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Lung function is an important predictor of population morbidity and mortality. 

Decline in lung function is a natural part of aging, but accelerated loss in lung function over 

time is a harbinger of chronic obstructive pulmonary disease (COPD), a leading cause of 

death globally. Smoking is widely recognized as the key risk factor for reduced lung function 

and COPD, although additional risk factors, such as genetics and nutrition, have been 

suggested to also play important roles in contributing to changes in lung function. The overall 

aim of this research was to investigate the role of, and interaction between, genetics, nutrition, 

and cigarette smoking in relation to the longitudinal change in lung function, as an indicator 

of COPD susceptibility. 

First, we explored the association between genetic variation within a network of 

antioxidant enzyme genes and the rate of change in lung function in a prospective cohort 

study of African and European American elderly adults; this study also investigated gene-by-

smoking interaction. Evidence of association was identified for genetic variants in several 

candidate genes, among which were two novel genes (mGST3 and IDH3B) that interacted 

with smoking in both races/ethnicities. 

Second, to expand the scope of investigation to all common genetic variants 
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throughout the entire human genome, we conducted a large-scale meta-analysis of genome-

wide association studies of longitudinal change in lung function in a consortium of 14 

individual cohort studies of adults of European ancestry. We found evidence of association at 

two novel genetic loci (IL16/STARD5/TMC3 and ME3) in the meta-analysis and performed 

additional gene expression analyses to demonstrate that both loci harbor candidate genes with 

biologically plausible functional links to lung function. 

Finally, we explored the role of nutrition directly by investigating the relation between 

overall dietary patterns and longitudinal change in lung function in a prospective cohort of 

male adults, considering diet-by-smoking interaction. We identified two distinct dietary 

patterns by applying principal component analysis to food frequency questionnaire data, and 

found that a prudent diet rich in fruits, vegetables, fish, and poultry attenuated the accelerated 

decline in lung function in cigarette smokers, but had no association in non-smokers.  
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CHAPTER 1 

 

INTRODUCTION 

 

Lung function is an important predictor of morbidity and mortality in the general 

population (1). Spirometric measures of lung function, such as forced expiratory volume in 

the first second (FEV1) and the ratio of FEV1/forced vital capacity (FEV1/FVC) are easily 

measured and reliable indicators of the physiological state of the lungs and airways and 

provide the basis for diagnosing and staging chronic obstructive pulmonary disease (COPD) 

(2). COPD, which includes emphysema and chronic bronchitis, is characterized by the 

development of airflow limitation that is not fully reversible, and includes symptoms such as 

shortness of breath, decreased exercise capability, wheezing, recurrent respiratory infections, 

severe cough, and poor overall oxygenation. COPD is a major cause of morbidity and mortality, 

currently ranked the third leading cause of death in the United States and projected to create an 

even greater public health burden in the coming years (3-5). Currently, available therapies for 

COPD are extremely limited in number and effectiveness, and most do not slow the rate of 

decline in FEV1 (6, 7). Thus, etiologic research that identifies novel preventive and curative 

strategies is a high public health priority (8, 9). 

Lung function reaches its peak levels during early adulthood, followed by a plateau, 

and declines subsequently as part of the natural aging process. However, accelerated decline 

in lung function can occur due to exposures to detrimental factors, such as cigarette smoke, 

leading to reduced lung function levels that characterize COPD (10, 11). Therefore, the study 

of longitudinal change in lung function may provide important insights for better 
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understanding COPD pathogenesis, and contribute to primary and secondary prevention 

strategies (10-13). 

Cigarette smoke, a major source of exogenous oxidants, exposes the lung to elevated 

levels of oxidative stress, and is widely recognized as the most important risk factor for 

accelerated loss in lung function and COPD (14, 15). However, only a subset of smokers 

eventually develop COPD (16), and about 10-15% of COPD cases cannot be explained by 

smoking (17). In addition, both cross-sectional and longitudinal studies have shown that as 

much as 90% of the overall variation in lung function remains unexplained after accounting 

for the effects of age, height, and smoking (18-21). These observations together suggest the 

importance of other types of risk factors, such as genetics and nutrition, in contributing to 

variations in lung function and COPD susceptibility. 

One prominent theory regarding the etiology of COPD postulates that the imbalance 

between chronic oxidative stress and antioxidant protection plays a key role in accelerated 

lung function loss (22, 23). In this context, two major forms of antioxidant defense are 

endogenous antioxidant enzymes and exogenous antioxidants from the diet, and both of them 

have been hypothesized to affect lung function and COPD risk, either independently or 

through interaction with cigarette smoking. On one hand, genetic variation in antioxidant 

enzymes has been studied through the candidate gene association approach using population 

data, but published studies have limitations, such as insufficient coverage of plausible genes, 

limited consideration of gene-by-smoking interaction, and inadequate consideration of 

longitudinal lung function outcomes to support stronger causal inferences. On the other hand, 

nutritional epidemiologic studies have also yielded substantial evidence of associations 

between the intake of numerous individual nutrients and foods and lung function outcomes 
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(24-28). However, most of these studies employed the “single nutrient” approach that does 

not sufficiently account for the complexity of dietary intake in terms of the strong correlations 

among individual nutrients and the presence of interactive or synergistic effects among foods 

and/or nutrients that are consumed in combinations (29). 

Beyond the scope of the oxidant/antioxidant hypothesis, substantial advances 

regarding the genetic contributions to lung function and COPD have been achieved in recent 

years as the field of genetic epidemiology entered the genome-wide association study 

(GWAS) era. To date, more than a dozen GWAS of lung function- and COPD-related 

outcomes have been published. Among them, three recent large-scale GWAS meta-analyses 

together identified 26 novel genetic loci in association with cross-sectional lung function 

levels (30-32). Many implicated genes in these loci possess biological functions that were 

previously considered irrelevant or unrelated to lung health. Thus these discoveries provide 

the important first step in the development of new hypothesis regarding the genetic regulation 

of lung function and genetic susceptibility to COPD. However, the majority of these GWAS 

focus on cross-sectional lung function outcomes, and to date only one population-based study 

of longitudinal change in lung function has been published. Due to the small sample size 

(1,441 asthmatic and 2,667 non-asthmatic participants), the study only reported suggestive 

evidence of association at one novel locus. Clearly, additional GWAS of longitudinal change 

in lung function with much greater sample size is needed. 

In the above research context, this dissertation aims to examine the hypothesis that 

genetic and nutritional factors, either independently or through interaction with cigarette 

smoking, contribute to variability in the longitudinal change in lung function, using both 

hypothesis-driven and hypothesis-generating strategies. 
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The first project extended previous work on the association between genetic variation 

in antioxidant enzymes and lung function outcomes by including a comprehensive set of 

candidate genes selected following a network-driven approach and studying their association 

with longitudinal change in lung function. Genotyping was performed for 384 single-

nucleotide polymorphisms (SNPs) in 56 candidate genes encoding antioxidant enzymes, in a 

prospective cohort of 1,281 African American and 1,794 European American elderly adults 

from the Health, Aging, and Body Composition (Health ABC) study. With the use of linear 

mixed effects models, SNPs were explored for single-marker association and gene-by-

smoking interaction in relation to the rate of change in FEV1 and FEV1/FVC, separately in 

African and European Americans. The results of this hypothesis-driven study are described in 

Chapter 2. 

The second project was designed to further expand the scope of investigation by 

considering common SNPs throughout the human genome using the GWAS approach and by 

synthesizing GWAS results from 14 individual cohort studies using meta-analysis. With the 

use of linear mixed effects models, ~2.5M common SNPs were examined for association with 

the rate of change in FEV1 in a combined sample of over 27,000 adults of European ancestry 

from 14 prospective cohort studies with longitudinal lung function data, and cohort-specific 

association results were combined using fixed effect meta-analysis. Additional gene 

expression analyses were performed for candidate genes at the identified loci to demonstrate 

their functional links to lung function. The results of this hypothesis-generating study are 

described in Chapter 3. 

The third project extended the current literature on the relation between diet and lung 

health by characterizing dietary intake using overall dietary patterns and investigating their 
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association with FEV1 longitudinally. Dietary patterns were derived using principal 

component analysis based on food frequency questionnaire data collected in 2,560 male adults 

from the Respiratory Ancillary Study. With the use of linear mixed effects models, identified 

dietary patterns were explored for association with the rate of change in FEV1 over ~3 years, 

adjusting for potential confounders. Given the importance of cigarette smoking, interaction 

between dietary patterns and smoking were also examined. The results of this hypothesis-

driven study are described in Chapter 4. 

Overall, the three projects comprising this dissertation research contribute to an 

improved understanding of the role of, and interaction between, genetics, nutrition, and 

cigarette smoking in determining the longitudinal change in lung function as an informative 

indicator of COPD risk. The first two projects present important data regarding the 

contribution of genetic factors both in and beyond the oxidant/antioxidant system in affecting 

lung function and disease risk, while the third project demonstrates the value of dietary 

pattern studies as a new avenue for future research of nutrition and lung health, which could 

ultimately contribute to studies aimed at investigating the interaction of nutrition with the 

genome in relation to lung outcomes.   
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ABSTRACT 

Rationale: Antioxidant enzymes play an important role in the defense against oxidative stress 

in the lung and in the pathogenesis of chronic obstructive pulmonary disease (COPD). 

Sequence variation in genes encoding antioxidant enzymes may alter susceptibility to COPD 

by affecting longitudinal change in lung function in adults. 

Methods: We genotyped 384 sequence variants in 56 candidate genes in 1,281 African 

American and 1,794 European American elderly adults in the Health, Aging, and Body 

Composition study. Single-marker associations and gene-by-smoking interactions with rate of 

change in FEV1 and FEV1/ FVC were evaluated using linear mixed effects models, stratified 

by race/ethnicity. 

Results: In European Americans, rs17883901 in GCLC was statistically significantly 

associated with rate of change in FEV1/FVC; the recessive genotype (TT) was associated with 

a 0.9% per year steeper decline (P = 4.50 × 10-5). Statistically significant gene-by-smoking 

interactions were observed for variants in two genes in European Americans: the minor allele 

of rs2297765 in mGST3 attenuated the accelerated decline in FEV1/FVC in smokers by 

0.45% per year (P = 1.13 × 10-4); for participants with greater baseline smoking pack-years, 

the minor allele of rs2073192 in IDH3B was associated with an accelerated decline in 

FEV1/FVC (P = 2.10 × 10-4). For both genes, nominally significant interactions (P < 0.01) 

were observed at the gene-level in African Americans (P = 0.007 and 4.60 × 10-4, 

respectively). Nominally significant evidence of association was observed for variants in 

SOD3 and GLRX2 in multiple analyses. 

