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Investigation of the data rate, blocklength and error probability interplay for the op-
timum block code(s) on a discrete memoryless channel is a fundamental problem of
information theory. Because of the intricacy of the problem, it is ubiquitous to allow
blocklength to grow unboundedly, which, in turn, gives informative optimality results.
Although there are classical asymptotic regimes to investigate this interplay, they have
certain limitations. This thesis is about two new asymptotics in channel coding, pro-
posed to address these limitations.

In moderate deviations, we consider the optimal error performance of the sequence
of codes with rates increasing to the capacity with a speed between the classical asymp-
totic regimes of error exponents and normal approximation and prove that error proba-
bility vanishes sub-exponentially fast with a rate related to the dispersion of the channel.
This conclusion is in contrast with the classical asymptotic regimes, in which either er-
ror probability vanishes or rate increases to the capacity, but not simultaneously. We
believe that this contrast makes moderate deviations more relevant to practical code de-
sign, since the goal of the channel coding is to attain a rate that is close to capacity and
an error probability that is close to zero.

In exact asymptotics, we concentrate on the sub-exponential factors of the well-
known exponentially decaying bounds on the error probability to improve their orders.
The reason of this quest is the fact that the exponent of these bounds vanishes as rate

approaches the capacity, which, in turn, makes the sub-exponential terms to play a sig-



nificant role in the approximation of the error probability for this range of rates. The
sharpened orders of the sub-exponential factors of these refinements are close to each
other in general, and are equal for symmetric channels. Moreover, we reveal a phase

transition of the optimal order of the pre-factor for this class of channels.
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CHAPTER 1
INTRODUCTION

1.1 Channel coding

Information theory, which is founded by Shannon in his seminal paper [61], aims to
characterize the fundamental limits of data compression and reliable communication,
in its essence. Arguably the most important contribution of [61] is the mathematical
abstraction of reliable communication problem, also known as channel coding. Despite
(or perhaps thanks to) its simplicity, Shannon’s model has stood the test of time and

might justly be considered as the foundation of any modern communication system.

In channel coding, a transmitter wants to communicate a message, which takes val-
ues in a finite set M, to a receiver through an unreliable medium, called channel. Typ-
ically, the statistics of the imperfection due to the channel, which is called noise, are
assumed to be known to both transmitter and receiver. Instead of using the channel
once, transmitter and receiver use it multiple times to reduce the error by exploiting
their knowledge of the noise statistics. Moreover, in order to further reduce the error,
transmitter (resp. receiver) uses specialized algorithms called encoder (resp. decoder).
The number of channel uses is called latency or blocklength. Since the channel is used
multiple times, one should scale the size of the message set, from which the transmitted
message is drawn, with the latency, which is called data rate or simply rate. Because
of the uncertainty introduced by the channel, there is a chance that receiver can not
correctly recover the transmitted message, which is characterized by the probability of

error.

There are various different channel models in the literature. In this thesis, we con-



sider discrete memoryless instance of channel coding, in which, the channel is assumed
to be a stochastic matrix from a finite set, say X, to another finite set, say Y. X (resp.
Y) is called the input (resp. output) alphabet of the channel and the channel is usually
denoted by W(-|-). The set of discrete channels from a finite set X to another finite set
Y will be denoted by P(Y | X) in the sequel. Moreover, it is assumed that the transition
probabilities at each time instance is independent from any past and future transitions,
ie., forall' N € Z* and® (x",y") € XV x YV, Wy [x") = [T, W, | x,). Given
a discrete memoryless channel (DMC) W, an (N, R) code consists of a message set®
M :={1,...,[e"]}, an encoder fy : M — X" and a decoder ¢y : YV — M. Typically,
it is assumed that the message is distributed uniformly over M. In words, encoder maps
a message m to a vector in the input space of the channel, which is called the codeword
and typically denoted by x"(m). The collection of all the codewords, i.e., {x"(m)}nem,
is called the codebook and assumed to be available at transmitter and receiver. Upon re-
ceiving the channel output, receiver declares an estimate of the transmitted message by
utilizing its knowledge of the channel statistics and the codebook. This operation is cap-
tured by decoder mapping. Given an (N, R) code (fy, ¢n), its maximal error probability,

P.(fv, ¢n), is defined by
Pe(fi- on) := max W {gn (YY) # m| x"(m)}. (1.1)
Similarly, average error probability, P.(fy, ¢n), is defined by

_ 1
Pefvsgn) i= T ), W o (™) # mixom) (1.2)

meM

1Throughout the thesis, Z*, R, R, and R* denotes the set of positive integers, the set of real numbers,
non-negative real numbers and positive real numbers, respectively.

’In the sequel, boldface letters denote vectors, letters with subscripts denote individual components of
vectors. Furthermore, capital letters represent random variables and lowercase letters denote individual
realizations of the corresponding random variable.

3The base of the exponent determines the unit of information that can be communicated per channel
use. For example, the unit associated with base-2 and the natural base is called bit/channel use and
nat/channel use, respectively. Although bit is the standard unit for the most applications, working with
natural base is more convenient for the purposes of this thesis and hence we opt for using nat as our unit
of information.



Given any N € Z* and R € R,, P.(N,R) (resp. P.(N,R)) denotes the optimum (or

minimum) average (resp. maximal) error probability attainable by any (N, R) code.

There is a fundamental interplay between blocklength, rate and the optimum er-
ror probability. Given the intricacy of determining the tradeoff for each value of these
parameters, resorting to a relaxation is almost inevitable. A ubiquitous relaxation in in-
formation theory is to let some parameter grow unboundedly. Typically, blocklength is
assumed to grow unboundedly*. Passing to this asymptotic, in turn, gives crisp, infor-
mative optimality results that serve as halting rules for the quest for designing optimal

communication systems.

The most important instance of the aforementioned interplay is determining the max-
imum amount of rate that can be sustained such that error probability is arbitrarily small,

as the blocklength grows. The answer is the capacity of the channel:

C := max I(P; W), (1.3)
PeP(X)

where
W(y|x)
Yex PQW(|2)

is the mutual information between input and output of the channel W when the input has

(P, W) := Z P(X)W(y|x) 1n

(x,y)eXxY

(1.4)

the distribution P and the maximization® is over all probability measures on X, denoted

by P(X).

The following result of Shannon® shows that channel capacity constitutes the thresh-

“Because of the significance of the short to moderate blocklengths in practice, one can seek finite
blocklength bounds on the error probability for a given rate. This can be done for a general class of chan-
nels (e.g., [52], [70], [71]) or particular channels (e.g., [52, Theorem 35], [52, Theorem 38]). Although
these bounds are useful to assess the performance of practical codes, typically they are not conceptually
illuminating. We shall adopt the asymptotic approach in this thesis.

3The maximum is well-defined since I(-; W) is a concave function (e.g., [20, Lemma 1.3.5]).

To be precise, Shannon has discovered the capacity formula in (1.3) and stated channel coding the-
orem, along with an outline of the proof for the direct part. The first published rigorous proof of the
theorem is due to Feinstein [28] in which he attributes the proof of the converse part to Fano.



old for the maximum reliable rate.

Theorem (Channel coding theorem [61]). Fix a DMC W € P(Y | X). For any R < C,

lim supy_,., P.(N, R) = 0. Conversely, for any R > C, liminfy_,, P.(N,R) > 0. ¢

Although quite important, channel coding theorem provides a crude measure of the
interplay between blocklength, rate and the error probability. For example, it does not
address how fast error probability decays if rate is below the capacity or how fast rate
can increase to the capacity as the blocklength increases for a given error probability. In
order to address this type of refined questions, other asymptotical characterizations are

devised, which we overview next.

1.1.1 Normal approximation

Given a DMC W € P(Y | X), for any € € (0, 1) and N € Z*, define the following’
R*(N, €) := max{R € R, : P.(IV,R) < €}. (1.5)

In words, R*(N, €) characterizes the maximum rate possible given a blocklength and tar-
get error probability. Besides its mathematical importance, in the sense of being a refine-
ment of the channel coding theorem, R*(N, €) has also practical significance, especially
for modern applications that requires low latency, such as multimedia communications.
For the practically interesting case € € (0, 1/2), Strassen’s normal approximation result®

gives an asymptotic characterization of R*(NV, €).

"For the purposes of this section, it is immaterial whether we use average or maximal error probability.

8Recently, Polyanskiy et al. has discovered a small mistake in Strassen’s arguments for a small class
of channels when € € (1/2,1) (cf., [52, Section IV.A]). Besides fixing this error, they also improve the
third-order term and extend the result to different channel models, most notably additive white gaussian
noise channel.



Theorem (Normal approximation [66]). Fix a DMC W € P(Y|X) and € € (0,1/2).

R*(N,e) =C + \/Y(D_l(e) + o(ln—"), (1.6)
N n

Asymptotically,

where

Wyl x)
2ex P@QW(y|2)

2
Px)W(y|x) [ln - I(P; W)] , (1.7)

min Z
PeP(X): I(P;W)=C
(x,y)eXxY

is the dispersion of the channel. ¢

We shall refer to this asymptotic regime as the large error probability regime in the

sequel.

1.1.2 Error Exponents

Given a DMC W € P(Y | X), for any € € (0, 1) and N € Z*, define the following’
N*(R,€) :=min{N € Z* : P.(N,R) < €}. (1.8)

In words, N*(R, €) characterizes the minimum blocklength required to sustain a target
error probability for a fixed rate. Intuitively, N*(R, €) can be thought as the “dual” of
R*(N, €), defined in (1.6). Moreover, N*(R, €) is a fundamental performance metric of

block codes.

A classical approach to approximate N*(R, €) is to fix a rate below the capacity and
then to characterize P.(N, R) asymptotically. From the early days of the field, it has been
known that error probability decays exponentially fast in blocklength (e.g., [24], [27],

[62]). Moreover, the best possible exponent, which is called reliability function of the

One can either use average or maximal error probability in (1.8).



channel, has also been investigated thoroughly. The classical upper and lower bounds

on the reliability function'” by Gallager and Shannon et al. are the following:
Theorem (Random coding bound [34]). Fixa DMC W € P(Y | X). For any R < C,
P,(N,R) < 4e™0®), (1.9)

where the random coding exponent of the channel is defined by

E.(R) := Jnax, max {=pR + E,(p, Q)}, (1.10)
with
1+p
E/p. Q)= ~In ) [Z Q(x)W(ny)“p) . (L11)
yeY \xeX
¢

Theorem (Sphere—packing bound [63]). Fixa DMC W € P(Y | X). For any R < C,
P,(N,R) > e_N[ESP(R_Ol(N))+02(N)], (1.12)

where the sphere—packing exponent of the channel is defined by

Esp(R) := max sup{-pR + E,(p, , 1.13
sr(R) i= max. sup (~pR + E,(p. Q) (1.13)
In8 |X|InN
N) = — + , 1.14
01(N) N N (1.14)
In8 2 e’
N) = — —1 , 1.15
02N) 1= S+ oy Inp— (1.15)

and Py, is the minimum positive element of W. ¢

Remark 1. Both Esp(-) and E,(-) are positive, non-increasing and convex functions on

0,C) (e.g., [35, Theorem 5.6.4] and [35, pg. 158]). Moreover, sphere-packing and

10There are low rate improvements of both the lower and upper bound (e.g., [35, Theorem 5.7.1] and
[35, Theorem 5.8.2]). Unfortunately, none of these improvements give the reliability function for low
rates, except R = 0, and it is a long-standing open problem to determine the reliability function for
all rates. Since our focus in this thesis will be on high rates, for which random coding and sphere-
packing exponents coincide to give the reliability function, we do not introduce the aforementioned low-
rate improvements.



random coding exponents agree for high rates and hence giving the reliability function,
denoted by E(R). Specifically, the critical rate of the channel, denoted by R.,, is defined
as the minimum of such rates, i.e., Esp(R) = E.(R) if and only if (iff) R., < R (e.g., [35,
pg. 160]). Further, Esp(R) can grow unboundedly below a certain rate. Specifically,
R, is defined as the minimum R such that for all R > R, Esp(R) is finite (e.g., [20,
pg. 170]). See Figure 1.1 for a graphical representation of the aforementioned notions

for a typical channel. <

E(R)

R.  Re c R

Figure 1.1: Random coding and sphere—packing exponents for a typical channel.

Remark 2. Random coding bound was first discovered by Fano with a more involved
proof (e.g., [27, pp. 324-331]). Also, Fano’s exponent has a different algebraic form
than the one given in (1.10), which can be shown to be equal to Gallager’s form. Fano’s
method of proving random coding bound is generally viewed as obsolete within infor-

mation theory community, because of the simplicity of Gallager’s proof.



Sphere—packing bound was independently discovered by Haroutunian with a differ-
ent proof [38]. Haroutunian’s arguments give the following form of the sphere-packing
exponent'!

Esp(R) := max min D(V||W|P), (1.16)
PeP(X) VeP(Y | X):U(P:V)<R

where D(V||W|P) = Y .ex P(X)D(V(- | 0)[|W(- | x)) and D(V(-| x)||W(-| x)) is the relative
entropy between probability distributions V(-|x) and W(-|x) (e.g., [18, pg. 19]). We
call (1.13) (resp. (1.16)) Shannon-Gallager-Berlekamp (resp. Haroutunian) form of the

sphere-packing exponent. <&

We shall refer to this asymptotic regime as the small error probability regime in this

thesis.

1.2 Motivation

Although small and large error probability regimes are deservedly celebrated, they have
at least two limitations. The first limitation is about the nuisance factors in small error
probability regime. Traditionally, these factors are ignored in the results that are con-
sidered to be conclusive for this regime, however they play a significant role in their
practical usage. The second limitation is that neither small nor large error probabil-
ity regime aims to explain the case where rate approaches the capacity and the error
probability vanishes, simultaneously. However, this regime is arguably more relevant to
practical code design than either small or large error probability regime, since the goal
in channel coding is, after all, to attain a rate that is close to capacity and an error prob-
ability that is close to zero. Next, we discuss these two limitations and how to address

them.

11Tt is well-known that the right sides of (1.13) and (1.16) are equal (e.g., [12]).



In order to demonstrate the first limitation, consider data storage, in which having
an extremely small error probability, at the expense of working at rates strictly below
the capacity, is crucial. However, the existing results only determine the exponent of
error probability decay by washing out the sub-exponential factors. In particular, until
recently, the tightest pre-factor for the upper bound on the error probability was O(1),
due to Fano [27] and Gallager [34]. The best!? pre-factor in the lower bound for constant
composition codes'®* was @(N ¥ due to Haroutunian [38], where |X| and |Y| are
the cardinalities of the input and output alphabets, respectively!'*. Clearly, there is a
considerable gap between the orders of the pre-factors in the upper and lower bounds.
This brings a sizable practical limitation, because the resulting bounds are not precise,
especially for rates close to capacity, where the error exponent is close to zero, and hence
sub-exponential term plays a significant role'>. To address this limitation, one needs a
more refined analysis to deduce a sharper characterization of the sub-exponential term
associated with the small error probability results. We note that a by-product of this
refined analysis is a more accurate characterization of the optimal error probability for
small to moderate blocklength. As noted before, this regime of latency is becoming
more important in contemporary applications, such as multimedia communications and

control over imperfect channels, where having a small latency is vital.

2The version by Shannon et al., which is mentioned in Section 1.1.2, has an ® (e‘ W) pre-factor.

I3A code is a constant composition code provided that all of the codewords has the same empirical
distribution (e.g., [20, pg. 117]). It is well-known that (e.g., [63]) any (¥, R) code includes a constant
composition code with the same maximal error probability and rate not smaller than R — 'Xl%, where | X
is the cardinality of the input alphabet.

“There are recent attempts to improve the sphere-packing bound, most notably [70] and [71], for
small to moderate blocklengths. In these works, the methodology is essentially the same with Shannon
et al. [63], but the analysis is tightened at the expense of a more complicated bound. Further, it is
computationally demonstrated that the derived bounds improve the sphere-packing bound of Shannon et
al. for binary symmetric and binary erasure channels. However, neither of them give the order of the
sub-exponential term explicitly and it appears that the order of the pre-factor for these improvements are
the same as that of Shannon et al.

SFor example, see [52, Section V] for a discussion on the inaccuracy of using the random coding
bound to approximate N*(R, €) (cf., (1.8)) when R is close to C.



To demonstrate the second limitation, recall that although small error probability
regime allows for vanishing error probabilities, rate is bounded away from the capacity.
In large error probability regime, on the other hand, the rate approaches the capacity but
error probability is bounded away from zero. Evidently, these two regimes correspond to
two extreme ways of using available latency. Indeed, small (resp. large) error probability
regime uses all the blocklength to minimize (resp. maximize) error probability (resp.
rate) at the expense of fixing rate below the capacity (resp. having a non-vanishing error
probability). However, none of the approaches is a balanced way of using the latency.
To address this limitation, one needs to consider the asymptotic regime that lies between
them, in which one requires the rate to approach the capacity and error probability to
simultaneously tend to zero. Assessing the performance of codes in this regime, which
we call medium error probability regime in the sequel, gives a more balanced (in terms
of the latency usage) performance metric compared to the existing asymptotic regimes.
Figure 1.2 provides a graphical representation of the small, medium and large error

probability regimes.

The main goal of this study is to address the aforementioned two limitations of the
existing asymptotic regimes. We give a summary of our main findings in Section 1.3.
Before proceeding further, however, it is helpful to consider the more-elementary setup
of the sum of independent and identically distributed (i.i.d.) random variables to place
the aforementioned notions into context. If we scale the sum with 1/N, it converges
to the mean by the law of large numbers. Cramér’s Theorem (e.g., [19], [21, Theo-
rem 2.2.3]) characterizes the probability that the unnormalized sum makes an order-N
deviation from its mean. This probability decays exponentially in N, and Cramér’s char-
acterization of the exponent is now termed a large deviations result. The central limit
theorem, on the other hand, characterizes the probability that the unnormalized sum

makes an order- VN deviation. As N tends to infinity, this probability converges to a

10



positive constant that is governed by the Gaussian distribution. The small error proba-
bility regime in channel coding is analogous to large deviations for i.i.d. sums, in that
they both characterize exponentially small probabilities using similar techniques. The
large error probability regime is akin to the central limit theorem; as the term normal

approximation already suggests.

Continuing the analogy with the i.i.d. sum of random variables, the medium er-
ror probability regime is analogous to the one in which the goal is to characterize the
probability that the unnormalized sum makes a deviation whose size lies between two
extremes of large deviations and the central limit theorem [21, Theorem 3.7.1], which
is now called a moderate deviations result. Similarly, the refined analysis suggested to
address the accuracy issue in small error probability regime resembles the exact asymp-
totics problem in large deviations (e.g., [7], [21, Theorem 3.7.4]). This problem aims to
determine the pre-factor of the exponentially vanishing term in the large deviations the-

orem. Bahadur and Rao characterized this pre-factor, @(1/ VN), including the constant,

P.(N,R)
1 Large Error Probability
Medium Error
Probability
O(1)
Small Error Probability
o—NE(R)

o R

Figure 1.2: Graphical representation of small, medium and large probability
regimes.

11



under some regularity conditions [7].

1.3 Summary of the results

In Chapter 2, we analyze the medium error probability regime. In particular, we charac-
terize the optimal error probability when rate increases to the capacity, by proving that
if this increase is slower than the one in large error probability regime, then the opti-
mal error probability goes to zero sub-exponentially fast. Further, we show that the rate
of this sub-exponential decay is inversely proportional to the dispersion of the channel,
defined in (1.7), and hence giving another operational significance to this fundamental

quantity.

The rest of the thesis is devoted to the more refined analysis in the small error prob-
ability regime, i.e., improvement of the sub-exponential term in the random coding and

sphere-packing bounds.

In Chapter 3, we prove a lower bound for constant composition codes for rates be-
tween R, and C with a pre-factor of Q(N‘%(““";)), for any € > 0, where p;, is the

maximum absolute-value subgradient of Esp(R).

Chapter 4 is devoted to prove the counterpart of the aforementioned result. Specifi-

cally, we prove the following:

1. If a positive dispersion DMC satisfies a certain regularity condition, then for rates

between R, and C, there exists an (N, R) code with maximal error probability
Ky e~ NEr®)
N%(l’“ﬁ;)

related to the subdifferential of the random coding exponent E.(R). Further, if the

smaller than , for any € > 0, where K is a positive constant and pj is

12



channel is positive, then py is the maximum absolute value subgradient of E,(R)

and one can drop €.

2. If a positive dispersion DMC does not satisfy the aforementioned regularity con-

dition, then for rates between R, and C, there exists an (N, R) code with maximal

Kye~NE(R

error probability smaller than 7

, where K5 is a positive constant.

The order of the improved pre-factors are close to each other, but not exactly the
same. However, when restricted to a specific class of channels, namely symmetric chan-
nels'®, we characterize the optimal order of the sub-exponential term, which constitutes
Chapter 5. To be specific, for rates between R, and C, the optimal order of the pre-factor
for the typical symmetric channels is @(N03I+E'®D) where E’(R) is the slope of the
reliability function at rate R, whereas for the remaining symmetric channels, @(N~7) is
the optimal order of the pre-factor. This dichotomy of the sub-exponential term appears

to be a noteworthy observation.

1.4 Notation

In the sequel, boldface letters denote vectors, letters with subscripts denote individual
components of vectors. Capital letters represent random variables and lowercase letters
denote individual realizations of the corresponding random variable. Z*, R, R, and R*
denotes the set of positive integers, the set of real, non-negative real and positive real
numbers, respectively. Given two finite sets X and Y, P(X) (resp. P(Y|X)) denotes the
set of all probability measures on X (resp. the set of all stochastic matrices from X to V).
® and ¢ denotes the distribution and density of the standard Gaussian random variable,

respectively. Given a set S, 8¢, cl(S), 8°, ri(S) and |S| denotes the complementary set of

16See Definition 9 for the definition of symmetric channels.
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S, the closure of S, the relative interior of S and the cardinality of S, respectively. S(P)
denotes the support of the probability distribution P. 1{-} denotes the standard indicator

function. Given a matrix A, AT (resp. det(A)) denotes its transpose (resp. determinant).
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CHAPTER 2
MODERATE DEVIATIONS IN CHANNEL CODING

Moderate deviations have been a fixture of probability theory for some time (e.g., [29],
[30], [31, Sec. XVL.7], [45, Chapter 8], [49] and references therein). However, their
appearance in information literature is recent. In particular, Slepian-Wolf problem, also
known as source coding with side information problem (e.g., [65]), appears to be the first
classical information theory setup investigated from moderate deviations perspective
(cf., the work of He et al. [17], [39], [40], [41]). Altug and Wagner introduced moderate
deviations in channel coding by proving the main result of this chapter for positive!
discrete memoryless channels [1]. Polyanskiy and Verdd [53] extended the result in
[1] by relaxing the positivity assumption for discrete memoryless channels and proving
an analogous result for Gaussian channels. More recently, moderate deviations in lossy
source coding and binary hypothesis testing problems have been investigated by Tan [67]

and Sason [57], respectively.

The result provided here improves upon [1] by relaxing the positivity assumption
and simplifying the argument. The proof is different from that of Polyanskiy and Verdu,
who rely on methods from [52] and powerful results from probability theory. It is also
different from that of He et al. and Tan, who use type theory. It is worth noting that
standard finite block length bounds on the rate and error probability from small error
probability regime are insufficient to obtain a conclusive moderate deviations result, so

we develop new bounds that are tailored for the particular regime at hand.

'A discrete channel is positive if all of its transition probabilities are positive.
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2.1 Statement of the results

Theorem 1. For any DMC W € P(Y|X) with V > 0,2 for any sequence of real numbers

{en}ns1 satisfying

(i)ey = 0, as N — oo,

(ii) ey VN = o0, as N — oo, 2.1)

there exists a sequence of codes {(fn, ¢n)}n=1 that satisfies Ry = % > C — ey, forall
N € Z* and

1 1
lim sup — In P.(fv, < ——, 2.2
N_)OOP Ne]%, (fn»®n) oV (2.2)

where P,(fy, pn) denotes the maximal error probability of (fy,¢n). ¢

Theorem 2. For any DMC W € P(Y|X) with V > 0, for any sequence of real numbers

{en}ns1 satisfying (2.1) and for any sequence of codes {(fn,on)Ins1 satisfying Ry =

I
% > C — ey, we have

1 - 1
liminf — InP.(fy,¢n) =2 —55 (2.3)

N—oo NGN ZV’

where P,(fy, ¢n) denotes the average error probability of (fy,¢n). ¢

Remark 3. Polyanskiy and Verdii [52] show that the assumption V > 0 is necessary in
order for ﬁ In P,(fy, ¢n) to have a finite limit. If V = 0, then it is tempting to conjecture
N

that NLEN In P.(fv,en) has a finite limit (see [52, Theorem 4]). &

Remark 4. Our achievability proof follows from Gallager’s random coding bound (e.g.,
[35, Corollary 2, pg. 140]), which states that for any rate R and block length N, there

exists an (N, R) code (fy, pn) such that

P(fy, on) < 4e™VE®, 2.4)

2Since V > 0 implies that C > Ry, (W) > 0 (e.g., [35, pg. 160]) we have C > 0.
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Since N and R are arbitrary, we can let R = C — ey and approximate E,(-) around C
via a Taylor series to obtain Theorem 1. This line of reasoning is made rigorous in

Section 2.2.1.

The achievability argument is deceptively simple in that it obscures issues that
should be addressed to prove the converse. To prove the converse, we would like to
show that for any ey satisfying the hypothesis of the theorem and any a > 1, there exist
sequences By and yy satisfying

By

S

- 0, (2.5)

1
—Inyy — 0, 2.6
N€2 YN ( )

N

such that for all sufficiently large N and all (N, C — €y) codes (fn, ¢n), we have
P.(fy. on) > yye Vs Cmanho, (2.7)

If one could prove such a bound, then she could obtain Theorem 2 by expanding Esp(-)

as a Taylor series around C and taking the appropriate limit.

But it is not clear whether a bound like (2.7) holds. The refinement of the sphere—
packing bound that is given in Chapter 3 (see also [5], [6]) states the following: for
all € > 0, all fixed rates R below the capacity, and all sufficiently large N, any constant

composition (N, R) code (fy, ¢y) satisfies®

P.(fn,on) 2 (2.8)

(1+¢e)ln VN
—

K&®) exp { NE (R
Xpy—NLEsp| K —
VN
Moreover, the N-dependence on the right side is essentially the best possible for a fixed

R, owing to the refinement of the random coding bound given in Chapter 4 (see also [3]).

Although the rate backoff in this bound clearly satisfies (2.5), whether the pre-factor

satisfies (2.6) hinges on R dependence of K(R). This dependence is not currently known,

3Strictly speaking, (2.8) is not the same as the one given in Chapter 3. The latter is more involved than
the former. The difference between them, however, is immaterial as far as the following discussion goes.
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but it can be postulated via the following reasoning. In large error probability regime,
in which the rate approaches the capacity at a speed of 1/ VN, the error probability
is asymptotically constant [66], and a Taylor series expansion of the sphere-packing
exponent shows that the exponential factor in (2.8) is also asymptotically constant in
this regime. If we assume that (2.8) holds in this regime, then it follows that the pre-
factor must also be asymptotically constant, which suggests that K(R) might behave as

1/(C — R). If this is true, then the pre-factor would satisfy (2.6), so (2.7) would hold.

We show that (2.7) indeed holds, although our proof does not involve characterizing
how K(R) varies with R.* Instead we prove (2.7) directly by using a particular set of
classical information theory results, which do not appear to have been used in combina-
tion before, to prove a version of the sphere-packing exponent that is especially tight at
finite block lengths and rates near capacity. The fact that our proof is similar to existing
derivations of the sphere-packing exponent and uses well-known ingredients might give
the impression that the result is routine. In fact, the required bounds are quite delicate,
as the above discussion illustrates, and many conceptually-similar approaches to prov-
ing the sphere-packing exponent fail to give a conclusive moderate deviations result.

&

2.2 Proofs

Given any W € P(Y|X), let

W(IX)
Yeex PQW(Y) |
where (P X W)(x,y) = P(x)W(y|x). Using (2.9), note that (1.7) can also be written as

V(P) := Varpyxy [In (2.9)

V= PGP(XI)I}II(IIE;W):C V(P), (2.10)

“Determining how K(R) varies with R is an interesting subject for future work.

18



and let P denote some element of P(X) that achieves the minimum in (2.10).

We note a couple of auxiliary results® that will be used in the sequel.

Lemma 1. Given any W € P(Y|X) with no all-zero column, E,(p, P) possesses the

following properties:

1) Given any P € P(X), E,(p, P) is concave in p € R,.

2) Given any P € P(X),

E P
L P _ypow), 2.11)
ap p=0
3) Given any P € P(X),
’E P
TES. P) (’; )| - —V(P). (2.12)
op =0
4) Given any P € P(X),
anﬁ—(g,P) <IP;W),V¥p€eR,. (2.13)

5) —aE”a(ﬁ’P) is continuous over (p, P) € R, X P(X).

2
6) 0°E,(p,P)

o7 is continuous over (p, P) € R, X P(X).

7) —63‘%’;‘3”}’ ! is continuous over (p, P) € R, x P(X). ¢

Proof. The proof is given in Appendix A.1. O

>The proof of the results are straightforward calculations. Further, items 1) through 4) have been noted
before (e.g., [35, Theorem 5.6.3]). However, we have not encountered a proof for the remaining ones.
Since the first four items directly follows from the calculations needed to deduce the last three, we opted
to include them in Lemma 1 for the sake of reader’s convenience.
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2.2.1 Proof of Theorem 1

Let W € P(Y|X) be an arbitrary stochastic matrix satisfying the conditions stated in the
theorem. Without loss of generality, suppose that W has no all-zero columns. Further,
let {ey}y>1 be an arbitrary sequence of real numbers, satisfying (2.1). By (2.1) and the
fact that C > 0, we have

C-ey>0, (2.14)

for all sufficiently large N € Z*. Next, fix such an N. Gallager’s random coding bound

(e.g., [35, Corollary 2, pg. 140]) implies that there exists (fy, ¢n), such that % =

Ry > C —eyand

Pe(fv, on) < 4exp {—N [5253 {Eo(p, P) - PRN}]} ; (2.15)

for all P € P(X). Therefore, (2.15) implies the existence of a sequence of codes
{(fv, on)}ns1, s.t. forall N € Z*, Ry > C — ey and

In4 1
22 = max {Eo(p, P) - pRy], (2.16)

1
— InP.(fy, < —
N (fson) Nfz%/ 61%/ ooy

N

for all sufficiently large N and any P € P(X). Hence, it suffices to prove that (2.2) holds

for this particular sequence of codes in order to conclude the result.

Using Taylor’s Theorem, along with (2.11) and (2.12) (cf., items 2) and 3) of

Lemma 1), for any p € R,, we have

P’ PEo(p, P)

2.17
5 o , 2.17)

p=p

~ p2
Eo(p. P) = pC =5V +

for some p € [0, p], where as noted before P is some dispersion attaining input distribu-

tion. Next, let py = EVN, for all N € Z*. Then, (2.17) yields,

2

max{E(pP)—pR}>6—N—
0<p<1 U007 M=2v 6v3

3
€y

0°E,(p, P)
op?

, (2.18)

p=pNn

for all sufficiently large N and for some py € [0, py].
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Next, note that py < 1, for all sufficiently large N, since limy_,., ey = O (cf., (i) of

(2.1)) and V > 0. We define

M := max (2.19)

(p,P) € [0,1]xP(X)

0’Ey(p, P)
op? .

Owing to item 7) of Lemma 1, the maximum in (2.19) is well-defined and finite. There-

fore, (2.18) and (2.19) imply that

max [Eo(p, P) - R}>—N—6—NM (2.20)
0sp<t U007 PENT =2y Tevs '
for all sufficiently large N.
Substituting (2.20) into (2.16) yields
1 In4 1 €n
P, s———(l—M—), 221
Ne PN S ga oy 312 221)
which, in turn, implies (recall (2.1) and (2.19))
li ! In P.(f; ) < ! (2.22)
im sup — In P.(fy, < ——, )
N—>oop NE]%/ N> PN 2V
which is (2.2). O

2.2.2 Proof of Theorem 2

Let W and {ey}y>1 be as in Section 2.2.1. Further, let {(fy,¢n)}n>1 be an arbitrary
sequence of codes with % = Ry > C — ¢y, for all N € Z*. Observe that owing
to standard arguments used to switch from the maximum to average error probability
(e.g., [63, eq. (4.41)]), it is sufficient to show the conclusion for the maximum error
probability, i.e.,

. 1 1
lll{lrl)lololf N_ej%, InP.(fv, on) = YA (2.23)
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in order to prove (2.3). By similar reasoning [20, pg. 171], we can assume that the code

is constant composition.

Next, we briefly outline the rest of the proof, which consists of three steps. The first
step is to prove a strong converse theorem, Lemma 2, tailored to the particular situation
at hand. The second step is to use Lemma 2 and “change of measure” to prove (2.7) (cf.,
Remark 4). The final step is to approximate the exponent in (2.7) via a Taylor series to

conclude the result.

