (B.2)

Moreover, since Λi is smooth at η, we also have

Λ′i(η) =
M′

i (η)
Mi(η)

=
1

Mi(η)

∫
zeηzdλi(z). (B.3)

And hence, we conclude that

Eλ̃i
[Zi] = Λ′i(η). (B.4)

Also, straightforward algebra reveals that

Λ′′i (η) =
M′′

i (η)
Mi(η)

−
[
Λ′i(η)

]2 . (B.5)
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Moreover, since Λi is smooth at η, we also have

M′′
i (η) =

∫
z2eηzdλi(z), (B.6)

which, in turn, implies that

Eλ̃i
[Z2

i ] =
M′′

i (η)
Mi(η)

. (B.7)

Plugging (B.4) and (B.7) into (B.5) yields

Varλ̃i
[Zi] = Λ′′i (η). (B.8)

Furthermore, recalling the definition of λ̃i, it is obvious that λ̃i � λi, i.e., λi dominates

λ̃i. Moreover, since Zi are real-valued and eηz−Λi(η) > 0, for all z ∈ R, we have

dλi

dλ̃i
(z) = e−ηz+Λi(η), (B.9)

which, in turn, implies that λi � λ̃i. Hence, we conclude that λ̃i and λi are equivalent

probability measures, i.e., λi ≡ λ̃i.

Next, we claim that

m2,n > 0. (B.10)

To see this, note that for any i ∈ {1, . . . , n},

[
Λ′′i (η) = 0

]
⇐⇒

[
Zi = Λ′i(η) λ̃i − (a.s.)

]
(B.11)

⇐⇒
[
Zi = Λ′i(η) λi − (a.s.)

]
(B.12)

=⇒ [Var[Zi] = 0] , (B.13)

where (B.11) follows from (B.4) and (B.8), (B.12) follows since λi ≡ λ̃i. From the

assumption that
∑n

i=1 Var[Zi] > 0 and (B.13), we conclude that
∑n

i=1 Λ′′i (η) > 0, which

implies (B.10).
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We continue as follows:

µn([q,∞)) =

∫
{Ŝ n≥q}

λ1(dz1) . . . λn(dzn) (B.14)

=

∫
{Ŝ n≥q}

e
∑n

i=1[Λi(η)−ηzi]λ̃1(dz1) . . . λ̃n(dzn) (B.15)

= e
∑n

i=1 Λi(η)Eµ̃n

[
1{Ŝ n≥q}e

−nηŜ n
]

(B.16)

= e−nΛ∗n(q)Eµ̃n

[
1{Ŝ n≥q}e

−n[ηŜ n−ηq]
]
, (B.17)

where (B.16) follows by recalling the definition of µ̃n and (B.17) follows from (B.1).

Note that (B.4) and (B.8) imply that

Eλ̃i
[Ti] = 0, Varλ̃i

[Ti] = Λ′′i (η). (B.18)

Define

Wn :=
1
√

m2,n

n∑
i=1

Ti. (B.19)

Further, observe that

Ŝ n =
√

m2,n
Wn

n
+ q, (B.20)

which, in turn, implies that

{Ŝ n ≥ q} =

{
√

m2,n
Wn

n
≥ 0

}
. (B.21)

Plugging (B.20) and (B.21) into (B.17) yields

µn([q,∞)) = e−nΛ∗n(q)Eµ̃n

[
1{Wn≥0}e−η

√
m2,nWn

]
(B.22)

= e−nΛ∗n(q)
∫ ∞

0
e−xη

√
m2,ndFn(x) (B.23)

= e−nΛ∗n(q)
∫ ∞

0
e−t

[
Fn

(
t
ψn

)
− Fn(0)

]
dt, (B.24)

where Fn is the distribution of Wn when Zi are independent with laws λ̃i, ψn := η
√

m2,n

and (B.24) follows from integration by parts.
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Fix some a > 1 and note that since Λi is smooth at η, m3,n < ∞ and hence (recall

(B.10)), tn(a, q) ∈ R+.

Next, Berry-Esseen theorem (cf., [9], [25, Theorem III.1]) implies that

|Fn(x) − Φ(x)| ≤ c
m3,n

m3/2
2,n

, ∀x ∈ R, (B.25)

where Φ(·) is the distribution of the standard Gaussian random variable and c is an ab-

solute constant. If the random variables are independent but not identically distributed,

then we can take c = 1, whereas if they are also identically distributed, then we can

take c = 1/2, by recalling the fact that the best known constants for each case is smaller

than 1 and 1/2, respectively (cf., [46] for a recent survey of the best known constants in

Berry-Esseen theorem).

To deduce (3.1), we approximate
∫ ∞

0
e−t

[
Fn

(
t
ψn

)
− Fn(0)

]
dt as follows:

Fn

(
t
ψn

)
− Fn(0) ≤ Φ

(
t
ψn

)
− Φ(0) + 2

m3,n

m3/2
2,n

(B.26)

≤
t
ψn
φ(0) + 2

m3,n

m3/2
2,n

, (B.27)

where resp. φ(·) denotes the density of the standard Gaussian random variable, (B.26)

follows from (B.25) and (B.27) follows via a Taylor series approximation coupled with

the observation that φ′(x) = − x
√

2π
e−x2/2 ≤ 0 for all x ∈ R+. Plugging (B.27) into

(B.24) and carrying out the straightforward algebra gives (3.1). Evidently, if the random

variables are i.i.d. then (B.26) holds with 2m3,n

m3/2
2,n

replaced with m3,n

m3/2
2,n

and hence the claimed

upper bound for this case follows.

To prove (3.2), first note that for any b > 0∫ ∞

b
te−tdt = e−b(1 + b), (B.28)∫ ∞

b
t2e−tdt = e−b[1 + (1 + b)2], (B.29)

119



that can be verified by straightforward algebra.

Further,

Fn

(
t
ψn

)
− Fn(0) ≥ Φ

(
t
ψn

)
− Φ(0) − 2

m3,n

m3/2
2,n

(B.30)

≥
t
ψn
φ(0) −

t2

ψ2
n

1

2
√

2πe
− 2

m3,n

m3/2
2,n

, (B.31)

where (B.30) follows from (B.25) and (B.31) follows by a Taylor series approximation,

along with the observation that R+ 3 x 7→ xe−x2/2 ≤ e−1/2. By plugging (B.31) into

(B.24), we deduce that∫ ∞

0
e−t

[
Fn

(
t
ψn

)
− Fn(0)

]
dt ≥

∫ ∞

tn(a,q)
e−t

[
Fn

(
t
ψn

)
− Fn(0)

]
dt (B.32)

≥

∫ ∞

tn(a,q)
e−t

 t

η
√

2πm2,n

(
1 −

1
a

)
−

t2

ψ2
n2
√

2πe

 dt. (B.33)

Equations (B.28), (B.29) and (B.33), along with elementary algebra, imply that (3.2)

holds.

To prove (3.3), we lower bound the right side of (B.22) by using the fact that η ≤ 1

to have

µn([q,∞)) ≥ e−nΛ∗n(q)Eµ̃n

[
1{Wn≥0}e−

√
m2,nWn

]
(B.34)

= e−nΛ∗n(q)
∫ ∞

0
e−x

√
m2,ndFn(x) (B.35)

= e−nΛ∗n(q)
∫ ∞

0
e−t[Fn(t/

√
m2,n) − Fn(0)]dt, (B.36)

where (B.36) follows by letting t := x
√

m2,n and integration by parts.

By using similar arguments to approximate the integrand on the right side of (B.36),

one can verify that∫ ∞

0
e−t

[
Fn

(
t
√

m2,n

)
− Fn(0)

]
dt ≥

∫ ∞

Kn(q)
e−t

[
Fn

(
t
√

m2,n

)
− Fn(0)

]
dt (B.37)

≥
e−Kn(q)√
2πm2,n

(
1 −

1 + (1 + Kn(q))2

2
√

m2,n

)
. (B.38)
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Plugging (B.38) into (B.24) yields

µn([q,∞)) ≥
e−nΛ∗n(q)e−Kn(q)√

2πm2,n

(
1 −

1 + (1 + Kn(q))2

2
√

m2,n

)
. (B.39)

�

B.2 Proof of Proposition 2

Claim 6. For any R > R∞

ESP(R, P) = max
ρ ∈R+

min
q ∈P(Y)

{
−ρR − (1 + ρ)ΛQ,P

(
ρ

1 + ρ

)}
, (B.40)

for all P ∈ P(X). �

Proof. The proof is clear from basic optimization theoretic arguments, (e.g., [20, Exer-

cise 2.5.23]), we just reproduce the steps for the sake of completeness.

ESP(R, P) = max
ρ ∈R+

min
V ∈P(Y|X)

{D(V ||W |P) + ρ[I(P; V) − R]} (B.41)

= max
ρ ∈R+

min
V ∈P(Y|X)

{
D(V ||W |P) + ρ

[
min

Q ∈P(Y)
D(V ||Q|P) − R

]}
(B.42)

= max
ρ ∈R+

{
−ρR + min

Q ∈P(Y)
min

V ∈P(Y|X)

[
D(V ||W |P) + ρD(V ||Q|P)

]}
(B.43)

= max
ρ ∈R+

min
Q ∈P(Y)

{
−ρR − (1 + ρ)ΛQ,P

(
ρ

1 + ρ

)}
. (B.44)

�

Remark 20. Recalling the definitions of PP,W(Y) and P̃P,W(Y) (cf., (3.18) and (3.19)),

we note the following facts:

(i) PP,W(Y) and P̃P,W(Y) are convex sets and P̃P,W(Y) ⊂ PP,W(Y).
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(ii) From the basic facts about convex sets (e.g., [10, Proposition 1.4.1 (c), Proposi-

tion 1.4.3 (b)]), ri(R+) = R+ and ri(PP,W(Y)) = ri(P(Y)) = {Q ∈ P(Y) : Q(y) >

0, ∀y ∈ Y}.

(iii) For any Q ∈ PP,W(Y), ΛQ,P(λ) ∈ R, for all λ ∈ [0, 1).

(iv) For any Q ∈ P(Y)\PP,W(Y), ΛQ,P(λ) = −∞, for all λ ∈ (0, 1) and hence given any

R > R∞, P ∈ P(X) and Q ∈ P(Y)\PP,W(Y), KR,P(ρ,Q) = ∞ for all ρ ∈ R+. ^

Claim 7. Consider any R > R∞ and P ∈ P(X).

(i) Given any ρ ∈ R+ (resp. ρ ∈ R+), KR,P(ρ, ·) is (resp. strictly) convex on PP,W(Y)

(resp. P̃P,W(Y)).

(ii) Given any Q ∈ PP,W(Y), KR,P(·,Q) is concave on R+. �

Proof. Let R > R∞ and P ∈ P(X) be arbitrary.

(i) Given any x ∈ S(P) and λ ∈ [0, 1) define fx,λ : PP,W(Y)→ R+ such that

fx,λ(Q) :=


∑

y∈YW(y|x)1−λQ(y)λ, if λ ∈ (0, 1),

1, if λ = 0,
(B.45)

for any Q ∈ PP,W(Y). Let Q1,Q2 ∈ PP,W(Y) and θ ∈ (0, 1) be arbitrary. For any

λ ∈ (0, 1), we have

fx,λ(θQ1 + (1 − θ)Q2) =
∑
y∈Y

W(y|x)1−λ[θQ1(y) + (1 − θ)Q2(y)]λ (B.46)

≥
∑
y∈Y

W(y|x)1−λ[θQ1(y)λ + (1 − θ)Q2(y)λ] (B.47)

= θ fx,λ(Q1) + (1 − θ) fx,λ(Q2), (B.48)
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where (B.47) follows from the concavity of (·)λ on R+ for any λ ∈ (0, 1). Clearly,

(B.48) is true for λ = 0.

Since ln(·) is strictly increasing and strictly concave on R+, (B.48) implies that

ln( fx,λ(θQ1 + (1 − θ)Q2)) ≥ ln(θ fx,λ(Q1) + (1 − θ) fx,λ(Q2)) (B.49)

≥ θ ln( fx,λ(Q1)) + (1 − θ) ln( fx,λ(Q2)). (B.50)

(B.50) implies that given any ρ ∈ R+, Λ·,P
(

ρ

1+ρ

)
is concave on PP,W(Y). By re-

calling the definition of KR,P (cf., (3.20)), this implies that KR,P(ρ, ·) is convex on

PP,W(Y).

Strict concavity follows by noting that for any Q1,Q2 ∈ P̃P,W(Y) such that Q1 ,

Q2 and λ ∈ (0, 1), the inequality in (B.47) is strict owing to the strict concavity of

(·)λ on R+ for any λ ∈ (0, 1).

(ii) For any λ ∈ (0, 1), Q ∈ PP,W(Y) and x ∈ S(P) define

∀y ∈ Y, W̃λ,Q(y|x) :=
W(y|x)1−λQ(y)λ∑

ỹ∈YW(ỹ|x)1−λQ(ỹ)λ
. (B.51)

Recalling the definition of PP,W(Y), W̃λ,Q(·|x) is a well-defined probability mea-

sure on Y. It is easy to check that1

Λ′Q,P(λ) =
∑

x∈S(P)

P(x)EW̃λ,Q(·|x)

[
ln

Q(Y)
W(Y |x)

]
, (B.52)

Λ′′Q,P(λ) =
∑

x∈S(P)

P(x)VarW̃λ,Q(·|x)

[
ln

Q(Y)
W(Y |x)

]
, (B.53)

for any Q ∈ PP,W(Y) and λ ∈ (0, 1). Recalling the definition of KR,P (cf., (3.20)),

(B.53) implies that

∂2KR,P(ρ, q)
∂ρ2 = −

1
(1 + ρ)3 Λ′′Q,P

(
ρ

1 + ρ

)
≤ 0, (B.54)

1For the sake of notational convenience Λ′Q,P(λ) (resp. Λ′′Q,P(λ)) denotes ∂ΛQ,P(λ)
∂λ

(resp. ∂2ΛQ,P(λ)
∂λ2 ) in the

sequel.
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for any Q ∈ PP,W(Y) and ρ ∈ R+.