Conclusions: This study identifies two novel genes associated with longitudinal lung function 

phenotypes in both African and European Americans, and confirms a prior finding for GCLC. 
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These findings suggest novel mechanisms and molecular targets for future research and 

advance the understanding of genetic determinants of lung function and COPD risk. 

 

Keywords: Antioxidant enzymes, cigarette smoking, gene by environment interaction, 

genetic association, longitudinal change, lung function, oxidative stress  
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INTRODUCTION 

 Lung function is an important predictor of morbidity and mortality in the general 

population (1). Spirometric measures of lung function, such as forced expiratory volume in 

the first second (FEV1) and the ratio of FEV1/forced vital capacity (FEV1/FVC) are easily 

measured and reliable indicators of the physiological state of the lungs and airways and 

provide the basis for diagnosing and staging chronic obstructive pulmonary disease (COPD) 

(2). Decline in lung function occurs naturally with aging, but accelerated decline can be 

caused by exposures such as cigarette smoking and can lead to low lung function that 

characterizes COPD (3, 4). Therefore, longitudinal changes in lung function are informative 

predictors of COPD risk, and studies of these outcomes provide important insights for 

understanding disease pathogenesis (3-6). 

The imbalance between chronic oxidative stress and antioxidant protection is 

postulated to play a key role in accelerated lung function loss (7, 8). Cigarette smoke, a major 

source of exogenous oxidants, exposes the lung to elevated levels of oxidative stress, whereas 

dietary antioxidants and endogenous antioxidant enzymes are the two major forms of 

antioxidant defense that counteract these processes. The observation that only a subset of 

smokers develop COPD (9) and that a substantial proportion of COPD cases cannot be 

explained by smoking (10) led to the hypothesis that dietary intake of antioxidants and genetic 

variation in genes encoding antioxidant enzymes both play an important role in modifying 

antioxidant defense against cigarette smoke in the lung with ultimate effects on COPD risk. 

In support of this hypothesis, observational epidemiologic studies have provided 

evidence of a positive association between dietary antioxidant intake and lung function, with 

stronger effects in cigarette smokers (11-15). Genetic variation in antioxidant enzymes has 
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also been studied in candidate gene association studies using population data, but published 

studies have limitations (16). First, most studies considered only limited numbers of candidate 

genes, leaving many biologically relevant genes unstudied. Second, very few studies 

considered longitudinal lung function phenotypes (17-19). Third, despite compelling evidence 

for their importance (20, 21), gene-by-smoking interactions are rarely investigated. Finally, 

very few studies include individuals of non-European ancestry, limiting inference to 

individuals of European descent. While recent, large-scale genome-wide association studies 

(GWAS) of lung function phenotypes together identified numerous novel genetic loci, these 

studies are limited in that they only consider European ancestry and cross-sectional 

phenotypes (22-24). 

We hypothesized that common single nucleotide polymorphisms (SNPs) in genes 

encoding antioxidant enzymes affect longitudinal decline in lung function. We further 

hypothesized that gene-by-smoking interactions are present such that some genetic variants 

affect lung function decline contingent on exposure to cigarette smoke. To investigate these 

hypotheses, we selected 56 candidate genes that either had putative functional relevance to 

antioxidant defense in the lung or were previously investigated in relation to COPD-related 

phenotypes. Functional and tagging SNPs in these genes were genotyped and tested for 

single-marker associations and gene-by-smoking interactions with rate of change in FEV1 and 

FEV1/FVC in a population of African American and European American elderly adults from 

the Health, Aging, and Body Composition (Health ABC) study. 

 

MATERIAL AND METHODS 

Subjects 
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The Health ABC study is a longitudinal, prospective cohort study comprising 1,281 

African American and 1,794 European American community-dwelling men and women, aged 

70-79 years at baseline (1996-1997) and residing in the metropolitan areas of Pittsburgh, PA 

and Memphis, TN (25). Participants reported self-proclaimed race initially as “Black” or 

“White”, but the terms “African American” and “European American” are used herein. To be 

eligible, participants were required to be ambulatory at baseline as confirmed by self-report of 

no difficulty walking one-quarter of a mile or climbing 10 steps without resting, no difficulty 

performing basic activities of daily living, and no use of a cane, walker, crutches or other 

special equipment to ambulate. In addition, participants were required to have no history of 

active treatment for cancer in the prior 3 years, and no plan to move out of the area in the 

subsequent 3 years. The Health ABC study was approved by the Institutional Review Boards 

of the University of Pittsburgh and the University of Tennessee, and the work reported herein 

was approved by the Institutional Review Board for Human Participants at Cornell 

University. 

 

Pulmonary Function Testing 

Spirometry was completed at four time points (baseline, years 4, 7 and 9) in 

accordance with standardized guidelines of the American Thoracic Society (ATS), as 

previously reported (25). The study used a horizontal, dry rolling seal HF6 Spirometer 

(Sensor Medics Corporation, Yorba Linda, CA, USA) during clinical visits, and the EasyOne 

Model 2001 diagnostic spirometer (ndd Medizintechnik AG, Zurich, Switzerland) during 

home visits starting in year 8. The two devices were evaluated for comparability and provided 

virtually identical values. Consistent with the quality control standard used in recent lung 
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function GWAS (22-24), all FEV1 (mL) and FEV1/FVC (%) measures meeting the ATS 

criteria for acceptability were included in the current study. 

 

Cigarette Smoking 

Participants were classified based on their long-term smoking status during the study 

follow-up as: (1) never smokers (never smoker at all spirometry time points), who were 

considered as the reference group in analyses, (2) persistent smokers (current smoker at all 

time points), (3) former smokers (former smoker at all time points), and (4) intermittent 

smokers (changing smoking status at different time points). Lifetime smoking dose was 

quantified as pack-years and calculated at study baseline for current and former smokers. 

 

Candidate Gene Selection and Genotyping 

Based on a previous systematic review of genetic association studies and gene 

expression studies investigating antioxidant enzymes and COPD-related phenotypes (16), we 

identified 56 candidate genes encoding antioxidant enzymes known to be expressed in lung 

tissue and postulated to affect the balance of antioxidants/oxidants. 384 functional and tagging 

SNPs were selected to capture variation across each gene and its regulatory regions (2 

kilobases upstream and downstream). Details of the SNP selection strategy are provided 

elsewhere (26). Separate consideration was given to African Americans and European 

Americans in SNP selection to maximize coverage in both populations, given differences in 

linkage disequilibrium (LD) structure and allele frequencies. Details of DNA extraction and 

genotyping quality, which were excellent, are provided elsewhere (26). 

Four genes (GGT2, GSTK1, GSTM1, and GSTT1) were excluded from subsequent 
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analyses due to low genotyping quality or atypical clustering of assayed SNPs. For the 

remaining SNPs with successful genotyping, Hardy-Weinberg equilibrium (HWE) was tested 

using the chi-squared goodness-of-fit test, stratified by race. After removing SNPs with 

genotyping call rate < 95%, minor allele frequency (MAF) < 1%, or p-value < 0.005 for the 

HWE test, the study included 314 SNPs in 52 genes in the African American analyses and 

284 SNPs in the same 52 genes in the European American analyses (Supplementary Table 

2.6). 

 

Statistical Analysis 

 Linear mixed effects models were used to investigate single-marker associations and 

gene-by-smoking interactions with rate of change in FEV1 and rate of change in FEV1/FVC; 

all analyses were stratified by race/ethnicity. A continuous time variable quantified the time 

elapsed between each spirometry test and the study baseline. Random intercept and time 

effects were included at the individual level to differentiate between- and within-individual 

variation. All models were adjusted for gender, study site, height at each time point, age and 

smoking pack-years (both at study baseline), smoking status and smoking status × time. To 

address potential confounding by population substructure, the first two principal component 

variables for genetic ancestry (27) (computed separately by race/ethnicity; based on data from 

GWAS completed in Health ABC) were included in all models. 

Single-marker associations with change in pulmonary function were tested by 

evaluating the product term of SNP × time. Gene-by-smoking interactions were tested by 

evaluating the three-way product term of SNP × smoking × time. Two smoking variables, 

smoking status during follow-up and baseline smoking pack-years, were tested separately for 
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interactions, with smoking status during follow-up collapsed into two categories, as follows: 

smokers (persistent + intermittent) and non-smokers (former + never, which comprised the 

reference group). 

Each SNP was coded by the minor allele and analyzed using an additive genetic 

model. SNPs with a nominal P < 0.05 were further tested using the dominant and recessive 

genetic models to refine estimates of the underlying genetic effect. The effect estimates for 

the genetic model with the most significant association were reported. To maintain statistical 

validity, we presented findings only for SNPs with a participant count ≥ 10 for the least 

frequent genotype category in the single-marker analyses and for the least frequent genotype-

smoking status category in the interaction analyses.  

In genetic association studies, the risk of false positives must be minimized without 

ruling out true associations. GWAS-scale multiple testing adjustments are not appropriate for 

the hypothesis-based investigation of candidate genes reported herein. Given the presence of 

LD among analyzed SNPs, we controlled for multiple testing using a Bonferroni adjustment 

based on the effective number of independent tests (Meff) (28, 29). Meff was computed based 

on the correlation matrix of genotypes of all analyzed SNPs, and then used in a Bonferroni 

adjustment at the experiment-wise α level of 0.05. Given the difference in LD patterns, the 

adjustment was performed separately for each race/ethnicity. For African Americans (Meff = 

223), the Bonferroni-corrected significance threshold was P < 2.3 × 10-4; for European 

Americans (Meff = 171), the analogous threshold of P < 3.0 × 10-4 was used. In addition, 

nominally significant associations were defined using P < 0.005 for single-marker analyses 

and P < 0.01 for gene-by-smoking interaction analyses.  
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All statistical analyses were conducted using SAS software version 9.1 (SAS Institute, 

Cary, NC, USA). LD in the Health ABC population was evaluated using Haploview 4.2 (30). 