Remark 5. Lemma 2, which could be of independent interest, is derived from Wol-
fowitz’s converse to the channel coding theorem [72]. Although our version requires
that the code be constant composition, an assumption not required by Wolfowitz, it
shows that the error probability must be near unity if the rate exceeds the mutual in-

formation induced by the code. Wolfowitz requires the rate to exceed capacity. <

Remark 6. One of the well-known change of measure arguments is Marton’s [48, eq.
(12)]. Although Marton originally applied it to rate distortion, the application to chan-
nel coding is obvious. It does not seem sufficient to prove (2.7), however. Instead, we
use a change of measure argument based on the log-sum inequality, given by Csiszdr

and Korner [20, pg. 167]. &

Define the constant A as follows:

A= max Var [ln (2.24)

V(Y|X) 1
(PXV) € PXOXPYIX) ’

oY)
where Q(y) := Y .ex P(x)V(y|x), Yy € Y. Note that, since the cost function is continuous
in the optimization variable and we work with finite alphabets, the maximum in (2.24)

is well-defined and finite.

Lemma 2 (Strong Converse). Let (f, @) be an arbitrary constant composition code with

block length N, common type P, and rate R > 0. Let V € P(Y|X) be an arbitrary
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stochastic matrix satisfying I(P; V) < R — 26, for some 6 > 0. Then, we have

- A
P.(f,p)>1- Nz e, (2.25)

where A is defined in (2.24) and the error probability is due to DMC'V. ¢

Proof. The proof follows similar steps to that of [35, Theorem 5.8.5]. Let (f,¢), V €
P(Y|X) and 6 > 0 be as in the statement of the lemma. Define

V(YVNxY)

G(m) = {m )

>NI[I(P;V)+ 6]} , (2.26)

forany m € M := {1,...,[eNR]}, where Q(y") := [T, Q). Vy" € YV along with

OO) := X ex P(X)V(y|x). Also, for the sake of notational convenience, define i(x,y) :=

In ‘g(');), for any (x,y) € X X Y. Note that we have
VMY m) o, VOulm) <
In W = ; In W ; l(x,,(m) yN) (227)

for all m € M, where x"(m) denotes the codeword of the code corresponding to the

message m. Hence, for any m € M, we have

EV(-IXN(m)) [l(XN(m), YN)lxN(m) Z EV( | xp (m)) [l(-xn(m) Y )l-xn(m)] (228)
Vylx)
= > N(xx"(m)) > V(ylx)n (2.29)
;‘Y y;‘ o®)
Vilx)
=N ) P Vv In 2.30
; (x)); Ol =55 (2.30)
= NI(P; V), (2.31)

where (2.28) follows from (2.27), (2.29) follows from the definition of N(x|x"), which
denotes the number of occurrences of the symbol x € X in the string x¥, and (2.30)

follows from the definition of the type P.
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Next, let ¢! (m) c YV denote the decoding regions of (f,¢), Ym € M. We have

_ 1
L=P(fop)= ), mor D, V&' m) (2.32)
m€M| | yVep~1(m)
= Z M 2 VoK« Z M2 Ve,
meM yVep 1 (m)NG(m) meM yNep 1 (m)NG(m)©
(2.33)
Recalling (2.26), for any yV € G(m), we have
V(y"x"(m)) < Q(y") exp {N [I(P; V) + 61}, (2.34)
which, in turn, implies that
1
b 1% N < NN\ NI[I(P;V)+6] 2.35
ZIMIN_.Z VO ) < Zl IN_IZ 05" (2.35)
meM yN e~ (m)NG(m) meM e~ (m)NG(m)
< N eN[I(P;V)+(5] 236
;l Z o) (2.36)
m e~ (m)

NIPV ol}
- WIED+D S 3 0w @37)

NR
e
-l meM yNep=1(m)

IA

exp{-N[R-I(P;V) -]} (2.38)

<e™ (2.39)

where (2.38) follows from the fact that the decoding regions are disjoint and Q is a

probability measure on YV and (2.39) follows from I(P; V) < R — 26 assumption.

Next, note that for any m € M

> v my < Y vy ik om) (2.40)
yVep™l (mNGm) yNeG(m)
= V{Gm)x"(m)}. (2.41)

Further, using Chebyshev’s inequality (recall (2.26), (2.27) and (2.31)), for any m € M
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we have

SN Var [i(x,(m); Y,,)|x,(m)]
N2§2

V{Gm)x"(m)} <

_ 2 VOlx.0m)
= 5 { ZZV(ym(m)) In’ 56)

n=1 yeY
L VOl
— V(y|x, In
NZ;[yZy] Obm) In =55

Vlx,(m))
V(ylx,(m)) In®
; yezy: o)

62
N 2
V(ylxa(m))
V(ylx, In
(RS v i |

» Vo)
=5 {ZX P ), VOl In® 57

yey

V(1)
P() Y Vol In ]
(Z,; ;y 00) }

Var [ln Vgg)]

N&?

IA
z| -
E]TS

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

where (2.44) follows from Jensen’s inequality and (2.45) follows from the definition of

P. Plugging (2.46) into (2.41) and recalling (2.24) yields

memM Y VR <

>
yNep=(m)NG(m) 0
Plugging (2.39) and (2.47) into (2.33), we deduce that
5 A -N6
P.(f, ) 2 1—W—€ ;

which is (2.25).

Next, fix some 0 < y < 1/2. Let € R* be defined as

(2.47)

(2.48)

(2.49)



Note that for all sufficiently large N,
0<C- (eN + —) (2.50)
e W <y2. 2.51)

As a direct consequence of the Strong Converse lemma (with the choice of 6 = ¢/ VN),

for any V € P(VY|X) satistying I(Py; V) < Ry — 2—‘1/’\/, we have
Ame M={1,... 1"}, st 1= Vg mix"(m)} = 1 -7, (2.52)

for all sufficiently large N € Z*, such that (2.50) and (2.51) hold. Here, Py denotes the
composition of the code. Note that N does not depend on the specific choice of V. Fix

a sufficiently large N such that (2.50) and (2.51) hold.

Lemma 3 (Change of Measure). Let (f,¢) be an arbitrary constant composition code

with block length N and composition Py. Then

vePix) IByskRy-2 L 1=y N( =)

for all sufficiently large N € Z* such that (2.50) and (2.51) hold, where h(-) is the binary
entropy function, i.e., h(p) := pIn(1/p)+(1—p)In(1/(1 - p)), ¥ p € [0, 1], and the error
probability is due to DMC W. ¢

Proof. The argument is due to Csiszar and Korner (e.g., [20, pg. 167]), and we state it

for the sake of completeness. Fix N and let V be any channel such that

: _u
1(P,:V) < Ry = (2.54)

By the log-sum inequality (e.g., [20, pg. 48]), for any message m, we have

V((¢~ (m))°Ix" (m))
W@~ (m))“[xN (m))

< D(V||IW[x" (m)), (2.55)

V(g™ (m)|x" (m))

-1 N
V(e™ (m)x"(m))In W (g (m)|xN(m))

+ V(@™ m)“1x" (m)) In
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where ¢~!(m) denotes the decoding region for the m-th message and (¢~ (m))° denotes

its complement. This, in turn, implies that

- c 1 -
V(@™ m))Ix" (m)) In W R m) < DVIIWIX"(m)) + h(V(p™ (m)[x" (m))).
(2.56)
Applying this inequality to a message satisfying (2.52) gives (2.53). O

By recalling the definition of Haroutunian form of the sphere-packing exponent (cf.,

(1.16)), (2.53) implies that

_ E -
Pu(fun) 2 € 1 exp {—N( 5 (Cl - j’v’ W))} : 2.57)

where

2y

\Né,

for all N € Z*. Note that this establishes (2.7). We define

6N::6N 1+

(2.58)

2y

and note that since ey VN 5> c0as N - o (cf., item (i1) of (2.1)), ay —» 1 as N — oo.

ay =1+ ,VYNeZ", (2.59)

Therefore, 6y — 0 as N — oo (cf., item (i) of (2.1)).

The third and final step of the proof is to approximate the exponent on the right side
of (2.57). To this end, first note that if the rate is above the critical rate®, i.e., R > R.,,

then Esp(R) = E,(R) (e.g., Remark 1), which, in turn, implies that

Esp (R) = E/(R) = JDax | max, {=pR + E(p, P)}, (2.60)

by recalling the definition of the random coding exponent (e.g., (1.10)).

6See Remark 1 for the definition of R,,.
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Further, since V > 0, one can infer that (e.g., [35, pg. 160]) R, < C and hence for
all sufficiently large N, C — 5 > R.;. This observation, coupled with (2.60), ensures that

for all sufficiently large N, we have

Esp (C = 6y) = E (C - 6n) = Pfélgg)io 021/;‘1;(1 {—=p[C - 6n] + Es(p, P)}. (2.61)

Proposition 1. (Sphere—packing exponent around C)

Esp (C =65, W) < 1

li ) 2.62
TR T 2w (262
¢
Proof. Let Qy and py achieve the maxima in (2.60) at rate C — dy;, 1.€.,
Esp(C — 6n) = —pn(C — 6n) + Eo(on, On). (2.63)

Now Egp(C — 6y) > 0 for all N, since the sphere-packing exponent is positive for all
rates below the capacity (e.g., Remark 2). This implies that py > 0 for all N. Since

E,(p, P) is concave in p, it follows that

8E0 (p’ QN)

C-oy=
o,

, (2.64)
for all V.

Our proof of Proposition 1 will use the following lemma.
Lemma 4.
(a) Any limit point of {Qy} is capacity achieving.
(b) limy_,e py = 0.

: PN 1
(c) limsupy_,, s Sy ¢
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Proof. Consider arbitrary subsequences {Qy, },>1 and {py,},>1 and note that, owing to
the compactness of P(X) and [0, 1] (switching to a further subsequence, if necessary),

we may assume that

lim QNn = P(), lim PN, = Pos (265)

n—0oo

for some Py € P(X) and p, € [0, 1].

Now (2.64) and item 5) of Lemma 1 together imply that

_ an(P, PO)

C (2.66)
B gy
On the other hand, item 4) of Lemma 1 implies that
JE, (o, P
Eolp: Pl _ I(Py; W) < C. (2.67)
9 lep

It follows that Py is capacity achieving. Since the subsequence was arbitrary, this estab-

lishes (a).

8*Eo(p,Po)

Op? <

Since Py is capacity achieving, the assumption that V > 0 implies that .
p:

0 by part 3) of Lemma 1. Then, items 1) and 2) of Lemma 1 imply that the first inequality
in (2.67) holds with equality if and only if py = 0. Since the subsequence was arbitrary,

this establishes (b).

Next consider ME(S&

, viewed as a function of p. This function equals I(Qy, ; W) at
p = 0 by part 2) of Lemma 1, and it equals C — 6y, at py, by (2.64). It is differentiable
in p by item 6) of Lemma 1. Thus, by the mean value theorem, there must exist a Py, in

[0, pn, ] such that

62E0 R | W)—-C+6
_ ;P2QN,,) _ (QN,, ) N (2.68)
P 0=PN, PN,
0
< (2.69)
PN,
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Now by items 3) and 6) of Lemma 1,

FEq(p, &Eo(p, P
lim w - % = V(P < -V. (2.70)
e p ,D:,an p p=0
Combining the last two inequalities gives
1
limsup 2 < — 2.71)
n—oo N, 14
Since the subsequence was arbitrary, this establishes (c). O

We are now in a position to prove Proposition 1. For any sufficiently large N, Tay-

lor’s Theorem gives (recalling items 2) and 3) of Lemma 1)

Esp(C — 6x) = —pn[C = 6y] + Eo(on, On) (2.72)
2 3 63EO ,
= pv [I(Qn; W) = C + 6y] - (pg) V(Qn) + (pg) 8(,) ; U
P P=pN
(2.73)

for some py € [0, pn]. If we use the constant M defined in (2.19), then we eventually

have
2 3
M
Esp(C ~ 0w) < pw [1Qx: W)~ C + 031 = Evioy + 2225 74
Since we must have I[(Qy; W) < C, this yields
2 3
M
Ese(C — w) < pwon — L0 viQy) + 2 (2.75)
2 3
M
< sup {pa,v - p—V(QN)} o) (2.76)
peR, 2 6
oy . (n)’M
= . 2.77
ey T 6 @.77)
Using (2.77) and items (b) and (c) of Lemma 4, we deduce that
) Esp(C —6n) .. 1
lim sup ——— < limsu 2.78
N—)oop 6%] N—)oop 2V(QN) ( )
1
< — 2.7
<5y (2.79)
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where (2.79) follows from the continuity of V(-) on $(X) (item 3) and 6) of Lemma 1),

item (a) of Lemma 4 and the definition of V (cf., (2.9)). ]

Equipped with Proposition 1, we conclude the proof as follows. Recall that 6y =

eyay, where ay > 0, forall N € Z" and ay — 1 as N — oo. Hence,

Esp (C = & Esp (C -6
timsup 22L& =) _ jipy gy 250 €~ 00 (2.80)
N—oo 6N N—oo EN

Since limy_, Ney = oo (cf., item (ii) of (2.1)), (2.57), (2.61) and (2.80) imply that

.. 1 1 1
lll{lllglfN—ej%] InP.(fy,on) = —ﬁm (2.81)

Since 0 < y < 1/2 is arbitrary, letting y — 0 in the right side of (2.81) yields (2.23). O
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CHAPTER 3
REFINEMENT OF THE SPHERE-PACKING BOUND

In this chapter, we improve the sub-exponential term in the sphere-packing lower bound.
As noted before, this can be thought as the analogous of the exact asymptotics problem
in large deviations (e.g., [7], [21, Theorem 3.7.4]) for channel coding. Exact asymp-
totics problem in large deviations aims to determine the pre-factor of the exponentially
vanishing term in the large deviations theorem. Bahadur and Rao [7] characterized this
pre-factor, ®(1/ VN), including the constant, under some regularity conditions. Their

result, in the form stated by Dembo and Zeitouni [21, Theorem 3.7.4], is the following:

Theorem (Bahadur-Rao). Let Ay denote the law of Sy = % Z?Ll Z;, where Z; are i.i.d.
real valued random variables with logarithmic moment generating function A(9) :=
In E[¢%?']. Consider the set A = [a, o), where a = N'(n) for some positive n € {5 :

A(6) < oo}°. If the law of X, is non-lattice', then limy_,., JyAn(A) = 1, where

Iy = "N O A" (n)2nN

and N*(-) is the Fenchel-Legendre transform of A(:), i.e., A*(a) := sups {ad — A(0)}). ¢

If X, is a lattice random variable, then the order of the pre-factor is the same, but the

constant is different.

In our analysis leading to improved pre-factors, the essential idea is to reduce the
error event of a code to a sum of independent random variables. However, Bahadur-
Rao theorem is not directly applicable, because after the aforementioned reduction, the

threshold a must vary slightly with N, as will be evident in the sequel®>. So, we need a

X, is called lattice random variable if there exist constants d and 4 € R* such that X, e {d +kh : k €
Z} — (a.s.) [23, pg. 129].

2We note that this slight variation is the reason to have the slope related term, in addition to @(N ‘%)
factor, in the pre-factor of our result. For a concrete example regarding this, see the discussion at the end
of Section 3.2.1.
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varying threshold version of this result. Although there are extensions of this kind (e.g.,
[15]), these results also depend on the lattice nature of the random variables to deduce
sharp constants. However, our focus in this study is on the order of the sub-exponential
term, not the constants, so in order to prevent the technicalities associated with differen-
tiating between lattice and non-lattice random variables, we prove the following result,

that will be frequently used in the sequel.

Let {Z;};>1 be independent, real-valued random random variables with law A; and
assume Y7, Var[Z;] > 0. Define A;(6) := InE [e‘sz'] and assume the existence of a g € R

with a corresponding 7 > 0 satisfying

(i) There exists a neighborhood of 7 such that %Zle A;(6) < oo, for all § in this

neighborhood.

(i) 5 X7, A = g.

Let A;(-) denote the Fenchel-Legendre transform of %Z?:l A;(+). Define ‘%(z) =
e" N Ty = Z = BylZi), my, = Xy Vary [T, ms, = YL Ei[IT/P]. Define
S, = %ZL Z; and let yu, (resp. fi,) denote the law of S, when Z; are independent

with laws A; (resp. ). Set K,(q) :=2 \2rn

m

iy and 1,(a, q) 1= a2 N2xm e for any a > 1.

Lemma 5 (Concentration lemma). For any n € Z* and a > 1,

eMD[] + M]
a

n ([g, ) < : 3.1
Hn ([g, 00)) Y (3.1
e N @@ (1 - 1) (1 + 1,(a. q)) [1+ (1 + t(a, 9))?]
Hn ([, 00)) = 1 - - :
n\2rms,, (1 + ta(a, ) (1 - 1) 2 yema,
(3.2)
Moreover, if n < 1, then
e~ Knm I+ (1+ Kn(n))z)
2 ([g, 00)) > 1 - . 3.3
Hn ([g, ) m( 2 (3.3)
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Further, if the random variables are also identically distributed, then (3.1) still holds

m3

with t,(a, q) replaced with a \/Enw. ¢
Proof. The proof is given in Appendix B.1. m|

3.1 Definitions and statement of the result

Throughout the chapter, let W be a DMC satisfying R, < C. For any P € P(X), define

Esp(R, P) = min D(V|IW|P), (3.4)
VePWIX): [(P;V)<R

and note that Egp(R) = maxpep(x) Esp(R, P).

The following can be shown?® to be the maximum absolute value subgradient of the

sphere packing exponent at point R

= max Ew(R, P)|, 3.5
pR PEP(X)ZESP(R,P)=ESP(R)| SP( )| ( )

where Egp(R, P) denotes the slope* of Egp(-, P) at point R.

Given any (N, R) code (f, ¢), let e,,(f,¢) denotes the error probability of the m-th

message.

Let Z be a finite set and Q, Q € P(ZZ). A deterministic hypothesis test, T : Z —

{0, 1}, over the set Z in which Q is the null hypothesis (H;) and 0 is the alternate

3Since Egp(-, P) is convex for all P € P(X), Egp(-, -) is continuous on (Re, 00)XP(X) (cf., Lemma 30 in
Appendix B.7) and P(X) is compact, one can invoke the characterization of the subdifferential of the max-
imum function (e.g., [56, Theorem 2.87]) to deduce that dEsp(R) = conv (Up:E(r.p)=EspR){OEsp (-, P)(R)}),
where conv(-), dEsp(R) and dEgsp(:, P)(R) denotes the convex hull, subdifferential of Esp(-) at point R and
subdifferential of Esp(-, P) at point R, respectively. This observation, coupled with the differentiability of
Esp(-, P), i.e., Proposition 4, and the continuity of E,(R, -), i.e., Proposition 5, suffices to conclude the
claim.

4One can show that Esp(R, P) is differentiable with respect to R, for given P, provided that R,, < R < C
and Egp(R, P) > 0, e.g., Proposition 4.
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hypothesis (H;) is defined as

O, le (S 7/[T,
T(z) = 3.6)

1, ifzeUs,
where {Ur, U3} are called the decision regions of the test. Let 7 (0, Q) denote the set
of all deterministic tests between Q and Q. The error probabilities associated with T are

defined as a7 := Q{U%} and By := O{U7}. For any r > 0, define

a’ A(r) = min ar. 3.7
0.0 TeT(0,0)Br<e

Theorem 3. Consider any R € (R.,,C) and { € R*. Then, for any sufficiently large N,

depending on R, W and { and any (N, R) constant composition code (f, ¢),

e NEsp(R)

P.(f,¢) 2 K (3.8)

N%(l+(1+{)p;}) ’

where K € R* is a constant that depends on R, W and {. ¢

3.2 Proof of Theorem 3

3.2.1 Overview

There are at least three proofs of the sphere-packing bound in the literature: that of Shan-
non et al. [63], Haroutunian [38] and Blahut [12]. Of these, Blahut’s argument seems to
be the most natural starting point for obtaining improved pre-factors, as it allows one to
convert the error event of a code into an event involving a sum of i.i.d. random variables,
to which one can apply the Bahadur-Rao result. The Shannon et al. argument is similar
to Blahut’s in some ways, but it is less amenable to exact asymptotics. The Haroutunian

argument is combinatorial and even farther removed from i.i.d. sums.
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Blahut’s argument proceeds as follows. Assume R, < R < C and let (f,¢) be
an (N, R) code. Let {U,,}.cpm denote the decision regions of ¢ corresponding to each
message m € M. Let Q € P(Y) be an auxiliary output distribution. Let W(y"|x") :=

L W(nlx,) and Q(yY) := [T).; Q). Since Yyveyn Q(y") = 1 and M| > "%, there

must be a message m € M such that Q{U,,} < e k. Let x" := f(m) be the codeword

for this message. It is clear that P.(f, ¢) > e,,(f,¢) = W {(ngqlxN}.

Now consider the hypothesis test over the set YV in which W(-|x") is the null hypoth-
esis (Hp) and the i.i.d. output distribution Q is the alternate hypothesis (H;). One feasible
test is to accept Hy on U, and H; on U, resulting in type-I and type-II error probabil-
ities of W(UC|XY) = e, (f, ) and Q{U,,}, respectively. Since a’;v(_lx,v)’ Q(NR) denotes the

minimum type-I error probability, optimized over all tests, subject to the constraint that

the type-II error probability does not exceed e ™% (cf., (3.7)), we evidently must have

Pu(f,¢) = @y ) o(NR). (3.9)

The error exponent of this test can be expressed via the following definition. For any

Ve P(YIX), P € P(X) and Q € P(Y), define D(V||Q|P) := Y ,cx P(X)D(V(-|x)||Q).
Definition 1. For any P € P(X) and Q € P(Y)

esp(Q, P,r) = inf D(V||W|P). (3.10)
VeP(Y|X): D(V||QIP)<r

forallr e R,. ¢
Then the optimal type-I error exponent can be shown to be (e.g., [12, Section V])
esp(Q, P, R), where P is the empirical distribution of x".

Note that this exponent depends on the output distribution Q, which is to be selected.
This distribution can be chosen to depend on P, since it can depend on the code, although

allowing such dependence necessitates a restriction to constant composition codes. In
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the original argument [12, Section V], this freedom is not used, and Q depends on R
(and the channel) but not P. Pre-factors aside, it is not clear that this choice yields the
standard sphere-packing exponent when (3.10) is maximized over P. This is asserted to
be the case in [12, Theorem 19] and [13, Theorem 10.1.4], but each of these proofs has
a nontrivial gap’. Moreover, a numerical study indicates that for the Z-channel and for
this choice of Q, Esp(R) < maxp esp(Q, P, R), for a broad range of rates. For symmetric
channels, Q can indeed be chosen independently of P [2], and so the code need not
be constant composition. But in the general case, it appears that some dependence is

necessary if one hopes to obtain the sphere-packing exponent.

Our choice of Q will depend on P and give the sphere-packing exponent. Thus, one
of the ancillary contributions of this chapter is to give a complete proof that the hypoth-
esis testing reduction described can be used to obtain the sphere-packing exponent. In
fact, using the hypothesis testing reduction, we shall prove the stronger result that the
exponent on the error probability of any constant-composition code with composition P
is upper bounded by Egp(R, P); previously, the only proof of this fact used combinatorial

techniques.

It is worth noting that the Shannon et al. proof also involves the choice of an output
distribution. Their choice of output distribution also depends on P, but it is defined
differently from ours. Our choice yields the Egp(R, P) exponent, whereas Shannon et al.

only establish an exponent of Egp(R).

Before concluding this section, it is instructive to consider a binary symmetric chan-
nel (BSC) with crossover probability p € (0, 1/2) in order to see why the slope related

term arises in Theorem 3. One can check that the output distribution mentioned in [2,

SSpecifically, the argument for [12, Theorem 19] seems to proceed as if Lagrange multipliers of
maxp Esp(R, P) and maxpesp(Q, P, R) are the same, which is not evident. For [13, Theorem 10.1.4],
only esp(Q, Py, R) = maxp Esp(R, P) is shown, where P}, attains maxp Esp(R, P), which does not imply
the claim.
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Eq. 9] reduces to the uniform distribution and for these particular choices,

NN 1 & 4
* n N-n _ R
aW(‘IxN),Q(NR) > E (n)p Q-p" "= Pr{—N E Zy 2 N }, 3.11)

—_p* —
n=np+1 n=1

where {Z,}" | are i.i.d. Bernoulli random variables with parameter p and r; is the largest
k € Z* satisfying
S (N I+ k
VR > 2N =pr{— ) Z, <=1}, 3.12
¢ Z:(; (n) ' {N 2. %2y G.12)

where {Z,,}f;’z are i.i.d. Bernoulli random variables with parameter 1/2. Provided that

1

k/N < 1/2, one can apply Bahadur-Rao theorem to the right side of (3.12) to have

| & k K (41
Pri— Y 7 < —\ > 2L ND(3l), (3.13)
izsil i

where D (k/n||1/2) := k/nln %+(1—k/n) In ]I%” and K is a positive constant. Plugging

(3.13) into (3.12) and recalling the definition of n}, one can verify that

In VN 1HK1]

*

n
s Sh_l(ln2—R+
N

5 ~ (3.14)

By plugging (3.14) into (3.11), applying Bahadur-Rao theorem on the right side of
(3.11) and carrying out the algebra, one can verify that

K, _NESP(R—%) K; —NEsp(R)

w0 (NR) 2 We = NOS(I+Eg®R)D ’ (3.15)

a*
Wl

where K>, K3 are positive constants and the last inequality follows by expanding Egp(-)
as a power series about R. Note that if "ﬁ’* were constant in N, then applying Bahadur-
Rao theorem to (3.11) would give a pre-factor with an order of 1/ VN. But Eq. (3.14)
shows that % increases with N at a rate of '“TN While this increase is too slow to affect

the exponent, it does affect the order of the pre-factor.

Finally, note that the arguments leading to (3.15) are nothing but the “packing of
Hamming spheres”. To be specific, one can check that (e.g., [24]) for this channel, the
error probability of any (N, R) code is lower bounded by that of a hypothetical “sphere-

packed code” with the same parameters. A sphere-packed code is a code such that
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the decoding region of each codeword is an Hamming sphere of a certain radius, say
[N6(R)] with 6(R) > 0, possibly excluding some strings in the outermost layer and the
union of these spheres equals {0, 1}". For the sphere-packed code, an error occurs when
the noise pushes the received signal outside of the Hamming ball of radius nj centered
at the codeword, whose probability is precisely the right side of (3.11). By employing

the upper bound given in (3.14), one can deduce (3.15).

By continuing this sphere-packing analogy, one can intuitively view the lower bound

obtained via the hypothesis testing reduction as the error probability of a hypothetical

sphere-packed (N, R) code on YV with In W(QI(X)N) used instead of Hamming distance. Note

that the extra term in the pre-factor essentially stems from the approximation of the

“maximal packing radius” of the spheres under this metric.

3.2.2 Selecting the output distribution

In order to describe our output distribution, we require the following technical results.

For any Q € P(¥) and A € [0, 1), define

N Ep [InEwe, [(%)”” . A€, 516
0, 1=0.
For any R € R*, define
Pr(X) = {P € P(X) : Esp(R, P) > 0}, (3.17)
Prw(Y) :={0 € P(Y) : Yx € S(P), S(Q) N S(W(:|x)) # 0}, (3.18)
Pow(¥) := {0 € P(Y) : Vx € S(P), Q > W(|x)}. (3.19)

Further, given any R > R, and P € P(X),

Kip : Ry X Ppw(¥) = R, s.t. Kgp(p, Q) = —pR — (1 +p)Agp (0/(1 +p)),  (3.20)
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for all (p, Q) € Ry X Ppw(Y).

Proposition 2 (Saddle-point). Consider any R, < R < C and P € Pg(X).

(i) Kgrp(-,-) has a saddle-point with the saddle-value Esp(R, P).

(ii) Any saddle-point of Kg p(-, ), say (p*, Q%), satisfies (p*, Q") € R* X Ppy(Y). ¢

Proof. The proof is provided in Appendix B.2. O

Let S (R, P) denote the set of saddle-points of Ky p(-, ). Moreover,
SR, P, :={p Ry :FQ e Ppw(Y), s.t. (p,0) € S(R, P)}, (3.21)

SR, P)lppyw) =10 € Pow(Y) : Ap € R, s.t. (p, Q) € S(R, P)}. (3.22)

Proposition 3 (Uniqueness of the saddle-point). For any R, < R < C and P € Pg(X),

S(R, P) is a singleton. ¢

Proof. The proof is given in Appendix B.3. O

Definition 2. Fix any R, < R < C.

Ph. : Pr(X) > Ry, s.t. php = SR, Py, , (3.23)

Q. : Pr(X) = Ppw(Y), s.t. Qg p = SR, Pllp,, ) - (3.24)

Observe that owing to Proposition 3, both (3.23) and (3.24) are well-defined. The
distribution @y in (3.24) will be our output distribution.

Proposition 4 (Differentiability of Egp(-, P)). Consider any R, < R < C and P € Pg(X).

_ OEsp(r,P)
or

Esp(-, P) is differentiable with py, , = ¢

r=R’

40



Proof. The proof is given in Appendix B.4. O
Proposition 5 (Continuity of the saddle-point). Consider any R, < R < C. Both py,
and Q;" are continuous on Pr(X).
Proof. The proof is provided in Appendix B.5. m|

For any R, < R < C and P € Pr(X), let esp(R, P,r) = esp(Qpp, P,r) and
esp(R, P) := esp(R, P, R).
Proposition 6 (Equality of the exponents). For any R, <R < C

esp(R, P) = Esp(R, P), (3.25)

forall P € Pr(X). ¢

Proof. The proof is given in Appendix B.6. m|

Remark 7. Recalling the discussion in the previous section, the equality of the expo-
nents proposition, i.e., Proposition 6, ensures that the exponent of the lower bound on
the error probability emerging as a result of binary hypothesis testing reduction in which

Qy . is the alternate distribution matches the sphere-packing exponent. &

3.2.3 Hypothesis testing reduction

For any v, R € R*, define P, (X) := {P € P(X) : Esp(R, P) > v}. Fix some R € (R, C)
and some sufficiently small v > 0 that only depends on W and R. Application of the

hypothesis testing reduction of Section 3.2.1 to an (/V, R) constant composition code
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(f, ) with common composition® P € Pg,(X) by using Qp p as the auxiliary output

distribution yields (recall (3.9))

P.(f,¢) = an(R), (3.26)

where ay(R) := Q’W(,|xN)’Q;P(NR). On account of (3.26), in order to lower bound the

maximal error probability of our code, it suffices to evaluate ay(R).

However, since Q5 , > W(-[x") (cf., item (ii) of the saddle-point proposition, i.e.,
Proposition 2), but not necessarily’ Opp = W(-|x"), we need to do little more work. To

this end, we define

T(0,0):={T € T(Q, Q) : Ur N [SIO\S(Q, D)] = 0, U N [S(Q\S(Q, D)] = 0},
(3.27)

where S(Q, 0) := S(Q) N S(Q). Next, we note the following evident observations.

Claim 1. For any r € RY,

() = min  ar. (3.28)
0.0 Te7(0,0): Br<e r

¢

Claim 2. Forany T € 7(Q, Q), we have

ar = 0{S(Q, 0)} 0{Us5 180, Q). Br = 0{S(Q, O} O{Ur IS0, 0)}, (329)

where the conditional probabilities are induced by Q and Q, respectively. ¢

Observe that owing to (3.28) we have®

an(R) = min ar. (3.30)
TeT (W(IXN),0p ) : Br<e ™R

°If P € Pg,(X)°, then it is possible to prove that (3.8) is true. See Lemma 31 in Appendix B.7.
"We have this equivalence if we consider a positive channel, for example.
ST (W(-[xN), Q;’P) is defined as in (3.27).
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In order to apply Claims 1 and 2 to our particular case, we need the following defi-

nition.
Definition 3. Given any C > R > R, and P € Pr(X),

Wl-,Q;;P('|X), if x € S(P),
Wi p(C1x) = | (3.31)

W(|x), else,
where

W]—’Q;’P('l.X) = l/glil WA’Q;,P('|X)’ Vxe S(P) (332)
and WA,Q}P(-lx) is the tilted distribution as defined in (B.51) in Appendix B.2. ¢

Remark 8. One can check that for any x € S(P),

Q;,PO’) .
gsweoy Iy € SWC)),

Wi- g, ,(1%) = (3.33)

0, else.
Equation (3.33) and the fact that Qp , > W(:|x), for all x € S(P), ensure that (3.31) is a
well-defined stochastic matrix from X to M. Moreover, it is clear that Wi p(lx) = W(|x),

forallxe X. &

Returning to our application, since Qg , > W(IxN), (3.29) implies that for any

T e T(W(xM), Oy p)» We have
ar = WILGK"}. Br = Qp [SOWCIK")} W p (T7ix"}. (334)

where W,;,P(yN|XN) = HnNzl Wi pnlx,) and Wy, is defined in (3.31).