Now, fix any Q ∈ PP,W(Y). (B.54) implies that −KR,P(·,Q) is convex on R+, equiv-

alently, the epigraph of −KR,P(·,Q) with its domain restricted to R+ is a convex set.

Furthermore,

lim
ρ↓0
−KR,P(ρ,Q) ≤ 0 = −KR,P(0,Q).

Hence, after adding 0 into the domain of KR,P(·,Q), its epigraph remains to be

convex.

�

Definition 11. Let G ⊂ Rn and f : G → R. (G, f ) is “convex and closed in Fenchel’s

sense” (cf., [54, pg. 151], [32, end of Section 2]) (resp. “concave and closed in

Fenchel’s sense”) provided that:

(i) G is convex.

(ii) f is convex (resp. concave) and lower (resp. upper) semi-continuous.

(iii) Any accumulation point of G that does not belong to G satisfies lim f (·) = ∞

(resp. lim f (·) = −∞). ♦

Claim 8. Let R > R∞ and P ∈ P(X) be arbitrary. For any Q ∈ ri(PP,W(Y)) (resp.

ρ ∈ ri(R+)), (R+,KP,R(·,Q)) (resp. (PP,W(Y),KP,R(ρ, ·))) is concave (resp. convex) and

closed in Fenchel’s sense. �

Proof. Fix any R > R∞ and P ∈ P(X).

First, fix an arbitrary Q ∈ P̃P,W(Y). Observe that ΛQ,P(λ) ∈ R for all λ ∈ (0, 1),

which in turn implies that Λq,P(λ) is infinitely differentiable with respect to λ for all

λ ∈ (0, 1). Moreover, recalling the definition of P̃P,W(Y), it is easy to check that for

124



any Q ∈ P̃P,W(Y), limλ↓0 ΛQ,P(λ) = 0 = ΛQ,P(0). These two observations ensure the

continuity (and a fortiori upper semi-continuity) of KR,P(·,Q) on R+. By noting (recall

item (ii) of Remark 20) ri(PP,W(Y)) ⊂ P̃P,W(Y), the fact that R+ is closed and convex

and the concavity of KR,P(·,Q) (cf., item (ii) of Claim 7) this suffices to conclude that

(R+,KR,P(·,Q)) is concave and closed in Fenchel’s sense.

Next, fix an arbitrary ρ ∈ ri(R+) = R+ (cf., item (ii) of Remark 20). Observe that

any accumulation point of PP,W(Y) which does not belong to PP,W(Y), say Q0, satisfies

Q0 ∈ P(Y)\PP,W(Y), owing to the compactness of P(Y), and hence KR,P(ρ,Q0) = ∞.

Further, item (i) of Remark 20 and item (i) of Claim 7 ensures that in order to conclude

that KR,P(ρ, ·) is convex and closed in Fenchel’s sense, we only need to verify the lower

semi-continuity. Implied by its convexity, KR,P(ρ, ·) is continuous on ri(P(Y)). Let

Q0 ∈ PP,W(Y)\ri(P(Y)) be arbitrary. Consider an arbitrary sequence {Qk}k≥1 such that

Qk ∈ PP,W(Y) and limk→∞ Qk = Q0. Lastly, define λ := ρ

1+ρ
∈ (0, 1). We have

lim
k→∞

ΛQk ,P(λ) = lim
k→∞

∑
x∈S(P)

P(x) ln
∑
y∈Y

W(y|x)1−λQk(y)λ (B.55)

=
∑

x∈S(P)

P(x) ln
∑
y∈Y

W(y|x)1−λQ0(y)λ (B.56)

= ΛQ0,P(λ), (B.57)

where (B.56) follows from the continuity of ln(·) and (·)λ. �

Now, we are ready to prove the existence of a saddle-point. To this end, fix arbitrary

R > R∞ and P ∈ P(X) from now on.

We first establish

−∞ < max
ρ ∈R+

inf
Q ∈PP,W (Y)

KR,P(ρ,Q) = min
Q ∈PP,W (Y)

sup
ρ ∈R+

KR,P(ρ,Q) < ∞. (B.58)

In order to prove (B.58), we use a minimax theorem of Rockafellar, [54, Theorem 8].

Claim 8 ensures that (R+,PP,W(Y),KR,P) is a “closed saddle-element” (cf., [54, pg. 151])
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and the boundedness of PP,W(Y) guarantees the fulfillment of condition (II) for the va-

lidity of the aforementioned theorem (cf., [54, pg. 172]). Therefore [54, eq. (7.2)]

implies that

−∞ < sup
ρ ∈R+

inf
Q ∈PP,W (Y)

KR,P(ρ,Q) = min
Q ∈PP,W (Y)

sup
ρ ∈R+

KR,P(ρ,Q). (B.59)

Next, we claim that

∀ ρ ∈ R+, inf
Q ∈PP,W (Y)

KR,P(ρ,Q) = inf
Q ∈P(Y)

KR,P(ρ,Q). (B.60)

Since ΛQ,P(0) = 0, for all q ∈ P(Y), (B.60) is trivially true for ρ = 0. On the other hand,

for any ρ ∈ R+, item (iv) of Remark 20 implies that

∀Q ∈ P(Y)\PP,W(Y), KR,P(ρ,Q) = ∞, (B.61)

which, in turn, implies (B.60). Equation (B.40) and (B.60) imply that

ESP(R, P) = max
ρ ∈R+

min
Q∈P(Y)

KR,P(ρ,Q) = max
ρ ∈R+

inf
Q∈PP,W (Y)

KR,P(ρ,Q) < ∞. (B.62)

Equation (B.59) and (B.62) imply that

−∞ < max
ρ ∈R+

inf
Q∈PP,W (Y)

KR,P(ρ,Q) = min
Q ∈PP,W (Y)

sup
ρ ∈R+

KR,P(ρ,Q) < ∞, (B.63)

which is (B.58).

From [55, Lemma 36.2], (B.58) ensures the existence of a saddle-point on R+ ×

PP,W(Y) and (B.62) implies the saddle-value is ESP(R, P). Hence we conclude the proof

of the first assertion of the proposition.

Next, we prove the second assertion.

Claim 9. Consider any R > R∞ and P ∈ P(X). If 0 ∈ S (R, P)|R+
, then ESP(R, P) = 0,

equivalently, if ESP(R, P) > 0, then 0 < S (R, P)|R+
. �
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Proof. Consider any R > R∞ and P ∈ P(X). Assume 0 ∈ S (R, P)|R+
. We clearly have

KR,P(0,Q) = 0, for all Q ∈ PP,W(Y), which in turn implies that (recall the definition of

the saddle-point) KR,P(0, Q̂) = 0 for any Q̂ ∈ PP,W(Y) satisfying (0, Q̂) ∈ S (R, P). From

the first assertion of Proposition 2, this implies the claim. �

Recalling the definition of PR(X) (cf., (3.17)), Claim 9 immediately implies the

following result.

Corollary 4. For any C > R > R∞ and P ∈ PR(X), S (R, P)|R+
⊂ R+. �

Claim 10. For any C > R > R∞ and P ∈ PR(X), S (R, P)|PP,W (Y) ⊂ P̃P,W(Y). �

Proof. Fix any C > R > R∞ and P ∈ PR(X). Let ρ̂ ∈ S (R, P)|R+
be arbitrary. Note that

owing to Corollary 4, ρ̂ ∈ R+. Define λ := ρ̂

1+ρ̂
∈ (0, 1) and recall that (cf., proof of

Claim 7) Λ·,P(λ) is concave on PP,W(Y).

For any Q̂ ∈ PP,W(Y) such that (ρ̂, Q̂) ∈ S (R, P) we have

KR,P(ρ̂, Q̂) = min
Q ∈PP,W (Y)

KR,P(ρ̂,Q) = −ρ̂R − (1 + ρ̂) max
Q∈PP,W (Y)

ΛQ,P

(
ρ̂

1 + ρ̂

)
, (B.64)

from the definition of the saddle-point.

Now, consider any Q ∈ PP,W(Y) and for any x ∈ S(P), define ΛQ,x(λ) :=

ln
∑

y∈YW(y|x)1−λQ(y)λ. Note that we have 3 possibilities for the partial derivatives of

ΛQ,x(λ) with respect to Q(y):

1. If y ∈ S(W(·|x)) ∩ S(Q), then

∂ΛQ,x(λ)
∂Q(y)

=
λW(y|x)1−λQ(y)λ−1∑

ỹ∈YW(ỹ|x)1−λQ(ỹ)λ
, (B.65)

which is continuous in Q(y).
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2. If y < S(W(·|x)), then (since any variation along this direction does not change the

value of the function)
∂ΛQ,x(λ)
∂Q(y)

= 0, (B.66)

which is continuous in Q(y).

3. If y < S(Q) and y ∈ S(W(·|x)), then

∂ΛQ,x(λ)
∂Q(y)

= ∞. (B.67)

Then, [35, Theorem 4.4.1] implies that2 a necessary and sufficient condition for any

Q ∈ PP,W(Y) to achieve the maximum in (B.64) is:

∂ΛQ,P(λ)
∂Q(y)

= δ, ∀ y ∈ S(Q), (B.68)

∂ΛQ,P(λ)
∂Q(y)

≤ δ,∀ y < S(Q), (B.69)

for some δ ∈ R. Clearly, if Q < P̃P,W(Y) then it cannot satisfy (B.68) and (B.69) (cf.,

(B.67)). Hence, any minimizer of (B.64) belongs to P̃P,W(Y). �

Corollary 4 and Claim 10 imply the second assertion of the proposition. �

B.3 Proof of Proposition 3

Claim 11. Consider any C > R > R∞ and P ∈ PR(X). For any ρ̂ ∈ S (R, P)|R+
, there

exists a unique Q̂ ∈ PP,W(Y), such that (ρ̂, Q̂) ∈ S (R, P). �

2Strictly speaking the statement of the aforementioned theorem requires the cost function of the max-
imization problem to be continuously differentiable (with possible infinite value on the boundary) on the
whole probability simplex. However, it is easy to verify that the proof given by Gallager is also applicable
to our case. Indeed, for sufficiency, item (iv) of Remark 20 ensures that the value of the cost function eval-
uated at any Q satisfying (B.68) and (B.69) is not smaller than its counterpart for any Q ∈ P(Y)\PP,W (Y).
For necessity, again item (iv) of Remark 20 ensures that any optimizer cannot be in P(Y)\PP,W (Y).
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Proof. Consider any C > R > R∞ and P ∈ PR(X). Let ρ̂ ∈ S (R, P)|R+
be arbitrary.

Existence of a Q̂ ∈ PP,W(Y), such that (ρ̂, Q̂) ∈ S (R, P) is guaranteed by item (i) of

saddle-point proposition, i.e., Proposition 2, hence we prove the uniqueness.

To this end, note that owing to item (ii) of saddle-point proposition, (Corollary 4 to

be precise), ρ̂ ∈ R+. Moreover, the same result (Claim 10 to be precise) also implies

that any Q̂ ∈ PP,W(Y), such that (ρ̂, Q̂) ∈ S (R, P) satisfies Q ∈ P̃P,W(Y) and attains the

minimum in the following expression

min
Q ∈ P̃P,W (Y)

KR,P(ρ̂,Q), (B.70)

as a direct consequence of the definition of the saddle-point. However, item (i) of

Claim 7 implies that KR,P(ρ̂, ·) is strictly convex on P̃P,W(Y) and hence the minimizer

of (B.70) is unique. �

Claim 12. Consider any C > R > R∞ and P ∈ PR(X). For any Q̂ ∈ S (R, P)|PP,W (Y),

∀ ρ ∈ R+,
∂2KR,P(ρ, Q̂)

∂ρ2 = −
1

(1 + ρ)3 Λ′′Q̂,P

(
ρ

1 + ρ

)
< 0, (B.71)

and there exists a unique ρ̂ ∈ R+, such that (ρ̂, Q̂) ∈ S (R, P). �

Proof. Consider any C > R > R∞ and P ∈ PR(X). Let Q̂ ∈ S (R, P)|PP,W (Y) be arbitrary.

The existence of a ρ̂ ∈ R+, such that (ρ̂, Q̂) ∈ S (R, P) is guaranteed by item (i) of

saddle-point proposition, i.e., Proposition 2, hence we prove the uniqueness.

To this end, note that on account of item (ii) of saddle-point proposition, (Claim 10,

in particular), Q̂ ∈ P̃P,W(Y), and hence ΛQ̂,P(λ) is infinitely differentiable with respect

to λ on (0, 1).