 

RESULTS 

Population Characteristics 

 After exclusion for missing covariate data, 1,022 African Americans with 2,432 FEV1 

measurements and 1,487 European Americans with 4,157 FEV1 measurements were included 

in the FEV1 analysis (Table 2.1). Similarly, 979 African Americans with 2,244 FEV1/FVC 

measurements and 1,469 European Americans with 4,018 FEV1/FVC measurements were 

included in the FEV1/FVC analysis. 

We observed statistically significant annual decline in FEV1 and statistically 

significant annual decline in FEV1/FVC in both African Americans and European Americans 

(Table 2.2). For never smokers, the estimated rate of decline in FEV1/FVC was about 0.5% 

per year in both African Americans and European Americans, while the estimated annual 

decline in FEV1 was greater in European Americans (about 40 versus 32 mL per year). In 

general, the effects of smoking on lung function were stronger in European Americans 

compared to African Americans, consistent with greater smoking doses observed in the 

former group. Thus, for FEV1/FVC, while persistent and intermittent smokers had 

significantly faster declines in both groups compared to never smokers, the effect size of 

persistent smoking in European Americans was about twice that in African Americans. While 

the difference in FEV1/FVC decline between former smokers and never smokers was not 

significant in African Americans, it was borderline significant in European Americans. 

Similar patterns were observed for annual decline in FEV1, although not all associations were 
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statistically significant; the P value for the persistent smoking association was 0.06 in 

European Americans, and all associations followed expectations for magnitude and size of 

effect. 

 

Single-Marker Associations 

 Three genes showed nominal evidence of associations with rate of change in FEV1 in 

African Americans and one gene was associated with FEV1 decline in European Americans, 

although no associations survived the adjustment for multiple testing (Table 2.3). However, a 

SNP in superoxide dismutase 3 (SOD3), rs8192287, was marginally statistically significantly 

associated with a 20 mL per year faster decline in FEV1 per copy of the minor allele (T) in 

African Americans (P = 2.45 × 10-4). 

Four genes were nominally associated with rate of change in FEV1/FVC in African 

Americans (Table 2.4). The most statistically significant association, which did not pass the 

Bonferroni-adjusted threshold, was for a glutaredoxin 2 (GLRX2) SNP, rs35358794; each 

copy of the minor allele (A) was associated with a 0.3% per year slower decline. In European 

Americans, two genes showed evidence of associations with rate of change in FEV1/FVC. 

The most statistically significant association, which survived the Bonferroni adjustment for 

multiple testing, was for the glutamate-cysteine ligase catalytic subunit (GCLC) SNP 

rs17883901 (P = 4.50 × 10-5). The recessive genotype (TT) was associated with a 0.9% per 

year steeper decline compared with the reference genotypes (CC/CT). 

 

Gene-by-Smoking Interactions 

 Potential interactions between SNPs and cigarette smoking were investigated in 
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relation to rate of change in FEV1 and FEV1/FVC separately in African Americans and 

European Americans. Two smoking variables, smoking status during follow-up and baseline 

smoking pack-years, were investigated separately for gene-by-smoking interactions (Table 

2.5; also Supplementary Tables 2.7 to 2.14).  

For rate of change in FEV1, in African Americans, a nominally significant interaction 

was identified between rs34552619 in GLRX2 and smoking status. African American smokers 

with at least one copy of the minor allele (C) had a 32.4 mL per year steeper decline (P = 2.74 

× 10-4) than smokers without the minor allele. In European Americans, rs1007991 in SOD3 

had a nominally significant interaction with smoking status; each copy of the minor allele (C) 

attenuated the accelerated decline in FEV1 in smokers by 17.9 mL per year (P = 0.002). In 

contrast, neither SNP was associated with rate of change in FEV1 in non-smokers during 

follow-up. 

 For rate of change in FEV1/FVC, two genes had statistically significant interactions 

with smoking that passed the Bonferroni adjustment for multiple testing in European 

Americans and gene-level replications were observed for both genes in African Americans. In 

European Americans, the association between rs2297765 in microsomal glutathione S-

transferase 3 (mGST3) and rate of change in FEV1/FVC differed by smoking status such that 

each copy of the minor allele (T) attenuated the decline in smokers by 0.45% per year, but the 

SNP had no effect on decline in non-smokers (Table 2.5; P = 1.13 × 10-4; Figure 2.1). In 

African Americans, a different mGST3 variant, rs7554034, had a nominally significant 

interaction with smoking status; compared to the reference genotype, the recessive genotype 

(AA) attenuated the decline in smokers by 0.56% per year, but genotype had no effect on rate 

of decline in non-smokers (Table 2.5; P = 0.007; Figure 2.2). These mGST3 SNPs were not in 
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LD in either group (r2 = 0.002 and 0.01 for African Americans and European Americans, 

respectively). In European Americans, the association between rs2073192 in isocitrate 

dehydrogenase 3 beta (IDH3B) and rate of change in FEV1/FVC differed by smoking pack-

years; in participants with higher smoking dose, the minor allele (A) was associated with a 

faster decline in FEV1/FVC (Table 2.5, P = 2.10 × 10-4). Two other IDH3B SNPs, which 

were in strong LD with rs2073192 in European Americans (r2 ≥ 0.92), showed similar, but 

less statistically significant, evidence of interaction with smoking pack-years. In African 

Americans, a nominally significant interaction was observed for one of the IDH3B SNPs 

(rs6115381) and smoking status (Table 2.5; P = 4.60 × 10-4) such that the recessive genotype 

(GG) was associated with a 0.82% per year greater decline (compared to the reference 

genotype) in smokers only; no such difference was observed across genotypes in non-smokers 

(Figure 2.3). In African Americans, the rs6115381 and rs6107100 SNPs in IDH3B were in 

moderate LD (r2 = 0.63), whereas rs2073192 was not in LD with rs6115381 and rs6107100 

(r2 = 0.09 and 0.10, respectively). A nominally significant interaction was also observed 

between rs2284659 in SOD3 and smoking status in European Americans for rate of change in 

FEV1/FVC (P = 0.004). 

 

DISCUSSION 

This study was designed to investigate the hypothesis that genetic variation in 

candidate genes encoding antioxidant enzymes, which is expected to affect antioxidant 

defense in the lung, is associated with rate of change in lung function phenotypes, FEV1 and 

FEV1/FVC, and thus contributes to COPD susceptibility, especially in individuals with 

elevated oxidative stress due to cigarette smoking. Consistent with several recent GWAS of 
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lung phenotypes there were more findings overall for rate of change in FEV1/FVC compared 

to rate of change in FEV1, although the reasons for this are not yet clear (22-24).  

A novel gene, mGST3, was associated with rate of change in FEV1/FVC, with 

evidence of gene-by-smoking interactions in both European and African Americans. In 

European Americans, the effect of rs2297765 differed significantly by smoking status, and 

rs7554034 had a similar interaction in African Americans. The two SNPs are common in both 

groups, thus the effects on lung function in smokers are of public health interest. MGST3 is a 

membrane-bound antioxidant enzyme in the microsomal GST family with close links to 

antioxidant defense. In microarray studies of gene expression, the mouse Mgst3 gene was up-

regulated in the small intestine and liver in response to oxidative stress (31). MGST3 also 

catalyzes the conjugation reaction that produces leukotriene C4, an important inflammation 

mediator with a role in allergy and asthma (32, 33). The association of mGST3 with lung 

function phenotypes is novel, but microsomal enzymes, as a class, have been linked to lung 

health in prior studies. Epoxide hydrolase 1 (EPHX1), another microsomal enzyme, detoxifies 

xenobiotics including products in cigarette-smoke, and genetic variation in EPHX1 was 

associated with pulmonary phenotypes including childhood asthma, lung cancer and COPD 

(34-36). 

 IDH3B was implicated in a prior study of cross-sectional lung function phenotypes in 

the Health ABC cohort (gene-by-smoking interactions in African Americans) (26). In the 

current study of longitudinal lung function phenotypes in the same cohort, SNPs in IDH3B 

had a statistically significant interaction with smoking pack-years in European Americans and 

a nominally significant interaction with smoking status in African Americans in relation to 

rate of change in FEV1/FVC. The IDH enzymes, the majority of which localize to the 
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mitochondrial matrix, supply the reducing equivalents for the antioxidant activity of the many 

members of the glutathione and thioredoxin systems. In fibroblasts, decreased expression of 

IDH genes led to higher lipid peroxidation, oxidative DNA damage, intracellular peroxide 

generation, and increased senescence, indicating an important regulatory role for these genes 

in the defense against oxidative stress (37). 

In the present study, the rs17883901 SNP in GCLC was associated with rate of change 

in FEV1/FVC in European Americans, but the gene-by-smoking interactions for rs17883901 

could not be investigated given the limited number of smokers carrying the minor allele. 

Although no association was detected in African Americans, there was a considerably lower 

MAF in African Americans (1%). These findings are consistent with prior reports. The 

rs17883901 SNP was associated with an increased risk of COPD in a Chinese population 

(38), and two variants (rs17883901 and a GAG repeat variant (TNR)) were investigated 

jointly in relation to several pulmonary phenotypes, including change in FEV1, in two Dutch 

cohorts (18). Using a nominal significance threshold of P < 0.05, the Dutch study reported 

associations for both variants, including an interaction between TNR and smoking pack-years 

in relation to rate of change in FEV1. GCLC encodes the catalytic subunit of the 

heterodimeric enzyme glutamate-cysteine ligase, which catalyzes the de novo synthesis of 

glutathione. GCLC is predominantly expressed in lung epithelium (39), and rs17883901 was 

associated with lower expression of GCLC in endothelial cells in vitro (40), suggesting a 

potential mechanism for the population-level association. Overall, these findings support a 

role for GCLC in longitudinal change in lung function. 

SNPs in SOD3 and GLRX2 showed nominally significant evidence of associations in 

multiple analyses, and the GLRX2 findings are novel. SOD3 is a major extracellular 
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antioxidant enzyme highly expressed in the lung; SOD3 binds lung matrix components 

(collagen I, hyaluronan and heparin sulfate) to protect them against oxidative fragmentation 

and plays a central role in antioxidant defense in lung tissue (41). Genetic variation in SOD3 

has been extensively studied in relation to pulmonary phenotypes at the population level, 

although primarily in individuals of European descent. Rs1799895, a rare functional SNP in 

SOD3, was associated with lower COPD risk and slower FEV1 decline in never smokers (42-

44), and rs8192287 and rs8192288, which are in strong LD in individuals of European 

descent, were associated with reduced lung function and increased emphysema risk (45, 46). 