Also,
N
In O p {SWNCX)] = > In O p (SW (1)) (3.35)
n=1
=N > P()In Qpp (S(W( 1)) (3.36)
xeS(P)
= ~ND(Wp 10 »IP). (3.37)
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where (3.35) follows since S(W(-|x")) = S(W(-|x;))X. . .xS(W(-|xy)) and (3.37) follows
by noting

In Qg p {SW(1x))} = =D(Wg pCI0)NI Qg p), (3.38)

which is a direct consequence of (3.31).
Combining (3.34) and (3.37), we conclude that for any 7 € 7 (W(-x"), Ok p)
B < e8| = [Wep {Usix"} < eV ED] (3.39)

where

F(R. P) := R~ D(W ,l|Q; IP). (3.40)

Observe that the right side of (3.39) defines a non-trivial constraint only if (R, P) > 0,

which we establish next. To this end, we first define the following set:
i)P,W(MX) ={VePYX) :VYxeSP), V(Ix) < W(|x)}. (3.41)
Lemma 6 (Positivity of r(R, P))). Given any R., < R < C and P € Pg(X),

(i) YV € Ppw(Y1X), D(VIIQ p|P) = D(VIIWy plP) + D(Wy IO »IP).

(ii) r(R,P) > 0. ¢

Proof. The proof is given in Appendix B.8. O

Now, consider a binary hypothesis testing setup with the null hypothesis (resp. alter-
nate hypothesis) W(:|x") (resp. WIE’P(-|XN)). Owing to (3.26), (3.30), (3.34) and (3.39),

we deduce that

e(f,¢) > an(r(R, P)) := min ar. (3.42)

T7eT(W(IXN), W p(-xN)) : Brs <e~Nr(RP)
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On account of (3.42), in order to lower bound the maximal error probability of our
constant composition code, it suffices to evaluate ay(r(R, P)). Instead of directly char-
acterizing ay(r(R, P)), we give a lower bound on it by means of a test that is easier to

analyze. In order to define this test, we need the following “shifted exponent™.

Definition 4. Given any C > R > R.,, r € R, and P € Pp(X),

esp(R,P,r) := inf D(V||W|P). (3.43)
VEPWIX): D(V|IWy p|P)<r

Lemma 7. (Shifted exponent) For any R > R, and P € Pr(X) we have
esp(R, P,r — D(Wg pl|Q pIP)) = esp(R, P, 1), (3.44)

forall r > D(Wg’PIIQ;,PlP). ¢

Proof. Fix an arbitrary R > Re,, P € Pr(X) and r > D(Wy, ,||Qy p|P). Define 7 := r -
D(ng’ PIIQ;’ pIP). Clearly, 7 € R*. On account of the fact that Ep(R, P,7) < ésp(R, P,0) =

D(Wp plIWIP) < oo, it is easy to see that

Ep(R,P,7) = min D(V|IW|P). (3.45)
VePrw(YIX) : D(VIIWg plP)<F

Similarly,

esp(R,P,r)= min D(V||W|P). (3.46)
VePpw(YIX) : DVIQ;, plP)<r

Item (i) of Lemma 6 ensures that the feasible regions of the right sides of (3.45) and
(3.46) are the same. Since the cost functions of the two problems are the same, the

lemma follows. a

Fix an arbitrary { € R* and let ey := (% +/ ) I“TN (resp. &y == ey — %) and define

Ry = R — ey (resp. Ry = R — &). Note that for all sufficiently large N € Z*,

45



C > Ry > Ry > R. Throughout, we consider such an N € Z*. Further, similar to
(3.40), define ry(P, R) := Ry — D(Wp || Q% p|P) (resp. Fn(P,R) := Ry - D(Wg pll Qg »IP)).
Also,

W ni-¥n ~
Ay { Zl Riy(y - 1) >rN(R,P)—esp(R,P,rN(R,P))}, (3.47)

n=1

(yl’l n)
Ay = { "N Z WP@ 5 > Esp(R, P,ry(R, P)) — ry(R, P)}. (3.48)

Equations (3.47) and (3.48) are the decision regions of the test, i.e., the test decides

W(xN)if y¥ € Ay and Wy ,(-Ix") if y¥ € Af,. Let
ay = W{AfleN} . By = Wep{Ay" } (3.49)
denote the error probabilities of the aforementioned test.

Remark 9. As noted before, the analysis of the events Ay and A, would be direct ap-
plications of Bahadur-Rao theorem, but one major complication: the threshold in both
events depends on N. One could define constant-threshold versions of these events by re-
placing ry(R, P) with r(R, P). Applying exact asymptotics to the resulting events would
vield a lower bound on ay of the order \LW exp(—NEsp(R, P)) and show that By is of
the order \/LN exp(=Nr(R, P)). The problem with this approach is that P,(f, ¢) is lower
bounded by the type-I error probability of the optimal test whose type-1I probability does
not exceed e™N"®P) From the above expression of By, we see that the aforementioned
test is not optimal because, although it is a likelihood ratio test, it is “undershooting”
the type-II constraint due to the 1/ YN pre-factor. By replacing r(R, P) with ry(R, P),
we ensure that By does not undershoot the constraint (in fact, it will violate it by a small
amount). The ry(R, P) fluctuations will give rise to the slope term in the pre-factor of

the probability of Ay. <
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3.2.4 Analysis of the hypothesis test

In this section, we apply concentration lemma, i.e., Lemma 5, to lower bound @y and

B given in (3.49). To this end, we begin with the following technical results.

Definition 5. Let C > R > R, and P € Pg(X) be arbitrary but fixed. Let A € R be

arbitrary.
Wy p(Y10)
Ao p) 1= In Eyg [e““ e ] (3.50)
Aop(A) i= ) PX)Aopl(A), (3.51)
xeX
Aln O
Al,P,x(/D :=1n EWEP(")C) [e WR.P(YI”] , (352)
Arp(D) = D POOALpA(A). (3.53)
xeX
¢

Remark 10. We note the following:

(i) Since Wy p(:|x) = W(:|x) for all x € X, each quantity given in Definition 5 is well-
defined. Also, one can check that A p.(1) = Ao p(1 — ), which, in turn, implies
that Ay p(1) = Ao p(1 = ).

(ii) The fact that WE’P(‘Ix) = W(:|x) for all x € X also ensures that Ay p(1), A1 p(1) € R
and hence both A p(-) and A, p(-) are smooth functions over the real line, i.e.,

Ao.p(), Arp()) € C*(R).

(iii) Consider any A € R. It is easy to verify the following (for the sake of notational

convenience, we denote partial derivatives with respect to A as the ordinary ones):
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W5 . (Y]x)
AE),P,x(/l) = Ey, 10 [ln %] ) (3.54)
AbpD) = D" PG (), (3.55)
xeX
W5 . (Y|x)
Ao p () = Vary, i [ln %] : (3.56)
AGpD) = D" POAY (), (3.57)

xeX

where W,Lp(-lx) = W/l’WiP('lx) (cf., (B.51)) for the sake of notational convenience.

Further, item (ii) above ensures that

NrpoD) = =Ky p (1= ), A p(d) = A p(1 = ), (3.58)
Ao = A p (1=, AYp() = Agp(l = ), (3.59)
forany A € R.
(iv) We have
Ay p(0) = =N p(1) = ~D(WIIWi 5IP), (3.60)
A p(1) = =} p(0) = D(We o[ WIP), (3.61)

as a direct consequence of (3.55) and (3.58). &

Lemma 8 (Positive variance). Let C > R > R, and P € Pr(X) be arbitrary. For all

A€[0,1], AY (D) > 0. ¢

Proof. Consider any C > R > R,, P € Pr(X) and recall that r(R,P) = R —

D(Wy oI Qs 4IP) (cf., (3.40)).

For contradiction, suppose there exists 4 € [0, 1] such that Ag’ p(4) = 0. We have
Wi p(Y1x)

[A&P(/l) = O] — [VX S S(P), In W

= Njp (D), W(Ix) - (a.s.)} (3.62)

= [Vx € S(P), W(Y]x) = Wg p(YIx)e0x D, W(Ix) - (as)|, (3.63)

48



where (3.62) follows from (3.54), (3.56) and (3.57). Summing the right side of (3.63)
over y € S(W(:|x)) yields
Vx € S(P), Ay p (1) =0. (3.64)

Combining (3.63) and (3.64) and recalling the definition of Wep (cf., (3.31)), we deduce
that

|G () = 0] = [V(x.y) € X x Y, W(lx) = Wi ,(01)] . (3.65)

The right side of (3.65) implies that ésp(R, P,r) = O for all r € R, and in particular
ésp(R, P, r(R, P)) = 0. This observation, coupled with the equality of the exponents
proposition, i.e., Proposition 6, and the shifted exponent exponent lemma, i.e., Lemma 7,

implies that Egp(R, P) = 0 that contradicts the fact that P € Pg(X). |

Definition 6. Let C > R > R, be arbitrary. Define

Wepo(Yl) .
mos(4 P)i= D PXEg, 00 [IHW ~ Ay p | |, (3.66)
xe€S(P)
3
W(Y|x)

my (A, P) = PXOEW, 10 [ In ———— - Al . (D) ] (3.67)

| [ N

for any (4, P) € [0, 1] X Pr(X). ¢

Note that owing to (3.58), (3.66) and (3.67), one can verify that

V(/L P) € [Oa 1] X PR(X)a m0,3(/l’ P) = ml,3(1 - /L P) (368)

Lemma 9 (Continuity). All of the following is true

(i) NG.() is continuous on (0, 1] X Pr(X).
(ii) Ag () is continuous on (0, 1] X Pr(X).
(iii) mg3(-,-) is continuous on (0, 1] X Pr(X).

(iv) D(Wg 11Ok |) is continuous on Pr(X). ¢
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Proof. The proof is given in Appendix B.9. O

Lemma 10. Fix arbitrary C > R > R, and P € Pr(X). For any r € R*, we have
esp(R,P,r) = rsrelﬂ%( {=sr+ ey(s, P)}, (3.69)
where
eo(s, P) := —(1 + 5) Z P(x)1n Z W0V IWe oyl ), (3.70)

xeS(P) YES(W(-|x))

forany s e R,. ¢

Proof. We have,

Ep(R,P,1r) = inf D(V||W|P) (3.71)
VePYIX) : D(VIIWg plP)<r

= in_D(V||W|P D(V||Wg plP) — 3.72
max _min {D(VIWIP)+ s(D(VIIW plP) = ) (3.72)

= max {—sr + Z P(x) 51(1}3 [D(V('Ix)IIW(~|x)) + sD(V(-Ix)IIWR’P(~|x))]}

seER
xeS(P)

(3.73)

= max {—sr + ey(s, P)}, (3.74)

SER
where (3.72) follows since Slater’s condition holds (cf., [55, Corollary 28.2.1]), (3.74)
follows by noting that

W(ylx)l/(l+s) WI;,P(ylx)S/(HS)
Yy WOITOW, ()09

Ve Olx) = (3.75)

attains the minimum in (3.73) for any x € S(P) and recalling (3.70). O

Corollary 1. Consider any C > R > R., P € Pr(X). For all r € R*, the set of

maximizers of (3.69) is exactly 0ésp(R, P, -)(r).

Proof. Proof follows exactly the same lines as that of Claim 14. O
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Lemma 11 (Differentiability of the shifted exponent). Let C > R > R, and r € R* be
given.

6ESP(R, P, I")

S' (R, 1) @ Pr(X) = Ry, s.t. S"(R,Pr) i=— =

, VP € Pr(X), (3.76)

is a well-defined function. ¢

Proof. Consider any P € Pg(X). For any s € R,, (3.70), (3.50), (3.51), (3.55) and (3.57)

imply that

0%e,(s,P) _ L (%)<0 (3.77)

as2 (1+sp 0P
where the inequality follows from the positive variance lemma, i.e., Lemma 8. Equation

(3.77) ensures the strict concavity of the cost function of (3.69) and hence the uniqueness

of the maximizer. Recalling Corollary 1, this implies that (3.76) is well-defined. O

The shifted exponent lemma, i.e., Lemma 7, and the differentiability of the shifted

exponent, i.e., Lemma 11, immediately implies the following result.

Corollary 2. Given any C > R > R, and P € Pr(X) and ,

6eSP(R, P, 7')

5| = 85 (RPr—D(Wgpll Qg plP)), (3.78)

for any r > D(W,g,PllQ;’PlP). ¢

Throughout the rest, unless stated otherwise, suppose C(W) > R > R, and P €

Pr(X) be arbitrary and fixed.

Definition 7. Consider any C > R > R, and P € Pg(X). Given any 7 € R,

Ao p(2) = sup {Az = Ao p(D)}, (3.79)
N p(2) = sup {1z = ALp()} . (3.80)
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Lemma 12 (Regularity). Fix any C > R > R, and P € Pg(X). Forany 0 < r <

DWWy ,IP),

(i) Ay p(esp(R,P,r) —r) = esp(R, P,r).
(ii) A p(r = 2op(R, P,7)) = 7.

(iii) There exists a unique n(R, P, r) € (0, 1), such that A{)’P(n(R, P r) =¢espR,Pr)—r.

In particular, n(R, P,r) = %. ¢
Proof. The proof is given in Appendix B.10. O
Next, we claim that
0 < r(R, P) < I(P; W) = D(Wy 4l|Qk plP) < D(W[IW; pIP). (3.81)

The first inequality follows from the positivity of r(R, P) lemma, i.e., Lemma 6. The
second inequality is clear from the definition of (R, P) and the fact that P € Px(X). The

last inequality follows by noting
D(Wg pll Qg p|P) + DWW p|P) = D(WI|Q p|P) > Qrerg(g) D(WIIQIP) = I(P; W), (3.82)

where the first equality follows from the item (i) of Lemma 6 and the last one follows

from (B.85). Hence, (3.81) follows.

Further, define

v
2T(W,Rv)

TOW,Rv) = max DWIQy,IP), H i= [IML) 1} . (3.83)
€7 Ry

Since Egp(-, ) is continuous (cf., Lemma 30), $, is closed and therefore, by noting
the boundedness of P(X), is compact. Further, owing to the continuity of D(WIIQg I)
(cf., item (iv) of the continuity lemma, i.e., Lemma 9) and the compactness of P, (X),

T(W, R, v) is well-defined and finite.
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Lemma 13. For any P € Pg,(X)

nR,P,r)e H VYre (0,r(P,R)]. (3.84)

Proof. Let P € Pg,(X) be arbitrary. Owing to item (iii) of the regularity lemma, i.e.,
Lemma 12, it suffices to prove that for all € (0, (P, R)]

N A
2T(W,R,v)

N(R, P,r) > — kY (3.85)

ZT(V‘(/,R,V)
Moreover, the fact that n(R,P,r) = s*(R,P,r)/(1 + s*(R,P,r)) (ctf., item (ii1) of

Lemma 12), (3.81), the convexity and the non-increasing property of €sp(R, P, -), it suf-
fices to show (3.85) for r = r(R, P). The differentiability of the shifted exponent lemma,

i.e., Lemma 11, and Corollary 2 imply that

Esp(R, P R, P,
S*(R,RF(R, P)) - _ aeSP( 5 ’r) - _ 0eSP( ) 9r) ) (386)
or r=r(R,P) or r=R

Moreover, using the convexity and the non-increasing property of esp(R, P,-), one can
see that
B Oesp(R, P, r) S v S v
or =k 2(egp(R,P,)(v/2) —=R) ~ 2Y(W,R,v)’
where the last inequality follows by noting that esp(R, P, r) = 0 for all r = D(W||Q ,|P).

(3.87)

By combining (3.86) and (3.87), we deduce that

s'(R.P.r(R,P)) > m (3.88)

Since (R, P,r) = s*(R, P,r)/(1 + s*(R, P,r)), (3.88) implies (3.84). O
Finally, we define the following:

M(v,W,R) := A % (3.89)

Vv, W,R) := e Ay p(A), (3.90)

VOWR) = | min A7), (3.91)
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where H is as defined prior to Lemma 13. Recalling the compactness of H and Pg, (X),
the positive variance lemma, i.e., Lemma 8, and the continuity lemma, i.e., Lemma 9,

ensure that (3.89), (3.90) and (3.91) are well-defined, positive and finite.

Define Ky = M(v, W,R)2V2x and note that K,,x € R*. Also, let N € Z* be

sufficiently large, such that
14 (1 4 Kpax)?
VN > L0 Kow) (3.92)

VO, WR)

and consider such an N from now on.

Next, we apply the concentration lemma, i.e., Lemma 5, to ay to deduce a lower
bound. Observe that (3.56), (3.57) and the positive variance proposition, i.e., Proposi-
tion 8, and item (iii) of the regularity lemma, i.e., Lemma 12, ensures the fulfillment of
the assumptions under which Lemma 5 is stated. Hence, we apply (3.3) to W{AICV|XN }

(cf., (3.48), (3.49) and (3.92)) to deduce
K
ay > ﬁ exp{—NAq p(Esp(R, P, rn(R, P)) — rn(R, P))}, (3.93)

where we define
e_Kmax

K = (3.94)

227V (v, W,R)

Note that K only depends on W, R and v.

Further, recalling the definition of By (cf., (3.47) and (3.49)) one can check that

1S W)
By = Wep {N Z; In W > (R, P) — &p(R, P.Fy(R, P)) |xN}. (3.95)

Next, we apply the concentration lemma, i.e., Lemma 5, to the right side of (3.95) by
noting the fact that the explanations provided prior to (3.93) are still valid (recall (3.58)

and (3.59)) and infer the following

¢
e—N/\TYP(7N(R,P)—éSP(R,Pj’N(R,P))) — K e—NT'N(R,P) — KN e—Nr(R,P)’ (396)

Pvz75 VN .
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where the first equality follows from item (ii) of the regularity lemma, i.e., Lemma 12.

If we let N € Z* to be sufficiently large, so that

KN¢
e

> 1, (3.97)

then (3.96) implies that By > ¢ V"#®_ Since our test is a likelihood ratio test, by violat-
ing the constraint we can only improve the optimal error performance, and hence (cf.,
(3.93))

K .
an(r(P,R)) > ay > We—NAoMeSP(R””’N“‘P))—'N(R’P”, (3.98)

which, in turn, implies that (cf., (3.42))

K -
P.(f,¢) > We—N/\O‘p(esp(R,PJN(RvP))—rN(R,P)). (3.99)

3.2.5 Approximation of the exponent

In this final section of the chapter, we approximate the exponent in (3.99) to conclude

the proof.

To begin with, we note that (e.g., [21, Exercise 2.2.24]) AS’ »(+) 1s a smooth function
over (=D(W||Wg p|P), DIW, ,lIW|P)), i.e., Ag p(+) € CT(=D(W||Wy, p|P), D(Wp ,[IW|P)).
Moreover, with the aid of the inverse function theorem and item (iii) of the regularity
lemma, i.e., Lemma 12, one can check that for any r € (0, D(W||WI;’P|P)),

1

Ay p@sp(R,P,1) —1) =R, Pr), A p@sp(RP 1) —1) = .
S OpICSP Ay GIR.P.1)

(3.100)

Define’

R =R - D(W, » p|P). 101
O(R,v, W) ng}?ix) (WR7P||QR,P| ) (3.101)

9Owing to item (iv) of the continuity lemma, i.e., Lemma 9, and the compactness of Pg,(X), the
maximum is well-defined.
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Observe that owing to Lemma 6, 6(R, v, W) > 0. Hence, one can choose N € Z* to be

sufficiently large, such that ey < 6(R, v, W)/2. Consider such an N from now on.

Using Taylor’s theorem, for some
X € (Esp(R, P, r(R, P)) — r(R, P),&sp(R, P,rN(R, P)) — rn(R, P)), (3.102)
we have
Ao p@sp(R, Prn(R, P)) — ry(R, P)) = Aq p@sp(R, P, r(R, P)) — (R, P)) + {r(R, P)
+&sp(R, P, rn(R, P)) — Esp(R, P, 1(R, P))

—rn(R, P)} Ay p@Ese(R, P, r(R, P)) — r(R, P))
A

{[Esp(R, P,rn(R, P)) — rn(R, P)]-
[&sp(R, P, ¥(R, P)) — (R, P)I}’ (3.103)
= A p(&sp(R, P, r(R, P)) — r(R, P))
+ ey p@sp(R, P, r(R, P)) — r(R, P))
+ Ay p@sp(R, P, r(R, P)) — r(R, P))

[€sp(R, P, rn(R, P)) — €sp(R, P, r(R, P))]
, AsH®

{[Esp(R, P, rn(R, P)) — rn(R, P)]-
[Esp(R, P, r(R, P)) — (R, P)]}? (3.104)

= Ao p(Esp(R, P, r(R, P)) — r(R, P)) + n(R, P, r(R, P))
ey + (R, P, r(R, P))

[éSP(Ra Pa rN(Ra P)) - éSP(R’ P’ }"(R, P))]
A

{[Esp(R, P, ry(R, P)) — ry(R, P)]—
[&sp(R, P, 7(R, P)) — (R, P)I, (3.105)
where (3.104) follows by recalling the fact that ry(R, P) = r(R, P) — ey and (3.105)

follows from (3.100) by recalling (3.81).
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Recalling item (1) of the regularity lemma, i.e., Lemma 12, (3.105) implies that

Ag p(€sp(R, P,ry(R, P)) — ry(R, P))Esp(R, P, rn(R, P)) = Esp(R, P, ry(R, P))

n(R, P, r(R, P)) A Dy
NT—IR.P.rR.P) | 2(1- 1R, P.r(R. P)))
|, Ep(R.P.ry(R. P)) — &sp(R. P.r(R. P)))2 ’ (3.106)
(S

for some x € (éSP(R7 P’ r(R7 P)) - r(R’ P)7 éSP’(IQ, P7 rN(Ra P)) - rN(R7 P))

Note that, since €sp(R, P,-) — (-) is strictly decreasing and continuous, there exists
a unique 7 € (r(R, P) — 6(R,v, W)/2, r(R, P)) such that'® ¥ = &sp(R, P,7) — 7 and hence

(recall (3.100) and (3.81))
AYHE) = 1/AG p(0(R. P.F). (3.107)
Moreover, item (iii) of the regularity lemma, i.e., Lemma 12, implies that

n(R,P,r(R,P))
1R PR Py S BEIRP). (3.108)

Plugging (3.107) and (3.108) into (3.106), we deduce that

Ao p@sp(R, P,ry(R, P)) — ry(R, P)) = &p(R, P, ry(R, P)) (3.109)

= &sp(R, P, 1(R, P)) + 5" (R, P, r(R, P))ey
1+ s*(R,P,r(R,P)) ,
— €
2Ay (R, P,F))

(1 , &v(®. P.ry(R.P) ~ &p(R. P.r(R, P)))2
EN ’

(3.110)

Moreover, using exactly the same arguments as above, but this time with a first-order
Taylor series, we infer that

n(R, P, 7)

€sp(R, P,ry(R, P)) = €sp(R, P, r(R, P)) + ey————,
€sp( rn(R, P)) = €sp( r(R, P)) eNl—n(R,P,T’)

(3.111)

0Actually, 7 € (ry(R, P), 7(R, P)).
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for some 7 € (ry(R, P), r(R, P)).

On account of the convexity and the non-increasing property of €sp(R, P, -), we have

O0Csp(R, P, 1") < €sp(R, P,0) ’ 3.112)
or’ o(R,v,W)/2
for any ry(R, P) < ' < r(R, P).
By noting that &sp(R, P,0) = D(ng,PllWlP) = AE),P(I) and letting!!
F = Aj »(1 A1
PePeX) (1) < e, G119
(3.112) further implies that
R,P, v Esp(R, P, 7’ F
77( 5 ’r) :S*(R,P,r,): aeSP( s ar) < ::§<OO, (3114)
1 -n(R,P,1") or’ o(R,v,W)/2
for any ry(R, P) < ' < r(R, P).
Plugging (3.91), (3.111) and (3.114) into (3.110) yields
Ay pEsp(R, P, ry(R, P)) — ry(R, P)) = &sp(R, P, ry(R, P)) (3.115)
< &p(R, P,7(R, P)) + s"(R, P, (R, P))ey
1+35?%[1+s*R,P,r(R,P
1+GN( + 5[ + s"(R, P, r(R, P))] (3.116)
2V(, W.R)s*(R, P, r(R, P))
= Esp(R, P) + 5" (R, P, 7(R, P))ey
[ 1+ 52[1+s*(R,P,r(R, P
1+EN( +3)°[1 + s"(R, P, r(R, P))] (3.117)
2V(v, W,R)s*(R, P, r(R, P))
< ESP(R’ P) + S*(R9 P9 r(Ra P))EN
[ (1+ 35)? 2T (W,R,v)
1+ 1+ , (3.118
T Y2V WiR) y (3.118)

where (3.117) follows from the equality of the exponents proposition, i.e., Proposition 6,
and the shifted exponent lemma, i.e., Lemma 7, and (3.118) follows from (3.108) and

Lemma 13.

11Owing to the continuity lemma, i.e., Lemma 9, the maximum is well-defined and finite.
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Consider £ € R* that is fixed in the definition of €y. Since § is bounded, V(v, W, R)

and T(W, R, v) and the fact that v > 0, one can deduce that for all sufficiently large N,

2
(1+5) (1 N 2‘I‘(W,R,V)) <t (3.119)

NV, W,R) y

and hence (3.118) reduces to the following, for all sufficiently large N,
Ao p@sp(R, P, ry(R, P)) — ry(R, P)) < Esp(R, P) + s (R, P, r(R, P))en(1 + ). (3.120)

Next, we claim that

(R, P, (R, P)) = pj p- (3.121)

To prove this, we first claim that pj, , is a Lagrange multiplier of esp(R, P). To see this,

first note that
esp(R, P) = Esp(R, P) (3.122)
= K p(Og p» O p) (3.123)
= max K p(p, Qi) (3.124)
= in [D(V||W|P) + p(D(V||Q% »|P) — R 3.125
max _min [D(VIIWIP) + p(D(VIIQi 4IP) = R)| (3.125)

where (3.122) follows from the equality of the exponents proposition, i.e., Proposition 6,
(3.123) follows from the saddle-point proposition, i.e., Proposition 2, and the unique-
ness of the saddle-point proposition, i.e., Proposition 3, (3.124) follows by noting that
(Og.p> Qg p) 18 the unique saddle-point of Kgp(:,-) and (3.125) follows by solving the

convex minimization problem. Hence, (3.125) gives the Lagrangian dual of esp(R, P).
Further, one can also check that

i D(V||IW|P) + p(D(V||Qx p|P) — R
max _min [D(VIIWIP) +p(D(VIIQ;4IP) = R)]

=, min_ [D(VIWIP) + p s(D(VIIQIP) = R)]. (3.126)
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(3.125) and (3.126) implies that Prp is a Lagrange multiplier of esp(R, P). More-
over, the sub-differential characterization of the Lagrange multipliers (e.g., [55, The-
orem 29.1]) along with the differentiability of the shifted exponent lemma, i.e.,

Lemma 11, and Corollary 2, implies (3.121).
Plugging (3.121) into (3.120), we deduce that

Ag p(€sp(R, P, rn(R, P)) = ry(R, P)) < Esp(R, P) + pp pen(1 + 0). (3.127)

Define P(X) := {P € P(X) : Esp(R, P) = Esp(R)} # 0. Observe that P} is a compact
set. Also, for any P € P(X), |P — Pyl := infgep: [|Q — Pll;. For any 6 € R”, Py(X) :=
[P e Pru(X) 1 |P = Pr(X)| 2 6.

Observe that (recall (3.5) and the differentiability of Egp(-, P) proposition, i.e.,
Proposition 4)

* = . 3.128
Pr Pg;ggprze,p ( )

where owing to the compactness of $5(X) and the continuity of pj , the maximum is

well-defined and finite.
Since P ,(X) is compact, py . is uniformly continuous on this set, equivalently

Vv e RY, Ja(v) € R, s.t. VP, Q € Pr(X), IP - Qlli < a(v) = |ogp — Prol < <.
(3.129)

Consider ¢ € R* that is fixed in the definition of €y and let a({) € R* be chosen such

that (3.129) holds.

If P € Pr(X) — Pup(X), then (3.129) ensures that py, , < pi + ¢, which, in turn,
implies that

exp(—Ney(1 + O)py p) > N™1OE+)0+0, (3.130)
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Suppose P € Py (X). Since Egp(R) — maxpep,,,) Esp(R, P) € R", one can check

that for all sufficiently large N, uniformly over $,)(X), we have

) e NEsp(®)
exp (-N [Esp(R. P) + en(1 + )pj ) 2 o (3.131)
Equations (3.99), (3.127), (3.130) and (3.131) imply (3.8). O
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CHAPTER 4
REFINEMENT OF THE RANDOM CODING BOUND

In this chapter, we improve the sub-exponential term in the random coding bound. As
noted before, the analysis in this chapter, as well as Chapter 3, can be considered to
be the analogous of Bahadur-Rao theorem for i.i.d. sums of random variables within
channel coding. In light of the analogies of the small, medium and large error probability
regimes to large deviations, moderate deviations and central limit theorem in i.i.d. sums,
which were pointed out in Section 1.2, one might expect the optimal order of the sub-
exponential term for channel coding to be ®(1/ VYN), in conjunction with Bahadur-Rao
theorem. However, the lower bound derived in Chapter 3 has an extra term related to the
slope of Egp(R) that suggests that @(1/ VN) is a pessimistic conjecture, provided that

one can prove a matching upper bound.

The aim of this chapter is to supply such an upper bound. Specifically, for a large
class of channels, we prove an upper bound on P (¥, R) with a pre-factor having an extra
term that is related to the slope of E,(R), similar to the result in Chapter 3. However,
our analysis necessitates us to distinguish a small class of channels, for which we prove
an upper bound with O(1/ VN) pre-factor. Although one might think that this is a defi-
ciency of the analysis, binary erasures channel (BEC) is a concrete example against this
thought, because in his classical paper [24], Elias has proved that for BEC the optimal
order of the pre-factor is O(1/ VN). Hence, there is at least a dichotomy! of channels as

far as the optimal order of the pre-factor goes.

The main idea to prove the results in this chapter is to reduce the problem of upper

bounding the error probability of a random code to large deviations events involving

'In Chapter 5, we prove that for symmetric channels with positive dispersion, there are exactly two
subclasses of channels, i.e., there is a dichotomy of channels with respect to the optimal order of the
sub-exponential term.
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sums of independent random variables and vectors. Exact asymptotics-type results will
then be applied. This reduction is nontrivial and forms the main technical contribution

of the chapter.

4.1 Definitions and statement of the results

Givena DMC W € P(MY|X), Q e P(X)and R € R,
E/(R, Q) := &lpasxl {=PR + Ex(p, O)}. 4.1)

For any W € P(M|X), Q € P(X), N € Z" and R € R, the ensemble average error
probability conditioned on the message m (resp. ensemble average error probability) of
an (N, R) random code with codewords generated by using Q along with a maximum

likelihood decoder? is denoted by P, ,,(Q, N, R) (resp. P.(Q, N, R)).

Further,
Sop ={(x,y) e XX Y : Q(x)W(ylx) > 0}, 4.2)
Sp = 1{(x,3,2) e XX Y x X : Qx)W(HIx)Q(2)W(lz) > 0}, (4.3)
X, = {xe X : W(lx) > 0}. (4.4)

Given a (Q, W) € P(X) X P(Y|X) pair, the following property plays a crucial role in our

analysis.

Definition 8 (Singularity®). W(ylx) = W(ylz), for all (x,y,z) € Sp. ¢

A (Q, W) e P(X) X P(Y|X) pair is called nonsingular (resp. singular) provided that

ZWe assume that the ties are broken in such a way that always results in an error. However, this
assumption increases the error probability by at most a factor of 2.
3We thank Alfred Hero for encouraging us to use the name singular.

63



Definition 8 does not hold (resp. holds). The set of all nonsingular (resp. singular)

(Q, W) pairs is denoted by P, (resp. Ps)

A channel W is called nonsingular at rate R provided that there exists Q € P(X)

with E(R, Q) = E,(R) such that (Q, W) pair is nonsingular. Similarly, a channel is called

singular at rate R if for all Q € P(X) with E.(R, Q) = E,(R), (Q, W) pair is singular.

Remark 11. Consider any (Q, W) € P(X) X P(Y|X) pair.

(i)

(ii)

(iii)

Definition 8 can be viewed as a condition that ensures that when a random code
with distribution Q is used for transmission through channel W, the optimal de-

coding algorithm, given the channel output, checks feasibility of the codewords.

In his investigation of the zero undetected error capacity* of discrete memoryless
channels, Telatar uses a property similar to Definition 8. In particular, he proves
that the zero undetected error capacity is equal to (Shannon) capacity for “chan-
nels for which the non-zero values of W(y|x) depend only ony” [68, pg. 51]. This

result supports the operational interpretation given in item (i) above.