We first claim that

Λ′′Q̂,P(λ) > 0, ∀λ ∈ (0, 1). (B.72)
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For contradiction, suppose there exists a λ ∈ (0, 1) such that Λ′′
Q̂,P

(λ) = 0. Note that

[
∃ λ ∈ (0, 1), s.t. Λ′′Q̂,P(λ) = 0

]
⇐⇒ [∃ λ ∈ (0, 1), s.t.∑

x∈S(P)

P(x)VarW̃λ,Q̂(·|x)

[
ln

Q̂(Y)
W(Y |x)

]
= 0

 (B.73)

⇐⇒ [∃ λ ∈ (0, 1), s.t. ∀ x ∈ S(P),

VarW̃λ,Q̂(·|x)

[
ln

Q̂(Y)
W(Y |x)

]
= 0

]
, (B.74)

where Λ′
Q̂,x

(λ) := EW̃λ,Q̂(·|x)

[
ln Q̂(Y)

W(Y |x)

]
(cf., (B.52)) and (B.73) follows from (B.53). From

(B.74), we infer that

[
∃ λ ∈ (0, 1), s.t. Λ′′Q̂,P(λ) = 0

]
⇐⇒ [∃ λ ∈ (0, 1), s.t. ∀ x ∈ S(P),

Q̂(y) = W(y|x)eΛ′
Q̂,x

(λ)
, ∀ y ∈ S(W(·|x))

]
,

(B.75)

By the contradiction assumption, the left side of (B.75) is true. Fix any such λ ∈

(0, 1). Then, for any ρ ∈ R+, we have

ΛQ̂,P

(
ρ

1 + ρ

)
=

∑
x∈S(P)

P(x) ln
∑

y∈S(W(·|x))

W(y|x)1/(1+ρ)Q̂(y)ρ/(1+ρ) (B.76)

=
ρ

1 + ρ

∑
x∈S(P)

P(x)Λ′Q̂,x(λ), (B.77)

where (B.77) follows from (B.75). We further have,

ESP(R, P) = max
ρ∈R+

KR,P(ρ, Q̂) (B.78)

= max
{

0, sup
ρ∈R+

KR,P(ρ, Q̂)
}
, (B.79)

where (B.78) follows by recalling the definition of the saddle-point and item (i) of

saddle-point proposition, i.e., Proposition 2, and (B.79) follows by noting the fact that

KR,P(0,Q) = 0 for all Q ∈ PP,W(Y).
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Also, (B.77) implies that

sup
ρ∈R+

KR,P(ρ, Q̂) = sup
ρ∈R+

−ρR − ρ
∑

x∈S(P)

P(x)Λ′Q̂,x(λ)

 (B.80)

= sup
ρ∈R+

−ρ
{
R + Λ′Q̂,P(λ)

}
, (B.81)

where (B.81) follows by recalling (B.52). Equations (B.79) and (B.81) clearly imply

that either ESP(R, P) = ∞, which is impossible since R > R∞, or ESP(R, P) = 0, which

is impossible since P ∈ PR(X). Hence, (B.72) follows. A direct calculation reveals that

(B.72) implies (B.71).

Next, recalling the definition of the saddle-point, we note that any ρ̂ ∈ R+ such that

(ρ̂, Q̂) ∈ S (R, P) satisfies

KR,P(ρ̂, Q̂) = max
ρ∈R+

KR,P(ρ, Q̂) (B.82)

= max
ρ∈R+

KR,P(ρ, Q̂), (B.83)

where (B.83) follows by recalling the assumption that P ∈ PR(X). Equation (B.71)

ensures that KR,P(·, Q̂) is strictly concave on R+ and hence the maximizer of the right

side of (B.83) is unique. �

In order to conclude the proof, fix any C > R > R∞ and P ∈ PR(X) and observe that

(e.g., [42, Proposition VII.4.1.3]) S (R, P) = S (R, P)|R+
× S (R, P)|PP,W (Y). Combining this

fact with Claims 11 and 12 implies that S (R, P) is a singleton. �
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B.4 Proof of Proposition 4

First, we define the set of Lagrange multipliers of ESP(R, P) as follows: For any R > R∞

and P ∈ P(X),

L(R, P) :=
{
ρ̂ ∈ R+ : ρ̂ attains max

ρ ∈R+

min
V∈P(Y|X)

[D(V ||W |P) + ρ(I(P; V) − R)]
}
. (B.84)

Claim 13. For any R > R∞ and P ∈ P(X), we have L(R, P) = S (R, P)|R+
. �

Proof. First of all, owing to the positivity of the relative entropy, it is easy to verify that

I(P; V) = min
Q∈P(Y)

D(V ||Q|P), (B.85)

which, in turn, implies that (by solving the convex optimization problem)

∀ ρ ∈ R+, min
V∈P(Y|X)

{D(V ||W |P) + ρ(I(P; V) − R)} = min
Q∈P(Y)

{
−ρR − (1 + ρ)ΛQ,P

(
ρ

1 + ρ

)}
.

(B.86)

Further, since for any Q ∈ P(Y), ΛQ,P(0) = 0 and for any ρ ∈ R+, ΛQ,P

(
ρ

1+ρ

)
= −∞, if

Q < PP,W(Y) (cf., item (iv) of Remark 20), we have

min
Q∈P(Y)

{
−ρR − (1 + ρ)ΛQ,P

(
ρ

1 + ρ

)}
= inf

Q∈PP,W (Y)

{
−ρR − (1 + ρ)ΛQ,P

(
ρ

1 + ρ

)}
. (B.87)

Lastly, [55, Lemma 36.2] ensures that ρ̂ ∈ S (R, P)|R+
if and only if ρ̂ attains

maxρ∈R+

{
infQ∈PP,W (Y) KR,P(ρ,Q)

}
, which (owing to (B.86) and (B.87)) implies that

L(R, P) = S (R, P)|R+
. �

Claim 14. For any R > R∞ and P ∈ P(X), we have S (R, P)|R+
= −∂ESP(·, P)(R), where

∂ESP(·, P)(R) is the subdifferential of ESP(·, P) at R (cf., [55, pg. 215]). �

Proof. We note that (cf., [55, Theorem 29.1]3) L(R, P) = −∂ESP(·, P)(R). The claim

follows by recalling Claim 13. �

3Strictly speaking, this result is stated for a finite dimensional Euclidean space. However, one can
represent the stochastic matrices in R|X||Y| and update each function accordingly and easily check this
representation obeys the conditions of the aforementioned theorem. This reasoning applies to the similar
situations in the sequel.
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Uniqueness of the saddle-point proposition, i.e., Proposition 3, and Claim 14 imme-

diately imply that for any C > R > R∞ and P ∈ PR(X),

S (R, P)|R+
= −

∂ESP(r, P)
∂r

∣∣∣∣∣
r=R

. (B.88)

By recalling the definition of ρ∗R,P (e.g., (3.23)), (B.88) implies that

ρ∗R,P = −
∂ESP(r, P)

∂r

∣∣∣∣∣
r=R

. (B.89)

�

B.5 Proof of Proposition 5

Let C > R > R∞ be arbitrary. Fix any P0 ∈ PR(X) and consider any {Pk}k≥1 such that

Pk ∈ PR(X), ∀ k ∈ Z+ and limn→∞ Pk = P0.

We begin with showing the continuity of ρ∗R,·. Recalling (3.23) and the differentia-

bility of ESP(·, P) proposition, i.e., Proposition 4, we have

∀k ∈ Z+, ρ
∗
R,Pk

= −
∂ESP(r, Pk)

∂r

∣∣∣∣∣
r=R

. (B.90)

Further, continuity of ESP(·, ·) on (R∞,∞) × P(X) (e.g., Claim 30) implies that

lim
k→∞

ESP(R, Pk) = ESP(R, P0). (B.91)

On account of (B.90), (B.91) and a continuity result of Hiriart-Urruty and Lemaréchal

([42, Corollary VI.6.2.8]) we conclude that

lim
k→∞

ρ∗R,Pk
= ρ∗R,P0

, (B.92)

which implies that ρ∗R,· is continuous on PR(X).

133



Next, we claim the continuity of Q∗R,·. Owing to the compactness of P(Y), there ex-

ists a subsequence {kn}n≥1 such that limn→∞ Q∗R,Pkn
= Q0 for some Q0 ∈ P(Y). Consider

such a subsequence.

Recalling the saddle-point proposition, i.e., Proposition 2, and the definitions of ρ∗R,·

and Q∗R,· (e.g., (3.23) and (3.24)), we have

∀ n ∈ Z+, ESP(R, Pkn) = −Rρ∗R,Pkn
− (1 + ρ∗R,Pkn

)ΛQ∗R,Pkn
,Pkn

 ρ∗R,Pkn

1 + ρ∗R,Pkn

 . (B.93)

Next, we define f : R+ × R
+ → R, such that f (a, b) := ab for any (a, b) ∈ R+ × R

+

and note that f is continuous on R+ × R
+. Using this, the continuity of ρ∗R,· and ln(·), we

deduce that

lim
n→∞

ΛQ∗R,Pkn
,Pkn

 ρ∗R,Pkn

1 + ρ∗R,Pkn

 = ΛQ0,P0

 ρ∗R,Pk0

1 + ρ∗R,Pk0

 . (B.94)

Equations (B.93), (B.94) and the continuity of ρ∗R,· imply that

ESP(R, P0) = −Rρ∗R,P0
− (1 + ρ∗R,P0

)ΛQ0,P0

 ρ∗R,P0

1 + ρ∗R,P0

 (B.95)

= min
Q ∈PP,W (Y)

−Rρ∗R,P0
− (1 + ρ∗R,P0

)ΛQ,P0

 ρ∗R,P0

1 + ρ∗R,P0

 (B.96)

= min
Q ∈P(Y)

−Rρ∗R,P0
− (1 + ρ∗R,P0

)ΛQ,P0

 ρ∗R,P0

1 + ρ∗R,P0

 , (B.97)

where (B.96) follows from recalling the definition of the saddle-point and (B.97) fol-

lows from item (iv) of Remark 20. The uniqueness of the saddle-point proposition, i.e.,

Proposition 3, the definition of Q∗R,P (e.g., (3.24)) and (B.97) imply that Q0 = Q∗R,P0
.

Since {kn}n≥1 is arbitrary, we conclude that

lim
k→∞

Q∗R,Pk
= Q∗R,P0

, (B.98)

which implies that Q∗R,· is continuous on PR(X). �
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B.6 Proof of Proposition 6

Fix an arbitrary C(W) > R > R∞ and P ∈ PR(X). Define L(V, ρ) := D(V ||W |P) +

ρ(I(P; V) − R), for any V ∈ P(Y|X) and ρ ∈ R+. We have

ESP(R, P) = min
V ∈P(Y|X)

sup
ρ ∈R+

L(V, ρ) = max
ρ ∈R+

min
V ∈P(Y|X)

L(V, ρ), (B.99)

where the second equality follows from (B.41). (B.99) ensures that L(·, ·) has a saddle-

point on P(Y|X) × R+. It is well-known that (e.g., [55, Corollary 28.3.1]) V̂ ∈ P(Y|X)

is a minimizer of ESP(R, P) if and only if there exists some ρ̂ ∈ R+, such that (V̂ , ρ̂) is a

saddle-point of L(·, ·).

Recalling the definition of the saddle-point, the definition of ρ∗R,P (e.g., (3.23)),

(B.84) and Claim 13, we conclude that an equivalent condition for V∗R,P to be an op-

timizer of ESP(R, P) is

V∗R,P ∈ arg min
V∈P(Y|X)

L(V, ρ∗R,P). (B.100)

Further,

ESP(R, P) = min
V∈P(Y|X)

L(V, ρ∗R,P) (B.101)

= min
Q ∈P(Y)

min
V∈P(Y|X)

{
D(V ||W |P) + ρ∗R,P[D(V ||Q|P) − R]

}
(B.102)

≤ min
V∈P(Y|X)

{
D(V ||W |P) + ρ∗R,P[D(V ||Q∗R,P|P) − R]

}
(B.103)

≤ KR,P(ρ∗R,P,Q
∗
R,P) (B.104)

= ESP(R, P), (B.105)

where (B.101) follows from (B.100), (B.102) follows from (B.85), (B.104) follows by

plugging in W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
(cf., (B.51)) and (B.105) follows from the saddle-point proposi-

tion, i.e., Proposition 2 and the uniqueness of the saddle-point proposition, i.e., Propo-

135



sition 3. Hence, we deduce that

min
V∈P(Y|X)

L(V, ρ∗R,P) = min
V∈P(Y|X)

{
D(V ||W |P) + ρ∗R,P[D(V ||Q∗R,P|P) − R]

}
= ESP(R, P),

(B.106)

and W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
is an optimizer of minV∈P(Y|X)

{
D(V ||W |P) + ρ∗R,P[D(V ||Q∗R,P|P) − R]

}
.

Moreover, since

L(V, ρ∗R,P) ≤ D(V ||W |P) + ρ∗R,P[D(V ||Q∗R,P|P) − R],∀V ∈ P(Y|X), (B.107)

we notice that (B.106) further implies that W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
∈ arg minV∈P(Y|X) L(V, ρ∗R,P), and

hence W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
is a minimizer of ESP(R, P), owing to (B.100).

Next, we note that on account of (B.65), for any Q ∈ P̃P,W(Y), we have

∂ΛQ,P

(
ρ∗R,P

1+ρ∗R,P

)
∂Q(y)

=
ρ∗R,P

1 + ρ∗R,P

∑
x∈S(P)

P(x)
W(y|x)1/(1+ρ∗R,P)Q(y)−1/(1+ρ∗R,P)∑

ỹ∈YW(ỹ|x)1/(1+ρ∗R,P)Q(ỹ)ρ
∗
R,P/(1+ρ∗R,P) , (B.108)

for all y ∈ S(Q). Moreover, (B.66) implies that for any Q ∈ P̃P,W(Y),

∂ΛQ,P

(
ρ∗R,P

1+ρ∗R,P

)
∂Q(y)

= 0, ∀ y < S(Q). (B.109)

KKT conditions that Q∗R,P satisfies, i.e., (B.68) and (B.69), coupled with (B.108) and

(B.109) (by choosing δ =
ρ∗R,P

1+ρ∗R,P
to ensure that Q∗R,P sums to 1) imply that

Q∗R,P(y) =
∑

x∈S(P)

P(x)
W(y|x)1/(1+ρ∗R,P)Q∗R,P(y)ρ

∗
R,P/(1+ρ∗R,P)∑

ỹ∈YW(ỹ|x)1/(1+ρ∗R,P)Q∗R,P(ỹ)ρ
∗
R,P/(1+ρ∗R,P) , ∀ y ∈ Y. (B.110)

Clearly, (B.110) implies that∑
x∈S(P)

P(x)W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
(y|x) = Q∗R,P(y), ∀ y ∈ Y, (B.111)

which, in turn, implies that (since W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
is an optimizer of ESP(R, P))

I

P; W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P

 = D

W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
||Q∗R,P|P

 ≤ R. (B.112)
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Next, we conclude the proof as follows. First,

eSP(R, P) = inf
V∈P(Y|X)

sup
ρ∈R+

{
D(V ||W |P) + ρ[D(V ||Q∗R,P|P) − R]

}
(B.113)

≥ inf
V∈P(Y|X)

{
D(V ||W |P) + ρ∗R,P[D(V ||Q∗R,P|P) − R]

}
(B.114)

= ESP(R, P), (B.115)

where (B.115) follows from (B.106).