Rs1799895 was analyzed in the present study for single-marker associations in European 

Americans, but no statistically significant associations emerged. Rs8192287 was associated 

with a faster decline in FEV1 in African Americans, providing novel evidence for an 

association of rs8192287 with lung function phenotypes in this under-studied group. The 

observed gene-by-smoking interactions involving other SOD3 SNPs support effect 

modification by smoking in this genotype—phenotype association. Novel findings emerged 

for GLRX2, which encodes a mitochondrial antioxidant enzyme in the glutaredoxin family 

and has been recognized as an important redox regulator (47). GLRX2 is ubiquitously 

expressed in various tissues including lung (47),  and its over-expression was shown to 

prevent H2O2-induced apoptosis in human lens epithelial cells and to reduce myocardial cell 

death by preventing apoptosis and necrosis in mice (48, 49). 

The study has several strengths. First, this large, epidemiologic cohort study with 

longitudinal follow-up data on pulmonary function assessed by high-quality spirometry is a 

unique resource. The long duration allows the estimation of meaningful decline in lung 

function, making the investigation of the difference in rate of change among individuals 
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possible. The use of up to 4 repeated measurements per individual provides the data to 

accurately capture the true trajectory of lung function change over time. Second, the study had 

high-quality data on important risk and confounding factors, including cigarette smoking and 

principle component variables for genetic ancestry. The adjustment for genetic ancestry 

avoids potential confounding due to population substructure in each racial/ethnic group. 

Multiple forms of smoking data were available, allowing the consideration of both long-term 

smoking status and lifetime smoking dose in the single-marker analyses and to investigate 

potential interactions of genotype with these two different aspects of smoking exposure. 

Third, the Health ABC study includes a sufficiently large sample of African Americans, 

allowing race-specific analyses to be performed. This is important because African Americans 

have lower lung function compared with their European American counterparts and they are 

understudied in pulmonary and genetic epidemiology. Finally, despite the heterogeneity in the 

frequency and pattern of genetic variation and the challenges in the replication of genetic 

associations across racial/ethnic groups, this study provides compelling evidence of gene-by-

smoking interactions consistent on the gene level between African Americans and European 

Americans for two novel candidate genes. 

A few limitations should be considered when evaluating the study findings. First, 

despite the goal to comprehensively include genes encoding enzymes in relevant antioxidant 

pathways in the lung, a few genes did not pass genotyping quality control, and other enzymes 

with antioxidant activities may have been omitted inadvertently. Second, although the Health 

ABC study recorded extensive data on smoking behaviors, the statistical modeling of smoking 

in the study may not fully capture the effect of smoke exposure, possibly due to inaccuracy in 

participants’ self-reports and uncertainty in defining the most relevant aspects of smoking in 
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affecting pulmonary function. Despite these limitations, and limited power due to sample size, 

we were able to identify meaningful gene-by-smoking interactions. Third, the analyzed SNPs 

admittedly provide imperfect coverage of genetic variation in the candidate genes. The SNPs 

showing significant results are therefore likely “proxies” of the true causal variants. 

Considering the incomplete linkage between these variants, the true associations of causal 

variants with the corresponding phenotypes are expected to be greater than what was 

observed. While the current study focused on an elderly population, given their 

disproportionately high risk of accelerated lung function loss and consequent morbidity and 

mortality, the findings may or may not generalize to younger populations, and additional 

studies are needed to test the reported associations in populations with different 

characteristics. Finally, due to the risk of false discovery inherent in genetic association 

studies, we adopted a conservative significance threshold that may be overly conservative.  

In conclusion, this study explored genetic variation in candidate genes encoding 

antioxidant enzymes, cigarette smoking, and longitudinal change in two lung function 

phenotypes in African American and European American elderly adults. Evidence of 

association was observed for several novel genes. Of particular importance are the novel 

findings of gene-by-smoking interactions for mGST3 and IDH3B, which were observed 

consistently at the gene level in both African Americans and European Americans. The 

findings for GCLC and SOD3 strengthen existing knowledge and extend the evidence base by 

the novel consideration of longitudinal phenotypes and African Americans. Future research, 

especially in the understudied African American population, is warranted to further validate 

these findings and to elucidate the underlying molecular mechanisms. 
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Table 2.1 Characteristics of Study Participants, by Phenotype and Race/Ethnicity, for the Health ABC Studya 

Characteristic 
FEV1 Phenotype   FEV1/FVC Phenotype  

African 
Americans 

European 
Americans  African 

Americans 
European 
Americans 

No. of participants 1,022 1,487  979 1,469 
No. of spirometry measurements 2,432 4,157  2,244 4,018 
Males 441 (43.2) 773 (52.0)  431 (44.02) 766 (52.1) 
Age at baseline (yr) 73.4 (2.9) 73.8 (2.9)  73.4 (2.9) 73.8 (2.9) 
Height at baseline (cm) 165.3 (9.4) 166.7 (9.2)  165.5 (9.5) 166.7 (9.2) 
Study site      

Memphis, TN 469 (45.9) 727 (48.9)  439 (44.8) 714 (48.6) 
Pittsburgh, PA 553 (54.1) 760 (51.1)  540 (55.2) 755 (51.4) 

Smoking status during follow-up      
Never smokers 448 (43.8) 649 (43.6)  423 (43.2) 638 (43.4) 
Persistent smokers 112 (11.0) 48 (3.2)  107 (10.9) 48 (3.3) 
Intermittent smokers 62 (6.1) 57 (3.8)  60 (6.1) 57 (3.9) 
Former smokers 400 (39.1) 733 (49.3)  389 (39.7) 726 (49.4) 

Pack-years at baselineb 22.0 (1 - 126) 28.5 (1 - 192)  22.0 (1 - 126) 29.0 (1 - 192) 
FEV1 at baseline (mL) 1924.4 (565.4) 2288.6 (645.0)  - - 
FEV1/FVC at baseline (%) - -  75.1 (8.3) 74.2 (7.5) 

Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity. 
a Data are presented as n, n (%), mean (standard deviation), or median (range). 
b Data for ever-smokers only.  
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Table 2.2 The Association of Smoking with Rate of Change in Spirometry Phenotypes by Race/Ethnicity, for Participants in the 

Health ABC Studya 

Population and Variable 
Rate of Change in FEV1  Rate of Change in FEV1/FVC 

Effect Estimate 
(mL/yr) P Value P Value 

for set  Effect Estimate 
(%/yr) P Value P Value 

for set 
African Americans        

Timeb -32.21 ± 1.71 < 0.0001   -0.50 ± 0.04 < 0.0001  
Smoking statusc        

Never smokers Reference 

0.273 

 Reference 

0.005 
Persistent smokers -5.96 ± 4.84 0.219  -0.30 ± 0.13 0.019 
Intermittent smokers -0.45 ± 4.78 0.925  -0.42 ± 0.14 0.004 
Former smokers 2.97 ± 2.47 0.229  -0.05 ± 0.06 0.440 

European Americans        
Timeb -39.77 ± 1.35 < 0.0001   -0.52 ± 0.02 < 0.0001  
Smoking statusc        

Never smokers Reference 

0.120 

 Reference 

<0.0001 
Persistent smokers -12.05 ± 6.47 0.063  -0.62 ± 0.15 < 0.0001 
Intermittent smokers -6.51 ± 4.66 0.163  -0.34 ± 0.11 0.001 
Former smokers -2.27 ± 1.75 0.194  -0.07 ± 0.04 0.051 

Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity. 
a Data presented are from the linear mixed effects models for the indicated phenotype and race/ethnicity analyses; all models 

included the following predictors: gender, study site, height at each time point, age and smoking pack-years (both at study 

baseline), time, smoking status, and smoking status × time. 
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b Effect estimate for time corresponds to the estimated annual rate of change in the phenotype for never smokers; negative values 

represent declines in the phenotype. 
c Effect estimate for each smoking category is for the smoking status × time product term; negative values represent accelerations 

and positive values represent attenuations of decline, relative to never smokers.  
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Table 2.3 The Most Statistically Significant Associations for Single Genetic Variants with Rate of Change in FEV1 by 

Race/Ethnicity, for Participants in the Health ABC Studya 

Population and 
Gene SNP Chr Base Pair 

Position 
Minor 
Allele MAF β (mL/yr)b P Value Genetic 

Modelc 
African Americans 

mGST3 rs10800120 1 163871934 A 0.20 -5.8 ± 2.0 0.004 Additive 
SOD3 rs8192287 4 24405666 T 0.02 -19.8 ± 5.4 2.45 × 10-4 Additive 
GSR rs8190996 8 30673548 T 0.32 12.3 ± 3.8 0.001 Recessive 

European Americans 
GSTA4 rs6904771 6 52964138 G 0.02 -13.2 ± 4.2 0.002 Additive 

Abbreviations: FEV1, forced expiratory volume in 1 s; SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor 

allele frequency; β, regression coefficient; mGST3, microsomal glutathione S-transferase 3; SOD3, superoxide dismutase 3; GSR, 

glutathione reductase; GSTA4, glutathione S-transferase A4. 
a Data shown for associations with P < 0.005 for the SNP single-marker effect on rate of change in FEV1, sorted by race/ethnicity, 

chromosome and base pair position. Statistically significant associations satisfying the Bonferroni-adjusted threshold (African 

Americans: P < 2.3 × 10-4; European Americans: P < 3.0 × 10-4) are bolded. 
b Regression coefficient and standard error for the SNP × time product term in the corresponding mixed effects model. 
c Genetic model is defined in reference to the minor allele for each SNP.  
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Table 2.4 The Most Statistically Significant Associations for Single Genetic Variants with Rate of Change in FEV1/FVC by 

Race/Ethnicity, for Participants in the Health ABC Studya 

Population and 
Gene SNP Chr Base Pair 

Position 
Minor 
Allele MAF β (%/yr)b P Value Genetic 

Modelc 
African Americans 

GLRX2 rs35358794 1 191336492 A 0.06 0.29 ± 0.09 0.001 Additive 
SOD2 rs4342445 6 160018212 A 0.15 -0.53 ± 0.17 0.002 Recessive 
TXN2 rs2267337 22 35200417 T 0.22 -0.16 ± 0.05 0.002 Additive 
TXN2 rs2281082 22 35202696 T 0.22 -0.15 ± 0.05 0.004 Additive 
PRDX4 rs528960 23 23601182 C 0.24 0.19 ± 0.06 0.003 Dominant 