Singularity also plays a role in the third-order term of the normal approximation

fora DMC [51, Section 3.4.5]. Specifically, Polyanskiy defines [51, Eq. (3.296)]

Wolk) | WOR) ’

W(ylx) 0(2)
V'(QO,W) := W 1 — , 4.5
(0. W) ;Q(X) O |In == Z o) o) (4.5)

where g(y) 1= Y., Q(x)W(y|x), and proves that In VN is an achievable third-order

term in the normal approximation, provided that V'(Q, W) > 0 [51, Theorem 53].

“For the definition of zero undetected error capacity, see [68, pg. 42].
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(v)

By noticing

[V(Q, W) =0] =

YyeVY, InWQHlx) = Z QRWGER) In W(ylz), ¥ x with Q(x)W(y|x) > 0],
= 4q0)
(4.6)
it is easy to see that
[V(Q, W) = 0] = |W(x) = WOlD), ¥ (x,7,2) € S 4.7)

From (4.7), it is evident that V'(Q, W) = 0 is equivalent to saying (Q, W) pair is

singular. Moreover, in [51, Lemma 52], it is claimed that

[VI(Q, W) =0] = [V (x,5,)) : WOIx) = W('|x) or Q)W (ylx) = 0]. (4.8)

By choosing Q = Ux and W as BEC with parameter 6 € (0, 1), one can verify that
V'(Q,W) = 0, via elementary calculation. Evidently, this (Q, W) pair does not

satisfy the right side of (4.8) and hence (4.8) is incorrect.

For an explanation of our reasoning for calling Definition 8 singular, see Re-

mark 15. &

Lastly, given W € P(Y|X) with V > 0,> R € (R, C) and that W is nonsingular at

rate R, we define®

s OE.(r, Q)
Pr = sup - —

. 4.9)
O:F(R,0)=E/(R) and (Q,W)ePys or =g

Theorem 4. Let W € P(Y|X) be arbitrary with V > Q.

3Since V > 0 is equivalent to R, < C (e.g., [35, pg. 160]), (R, C) is nonempty.
®Differentiability of E,(-, Q) is proved in Lemma 14.
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(i) If Q € P(X) and R € R, are such that (Q, W) pair is singular and’ R..(Q) < R <
I(Q; W), then there exists K, € R* that depends on W, R and Q such that for any
mell,...,[eVR])

_ K
P.(Q.N,R) < \/—lﬁe‘NE“R’Q), (4.10)

for all N € Z*. Further, there exists an (N,R) code (f,¢) and K, € R* that

depends on W, R and Q such that

4
P.(f,9) < \/—%e‘NE’(R’Q’, @.11)

forall N € Z*.

(ii) If Q € P(X) and R € R, are such that (Q, W) pair is nonsingular and R..(Q) <

R < I(Q; W), then there exists K, € R* that depends on W, R and Q such that for

anyme {1,...,[e"R7}
P (O,N,R) < Le_NEr(R1Q) (4.12)
emi3 T I = N 0.5 (1+p3(0) : '
forall N € Z* where px(Q) := — % - Further, there exists an (N, R) code

(f, @) and K, € R* that depends on W, R and Q such that

L) —NE«(R,Q)
P.(f,¢) < me , (4.13)

forall N € Z*. ¢

Theorem 4 is proved in Section 4.2 and immediately implies the following.

Corollary 3. Let W € P(Y|X) be arbitrary with V > 0 and R € (R, C).

(i) If W is singular at rate R, then there exists an (N, R) code (f, ¢) and K5 € R* that

depends on R and W such that

K
Po(f. @) < v—%e-”f“% (4.14)

"Rer(Q) = BE[,,LPQ’ _, (2,35, pg. 142]).

66



forall N e Z*.
(ii) If W is nonsingular at rate R, then for any € > 0, there exists an (N, R) code (f, ¢)

and K, € R* that depends on R, W and € such that

Ky ~NE(R)
P.(f,¢) < N0 , (4.15)

forall N € Z*. ¢

Theorem 5. Let W € P(Y|X) be arbitrary with V > 0 and R € (R,,, C).

(i) The subdifferential of E,(-) at R, i.e., 0E.(R), satisfies®

OE(r, Q)
or

OE.(R) = conv ({ E(R,Q) = E,(R)}). (4.16)

r=R

(ii) Define py := max {|a| : a € O0E.(R)}. If there exists Q € P(X) such that E.(R, Q) =

E.(R), (Q,W) is nonsingular and — % R = Pps then there exists an (N, R)

code (f,¢) and Ks € R* that depends on W, R and Q such that

K. _
Pf9) < Sime (4.17)
forall N € Z*. Moreover,
W(ylx) > 0, forall (x,y) e X XY, (4.18)

is a sufficient condition for the existence of a Q € P(X) with the aforementioned

properties. ¢

Theorem 5 is proved in Section 4.3

8 As usual, for a given set S, conv(S) denotes the convex hull of S .
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Remark 12. (i) It is evident that py, as defined in item (ii) of Theorem 5, is the ab-
solute value of the left derivative of E,(-) at R. Further, it is worth noting that in
Theorem 3, we have proved that for any W € P(Y|X) withV > 0and R, <R < C
and € > 0, the maximum error probability of any constant composition (N, R)
code is lower bounded by

o @.19)
N§(1+E+pR)
for all sufficiently large N, where K5 is a positive constant that depends on W, R

and €, and py, is the maximum absolute value subgradient of Egp(-) at R, which

also satisfies® Pr = Pg for all R € (R, C).

(ii) Item (ii) of Theorem 5 corrects an error'® of Dobrushin who claimed that for a

strongly symmetric channel'' with positive dispersion, for rates between R, and

C, a pre-factor of O(N *WE®D) is asymptotically tight [22, pg. 274, Theorem]. A

lower bound of this order is evidently incorrect in light of item (ii) of Theorem 5.
In fact, the invalidity of Dobrushin’s claim can also be concluded by using the

weaker achievable pre-factor of O(1/ VN) that is reported in [4]. <

Singularity is also crucial regarding the pre-factor of the ensemble average error

probability for rates below the critical rate.

Theorem 6. Let W € P(Y|X) be arbitrary with C > 0 and R < R,.,.

(i) If for all Q € P(X) with E,(1, Q) = maxpepx) E,(1, P), (Q, W) pair is singular,

9Since the non-increasing, convex curves Egp(:) and E.(-) agree on an interval around R, the maximum
magnitude of their subdifferentials at R are also equal.

10We refer to the English translation of the work. We were not able to verify whether the mistake is
present in the original Russian version. Moreover, the aforementioned work has other inaccuracies. For
example, the conditional entropy term in [22, Eq. (1.16)] is off by a minus sign and the BSC result of Elias
(e.g., [24, Theorem 1]) is mistakenly cited with a pre-factor of @(N~), instead of the correct pre-factor
of @(N-OSU+E/R)y

ITA channel is strongly symmetric if every row (resp. column) is a permutation of every other row
(resp. column).
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then for any such Q € P(X), we have
Kee VE® < P(Q,N,R) < e NE®), (4.20)
for any N € Z" and for some 0 < K¢ < 1 that depends on W, R and Q.
(ii) (Gallager [36]) If there exists Q € P(X) with E,(1, Q) = maxpepx) E,(1, P) and
(Q, W) pair is nonsingular, then
P,(Q.N.R) ~ %[NE’(R), (4.21)

where g is a positive constant that is explicitly characterized in [36]. ¢

Theorem 6 is proved in Section 4.4

Remark 13. (i) Theorem 6 corrects a small oversight'* by Gallager [37]. Specifi-
cally, in [36], item (ii) of Theorem 6 is claimed to be correct for any W with C > 0
and R < R.,. It should be noted that the proof provided in [36] is valid under the

nonsingularity assumption mentioned in item (ii) of Theorem 6.

(ii) The abrupt drop in the order of the pre-factor at R., highlights a previously unre-

ported role that the critical rate plays in the random coding bound. <

4.2 Proof of Theorem 4

4.2.1 Overview

From the well-known random coding arguments (e.g., [35, pg. 136]) one can deduce

that for any message m

] Wyl
Pen(QNR) < Q(xm)W(y|xm>Pr{ g {m %’;1 < o}} (422)
Xm>yY m’

m’#m

12See Section C.1 for a particular example.
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WYX,
Wk <0

For the sake of notational convenience, let &,, := 2 {ln } denote the error

event conditioned on message m.

One obvious way to relax the right side of (4.22) to make it more tractable is to

use union bound. A straightforward application of the union bound is loose, however,

WYX

WYX, = } is likely to occur

because some realizations of X,, and Y are such that {ln
for many m’. One workaround is to define a set of “bad” X, and Y realizations Dy €

XY x YV and proceed as follows

P.,.(Q,N,R) < Pr(E,, N Dy) + Pr(E,, N DY) (4.23)

WYX
< Pr(Dy) + ([e¥*]1 - D Pr {z)fv N {m W§Y||Z; < 0}}. (4.24)

Remark 14.

(i) Equation (4.24) is Fano’s [27, pg. 307, Theorem], valid for any auxiliary set Dy,
where X,Y and Z are distributed with Pxyz(x,y,2) = Qx)W(y|x)Q(z). Fano
provides a choice of Dy for which a large deviations analysis of the right side of

(4.24) yields the random coding exponent.

(ii) It is evident that the introduction of an auxiliary set in Fano’s bound is not limited
to random code ensembles, but can also be employed to analyze error probability
of a given block code under maximum likelihood decoding. In particular, Gal-
lager used this idea in his analysis of low-density parity-check (LDPC) codes for
the special case of binary input symmetric channels [33, Section 3.3]. After the
invention of turbo codes [8] and the rediscovery of LDPC codes [47], there has
been a considerable interest in deriving efficiently computable bounds on the per-
formance of a given block code (e.g., [43], [58], [60], [64], [69] and references
therein). Researching these bounds for possible refinements, in particular char-
acterizing the pre-factors of the exponentially vanishing terms, is an interesting

future research direction, which is not pursued in this paper.
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(iii) There are other ways to control the aforementioned loss. One alternative is to use

the following bound by Gallager (e.g., [35, eq. (5.6.7)])

_ W(ylx) s
P.n(Q,N,R) < ;y Ox,,)W(ylx,) ( Z Pr {ln WoylX,) < O}] , (4.25)

m’#m
for any p € [0,1]. Although the bound in (4.25) is sufficient to obtain the ran-
dom coding exponent, the bound in (4.24) seems to be better suited to obtaining

improved pre-factors.

A tighter alternative to (4.24) is (e.g., [35, pg. 137], [52, Theorem 16])

. : W(ylx)
P,.(Q,N,R) < Zy Q(x)W(y|x) min {1, ("7 -1)Pr {m Wol S o}} :
(4.26)
Numerical evaluation of (4.26) yields sharp bounds for the special cases of BSC
and BEC [52]. Also, after we reported the results of this chapter in [3], Scarlett
et al. [59] has recently given an alternative proof of Theorem 4 by starting from
(4.26). Although this derivation is simpler than the one based on (4.24), the latter
has the merit of being the starting point for possible refinements of the efficiently

computable error probability bounds for a given block code, which is mentioned

in item (ii) above. <

Next, one needs to choose an appropriate Dy and upper bound the terms on the right
side of (4.24). Our choice will essentially be Fano’s choice for Dy and our analysis
will vary depending on whether (Q, W) pair is singular. Specifically, if (Q, W) pair
is singular, then we use Fano’s choice. However, if (Q, W) pair is nonsingular, then a
perturbed version of Fano’s Dy gives a better pre-factor and we will use such a perturbed

version.

Before proceeding further, we note the following useful facts that will be used

throughout the chapter.
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Lemma 14. Let W € P(Y|X) be arbitrary with V > 0.

(i) For any Q € P(X) such that E.(R, Q) > 0 for some R > R, we have % <0

forallp e R,.

(ii) Fix an arbitrary Q € P(X) such that E.(R, Q) > 0 for some R > R.,. For every r
in the non-empty interval (%L:l ,1(0; W)), there exists a unique real number
in (0, 1), say p;(Q), such that

9E,(p, Q)

=r. 4.27
P r (4.27)

p=p;(Q)

Further, pz‘.)(Q) is continuous over (M”a—(ﬁ’g)‘ r 1(O; W)) and satisfies
p:

0E(a, Q)

pUQ) =~ ==

(4.28)

a=r

Proof. The proof is given in Appendix C.2. O

To define the auxiliary set, we need the following definitions. First, fix some W €
P(Y|X) with V > 0. Consider some Q € P(X) and R € R, such that R..(Q) < R <
I(Q; W). Define

Py yz(x,y,2) = Q)W(0)0(2), (4.29)

for all (x,y,z) € X X Y x X. Also, let

Pxyz(x,y.,2) . S

_ - if (x,y,2) € Sy,

Pxyz(x,y,2) = PrrziSel (4.30)
0 else.

Let PY,,(X,y,2) := 1Y, Pxyz(Xn, Yu» 2,) and Sy (resp. S &) denote the N-fold cartesian

product of Sy, (resp. Sp). Hence,

N
Py, {xy. 1Sy} = Py, (x.y.2) = ]—[ Pxy2(Xn, Y 20)- (4.31)

n=1
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For any p € [0, 1], let"?

B LY
T ey [Zaex Q@W bl 10 = |
A, (1) = InEp,, [eﬂnm] MAER. 4.33)

Jp»)

For any p € [0, 1], In 755

€ R for all (x,y) € Sp, hence A,() is infinitely differentiable

on R. Thus, for any p € [0, 1], the following is well-defined

Dy(p) = A, (L) (4.34)

1+p
Let {ey}n>1 be a sequence of nonnegative real numbers such that limy_,., ey = 0 and
define Ry := R — ey. Let N € Z" be sufficiently large such that Ry > R..(Q). For the

sake of notational convenience, let

. . OE(r, 0)
Py =P (@) == —5 | (4.35)
r r=Ry
whose existence is ensured by (4.28).
We finally define the auxiliary set as follows:
1 & Jor,(Yn)
D ={— In———— > D,(px)}. 4.36
w(En) { NZ} Ny > Do) (4.36)
Using the particular set defined in (4.36), equation (4.24) reads
Pe,u(Q,N,R) < PY, {Dn(en)}
1 [ (V) 1 5 W(,IX,)
+ NRY _ 1PN _ In——"_ < Dy(py), — In——2<0}. 4.37
(1= X’Y’Z{N; "Wy = ey NZ Wiz @37

Remark 15. (i) Setting ey = O forall N € Z" gives Fano’s choice of the auxiliary set.
After this point, he proceeds with Chernoff bound arguments to upper bound the
right side of (4.37) to deduce the random coding upper bound'* with a pre-factor

of O(1) [27, pp. 324-331].

3The following two quantities are defined for any p € R, in items (i) and (v) of Definition 12 in
Appendix C.3, respectively. We reproduce them here for the reader’s convenience.

4Fano’s exponent, Eg(-) (e.g., item (iv) of Definition 12 in Appendix C.3) has a different form than
E,(-), yet they can be shown to be equal (e.g., Lemma 33 in Appendix C.3).
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(ii)

(iii)

(iv)

(v)

If (Q, W) is nonsingular, then the evident refinement of Fano’s arguments is to
use exact asymptotics result (e.g., [7], [21, Theorem 3.7.4]) instead of Chernoff
bound. One can verify the conditions necessary to apply this result are satis-
fied and hence such a refinement gives a pre-factor of O(1/ VN) [4]. Moreover,
O(1/ VN) is the tightest pre-factor possible if ey = 0, because it can be shown
that P, {Dy(en)} ~ ©(1/ VN)e VE RO,

If (Q, W) is nonsingular, setting ey = 0 for all N € Z* is not the best possible
choice. With this choice, one can prove an upper bound of O(1/N)e V5 R op the

second term of (4.37), provided that the random vector

@ waxl

In ,In )
WIIlX) WY1z

(4.38)

is nonsingular when it is distributed with Pyy;, i.e., the covariance matrix of
this random vector under Py y is nonsingular. The nonsingularity of this random
vector follows from the nonsingularity of (Q, W). Thus, by appropriately choosing
ey > 0, one can equalize the orders of the pre-factors for both terms of (4.37) to

deduce a tighter pre-factor. This intuition will be made rigorous in Section 4.2.3.

If (Q, W) is singular, In %gllg =0, ﬁx,y,z — (a.s.). Hence, the random vector given
in (4.38) is singular when it is distributed with ISX,Y,Z, i.e., the covariance matrix
of this random vector under Py y; is singular. Therefore, we cannot expect to have
an upper bound on the second term of (4.37) with an O(1/N) pre-factor and hence

we will set ey = 0 for all N € Z" for this case. The details of the derivation is

given in Section 4.2.2.

As it is evident from items (iii) and (iv) above, whether (Q, W) satisfies Defini-
tion 8 is closely related to the singularity of the covariance matrix of the random
vector in (4.38) under Py y,. This relation is our rationale for calling Definition 8

singular. <
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Before proceeding further, we define the following quantities

Forany p € [0,1],1 € Rand v € R?,

QWO ) .
= if (x,y) €S
=1, | Zanes, Q@WEla) b1 ’ Q
P (x,y) 1= 4 70 ! (4.39)
0, else.
WIX) w(Y|z)
Aip(V) :=InEp, PR T WW“]. (4.40)

Clearly, f’ffy is a well-defined probability measure and A, ,(-) is infinitely differentiable

on R2. Further,

Lemma 15. Fix an arbitrary r € (R.(Q),1(Q; W)). Let p := — _aEr,;Z’Q)

€ 0,1) and

a=

V= [l_p 1 ]T. We have

T+p’ T4p

(i)
OA1,(v1, V) oA, V)| | .
R AL B AR = [-A/(p/(1 ,01”. 4.41
[ P - p - [=A,(p/(1 + p)), 0] (4.41)
(ii)
A1y = —InPyyz {So) + 20, (2. (4.42)
L e e 1 +p
¢
Proof. The proof is given in Appendix C.4. m|

4.2.2 Proof of item (i) of Theorem 4

Assume (Q, W) pair is singular. As pointed out in item (iii) of Remark 15, we use the

quantities given in Section 4.2.1 with ey = 0 for all N € Z*. Specifically, define

«._ _ OE(r,0)
pri=———

(91‘ r=R ’

(4.43)
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Let f*, A(-) and D, denote the quantities defined in (4.32), (4.33) and (4.34), respec-
tively, by choosing p = p*. For convenience, let Dy denote the set defined in (4.36) with
the aforementioned choices. Particularizing (4.24), we have

is&m(£29]va}?):g ID;&’{Z)N}

N

. 1 [ W, X.)
+([e ]_I)PXYZ{N;lnw(le)_ 0’_2 W(Y|Z)_O}

(4.44)

We begin by deriving an upper bound on the first term in the right side of (4.44).

Lemma 16. A”(1) >0, forall 1 € R. ¢

Proof. The proof goes by contradiction. One can check that

S @)
W(Y1X)

[FA1 e R withA”(1) =0] & |In = AN'(2), Pxy — (as.)|. (4.45)

Further, define Y := {y € Y : X, # 0}. Note that Y + 0. Since (Q, W) pair is singular,

for some o, € R*

W(ylx) = 6,, Yx € X, (4.46)
which, in turn, implies that
1+p*
o sef)
o= —. (4.47)
2oveir OO {Xp)

Equations (4.46) and (4.47) imply that

* X,
e el

}l+p*
- n *® 9
W(ylx) Speis 050X}

Y (x,y) € So. (4.48)

Due to (4.48), one can check that the right side of (4.45) is equivalent to saying that
0 {Xy} is constant for all y € Y. This last observation, coupled with the singularity of

the pair (Q, W), further implies that

Eo(p, Q) = —(1+p)InQ{X,} - 1n > 5, (4.49)

y
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for all p € R,. Evidently, (4.49) implies that % = 0, for all p € R,, which

contradicts item (i) of Lemma 14. |

Equipped with Lemma 16, we can apply the concentration lemma, i.e., Lemma 5.

Specifically, (3.1) implies'® that (recall that our random variables are i.i.d.)

PV (D) < e NN Do) S 4 , 4.50
XY {On}<e \/N A (77)3 7 A ( )
. . 3 -
where 1 := %p*, ms = EP%" ‘ln Vu’:(;(/% - A’(n)' ] with P}/, as defined in (4.39), and

N*(D,) is the Fenchel-Legendre transform of A(-) at D, i.e.,
AN (D,) := sup {DyA — A(D)}. (4.51)
AeR
Since A(-) is convex, the definition of D, and (3.80) imply that
A (Do) = nA'(m) = A(m). (4.52)
Moreover, Lemma 33 and (C.42) in Appendix C.3 imply that

E«(R, Q) = nA'(n) — AGp. (4.53)

By plugging (4.53) into (4.52), we deduce that

A*(D,) = Ex(R, Q), (4.54)
which, in turn, implies that
Py, Dy} < e VRO ! =N ! : (4.55)
: VN | A ()2 27N (mn

151n the conference paper that we have reported the results of this chapter, the second term in the braces
of (4.50) (resp. (4.66)) is incorrectly written as ﬁ] [3, Eq. (66)] (resp. ﬁ [3, Eq. (69)]). The correct

( ), as given in (4.50) (resp. (4.66)).

form is

1 1
resp.
\V2xA" (i P V2rAy (i
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In order to upper bound the remaining term in the right side of (4.44), we first note that

N () W,1X,)
B = nyz{N;hl A S 0,—2 Wz < 0} (4.56)
Vo (S5 B WX 1 W(Y,|Z,)
=Py 5% nyz{ Zl s 2 NZ‘ W(Ynlx)zo} (4.57)
W(Y, X,
= PYyz {S5) Pﬁyz{ Zl ;(;)) = Do}, (4.58)

Wolz)

worg = 0 for all (x,y,2) € Sy, which is a direct

where (4.58) follows by noting In

consequence of the singularity of (Q, W) pair.

Next, define
VAER, A = InEp, | FF |, (4.59)
and note that A,(+) is infinitely differentiable on R. Moreover, one can check that
Vv eR? Ay(v)) = A(v), (4.60)

where A(-) denotes A () (e.g., (4.40)) for notational convenience. Further, for any
A € R, define

Pxyz(xy WO ()~

S anresy PRIZ@haWEHa @) if (x,y,2) € S,

Oy yz(x,9,2) = (4.61)

0 else.

It is evident that Q;l( vz 18 a well-defined probability measure and equivalent to Pxyz.

Lemma 17. A//(1) > 0 forall 1 € R. ¢

Proof. One can check that

PN W(Y|X) PN Var W(Y|X)
AO(/l) = EQ}(,Y,Z [ln f*(Y) ] ’ AO (/l) - VaI‘Q;’Y’Z [ln f*(Y) ] . (462)
For contradiction, assume there exists 4 € R with AJ/(1) = 0. We have
[ e Rwith A1) = 0] = [ln V;%lj;) = A, (D), Y (x,y,2) € SQ] (4.63)
W(ylx) ,
[m f*)()y); = A, Y (x,y) € SQ] . (4.64)
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Using exactly the same arguments as in the proof of Lemma 16, one can show that (4.64)

contradicts item (i) of Lemma 14. O

From item (i) of Lemma 15 and (4.60), we deduce that

1 _ *
A;( L ): ~D,. (4.65)
1+ p*

Lemma 17 and (4.65) enable us to apply the concentration lemma, i.e., Lemma 5, to

obtain
PEANG T fwy) T B VN | A2\ PR Gy
(4.66)
here 7= 2 =B i 290 _ Ar i with 07 . as defined in (4.61). and
where 77 1= %, ity 1= o, |n ) 0(77)‘ wit QX’Y’Z as defined in (4.61), an
Ay (=D,) = sup {—=Dyd — Ao()}. (4.67)
AeR

Since A,(+) is convex, (4.65) and (4.67) imply that

A:;(_Do) = —71Dy — Ao (77) (4.68)

= =D, — A1([7, 1/(1 + p")]"), (4.69)

where (4.69) follows from (4.60). Item (ii) of Lemma 15 yields

*

A1, 1/ + p]") = = In Pyyz {So} + 2A(1 ip*). (4.70)

Equations (4.69) and (4.70) imply that

o T R ey I
1 +p* 1 +p* 1 +p*

Ay(=Do) =In Pyyz {So} +

1 * *
- A’( P ,)+A( p ) 4.72)
1+p* 1 +p* 1 +p*
=InP E.(R,Q) - N A 473
" Prrz{Sef + BAR. O 1+p° (1+p*)+ (1+p*) @
=In Pyyz {So} + EA(R. Q) + R, (4.74)
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where (4.73) follows from (4.52) and (4.54), and (4.74) follows since

1 M %
“R= AL ) AL, (4.75)
1 +p* 1+ p* 1+ p*

which is (C.43) in Appendix C.3.

Equations (4.58), (4.66) and (4.74) imply that

1 s 1
By < ¢ NERQR) AN , (4.76)
N VN | AC@DY? - \2rAy (i

which, in turn, implies that
1 (Y 1 5 WX,
M DPY > o < p S e < o <
(7T = DPxyz NZ "W, S NZ‘ "Wz T[T
e NERO) (5 1
= +
VN | A2 2N ()i
Plugging (4.55) and (4.77) into (4.44) implies (4.10).

n=1

} . 4.77)

The proof of (4.11) follows from the well-known expurgation idea (e.g., [35,
pg. 140]) and is included for completeness. To this end, generate a random code with
2[e™®] codewords using Q as specified in the beginning of this section. Using exactly

the same arguments leading to the proof of (4.10), one can verify that for any message

m
_ In2 e NE(R.Q) ms 1
Pew| O, N,R + —) < +
( N VN {A"(U)3/2 271/\'/(;7)77}
¢ NE(R.Q) 273 2 e MR
+ o T —— I+ (4T8)
VN o (1) 2N ()i

Clearly, (4.78) guarantees the existence of a code, say ( f , ), with blocklength N, 2[e"X]

messages, and average error probability upper bounded by the right side of (4.78). Now,
if we throw out the worst (in terms of the corresponding conditional error probability)
half of the codewords of this code, the resulting expurgated code, say (f, ¢), becomes
an (N, R) code with P.(f, ¢) not exceeding twice the right side of (4.78), which, in turn,

implies (4.11). O

80



4.2.3 Proof of item (ii) of Theorem 4

Assume (Q, W) pair is nonsingular. Let {ey}y>; be such that ey = In JN forall N € Z*

and Ry := R — ey. Consider a sufficiently large N such that Ry > R..(Q). For notational

convenience, let

PR - CY )| P Tl N 479)

(91” r=R 61’ r=Ry

Let f*, A(-) and D, denote the quantities defined in (4.32), (4.33) and (4.34), respec-
tively, by choosing p = p*. Similarly, let f;, Ax(-) and D,(N) denote the quantities
defined in (4.32), (4.33) and (4.34), respectively, by choosing p = p},. Let Dy denote
the set defined in (4.36). Using these choices, (4.37) reads

pe,m(Q, N9R) < PI}\({,Y {ZDN}

1 fiuY) W(Y,1X,)
NR7 _ 1 N
+ (MR l)PXYZ{N ;:11 W(Ynlx)_D(N) § In WOz _0}. (4.80)

In order to conclude the proof, we must upper bound the two terms on the right side

of (4.80). We begin with the first term.

Let NN =

-+ Ttem (i1) of Lemma 14 ensures that P )(Q) 1S continuous

over (R..(Q), I(Q; W)) and hence, we have

lim p = p". (4.81)
1%1_{20 Ny =1. (4.82)
lim fz@(y) = o). (4.83)
lim By = P (4.84)

Lemma 18. Fix an arbitrary p € [0, 1]. For any A € R, we have A](1) € R*. ¢
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Proof. Via elementary calculation, one can check that

Jo(¥)
W(Y1X)

Jo(¥)
W(Y1X)

where Pfgﬁ, is defined in (4.39). The inequality in (4.85) ensures that it suffices to prove

A;’(-) # 0. For contradiction, assume this is not the case. Then,

|[31eRstL AJ(D) =0| = |In Soll) ), Y(x,y) €S (4.86)
T Wy — e e ‘
= [WOI) = Wok), Y(x.y.2) € So]. (4.87)

The right side of (4.87) is equivalent to saying (Q, W) pair is singular, which is a con-

tradiction. Hence, we conclude that AJ'(2) > 0. O

Lemma 18 ensures that A”(-), Ay(-) € R*, thus we can apply the concentration

lemma, i.e., Lemma 5, to obtain'®

_NA* 1 msy 1
PV (Dy) < e VAP : + , (4.88)
Xy =N VN AX;(UNP/Z 2n N (v
" 3
where msy = EP,,N,p;V [ln v{/?;& - A;v(nN)' ] and A} (D,(N)) is the Fenchel-Legendre
XY

transform of Ay(-) at Dy(N).

Since Ay(+) is convex, one can verify that

AN(Do(N)) = nyAy(my) — An(n). (4.89)

Lemma 33 and (C.42) in Appendix C.3 imply that
E.(Ry, Q) = nnAy(n) — An(w). (4.90)
By plugging (4.90) into (4.89), we deduce that

AN(Do(N)) = E«(Ry, O). (4.91)

16In the conference paper that we have reported the results of this chapter, the second term in the braces
of (4.88) is incorrectly written as L3, Eq. (29)]. The correct form is —L__ as given in (4.88).

V2my 2Ny (w)nn
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By using (4.81)—(4.85), along with the continuity of | - |* and (-)?, and the fact that

X, Y are finite sets, we conclude that

lim AyGiv) = A" (), (4.92)
% Y 3
]\1[1_1‘)130 Mmay = m;3 . Ep%« [ln W]/c(l(/l))() - N ] . (4.93)

Due to (4.82), (4.92) and (4.93), one can choose a sufficiently large N with

ms N 1 3 1
¢ <2 + . (4.94)
AR \2r N ()i [A"(n)” 27rA"(n)77)

By plugging (4.91) and (4.94) into (4.88), we deduce that

e NE R0, (4.95)

2 m 1
Py, ( .

Dy} <
A VT e = e

Next, we upper bound the second term on the right side of (4.37). To begin with,

note that for any (x, y, z) with Q(x)W(y|x)Q(z) > 0, if (x,y,2) ¢ SQ, then In V&’/gllg = 0o,

which, in turn, implies that

Lo i) W(Y,IX,
oW P]’XY’Z{N 2"y < P Zl WEY ||Z ; } 0} *20
n=1 n ni“=n

= Py, (S} a. (4.97)
where, in (4.97) we define

- W(Y,|X, W(,|Z,
ay = P)A(/,Y,Z{ E In f( (Il/ )) —Dy(N), — E In WEY ||X ; > O} (4.98)
N

Given any v € R? let Ay n(v) and A;(v) denote Al,p;(v) and A, ,+(v), respectively,

where A ,(v) is defined in (4.40). Further, define

1-p5 1 1"

L+p3 1+ p%

*

Vi(N) :=

(4.99)

b

1-pr 1 |
L+p " 1+p|
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Note that v{, v{(N) € (0,1) and v;, v3(N) € (1/2,1). Also, by using (4.81)—(4.83), one

can verify that

lim v'(N) = v, (4.100)
Hm Ay (V) = A, (4.101)

Given any p € [0, 1] and v € R?, define

Py yz(x.y.2WGI0Y17V2 £,(3) ™1 W(ylz)*2
S ares g Prrz@h.Wbla® 2 [, () Wbl

if (x,y,2) €S

0y ,(x,y,2) = (4.102)
0 else.
Note that Q;’OYZ is a well-defined probability measure and equivalent to Py y;. For nota-
tional convenience, let Q;&I\Q and Q?,Y,Z denote Q;g\;p ¥ and Q;fz, respectively.
From (4.83), (4.100) and (4.102), we deduce that
lim OV1Y = 0%y (4.103)

In the remaining part of the proof, we need the following result whose validity heavily

depends on the nonsingularity of the pair (Q, W).

Lemma 19. Fix an arbitrary r € (R.,(Q), 1(Q; W)). Let p = — 220 . €(0,1)and
V= [:%;, ﬁ]T. We have
W(Y|X) W(Y|Z>]T))
det| cov v, In ,In >0 (4.104)
[ s ([ Jo(Y) W(Y|X)
¢
Proof. The proof is given in Appendix C.5. O
Define

b(N) := [-D,(N),0]", b :=[-D,,0]", B(N):=[-Dy(N),0)x[0,00). (4.105)

Aj y(d) := sup {{v,d) — A y(V)], (4.106)

veR?
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for any d € R?.

For notational convenience, let

([ W(Y|X) W(YlZ)]T) [[ W(Y|X) W(YlZ)]T]
In — ,In S = COV 5 In — ,In ,
fu¥) W(Y|X) Xz f*(Y) W(Y|X)

(4.107)

SN 1= COV Av:(V)
Oxyz

and note that (4.104) ensures that A, (Sy), Amin(S) € R*, where A,in(Sy) (resp. Anin(S))

denotes the minimum eigenvalue of Sy (resp. S).