On the other hand, (B.112) and the fact that W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
is a minimizer of ESP(R, P)

ensure that

eSP(R, P) ≤ D

W̃ ρ∗R,P
1+ρ∗R,P

,Q∗R,P
||W |P

 = ESP(R, P). (B.116)

Combining (B.115) and (B.116), we infer that

eSP(R, P) = min
V∈P(Y|X) : D(V ||Q∗R,P |P)≤R

D(V ||W |P) = ESP(R, P). (B.117)

�

B.7 Analysis of the case P ∈ Pc
R,ν

First, we define the following set: PW(Y|X) := {V ∈ P(Y|X) : ∀ x ∈ X, V(·|x) �

W(·|x)}. One can check the following by elementary calculation.

Claim 15. PW(Y|X) is convex and compact. �

Next result will also be used in different parts of the chapter.

Lemma 30. ESP(·, ·) is continuous on (R∞,∞) × P(X). �

Proof. The proof follows similar lines to those of [20, Lemma 2.2.2], which proves

continuity of the rate-distortion function.
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First, note that given any P ∈ P(X), ESP(·, P) is convex on (R∞,∞). Fix an arbitrary

(R0, P0) ∈ (R∞,∞) × P(X) and a sequence {(Rn, Pn)}n≥1 such that (Rn, Pn) ∈ (R∞,∞) ×

P(X) and limn→∞(Rn, Pn) = (R0, P0).

Because of the convexity, ESP(·, P0) is continuous on (R∞,∞). Hence, for any ε ∈ R+

one can choose V ∈ P(Y|X) such that I(P0; V) < R0 and D(V ||W |P0) < ESP(R0, P0) + ε.

Moreover, on account of continuity of D(V ||W |·) and I(·; V), we have

D(V ||W |Pn) < ESP(R0, P0) + 2ε, I(Pn; V) ≤ Rn, (B.118)

for sufficiently large n, which, in turn, implies that

lim sup
n→∞

ESP(Rn, Pn) ≤ ESP(R0, P0). (B.119)

Conversely, let Vn ∈ P(Y|X) be a minimizer of ESP(Rn, Pn) and without loss of

generality suppose4 Vn ∈ PW(Y|X). Let {nk}k≥1 be a subsequence such that

lim
k→∞

ESP(Rnk , Pnk) = lim inf
n→∞

ESP(Rn, Pn), (B.120)

and

lim
k→∞

Vnk = V, (B.121)

for some V ∈ PW(Y|X). Note that existence of such a subsequence is ensured by the

compactness of PW(Y|X) (cf., Claim 15). Equation (B.121) further implies that

lim
k→∞

I(Pnk ; Vnk) = I(P0; V) ≤ R0, (B.122)

lim
k→∞

D(Vnk ||W |Pnk) = D(V ||W |P0), (B.123)

where (B.122) follows from the continuity of I(·; ·) and (B.123) follows from the conti-

nuity of D(·||W |·) on PW(Y|X) × P(X). Equations (B.120), (B.122) and (B.123) imply
4To see why this does not yield a loss of generality, first note that since ESP(Rn, Pn) < ∞, we necessar-

ily have Vn(·|x) � W(·|x), for all x ∈ S(Pn). On the other hand, x < S(Pn) does not affect neither the cost
nor the constraint and hence the corresponding rows of the alternate channel, i.e., optimization variable
of ESP(Rn, Pn), can be chosen arbitrarily without affecting optimality.
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that

ESP(R0, P0) ≤ lim inf
n→∞

ESP(Rn, Pn). (B.124)

Equations (B.119) and (B.124) imply that

lim
n→∞

ESP(Rn, Pn) = ESP(R0, P0). (B.125)

�

Consider any R∞ < R < C. For any ν ∈ R+,

PR,ν(X) := {P ∈ P(X) : ESP(R, P) ≥ ν}. (B.126)

Let

ε := (R − R∞)/2, (B.127)

and fix an arbitrary a ∈ (1, 2). Note that since ESP(·) is convex, it is easy to see that it is

Lipschitz continuous on [R − ε,R] (e.g., [55, Theorem 10.4]), i.e., there exists L ∈ R+,

such that

∀ r1, r2 ∈ [R − ε,R], |ESP(r1) − ESP(r2)| ≤ L|r1 − r2|. (B.128)

Next, we consider an arbitrary ν ∈ R+ satisfying:

ν ≤ min
{

(a − 1),
ε

2
,

ESP(R)(2 − a)
a(2L + 1)

}
. (B.129)

We claim that5

max
P ∈ cl(PR,ν(X)c)

ESP(R − ν, P) ≤
ESP(R)

a
. (B.130)

For contradiction, suppose

max
P ∈ cl(PR,ν(X)c)

ESP(R − ν, P) >
ESP(R)

a
, (B.131)

5Owing to Lemma 30, the maximum is well-defined.
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with a maximizer P̃. Since ESP(·, P̃) is convex and non-decreasing, (B.131) implies that

ESP(R − 2ν, P̃) >
ESP(R)

a
+ ν

(
ESP(R)

aν
− 1

)
=

2ESP(R)
a

− ν. (B.132)

Further, owing to (B.129), we have

2ESP(R)
a

− ν ≥ ESP(R) + 2Lν. (B.133)

Also, (B.128) and (B.129) imply that

ESP(R − 2ν) ≤ ESP(R) + 2Lν. (B.134)

Plugging (B.133) and (B.134) into (B.132) yields

ESP(R − 2ν, P̃) > ESP(R − 2ν), (B.135)

which is a contradiction, by recalling the definition of ESP(·), and hence (B.130) follows.

Let P ∈ cl(PR,ν(X)c) be arbitrary. We have

(1 + ν)ESP(R − ν, P) ≤
(1 + ν)ESP(R)

a
(B.136)

≤ ESP(R), (B.137)

where (B.136) follows from (B.130) and (B.137) follows from (B.129).

Let ( f , ϕ) be an (N,R) constant composition code with common composition P ∈

cl(PR,ν(X)c). For all sufficiently large N, which only depends on ν, |X|, |Y|, we have

e( f , ϕ) ≥
1
2

exp(−N(1 + ν)ESP(R − ν, P)) (B.138)

≥
1
2

exp(−NESP(R)), (B.139)

where (B.138) follows from the sphere packing lower bound for constant composition

codes (cf., [20, Theorem 2.5.3]) and (B.139) follows from (B.137). Hence, we have the

following lemma.
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Lemma 31. Fix R∞ < R < C and ν > 0 satisfying (B.129). Then, for all sufficiently

large N, which only depends on ν, |X|, and |Y|, any (N,R) constant composition code

with common composition P ∈ cl(PR,ν(X)c) satisfies

e( f , ϕ) ≥
1
2

exp(−NESP(R)). (B.140)

�

B.8 Proof of Lemma 6

We begin with the proof of item (i). First, note that

D(V ||W−
R,P|P) =

∑
x∈S(P)

P(x)
∑

y∈S(V(·|x))

V(y|x) ln
V(y|x)

W−
R,P(y|x)

(B.141)

=
∑

x∈S(P)

P(x)
{
ln Q∗R,P{S(W(·|x))} + D(V(·|x)||Q∗R,P)

}
(B.142)

= D(V ||Q∗R,P|P) +
∑

x∈S(P)

P(x) ln Q∗R,P{S(W(·|x))}, (B.143)

where (B.142) follows from (3.41).

Similarly,

D(W−
R,P||Q

∗
R,P|P) =

∑
x∈S(P)

P(x)
∑

y∈S(W(·|x))

W−
R,P(y|x) ln

W−
R,P(y|x)

Q∗R,P(y)
(B.144)

= −
∑

x∈S(P)

P(x) ln Q∗R,P{S(W(·|x))}
∑

y∈S(W(·|x))

W−
R,P(y|x) (B.145)

= −
∑

x∈S(P)

P(x) ln Q∗R,P{S(W(·|x))}, (B.146)

where (B.145) follows from the fact that Q∗R,P ∈ P̃P,W(Y) (cf., item (ii) of Proposition 2)

and noting W−
R,P(·|x) ≡ W(·|x), for all x ∈ X. Plugging (B.146) into (B.143) gives item

(i) of the lemma.
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In order to prove item (ii), observe that (ρ∗R,P,Q
∗
R,P) is the unique saddle-point of

KR,P(·, ·). We have

KR,P(ρ∗R,P,Q
∗
R,P) = max

ρ ∈R+

KR,P(ρ,Q∗R,P) (B.147)

= max
ρ ∈R+

KR,P(ρ,Q∗R,P), (B.148)

where (B.148) follows by noting that ESP(R, P) = KR,P(ρ∗R,P,Q
∗
R,P) > 0 (cf., (B.105)) and

KR,P(0,Q∗R,P) = 0. Observe that ρ∗R,P ∈ R
+ is the unique maximizer of the right side of

(B.148) and hence

∂KR,P(ρ,Q∗R,P)

∂ρ

∣∣∣∣∣∣
ρ=ρ∗R,P

= −R − ΛQ∗R,P,P

 ρ∗R,P

1 + ρ∗R,P

 − 1
(1 + ρ∗R,P)

Λ′Q∗R,P,P

 ρ∗R,P

1 + ρ∗R,P

 = 0.

(B.149)

Further,

lim
λ↑1

ΛQ∗R,P,P(λ) = lim
λ↑1

∑
x∈S(P)

P(x) ln
∑

y∈S(W(·|x))

W(y|x)1−λQ∗R,P(y)λ (B.150)

=
∑

x∈S(P)

P(x) ln lim
λ↑1

∑
y∈S(W(·|x))

W(y|x)1−λQ∗R,P(y)λ (B.151)

=
∑

x∈S(P)

P(x) ln
∑

y∈S(W(·|x))

Q∗R,P(y) (B.152)

= −D(W−
R,P||Q

∗
R,P|P), (B.153)

where (B.153) follows from (B.146).

Moreover, recalling (3.31) and (3.32), for any x ∈ S(P)

lim
λ↑1

W̃λ,Q∗R,P(y|x) = W−
R,P(y|x), (B.154)

for all y ∈ Y. One can check that (e.g., (B.52))

Λ′Q∗R,P,P
(λ) =

∑
x∈S(P)

P(x)EW̃λ,Q∗R,P
(·|x)

[
ln

Q∗R,P(Y)

W(Y |x)

]
, (B.155)
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which, coupled with (B.154), implies that

lim
λ↑1

Λ′Q∗R,P,P
(λ) =

∑
x∈S(P)

P(x)
∑

y∈S(W(·|x))

W−
R,P(y|x) ln

Q∗R,P(y)

W(y|x)
∈ R, (B.156)

which, in turn, implies that

lim
ρ→∞

1
(1 + ρ)

Λ′Q∗R,P,P

(
ρ

1 + ρ

)
= 0. (B.157)

We have

0 > lim
ρ→∞

∂KR,P(ρ,Q∗R,P)

∂ρ
(B.158)

= lim
ρ→∞
−R − ΛQ∗R,P,P

(
ρ

1 + ρ

)
−

1
(1 + ρ)

Λ′Q∗R,P,P

(
ρ

1 + ρ

)
= D(W−

R,P||Q
∗
R,P|P) − R, (B.159)

where (B.158) follows from (B.149) and (B.71) and (B.159) follows from (B.153) and

(B.157). Hence, we conclude that R > D(W−
R,P||Q

∗
R,P|P). �

B.9 Proof of Lemma 9

Let (λ0, P0) ∈ (0, 1] × PR(X) be arbitrary. Further, consider any {(λk, Pk)}k≥1 such that

(λk, Pk) ∈ (0, 1] × PR(X), for all k ∈ Z+ and limk→∞(λk, Pk) = (λ0, P0).

Note that for all sufficiently large k ∈ Z+, S(P0) ⊂ S(Pk). Consider such a k ∈ Z+.

Recalling (3.54) and (3.55), we have

Λ′0,Pk
(λk) =

∑
x∈S(P0)

Pk(x)EW̃λk ,Pk (·|x)

[
ln

W−
R,Pk

(Y |x)

W(Y |x)

]
+

∑
x∈S(P0)c

Pk(x)EW̃λk ,Pk (·|x)

[
ln

W−
R,Pk

(Y |x)

W(Y |x)

]
.

(B.160)

Using the continuity of the saddle-point proposition, i.e., Proposition 5, (3.31),

143



(3.33) and the continuity of ln(·), it is easy to see that

lim
k→∞

Pk(x)EW̃λk ,Pk (·|x)

[
ln

W−
R,Pk

(Y |x)

W(Y |x)

]
= P0(x)EW̃λ0 ,P0 (·|x)

[
ln

W−
R,P0

(Y |x)

W(Y |x)

]
, ∀ x ∈ S(P0),

(B.161)

which, in turn, implies that

lim
k→∞

∑
x∈S(P0)

Pk(x)EW̃λk ,Pk (·|x)

[
ln

W−
R,Pk

(Y |x)

W(Y |x)

]
=

∑
x∈S(P0)

P0(x)EW̃λ0 ,P0 (·|x)

[
ln

W−
R,P0

(Y |x)

W(Y |x)

]
.