European Americans 
GCLC rs17883901 6 53517996 T 0.09 -0.86 ± 0.21 4.50 × 10-5 Recessive 
GSTO2 rs157077 10 106027884 C 0.46 -0.09 ± 0.03 3.68 × 10-4 Additive 

Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; SNP, single nucleotide polymorphism; Chr, 

chromosome; MAF, minor allele frequency; β, regression coefficient; GLRX2, glutaredoxin 2; SOD2, superoxide dismutase 2; 

TXN2, thioredoxin 2; PRDX4, peroxiredoxin 4; GCLC, glutamate-cysteine ligase (catalytic subunit); GSTO2, glutathione S-

transferase O2. 
a Data shown for associations with P < 0.005 for the SNP single-marker effect on rate of change in FEV1/FVC, sorted by 

race/ethnicity, chromosome and base pair position. Statistically significant associations satisfying the Bonferroni-adjusted threshold 

(African Americans: P < 2.3 × 10-4; European Americans: P < 3.0 × 10-4) are bolded. 
b Regression coefficient and standard error for the SNP × time product term in the corresponding mixed effects model. 
c Genetic model is defined in reference to the minor allele for each SNP.  
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Table 2.5 The Most Statistically Significant Gene-by-Smoking Interactions with Rate of Change in FEV1 and FEV1/FVC by 

Race/Ethnicity, for Participants in the Health ABC Studya 

Phenotype, 
Population, 
and Gene 

SNP-Smoking 
Interactionc Chr Base Pair 

Position 
Minor 
Allele MAF Interaction 

Effectd P Value Genetic 
Modele 

FEV1 

African Americans 

GLRX2 rs34552619 × smoking 
status 1 191331738 C 0.08 -32.4 ± 8.8 2.74 × 10-4 Dominant 

IDH1 rs1437410 × smoking 
pack-years 2 208825562 C 0.22 -1.2 ± 0.4 6.27 × 10-4 Recessive 

European Americans 

SOD3 rs1007991 × smoking 
status 4 24409783 C 0.34 17.9 ± 5.7 0.002 Additive 

GSTZ1 rs2111699 × smoking 
pack-years 14 76858350 G 0.32 -0.4 ± 0.1 9.55 × 10-4 Recessive 

FEV1/FVC 
African Americans 

mGST3b rs7554034 × smoking 
status 1 163877088 A 0.46 0.56 ± 0.21  0.007 Recessive 

IDH3Bb rs6115381 × smoking 
status 20 2590376 G 0.37 -0.82 ± 0.23 4.60 × 10-4 Recessive 

SOD1 rs2070424 × smoking 
status 21 31961191 G 0.19 0.68 ± 0.19 3.62 × 10-4 Dominant 

G6PD rs2472394 × smoking 
pack-years 23 153424545 A 0.13 -0.012 ± 0.003 7.75 × 10-4 Dominant 

European Americans 
mGST3 rs2297765 × smoking 1 163888831 T 0.44 0.45 ± 0.12 1.13 × 10-4 Additive 
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status 

SOD3b rs2284659 × smoking 
status 4 24403895 T 0.37 0.64 ± 0.22 0.004 Recessive 

IDH3B rs6115381 × smoking 
pack-years 20 2590376 G 0.07 -0.008 ± 0.002 3.82 × 10-4 Additive 

IDH3B rs6107100 × smoking 
pack-years 20 2592685 A 0.07 -0.008 ± 0.002 3.68 × 10-4 Additive 

IDH3B rs2073192 × smoking 
pack-years 20 2592996 A 0.07 -0.008 ± 0.002 2.10 × 10-4 Additive 

Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; SNP, single nucleotide polymorphism; Chr, 

chromosome; MAF, minor allele frequency; GLRX2, glutaredoxin 2;  IDH1, isocitrate dehydrogenase 1; SOD3, superoxide 

dismutase 3; GSTZ1, glutathione S-transferase Z1; mGST3, microsomal glutathione S-transferase 3;  IDH3B, isocitrate 

dehydrogenase 3B; SOD1, superoxide dismutase 1; G6PD, glucose-6-phosphate dehydrogenase. 
a Data shown are for the most statistically significant gene-by-smoking interactions for each phenotype and race/ethnicity analysis. 

Statistically significant interactions satisfying the Bonferroni-adjusted threshold (African Americans: P < 2.3 × 10-4; European 

Americans: P < 3.0 × 10-4) are bolded. 
b These nominally significant (P < 0.01) interactions were selectively presented since they represent gene-level replications of most 

statistically significant interactions in another phenotype and race/ethnicity analysis. 
c Smoking status was defined as a two-level categorical variable: smokers vs. non-smokers (reference group) during follow-up; 

smoking pack-years was modeled as a continuous variable. 
d Beta coefficient and standard error for the SNP × smoking × time product term in the corresponding mixed effects model; mL per 

year for the effect on rate of change in FEV1 and % per year for the effect on rate of change in FEV1/FVC. 
e Genetic model is defined in reference to the minor allele for each SNP.
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Figure 2.1 Estimated rates of change in FEV1/FVC (% per year) according to smoking status 

during follow-up and mGST3 rs2297765 genotype for European American participants in the 

Health ABC study. Open bars represent the CC genotype, light shaded bars represent the CT 

genotype and dark shaded bars represent the TT genotype. The estimates were computed from 

the linear mixed effects model that was adjusted for all covariates and included the SNP × 

smoking status × time product term (P = 1.13 × 10-4 following an additive genetic effect 

model). CI = confidence interval. 
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Figure 2.2 Estimated rates of change in FEV1/FVC (% per year) according to smoking status 

during follow-up and mGST3 rs7554034 genotype for African American participants in the 

Health ABC study. Open bars represent the GG/GA genotypes and shaded bars represent the 

AA genotype. The estimates were computed from the linear mixed effects model that was 

adjusted for all covariates and included the SNP × smoking status × time product term (P = 

0.007 following a recessive genetic effect model). CI = confidence interval. 
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Figure 2.3 Estimated rates of change in FEV1/FVC (% per year) according to smoking status 

during follow-up and IDH3B rs6115381 genotype for African American participants in the 

Health ABC study. Open bars represent the CC/CG genotypes and shaded bars represent the 

GG genotype. The estimates were computed from the linear mixed effects model that was 

adjusted for all covariates and included the SNP x smoking status x time product term (P = 

4.60 × 10-4 following a recessive genetic effect model). CI = confidence interval. 



44 
 

Supplementary Table 2.6: Description of the 52 Candidate Genes Analyzed in the Studya 

Gene 
Code Gene Name Functional Group Chr 

Gene 
Length 

(kb) 

SNPs Genotyped 

All Non-
Synonymous 

CAT Catalase Catalase 11 33 7 0 
G6PD Glucose-6-Phosphate Dehydrogenase Reducing Equivalents 23 16 1 0 
GCLC Glutamate-cysteine ligase (catalytic subunit) GSH Synthesis 6 48 15 0 
GCLM Glutamate-cysteine ligase (modulatory subunit) GSH Synthesis 1 22 6 0 
GGT1 Gamma-glutamyl Transferase 1 GSH Synthesis 22 45 3 0 
GLRX Glutaredoxin Disulfide Reductase 5 9 5 0 
GLRX2 Glutaredoxin 2 Disulfide Reductase 1 10 6 0 
GPX1 Glutathione Peroxidase 1 Peroxidase Activity 3 1.2 3 0 
GPX2 Glutathione Peroxidase 2 Peroxidase Activity 14 3.7 5 0 
GPX3 Glutathione Peroxidase 3 Peroxidase Activity 5 8.5 4 0 
GPX4 Glutathione Peroxidase 4 Peroxidase Activity 19 2.9 5 0 
GPX7 Glutathione Peroxidase 7 Peroxidase Activity 1 6.7 5 0 
GSR Glutathione Reductase Disulfide Reductase 8 49 9 1 
GSS Glutathione Synthetase GSH Synthesis 20 11 7 0 
GSTA1 Glutathione S-Transferase A1 Glutathione S-Transferase 6 12 3 0 
GSTA2 Glutathione S-Transferase A2 Glutathione S-Transferase 6 13 3 1 
GSTA3 Glutathione S-Transferase A3 Glutathione S-Transferase 6 13 6 1 
GSTA4 Glutathione S-Transferase A4 Glutathione S-Transferase 6 17 6 0 
GSTA5 Glutathione S-Transferase A5 Glutathione S-Transferase 6 14 7 1 
GSTM2 Glutathione S-Transferase M2 Glutathione S-Transferase 1 7.2 3 0 
GSTM3 Glutathione S-Transferase M3 Glutathione S-Transferase 1 6.5 6 1 
GSTM4 Glutathione S-Transferase M4 Glutathione S-Transferase 1 9.4 4 0 
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Gene 
Code Gene Name Functional Group Chr 

Gene 
Length 

(kb) 

SNPs Genotyped 

All Non-
Synonymous 

GSTO1 Glutathione S-Transferase O1 Glutathione S-Transferase 10 13 4 0 
GSTO2 Glutathione S-Transferase O2 Glutathione S-Transferase 10 31 9 1 
GSTP1 Glutathione S-Transferase P1 Glutathione S-Transferase 11 2.8 8 2 
GSTZ1 Glutathione S-Transferase Z1 Glutathione S-Transferase 14 8.1 6 2 
HMOX1 Heme-Oxygenase 1 Heme-Oxygenase 22 13 5 0 
HMOX2 Heme-Oxygenase 2 Heme-Oxygenase 16 34 6 0 
IDH1 Isocitrate Dehydrogenase 1 Reducing Equivalents 2 19 7 1 
IDH2 Isocitrate Dehydrogenase 2 Reducing Equivalents 15 19 7 0 
IDH3A Isocitrate Dehydrogenase 3A Reducing Equivalents 15 21 5 0 
IDH3B Isocitrate Dehydrogenase 3B Reducing Equivalents 20 5.8 4 0 
IDH3G Isocitrate Dehydrogenase 3G Reducing Equivalents 23 8.7 5 0 
mGST1 Microsomal Glutathione S-Transferase 1 Glutathione S-Transferase 12 17 8 0 
mGST2 Microsomal Glutathione S-Transferase 2 Glutathione S-Transferase 4 39 11 0 
mGST3 Microsomal Glutathione S-Transferase 3 Glutathione S-Transferase 1 24 11 0 
PRDX1 Peroxiredoxin 1 Peroxidase Activity 1 11 3 0 
PRDX2 Peroxiredoxin 2 Peroxidase Activity 19 5 6 0 
PRDX3 Peroxiredoxin 3 Peroxidase Activity 10 11 6 0 
PRDX4 Peroxiredoxin 4 Peroxidase Activity 23 19 6 0 
PRDX5 Peroxiredoxin 5 Peroxidase Activity 11 3.7 6 1 
PRDX6 Peroxiredoxin 6 Peroxidase Activity 1 11 6 0 
SEPP1 Selenoprotein P 1 Selenoprotein 5 12 6 1 
SEPW1 Selenoprotein W 1 Selenoprotein 19 6.1 7 0 
SOD1 Superoxide Dismutase 1 Superoxide Dismutase 21 9.3 6 0 
SOD2 Superoxide Dismutase 2 Superoxide Dismutase 6 14 6 1 
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Gene 
Code Gene Name Functional Group Chr 