Lemma 20. For all sufficiently large N that depends on Q, W and R,

: 2 2
= < -NAT BV < (kr w00 4.108
aw=e 2/lmm(ZN)N( (~ W0 viv? w2 ) 0

where ¢ € R* is a universal constant and k(R, W, Q) € R* is a constant that depends on

R,Wand Q. ¢

Proof. The proof is given in Appendix C.6. O

Remark 16. Although we state Lemma 20 for our particular case, its extension to i.i.d.
random vectors satisfying usual regularity conditions associated with strong large devi-
ations results is evident. Moreover, it gives a more general upper bound than the existing
vector exact asymptotics results of Chaganty and Sethuraman [16] and Petrovskii [50].
In particular, [16] and [50] handles strongly non-lattice random vectors'’ and lattice
random vectors'S, respectively. As opposed to random variables, however, these two
cases don’t exhaust all random vectors, and we are not aware of a result in the spirit of

Lemma 20 that would give an upper bound of O(1/N) for our case. <&

The following is a consequence of elementary linear algebra, whose proof is given

in Appendix C.7 for completeness.

17A random vector is strongly non-lattice if the magnitude of its characteristic function is bounded
away from 1 everywhere, except the origin.
18 A random vector is lattice if it only takes values on a lattice.
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Lemma 21. For all sufficiently large N,

/lmin(s ) 2 . (4109)
N i
¢
Further, due to (4.100) and v}, v; € R™, we have
1 1 2 2
* 2+ * ZS *2+ %122 (4110)
Vi) vi(N)2 (V)T (V)
for all sufficiently large N.
Plugging (4.109) and (4.110) into (4.108), we finally deduce that
A 4V2¢ (KR, W,0)?* 1 1
v < e NAinbA) > + + , 4.111
e Lrin(EN ( 4 VD2 (W @1

for all sufficiently large N.

Next, we deal with the exponent in (4.111). First of all, owing to the convexity of

A n(-) and item (i) of Lemma 15, one can show that
A y(b(N)) = =V{(N)Do(N) — Ay n(V'(N)). (4.112)

Item (i1) of Lemma 15 and (4.112), along with the definitions of D,(N) and v*(N), imply

that

A; y(b(N)) = In Pyyz {So} +

pN* Ay P — Ay pN*
1+p% 1 +py L+py
1 : )
*A}v( pN*)"‘AN( pN*)
1+pN 1+,0N 1+pN
i 1 Py Py
=InP S +ErR , — A + A
0 Prrz {Sof + ERy. 0) 1+p4 N(1+p}“v) N(1+pfv)

(4.114)

(4.113)

= In Pyyyz {SQ} +E,(Ry, Q) + Ry, (4.115)
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where (4.114) follows from (4.89) and (4.91), and (4.115) follows from (C.43) in Ap-

pendix C.3.
By using (4.111), (4.115) and the fact that ey = 12_13/ we have
< -N 42 (k(R, W, 07 1 1 ) N
ay < Pxyz\S + + e NEROHR T (4.116)
e W aa A
Since PY,, {SY) = Pyyz (So]'. (4.97) and (4.116) imply that
a 42¢ (k(R, W, 0)? N 1 N 1 )e_N(Er(RN,Q)+R)_ @.117)
Amin(Z) VN 4 V)2 (vy)?
Equation (4.117) finally implies that
Lo, fa) WX,
MR~ 1)P In =2~ Do(N In——>~<0
(G )XYZ{N;nW(YIX)_ V). Z Wz <
42 k(R 2 1 1
= (16" - Day < — V% ( ST - z)e-NE“RN’Q). (4.118)
/lmin(z) \/N 4 (vl) (VZ)
Plugging (4.95) and (4.118) into (4.37) yields,
- m3 1 —NE (R Q)
Pew(Q,N,R) < + e
VN {A”(n)3/ 2 27rA~(n)n}
4V2 (k(R’ wor 1, 1 )e-NE*RN’Q). (4.119)
/lmin(z) \/N 4 (VT)Z (V;)Z

Evident convexity of E.(:, Q), along with its continuous differentiability over [Ry, R],

which is ensured by item (ii) of Lemma 14, enables us to deduce that (e.g., [14,

eq. 3.2)])

InN IE,
E.(Ry. 0) > Ex(R, Q)—;—N ((9’; 9 - (4.120)

Equations (4.119) and (4.120) imply (4.12).

The proof of (4.13) follows from the same arguments leading to the proof of (4.11),

which are given below for completeness. First, generate a random code with 2[eVE]
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codewords using Q as specified in the beginning of this section. Using exactly the same

arguments leading to the proof of (4.12), one can verify that for any message m

. In2\ 2 1 32
Pen (Q, N,R + n—) < Nm3 7+ o~ NERN.O) | V2c
N )= VN |G 22N (i Anin(Z) VN
kR W, 0 1 1 -NR
X( ®ILOT, =t 2)(1 + e—)e-NEr“*N’Q). (4.121)
4 v)? (V) 2

Clearly, (4.121) guarantees the existence of a code, say ( f, @), with blocklength N,
2[e™R] messages and average error probability upper bounded by the right side of
(4.121). Now, if we throw out the worst (in terms of the corresponding conditional
error probability) half of the codewords of this code, the resulting expurgated code,
say (f,¢), becomes an (N, R) code with P, (f, ¢) not exceeding twice the right side of
(4.121), which, in turn, implies (4.13). |

4.3 Proof of Theorem 5

Let W € P(Y|X) be arbitrary with V > 0 and R € (R, C).

(1) Write E.(R) as

E.(R) = ma —pR + E(p, . 4.122
()= max {-pR+Eqp.O)) (4.122)

Since the cost function of (4.122) is linear in R, continuous in (p, Q) (e.g.,
Lemma 1) and [0, 1] X P(X) is compact, we can apply a well-known result from
convex analysis, namely subdifferential of the maximum function (e.g., [56, The-

orem 2.87]), to deduce that

OE(R) = conv (Ug:g,r 0)=E®IE(, Q)(R)) (4.123)
= cony ({ EOl kRO = Er(R)}), (4.124)
or r=R
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where (4.124) follows from item (ii) of Lemma 14. Equation (4.124) implies
(4.16).

(i1) Since E,(-) is a real-valued, convex function over [R.,C] and R € (R, C), its
subdifferential at R, i.e., OE(R), is a nonempty, convex and compact set (e.g., [56,
Theorem 2.74]), thus py is well-defined. Equation (4.17) is an evident conse-
quence of item (ii) of Theorem 4 by invoking it with the Q € P(X) whose ex-
istence is assumed in the statement of the theorem. The proof of the claim that
(4.18) is a sufficient condition for the existence of a Q with the stated properties
follows by contradiction. To this end, let Q € P(X) be such that E.(R, Q) = E.(R),
Pr=- W ._p and (Q, W) pair is singular. Owing to these assumptions, along
with the positivity of the channel, one can check that there exists 6, € R* such
that W(ylx) = 6, for ally € Y and x € X with Q(x) > 0. This observation, cou-
pled with the positivity of the channel, implies that E,(p, Q) = —In }’, 6, for all

p € R,, which contradicts item (i) of Lemma 14. Hence, we conclude that (Q, W)

pair should be nonsingular, which suffices to conclude the proof. O

4.4 Proof of Theorem 6

As pointed out in the statement of the theorem, item (ii) is due to Gallager and hence
we only prove item (i). Let W € P(Y|X) with C > 0 and R < R, be arbitrary. Assume
that for all Q € P(X) with E,(1, Q) = maxpepx) Eo(1, P), the (Q, W) pair is singular.
Consider any such Q € P(X). For this (Q, W) pair, let Pxy; and px’)f,z be as given in
(4.29) and (4.30), respectively. Let SQ and X, be as in (4.3) and (4.4), respectively, for
this choice of (Q, W).
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First, we show that

In Pxyz {So} = —Eo(1, Q). (4.125)
To see this, note that
InPxyz{Sel=In > QWGINQGR) (4.126)
(xy.2e8g
=In Z Q)W) Q)W (ylz)'/? (4.127)
(x,y,z)ESQ
:an[ > Q(x)W(ny)”ZH > Q(Z)W(yIZ)m] (4.128)
y  [xeS(O)NX, Z€S(Q)NX,,
= —E.(1, 0), (4.129)

where (4.127) follows from the singularity of (Q, W).

Further, for any message m

Peu(Q.N.R) < (1“1 - 1) PQYZ{ 1 HZN:m Wg 'é; 0} (4.130)
= (1e™ 1 - 1) Pxyz {So) pf;yz{ Zl %'é; _o} (4.131)
= (11 = 1) Pyyz (o) (4.132)
< o NREs(1.0) (4.133)
= ¢ NE®) (4.134)

where (4.131) follows from the fact that for any (x,y, z) with Q(x)W(y|x)Q(z) > 0, if
(x,7,2) & Sp, then In 722 = o, (4.132) follows from the singularity of (Q, W), (4.133)
follows from (4.125) and (4.134) is true because of the choice of Q € P(X) and the fact

that R < R, (e.g., [36, pg. 245]). Hence, the upper bound of (4.20) follows.

In order to establish the lower bound of (4.20), one can use Gallager’s arguments
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[36, pg. 245-246] by noting

1 & W(,|X,)
py Z 1 n _ o~ NE(1.O) .
X,Y,Z{ n———-—- WZ) <0 e (4.135)

n=
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CHAPTER 5
EXACT ASYMPTOTICS OF THE ERROR PROBABILITY IN CHANNEL
CODING: SYMMETRIC CHANNELS

In this chapter, we restrict our attention to an important special class of channels, namely

symmetric channels'.

As pointed out before, in his classical paper [24], Elias has proved that the optimal
pre-factor for BSC (resp. BEC) is @(N~3U+Es®Dy (resp. @(N07)), hence implying

that there is at least a dichotomy of symmetric channels with respect to their pre-factors.

Our findings in this chapter establishes that this is indeed the case. In particular,
for rates between the critical rate and capacity, we prove that for the typical®> symmetric
channel, @(N-931+Es(®D) j5 the pre-factor of the error probability of the optimal (N, R)

code, whereas for a small class of channels, ®(N %) is the order of the pre-factor.

The main technical contribution of this chapter is the converse result for this small
class of channels. Moreover, the method we employ to handle this type of channels
can be modified to analyze any symmetric channel. Via this methodology, it is possible
to prove converse results for the average error probability directly, without explicitly
reducing the channel coding problem to a binary hypothesis testing problem, as our

proof of the converse result for the typical case illustrates.

'For the definition symmetric channels, see Definition 9 below.
ZPrecise definition of the property that defines aforementioned dichotomy is given in Definition 10
below.
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5.1 Definitions and statement of the results

Throughout this chapter Uy denotes the uniform input distribution over X. For conve-

nience, we recall the two forms? of the sphere-packing exponent and the random coding

exponent

Esp(R, Q) = v;IfIQ‘;i%SR D(V|IW|Q), Esp(R) := max. Esp(R, Q), (5.1
Esp(R, Q) := sup {—pR + E,(p, Q)}, Esp(R) := max Esp(R, Q), (5.2)

=0 QeP(X)
E/(R, Q) := max {=PR + Eo(p, Q)}, Ex(R) := [max. E/(R, Q), (5.3)

where 1

+p
Eo(p, Q) i=~In )" [Z QWG| (54)
yeY \xeX

It is well-known that (e.g., [20, Ex. 2.5.23]) Esp(R, P) > Egp(R, P) for any P € P(X).

Definition 9 (Gallager [35]). A discrete channel is symmetric if the channel outputs
can be partitioned into subsets such that within each subset, the matrix of transition
probabilities satisfies the following: each row (resp. column) is a permutation of each

other row (resp. column). ¢
Definition 10. A channel W € P(Y|X) is singular, provided that

Y (x,y,2) s.t. WHIx)W(Hlz) > 0, W(lx) = W(ylz). (5.5)
A channel that is not singular is called nonsingular. ¢

Remark 17. Definition 10 might be thought as a special case of the one given in the

previous chapter by using uniform input distribution. <&

3As noted before, the Haroutunian form and the Shannon-Gallager-Berlekamp form of the sphere-
packing exponent are equal to each other, i.e., Esp(R) = Egp(R). However, for our purposes in this
chapter, it is appropriate to distinguish them hence we denote the latter with Egp(R).
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Theorem 7. Let W be a symmetric and nonsingular channel with positive dispersion*.

(i) ForanyR., < R < C,

K —NE/(R)
Pe(N,R) < me . (56)

where K, is a positive constant that depends on W and R.

(ii) For any R., < R < C and for all sufficiently large N,

> Izl —NEsp(R)
P.(N,R) > We P, (5.7)

where K| is a positive constant that depends on W and R.

Theorem 7 is proved in Section 5.2.1.
Theorem 8. Let W be a symmetric and singular channel with positive dispersion.

(i) ForanyR., < R < C,
Ky _ne (R)
P.(N,R) < —=e ", (5.8)
VN

where K, is a positive constant that depends on W and R.

(ii) For any R., < R < C and for all sufficiently large N,

_ ¢
P,(N,R) > \/—%e_NES”(R), (5.9)

where K, is a positive constant that depends on W and R. ¢

Theorem 8 is proved in Section 5.2.2.

“Positive dispersion assumption ensures that R., < R, < C (e.g., [35, pg. 160]).
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5.2 Proofs

First, we provide the main idea behind the proof of the converse results. Consider any
(N, R) code (f, ), and let Sgy € YV denote an arbitrary set to be chosen later. One can
write Po(f, ¢) as

Pe(f, ¢) = Pr{Sen}Pe(f, 9ISk n), (5.10)

where P.(f, ¢|Sgy) denotes the average error probability of the code (£, ¢) conditioned
on Sgy. If one can choose Sk, potentially by using an auxiliary output distribution,
such that its probability is a good approximation® of the probability of error event of
the code and can prove that P.(f, ¢|Szy) = ©(1), then (5.10) will give sphere-packing
lower bound. The last step might intuitively be thought similar to the (strong) converse
to the channel coding theorem (e.g., [72]), but an appropriate choice of Sk in the first

step is not evident.

If the channel is nonsingular, then we might expect to benefit from our analysis in
Chapter 3, because the sought-after optimal order of the pre-factor has the slope-related
term and Theorem 3 basically give the result if the restriction of constant composition
codes can be dropped. We will do so, by choosing Sk y similar to (3.48) and exploiting

the symmetry of the channel®.

It should be noted that the threshold of the aforementioned choice of Sk varies
with a speed of O (%W) Hence, using this particular choice cannot give a pre-factor of
O(N~%3), which is the one we would like to prove for singular channels. By exploiting
the singularity and the symmetry of the channel, which gives it a special structure, we

choose a set Sg v that involves deviations of a certain scaled sum of independent random

SFor example, a prerequisite of a good approximation is vanishing exponentially fast with an exponent
not larger than Egp(R).

The fact that for symmetric channels it is possible to drop the constant composition step in the original
derivations of the sphere-packing exponent has been observed in [71].
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variables from a constant threshold’ and prove that its probability vanishes exponentially
fast with the exponent Egp(R). Recalling Bahadur-Rao result, it will not be surprising to
have an @(N %) sub-exponential term for the probability of such a set, although how to

choose a set with these properties is not evident.

In the rest of the chapter, we make the aforementioned intuition rigorous. To this

end, we begin with a result that will be used in the proofs of both Theorem 7 and 8.

Lemma 22. Fix a symmetric channel W € P(Y|X) with positive dispersion. Consider

any R, <R < C.

(i) Esp(R) = Esp(R, Ux) = Esp(R, Ux) = Esp(R).

(ii) Forany p € R,,

1+p
D WOl Zux@)vv(ymw#] SNEREY

,
> Ux(z>W<y|z)lip) =>

yeY zeX yeY \zeX
forall x € X.
(iii) pr(Ux) = — W _r € R" is well-defined and attains the supremum in the

definition of Esp(R, Ux) (cf., (5.2)).
1\ HRWy)
(erx Ux(x)W(ylx) HPrRUX) )

(iv) qr(y) = T LS a minimizer of the following optimiza-

1
zbey(zaex Ux(a)W(bla) PR )

tion problem

. 1 PRWUx)
min 3 —pp(Ux)R = (1 + pr(Ux)) Y Un(x)In > W(ylx) 7270 g y) "ot
9P xeX yey

(5.12)

Proof. The proof is given in Appendix D.1. O

"To be specific, threshold varies with a speed of O(1/N). However, this variation only changes the
constant in the final bound.
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5.2.1 Proof of Theorem 7

We begin with the proof of (5.6). Owing to the symmetry of the channel, E,(-, Ux) =
E.(-) on (R, C) (e.g., [35, pg. 145]). Since E.(-, Uy) is continuously differentiable over
(R, C) (e.g., item (ii) of Lemma 14) and (Ux, W) pair is non-singular (e.g., Defini-

tion 8), (5.6) is a direct consequence of item (ii) of Theorem 5.

To prove (5.7), let gg and pr(Ux) be as defined in Lemma 22. For convenience, we

drop® Uy dependence in pg(Uy) from now on. Evidently®, gz(y) > O forall y € Y.
For any R, < r < R, we define

esp(r, R) := inf D(V|IW|U ). (5.13)

n
VeP(Y|X)D(VllgrlUx)<r

For any x" and r € R, let

1 W),
S(XN, r) = {N Z:; In ﬁ <r- esp(r,R)}. (5.14)

Lemma 23. For any A € R, M(2) := ¥, wiio-0 WOIX)' ™ gr(y)* is finite and constant

mxeX. ¢

Proof. M,(1) € R is an evident consequence of the fact that W(-|x) < g for any x € X,
which is a direct consequence of the fact that S(gz) = Y. Let {Y}1- | be a partition'® of
the columns of W mentioned in Definition 9. Since each column is a permutation of any
other column within the partition, (erx Ux(x)W(lx)! (1+”R))1+pR has the same value for

any y € Y,. This observation, coupled with the fact that all rows are permutations of

each other row, suffices to conclude the proof of the second assertion. O
8Since %| == %Esp(a@) _ ., which is a direct consequence of items (i) and (iii) of Lemma 22,
a=R da a=R

this dependence is redundant, indeed.
9Without loss of generality, we assume that W has no all-zero column.
10The choice of the partition is immaterial in what follows.
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Remark 18. The fact that we can lower bound error probability of an arbitrary code,
as opposed to an arbitrary constant composition code, is essentially due to Lemma 23.
However, its proof heavily depends on the symmetry of the channel and an analogous

result for asymmetric channels is not evident to us. <

Using Lemma 23, along with the uniqueness theorem for moment generating func-
tions (e.g., [11, Ex. 26.7]), we deduce that for any x" and r € R,,

WS (x",r) [x"} = { Zl v&;@x;)_ —esp(r,R)|xf,V}, (5.15)

n=1
where x is an N-tuple consisting of all x, € X and the choice of x, is immaterial. For

any A € R, we define

AQD = In B, [e”“ w"frﬁii)] . (5.16)

As a direct consequence of Lemma 23, A(-) € R over the real line, which, in turn,

ensures that A(-) is smooth on R.

For any x € X, define

Wr(ylx) = ity 1 € SOVCL) (5.17)
0, else.
Evidently, Wk(:|x) = W(:|x), for all x € X.
Lemma 24. (i) R > D(Wgl|qr|Ux).
(ii) For any r € (D(WligrlUx), R], esp(r, R) = maxyee, {—pr — (1 + p)A (5 )}
(iii) esp(R,R) = Esp(R). ¢
Proof. The proof is given in Appendix D.2. m|
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For any x € X and 4 € [0, 1), we define

W(lx)' " gr(y)*

Wi(lx) = : (5.18)
Y Zb:W(blx)>0 W(bl|x)!"qr(b)*
By elementary calculation, one can verify that
’ QR(Y) 7" C[R(Y)
A (/1) = EVVA('Me) [ln Wlxo)] , A (/l) = Varwﬂ(m) [ln m . (519)
Similarly, for any 4 € [0, 1), we define
. qr(Y) )
m3(/l) = EWA(,le) Hln m - A (/l) . (520)

From (5.18), (5.19) and (5.20), one can verify that A’(-), A”(-) and m;3(-) are continuous

over [0, 1).

For any b € R, let A*(b) denote the Fenchel-Legendre transform of A(-) at b, i.e.,

AN (D) :=sup{ab - A(V)}. (5.21)

AeR

Lemma25. (i) A”(1)> 0, for any 1 € [0, 1).

(ii) For any r € (D(WkllgrlUx),R], s, 1= — 6“}(’9(;’1?)

e is a well-defined, continuous,

positive and strictly decreasing function.

(iii) Fix some D(Wgl||lqrlUx) < r < R. A*(esp(r,R) — r) = esp(r, R). Moreover, there

exists a unique 1, € (0, 1) such that N'(n,) = esp(r,R) —randn, = s,/(1 +5,). ¢

Proof. The proof is given in Appendix D.3. O

Define

R := (R + D(WkllgrlUx))/2. (5.22)

Due to item (i) of Lemma 24, R € (D(Wgl||gr|Ux), R). Moreover, as a direct consequence

of items (ii) and (iii) of Lemma 25,
O<nmr<nm <ngp<l, (5.23)
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for any r € (R, R). Fix an arbitrary a > 1 and define

m3(A)
fmax = a2 V21 5.24
4 VIR S A ()’ (5-24)
M3 min ©= mm A'(Q), (5.25)
A€[0,7z]
M) max = max A" (Q). (5.26)
A€[0,nz]

Evidently, all of the aforementioned quantities are well-defined and #,ax, 72 min> M2.max €

e
° 77R2 Vzﬂmz,max

Fix ky, k, € R* that satisfy k, — k; = Ink,. For any N € Z*, define Ry := R — %ﬁ - %

R*. Finally, define

eR". (5.27)

Consider a sufficiently large N, such that

2
Ry>R and [L+ A+ )]

1
B nR(l - 3;)2 eNmy min S 2

Consider any (N, R) code, say (fv, ¢n), with decoding regions {ﬂm}m|

(5.28)

, and codewords
M _
{XN(m)}lnzll, where M := {1,...,[e"*]} denotes the set of messages. Let P.(fy,@n)

denote the average error probability of (fy, ¢n). We have

Pulfivspn) = lZ D W Y m)). (5.29)

meMyNeAS,

For any m € M, we have

W{S(xN(m),RN)IXN(m)} = W{S(XQI’RNNXQJ} o0
m%(']RN)
(1 + a2 \/%URNA/ "(1R )) —Nesp(Ry.R)
Z e espliy, (531)
VN
ko
> 0 e esp(Ry,R) (532)
VN
Y (5.33)

where (5.30) follows from (5.15), along with the definition of S(xY, Ry), i.e., (5.14),
(5.31) follows from the concentration lemma, i.e. Lemma 5, whose applicability is

ensured by items (i) and (iii) of Lemma 25, coupled with (5.28).
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Continuing from (5.29), we have

Pe(fiv, ¢n) = Z W{S(XN(m)’RNMXN(M)} Z W ()
e s = N N
S IM| Ve SN ) R WA{SN(m), Ry)IxN (m)}
(5.34)
o ko ey 1 D Wy " om) (5.35)
B \/N |M| meM yNEﬂC QS(XN(I’I’!),RN) W{S(XN(m)7 RN)lXN(m)}’
where (5.35) follows from (5.33).
For all m € M, define!!
WV xN (m)) e N N
Voot LY € SXY(m), Ry),
Prisocson i (7 VI (m)) = § SRR ) (5.36)
0, else.
R Py Sggz;m}, if y¥ € SxM(m), Ry),
Pyisocdmr) (Y ) 1= ’ (5.37)
0, else.
Using (5.36) in (5.35), we have
Pulfo o) = e e @)L SV ST b 0K ) (5.38)
e ) = X (m), Ky .
VN M| & o
ko oy 1
= e MBI - N Prrswonan @KU m) | (5.39)
VN M| & ot
Lemma 26. For any m € M,
1 In Pyix. s o ry) (Y XN (m)) <R- ky , (5.40)
N PyisoxV oy ) (YY) N

Since gz > W(:|x), (5.33) ensures that both of the following are well-defined probability measures.

101



Proof. Fixanym € Mandy" € S (XN (m),RN) with W(y"|x"(m)) > 0. We have

1 n Py|X’S(XN(m)’RN)(lexN(m)) _ 1 In W(lexN(m)) + ll qr {S(XN(m)’ RN)}

—1 — n
N PyiseV oy ry) (YY) N gr(y™) N W{SEN(m), Ry)xN(m)}
(5.41)
1 WEYxNm)) In VN Ink,
<—In—— " 4+ ep(Ry, R) + -
e B A A ¥
(5.42)
ks
<R-2 5.43
< N (5.43)

where (5.41) follows from the definitions of Py x sx¥m)ry) a0d PyisaVom).ry)» 1-€., (5.36)
and (5.37), (5.42) follows from (5.32) and (5.43) follows from the definition of
S(x"(m), Ry). i.e., (5.14), along with the fact that k, — ky = In k,. O

By using Lemma 26, along with the fact that decoding regions are disjoint and

Py sxVom).ry) 18 @ probability measure, (5.39) further implies that

= (1 _e_kz)k" Nesp(Ry.R
P.(fyv, on) = — e Nesp(RV-R) (5.44)
Lemma 27. Let ey := & A\I/N + % We have

» (1 +1Esp(R))

esp(Ry, R) < Esp(R) + ex|Egp(R)| + € (1 + sp)°. (5.45)

2WlZ,min

Proof. The proof is given in Appendix D.4. O

2 (HEG®D

Let N € Z* be sufficiently large such that e " ¥ 72min

(1+sp)

> 1/2. Then, Lemma 27
and (5.44) imply that

ko(1 — e—kz)e—kl [Egp(®)  o=NEsp(R)
2 N0.5(1+|E'SP(R)|) :

Po(fy, o) 2 (5.46)
Since the code is arbitrary, (5.46) implies (5.7). O
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5.2.2 Proof of Theorem §

Due to the symmetry of the channel, E,(-, Ux) = E;(-) on (R, C) (e.g., [35, pg. 145]).
Since (Uy, W) is singular (e.g., Definition 8), (5.8) is a direct consequence of item (i) of

Corollary 3.

To prove item (ii), define g(y) := 2 ,cx Ux(x)W(y|x). Due to the singularity of W,
given any y € Y, W(y|-) is either zero or a positive constant that depends on y, say d,.

Hence,

q0) = 6,y with @y = Y U(x). (5.47)

x:W(ylx)>0

Evidently,'? g(y) > 0 for all y € Y and hence g > W(:|x) for any x € X.

For any r € R,, define

1 1
Sr) =y := > In— <ry. (5.48)
{ N ,,Z:; @y,

Let R := 1%. Fix some k € R and define Ry := R — ﬁ Consider a sufficiently large

N, such that Ry > R.
Lemma 28. (i) For any x",
WA{SRyIX"} = W{SRy)Ix)}. (5.49)

where XY is an N-tuple consisting of all x,, for some x, € X.

(ii) For some K € R* that depends on R,R and W,

K
WISRy)IXN > —=e VEr® > 0, (5.50)
(S}
for all sufficiently large N.
Proof. The proof is given in Appendix D.5. O

2Without loss of generality, we assume that W has no all-zero column.
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Remark 19. Similar to the nonsingular case, item (i) of Lemma 28 enables us to directly
bound error probability of any code instead of restricting the analysis to the constant

composition codes. <

IM

m=

Consider any (N, R) code, say (fy,¢n), with decoding regions {A,,} '1 and code-
IM|

m=1°

words {x"(m))} where M denotes the set of messages. Let P.(fy,¢y) denote the

average error probability of this code. We have

- 1
Pefven) = D, D, WO om) (5.51)
meMyNeAS,
K veew L WX om) 5.52
R DIV e N

where (5.52) follows from Lemma 28.

For all m € M, define!3

W)V ¢ §(Ry),

Py (VX" (m)) 1= § VISENT) (5.53)
0, else.
qr(y™) Y
IR if y¥ € S(Ry),
Pyisp)(Y") = S (5.54)
0, else.
Using (5.53) in (5.52), we deduce that
() 2 e || % DD Paswo @ XYm) | (5.59)
\/N | | meMyNeA,,
Lemma 29. Foranym e M,
P NN
1 g Prxswo Q7 RTm) b k. (5.56)
N Pyiswy(Y™) N

for all yN with Pyjx sry(Y" X" (m)) > 0. ¢

3From item (ii) of Lemma 28 and the fact that ¢ > W(-|x), both of the following are well-defined
probability measures.
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Proof. Fix any m € M and y¥ € S(Ry) with W(y"|x"(m)) > 0. First, we claim that
d(SRy)) = W {SRIX" ()} . (5.57)
To see this,
gSRy) = D Upv(x™) >~ W(y"x")1 {yN =Y < RN}
& &

= ZN: U (x™)W {SRy)Ix" ]

= ZN: U (™YW {SRy)Ix ] (5.58)

= W{S®RvIX"(m)}, (5.59)

where both (5.58) and (5.59) follow from item (i) of Lemma 28. Hence,

NN 1 &
WO om) Ly, 1 SR_% (5.60)
@y,

P NIxY 1
1 Prswn @7IX70m) 1

1
N Pyisgy (YY) N q(y™) N

n=1 n

where the first equality follows from (5.57), the second equality follows from the fact

that whenever W(y|x) > 0, V‘;(()y";‘ ) = Q%, which is a direct consequence of the singularity

of the channel, and the inequality follows from the definition of S(Ry), i.e., (5.48). O

By using Lemma 29, along with the fact that decoding regions are disjoint and
Py,sry) 1s a probability measure, (5.55) implies that
K (1 - e‘k)

VN

Since the code is arbitrary, (5.61) implies (5.9). O

Pe(fy, on) = e NEsr @), (5.61)
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CHAPTER 6
CONCLUSION AND FUTURE WORK

In this thesis, we considered two asymptotic setups regarding the blocklength, rate and
error probability interplay of the optimum block code(s) on a discrete memoryless chan-

nel.

In the first setup, we introduced moderate deviations (medium error probability
regime) in channel coding, as a more balanced way of using available blocklength com-
pared to the classical small and large error probability regimes. We proved that when
the rate increases to the capacity with a slower speed than the large error probability
regime, error probability decays sub-exponentially fast and showed that the rate of this

decay is inversely proportional to the channel dispersion.

In the second setup, we took a closer look at the small error probability regime to im-
prove the sub-exponential terms in the classical error probability bounds, to address the
accuracy issue of the error exponent results that limits their practical usage, especially
for rates around the capacity. Our improved pre-factor orders are close to each other
and coincide for symmetric channels. Further, for symmetric channels with positive

dispersion, we discovered a phase transition of the optimal pre-factor order.

Before we conclude, we present a list' of possible research directions related to the

results in this thesis:

1. In Chapter 2, our focus was on the leading order term in the error probability
decay. An analysis similar to the remaining chapters to improve the lower-order

terms might be an interesting topic for future work.

The following list is not meant to be exhaustive and the ordering is not with respect to significance
or elegance.
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. In Chapter 2, we proved a moderate deviations result for positive dispersion chan-
nels. Extending the analysis to zero-dispersion channels might be interesting from
a theoretical perspective, since the order of the sub-exponential decay is likely to

be different.

. Dropping the constant composition code restriction in Theorem 3 appears to be a

compelling, yet challenging direction to research.

. The main result of Chapter 3 does not distinguish between singular and non-
singular channels. In light of the results of Chapter 4 and 5, one would expect
that a lower bound with a pre-factor of ®(1/ VN) holds (at least for constant com-

position codes) for singular, asymmetric channels.

. Researching the role of singularity on the third-order term in the normal approxi-

mation regime is an interesting topic to investigate.

. Extending the refined analysis for the small error probability regime in channel
coding to other information theory problems is an evident avenue to research.

Lossy source coding seems to be a tempting starting point for such a study.
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APPENDIX A
APPENDIX OF CHAPTER 2

A.1 Proof of Lemma 1

Consider any W € P(Y|X). For all y € Y, define
Xy ={xeX: W(Qlx) > 0}. (A.1)

Observe that owing to the no all-zero column assumption on W and (A.1), forall y € Y,

X, # 0. Moreover, for any P € P(X), there exists y € Y with X, N S(P) # 0.
For all y € Y, define
i RexPX) 5 Ry, st fi(p, P i= ) POW®OIX)T, V (p, P) € R, xP(X). (A.2)

xeX

Evidently f,(:,-) is continuous on R, X P(X). Also, straightforward calculation reveals

that
y(?P - _(1 +p)2 xEZXv P(X)W(y|X)(l+p) ln W(y|X), (A3)
’fip,P) 1 . In W(y|x)
PRI TR EZX P(x)W(ylx)™» In W(y|x) [2 + m], (A4)
& f(p, P) 1 - 6InW(ylx) = (InW(ylx))®
5 Ty ZX: P)W(ylx)™ In W(ylx) [6 e T ey ]
(A.5)
Further,
VP ePWX), st. S(P)NX, =0, f,(-.P) = 0. (A.6)

Equation (A.6), coupled with (A.3), (A.4) and (A.5), implies that 222, ZLeD) and

Op*

3
P ggm are continuous for all (o, P) € R, X P(X).
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For all y € Y, define

g : Ry xP(X) — Ry, s.t. g,(p, P) := fi(p, P)(1+p),

(A7)

where f,(-, ) is defined in (A.2). It follows that g,(:, -) is continuous on R, X P(X).