(B.162)

Next, we claim that

lim
k→∞

Pk(x)EW̃λk ,Pk (·|x)

[
ln

W−
R,Pk

(Y |x)

W(Y |x)

]
= 0, (B.163)

for any x ∈ S(P0)c. To see this, fix an arbitrary x ∈ S(P0)c. If x ∈ S(Pk) for only finite

number of k, then owing to (3.31), (B.163) is trivially true; hence suppose this is not the

case. Let {kn}n≥1 be an arbitrary subsequence such that x ∈ S(Pkn), for all n ∈ Z+. Owing

to the compactness of P(Y|X) (swtiching to a subsubsequence if necessary) there exists

W0(·|x) ∈ P(Y|X), such that

lim
n→∞

W−
R,Pkn

(·|x) = W0(·|x). (B.164)

Since W−
R,Pkn

(·|x) � W(·|x) for all n ∈ Z+, it is easy to see that (cf., proof of Claim 15)

W0(·|x) � W(·|x). This fact, along with the continuity of ln(·) and (B.164), implies that

lim
m→∞

EW̃λkn ,Pkn
(·|x)

ln W−
R,Pkn

(Y |x)

W(Y |x)

 = EW̃λ0 ,W0(·|x)

[
ln

W0(Y |x)
W(Y |x)

]
< ∞. (B.165)

Noting limm→∞ Pknm
(x) = P0(x) = 0 and the arbitrariness of the subsequence, (B.165)

implies (B.163). Plugging (B.162) and (B.163) into (B.160) implies that

lim
k→∞

Λ′0,Pk
(λk) = Λ′0,P0

(λ0), (B.166)

and hence we conclude Λ′0,·(·) is continuous on (0, 1] × PR(X).

By following exactly the same steps given above and noting the continuity of (·)2

(resp. | · |3), one can conclude the continuity of Λ′′0,·(·) (resp. m0,3(·, ·)) on (0, 1] × PR(X).
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Finally, the proof of item (iv) follows from the similar arguments given in the proof

of item (i). �

B.10 Proof of Lemma 12

Let s∗(R, P, r) ∈ R+ be as defined in (3.76). Since it is the unique maximizer of

ẽSP(R, P, r), it should satisfy

r =
∂eo(s, P)

∂s

∣∣∣∣∣
s∗R,P,r

. (B.167)

It is easy to verify that

∂eo(s, P)
∂s

= −Λ0,P

( s
1 + s

)
−

1
1 + s

Λ′0,P

( s
1 + s

)
, (B.168)

Owing to (B.167) and (B.168), we have

r = −Λ0,P

(
s∗(R, P, r)

1 + s∗(R, P, r)

)
−

1
(1 + s∗(R, P, r))

Λ′0,P

(
s∗(R, P, r)

1 + s∗(R, P, r)

)
. (B.169)

By noting (recall (3.70))

eo(s∗(R, P, r), P) = −(1 + s∗(R, P, r))Λ0,P

(
s∗(R, P, r)

1 + s∗(R, P, r)

)
, (B.170)

Lemma 10, Corollary 1, (3.76) and (B.169) imply that

ẽSP(R, P, r) =
s∗(R, P, r)

1 + s∗(R, P, r)
Λ′0,P

(
s∗(R, P, r)

1 + s∗(R, P, r)

)
− Λ0,P

(
s∗(R, P, r)

1 + s∗(R, P, r)

)
. (B.171)

Due to (B.169) and (B.171), we deduce that

Λ′0,P

(
s∗(R, P, r)

1 + s∗(R, P, r)

)
= ẽSP(R, P, r) − r. (B.172)

Using (3.79), (B.171) and (B.172), it is easy to see that (recall (B.1))

Λ∗0,P(ẽSP(R, P, r) − r) = ẽSP(R, P, r), (B.173)
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which proves item (i).

Item (ii) immediately follows from (3.58), (3.59), (3.79), (3.80) and the item (i).

In order to see item (iii), first note that ẽSP(R, P, ·) is a non-increasing function. Fur-

ther, it is clear that ẽSP(R, P, 0) = D(W−
R,P||W |P) and ẽSP(R, P,D(W ||W−

R,P|P)) = 0. These

observations, along with (3.60), (3.61) and the positive variance lemma, i.e., Lemma 8,

suffice to conclude the existence and uniqueness of η(R, P, r) ∈ (0, 1) with the stated

property. Finally, recalling (B.172), one can see that η(R, P, r) =
s∗(R,P,r)

1+s∗(R,P,r) . �
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APPENDIX C

APPENDICES OF CHAPTER 4

C.1 On ensemble average error probability of BEC below the criti-

cal rate

This section points out a small oversight in [36]. In particular, the subexponential pref-

actor that is given in [36, eq. (18)] is too optimistic for certain channels, including BEC,

as we now demonstrate.

Recall that P1, as given by [36, eq. (16)], can be expressed as

P1 = (M − 1) Pr

 N∑
n=1

ln
W(Yn|Xn(m′))
W(Yn|Xn(m))

≥ 0

 , (C.1)

where the probability measure is

Q(xN(m))W(yN |xN(m))Q(xN(m′)) =

N∏
n=1

Q(xn(m))W(yn|xn(m))Q(xn(m′)). (C.2)

Here Q is an arbitrary probability distribution on the channel input alphabet.

In [36, eq. (18)], it is claimed that1

P1 = (M − 1)

∑
y

∑
x

Q(x)
√

W(y|x)

2
N [

g
√

N
+ o

(
1
√

N

)]
, (C.3)

where g is a constant that is explicitly characterized.

Note that the standard moment-generating function techniques cited in [36] to prove

this formula require some regularity conditions on ln W(Yn |Xn(m′))
W(Yn |Xn(m) . In particular, the log

moment-generating function (also known as semi-invariant moment-generating func-

tion) of the random variable ln W(Yn |Xn(m′))
W(Yn |Xn(m) should be finite around a neighborhood of the

1By correcting the obvious typo.
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origin, as pointed out in [35, Appendix 5A]. This condition will not hold in general if

the channel transition matrix has 0 entries.

As a counterexample, consider the BEC with parameter ε ∈ (0, 1), i.e., let the chan-

nel input (resp. output) alphabet defined as X := {0, 1} (resp. Y := {0, 1, E}) and

W(y|x) :=



1 − ε if (x, y) ∈ {(0, 0), (1, 1)} ,

ε if (x, y) ∈ {(0, E), (1, E)} ,

0 else.

(C.4)

Let Q be the uniform distribution on X, i.e., Q(0) = Q(1) = 1/2. One can check

(by using the KKT conditions given by [35, Theorem 5.6.5]) that this choice uniquely

attains maxQ Eo(ρ,Q) for all ρ ∈ R+. Define

S := {(x, y, x′) ∈ X × Y × X : Q(x),Q(x′) > 0, W(y|x),W(y|x′) > 0}. (C.5)

Also, let SN denote the N-fold cartesian product of S. One can verify that (C.5) implies

Pr(S) =
1 + ε

2
, (C.6)

where the probability measure is Q(x)W(y|x)Q(x′). Under this distribution, ln W(y|x′)
W(y|x) is a

binary-valued random variable taking values in {−∞, 0}. In particular, we have

Pr
[
ln

W(Y |X′)
W(Y |X)

= 0
]

=
1 + ε

2
, Pr

[
ln

W(Y |X′)
W(Y |X)

= −∞

]
=

1 − ε
2

. (C.7)

This implies that

P1 = (M − 1) Pr

 N∑
n=1

ln
W(Yn|Xn(m′))
W(Yn|Xn(m))

≥ 0, (XN(m),YN , xN(m′)) ∈ SN

 (C.8)

= (M − 1) Pr
{
SN

}
(C.9)

= (M − 1)
(
1 + ε

2

)N

, (C.10)
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where (C.9) follows from (C.7) and (C.10) follows from (C.6) because the probability

measure under which (C.9) is evaluated is i.i.d.

However, one can directly verify that

∑
y

∑
x

Q(x)
√

W(y|x)

2

=
1 + ε

2
, (C.11)

which means that (C.10) can be written as

P1 = (M − 1)

∑
y

∑
x

Q(x)
√

W(y|x)

2
N

. (C.12)

Note that the right side of (C.12) is greater than the right side of (C.3) for sufficiently

large N. Since the arguments leading to [36, eq. (25)] are still valid, one can check that

(recall that our choice of Q maximizes Eo(1,Q)) (C.12) implies

(1 − O(e−N))e−NEr(R) ≤ P̄e,m ≤ e−NEr(R), R < Rcr. (C.13)

This shows that the O
(
1/
√

N
)

pre-factor in [36, eq. (18)], which is claimed to hold

for all channels ([36, eq. (28)]), does not hold for BEC.

C.2 Proof of Lemma 14

Throughout this section, fix an arbitrary W ∈ P(Y|X) such that V > 0 and Q ∈ P(X)

such that Er(R,Q) > 0 for some R > R∞.

(i) Since Er(R,Q) ∈ R+, one can see that R ∈ (0, I(Q; W)). This observation enables

us to invoke [35, Theorem 5.6.3], which, in turn, ensures that

∂2Eo(ρ,Q)
∂ρ2 ≤ 0, (C.14)
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for all ρ ∈ R+. Moreover, [35, Theorem 5.6.3] also guarantees that if (C.14) holds

with equality for some ρ ∈ R+, then the same should be true for all ρ ∈ R+. For

contradiction, assume (C.14) holds with equality for some ρ ∈ R+, which, in turn,

implies that ∂Eo(ρ,Q)
∂ρ

= I(Q; W). Since Eo(0,Q) = 0, we have

Eo(ρ,Q) = ρI(Q; W). (C.15)

To conclude the proof, consider

ESP(R,Q) := sup
ρ≥0
{−ρR + Eo(ρ,Q)} , (C.16)

and notice that plugging (C.15) into (C.16) yields ESP(R,Q) = ∞, which contra-

dicts R > R∞.

(ii) We only need to prove (4.28), since the rest directly follows from item (i). To this

end, fix some r ∈
(
∂Eo(ρ,Q)

∂ρ

∣∣∣∣
ρ=1

, I(Q; W)
)

and consider

Er(r,Q) = max
ρ∈[0,1]

{−ρr + Eo(ρ,Q)} . (C.17)

Using the the characterization of the subdifferential of the maximum function

(e.g., [56, Theorem 2.87]), we have

∂Er(·,Q)(r) = conv ({−ρ : Er(r,Q) = −ρr + Eo(ρ,Q)}) . (C.18)

Thanks to item (i) of this lemma and the fact that r ∈
(
∂Eo(ρ,Q)

∂ρ

∣∣∣∣
ρ=1

, I(Q; W)
)
, (C.17)

has a unique maximizer, which is ρ∗R(Q), because of (4.27). Therefore, (C.18)

reduces to

∂Er(·,Q)(r) = {−ρ∗R(Q)}, (C.19)

which, in turn, implies (4.28). �
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C.3 Auxiliary results

This section contains some auxiliary results that will be used in the proof Theorem 4.

Throughout the section, fix an arbitrary W ∈ P(Y|X) such that V > 0 and Q ∈ P(X)

such that Er(R,Q) > 0 for some R > R∞. Fix some2 r ∈
(
−

∂Eo(ρ,Q)
∂ρ

∣∣∣∣
ρ=1

, I(Q; W)
)
. Let

ρ∗r(Q) := − ∂Er(a,Q)
∂a

∣∣∣
a=r

, which is well-defined due to (4.28), and note that ρ∗r(Q) ∈ (0, 1),

because of item (ii) of Lemma 14.

Definition 12. (i) For any y ∈ Y and ρ ∈ R+,

Pρ
Y(y) :=

[∑
x∈X Q(x)W(y|x)1/(1+ρ)

]1+ρ∑
b∈Y

[∑
a∈X Q(a)W(b|a)1/(1+ρ)]1+ρ

. (C.20)

Observe that Pρ
Y is a well-defined probability measure on Y, for any ρ ∈ R+. For

the sake of notational convenience, we define f ∗r := Pρ∗r (Q)
Y .

(ii) For any ρ ∈ R+,

Pρ

X|Y(x|y) :=


Q(x)W(y|x)1/(1+ρ)∑

a∈X Q(a)W(y|a)1/(1+ρ) if y ∈ S(Pρ
Y),

0 else.
(C.21)

Note that Pρ

X|Y is a well-defined conditional probability measure for all ρ ∈ R+.

(iii) For any (x, y) ∈ X × Y and ρ ∈ R+

Pρ
X,Y(x, y) := Pρ

X|Y(x|y)Pρ
Y(y). (C.22)

For the sake of notational convenience, we let P0
X,Y(x, y) =: PX,Y(x, y) =

Q(x)W(y|x), for any (x, y) ∈ X × Y.