Gene 
Length 

(kb) 

SNPs Genotyped 

All Non-
Synonymous 

SOD3 Superoxide Dismutase 3 Superoxide Dismutase 4 6.4 10 1 
TXN Thioredoxin 1 Thioredoxin 9 12 5 0 
TXN2 Thioredoxin 2 Thioredoxin 22 15 5 0 
TXNRD
1 

Thioredoxin Reductase 1 Disulfide Reductase 12 63 8 0 
TXNRD
2 

Thioredoxin Reductase 2 Disulfide Reductase 22 66 12 1 
TXNRD
3 

Thioredoxin Reductase 3 Disulfide Reductase 3 52 4 0 
a Four additional genes (GGT2, GSTK1, GSTM1, and GSTT1) were genotyped but had to be excluded from further analyses due to 

low genotyping quality or atypical clustering of assayed SNPs. 
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Supplementary Table 2.7: Summary of Significant Gene by Smoking Status Interactions (P < 0.01) with Rate of Change in 

Forced Expiratory Volume in 1 s for African American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (mL/yr)a P Value Genetic 

Modelb 
PRDX6 rs34977864 1 171712466 G 0.07 -31.8 ± 10.9 3.59 × 10-4 Additive 

GLRX2 rs34552619 1 191331738 C 0.08 -32.4 ± 8.8 2.74 × 10-4 Dominant 

IDH1 rs6435435 2 208820796 G 0.13 -20.8 ± 6.8 0.002 Additive 

GPX1 rs8179172 3 49368271 T 0.09 -25.7 ± 8.8 0.003 Additive 

GSR rs2978296 8 30694482 G 0.29 -21.9 ± 6.9 0.002 Dominant 

PRDX2 rs10404253 19 12767789 C 0.23 -20.9 ± 6.9 0.003 Dominant 

GGT1 rs16978740 22 23313264 T 0.10 27.8 ± 8.7 0.001 Dominant 

PRDX4 rs557914 23 23596108 G 0.37 -21.0 ± 7.1 0.003 Dominant 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking status × time product term in the mixed effects model; smoking status 

defined as a two-level categorical variable: smokers vs. non-smokers (reference group). 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.8: Summary of Significant Gene by Smoking Pack-years Interactions (P < 0.01) with Rate of Change in 

Forced Expiratory Volume in 1 s for African American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (mL/yr)a P Value Genetic 

Modelb 
IDH1 rs1437410 2 208825562 C 0.22 -1.2 ± 0.4 6.27 × 10-4 Recessive 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency. 
a Beta coefficient and standard error for the SNP × smoking pack-years × time product term in the mixed effects model. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.9: Summary of Significant Gene by Smoking Status Interactions (P < 0.01) with Rate of Change in 

Forced Expiratory Volume in 1 s for European American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (mL/yr)a P Value Genetic 

Modelb 
SOD3 rs2284659 4 24403895 T 0.37 14.5 ± 5.3 0.006 Additive 

SOD3 rs1007991 4 24409783 C 0.34 17.9 ± 5.7 0.002 Additive 

SOD3 rs2855262 4 24411074 T 0.37 15.2 ± 5.2 0.004 Additive 

mGST2 rs8191997 4 140804481 A 0.16 20.5 ± 7.7 0.008 Dominant 

GSTZ1 rs2111699 14 76858350 G 0.32 -14.6 ± 5.6 0.009 Additive 

IDH3G rs2071122 23 152705101 A 0.28 -25.2 ± 9.7 0.009 Recessive 

IDH3G rs2071123 23 152705843 A 0.28 -25.2 ± 9.7 0.009 Recessive 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking status × time product term in the mixed effects model; smoking status 

defined as a two-level categorical variable: smokers vs. non-smokers (reference group) during follow-up. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.10: Summary of Significant Gene by Smoking Pack-years Interactions (P < 0.01) with Rate of Change in 

Forced Expiratory Volume in 1 s for European American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (mL/yr)a P Value Genetic 

Modelb 
mGST2 rs795589 4 140819575 C 0.42 -0.2 ± 0.1 0.001 Dominant 

GSTZ1 rs2111699 14 76858350 G 0.32 -0.4 ± 0.1 9.55 × 10-4 Recessive 

GSTZ1 rs2363643 14 76858661 A 0.32 -0.4 ± 0.1 0.001 Recessive 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking pack-years × time product term in the mixed effects model. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.11: Summary of Significant Gene by Smoking Status Interactions (P < 0.01) with Rate of Change in the 

Ratio of Forced Expiratory Volume in 1 s/Forced Vital Capacity for African American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (%/yr)a P Value Genetic 

Modelb 
GPX7 rs6588431 1 52840174 T 0.40 0.53 ± 0.18 0.003 Dominant 

mGST3 rs7554034 1 163877088 A 0.46 0.56 ± 0.21 0.007 Recessive 

HMOX2 rs8055559 16 4480228 G 0.26 0.48 ± 0.18 0.008 Dominant 

IDH3B rs6115381 20 2590376 G 0.37 -0.82 ± 0.23 4.60 × 10-4 Recessive 

SOD1 rs4998557 21 31956763 A 0.39 0.36 ± 0.12 0.004 Additive 

SOD1 rs2070424 21 31961191 G 0.19 0.68 ± 0.19 3.62 × 10-4 Dominant 

GGT1 rs2154611 22 23319920 C 0.32 -0.86 ± 0.29 0.003 Recessive 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking status × time product term in the mixed effects model; smoking status 

defined as a two-level categorical variable: smokers vs. non-smokers (reference group) during follow-up. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.12: Summary of Significant Gene × Smoking Pack-years Interactions (P < 0.01) with Rate of Change in 

the Ratio of Forced Expiratory Volume in 1 s/Forced Vital Capacity for African American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (%/yr)a P Value Genetic 

Modelb 
SEPP1 rs230813 5 42834790 G 0.45 0.010 ± 0.003 0.001 Recessive 

GSR rs1002149 8 30705280 T 0.24 -0.008 ± 0.003 0.004  Dominant 

SEPW1 rs10427074 19 52976136 G 0.12 0.010 ± 0.003 0.001 Additive 

HMOX1 rs6518952 22 34112513 T 0.32 0.008 ± 0.003 0.003 Dominant 

G6PD rs2472394 23 153424545 A 0.13 -0.012 ± 0.003 7.75 × 10-4 Dominant 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking pack-years × time product term in the mixed effects model. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.13: Summary of Significant Gene × Smoking Status Interactions (P < 0.01) with Rate of Change in the 

Ratio of Forced Expiratory Volume in 1 s/Forced Vital Capacity for European American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (%/yr)a P Value Genetic 

Modelb 
GCLM rs7549683 1 94126037 T 0.35 0.33 ± 0.12 0.004 Additive 

GCLM rs769211 1 94132695 A 0.26 0.36 ± 0.12 0.003 Additive 

GCLM rs7517826 1 94137922 A 0.35 0.33 ± 0.12 0.004 Additive 

GCLM rs3827715 1 94142211 C 0.26 0.36 ± 0.12 0.003 Additive 

mGST3 rs2297765 1 163888831 T 0.44 0.45 ± 0.12 1.13 × 10-4 Additive 

SOD3 rs2284659 4 24403895 T 0.37 0.64 ± 0.22 0.004 Recessive 

GPX4 rs757228 19 1052992 G 0.45 -0.54 ± 0.18 0.003 Dominant 

GPX4 rs3746165 19 1053211 G 0.45 -0.54 ± 0.18 0.003 Dominant 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking status × time product term in the mixed effects model; smoking status 

defined as a two-level categorical variable: smokers vs. non-smokers (reference group) during follow-up. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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Supplementary Table 2.14: Summary of Significant Gene × Smoking Pack-years Interactions (P < 0.01) with Rate of Change in 

the Ratio of Forced Expiratory Volume in 1 s/Forced Vital Capacity for European American Participants in the Health ABC Study 

Gene SNP Chr Base Pair 
Position 

Minor 
Allele MAF β (%/yr)a P Value Genetic 

Modelb 
GSTA4 rs6904771 6 52964138 G 0.02 0.012 ± 0.004 9.89 × 10-4 Dominant 

IDH3B rs6115381 20 2590376 G 0.07 -0.008 ± 0.002 3.82 × 10-4 Additive 

IDH3B rs6107100 20 2592685 A 0.07 -0.008 ± 0.002 3.68 × 10-4 Additive 

IDH3B rs2073192 20 2592996 A 0.07 -0.008 ± 0.002 2.10 × 10-4 Additive 

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency 
a Beta coefficient and standard error for the SNP × smoking pack-years × time product term in the mixed effects model. 
b Genetic model is defined in reference to the minor allele for each SNP. 
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ABSTRACT 

Background: Genome-wide association studies (GWAS) have identified numerous loci 

influencing cross-sectional lung function, but less is known about genes influencing 

longitudinal change in lung function. 

Methods: We performed GWAS of the rate of change in forced expiratory volume in the first 

second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27249 adults 

of European ancestry using linear mixed effects model and combined cohort-specific results 

using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal 

change in lung function. As a secondary aim, we estimated the rate of decline in FEV1 by 

smoking pattern across these 14 studies using meta-analysis. 

Results: The overall meta-analysis produced suggestive evidence for association at the novel 

IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 × 10-7). In addition, meta-analysis 

using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 

locus on chromosome 11 (P = 2.18 × 10-8) at genome-wide significance. Neither locus was 

associated with FEV1 decline in two additional cohort studies. We confirmed gene expression 

of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data 

confirmed differential expression of all three genes in lung samples from COPD patients 

compared with controls. The combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 

mL/year in never, former, and persistent smokers, respectively. 