Note that

VP ePX), st. SP)NX, =0, g,(-.P) =0

(A.8)

Consider any P € P(X) with S(P) N X, # 0. By noting g,(p, P) = " 4®-P) one

can check that

dgy(p, P) me
S — g, P) |1+ p) +1n fi(p, P)|, (A.9)
% = &(p, p 7 (p ) K
Bf\(p P)
g,(p,P)  0g,(p, P)
= (1 +p + In P)
dp* dp fy(p P) 1.
3fy(0,P) & f,(p,P) afy(0.P) \2
ap Ip op
,P)|2 +(1+p) - , (A.10)
R Yy P 56 P) [fym, P))
6]‘}(,0 P) 3f,(0,P)
‘93gy(p’ P) — a2gy(p, P) (1 + + 1Hf(p P) g)(p’ P) 6p
op? op? Ji(p P) g dp fy(p P’
0> f,(p.P) af(0.P) \? ava(p P) af,(p.P)
Op? Op p? op
2(1 + p) -2 + ,P) -
P 5P (fy(p, P)] S0P P (fym, P)
af,(p,P) & f,(p,P) & f,(p,P) 3f,(p,P)
dp o’ dp? dp
3-2 +(1+p) (A.11)
{ 70, P)} P {fy<p Py £, P) }
For any y € Y, define
(v ‘= min mi A.12
Win(Y) min ,f’e“;? W(ylx), ( )
(A.13)

Wmax(¥) 1= max max W(y|x).
yeY xekX,
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From (A.3), by using (A.12) and (A.13), we infer that

5. P) _ f,(p.P) o

dp (1 +p)?  Wnin()’
1. P) _ f(p.P) !

dp (1 +0)? Wnax()

(A.14)

(A.15)

Consider any sequence {(pk, Pi)}i>1 in Ry X P(X) with S(Pr) N X, # O for all k € Z* and
(x> P) = (po, P,) for some (p,, P,) € R, X P(X) with S(P,) N X, = 0. Using (A.14)

and (A.15), we deduce that

Afy(0,Pr)
1 1 dp -
R, > In < liminf —22
" (1 + ,00)2 a)max(y) k—oco fy(pka Pk)
af,(0.Pr)
| _ 1 1
< limsup T e o In eR*. (A.16)

k—o00 f;}(pk’ Pk) B (1 +p0)2 wmin(y)

Note that (A.16) is evident if S(P,) N X, # 0.

Claim 3. Givenanyy € y L is continuous for all (o, P) € Ry X P(X). ¢

Proof. Fix any y € Y. Consider any (p,, P,) € R, X P(X).

Note that if S(P,) N X, # 0, then by recalling the continuity of f;(-,-), 6“‘” P and

gy(/’ ) -

&y(-, ), (A.9) ensures that is continuous at (p,, P,). Hence, suppose S(P, )ﬂ(\’ =0.

Let {(ok, Px)}i>1 be arbitrary with lim;_.(or, Px) = (0., P,). Observe that (A.8),

along with (A.2) and (A.7), ensures that

agy(P, Pk)

=0, if S(P) N X, = 0. (A.17)
op

p=py

Consider any subsequence {(px,, Pk, )}.>1. Now, if all but a finite number of P, satisfy

S(Py,) N X, = 0, then
. agy(Pa Pk,,)
lim ————

=0, A.18
Jim =2 (A.18)

P=Pky
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owing to (A.17). Suppose this is not the case. One can verify' that

0 ,P
lim gy(p kn)

=0, A.19

P=Pkn

by using the continuity of f,(-,-) and g,(:, -), along with (A.6), (A.8), (A.9) and (A.16).

Combining (A.18) and (A.19), we conclude that

(9 s P (9 ’ Po
lim w =0= %) , (A.20)
koo p P=Pk p P=Po
that implies the continuity if S(P,) N X, = 0. O
For any y € Y, define
@(y) := max{| In Wpin(), |10 W I} € R, (A.21)
where wy,in(y) and wpy(v) are as defined in (A.12) and (A.13), respectively.
From (A.4), by using (A.21), we infer that
2£0,P)  2£(0, P)In Wi (0, PYo(y)>
0" f,(p, P) < Jy(05 P) In Wax () N Jy(p, P)w(y) (A22)
dp* (1+p)? (1+p)*
2 y ) P 2 ] P l min
P10, P) _ 260 P)In 0nin(y) A2
dp* (1+p)?

Consider any sequence {(ok, Pi)}i>1 in Ry X P(X) with S(Pr) N X, # 0 for all k € R™ and
(o, Pr) = (po, P,,) for some (p,, P,) € Ry X P(X) with S(P,) N X, = 0. Using (A.22)
and (A.23), we deduce that

3 f,(0.P)
2 dp* H=p
R> ——— Inwpi < liminf ——22
(1 + po)3 k=00 fy(pk, Pk)
8% £,(p.Py) )
p? = 21 max w
< limsup —r e o 20Gna) - GOY ey oy

k—o0 f;)(pk’ Pk) B (1 +p0)3 (1 +p0)4

Note that (A.24) is evident if S(P,) N X, # 0.

IPassing to a further subsequence {Py,, Im=1 such that S(P, ) N X, # 0, for all m € Z*, if necessary.
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Claim 4. Givenanyy € Y, 82g5i§,P) is continuous for all (p, P) € R, X P(X). ¢

Proof. Fix any y € Y. Consider any (p,, P,) € R, X P(X).

afes) 0 filpy)

Note that if S(P,) N X, # 0, then, by using the continuity of f(-,), B o

62gy(p")
Op?

gy(-,-) and 6gg(§"), (A.10) implies the continuity of

at the point (p,, P,). Hence,

suppose S(P,) N X, = 0.

Let {(ok, Px)}i>1 be arbitrary with lim;_.(or, Pr) = (0., P,). Observe that (A.8),

along with (A.2) and (A.7), ensures that

azgy(p, Pk)

P =0, if S(P) N X, = 0. (A.25)

p=pi

Consider any subsequence {(ox,, Px,)}n>1. Now, if all but a finite number of Py, satisfy

S(Pi,) N X, = 0, then
82gy00,}%")

Iim 5

=0, A.26
Jim === (A.26)

P=Pkn

owing to (A.25). Suppose this is not the case. We also have?

82g,(o, P
lim 280 )l (A.27)
n—oo apz _
P=Pky
by using the continuity of f,(-,-), g,(,-) and f’ggf"), along with (A.6), (A.8), (A.9),

(A.10), (A.16) and (A.24).

Combining (A.26) and (A.27), we conclude that

> gy(p, P »g,(p, P,
lim sz) =0= Lz) , (A.28)
ke 6p P=Pk ap P=Po
which implies the continuity if S(P,) N X, = 0. O

2Passing to a further subsequence {Py, }n>1 such that S(Py, ) N X, # 0, forallm € Z*, if necessary.
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Note that from (A.5), by using (A.12), (A.13) and (A.21), one can show that

P fp.P) _ o 1 (In Wmin ()’
preamt o )4;P(X)W(y|x) ; [6111 NIRRT ] (A.29)
O fp.P) = I 60  (nwn())’
S+ >4§P(’C)W(y'x)”[6ln o) (A p)  (L+pP ]

(A.30)

Consider any sequence {(pk, Pi)}i>1 in Ry X P(X) with S(P) N X, # O for all k € R*
and (px, Pr) — (p,, P,) for some (p,, P,) € R, x P(X) with S(P,) N X, = 0. Using
(A.29) and (A.30), we deduce that

- \ & f,(p.Pr)
1 6_ n max(y ) . . a } 0=p,
3 —— [6ln - ©0O) - (ne 02)) ] < hmmf#
(I+p) Wmax(y) (1+p)  (A+p) k= fy(0ks Pr)
8 f,(p.Py) 3
ap? =Pk 1 1 min
< Tim sup ———F% < _|61n _ (0 ©ninty) ]eR*. (A31)
koo Jy(Oks Pk) (I+p) Wmnin(y) (I+p)
Note that (A.24) is evident if S(P,) N X, # 0.
Claim 5. Given anyy € Y, L0 i continuous forall (0, P) e R, XP(X). ¢

Proof. Fix any y € Y. Consider any (p,, P,) € R, X P(X).

We observe that if S(P,) N X, # 0, then, by employing the continuity of

afv(p) & f(p,) 53}"\(,0)
ﬁ( ) b (';p ’ 3

at the point (p,, P,). Hence, suppose S(P,) N X, = 0.

dag)(P)

(A.11) implies the continuity of
& gv(P )

Let {(ok, Pi)}i>1 be arbitrary with limg_.(or, Px) = (0., P,). Observe that (A.8),

along with (A.2) and (A.7), ensures that

aSgy(p, Pk)

30 =0, if S(PHN X, = 0. (A.32)

p=pi
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Consider any subsequence {(oy, , Pk, )}n>1- Now, if all but a finite number of Py, satisfy

S(Pr,) N X, = 0, then
. aSgy(p, Pk,,)
lim ———

fim =25 =0, (A.33)

P=Pkn

owing to (A.32). Suppose this is not the case. Further, we have (passing to a further

subsequence {Py, }n>1 such that S(Py, )N X, # 0, for all m € Z*, if necessary)

. aSg)’<p’ Pkn)
lim Qa3

=0, A34
—e O] (A.34)

P=Pkn

. L dgy(p,) 62&’)’(.0»‘) :
by using the continuity of f,(-,-), g,(-, -), " and o along with (A.6), (A.8), (A.9),

(A.10), (A.11), (A.16), (A.24) and (A.31).

Combining (A.32) and (A.33), we conclude that

»Pgy(p, P »g,(p, P,
lim % —0= % , (A.35)
koo p P=Pk p P=Po
that implies the continuity if S(P,) N X, = 0. O
Lastly, recalling the definition of E,(p, P) and (A.7), it is easy to see that
Eo(p,P) = =In > g,(p, P). (A.36)
yey
Using (A.36), one can check that
98,(p.P)
OEs(p, P) vy =3 A3
dp Ysey &P, P)’ '
8%g,(p,P)
PEop, P)  Lyey 57 N (an(p, P) )2 (A38)
Ip? Yisey 850, P) dp ’ '
3 33gy(p,P) 2 3
PEo(p. P) 2y —op OEo(p. P) 8°Eo(p. P) _ (Eo(p, P)
. = +3 > - . (A.39)
dp Dsey 850, P) dp dp dp

The assertions of the lemma now follow:
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1) For any given P € P(X), the concavity of E,(-, P) on R, can either be proven

O*E,(p,P)
p?

by checking the non-positivity of , given in (A.38), or directly applying
Holder’s inequality (e.g., [35, Appendix 5B]).
2) By evaluating (A.2), (A.3), (A.7) and (A.9) at p = 0 and then plugging the result

into (A.37), one can easily check the validity of the claim.

3) By evaluating (A.2), (A.3), (A.4), (A.7), (A.9) and (A.10) at p = 0 and plugging

the result into (A.38), one can check the validity of the claim after some algebra.

4) Fix any P € P(X). The concavity of E,(:, P) on R, (recall item 1) above) ensures
that % < 0, for all p € R,. This, coupled with item 2) above, implies the
claim.

5) The continuity of g,(-,-) on P € P(X) xR, and Claim 3, along with (A.37), imply
the claim.

6) The continuity of g,(-,+) on P € P(X)xR,, Claim 4 and item 5) above, along with

(A.38), imply the claim.

7) The continuity of g,(-,-) on P € P(X) X R,, Claim 5 and items 5) and 6) above,

along with (A.39), imply the claim. O
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APPENDIX B
APPENDICES OF CHAPTER 3

B.1 Proof of Lemma 5

The content of this section resembles Dembo-Zeitouni’s proof of Bahadur-Rao theorem
(cf., [21, Theorem 3.7.4]). The main difference is the usage of the Berry-Esseen the-
orem, instead of the asymptotic expansions related to the central limit theorem. The
usage of the latter results in the dependence of the lattice nature of the random variable

and we choose to use the former in order to avert this technicalities.

First of all, note that since A;(-) is finite in a neighborhood of 1, A;(-) is smooth at 1.

Moreover, the defining assumption of 7 (i.e., property (ii) above) implies that
. BN
An(@) = qn =~ > A, (B.1)
e
since % > Ai(0) is convex.
Next, as an immediate consequence of the definition of A;,
EilZ] = ; fze”zd/li(z). (B.2)
' M;(n)

Moreover, since A; is smooth at n7, we also have

.o MG 1 .
NMOEEY o = T f 2e"dA(2). (B.3)

And hence, we conclude that

E41Z1] = ALG). (B.4)

Also, straightforward algebra reveals that

_ M)

- AP, B.5
M [A7(m)] (B.5)

A7 ()
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Moreover, since A; is smooth at r7, we also have

Mo = [ Zeran. (B.6)
which, in turn, implies that
M (1)
EilZ] = ——. (B.7)
4 Mi(n)

Plugging (B.4) and (B.7) into (B.5) yields
Vary[Z] = A/ (). (B.8)

Furthermore, recalling the definition of A;, it is obvious that A; < 2;, i.e., A; dominates

A;. Moreover, since Z; are real-valued and ¢~ > 0, for all z € R, we have
dAa;
—(z) = e FHAD), B.9
7 /b( ) (B.9)

which, in turn, implies that 1; < A,. Hence, we conclude that A; and A; are equivalent

probability measures, i.e., A; = ;.

Next, we claim that

Mo, > 0. (B.10)

To see this, note that for any i € {1,...,n},

A/ = 0] & [Z = Ajtp) T - (as)] (B.11)
= |Z =N@mn) A-(s)] (B.12)
= [Var[Z] = 0], (B.13)

where (B.11) follows from (B.4) and (B.8), (B.12) follows since A; = A;. From the
assumption that };_, Var[Z;] > 0 and (B.13), we conclude that >, A”(57) > 0, which

implies (B.10).
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‘We continue as follows:

Hn([g, 0)) = f Ai(dzy) ... A,(dz,) (B.14)
182q)

= f eZin N (g7 y L A(dz) (B.15)
$n>q)

— eZ§Z1Ai(n)Eﬁn [ﬂ{ﬁnzq}e_m]ﬁn] (B.16)

= e NOE, [, e, (B.17)

where (B.16) follows by recalling the definition of /i, and (B.17) follows from (B.1).

Note that (B.4) and (B.8) imply that

Ey [T =0, Vary[T] = A/ (. (B.18)
Define
W, = ! Y T, (B.19)
Mon 4=
Further, observe that
S, = \/nT% +q (B.20)

which, in turn, implies that

{Snzq}={\/m_z,n% 20}. (B.21)

Plugging (B.20) and (B.21) into (B.17) yields

tn([g, 00)) = e PE,, [ﬂ{wnzme_"mwn] (B.22)
— oM@ f eIV (x) (B.23)
0
. « 1
_ e—nAn(q)f e ! [Fn (w_) _ Fn(O)] dt, (B.24)
0 n

where F), is the distribution of W,, when Z; are independent with laws A, U =AMy,

and (B.24) follows from integration by parts.
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Fix some a > 1 and note that since A; is smooth at n, m3, < oo and hence (recall

(B.10)), t,(a,q) € R*.

Next, Berry-Esseen theorem (cf., [9], [25, Theorem III.1]) implies that

ms
m3/2 ’
2.n

|[F(x) — D(x)| < ¢ Vx €R, (B.25)

where ®(-) is the distribution of the standard Gaussian random variable and c¢ is an ab-
solute constant. If the random variables are independent but not identically distributed,
then we can take ¢ = 1, whereas if they are also identically distributed, then we can
take ¢ = 1/2, by recalling the fact that the best known constants for each case is smaller
than 1 and 1/2, respectively (cf., [46] for a recent survey of the best known constants in

Berry-Esseen theorem).

To deduce (3.1), we approximate fow e’ [Fn (WL) - F n(O)] dt as follows:

t t ms

F, (—) _F,0)<® (—) —o(0) + 2 (B.26)
wn wn m;/nz

< wi¢(0) + 2% (B.27)

2.n

where resp. ¢(-) denotes the density of the standard Gaussian random variable, (B.26)
follows from (B.25) and (B.27) follows via a Taylor series approximation coupled with
the observation that ¢’(x) = —\%2716_)‘2/2 < O for all x € R,. Plugging (B.27) into
(B.24) and carrying out the straightforward algebra gives (3.1). Evidently, if the random
variables are i.i.d. then (B.26) holds with 2'"%/2 replaced with % and hence the claimed

m2,n 2.n

upper bound for this case follows.
To prove (3.2), first note that for any b > 0

f te”'dt = e (1 + b), (B.28)
b

f ) Peldr = e P[1 + (1 + b)?], (B.29)
b
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that can be verified by straightforward algebra.

Further,
t t ms,
F, (w—) - F,(0)> @ (17) - ®(0) -2 g (B.30)
2
> iqg(()) 1 M (B.31)

> -2 ,
Yn Wi 2 \2re mg/nz
where (B.30) follows from (B.25) and (B.31) follows by a Taylor series approximation,

-x2/2

along with the observation that R, > x — xe < ¢7!2, By plugging (B.31) into

(B.24), we deduce that

© t © t
NE,[— |- F,(0)|dt > NF,|—|-F,0)|d B.32
[ e lp(z)-pofax [ oA ()-Aofa ®32)

* t 1 1
> e | ———— (1 - —) - —} dt. (B.33)
»ft;(a,q) [n 2nmy,, al  y222me

Equations (B.28), (B.29) and (B.33), along with elementary algebra, imply that (3.2)

holds.

To prove (3.3), we lower bound the right side of (B.22) by using the fact that < 1

to have
(1. 90)) = €NV [y e =] (B.34)
:e—nA;:(q)f e VudF (x) (B.35)
0
_ f I (t] Niny) — Fu(O)dr, (B.36)
0

where (B.36) follows by letting 7 := x y/m,_, and integration by parts.

By using similar arguments to approximate the integrand on the right side of (B.36),

one can verify that

0 t
\F, - F,0
f(; ¢ [ ( VmZ,n) ©

dt > f T [F( ! )— Fn(O)] dt (B37)
Ku(9) ‘ ViM2n
oK@ (1 ~ 1+ + Kn(q))z)

>
\2mmy, 2 \Jmy,

(B.38)
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Plugging (B.38) into (B.24) yields

e~ ") p=Kn(q) 1+ (1 +Ky( ))2
f1a(lg, 0)) > @— q). (B.39)
\2mmy,, 2 \my,,

O

B.2 Proof of Proposition 2
Claim 6. For any R > R,
: P
Eqp(R,P) = —oR — (1 A , B.40
sp(R, P) g%ﬁg&{f> (1+p) W«1+p» (B.40)

forall P € P(X). ¢

Proof. The proof is clear from basic optimization theoretic arguments, (e.g., [20, Exer-

cise 2.5.23]), we just reproduce the steps for the sake of completeness.
Esp(R, P) = max min {D(V||W|P) + p[I(P;V) — R]} (B.41)
PERL VePWV|X)

= i D(V||W|P) +
max, i, {DVIVIE) 4

Imlmw@m—ﬂ} (B.42)
0ePY)

= max {—pR + min  min_ [D(V||W|P) +pD(V||Q|P)]} (B.43)

pER, QePWY) VePWVIX)

. P
_ “oR — (1 + p)A : B.44
max min, {-pR =1+ g (2] (B4

O

Remark 20. Recalling the definitions of Ppw(Y) and @Rw(y) (cf., (3.18) and (3.19)),

we note the following facts:

(i) Ppw(Y) and Ppw(Y) are convex sets and Ppw(Y) € Prw(Y).
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(ii) From the basic facts about convex sets (e.g., [10, Proposition 1.4.1 (c), Proposi-
tion 1.4.3 (b)]), ri(Ry) = R* and ri(Ppw(Y)) = ri(P(Y)) = {Q € P(VY) : Q@) >
0, Vy € V).

(iii) For any Q € Ppw(Y), Agp(A) €R, forall A € [0, 1).

(iv) Forany Q € P(Y)\Ppw(Y), Agp(d) = =, for all A € (0, 1) and hence given any
R > R, P e P(X)and Q € PV)\Ppw(Y), Krp(p, Q) = o forallp e R*. &

Claim 7. Consider any R > R, and P € P(X).

(i) Given any p € R, (resp. p € R"), Kgp(p,-) is (resp. strictly) convex on Ppw(Y)
(resp. Ppw(Y)).

(ii) Given any Q € Ppw(Y), Kgp(-, Q) is concave on R,. ¢

Proof. Let R > R, and P € P(X) be arbitrary.

(i) Given any x € S(P) and A € [0, 1) define f,, : Ppw(Y) — R* such that

Zyey W(ylx)l_/lQ(y)/l’ ifle (0’ 1)7
Sea(Q) = (B.45)

1, if 1=0,

for any Q € Ppw(Y). Let O, 0, € Ppw(Y) and 8 € (0, 1) be arbitrary. For any
A €(0,1), we have

21001 + (1 -60)0) = Z WD) 001() + (1 - O] (B.46)

yey

> Z WOl 001" + (1 - 0)02(1)"] (B.47)
yey

= 0fa(Q1) + (1 = 0)f:.2(0Q2), (B.48)
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where (B.47) follows from the concavity of (-)! on R, for any A € (0, 1). Clearly,
(B.48) is true for 4 = 0.

Since In(+) is strictly increasing and strictly concave on R*, (B.48) implies that

In(fea(0Q1 + (1 = 0)Q2)) 2 In(0fa(Q1) + (1 = 6) £:4(22)) (B.49)
> 0In(fa(Q1) + (1 = 6) In(f;1(Q2)). (B.50)

P

E) is concave on Ppw(Y). By re-

(B.50) implies that given any p € R, A.,p(
calling the definition of K p (cf., (3.20)), this implies that K p(p, -) is convex on

Prw(Y).

Strict concavity follows by noting that for any Q, Q, € Ppw(Y) such that Q; #
0, and A € (0, 1), the inequality in (B.47) is strict owing to the strict concavity of

()* on R* for any A € (0, 1).
(ii) Forany 2 € (0,1), Q € Ppw(Y) and x € S(P) define

Wil 00!
Ysey WO 1O

Yy e Y, Wip(lx) = (B.51)

Recalling the definition of Ppy(Y), WJ,Q(-lx) is a well-defined probability mea-

sure on Y. It is easy to check that!

/ Z o)

AQ,P(/]') = P P(X)EW/LQ('|X) [ln W] , (B52)
"oy — Z ) oY)

AQ’p(/l) = A P(x)VarWA’Q(.‘x) [ln W(le)] N (B53)

for any Q € Ppw(Y) and A € (0, 1). Recalling the definition of Ky p (cf., (3.20)),
(B.53) implies that

K
Therood) ___1 4y ( £ )so, (B.54)

dp? C1+pP 2\ T +p

2
IFor the sake of notational convenience A p(A) (resp. A p(2)) denotes GA%/’{“) (resp. 9 Aa?ig (/U) in the

sequel.
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for any Q € Ppw(Y) and p € R*.

Now, fix any Q € Ppw(Y). (B.54) implies that — K p(-, Q) is convex on R*, equiv-
alently, the epigraph of —Kg p(-, Q) with its domain restricted to R* is a convex set.

Furthermore,
1pif(r>l —Krp(p, Q) <0 =—-Krp(0, Q).

Hence, after adding O into the domain of Kgp(-, Q), its epigraph remains to be

convex.

Definition 11. Let G C R"and f : G — R. (G, f) is “convex and closed in Fenchel’s
sense” (cf., [54, pg. 151], [32, end of Section 2]) (resp. “concave and closed in

Fenchel’s sense” ) provided that:

(i) G is convex.
(ii) f is convex (resp. concave) and lower (resp. upper) semi-continuous.

(iii) Any accumulation point of G that does not belong to G satisfies lim f(-) = oo

(resp. lim f(-) = —o0). ¢

Claim 8. Let R > R, and P € P(X) be arbitrary. For any Q € ri(Ppw(Y)) (resp.
p € ri(R,)), Ry, Kpr(-, Q) (resp. (Ppw(Y), Kpr(p,+))) is concave (resp. convex) and

closed in Fenchel’s sense. ¢

Proof. Fix any R > R, and P € P(X).

First, fix an arbitrary Q € PRW(M). Observe that Ap p(1) € R for all 4 € (0, 1),
which in turn implies that A, p(A) is infinitely differentiable with respect to A for all

A € (0,1). Moreover, recalling the definition of PR w(Y), it is easy to check that for
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any Q € P,J,W(y), lim, 0 Ag p(1) = 0 = App(0). These two observations ensure the
continuity (and a fortiori upper semi-continuity) of Kg p(-, Q) on R,. By noting (recall
item (ii) of Remark 20) ri(Pprw(Y)) C PRW(M ), the fact that R, is closed and convex
and the concavity of Kg p(-, Q) (cf., item (i1) of Claim 7) this suffices to conclude that

(R, Kg p(-, Q)) is concave and closed in Fenchel’s sense.

Next, fix an arbitrary p € ri(R;) = R* (cf,, item (ii) of Remark 20). Observe that
any accumulation point of £pyw(Y) which does not belong to Ppw(Y), say Q,, satisfies
Qo € PM)\Prw(Y), owing to the compactness of P(Y), and hence Kz p(p, Q) = .
Further, item (i) of Remark 20 and item (i) of Claim 7 ensures that in order to conclude
that Kg p(p, -) is convex and closed in Fenchel’s sense, we only need to verify the lower
semi-continuity. Implied by its convexity, Kgp(p,-) is continuous on ri(P(Y)). Let
Qo € Ppw(W\ri(P(Y)) be arbitrary. Consider an arbitrary sequence {Q;}>1 such that
Ok € Ppw(Y) and limy_., Qx = Qy. Lastly, define A := 1pr € (0,1). We have

lim Ag, (1) = lim > P(x)In ) W(I0)' ™ 0" (B.55)
x€S(P) yey
= > P®In Y W'y (B.56)
x€S(P) yey
= Agyr(D), (B.57)
where (B.56) follows from the continuity of In(-) and (-)*. O

Now, we are ready to prove the existence of a saddle-point. To this end, fix arbitrary

R > R, and P € P(X) from now on.

We first establish
—oo <max inf K ,0)= min sup K| , 0) < oo, B.58
P o) rpP(0, Q) Qef"aw(%pe[g rP(P, Q) ( )

In order to prove (B.58), we use a minimax theorem of Rockafellar, [54, Theorem 8].

Claim 8 ensures that (R, Ppw(Y), Kr p) is a “closed saddle-element” (cf., [54, pg. 151])

125



and the boundedness of Ppy (Y) guarantees the fulfillment of condition (II) for the va-
lidity of the aforementioned theorem (cf., [54, pg. 172]). Therefore [54, eq. (7.2)]

implies that

—co < sup inf  Kgrp(p, Q) = miny sup Kgp(p, Q). (B.59)

peR, Q€Prw(Y) QePrw(¥) peR,

Next, we claim that

YVpeR,, inf K ,0)= inf K B.60
P e ) rp(, Q) = osFn rpP(0, Q). ( )

Since Ay p(0) = 0, for all ¢ € P(Y), (B.60) is trivially true for p = 0. On the other hand,

for any p € R*, item (iv) of Remark 20 implies that
VO € PI\Prw(Y), Krp(p, Q) = oo, (B.61)
which, in turn, implies (B.60). Equation (B.40) and (B.60) imply that
Esp(R, P) = max Qn;;(n Krp(p, Q) = max ;‘,}va Kgp(p, Q) < . (B.62)

Equation (B.59) and (B.62) imply that

—oo <max inf Krp(p,Q)= min sup Kgp(p, Q) < oo, (B.63)
peER, QGPPW(y) (p QEfDRW(«y)pe]lgr ’ (p

which is (B.58).

From [55, Lemma 36.2], (B.58) ensures the existence of a saddle-point on R, X
Pprw(Y) and (B.62) implies the saddle-value is Esp(R, P). Hence we conclude the proof

of the first assertion of the proposition.

Next, we prove the second assertion.

Claim 9. Consider any R > R, and P € P(X). If 0 € S(R, P)z,, then Esp(R, P) = 0,

equivalently, if Esp(R, P) > 0, then 0 ¢ S(R, P)|g,. ¢
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Proof. Consider any R > R, and P € P(X). Assume 0 € S(R, P)|p,. We clearly have
Kz p(0,0) = 0, for all Q € Ppw(Y), which in turn implies that (recall the definition of
the saddle-point) K p(0, 0) = 0 for any 0e Prw(Y) satisfying (0, 0) € S(R, P). From

the first assertion of Proposition 2, this implies the claim. O
Recalling the definition of Px(X) (cf., (3.17)), Claim 9 immediately implies the

following result.

Corollary 4. For any C > R > R, and P € Pr(X), S(R,P)[z, CR".

Claim 10. For any C > R > R, and P € Pr(X), S(R, P)lp, ) € Prw(Y). ¢

Proof. Fix any C > R > R, and P € P(X). Let p € S(R, P)|, be arbitrary. Note that

owing to Corollary 4, p € R*. Define 1 := % € (0,1) and recall that (cf., proof of

Claim 7) A p(A) is concave on Ppyw(Y).

For any Q € Ppw(Y) such that (p, Q) € S(R, P) we have

A A : A A . p
K ,0)= min K ,O0)=—-pR-(1+ max A — 1, B.64
rpP(0, Q) pcmun kPP, Q) = —pR— (1 +p) oohax Aor (1 n p) ( )

from the definition of the saddle-point.

Now, consider any Q € Ppw(Y) and for any x € S(P), define Ay, (1) :=
In Y ey W(Ix)' ™ O(y)". Note that we have 3 possibilities for the partial derivatives of

A (1) with respect to Q(y):

1. If y e S(W(-|x)) N S(Q), then

OAg(D) _ AW om*!

_ , B.65
00(y) Ysey WEI)IOG)! ( )

which is continuous in Q(y).
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2. If y ¢ S(W(:|x)), then (since any variation along this direction does not change the
value of the function)

ONg.A()
-, B.66
00(y) (860

which is continuous in Q(y).
3. If y ¢ S(Q) and y € S(W(+|x)), then

N (D)

A B.67
900) (.67

Then, [35, Theorem 4.4.1] implies that? a necessary and sufficient condition for any

0 € Ppw(Y) to achieve the maximum in (B.64) is:

—agg&()” — 6, ¥y e S0), (B.68)
OAg.r()

—— <9,V S(0), B.69
300) <6,y ¢ S0 (B.69)

for some 6 € R. Clearly, if Q ¢ @P,W(y) then it cannot satisfy (B.68) and (B.69) (cf.,

(B.67)). Hence, any minimizer of (B.64) belongs to Ppy (). O

Corollary 4 and Claim 10 imply the second assertion of the proposition. O

B.3 Proof of Proposition 3

Claim 11. Consider any C > R > R, and P € Pr(X). For any p € S(R, P)lg_, there

exists a unique 0e Prw(Y), such that (p, 0)e S(R,P). ¢

2Strictly speaking the statement of the aforementioned theorem requires the cost function of the max-
imization problem to be continuously differentiable (with possible infinite value on the boundary) on the
whole probability simplex. However, it is easy to verify that the proof given by Gallager is also applicable
to our case. Indeed, for sufficiency, item (iv) of Remark 20 ensures that the value of the cost function eval-
uated at any Q satisfying (B.68) and (B.69) is not smaller than its counterpart for any Q € P(Y)\Ppw(Y).
For necessity, again item (iv) of Remark 20 ensures that any optimizer cannot be in P(Y)\Ppw(Y).
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Proof. Consider any C > R > R, and P € Pr(X). Let p € S(R, P)lz, be arbitrary.
Existence of a O € Ppw(Y), such that (9, Q) € S(R, P) is guaranteed by item (i) of

saddle-point proposition, i.e., Proposition 2, hence we prove the uniqueness.

To this end, note that owing to item (ii) of saddle-point proposition, (Corollary 4 to
be precise), p € R*. Moreover, the same result (Claim 10 to be precise) also implies
that any Q € Prw(Y), such that (o, Q) € S(R, P) satisfies Q € Ppy(Y) and attains the

minimum in the following expression

min KR,P(ﬁ’ Q)a (B70)
Q € Pﬂw(y)

as a direct consequence of the definition of the saddle-point. However, item (i) of
Claim 7 implies that Kg p(p, -) 1s strictly convex on 733 w(Y) and hence the minimizer

of (B.70) is unique. O

Claim 12. Consider any C > R > R, and P € Px(X). For any 0 € S(R, Pl

YpeR*

" A
, 0 KR,P(p, Q) _ 1 A ( P )< 0, (B.71)

ar  (I+pp 2P\ 1+p

and there exists a unique p € R, such that (0, Q) €ES(R,P). ¢

Proof. Consider any C > R > R, and P € Px(X). Let 0 e S(R, P)lp, ) be arbitrary.
The existence of a p € R,, such that (o, 0) € SR, P) is guaranteed by item (i) of

saddle-point proposition, i.e., Proposition 2, hence we prove the uniqueness.