(iv)

EF(r,Q) := D
(
Pρ∗r (Q)

X,Y ||Q ×W
)

=
∑
x,y

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
X,Y (x, y)

Q(x)W(y|x)
. (C.23)

2The non-emptiness of the following interval is ensured by item (i) of Lemma 14.
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(v) For any λ ∈ R,

Λr(λ) := ln EPX,Y

[
eλ ln f ∗r (Y)

W(Y |X)

]
. (C.24)

♦

Lemma 32.
∂Eo(ρ,Q)

∂ρ
=

∑
x,y

Pρ
X,Y(x, y) ln

Pρ

X|Y(x|y)

Q(x)
, (C.25)

for all ρ ∈ R+. �

Proof. Define hy(ρ,Q) :=
∑

x Q(x)W(y|x)1/(1+ρ) and gy(ρ,Q) := hy(ρ,Q)1+ρ. From the

definition of Eo(·, ·)

∂Eo(ρ,Q, )
∂ρ

= −

∑
y
∂gy(ρ,Q)

∂ρ∑
b gb(ρ,Q)

. (C.26)

Note that if S(Q) ∩ Xy = ∅, then hy(ρ,Q) = gy(ρ,Q) = 0, for all ρ ∈ R+. Also, observe

that there exists y ∈ Y, such that S(Q) ∩ Xy , ∅. Further, one can check that provided

that S(Q) ∩ Xy , ∅,

∂hy(ρ,Q)
∂ρ

= −
1

(1 + ρ)2

∑
x

Q(x)W(y|x)1/(1+ρ) ln W(y|x), (C.27)

∂gy(ρ,Q)
∂ρ

= gy(ρ,Q)

(1 + ρ)
∂hy(ρ,Q)

∂ρ

hy(ρ,Q)
+ ln hy(ρ,Q)

 . (C.28)

Equations (C.26) and (C.28) imply that

∂Eo(ρ,Q)
∂ρ

= −
∑

y:Xy∩S(Q),∅

gy(ρ,Q)∑
a ga(ρ,Q)

(1 + ρ)
∂hy(ρ,Q)

∂ρ

hy(ρ,Q)
+ ln hy(ρ,Q)

 (C.29)

= −
∑

y:Xy∩S(Q),∅

Pρ
Y(y)

(1 + ρ)
∂hy(ρ,Q)

∂ρ

hy(ρ,Q)
+ ln hy(ρ,Q)

 , (C.30)

where (C.30) follows from the definition of Pρ
Y , i.e., (C.20). Consider any y with Xy ∩
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S(Q) , ∅. We have

(1 + ρ)
∂hy(ρ,Q)

∂ρ

hy(ρ,Q)
+ ln hy(ρ,Q) =

∑
x

Q(x)W(y|x)1/(1+ρ)∑
a Q(a)W(y|a)1/(1+ρ) ln

1

W(y|x)
1

1+ρ

+ ln
∑

z

Q(z)W(y|z)1/(1+ρ) (C.31)

=
∑

x

Pρ

X|Y(x|y) ln
∑

z

Q(z)W(y|z)
1

1+ρ

+
∑

x

Pρ

X|Y(x|y) ln
1

W(y|x)
1

1+ρ

(C.32)

=
∑

x

Pρ

X|Y(x|y) ln
Q(x)

Pρ

X|Y(x|y)
, (C.33)

where (C.31) follows from (C.27), (C.32) and (C.33) follow from the definition of Pρ

X|Y ,

i.e., (C.21). Plugging (C.33) into (C.30) and and remembering the definition of Pρ
X,Y ,

i.e., (C.22), we conclude that (C.25) holds. �

Lemma 33.

EF(r,Q) = Er(r,Q). (C.34)

�

Proof. Observe that owing to the definitions of Pρ

X|Y and Pρ
X,Y , i.e., (C.21) and (C.22),

along with the definition of EF(r,Q), i.e., (C.23), we have

EF(r,Q) =
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
Y (y)

W(y|x)
ρ∗r (Q)

1+ρ∗r (Q)

[∑
a Q(a)W(y|a)

1
1+ρ∗r (Q)

] . (C.35)

Moreover,
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Er(r,Q) = −rρ∗r(Q) + Eo(ρ∗r(Q),Q) (C.36)

= −ρ∗r(Q)
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
X|Y (x|y)

Q(x)
+ Eo(ρ∗r(Q),Q) (C.37)

=
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

(∑
z∈X Q(z)W(y|z)

1
1+ρ∗r (Q)

)ρ∗r (Q)

W(y|x)
ρ∗r (Q)

1+ρ∗r (Q)

[∑
b∈Y

(∑
a∈X Q(a)W(b|a)

1
1+ρ∗r (Q)

)1+ρ∗r (Q)
]

(C.38)

=
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
Y (y)

W(y|x)
ρ∗r (Q)

1+ρ∗r (Q)

[∑
a∈X Q(a)W(y|a)

1
1+ρ∗r (Q)

] , (C.39)

where (C.36) follows from item (i) of Lemma 14 and (4.27), (C.37) follows from (C.25),

(C.38) follows from the definition of Eo(ρ,Q), i.e., (1.11), and the definition of Pρ

X|Y , i.e.,

(C.21), and (C.39) follows from the definition of Pρ
Y , i.e., (C.20). Equations (C.35) and

(C.39) together imply (C.34). �

Lemma 34.

Λr

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
=

1
1 + ρ∗r(Q)

ln
∑

y

∑
x

Q(x)W(y|x)
1

1+ρ∗r (Q)

1+ρ∗r (Q)

. (C.40)

Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
=

∑
(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

f ∗r (y)
W(y|x)

. (C.41)

EF(r,Q) =
ρ∗r(Q)

1 + ρ∗r(Q)
Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
− Λr

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
. (C.42)

r = −
1

1 + ρ∗r(Q)
Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
− Λr

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
. (C.43)

�

154



Proof.

Λr

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
= ln

∑
(x,y)∈SQ,W

Q(x)W(y|x)
1

1+ρ∗r (Q)


(∑

z Q(z)W(y|z)
1

1+ρ∗r (Q)

)1+ρ∗r (Q)

∑
b

(∑
a Q(a)W(b|a)

1
1+ρ∗r (Q)

)1+ρ∗r (Q)


ρ∗r (Q)

1+ρ∗r (Q)

(C.44)

=
1

1 + ρ∗r(Q)
ln

∑
y

∑
x

Q(x)W(y|x)
1

1+ρ∗r (Q)

1+ρ∗r (Q)

, (C.45)

where (C.44) follows from the definition of Pρ
Y , i.e., (C.20).

Next, one can check that

Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
=

∑
(x,y)∈SQ,W

Q(x)W(y|x)
1

1+ρ∗r (Q) f ∗r (y)
ρ∗r (Q)

1+ρ∗r (Q)∑
(a,b)∈SQ,W

Q(a)W(b|a)
1

1+ρ∗r (Q) f ∗r (b)
ρ∗r (Q)

1+ρ∗r (Q)

ln
f ∗r (y)

W(y|x)
. (C.46)

By recalling the definition of Pρ
Y , i.e., (C.20), for any (x, y) ∈ SQ,W , we have

Q(x)W(y|x)
1

1+ρ∗r (Q) f ∗r (y)
ρ∗r (Q)

1+ρ∗r (Q)∑
(a,b)∈SQ,W

Q(a)W(b|a)
1

1+ρ∗r (Q) f ∗r (b)
ρ∗r (Q)

1+ρ∗r (Q)

=

Q(x)W(y|x)
1

1+ρ∗r (Q)

[∑
z Q(z)W(y|z)

1
1+ρ∗r (Q)

]ρ∗r (Q)

∑
b

[∑
a Q(a)W(b|a)

1
1+ρ∗r (Q)

]1+ρ∗r (Q)

(C.47)

= Pρ∗r (Q)
X|Y (x|y)Pρ∗r (Q)

Y (y) (C.48)

= Pρ∗r (Q,W)
X,Y (x, y), (C.49)

where (C.48) follows from the definitions of Pρ
Y and Pρ

X|Y , i.e., (C.20) and (C.21), (C.49)

follows from the definition of Pρ
X,Y , i.e., (C.22). Plugging (C.49) into (C.46) implies

(C.41).

From the definition of EF(r,Q), i.e., (C.23), and the definition of Pρ
Y , i.e., (C.20), we

have
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EF(r,Q) =
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
Y (y)

W(y|x)
+

∑
(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
X|Y (x|y)

Q(x)
(C.50)

= Λ′
(

ρ∗r(Q)
1 + ρ∗r(Q)

)
+

∑
(x,y)∈SQ,W

Pρ∗r (Q)
X,Y ln

W(y|x)
1

1+ρ∗r (Q)∑
z Q(z)W(y|z)

1
1+ρ∗r (Q)

(C.51)

=
ρ∗r(Q)

1 + ρ∗r(Q)
Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
+

∑
(x,y)∈SQ,W

Pρ∗r (Q)
X,Y ln

f ∗r (y)1/(1+ρ∗r (Q))∑
z Q(z)W(y|z)

1
1+ρ∗r (Q)

(C.52)

=
ρ∗r(Q)

1 + ρ∗r(Q)
Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
+

∑
(x,y)∈SQ,W

Pρ∗r (Q)
X,Y ln

1[∑
b

(∑
a Q(a)W(b|a)

1
1+ρ∗r (Q)

)(1+ρ∗r (Q))
] 1

1+ρ∗r (Q)

(C.53)

=
ρ∗r(Q)

1 + ρ∗r(Q)
Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
− Λr

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
, (C.54)

where (C.51) and (C.52) follow from (C.41), (C.53) follows from the definition of Pρ
Y ,

i.e., (C.20), and (C.54) follows from (C.40).

Lastly, the fact that ∂Eo(ρ,Q)
∂ρ

∣∣∣∣
ρ=ρ∗r (Q)

= r, which is established in (4.27), along with

Lemma 32, implies that

r =
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
X|Y (x|y)

Q(x)
(C.55)

=
∑

(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

Pρ∗r (Q)
X,Y (x, y)

Q(x)W(y|x)
+

∑
(x,y)∈SQ,W

Pρ∗r (Q)
X,Y (x, y) ln

W(y|x)

Pρ∗r (Q)
Y (y)

(C.56)

= EF(r,Q) − Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
(C.57)

= −
1

1 + ρ∗r(Q)
Λ′r

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
− Λr

(
ρ∗r(Q)

1 + ρ∗r(Q)

)
, (C.58)

where (C.57) follows from the definition of EF(r,Q), i.e., (C.23), (C.25) and (C.41), and

(C.58) follows from (C.42). �
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C.4 Proof of Lemma 15

(i) By elementary calculation,

∂Λ1,ρ(v1, v2)
∂v2

=∑
(x,y,z)∈S̃Q

Q(x)W(y|x)1+v1−v2 fρ(y)−v1 Q(z)W(y|z)v2∑
(a,b,c)∈S̃Q

Q(a)W(b|a)1+v1−v2 fρ(b)−v1 Q(c)W(b|c)v2
ln

W(y|z)
W(y|x)

, (C.59)

and

∂Λ1,ρ(v1, v2)
∂v1

=∑
(x,y,z)∈S̃Q

Q(x)W(y|x)1+v1−v2 fρ(y)−v1 Q(z)W(y|z)v2∑
(a,b,c)∈S̃Q

Q(a)W(b|a)1+v1−v2 fρ(b)−v1 Q(c)W(b|c)v2
ln

W(y|x)
fρ(y)

. (C.60)

Evaluating the right side of (C.59) at ṽ yields3

∂Λ1,ρ(ṽ1, v2)
∂v2

∣∣∣∣∣∣
v2=ṽ2

= 0, (C.61)

owing to the symmetry of the resulting expression.

Equation (C.60) further implies that

∂Λ1,ρ(v1, v2)
∂v1

=

∑
(x,y)∈SQ

Q(x)W(y|x)1+v1−v2 fρ(y)−v1
[∑

z∈S(Q)∩Xy
Q(z)W(y|z)v2

]
∑

(a,b)∈SQ
Q(a)W(b|a)1+v1−v2 fρ(b)−v1

[∑
c∈S(Q)∩Xb

Q(c)W(b|c)v2
] ln

W(y|x)
fρ(y)

.

(C.62)

Evaluating the right side of (C.62) at ṽ yields

∂Λ1,ρ(v1, ṽ2)
∂v1

∣∣∣∣∣∣
v1=ṽ1

=
∑

(x,y)∈SQ

Q(x)W(y|x)ṽ2 fρ(y)1−2ṽ2
[∑

z∈S(Q)∩Xy
Q(z)W(y|z)ṽ2

]
∑

(a,b)∈SQ
Q(a)W(b|a)ṽ2 fρ(b)1−2ṽ2

[∑
c∈S(Q)∩Xb

Q(c)W(b|c)ṽ2
] ln

W(y|x)
fρ(y)

.

(C.63)

3Note that the particular value of ṽ2 does not matter as long as one has ṽ1 = −1 + 2ṽ2.
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Note that for any y ∈ Y, such that Xy ∩ S(Q) , ∅, we have
∑

x

Q(x)W(y|x)1/(1+ρ)

1+ρ
−ṽ2

=
1∑

x Q(x)W(y|x)1/(1+ρ) . (C.64)

By plugging (C.64) into (C.63), along with the definition of fρ and (C.41) in Ap-

pendix C.3, we conclude that

∂Λ1,ρ(v1, ṽ2)
∂v1

∣∣∣∣∣∣
v1=ṽ1

= −Λ′ρ

(
ρ

1 + ρ

)
. (C.65)

Equations (C.61) and (C.65) together imply (4.41).

(ii) Note that

Λ1,ρ(ṽ) = ln
∑

(x,y,z)∈S̃Q

P̃X,Y,Z(x, y, z)
(
W(y|x)

fρ(y)

)ṽ1
(

W(y|z)
W(y|x)

)ṽ2

(C.66)

= − ln PX,Y,Z

{
S̃Q

}
+ νṽ, (C.67)

where we define

νṽ := ln
∑

(x,y,z)∈S̃Q

Q(x)W(y|x)ṽ2 Q(z)W(y|z)ṽ2 fρ(y)−ṽ1 . (C.68)

Observe that for any y ∈ Y such that Xy ∩ S(Q) , ∅, we have

fρ(y)−ṽ1 =
fρ(y)ρ/(1+ρ)∑

x Q(x)W(y|x)1/(1+ρ)

∑
b

∑
a

Q(a)W(b|a)1/(1+ρ)

1+ρ
1/(1+ρ)

, (C.69)

owing to the definitions of fρ and ṽ. Rearranging (C.69) gives

∑
z

Q(z)W(y|z)1/(1+ρ) fρ(y)−ṽ1 = fρ(y)ρ/(1+ρ)

∑
b

∑
a

Q(a)W(b|a)1/(1+ρ)

1+ρ
1/(1+ρ)

,

(C.70)

provided that y ∈ Y satisfies Xy ∩ S(Q) , ∅. By plugging (C.70) into (C.68) and
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noting the definition of ṽ, we deduce that

νṽ = ln
∑

(x,y)∈SQ

Q(x)W(y|x)1/(1+ρ) fρ(y)ρ/(1+ρ)

∑
b

∑
a

Q(a)W(b|a)1/(1+ρ)

1+ρ
1/(1+ρ)

(C.71)

= Λρ

(
ρ

1 + ρ

)
+

ln
∑

y

[∑
x Q(x)W(y|x)1/(1+ρ)

]1+ρ

(1 + ρ)
(C.72)

= 2Λρ

(
ρ

1 + ρ

)
, (C.73)

where (C.72) follows from the definition of Λρ(·) and (C.73) follows from (C.40).