Conclusions: In this large-scale GWAS, we identified two novel genetic loci in association 

with the rate of change in FEV1 that harbor candidate genes with biologically plausible 

functional links to lung function. 
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INTRODUCTION 

 Forced expiratory volume in the first second (FEV1) is a reliable spirometric 

parameter that reflects the physiological state of the lungs and airways. Reduced FEV1 

relative to forced vital capacity (FVC), is a defining feature of chronic obstructive pulmonary 

disease (COPD), a leading cause of death globally (1). FEV1 is also a predictor of morbidity 

and mortality in the general population (2, 3). Lung function reaches its peak in early 

adulthood, followed by a plateau, and then subsequently declines. As first reported by 

Fletcher and Peto (4), decline in lung function is accelerated in smokers, leading to increased 

risks of COPD and premature death. While cigarette smoking is a key risk factor for 

accelerated loss of lung function, genetic variation is hypothesized to also play an important 

role (5, 6). Family and twin studies of the longitudinal change in lung function report 

heritability estimates between 10 and 39% (7, 8). 

 Recent large-scale genome-wide association studies (GWAS) identified 26 novel loci 

for cross-sectional lung function (9-11), demonstrating the power of GWAS with large sample 

size to identify common genetic variants with modest effect sizes. However, cross-sectional 

measurements in adults reflect the combination of maximal attained lung growth and 

subsequent decline. GWAS that specifically study the longitudinal change in lung function are 

needed to distinguish the genetic contributions to age-related decline. To date, only one 

population-based GWAS meta-analysis of longitudinal change in lung function has been 

reported (12). Separate analyses were conducted in 1441 asthmatic and 2667 non-asthmatic 

participants; association was found at one novel locus in each analysis, though only the locus 

in non-asthmatics replicated. 
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 In this study, we conducted primary GWAS of the rate of change in FEV1 in each of 

14 population-based cohort studies from the Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) and SpiroMeta consortia, comprising 27249 adult 

participants of European ancestry and 62130 FEV1 measurements. We then performed meta-

analysis of the cohort-specific results, followed up our most statistically significant 

associations in the AGES-Reykjavík cohort study and the Lung Health Study (LHS) for 

corroborative evidence, and explored the biological basis for identified associations using 

cell-specific gene expression studies, and expression quantitative trait loci (eQTL) analysis. 

 

METHODS 

 All 14 cohort studies are members of the CHARGE or SpiroMeta Consortium (Table 

3.1). The respective local Institutional Review Boards approved all study protocols, and 

written informed consent for genetic studies was obtained from all participants.  

 Spirometry tests were performed at baseline and at least one follow-up time point by 

trained technicians and in accordance with the American Thoracic Society or European 

Respiratory Society recommendations (details in online supplement) (13). FEV1 

measurements meeting inclusion criteria were included in the current study.  

 Studies performed genotyping following standard quality control measures; 

imputation was conducted based on the HapMap CEU reference panel to generate genotype 

dosages for ~ 2.5 million autosomal single nucleotide polymorphisms (SNPs) (Supplementary 

Table 3.5).  

 Each cohort study performed the GWAS using a linear mixed effects model. The 

model included a random intercept and a random slope, and fixed effects for time (a 
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continuous variable quantifying the time distance between each FEV1 measurement and 

baseline), SNP and its interaction with time (SNP-by-time), baseline age, gender, standing 

height, smoking pattern during follow-up and its interaction with time (smoking-by-time), 

baseline smoking pack-years, study site, and principal components for genetic ancestry (as 

needed). Cohort-specific results for the SNP-by-time interaction term, which estimates the 

effect of genotype on the rate of change in FEV1, were shared, and two meta-analyses, one 

using all 14 studies and the other using the five studies with ≥3  FEV1 measurements per 

participant, were performed using METAL software (14) with inverse variance weighting to 

combine effect estimates after applying genomic control correction. 

 We sought corroborative evidence for SNPs with P < 1 × 10-5 in the AGES-Reykjavík 

cohort study (n = 1494), and in LHS (n = 4048), a clinical cohort study of smokers with mild 

COPD, in which a longitudinal GWAS was recently reported (15). 

 Expression profiles of genes at the novel loci were evaluated in human lung tissues 

and primary cell samples using RT-PCR (Supplementary Table 3.11). Using publicly 

available data from the Lung Genomics Research Consortium (LGRC), expression profiles of 

these genes were compared in lung specimens of 219 COPD patients and 137 controls, and 

sentinel (most associated) SNPs at the novel loci were also searched against an eQTL 

database of lymphoblastoid cell lines (16). 

 

RESULTS 

 The majority of the 14 cohort studies had FEV1 at two times, but five studies (BHS, 

CARDIA, CHS, FHS, Health ABC) had ≥3 FEV1 measurements per participant. The 

maximum length of follow-up ranged from 4 to 29 years. Studies with older participants 
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generally had fewer current smokers and more former smokers, and had lower mean baseline 

FEV1. 

 All 14 studies implemented a preliminary mixed model adjusted for all specified 

variables except the SNP genotypes and reported the estimated rate of change in FEV1 by 

smoking pattern (Table 3.2). The rate of decline in FEV1 in never smokers ranged from 10.0 

to 39.7 mL/year, and was generally steeper in studies with older participants, as expected (4). 

Across all 14 studies, the meta-analyzed rate of change in FEV1 was a decline of 26.9±0.3 

mL/year in never smokers, and was 8.8±0.7, 2.6±0.6, and 2.3±0.5 mL/year steeper in 

persistent, intermittent, and former smokers, respectively (Table 3.2). We repeated the meta-

analyses in the five cohort studies with ≥3 FEV1 measurements per participant, and found 

similar, although less statistically significant results. 

 Study-specific genomic inflation factors (λgc) were calculated for the SNP-by-time 

interaction term and used for study-level genomic control prior to the meta-analyses. Study-

specific λgc values ranged from 0.96 to 1.11 (Supplementary Table 3.5) and the meta-analysis 

λgc was 1.01 for both the 14-study and five-study meta-analyses.  Supplementary Figures 3.3 

and 3.4 present the Manhattan and quantile-quantile (QQ) plots. 

 In the meta-analysis including all 14 cohort studies, 15 SNPs at nine independent loci 

were associated with the rate of change in FEV1 at P < 1 × 10-5, and none reached the 

genome-wide significance threshold of P < 5 × 10-8. The association results for the sentinel 

SNPs at these nine loci are presented in Table 3.3, and more detailed results for all 15 SNPs 

are included in Supplementary Table 3.6. The most statistically significant association, and 

the only one that reached P < 1 × 10-6, was for rs4077833, an intronic SNP located in the 

novel IL16/STARD5/TMC3 gene region on chromosome 15 (P = 5.71 × 10-7; Figure 3.1). The 
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C allele of rs4077833, with a frequency of 10%, was associated with an attenuation of the rate 

of decline in FEV1 by 2.3 mL/year. 

 For estimation of longitudinal trajectory in lung function, having more than two 

measurements over time provides greater precision (4). We performed a further meta-analysis 

with the five cohort studies (BHS, CHS, CARDIA, FHS, Health ABC) having ≥3 FEV1 

measurements per participant, with a combined sample size of 10476 participants and 32054 

FEV1 measurements (online supplement for details). A novel region on chromosome 11 had a 

genome-wide significant association (P < 5 × 10-8) with the rate of change in FEV1 (Table 

3.4). The most statistically significant finding at this locus was for rs507211, an intronic SNP 

located in ME3 (Figure 3.2). Six other SNPs, which are in linkage disequilibrium (LD) with 

rs507211 and are located in ME3, were identified at P < 1 × 10-6 (Supplementary Table 3.7). 

The rs507211 A allele, with a frequency of 25%, was associated with an attenuation of the 

rate of decline in FEV1 by 2.09 mL/year (P = 2.18 × 10-8). Besides the ME3 locus, 17 SNPs 

from four other chromosomal regions had P values between 5 × 10-8 and 1 × 10-5 for 

associations with the rate of change in FEV1 (Tables 3.4 and Supplementary Table 3.7). 

 Corroborative evidence was sought for the sentinel SNP at each of the 14 loci 

associated at P < 1 × 10-5 (from both the 14-study and five-study meta-analyses) in 1494 

adults from the AGES-Reykjavík population-based cohort study (Supplementary Table 3.8). 

A P value of 0.004, representing the Bonferroni correction for 14 tests at the α = 0.05 level, 

was selected a priori as the threshold for statistical significance. No SNPs achieved this 

threshold. The lowest P value was for rs740577 in CACNG4 (P = 0.08), which showed 

consistent effect direction and magnitude with the original meta-analysis. 
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 These same 14 SNPs were further examined in LHS, a clinical cohort study of 4,048 

smokers with mild COPD for evidence of consistent association between healthy and diseased 

individuals (17). None of the 14 SNPs were associated with the rate of change in FEV1 in 

LHS at P < 0.004 (Supplementary Table 3.8). 

 Previous meta-analyses in the CHARGE and SpiroMeta consortia identified 26 novel 

loci associated with cross-sectional FEV1 and/or FEV1/FVC at genome-wide significance (9-

11). We examined the sentinel SNPs from these loci in the meta-analysis of the 14 cohort 

studies for association with the rate of change in FEV1 (Supplementary Table 3.9). Given the 

a priori association with cross-sectional lung function, a P value threshold of 0.05 was used. 

Sentinel SNPs in PID1, HHIP, GPR126, and CFDP1 showed association with the rate of 

change in FEV1 (0.005 ≤ P ≤ 0.048). 

 Three genes (IL16, STARD5, and TMC3) at the novel chromosome 15 locus and ME3 

at the novel chromosome 11 locus were selected for follow-up mRNA expression profiling in 

human lung tissue, and primary cultures of human bronchial epithelial and airway smooth 

muscle cells, together with control tissues (peripheral blood mononuclear cells and brain). 

Transcripts of STARD5 and ME3 were found in all lung-derived tissues, transcripts of IL16 

were found in lung tissue and smooth muscle cells, but not in epithelial cells, and TMC3 was 

not expressed in any of the lung-derived tissues (Supplementary Table 3.10). 