To this end, note that on account of item (ii) of saddle-point proposition, (Claim 10,
in particular), Q € ?N)p,W(J/ ), and hence A p(4) is infinitely differentiable with respect

to Aon (0, 1).

We first claim that

A’Qf () >0,¥ae(0,1). (B.72)
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For contradiction, suppose there exists a A € (0, 1) such that A’QI P(/l) = 0. Note that

[32€©,1), st A}, () =0] = [I1€©,1), st.

A

o)
P(x)Var~A (e [ln —] =0 (B.73)
2, PoVars 0 |10y
— [dA€(0,1), s.t. Yx € S(P),
(Y
VarWLQHX) [ln %] = O:| . (B74)

where A7, (1) := Eyy, 10 |In 77505 | (cf., (B.52)) and (B.73) follows from (B.53). From

(B.74), we infer that
[31€0.1), st A} (D =0] & [I1€(0,1), s.t. Yxe S(P),

00) = Wiloe" e, vy e SWEIn) |,

(B.75)

By the contradiction assumption, the left side of (B.75) is true. Fix any such A €

(0, 1). Then, for any p € R*, we have

AQ,,,(I%): Y P@In Y WO Oy (B76)

xeS(P) YeS(W(|x))
__p :
= > PN, @), (B.77)

x€S(P)

where (B.77) follows from (B.75). We further have,

Ese(R, P) = max Kg (o, 0) (B.78)
= max {0, sup Kz p(p, Q)} , (B.79)
PERT

where (B.78) follows by recalling the definition of the saddle-point and item (i) of
saddle-point proposition, i.e., Proposition 2, and (B.79) follows by noting the fact that

Kzp(0,0) = 0 for all Q € Ppy(Y).
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Also, (B.77) implies that

sup Kip(p, 0) = sup 4 =pR —p )| POIA, () (B.80)
peR* pER* xeS(P) ’
= sup —p {R + A, S, (B.81)
peR* ’

where (B.81) follows by recalling (B.52). Equations (B.79) and (B.81) clearly imply
that either Egp(R, P) = oo, which is impossible since R > R, or Esp(R, P) = 0, which
is impossible since P € Pr(X). Hence, (B.72) follows. A direct calculation reveals that

(B.72) implies (B.71).

Next, recalling the definition of the saddle-point, we note that any p € R, such that

(D, Q) € S(R, P) satisfies

K (D, 0) = Iﬁgﬁx K p(p, 0) (B.82)
= max K p(p, Q), (B.83)
peR*

where (B.83) follows by recalling the assumption that P € Px(X). Equation (B.71)
ensures that Kg p(-, Q) is strictly concave on R* and hence the maximizer of the right

side of (B.83) is unique. O

In order to conclude the proof, fix any C > R > R, and P € Px(X) and observe that
(e.g., [42, Proposition VIL4.1.3]) S(R, P) = S(R, P)|z, X S (R, P)lp,,,(y)- Combining this

fact with Claims 11 and 12 implies that S (R, P) is a singleton. O
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B.4 Proof of Proposition 4

First, we define the set of Lagrange multipliers of Egp(R, P) as follows: For any R > R,

and P € P(X),
LR, P):= {,[) e R, : pattains max min [D(V||W|P) + p(I(P;V) — R)]} . (B.84)

pER, VEPWYIX)

Claim 13. For any R > R, and P € P(X), we have L(R,P) = S(R, P)|z,. ¢

Proof. First of all, owing to the positivity of the relative entropy, it is easy to verify that
I(P; V) = min D(V||Q|P), (B.85)
0P (Y)

which, in turn, implies that (by solving the convex optimization problem)

. o VRN P
VpeR., min (D(VIWIP)+p((P;V)~R)) = min ){ oR — (1 + ,o)AQ,P(1 +p)}.
(B.86)
Further, since for any Q € P(Y), Agp(0) = 0 and for any p € R*, Agp (1%,9) = —oo, if
0 ¢ Ppw(Y) (cf., item (iv) of Remark 20), we have

min. {—pR —qa +p)AQ,P(1 ﬁp)} =t {—pR —qa +,o)AQ,P(1 fl)-p)} . (B.87)
Lastly, [55, Lemma 36.2] ensures that p € S(R,P)lp, if and only if p attains
maxXyes, {infoepy,, ) Krp(p, @)}, which (owing to (B.86) and (B.87)) implies that
L(RR,P) = S(R, Pl .
Claim 14. For any R > R, and P € P(X), we have S(R, P)lz, = —0Esp(-, P)(R), where

OEsp(-, P)(R) is the subdifferential of Egp(-, P) at R (cf., [55, pg. 215]).

Proof. We note that (cf., [55, Theorem 29.11°) £(R, P) = —0Egp(-, P)(R). The claim

follows by recalling Claim 13. O

3Strictly speaking, this result is stated for a finite dimensional Euclidean space. However, one can
represent the stochastic matrices in RIW! and update each function accordingly and easily check this
representation obeys the conditions of the aforementioned theorem. This reasoning applies to the similar
situations in the sequel.
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Uniqueness of the saddle-point proposition, i.e., Proposition 3, and Claim 14 imme-

diately imply that for any C > R > R, and P € Pg(X),

0 Egsp(r, P
SR, P, = - O D)) (B.88)
or r=R
By recalling the definition of Pr.p (e.g., (3.23)), (B.83) implies that
0 Esp(r, P)
op=— ——————| . B.89
pR,P 67‘ R ( )
O

B.S5 Proof of Proposition 5

Let C > R > R, be arbitrary. Fix any P, € Px(X) and consider any {P;};>; such that
Pk S PR(X), Vke Z+ and hmn—>oo Pk = PO.

We begin with showing the continuity of pj, . Recalling (3.23) and the differentia-

bility of Egp(-, P) proposition, i.e., Proposition 4, we have

O0Egsp(r, P
Vk € Z., pyp, = — OBse(rn Pl (B.90)
’ ar r=R
Further, continuity of Egp(-, ) on (R, 00) X P(X) (e.g., Claim 30) implies that
%im Esp(R, Pi) = Esp(R, Py). (B.91)

On account of (B.90), (B.91) and a continuity result of Hiriart-Urruty and Lemaréchal

([42, Corollary VI1.6.2.8]) we conclude that

]!i_)rg)p;,f'k = p;,Po’ (B'92)

which implies that pj, _ is continuous on Pg(X).
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Next, we claim the continuity of Q . Owing to the compactness of P(Y), there ex-
ists a subsequence {k,},>; such that lim,_, Q};Pk = Q, for some Qy € P(Y). Consider

such a subsequence.

Recalling the saddle-point proposition, i.e., Proposition 2, and the definitions of pj
and Q5 (e.g., (3.23) and (3.24)), we have
+ * % p;’Pkn
VYVnelZ", ESP(R, Pk,,) = _RpRst,, - (1 +pR,Pk,,)AQ}}p Pl |- (B93)
Lkn 1 =+ pR,Pkn
Next, we define f : R, x R* — R, such that f(a, b) := a” for any (a,b) € R, x R*

and note that f is continuous on R, X R*. Using this, the continuity of p; and In(-), we

deduce that

. p;,Pk” p;‘?,Pk
r}l_{{}o AQRPkn P, (m] = Ag,.p [ﬁ] : (B.94)
\Pr, P,

Equations (B.93), (B.94) and the continuity of Pg. imply that

. . PRp
Ege(R. Po) = ~Rpiep, ~ (1 + i p YA [1—) (B.95)
+pR,P0
. Pr.p,
= min —Rpn ». — (1 + pp » )A —_— B.96
QGP:,W(.V) { Pr.py ( pR’PO) 2Fo ( 1+ p;’PO )} ( )
_ . * * p;,Po
= Qrgg?y) { RpR,Po (1+ pR,Po)AQ,Po ( 1+ p;’PO )} > (B.97)

where (B.96) follows from recalling the definition of the saddle-point and (B.97) fol-
lows from item (iv) of Remark 20. The uniqueness of the saddle-point proposition, i.e.,
Proposition 3, the definition of QO , (e.g., (3.24)) and (B.97) imply that Qy = Ok p,-

Since {k,},>; 1s arbitrary, we conclude that

lim Qi p, = Qi p, (B.98)
which implies that Oy, - is continuous on Pr(X). O
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B.6 Proof of Proposition 6

Fix an arbitrary C(W) > R > R, and P € Pr(X). Define L(V,p) := D(V||W|P) +
p(I(P; V) —R), forany V € P(Y|X) and p € R,. We have

Esp(R,P) = mi L(V,p) = in L(V,p), B.99
sp(R, P) Velg(lglx)ps;lﬂg V. p) max min . (V.p) (B.99)

where the second equality follows from (B.41). (B.99) ensures that L(-, -) has a saddle-
point on P(Y|X) x R,. It is well-known that (e.g., [55, Corollary 28.3.1]) V € P(Y|X)
is a minimizer of Egp(R, P) if and only if there exists some p € R,, such that v, p)isa

saddle-point of L(-,-).

Recalling the definition of the saddle-point, the definition of Prp (e.g., (3.23)),
(B.84) and Claim 13, we conclude that an equivalent condition for Vy , to be an op-

timizer of Egp(R, P) is

kp € arg min (V. prp) ( )
Further,
Esp(R, P) = i L(V, p; B.101
sp( ) Verflr’l(ljrlllz\’) (V. Pg.p) ( )
= i i D(V|IW|P) + pr »[D(V||Q|P) — R B.102
o v 3l (PVIWIP) i DVIOID —R1} - (B.102)
< i D(V||W|P) + p% »[D(V||OQ% »|P) — R B.103
min (D(VIWIP) + pjg pD(VIIQ pIP) ~ R} (B.103)
< Kep(pj p- O ) (B.104)
= ESP(R’ P)7 (BIOS)

where (B.101) follows from (B.100), (B.102) follows from (B.85), (B.104) follows by

plugging in W (cf., (B.51)) and (B.105) follows from the saddle-point proposi-

*
PR.P
H—p}*‘e p TRP

tion, i.e., Proposition 2 and the uniqueness of the saddle-point proposition, i.e., Propo-
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sition 3. Hence, we deduce that

min L(V,ppp) = min {D(VIWIP) + pj o[D(VIIQ5 pIP) - R1} = Esp(R, P),

VePY|X) VeP(Y|X)
(B.106)
and W ,,,  is an optimizer of minyepy {D(VIIWIP) + pj o[D(VIIQ; »IP) - R1}.
1+p;7P’ R.P

Moreover, since
L(V, py») < DCVIWIP) + pj p[D(VIIQ; 5IP) = RLY V € PYIX), (B.107)

we notice that (B.106) further implies that w e . € arg minyepyx) L(V, Pr. p), and
%’ R.P

hence W 1s a minimizer of Egp(R, P), owing to (B.100).

*
PR.P
Taply o ORP

Next, we note that on account of (B.65), for any Q € i’g w(Y), we have

6A p;{_,P * * _ *
o,P l+p;”, pRP W()’|X)l/(l+pR~P)Q(y) 1/(1+pR,P)
— =T P(x) T —,  (B.108)
aQ(y) 1 +pR’p 1eS(P) Zyey W(}N)lx) (4P p Q()“;)PR,P (I+pg p)
for all y € S(Q). Moreover, (B.66) implies that for any Q € @]{W(y ),
o
MorlE5) s o
=0, vy . .
a0(y)

KKT conditions that Oy , satisfies, i.e., (B.68) and (B.69), coupled with (B.108) and

(B.109) (by choosing ¢ = Pir to ensure that Qf , sums to 1) imply that

1+pk p

W(y|x)1/(1+/3}},p) Q;ﬁg,p()’)p;”)/(lmz"))

Ok p(y) = P(x) » * ————  Vyel. (B.110)
x;@ Ssey WO 1050 0y (/)
Clearly, (B.110) implies that
D P@W ., Ol = Q). Yy e, (B.111)

xeS(P) Leogp kP

which, in turn, implies that (since W ,;,, is an optimizer of Egp(R, P))
l+p;€.P’ R.P
I|PW . =D[(W,.,  lQrslP|<R (B.112)
%’ ;P |+p§‘e,P’ ;,P ’
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Next, we conclude the proof as follows. First,

esp(R.P) = inf sup (D(VIIWIP) +p[D(VIIQ; AP — R} (B.113)

VepP PER

>

Lnf {DVIWIP) + pj [D(VIIQ;IP) = R} (B.114)

= Egp(R, P), (B.115)

where (B.115) follows from (B.106).

On the other hand, (B.112) and the fact that W oy 18 a minimizer of Esp(R, P)

Tor »
1+p R.P R.P

ensure that

esp(R, P) < D[VV e ||W|P) = Esp(R. P). (B.116)

Tpp p 2R

Combining (B.115) and (B.116), we infer that

esp(R, P) = min D(V||W|P) = Esp(R, P). (B.117)
VeP(Y|X) : D(VIIQ; ,IP)<R

B.7 Analysis of the case P € #;, ,

First, we define the following set: Pw(Y|X) := {V € PY|X) : Vx € X, V(|x) <

W(-|x)}. One can check the following by elementary calculation.

Claim 15. Py (Y|X) is convex and compact. ¢

Next result will also be used in different parts of the chapter.

Lemma 30. Egp(-, ) is continuous on (R, ) X P(X). ¢

Proof. The proof follows similar lines to those of [20, Lemma 2.2.2], which proves

continuity of the rate-distortion function.
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First, note that given any P € P(X), Esp(-, P) is convex on (R, o). Fix an arbitrary
(Ro, Py) € (R, 0) X P(X) and a sequence {(R,, P,)},s; such that (R,, P,) € (R, ) X

P(X) and lim, (R, P,) = (Ro, Po).

Because of the convexity, Esp(-, Py) is continuous on (R, ). Hence, for any € € R*
one can choose V € P(Y|X) such that I(Py; V) < Ry and D(V||W|Py) < Esp(Ry, Py) + €.

Moreover, on account of continuity of D(V||W]|-) and I(-; V), we have
D(V|IW|P,) < Esp(Ro, Po) +2¢, 1(P,;V) <R, (B.113)
for sufficiently large n, which, in turn, implies that

lim sup Esp(Rn, Pn) < ESP(R(), Po) (Bl 19)

n—oo

Conversely, let V, € P(Y|X) be a minimizer of Egp(R,, P,) and without loss of

generality suppose? V, € Py(Y|X). Let {n};>1 be a subsequence such that

l}im Esp(R,,, Py,) = liminf Egp(R,,, P,), (B.120)
and
gim Vo =V, (B.121)

for some V € Py (Y|X). Note that existence of such a subsequence is ensured by the

compactness of Py (Y|X) (cf., Claim 15). Equation (B.121) further implies that

lim I(P,,;: V,,) = 1(Po; V) < Ro, (B.122)
]}im DV, |IW|P,) = D(V||WI|Py), (B.123)

where (B.122) follows from the continuity of I(:; -) and (B.123) follows from the conti-

nuity of D(-[|W]-) on Py (Y|X) x P(X). Equations (B.120), (B.122) and (B.123) imply

4To see why this does not yield a loss of generality, first note that since Esp(R,,, P,,) < oo, we necessar-
ily have V,,(-|x) < W(:|x), for all x € S(P,,). On the other hand, x ¢ S(P,) does not affect neither the cost
nor the constraint and hence the corresponding rows of the alternate channel, i.e., optimization variable
of Esp(R,,, P,,), can be chosen arbitrarily without affecting optimality.
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that

Esp(Ro, Po) < liminf Egp(R,,, P,,). (B.124)

Equations (B.119) and (B.124) imply that

lim Egp(R,,, P,) = Esp(Ro, Po). (B.125)

Consider any R, < R < C. For any v € R,
Pr(X) :={P € P(X) : Esp(R, P) > v}. (B.126)

Let

€:=(R-R.)/2, (B.127)

and fix an arbitrary a € (1, 2). Note that since Egp(+) is convex, it is easy to see that it is
Lipschitz continuous on [R — €, R] (e.g., [55, Theorem 10.4]), i.e., there exists L € R,
such that

Vri,rn €[R-¢€R], |Esp(r)) —Esp(ro)| < Llry — 1. (B.128)

Next, we consider an arbitrary v € R* satisfying:

i € Esp(R)(2-a)
< -1, =, ———>%. B.129
v_mln{(a ) > "a@L+ D) ( )
We claim that?
Eqp(R
max Egp(R—v,P) < se(R). (B.130)
Pecl(Pry (X)) a
For contradiction, suppose
Egp(R
max  Egp(R - v, P) > se( ), (B.131)
P ecl(Pr (X)) a

SOwing to Lemma 30, the maximum is well-defined.
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with a maximizer P. Since Egp(-, P) is convex and non-decreasing, (B.131) implies that

Eso(R - 20, P) > &), V(ESP(R) - 1) - Le® (B.132)
a av a
Further, owing to (B.129), we have
ZES;(R) ~ v > Egp(R) + 2Lv. (B.133)
Also, (B.128) and (B.129) imply that
Esp(R — 2v) < Egp(R) + 2Lv. (B.134)
Plugging (B.133) and (B.134) into (B.132) yields
Esp(R — 2v, P) > Egp(R — 2v), (B.135)

which is a contradiction, by recalling the definition of Egp(-), and hence (B.130) follows.

Let P € cl(Pr,(X)°) be arbitrary. We have

(1 +v)Egp(R—v,P) < w (B.136)

< Egp(R), (B.137)

where (B.136) follows from (B.130) and (B.137) follows from (B.129).

Let (f,¢) be an (N, R) constant composition code with common composition P €
cl(Pr,(X)). For all sufficiently large N, which only depends on v, |X|, ||, we have
e(f, ) = =exp(—N(1 + v)Esp(R — v, P)) (B.138)

> — exp(—NEgp(R)), (B.139)

N = N =

where (B.138) follows from the sphere packing lower bound for constant composition
codes (cf., [20, Theorem 2.5.3]) and (B.139) follows from (B.137). Hence, we have the

following lemma.
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Lemma 31. Fix R, < R < C and v > 0 satisfying (B.129). Then, for all sufficiently
large N, which only depends on v,|X|, and |\Y|, any (N, R) constant composition code

with common composition P € cl(Pg,(X)°) satisfies

1
e(f,p) > 2 exp(—=NEsp(R)). (B.140)

B.8 Proof of Lemma 6

We begin with the proof of item (1). First, note that

] VOl
D(V||Wg p|P) = P(x) Vilx)In —— (B.141)
* XGZS(;D) yES%(:-IX)) WR’P Ol
= ) P {In Qi ol SWC1x)} + DV} ) (B.142)
x€S(P)
= D(VIQi,IP) + D P()In O o SW (1)), (B.143)
xeS(P)

where (B.142) follows from (3.41).

Similarly,
Wi p(01)
DWe QAP = D POY ) WepOl9ln -5 (B.144)
xeS(P) YES(W(:1x) Op v
== > P@WIQuASWCE) Y Wi,0l0  (B.145)
xeS(P) yeS(W(:1x))
= - D, P@In O plSWCx)), (B.146)

x€S(P)
where (B.145) follows from the fact that Orp € i)P,W(y ) (cf., item (ii) of Proposition 2)
and noting W§’P(~|x) = W(:|x), for all x € X. Plugging (B.146) into (B.143) gives item

(1) of the lemma.
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In order to prove item (ii), observe that (o ,, Oy p) is the unique saddle-point of

Kg p(-,-). We have

KR,P(p;,P’ Q;,p) = i%%x Kr p(p, Q;,p) (B.147)
= max Kz p(0, Ok p)- (B.148)
pER*
where (B.148) follows by noting that Esp(R, P) = Kg p(0 p» O p) > 0 (cf., (B.105)) and

Kz p(0, Q}‘;’P) = (. Observe that p}‘e’ » € R" is the unique maximizer of the right side of

(B.148) and hence

IKrr(p, O )

Pr.p 1 Pr.p
Orp 1 +pR,P (1 +pR,P) %rrP |1 +pR,P

o P=Pr.p
(B.149)
Further,
limAg,, () = lim > P > W' Q) (B.150)
A &Sy YeSW(1)
- Z P()Inlim Z W' 0 () (B.151)
xeS(P) yeS(W(:|x))
= > P@In > 0pp0) (B.152)
xeS(P) yeS(W(:Ix))
= ~D(Wj pl|Q »IP). (B.153)
where (B.153) follows from (B.146).
Moreover, recalling (3.31) and (3.32), for any x € S(P)
lﬂlgl Wy, 01%) = Wi p(lx), (B.154)
for all y € M. One can check that (e.g., (B.52))
, O p(Y)
Ag D= > PWE, . o [m W] : (B.155)

x€S(P)

142



which, coupled with (B.154), implies that

*

R,P
W(ylx)

lim A/
@

D= )P0 Y WepOion €R,

xeS(P) yeS(W(:Ix))

which, in turn, implies that

. , P
1 A, — | =0.
p1—>1’2> (1 +p) QR,P’P (1 +p)
We have

. aKR,P(p’ Q; p)
0>lm-———
p—oo op

: p [N P
= lim -R - Ay, - Ay L
P QRVP’P(1 +p) 1 +p) QR’P’P(1 +p)

= D(Wg pllQr pIP) — R,

(B.156)

(B.157)

(B.158)

(B.159)

where (B.158) follows from (B.149) and (B.71) and (B.159) follows from (B.153) and

(B.157). Hence, we conclude that R > D(WE’PIIQ;’PIP).

B.9 Proof of Lemma 9

O

Let (dy, Py) € (0, 1] X Pr(X) be arbitrary. Further, consider any {(Ay, Px)}>1 such that

(/lk, Pk) S (0, 1] X PR(X), for all k € Z* and limk_m(/lk, Pk) = (/l(), P())

Note that for all sufficiently large k € Z*, S(Py) € S(P;). Consider such a k € Z™.

Recalling (3.54) and (3.55), we have

Wi p (Y10)
Ay () = Z POEw, 10 [ln %}

X€S(Py) xeS(Po)*

+ D Pi®Bi,, |l

Wi, (Y1)
W(Ylx) |
(B.160)

Using the continuity of the saddle-point proposition, i.e., Proposition 5, (3.31),
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(3.33) and the continuity of In(:), it is easy to see that

lim Py(x)Ey; VL] S n 2en ) g
lim «(DEw, , (v HW = Po(0)Eyw, , 1 HW , YV x € S(Py),
(B.161)
which, in turn, implies that
Wy p (Y]x) Wy p (Y1X)
lim Pi(0)Ew, , (i [ln#] = Po(0Ew, , (ix [ln*].
kqug(;o) A Waen 01 Wy ) ;,) O W0 (01T W ()
(B.162)
Next, we claim that
) W p (Y1x)
]}1_{?0 PiEw, , v [ln W] =0, (B.163)

for any x € S(Py)°. To see this, fix an arbitrary x € S(Py)°. If x € S(Py) for only finite
number of k, then owing to (3.31), (B.163) is trivially true; hence suppose this is not the
case. Let {k,},>1 be an arbitrary subsequence such that x € S(P;,), for all n € Z*. Owing
to the compactness of P(Y|X) (swtiching to a subsubsequence if necessary) there exists

Wo(-|x) € P(Y|X), such that
lim WI;,Pkn('M) = Wy(:|x). (B.164)

Since Wi p, C1X) < W(|x) for all n € Z%, it is easy to see that (cf., proof of Claim 15)
Wo(:|x) < W(:|x). This fact, along with the continuity of In(-) and (B.164), implies that

Wy » (Y]x)
lim By RPhy ]

Wo(Y|x)
A P, C1%) n
nm—o0 n’> Kn ‘/‘/’( )"l.xj)

= EWAO,WO(Jx) [ n m] < o (B.165)

Noting lim,,. Py, (x) = Po(x) = 0 and the arbitrariness of the subsequence, (B.165)

nm

implies (B.163). Plugging (B.162) and (B.163) into (B.160) implies that
lim A, () = AG (o), (B.166)

and hence we conclude AE),-(') is continuous on (0, 1] X Pr(X).

By following exactly the same steps given above and noting the continuity of (-)?

(resp. | - I*), one can conclude the continuity of Af)’, () (resp. mo3(+,-)) on (0, 1] X Pr(X).
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Finally, the proof of item (iv) follows from the similar arguments given in the proof

of item (1). O

B.10 Proof of Lemma 12

Let s*(R,P,r) € R, be as defined in (3.76). Since it is the unique maximizer of

&sp(R, P, r), it should satisfy

) ’P
p = deels, P) (B.167)
(9S S;,Rr
It is easy to verify that
Oe,(s, P) Ky 1 Ry
0’ T) _ A ( )— Al ( ) B.168
as OP\T +s T+s *P\1+s ( )
Owing to (B.167) and (B.168), we have
s*(R, P,r) 1 s*(R, P, r)
-A - Ay p|l ———|. B.169
" “’(1 + R, P, r)) 1+ 5" R, P,r) O’P(l + R, P, r)) (B.165)
By noting (recall (3.70))
s*(R, P,r)
‘R,P,r),P)=—(1+s"(R,P,r)Agp| ——————— B.1
eo(s( ) ,V), ) ( +S( ) ’r)) O’P(1+S*(R,P,r)), ( 70)
Lemma 10, Corollary 1, (3.76) and (B.169) imply that
. s‘(R,P,r) ., s*(R, P,r) s*(R, P,r)
R,Pr)= ——F—A) | —————| - Agp| —————|. B.171
CseR BN = TSR P O’P(l + R, P, r)) ‘”’(1 n s*(R,P,r)) B.171)
Due to (B.169) and (B.171), we deduce that
s*(R’ P7 r) ~
ap|l———1| = R,Pr)—r. B.172
O’P(l+s*(R,P,r)) eSP( ) ,7") . ( )
Using (3.79), (B.171) and (B.172), it is easy to see that (recall (B.1))
AS’P(éSP(R’ P’ r) - 7") = éSP(R’ P’ r)7 (B173)
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which proves item (i).
Item (ii) immediately follows from (3.58), (3.59), (3.79), (3.80) and the item (i).

In order to see item (ii1), first note that €sp(R, P, -) is a non-increasing function. Fur-
ther, it is clear that &p(R, P,0) = D(Wp ,||W|P) and Esp(R, P, D(W||Wy pIP)) = 0. These
observations, along with (3.60), (3.61) and the positive variance lemma, i.e., Lemma 8,

suffice to conclude the existence and uniqueness of n(R, P,r) € (0, 1) with the stated

s*(R,Pr)
1+s*(R,Pr)"

property. Finally, recalling (B.172), one can see that n(R, P, r) = m|
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APPENDIX C
APPENDICES OF CHAPTER 4

C.1 On ensemble average error probability of BEC below the criti-

cal rate

This section points out a small oversight in [36]. In particular, the subexponential pref-
actor that is given in [36, eq. (18)] is too optimistic for certain channels, including BEC,

as we now demonstrate.

Recall that Py, as given by [36, eq. (16)], can be expressed as

WX, (m"))

> 0], C.1
WX, | X, (m)) D

N
P =(M—-1)Pr Zln
n=1
where the probability measure is

N
O (m)W(y" " (m) Q" (m")) = H Q(xa (M)Wl xu(m) Q(x,(m”)).  (C.2)

n=1

Here Q is an arbitrary probability distribution on the channel input alphabet.

In [36, eq. (18)], it is claimed that!

Pi=(M-1) {; [Z o) JW]Z}N[ i)] (C.3)

%“’(W

where g is a constant that is explicitly characterized.

Note that the standard moment-generating function techniques cited in [36] to prove

Wl Xu(m'))

this formula require some regularity conditions on In A AR

In particular, the log

moment-generating function (also known as semi-invariant moment-generating func-

WYl X (m'))

tion) of the random variable In WOEL X, )

should be finite around a neighborhood of the

By correcting the obvious typo.
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origin, as pointed out in [35, Appendix 5A]. This condition will not hold in general if

the channel transition matrix has O entries.

As a counterexample, consider the BEC with parameter € € (0, 1), i.e., let the chan-

nel input (resp. output) alphabet defined as X := {0, 1} (resp. YV := {0, 1, E}) and

1-€ if(x,y) €{(0,0),(1,1)},

Wlx) =1 if (x,y) € {(0,E), (1, E)}, (C.4)

0 else.

Let Q be the uniform distribution on X, i.e., Q(0) = Q(1) = 1/2. One can check
(by using the KKT conditions given by [35, Theorem 5.6.5]) that this choice uniquely

attains maxp E(p, Q) for all p € R*. Define
S:={x,y,X) e Xx Y xX:0(x),0(x") >0, Wlx), W(y|x") > 0}. (C.5)

Also, let SV denote the N-fold cartesian product of S. One can verify that (C.5) implies

1+e€

Pr(S) = 7 (C.6)
where the probability measure is Q(x)W(y|x)Q(x"). Under this distribution, In % is a
binary-valued random variable taking values in {—oco, 0}. In particular, we have
Y|X’ 1 WYX’ 1-
pr|m YYXD gl J1re ] YXD 1 _o1-€ (C.7)
W(Y|X) 2 W(Y|X) 2
This implies that
N
W(Ynlxn(m,)) N N (N ’ N
Pr=(M-1)Pr In——F=>0,X"(m),Y"',x"(m") e S (C.8)
1 Zl W(Y,|X, (m))
= (M - 1) Pr{S"} (C.9)
1+€\"
:<M—1>( 26) , (C.10)
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where (C.9) follows from (C.7) and (C.10) follows from (C.6) because the probability

measure under which (C.9) is evaluated is i.i.d.

However, one can directly verify that

2
1
Z[ZQ(x)\/W(\/IX)] = ;6, (C.11)

Y

which means that (C.10) can be written as

2\ N
Py = (M- 1){2 [Z o) \/W(yIX)] } . (C.12)

y

Note that the right side of (C.12) is greater than the right side of (C.3) for sufficiently
large N. Since the arguments leading to [36, eq. (25)] are still valid, one can check that

(recall that our choice of Q maximizes E (1, Q)) (C.12) implies

(1-0(")e™® <P, <e™®  R<R,. (C.13)

This shows that the O (1 / \/N) pre-factor in [36, eq. (18)], which is claimed to hold
for all channels ([36, eq. (28)]), does not hold for BEC.

C.2 Proof of Lemma 14

Throughout this section, fix an arbitrary W € P(Y|X) such that V > 0 and Q € P(X)

such that E.(R, Q) > 0 for some R > R...

(i) Since E.(R, Q) € R", one can see that R € (0,1(Q; W)). This observation enables

us to invoke [35, Theorem 5.6.3], which, in turn, ensures that

PE. Q) _

507 , (C.14)
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(ii)

for all p € R,. Moreover, [35, Theorem 5.6.3] also guarantees that if (C.14) holds
with equality for some p € R,, then the same should be true for all p € R,. For
contradiction, assume (C.14) holds with equality for some p € R,, which, in turn,

implies that aE"a—(ﬁ’Q) = 1(Q; W). Since E(0, Q) = 0, we have

Eo(p, Q) = pl(Q; W). (C.15)

To conclude the proof, consider

Esp(R, Q) := sup {—pR + Es(p, 0)}, (C.16)

p=>0
and notice that plugging (C.15) into (C.16) yields Esp(R, Q) = oo, which contra-

dicts R > R...

We only need to prove (4.28), since the rest directly follows from item (i). To this

end, fix some r € (%06—(5@‘ 1 ,1(0; W)) and consider
o=

E.(r,0) = Jmax {=pr +Ey(p, Q)}. (C.17)

Using the the characterization of the subdifferential of the maximum function

(e.g., [56, Theorem 2.87]), we have

IE.(-, Q)(r) = conv ({—p : Ex(r, Q) = —pr + Eo(p, Q)}) . (C.18)

Thanks to item (i) of this lemma and the fact that r € (6E°a—(‘g’Q)| g 1(Q; W)), (C.17
p:
has a unique maximizer, which is px(Q), because of (4.27). Therefore, (C.18)

reduces to

IE(-, Q)(r) = {-pr(Q)}, (C.19)

which, in turn, implies (4.28). |
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C.3 Auxiliary results

This section contains some auxiliary results that will be used in the proof Theorem 4.
Throughout the section, fix an arbitrary W € P(Y|X) such that V. > 0 and Q € P(X)
such that E,(R, ©) > 0 for some R > Re.. Fix some? r € (- 2ol 1 W) Let
Q) = — % r? which is well-defined due to (4.28), and note that p;(Q) € (0, 1),

because of item (ii) of Lemma 14.

Definition 12. (i) Foranyy € Y and p € R,,

]l+p

[er/\’ Q(X)W(y|x)1/(l+p)
Zbey [Zan Q(a)W(b|a)1/(1+p)]1+p .

Observe that P, is a well-defined probability measure on Y, for any p € R.. For

P(y) = (C20)

. . « . pPr(Q)
the sake of notational convenience, we define f := P}~ .