Plugging (C.73) into (C.67) yields (4.42). �

C.5 Proof of Lemma 19

We first claim that

VarQ̃ṽ,ρ
X,Y,Z

[
ln

W(Y |X)
fρ

]
,VarQ̃ṽ,ρ

X,Y,Z

[
ln

W(Y |Z)
W(Y |X)

]
∈ R+. (C.74)

To see (C.74), note that[
VarQ̃ṽ,ρ

X,Y,Z

[
ln

W(Y |X)
fρ(Y)

]
= 0

]
⇐⇒

[
ln

W(y|x)
fρ(y)

= −Λ′ρ

(
ρ

1 + ρ

)
, ∀(x, y) ∈ SQ

]
(C.75)

=⇒
[
(Q,W) pair is singular

]
. (C.76)

Evidently, the right side of (C.76) yields a contradiction, and hence we conclude that

VarQ̃ṽ,ρ
X,Y,Z

[
ln W(Y |X)

fρ(Y)

]
∈ R+.

Similarly,[
VarQ̃ṽ,ρ

X,Y,Z

[
ln

W(Y |Z)
W(Y |X)

]
= 0

]
⇐⇒

[
ln

W(y|z)
W(y|x)

= 0, ∀(x, y, z) ∈ S̃Q

]
(C.77)

=⇒
[
(Q,W) pair is singular

]
. (C.78)

159



Evidently, the right side of (C.78) yields a contradiction, and hence we conclude that

VarQ̃ṽ,ρ
X,Y,Z

[
ln W(Y |Z)

W(Y |X)

]
> 0.

Further, as an immediate consequence of the nonsingularity of the pair (Q,W), there

is no α ∈ R satisfying

ln
W(y|z)
W(y|x)

= α

(
ln

W(y|x)
fρ(y)

+ Λ′ρ

(
ρ

1 + ρ

))
, ∀(x, y, z) ∈ S̃Q. (C.79)

This last observation, coupled with (C.74) and the Cauchy-Schwarz inequality, implies

(4.104). �

C.6 Proof of Lemma 20

The proof follows from essentially the same arguments as in one dimensional case given

in Appendix B.1. The only significant difference is the usage of a “concentration func-

tion” theorem for sums of independent random vectors by Esseen [26, Theorem 6.2],

instead of the Berry-Esseen theorem.

For notational convenience, we define

An(N) :=
[
ln

W(Yn|Xn)
f ∗N(Yn)

, ln
W(Yn|Zn)
W(Yn|Xn)

]T

, SN :=
1
N

N∑
n=1

An(N), (C.80)

and let µN denote the law of SN when An(N) is distributed according to P̃X,Y,Z. Clearly,

α̃N = µN(B(N)).

Define Tn(N) := An(N) − b(N) and WN := 1
√

N

∑N
n=1 Tn(N). Note that

EQ̃v∗(N)
X,Y,Z

[ln W(Y |X)
f ∗N(Y)

, ln
W(Y |Z)
W(Y |X)

]T 
=

 ∂Λ1,N(v1, v∗2(N))
∂v1

∣∣∣∣∣∣
v1=v∗1(N)

,
∂Λ1,N(v∗1(N), v2)

∂v2

∣∣∣∣∣∣
v2=v∗2(N)


T

(C.81)

= [−Λ′N(ρ∗N/(1 + ρ∗N)), 0]T , (C.82)
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where (C.81) follows by evaluating the right sides of (C.59) and (C.60) in Appendix C.4

at v∗(N) and (C.82) follows from item (i) of Lemma 15. Equation (C.82) ensures that

EQ̃v∗(N)
X,Y,Z

[Tn(N)] = 0.

By elementary calculation, one can check that

µN(B(N)) = e−NΛ∗1,N (b(N))
∫ ∞

0

∫ ∞

0
e−
√

N〈v∗(N),x〉dFN(x), (C.83)

where FN is the distribution of WN when An(N) are i.i.d. with Q̃v∗(N)
X,Y,Z .

Since e−
√

N〈v,x〉 is a continuous function of bounded variation and FN(x) is a function

of bounded variation, we apply the integration by parts formula of Young [73, Eq. 4] to

deduce that∫ ∞

0

∫ ∞

0
e−
√

N〈v∗(N),x〉dFN(x) =

∫ ∞

0

∫ ∞

0
e−〈1,t〉

FN

 t1

v∗1(N)
√

N
,

t2

v∗2(N)
√

N

 + Fn (0, 0)

−FN

0, t2

v∗2(N)
√

N

 − FN

 t1

v∗1(N)
√

N
, 0

 dt1dt2

(C.84)

=

∫ ∞

0

∫ ∞

0
e−〈1,t〉

Pr

WN ∈

0, t1

v∗1(N)
√

N

 × 0, t2

v∗2(N)
√

N


 dt1dt2,

(C.85)

where the probability is computed when An(N) are i.i.d. with Q̃v∗(N)
X,Y,Z .

In order to conclude the proof, we upper bound the right side of (C.85) by using a

concentration inequality of Esseen [26, Corollary to Theorem 6.2]. To state his result,

we need the following definitions.

Let Ts
n(N) := Tn(N) − T′n(N), where T′n(N) and Tn(N) are i.i.d. Let ν̃s

N denote the

law of Ts
n(N). Following [26, eq. (6.4)], define

κN(u) := inf
|t|=1

∫
|x|<u

(〈t, x〉)2dν̃s
N(x). (C.86)
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Finally, let Sρ(co) denote the sphere in R2 with radius ρ and center co.

In our case, [26, Corollary to Theorem 6.2] reads as follows: for any ρ ∈ R+,

sup
co∈R2

Pr

 N∑
n=1

An(N) ∈ Sρ(co)

 ≤ c
(
ρ

τ

)2
(

1
N supu≥τ u−2κN(u)

)
, ∀ τ ∈ (0, ρ], (C.87)

where c is a universal constant that only depends on the dimension of the random vector,

which is 2 in our case.

Next, we explain how to use (C.87) to conclude the proof. Since

lim
N→∞

An(N) = An :=
[
ln

W(Yn|Xn)
f ∗(Yn)

, ln
W(Yn|Zn)
W(Yn|Xn)

]T

, P̃X,Y,Z − (a.s.), (C.88)

An is bounded almost surely under P̃X,Y,Z. Further, Q̃v∗(N)
X,Y,Z is equivalent to P̃X,Y,Z for all N.

These two observations imply that there exists k(R,W,Q) ∈ R+ and a sufficiently large

N1 that only depends on R, W and Q such that max{T1,n(N)s,T2,n(N)s} ≤ k(R,W,Q),

almost surely under ν̃s
N for all N ≥ N1.

Consider any N ≥ N1 from now on. One can also check that

Ss
N := Eν̃s

[
Ts

n(N)Ts
n(N)T

]
= 2SN , (C.89)

which, in turn, implies that for any u ≥ k(R,W,Q),

κN(u) = inf
|t|=1

∫
(〈t, x〉)2dν̃s

N(x) = inf
|t|=1

tT Ss
Nt = 2 inf

|t|=1
tT SNt = 2λmin(SN). (C.90)

Since det(SN) > 0, which follows from Lemma 19, we also have λmin(SN) > 0.

By letting ρ :=
√

t21
(v∗1(N))2 +

t22
(v∗2(N))2 , co = 0 and τ = ρ, (C.87) implies that
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Pr

WN ∈

0, t1

v∗1(N)
√

N

 × 0, t2

v∗2(N)
√

N


 ≤ Pr

 N∑
n=1

An(N) ∈ Sρ(co)

 (C.91)

≤
c
N

inf
u≥ρ

u2

κN(u)
(C.92)

≤
c

2λmin(ΣN)N

×

(
k(R,W,Q)2 +

t2
1

(v∗1(N))2 +
t2
2

(v∗2(N))2

)
,

(C.93)

where (C.93) follows from (C.90). By plugging (C.93) into (C.85) and carrying out the

calculation, we deduce that∫ ∞

0

∫ ∞

0
e−
√

N〈v∗(N),x〉dFN(x) ≤
c

2λmin(ΣN)N

(
k(R,W,Q)2 +

2
(v∗1(N))2 +

2
(v∗2(N))2

)
,

(C.94)

which, in light of (C.83), suffices to conclude the proof. �

C.7 Proof of Lemma 21

First, we note that

∀ (i, j) ∈ {1, 2}2, lim
N→∞

SN(i, j) = S(i, j), (C.95)

which, in turn, implies that

∀ (i, j) ∈ {1, 2}2, lim
N→∞

S−1
N (i, j) = S−1(i, j), (C.96)

where S(i, j) denotes the (i, j)-th entry of the matrix S. From (C.96), one can deduce

that

lim
N→∞
||S−1

N ||2 = ||S−1||2, (C.97)
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where || · ||2 denotes the Frobenius norm (e.g., [44, pg. 291]). Also, because of the fact

that SN and S are symmetric matrices, we have

λmin(SN) = |||S−1
N |||2, λmin(S) = |||S−1|||2, (C.98)

where ||| · |||2 denotes the spectral norm (e.g., [44, pg. 295]). Using [44, Ex. 5.6.23], we

deduce that

||S−1||2 ≤
√

2|||S−1|||2, ||S−1
N ||2 ≥ |||S

−1
N |||2. (C.99)

Equations (C.97), (C.98) and (C.99) imply (4.109). �
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APPENDIX D

APPENDICES OF CHAPTER 5

D.1 Proof of Lemma 22

Thanks to the symmetry of the channel, ẼSP(R) = ẼSP(R,UX) (e.g., [35, pg. 145]).

Moreover, by recalling the fact that ESP(R) = ẼSP(R) and ESP(R, P) ≥ ẼSP(R, P) for

all P ∈ P(X), which have been noted before, we conclude that ESP(R) = ESP(R,UX).

Hence, item (i) follows.

To prove item (ii), fix any ρ ∈ R+ and consider the following convex optimization

problem1

min
Q∈P(X)

∑
y∈Y

∑
x∈X

Q(x)W(y|x)
1

1+ρ

1+ρ

. (D.1)

Next, we state the necessary and sufficient conditions for Q ∈ P(X) to attain the mini-

mum in (D.1), derived by Gallager (e.g., [35, Theorem 5.6.5])

∀x ∈ X,
∑
y∈Y

W(y|x)
1

1+ρ

∑
z∈X

Q(z)W(y|z)
1

1+ρ


ρ

≥
∑
y∈Y

∑
z∈X

Q(z)W(y|z)
1

1+ρ


1+ρ

, (D.2)

with equality if Q(x) > 0. Thanks to the symmetry of the channel, UX is an optimizer

of (D.1) (e.g., [35, pg. 145]) and hence (D.2) implies (5.11).

To prove the rest, we first note the following, which is an easy consequence of basic

convex optimization arguments (e.g., [20, Ex. 2.5.23])

ESP(R,UX) = max
ρ≥ 0

min
q∈P(Y)

−ρR − (1 + ρ)
∑
x∈X

UX(x) ln
∑
y∈Y

W(y|x)
1

1+ρ q(y)
ρ

1+ρ

 . (D.3)

Due to Propositions 2 and 3 in Chapter 3, (D.3) has a unique saddle-point. Further,

Proposition 4 in Chapter 3 ensures that ρR(UX) is the R+ component of this saddle-

point. Owing to the properties of the saddle-points (e.g., [55, Lemma 36.2]) ρR(UX)
1Convexity has been verified by Gallager in [35, Theorem 5.6.5].
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attains the maximum in (D.3) and the fact that ESP(R) = ESP(R,UX) > 0 ensures its

positivity. Hence,

ESP(R,UX) = min
q

−ρR(UX)R − (1 + ρR(UX))
∑
x∈X

UX(x) ln
∑
y∈Y

W(y|x)
1

1+ρR(UX) q(y)
ρR(UX)

1+ρR(UX)


(D.4)

≤ −ρR(UX)R − (1 + ρR(UX))
∑
x∈X

UX(x) ln
∑
y∈Y

W(y|x)
1

1+ρR(UX) qR(y)
ρR(UX)

1+ρR(UX)

(D.5)

= −ρR(UX)R + Eo(ρR(UX),UX) (D.6)

≤ ẼSP(R,UX), (D.7)

where (D.6) follows from item (ii) of this lemma by recalling the definitions of qR and

Eo(·, ·).

In light of item (i) of this lemma, (D.7) implies that ρR(UX) attains the maximum in

the definition of ẼSP(R,UX) and hence item (iii) follows.

Item (iv) is evident in light of (D.7) and item (i) of this lemma. �

D.2 Proof of Lemma 24

We begin with the following optimization problem (e.g., (D.3))

ESP(R,UX) = max
ρ∈R+

min
q∈P(Y)

−ρR − (1 + ρ)
∑
x∈X

UX(x) ln
∑

y:W(y|x)>0

W(y|x)1/(1+ρ)q(y)ρ/(1+ρ)

 .
(D.8)

As noted in Appendix D.1, the right-side of (D.8) has a unique saddle-point and ρR is

the R+ component of this saddle-point. Further, due to the definition of a saddle-point

(e.g., [55, pg. 380]), item (iv) of Lemma 22 ensures that qR is the P(Y) component of
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the saddle-point. Hence, we conclude that (ρR, qR) pair is the unique saddle-point of the

right side of (D.8).

By establishing this, we are in a position to invoke the results proved in Chapter 3 to

deduce the claim. In particular, item (i) is a direct consequence of item (ii) of Lemma 6

in Chapter 3.

Moreover, given any D(WR||qR|UX) < r ≤ R, we have

eSP(r,R) = max
ρ∈R+

min
V∈P(Y|X)

{D(V ||W |UX) + ρ (D(V ||qR|UX) − r)} (D.9)

= max
ρ∈R+

{
−ρr + (1 + ρ)Λ

(
ρ

1 + ρ

)}
, (D.10)

where (D.9) follows since the convex program eSP(r,R) has zero duality gap, thanks

to the fact that Slater’s condition (e.g., [55, Corollary 28.2.1]) holds, which is a direct

consequence of item (i) of this lemma, and (D.10) follows by solving the convex mini-

mization problem on the right side of (D.9). Equation (D.10) establishes item (ii).

Item (iii) directly follows from Proposition 6 in Chapter 3 that can be invoked thanks

to the observation that (ρR, qR) pair is the unique saddle-point of ESP(R,UX), i.e., the

right side of (D.8). �

D.3 Proof of Lemma 25

(i) The proof goes by contradiction. Assume that there exists λo ∈ [0, 1) with

Λ′′(λo) = 0. From (5.19), this is equivalent to

W(Y |xo) = qR(Y)e−Λ′(λo), ∀ y ∈ S(W(·|xo)). (D.11)
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Further, item (ii) of Lemma 24 and (D.11), along with the definition of Λ(·), imply

that

eSP(R,R) = max
ρ∈R+

−ρ(R + Λ′(λo)). (D.12)

Since eSP(R,R) = ESP(R), which is established in item (iii) of Lemma 24, (D.12)

implies that either ESP(R,R) = 0, which contradicts the fact that ESP(R) > 0 (e.g.,

[35, pg. 158]), or ESP(R) = ∞, which contradicts the fact that R > R∞. Hence, we

conclude that for all λ ∈ [0, 1), Λ′′(λ) > 0.

(ii) For notational convenience, let eo(ρ,R) := −(1 + ρ)Λ
(

ρ

1+ρ

)
. From item (ii) of

Lemma 24, we have

eSP(r,R) = max
ρ∈R+

{−ρr + eo(ρ,R)} . (D.13)

eSP(·,R) is differentiable owing to Corollary 2 in Chapter 3, which can be invoked

thanks to the fact that (ρR, qR) pair is the unique saddle-point of ESP(R,UX) that has

been shown in Appendix D.2, and hence we conclude that sr is well-defined. Since

differentiable convex functions of one variable are continuously differentiable, the

second assertion follows.

To verify the last two assertions, observe that (D.13) is the Lagrangian dual of the

convex program eSP(r,R), which is established in (D.9) and (D.10). Hence, we

can use the subdifferential characterization of the Lagrange multipliers (e.g., [55,

Theorem 29.1]) to deduce that the set of optimizers in (D.13) coincides with the

negative of the subdifferential of eSP(·,R) at r, i.e., ρ ∈ R+ maximizes (D.13) if and

only if ρ ∈ −∂eSP(·,R)(r). Since eSP(·,R) is differentiable at r, −∂eSP(·,R)(r) = {sr}

and hence sr uniquely attains the maximum in (D.13). Further, since eSP(r,R) ≥

eSP(R,R) = ESP(R) > 0, we have sr ∈ R
+.

Moreover, via elementary calculation, one can verify that

∂2

∂ρ2

[
−ρr + eo(ρ,R)

]
=
∂2eo(ρ,R)

∂ρ2 = −
1

(1 + ρ)3 Λ′′
(

ρ

1 + ρ

)
< 0, (D.14)
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where the inequality follows from item (i) of this lemma. As a direct conse-

quence of (D.14), we conclude that sr is the unique positive real number satisfying

r =
∂eo(ρ,R)
∂ρ

∣∣∣∣
ρ=sr

. This observation, coupled with (D.14) and the inverse function

theorem, further implies that sr is strictly decreasing in r.

(iii) Since Λ(·) is a convex function (e.g., [21, Lemma 2.2.5, item (a)]), λ[eSP(r,R)−r]−

Λ(λ) is a concave function of λ and hence the following is a sufficient condition

for λo ∈ R to attain Λ∗(eSP(r,R) − r)

Λ′(λo) = eSP(r,R) − r. (D.15)

As noted above, sr is the unique positive real number satisfying r =
∂eo(ρ,R)

ρ

∣∣∣∣
ρ=sr

,

hence, an elementary calculation implies that

r = −Λ

(
sr

1 + sr

)
−

1
(1 + sr)

Λ′
(

sr

1 + sr

)
, (D.16)

and hence

eSP(r,R) =
sr

(1 + sr)
Λ′

(
sr

1 + sr

)
− Λ

(
sr

1 + sr

)
. (D.17)

Equations (D.16) and (D.17) imply that

Λ′
(

sr

1 + sr

)
= eSP(r,R) − r. (D.18)

Equations (D.16) and (D.18) ensure that sr/(1 + sr) attains Λ∗(eSP(r,R) − r) and

hence

Λ∗(eSP(r,R) − r) =

(
sr

1 + sr

)
(eSP(r,R) − r) − Λ

(
sr

1 + sr

)
= eSP(r,R),

where the second equality follows by plugging (D.18) into (D.17).

Finally, let ηr := sr/(1 + sr) ∈ R+, since sr ∈ R
+. Hence, (D.18) implies the

existence of ηr ∈ (0, 1) with Λ′(ηr) = eSP(r,R) − r. To verify the uniqueness, it

suffices to note that eSP(·,R) − (·) is strictly decreasing, along with item (i) of this

lemma and the inverse function theorem. �
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D.4 Proof of Lemma 27

The proof follows from essentially the same arguments given in Section 3.2.5. We

provide an outline for completeness.

First of all, we notice that (e.g., [21, Ex. 2.2.24]) Λ∗(·) is a smooth function over

(−D(W ||qR|UX),D(WR||W |UX)), which, along with the inverse function theorem and

items (i) and (iii) of Lemma 25, implies that

Λ∗ ′(eSP(r,R) − r) = ηr, Λ∗ ′′(eSP(r,R) − r) =
1

Λ′′(ηr)
, (D.19)

for any r ∈ [R̄,R]. Via calculations similar to the ones leading to (3.105), one can verify

that

Λ∗(eSP(RN ,R) − RN) = Λ∗(eSP(R,R) − R) + εNηR + (eSP(RN ,R) − eSP(R,R))ηR

+
Λ∗ ′′(x̄) [eSP(RN ,R) − RN − eSP(R,R) + R]2

2
, (D.20)

for some x̄ ∈ (eSP(R,R) − R, eSP(RN ,R) − RN). Using items (ii) and (iii) of Lemma 25

and recalling the definition of εN , (D.20) further implies that

eSP(RN ,R) = eSP(R,R)+εN sR+ε2
N

(1 + sR)Λ∗ ′′(x̄)
2

(
1 +

eSP(RN ,R) − eSP(R,R)
εN

)2

. (D.21)

By using (D.19), along with the fact that eSP(·,R) − (·) is a strictly decreasing and con-

tinuous function over [R̄,R], one can see that

Λ∗ ′′(x̄) ≤
1

m2,min
∈ R+. (D.22)

Moreover, (3.121), which can be invoked thanks to the fact that (ρR, qR) pair is the unique

saddle-point of ESP(R,UX) that has been shown in Appendix D.2, implies that

sR =
∣∣∣E′SP(R)

∣∣∣ . (D.23)
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Finally, via a first-order power series approximation, along with items (ii) and (iii) of

Lemma 25, one can verify that(
1 +

eSP(RN ,R) − eSP(R,R)
εN

)2

≤ (1 + sR̄)2. (D.24)

By plugging (D.22), (D.23) and (D.24) into (D.21), along with the fact that ESP(R) =

eSP(R,R), which is shown in item (iii) of Lemma 24, one can check that (5.45) holds. �

D.5 Proof of Lemma 28

Consider any xN ∈ XN . We have

W
{
S(RN)|xN

}
=

∑
yN

W(yN |xN)1

 1
N

N∑
n=1

ln
1
αyn

≤ RN

 (D.25)

=
∑
yN

W(yN |xN)1

 1
N

N∑
n=1

ln
W(yn|xn)

q(yn)
≤ RN

 (D.26)

= W

 1
N

N∑
n=1

ln
W(Yn|xn)

q(Yn)
≤ RN | xN

 , (D.27)

where (D.26) follows by noting whenever W(y|x) > 0, W(y|x)
q(y) = 1

αy
, which is a direct

consequence of the fact that W is singular.

Next, for any x ∈ X and λ ∈ R, we define Mx(λ) :=
∑

y:W(y|x)>0 W(y|x)1−λq(y)λ.

Evidently, Mx(·) ∈ R for any x ∈ X.

We claim that given any λ ∈ R, Mx(λ) is constant in x, whose proof is similar to

Lemma 23. Specifically, let {Yl}
L
l=1 be a partition2 of the columns of W mentioned in

Definition 9. Since each column is a permutation of every other column within the

partition, q(y) is the same for any y ∈ Yl. This observation, along with the fact that all

rows are permutations of every other row, implies that Mx(·) is the same for all x ∈ X.
2The choice of the partition is immaterial in what follows.
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Using the fact that Mx(λ) is constant in x and the uniqueness theorem for the moment

generating function (e.g., [11, Ex. 26.7]), we deduce that

W

 1
N

N∑
n=1

ln
q(Yn)

W(Yn|xn)
≥ −RN | xN

 = W

 1
N

N∑
n=1

ln
q(Yn)

W(Yn|xo)
≥ −RN | xN

o

 , (D.28)

which, in light of (D.27), implies item (i) of the lemma.

To prove item (ii), we define

Λ(λ) := ln EW(·|xo)

[
eλ ln q(Y)

W(Y |xo)

]
= ln

∑
y:W(y|xo)>0

W(y|xo)1−λq(y)λ. (D.29)

Evidently,

Λ(λ) = ln
∑

y:W(y|xo)>0

δyα
λ
y . (D.30)

We observe that for any λ ∈ R+,

Λ(λ) = ln
∑
y∈Y

δyα
1+λ
y = −Eo(λ,UX), (D.31)

where Eo(·, ·) is as defined in (5.4), the first equality follows from item (ii) of Lemma 22

and the second equality follows from elementary calculation by noticing the singularity

of the channel.

Via straightforward calculation, one can check that

Λ′(λ) =
∑
y∈Y

δyα
1+λ
y∑

b∈Y δbα
1+λ
b

lnαy and Λ′′(λ) =
∑
y∈Y

δyα
1+λ
y∑

b∈Y δbα
1+λ
b

(
lnαy − Λ′(λ)

)2
≥ 0,

(D.32)

for any λ ∈ R+. Further, define

m3(λ) :=
∑
y∈Y

δyα
1+λ
y∑

b∈Y δbα
1+λ
b

∣∣∣lnαy − Λ′(λ)
∣∣∣3 . (D.33)

Evidently, Λ′(·),Λ′′(·) and m3(·) are continuous over R+.

Next, we prove that

∀ λ ∈ R+, Λ′′(λ) > 0. (D.34)
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To see (D.34), first note that for all λ ∈ R+, Λ′′(λ) ≥ 0, due to (D.32). For contradiction,

assume there exists λo ∈ R+ with Λ′′(λo) = 0. This, however, implies that the dispersion

of the channel is 0, owing to (D.31), [35, Theorem 5.6.3] and the fact that UX is a ca-

pacity achieving input distribution for W (e.g., [35, Theorem 4.5.2]). Since the channel

has positive dispersion, this yields a contradiction.

For any r ∈ [R̄,R], let ηr := − ∂ESP(a,UX)
∂a

∣∣∣
a=r

, which is well-defined owing to item (iii)

of Lemma 22. Further, observe that for any r ∈ [R̄,R],

−r = Λ′(ηr), (D.35)

which is evident in light of

r =
∂Eo(ρ,UX)

∂ρ

∣∣∣∣∣
ρ=ηr

= −Λ′(ηr), (D.36)

where the first equality follows by recalling the fact that ηr attains ẼSP(r,UX), which is

shown in Lemma 22, and the second equality follows from (D.31). Moreover, since ηr

attains ẼSP(r,UX) and ẼSP(r,UX) ≥ ẼSP(R,UX) = ẼSP(R) > 0, for any r ∈ [R̄,R], we

deduce that ηr ∈ R
+. Further, (D.34), (D.35) and the inverse function theorem ensures

that η(·) is strictly non-increasing over [R̄,R].

Fix some a > 1 and define

tmax := a2
√

2πηR̄ max
λ∈[0,ηR̄]

m3(λ)
Λ′′(λ)

, (D.37)

m2,min := min
λ∈[0,ηR̄]

Λ′′(λ), (D.38)

m2,max := max
λ∈[0,ηR̄]

Λ′′(λ). (D.39)

Clearly, all of the above quantities are well-defined and positive. For convenience, let

ko :=
e−tmax

(
1 − 1

a

)
ηR̄2

√
2πm2,max

∈ R+. (D.40)
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Let N ∈ Z+ be sufficienttly large such that

RN ≥ R̄ and
[1 + (1 + tmax)2]

ηR

(
1 − 1

a

)
2
√

eNm2,min

≤
1
2
. (D.41)

We have

W
{
S(RN)|xN

o

}
≥

ko

(
1 + a2

√
2πηRN

m3(ηRN )
Λ′′(ηRN )

)
√

N
e−NΛ∗(−RN ) (D.42)

≥
ko
√

N
e−NΛ∗(−RN ), (D.43)

where Λ∗(−RN) := supλ∈R {−λRN − Λ(λ)} and (D.42) follows from Lemma 5, in partic-

ular (3.2), which is applicable thanks to (D.34) and (D.35), along with (D.41). Since

η(·) ∈ R
+ is non-increasing and Λ(·) is convex, (D.35) implies that

Λ∗(−RN) = max
0≤λ≤ηR̄

{
−λ

(
R −

k
N

)
− Λ(λ)

}
≤

kηR̄

N
+ max

0≤λ≤ηR̄

{−λR − Λ(λ)} =
kηR̄

N
+ Λ∗(−R).

(D.44)

By plugging (D.44) into (D.43), we deduce that (5.50) holds. �
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