(ii) Forany p € R,,

QW(In)! ) -
Sox CaWoiaTm Y € SPy).

P i) = (C21)

0 else.

Note that P°

iy 18 a well-defined conditional probability measure for all p € R,.

(iii) Forany (x,y) € Xx Y andp € R,
Py y(x,y) = P§(|Y(X|Y)P’;(y)- (C.22)

For the sake of notational convenience, we let Pg)(’y(x, y) = Pxy(x,y) =

O(x)W(ylx), for any (x,y) € X X Y.

(iv) :
P )

—_—. C.23
Q(x)W(ylx) (€23

Ex(r, Q) := D(PL2IQ x W) = > P2 (x,y) In
X,y

The non-emptiness of the following interval is ensured by item (i) of Lemma 14.
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(v) Forany A € R,

A) = 1nEp,, |e [ Aln Wf}(%] (C.24)
0
Lemma 32.
OE,(p, Q) Py (xly)
T2 NP, , C.25
dp Z Q(x) (€22

forallp e R,. ¢

Proof. Define hy(p, Q) := Y. Q(x)W(Hlx)"/"**) and g,(p, Q) := h,(o, 0)'*". From the
definition of E,(-, -)

GEp. Q) _ TR )
ap Zb gb(ﬂ’ Q) .

Note that if S(Q) N X, = 0, then Ay (p, Q) = g,(p, Q) = 0, for all p € R,. Also, observe
that there exists y € Y, such that S(Q) N X, # 0. Further, one can check that provided

that S(Q) N X, # 0,

ohy(p, Q) *
2 - s )2 Z Q)W) In W(ylx), (C.27)
Ohy (p 0)
98y, Q) _
e =g, Q) |1+ y(p 0 +1nhy(p, Q)] (C.28)

Equations (C.26) and (C.28) imply that

(5.0
9E,(p, Q) (0. Q)
T S o0 Inh C.29
% i, Sy 20 8> O) e )h (p 0" e Q)] (€.29)
0.0
=~ Py (1 +p) +In I, (p, Q)], (C.30)
VX, NS(0)£0 h (P Q) ’

where (C.30) follows from the definition of P’;, i.e., (C.20). Consider any y with X, N
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S(Q) # 0. We have

Ohy(p,0)

% B Q)W (ylx)!/(*0) 1
(1 +p)hy(p, 0) +Inhy(p, Q) = Zx: S 0@W(la)/1+0 In W(yl)C)ﬁ

+ an QRW()* (C.31)

- Z () In Z 0QWG)™

Z % y(xly) In L (C.32)
W(ylx) ™

= 2 Py In i(("i 1 (€33)
where (C.31) follows from (C.27), (C.32) and (C.33) follow from the definition of P‘;q -
re., (C.21). Plugging (C.33) into (C.30) and and remembering the definition of Pg’(’y,
1.e., (C.22), we conclude that (C.25) holds. O

Lemma 33.
Er(r, Q) = Er, Q). (C.34)

¢

Proof. Observe that owing to the definitions of Pé’qy and Pg’(’y,

1.e., (C.21) and (C.22),

along with the definition of Ex(r, Q), i.e., (C.23), we have

Q)
Er(r, Q) = Z P72 (x,y)In P70 — (C.35)

7 (Q)

(xS WO |3, Q@ WOla) 7@

Moreover,
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Ei(r, Q) = —rp;(Q) + Eo(p,(Q). Q) (C.36)

Q)
. v (X[Y)
=00 P@i(y@(x,y)ln—"';(x) +Eo(p(0), ) (C37)

(xy)ESow

(Zzex Q(z)W(y|Z)W,;(Q))p’:<Q>

- Z P9(x,y) In

A0 1 \[+pHO)
(x,Y)ESo.w W(yl x) 14p7(0) Z ey (Zae X Q(a)W(b| a) |+p;<Q>) ]
(C.38)
. prr@
= > PE2yn — ©) . (C.39)
s Son WOL) 0 | Sey Q@W(rla) 10 |

where (C.36) follows from item (i) of Lemma 14 and (4.27), (C.37) follows from (C.25),

(C.38) follows from the definition of E,(p, Q), i.e., (1.11), and the definition of P, , i.e

xjy> 1-€+

(C.21), and (C.39) follows from the definition of P‘;, 1.e., (C.20). Equations (C.35) and

(C.39) together imply (C.34). O
Lemma 34.

A (1 T;Q()@) “Tr ;t(Q) " Z [Z Q(X)W(ymmrm (40

- o[ L) A0 o

T ;i(Q)A; (1 iiiﬁQ()Q)) - (1 ij;’;Q()@) | (€4
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Proof.

7 (Q)

Z Q( )W(y| ) 1 1+p7(Q) 1+p5(0)
1+p;(Q)
pi0) \ - ( nduatids )
Ar (m) =In D, QWO ™@ o
(<Son %) (L Q@W(tlay o
(C.44)
1 1 1+p7(Q)
=—1 W 1+ , C.45
T n;(ng Ol) ) (C.45)
where (C.44) follows from the definition of P’; i.e., (C.20).
Next, one can check that
A ( p(Q) ) B Q)W (ylx) @ f(y) 1 +r@ In 5O (C.46)
" * PO : :
1 +pr(Q) (x))ESow Z(a PeSouw Q(a)W(bIa) 1+p,<Q)f (b)1+p ) W()’|X)
By recalling the definition of Pp i.e., (C.20), for any (x,y) € Sp w, we have
2@ L L 01 (Q)
QWOITE fryre QWO [z 0@wop ]
o R
2abesew Q@)W (bla) O 17 (b) i@ > [za Q(a)W(b|a) @ ]
(C.47)
= PPy 9 () (C48)
P2 (x,y), (C.49)

where (C.48) follows from the definitions of P‘; and P, ,i.e., (C.20) and (C.21), (C.49)

Xy’

follows from the definition of P?(,Y’

i.e., (C.22). Plugging (C.49) into (C.46) implies
(C.41).

From the definition of Eg(r, Q), i.e., (C.23), and the definition of P‘;, ie., (C.20), we

have

155



Q) J(Q)
EnQ) = ), PR, im0 Y, Py Par O sp)

(x.y)eSow W( | ) (x)ESo,w Q( )
Q) , W (ylx) @
= A (p—) + J : (C.51)
+piQ) <§ s 0wl e
Q) ., ( P (Q) ) H(0) O
= o\ — |+ Py In 1 (C.52)
Lrp@ AL+ Q) (x,ygslg,w S 0wk
__p(Q) A,( P (Q) )
L+p:(0) "\1+p:0)
v Py 1 1 (C.53)
()eSew L\ Q) | @
e [zb(za Q@W(bl) ™0 ) ]
0:(Q) ( p;(Q) ) ( P (0) )
= A - A=, C.54
1+p:(Q) "\1+p:(Q) 1+ p:(Q) (C.54)

where (C.51) and (C.52) follow from (C.41), (C.53) follows from the definition of Ppy,
1.e., (C.20), and (C.54) follows from (C.40).

Lastly, the fact that “22 g = 7> Which is established in (4.27), along with
p=p;

Lemma 32, implies that

r= Pr9x, y)In A (C.55)
L, T g
P2 (x,y) : Wlx)
- P9 (x,y)In 22 P Qx, y) In —2 (C.56)
()2;4 Q)W (ylx) (;; xr )
_ [P (O
= Ex(r, Q) A’(1+pt<Q)) (C.57)
1 (0] J ()
- _ A A [ C.58
1+ p0:(Q) ’(1+pﬁ<Q)) (1+pﬁ(Q)) (€39

where (C.57) follows from the definition of Er(r, Q), i.e., (C.23), (C.25) and (C.41), and
(C.58) follows from (C.42). O
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C.4 Proof of Lemma 15

(i) By elementary calculation,

N1 p(Vi,V2)
6V2 B

QW)™ ™2 £,(0) ™ Q@)W ()" 1q WOk

n , (C.59)
Wyl B Dabcresy Q@WDla) 177 f,(b) ™ Q)W (Dle)™> — W(ylx)
and
N1 p(V1,V2) _
(?V] -
Z QWO ™™ £,0) ™ QRW()™ 1n YOI (C.60)
W, Tanoes, QQWER™ = BV QWG T L0
Evaluating the right side of (C.59) at ¥ yields®
oA (V1
l,p(vl VZ) =0, (C61)
v, Vo=V2
owing to the symmetry of the resulting expression.
Equation (C.60) further implies that
aAl,p(Vl’ VZ) _
0V1 B
QX)W (ylx)! V172 £ (y) ™ [ZzeS(Q)me Q(Z)W(y|Z)v2] W(lx)
n .
(x2S 2labesy Q@W(bla) V1= fi(b)™ [ZceS(Q)ﬁXb Q(C)W(b|c)v2] Jo®)
(C.62)
Evaluating the right side of (C.62) at v yields
3A1,,>(V1 ,V2)
av] vi=9;
QWO £,0) 2 [ 2 esiomx, QRW(I)™ 1 o)
= n .
05550 Lianese Q@WBla) £,(b) 2% | Eeesionn, QW ble)2| — f0)
(C.63)

3Note that the particular value of ¥, does not matter as long as one has ¥; = —1 + 2¥,.
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(i)

Note that for any y € Y, such that X;, N S(Q) # 0, we have

_{72

1
T 3L 0@OWO) T

1+p
(Z Q(x)W(ylx)”(“")) (C.64)

By plugging (C.64) into (C.63), along with the definition of f, and (C.41) in Ap-

pendix C.3, we conclude that

0N p(V1,V2)
8V1

N
= Ap(1+p). (C.65)

VI=V]

Equations (C.61) and (C.65) together imply (4.41).

Note that
. 5 Wolko\" (Wolo)\”
A =1 P , Vs C.66
W@ =l > Puyg(ry z)( 70 ) (W(ylx)) (C.66)
(x.y,2)€S8¢
= —In Pxyz {So} + v+, (C.67)
where we define
vy :=In Z Q)W) Q)W ()™ f,() ™. (C.68)
(x,y,z)ESQ
Observe that for any y € Y such that X, N S(Q) # 0, we have
1+p7L/(4p)
ROy 1(1+p)
B = s S omTT Zb: Z O(@W(bla) . (C.69)
owing to the definitions of f, and V. Rearranging (C.69) gives
1 1/(14p)
DL 0@QWOR! P £,(5) 7 = £/ [Z [Z Q(a)W(bw)”“*p)] ,
z b a
(C.70)

provided that y € M satisfies X, N S(Q) # 0. By plugging (C.70) into (C.68) and
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noting the definition of v, we deduce that

14+p71/(14p)
vy=In > QWO £y [Z (Z Q(a)W(bIa)”(”")) ]
b

(xY)ESQ a
(C.71)

p | X [T, 0eowolae] ™
_ Ap(l +p) ; o (C.72)
_ zAp(lLip), (C.73)

where (C.72) follows from the definition of A,(-) and (C.73) follows from (C.40).
Plugging (C.73) into (C.67) yields (4.42). O

C.5 Proof of Lemma 19

We first claim that

Var 57 [ln (C.74)

QX,Y,Z

W(Y|X) W]
7 ] ,VarQ;(,',)Y’Z [ln W(YIX)] eR

To see (C.74), note that

W(Y|X) W(ylx) P
[Varg;&z [ln 0 ] = 0] — [ln =-A (m) , Y(x,y) € SQ] (C.75)

KO T
= [(Q, W) pair is singular]. (C.76)

Evidently, the right side of (C.76) yields a contradiction, and hence we conclude that

. W(I1X) +
VarQ;QZ [ln 50 ] e R".

Similarly,
R wW(Y\2)| Whlz) 5
[Varg;&z [ln W(Y|X)] = O} — [ln o - 0, V(x,y,2) € Sp (C.77)
= [(Q, W) pair is singular]. (C.78)
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Evidently, the right side of (C.78) yields a contradiction, and hence we conclude that

8 w\z)
Varge, [In 53] > 0.

Further, as an immediate consequence of the nonsingularity of the pair (Q, W), there

is no a € R satisfying

W(ylz) Wolx) (P
=afl A
S WOl a(n 50 ”(1+p

This last observation, coupled with (C.74) and the Cauchy-Schwarz inequality, implies

)) ,V(x,y,2) € Sp. (C.79)

(4.104). O

C.6 Proof of Lemma 20

The proof follows from essentially the same arguments as in one dimensional case given
in Appendix B.1. The only significant difference is the usage of a “concentration func-
tion” theorem for sums of independent random vectors by Esseen [26, Theorem 6.2],

instead of the Berry-Esseen theorem.

For notational convenience, we define

@) 7 WYX,

and let uy denote the law of Sy when A, (N) is distributed according to pX,xz. Clearly,

ay = pun(BWN)).

WX | Wz | 1
A,(N) := |In In ] . Sy .:N;An(N), (C.80)

Define T, (N) := A,(N) — b(N) and Wy := \/LN ZnN:] T,(N). Note that

H W(Y|X) W(Y|Z)ﬂ
In ,In

o) WX
0N N(V1, V5(N))
6V1

EQV*(N)

XYz

0N N(VI(N),V2)
aVZ

- (C.81)

b

vi=v;(N)

Vz—v;(N)]

= [=Ay(ox /(1 + p)). 017, (C.82)
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where (C.81) follows by evaluating the right sides of (C.59) and (C.60) in Appendix C.4
at v*(N) and (C.82) follows from item (i) of Lemma 15. Equation (C.82) ensures that

EQ;*}(/I;) [T.(N)] =0.

By elementary calculation, one can check that

pn(B(N)) = e VA in®EM) f f e W WINGE, (x), (C.83)
0 0

where F'y is the distribution of Wy when A, (N) are 1.i.d. with Q;g\;

Since e~ YV% ig a continuous function of bounded variation and F ~(X) is a function

of bounded variation, we apply the integration by parts formula of Young [73, Eq. 4] to

deduce that
f f o VNV (N),x) dFy(x) = f f e—<1,t> Fy 1 ’ 2 + F,(0,0)
o o o Jo Vi) VN v;(N) VN

t f
-Fy|0,———— |- Fy|————,0]ldtd
N( vaN>VN) N[VHN)VW ]]tlh

(C.84)
[ e
0 0

H 12}
Pr<W 0, ——— 0, —————| ; dtidtr,
I{Ne[ﬁwwﬂx(@wWA}“b

(C.85)

Vi(N)

where the probability is computed when A, (N) are i.i.d. with QX’Y’Z.

In order to conclude the proof, we upper bound the right side of (C.85) by using a
concentration inequality of Esseen [26, Corollary to Theorem 6.2]. To state his result,

we need the following definitions.
Let T,(N) := T,(N) — T,(N), where T, (N) and T,(N) are i.i.d. Let ¥}, denote the
law of T} (N). Following [26, eq. (6.4)], define

kn(u) = |inf ((t, X)) 2d 73 (X). (C.86)

= Jxl<u
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Finally, let S,(c,) denote the sphere in R? with radius p and center c,.

In our case, [26, Corollary to Theorem 6.2] reads as follows: for any p € R,

COERz T N SupuZT M_ZKN(M)

N
sup Pr{z AL(N) € sp(co)} < C(E)Z( ! ) Vre(0,p], (C.87)
n=1

where c is a universal constant that only depends on the dimension of the random vector,

which is 2 in our case.

Next, we explain how to use (C.87) to conclude the proof. Since

w,1z) | -

W(Y,IX,
BalX) 4, , Pyyz — (as), (C.88)

VTR T WX,

1\1/1_I>IOIOA"(N) =A, =]l

V' (N)

A, is bounded almost surely under Py ;. Further, O} is equivalent to Py y for all N.

These two observations imply that there exists k(R, W, Q) € R* and a sufficiently large
N, that only depends on R, W and Q such that max{T, ,(N)*, T,,(N)*} < k(R, W, Q),

almost surely under ¥}, for all N > N;.
Consider any N > N; from now on. One can also check that
Sy = Ep [ T(N)TH(N)" | = 28y, (C.89)
which, in turn, implies that for any u > k(R, W, Q),
kv(u) = inf f (t, X))’ dVy(x) = inf t'Syt = 2inf t"Syt = 22in(Sw)- (C.90)

Since det(Sy) > 0, which follows from Lemma 19, we also have A,,;,(Sy) > 0.

2 2

By letting p := \/(v(t—lN))z + (V(IW ¢, = 0and 7 = p, (C.87) implies that
1 2
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t

] 2
PriW 0, ———— 0, ————
r{ Ne( V’[(N)\/IV]X[ Vi(N) VN

N
} < Pr{z A N) € Sp(co)} (C.91)
n=1

2

c. . u
= N %gg kn(ut) (€92)
c
S -
2/lmin(ZN)]v
X (k(R W, Q) + i + E )
o (VN2 (V5(N))?)’
(C.93)

where (C.93) follows from (C.90). By plugging (C.93) into (C.85) and carrying out the

calculation, we deduce that

B R, o ¢ > 2 2
e dF (X) L— k(R’vV’Q) + % + * ’
fo fo = 22 (EN)N (Vi(N))?  (V5(N))?
(C.99)
which, in light of (C.83), suffices to conclude the proof. O
C.7 Proof of Lemma 21
First, we note that
¥ (i, j) € (1,2, lim Sy(i, j) = S(. j). (C.95)
which, in turn, implies that
Y (i, j) € {1,2), Al,im Sy, j) =87, j), (C.96)

where S(i, j) denotes the (i, j)-th entry of the matrix S. From (C.96), one can deduce
that

Aiilgolls&lllz = 187" Ilo, (C.97)
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where || - ||, denotes the Frobenius norm (e.g., [44, pg. 291]). Also, because of the fact

that Sy and S are symmetric matrices, we have
Anin(Sw) = NISH ks Amin(S) = 11IS7'la, (C.98)

where ||| - |||, denotes the spectral norm (e.g., [44, pg. 295]). Using [44, Ex. 5.6.23], we
deduce that

IS7'l2 < V2SIl 1SRl = 11ISK - (C.99)

Equations (C.97), (C.98) and (C.99) imply (4.109). O

164



APPENDIX D
APPENDICES OF CHAPTER 5

D.1 Proof of Lemma 22

Thanks to the symmetry of the channel, Esp(R) = Egp(R, Uy) (e.g., [35, pg. 145]).
Moreover, by recalling the fact that Egp(R) = ESP(R) and Egp(R, P) > Esp(R, P) for
all P € P(X), which have been noted before, we conclude that Egp(R) = Egp(R, Ux).

Hence, item (i) follows.

To prove item (i1), fix any p € R, and consider the following convex optimization

problem!

1+p
Qg&)z [Z Q(x)W(ylx)w] : (D.1)

yeY \xeX
Next, we state the necessary and sufficient conditions for Q € P(X) to attain the mini-

mum in (D.1), derived by Gallager (e.g., [35, Theorem 5.6.5])

P l+p
> Q(z)sz)lip) > Z[Z Q(z)wmz)l#] ., (D2

zeX yeY \zeX

Vxe X, Z W(ylx)ﬁ
yey

with equality if Q(x) > 0. Thanks to the symmetry of the channel, Uy is an optimizer

of (D.1) (e.g., [35, pg. 145]) and hence (D.2) implies (5.11).

To prove the rest, we first note the following, which is an easy consequence of basic

convex optimization arguments (e.g., [20, Ex. 2.5.23])

Esp(R, Uy) = max min {—pR —(1+p) ) Ux(®)n > W(y|x)llpq(y)l’%7}. (D.3)

=0 geP(Y) e ey
Due to Propositions 2 and 3 in Chapter 3, (D.3) has a unique saddle-point. Further,
Proposition 4 in Chapter 3 ensures that pg(Uy) is the R, component of this saddle-

point. Owing to the properties of the saddle-points (e.g., [55, Lemma 36.2]) pr(Ux)

!Convexity has been verified by Gallager in [35, Theorem 5.6.5].
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attains the maximum in (D.3) and the fact that Egp(R) = Esp(R, Ux) > 0O ensures its

positivity. Hence,

) | PRWUY)
Ese(R. Ux) = min § ~pr(Ux)R = (1 -+ pr(Ux)) ), Ux(x)In ), W(y1x) 70 g (y) 0

= &
(D.4)
< ~pr(Ux)R — (1 + pr(Uy)) ZX U(x)In Zy W (y) TR g ) et
< Z
(D.5)
= —pr(Ux)R + Eq(pr(Ux), Ux) (D.6)
< Egp(R, Uy), (D.7)

where (D.6) follows from item (ii) of this lemma by recalling the definitions of gz and

EO('a )

In light of item (i) of this lemma, (D.7) implies that pg(Ux) attains the maximum in

the definition of Egp(R, Ux) and hence item (iii) follows.

Item (iv) is evident in light of (D.7) and item (i) of this lemma. O

D.2 Proof of Lemma 24

We begin with the following optimization problem (e.g., (D.3))

Ese(R, Ux) = max min {—pR —(1+p) ) | Ux®)In > WOl g0yt
PR, qeP(Y) ~ >
X y:W(ylx)>0
(D.8)
As noted in Appendix D.1, the right-side of (D.8) has a unique saddle-point and pg is
the R, component of this saddle-point. Further, due to the definition of a saddle-point

(e.g., [55, pg. 380]), item (iv) of Lemma 22 ensures that gz is the P(Y) component of
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the saddle-point. Hence, we conclude that (og, gg) pair is the unique saddle-point of the

right side of (D.8).

By establishing this, we are in a position to invoke the results proved in Chapter 3 to
deduce the claim. In particular, item (i) is a direct consequence of item (ii) of Lemma 6

in Chapter 3.

Moreover, given any D(Wg|lgrlUx) < r < R, we have

esp(r,R) = %i{ Vet&lyr}x) {D(VIIW|Ux) + p (D(VlgrlUx) — 1)} (D.9)
B _ o
—gé%f{ or + (1 +p)A(—1 +p)}’ (D.10)

where (D.9) follows since the convex program esp(r, R) has zero duality gap, thanks
to the fact that Slater’s condition (e.g., [55, Corollary 28.2.1]) holds, which is a direct
consequence of item (i) of this lemma, and (D.10) follows by solving the convex mini-

mization problem on the right side of (D.9). Equation (D.10) establishes item (ii).

Item (ii1) directly follows from Proposition 6 in Chapter 3 that can be invoked thanks
to the observation that (pg, gg) pair is the unique saddle-point of Egp(R, Uy), i.e., the

right side of (D.8). |

D.3 Proof of Lemma 25

(i) The proof goes by contradiction. Assume that there exists 4, € [0, 1) with

AN’ (4,) = 0. From (5.19), this is equivalent to

W(Y1xo) = gr(Y)e ™™™, ¥y € SW(Ix,)). (D.11)
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(ii)

Further, item (ii) of Lemma 24 and (D.11), along with the definition of A(-), imply
that

esp(R,R) = max —p(R + N'(Ay)). (D.12)
PER+

Since esp(R, R) = Egp(R), which is established in item (iii) of Lemma 24, (D.12)
implies that either Egp(R, R) = 0, which contradicts the fact that Egp(R) > 0 (e.g.,
[35, pg. 158]), or Esp(R) = oo, which contradicts the fact that R > R,,. Hence, we
conclude that for all 4 € [0, 1), A” (1) > 0.

For notational convenience, let e, (0, R) := —(1 + p)A (1%)). From item (ii) of

Lemma 24, we have
esp(r, R) = max {=pr +e.(p,R)}. (D.13)
PERL

esp(-, R) is differentiable owing to Corollary 2 in Chapter 3, which can be invoked
thanks to the fact that (pg, gg) pair is the unique saddle-point of Egp(R, Ux) that has
been shown in Appendix D.2, and hence we conclude that s, is well-defined. Since
differentiable convex functions of one variable are continuously differentiable, the

second assertion follows.

To verify the last two assertions, observe that (D.13) is the Lagrangian dual of the
convex program egp(r, R), which is established in (D.9) and (D.10). Hence, we
can use the subdifferential characterization of the Lagrange multipliers (e.g., [55,
Theorem 29.1]) to deduce that the set of optimizers in (D.13) coincides with the
negative of the subdifferential of esp(-, R) at r, i.e., p € R, maximizes (D.13) if and
only if p € —desp(-, R)(r). Since esp(-, R) is differentiable at r, —desp(-, R)(r) = {s,}
and hence s, uniquely attains the maximum in (D.13). Further, since esp(r, R) >

esp(R, R) = Egp(R) > 0, we have s, € R*.

Moreover, via elementary calculation, one can verify that

& 8es(p, R) 1 0
| — o ’R = = - A” 0’
52 Pt e Bl = =55 1+ (1+p)<

(D.14)
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(111)

where the inequality follows from item (i) of this lemma. As a direct conse-

quence of (D.14), we conclude that s, is the unique positive real number satisfying

deo(p.R)

r= ap

. This observation, coupled with (D.14) and the inverse function
P=Sr

theorem, further implies that s, is strictly decreasing in r.

Since A(+) is a convex function (e.g., [21, Lemma 2.2.5, item (a)]), A[esp(r, R)—r]—
A(AQ) is a concave function of A and hence the following is a sufficient condition

for A, € R to attain A*(esp(#, R) — 1)

N(A,) = esp(r,R) — 1. (D.15)
As noted above, s, is the unique positive real number satisfying r = w ,
P=Sr
hence, an elementary calculation implies that
Al— Ly (D.16)
r=- — , .
1+ s, (1+s,) 1+s,
and hence
Sy Sy S,
,R) = N - A . D.17
ese(n R) = 5 (1+s,) (1+s,) ©-17
Equations (D.16) and (D.17) imply that
A (nR) (D.18)
=e — 7. .
1+, spl7, r

Equations (D.16) and (D.18) ensure that s,/(1 + s,) attains A*(esp(r, R) — r) and
hence

S

1+ s,

S

1+s,

A(esp(r,R) — 1) = ( )(CSP(”,R) -r) - A( ) = egp(r, R),

where the second equality follows by plugging (D.18) into (D.17).

Finally, let n, := s5,/(1 + s5,) € R*, since s, € R*. Hence, (D.18) implies the
existence of n, € (0, 1) with A’(n5,) = esp(r, R) — r. To verify the uniqueness, it
suffices to note that egp(:, R) — (-) is strictly decreasing, along with item (i) of this

lemma and the inverse function theorem. O
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D.4 Proof of Lemma 27

The proof follows from essentially the same arguments given in Section 3.2.5. We

provide an outline for completeness.

First of all, we notice that (e.g., [21, Ex. 2.2.24]) A*(-) is a smooth function over
(-D(W||qrlUx), D(Wg||W|Ux)), which, along with the inverse function theorem and

items (i) and (iii) of Lemma 25, implies that

. 1
A (esp(r,R)—1)=1n,, A"(esp(r,R)—r) = N (D.19)

for any r € [R, R]. Via calculations similar to the ones leading to (3.105), one can verify

that

A*(esp(Ry, R) — Ry) = A*(esp(R,R) — R) + enmg + (esp(Ry, R) — esp(R, R))ng

A [esp(Ry, R) — Ry —ese(R, R) + R
2 b

(D.20)

for some X € (esp(R,R) — R, esp(Ry, R) — Ry). Using items (ii) and (iii) of Lemma 25

and recalling the definition of €y, (D.20) further implies that

1+ sp)A*"(x Ry.R) — R,R2
esp(Ry, R) :eSP(R,R)+€NSR+e§,( SRIA™(X) 1+ esp(Ry, R) — esp(R, R)

. (D.21
> . (D.21)

By using (D.19), along with the fact that egp(-, R) — (-) is a strictly decreasing and con-

tinuous function over [R, R], one can see that

A*(X) < eR". (D.22)

m2,min
Moreover, (3.121), which can be invoked thanks to the fact that (og, gg) pair is the unique

saddle-point of Egp(R, Uy) that has been shown in Appendix D.2, implies that

sk = [Es@®)] . (D.23)
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Finally, via a first-order power series approximation, along with items (ii) and (ii1) of

Lemma 25, one can verify that

esp(Ry, R) — esp(R, R) ?

N

1+ <1+ sp)% (D.24)

By plugging (D.22), (D.23) and (D.24) into (D.21), along with the fact that Egp(R) =

esp(R, R), which is shown in item (iii) of Lemma 24, one can check that (5.45) holds. O

D.5 Proof of Lemma 28

Consider any xV € XV. We have

18 1
N\ _ NN _ _
W{S®Ry)X"} = ; WV x¥)1 {N Z:; In o < RN} (D.25)
1, WOl
=) W'xMH1I{—= > hn——" <R (D.26)
; N Z; g T
1 & WT,lx,)
=W{= ) In—= <Ry |x"}, (D.27)
{N Zl gty ~ " }
where (D.26) follows by noting whenever W(y|x) > 0, v‘;%'f) = aiy, which is a direct

consequence of the fact that W is singular.

Next, for any x € X and 1 € R, we define M(A) = ¥ -0 WO g™

Evidently, M,(-) € R for any x € X.

We claim that given any 4 € R, M,(4) is constant in x, whose proof is similar to
Lemma 23. Specifically, let {V/,}5- | be a partition? of the columns of W mentioned in
Definition 9. Since each column is a permutation of every other column within the
partition, ¢(y) is the same for any y € Y,. This observation, along with the fact that all

rows are permutations of every other row, implies that M,(-) is the same for all x € X.

2The choice of the partition is immaterial in what follows.
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Using the fact that M, (1) is constant in x and the uniqueness theorem for the moment

generating function (e.g., [11, Ex. 26.7]), we deduce that

RN q(Y,) vl 1 < q(Y) .
W{N nzz; In W) > —Ry|x" =W N nzz;ln W >Ry [xN}, (D.28)

which, in light of (D.27), implies item (i) of the lemma.

To prove item (ii), we define

AW = By [ =1 > WolTg0). 29)
y:W(lxe)>0
Evidently,
AQ) = In Z 8, (D.30)
y:W(lxe)>0

We observe that for any A € R,,

A =1n Y §,a)* = ~Bo(A, Uy), (D.31)
yey

where E, (-, ) is as defined in (5.4), the first equality follows from item (ii) of Lemma 22
and the second equality follows from elementary calculation by noticing the singularity

of the channel.

Via straightforward calculation, one can check that

a,l+/l ) a,1‘+/l )
AQ) = ——Ina, and A'() =) ————(Ina, - A'(D) 20,
o~ 2bey b, o~ 2bey Op,
(D.32)
for any A € R,. Further, define
6ya,1+/1 ;
ms() = Y ———|lna, — A . (D.33)
; Zbey 51;%5” ’ |
Evidently, A’(:), A”(-) and mj3(-) are continuous over R, .
Next, we prove that
YaieR,, A”(1)>0. (D.34)
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To see (D.34), first note that for all 1 € R, A” (A1) > 0, due to (D.32). For contradiction,
assume there exists A, € R, with A”(4,) = 0. This, however, implies that the dispersion
of the channel is 0, owing to (D.31), [35, Theorem 5.6.3] and the fact that Uy is a ca-
pacity achieving input distribution for W (e.g., [35, Theorem 4.5.2]). Since the channel

has positive dispersion, this yields a contradiction.

For any r € [R,R], let n, := — %Esp(@.Ux) e which is well-defined owing to item (iii)

da

of Lemma 22. Further, observe that for any r € [R, R],
-r=~N(,), (D.35)

which is evident in light of

p= LU0l o, (D36)
ap lpey,

where the first equality follows by recalling the fact that 5, attains Egp(r, Ux), which is

shown in Lemma 22, and the second equality follows from (D.31). Moreover, since 7,

attains Egp(r, Ux) and Esp(r, Ux) > Esp(R, Ux) = Esp(R) > 0, for any r € [R,R], we

deduce that 7, € R*. Further, (D.34), (D.35) and the inverse function theorem ensures

that 77, is strictly non-increasing over [R, R].

Fix some a > 1 and define

m3(A)

foax 1= a2 V27ne max , D.37

4 TR (o1 () (D.37)

M min = Ag})l’nnk ]A ), (D.38)

My max := max A”(1). (D.39)
A€[0,nz]

Clearly, all of the above quantities are well-defined and positive. For convenience, let

oo (1 1)

k= —— Y ¢
771_?2 VzﬂmZ,max

R*. (D.40)
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Let N € Z" be sufficienttly large such that

_ 14+ (1 + te)? 1
Ry >R and [+ )] <-. (D.41)

77R(1 - ;1,)2 eNMymin 2

We have
T (AL )
W{SRy)XY| > e NN R (D.42)
VN

5 Ko wncr), (D.43)

~ VN
where A*(=Ry) := sup g {(—ARy — A(4)} and (D.42) follows from Lemma 5, in partic-
ular (3.2), which is applicable thanks to (D.34) and (D.35), along with (D.41). Since

1) € R* is non-increasing and A(-) is convex, (D.35) implies that

0<A<nz

; k kng kng .
— = — - — | - < — — — = — —R).
A*(—Ry) = max { /1(R N) A(/l)} < +0rsrﬁ);k{ AR — A1)} N + A"(—R)
(D.44)
By plugging (D.44) into (D.43), we deduce that (5.50) holds. O
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