 Using the public LGRC data repository, we found that the expression profiles of IL16, 

STARD5, and ME3 in human lung samples showed statistically significant differences (P < 

0.05) between COPD patients and controls (Supplementary Figure 3.5). Lower levels of IL16 

(P = 0.004) were observed in COPD patients compared with controls, whereas higher levels 
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of STARD5 (P = 3.22 × 10-9) and ME3 (P = 0.044) were observed in COPD patients 

compared with controls. Data on TMC3 expression were not available. 

 We performed additional follow-up analysis of the sentinel SNPs at the two novel loci 

using an eQTL database of lymphoblastoid cell lines (Supplementary Table 3.12). Trans-

eQTL associations were observed between rs4077833 at the IL16/STARD5/TMC3 locus and a 

nuclear receptor, NR1I2 (chromosome 3; P = 6.84 × 10-4) and between rs507211 at the ME3 

locus and KIAA1109 (chromosome 4; P = 5.20 × 10-4), which is part of a gene cluster 

(KIAA1109-TENR-IL2-IL21) that encodes two interleukins (IL2 and IL21) (18). 

 

DISCUSSION 

Although the genetic contribution to cross-sectional lung function phenotypes has 

been addressed by large-scale GWAS, much less information is available for longitudinal 

lung function phenotypes. To identify novel loci that specifically affect lung function change 

over time, we performed a large-scale GWAS of the rate of change in FEV1 in 27249 

participants from 14 population-based cohort studies. We identified a novel locus 

(IL16/STARD5/TMC3) on chromosome 15 with suggestive evidence for association with the 

rate of change in FEV1. Given the greater precision to estimate longitudinal trends with more 

measurements, a meta-analysis of the five cohort studies with ≥3 FEV1 measurements per 

participant was performed, and it identified a second novel locus (ME3) on chromosome 11 at 

genome-wide statistical significance. For both loci, the minor allele was protective, and the 

magnitude of the association with the rate of change in FEV1 was similar to that of being an 

intermittent or former smoker versus a never-smoker.  
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The sentinel SNP at the novel chromosome 15 locus is located in TMC3, although two 

neighboring genes, IL16 and STARD5 both harbor SNPs that are in modest LD with the 

sentinel SNP (Figure 3.1). TMC3, a member of the transmembrane channel-like gene family, 

likely functions as an ion channel, transporter, or modifier (19), and has been associated with 

deafness (20) and skin cancer (21). IL16 is a pleiotropic immunomodulatory cytokine that 

acts as a chemoattractant for CD4+ cells and contributes to their recruitment and activation in 

response to inflammation (22). Notably, asthma was the first disease where increased IL16 

expression was observed (23). Subsequent studies confirmed that in the non-diseased state 

IL16 is almost exclusively expressed by T lymphocytes in lymphatic tissue, whereas in 

asthmatic patients IL16 is also synthesized by airway epithelial cells to inhibit airway 

inflammation (24-26). A promoter polymorphism (T-295C) in IL16 was associated with 

asthma in a Caucasian population in England (27), although this finding was not confirmed in 

an Australian study (28). STARD5 belongs to the steroidogenic acute regulatory lipid transfer 

domain protein superfamily, and is involved in the trafficking of cholesterol and other lipids 

between intracellular membranes (29). Recent in vitro studies showed increased STARD5 

expression and protein redistribution as a protective mechanism in response to induced 

endoplasmic reticulum (ER) stress and consequent over-accumulation of intracellular free 

cholesterol (30). We confirmed the expression of STARD5 in all human lung tissues examined 

and of IL16 in human lung smooth muscle cells, but not epithelial cells, in line with previous 

observations. In contrast, no expression of TMC3 was detected in any of the tested human 

lung tissues. We also found significantly lower levels of IL16 in whole lung samples from 

COPD patients compared with controls, in contrast to its increased expression in asthma, and 

significantly higher levels of STARD5 in COPD patients compared with controls. Taken 
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together, these results suggest IL16 as the most likely candidate accounting for the observed 

association, but further investigation is needed to elucidate underlying mechanisms. 

The sentinel SNP at the novel chromosome 11 locus is located in ME3, whose protein 

product is a mitochondrial NADP(+)-dependent malic enzyme that catalyzes the oxidative 

decarboxylation of malate to pyruvate using NADP+ as a cofactor (31). Mitochondrial malic 

enzymes play a role in the energy metabolism in tumors, and are considered potential 

therapeutic targets in cancer (32, 33). We performed independent expression profiling of ME3 

and confirmed its expression in all human lung tissues examined, and found significantly 

higher levels of ME3 in lung samples from COPD patients compared with controls. In 

addition, the sentinel SNP in ME3 was associated with airway obstruction at P = 0.049 in a 

recent GWAS of airway obstruction (34). Taken together, these results support ME3 as a 

biologically plausible candidate in the regulation of lung function and pathogenesis of COPD.  

The identification of trans-eQTL associations for the sentinel SNPs at both the 

IL16/STARD5/TMC3 and ME3 loci is interesting, and while the interpretation of trans-eQTL 

associations is ambiguous (35), the regions these SNPs regulate merit further study. 

Besides the GWAS meta-analyses, the assembly of 14 longitudinal cohort studies 

allowed us to meta-analyze the association of cumulative smoking patterns with the rate of 

change in FEV1 in the general population. The meta-analyzed estimate for the rate of decline 

in FEV1 in never smokers was 26.9 mL/year, and the annual decline was steeper in persistent, 

intermittent, and former smokers by 8.8, 2.6, and 2.3 mL/year, respectively. These findings 

provide a reference point for the effect of cigarette smoking on longitudinal lung function 

change in the general population. 
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There is phenotypic variation among the 14 cohort studies in aspects such as baseline 

age and cigarette smoking, and in factors that are of special importance to this longitudinal 

GWAS, such as the number of FEV1 measurements per participant and follow-up duration. 

Phenotypic heterogeneity represents a general challenge in genetic epidemiology, particularly 

in the investigation of longitudinal phenotypes. Thus, we performed a meta-analysis using the 

subset of cohort studies with ≥3 FEV1 measurements per participant, given that longitudinal 

trajectories are best estimated over longer time periods and with more measurements. There 

was little overlap between the top loci identified in the two meta-analyses at P < 1 × 10-5, 

suggesting that phenotypic heterogeneity affected the association results. Future meta-studies 

of lung function decline should aim to increase sample size while maintaining high 

phenotypic comparability among participating studies. 

We sought corroborative evidence in a single cohort study of 1,494 participants. This 

sample size is much smaller and arguably insufficient compared with replications applied to 

previous studies of cross-sectional lung function phenotypes. Thus, despite the lack of 

corroboration for the two novel loci identified in the meta-analyses, results from the 

complementary gene expression analyses provide compelling evidence for biologically 

plausible roles of the implicated genes in the longitudinal change in lung function. 

None of the 14 sentinel SNPs were associated with the rate of change in FEV1 in the 

COPD patient-based LHS cohort. Similarly, a previous population-based GWAS of lung 

function decline noted a high degree of heterogeneity in findings when analyses were 

stratified by presence/absence of asthma (12). The observed discrepancy of association results 

suggests that the genetic determination of lung function decline may be different in healthy 

individuals compared with COPD patients, may contribute differentially in a pre-diseased vs. 
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post-diseased state in which medications may influence the rates of decline, or that LHS was 

underpowered for confirming our findings.  

In summary, we performed GWAS of the longitudinal change in lung function and 

subsequent meta-analyses, using harmonized data from more than 27000 participants of 

European ancestry to identify genetic loci influencing the rate of change in FEV1. We 

identified the novel ME3 locus on chromosome 11 at genome-wide significance and found 

suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 

15. Additional expression analyses confirmed the expression of ME3, IL16, and STARD5 in 

multiple lung tissues, and found differential expression profiles of these three genes in the 

lungs of COPD patients compared to non-COPD controls. These results support the 

involvement of these implicated genes in the longitudinal change in lung function in the 

general population.
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Table 3.1 Baseline characteristics of cohort studies included in the meta-analysis* 

 Cohort: ARIC B58C BHS CARDIA CHS FHS Health ABC 
No. of participants 8,242 827 1,009 1,492 3,159 3,230 1,586 
No. of FEV1 measurements 15,582 1,653 3,073 6,140 7,140 11,275 4,426 
No. of FEV1 per person 2 2 7 5 3 5 4 
Follow-up duration, yr 5.6 10 29 20.1 7.9 14.7 9.5 
Males, % 46.5 48.6 41.6 46.9 39 47 52.7 
Baseline age, yr 54.6 (5.7) 35.0 (0.2) 37.5 (12.8) 27.5 (2.3) 72.3 (5.4) 50.9 (10.3) 73.8 (2.8) 
Baseline height, cm 168.7 (9.4) 170.1 (9.5) 168.1 (8.9) 171.2 (9.3) 164.6 (9.4) 168.4 (9.3) 166.8 (9.3) 
Current smokers, % 20.2 27.1 20.9 24.8 10.8 24.6 6.4 
Former smokers, % 32.6 41.5 16.5 17.3 35.7 39.8 49.9 
Baseline pack-years† 25.9 (21.7) 7.5 (11.4) 8.2 (17.8) 6.0 (6.5) 33.2 (27.0) 25.4 (21.3) 36.8 (32.2) 
Baseline FEV1, mL 2972 (758) 3631 (744) 3230 (927) 3818 (781) 2123 (652) 2989 (806) 2308 (649) 
Baseline FEV1/FVC, % 74.1 (7.1) 80.6 (5.8) 78.2 (9.2) 81.6 (6.5) 70.5 (10.5) 75.7 (8.0) 74.7 (7.8) 
        

 Cohort: KORA LBC1921 LBC1936 PIVUS RS SAPALDIA SHIP 
No. of participants 890 512 1,002 818 1,321 1,401 1,760 
No. of FEV1 measurements 1,597 706 1,790 1,469 2,016 2,692 2,571 
No. of FEV1 per person 2 2 2 2 2 2 2 
Follow-up duration, yr 3.2 8.9 4.8 5.8 8.3 10.9 7.9 
Males, % 47.2 41.4 50.8 49.9 45.1 48 49.4 
Baseline age, yr 53.8 (4.5) 79.1 (0.6) 69.6  (0.8) 70.2 (0.2) 74.4 (5.6) 41.1 (11.2) 52.4 (13.6) 
Baseline height, cm 169.3 (9.3) 163.2 (9.4) 166.5 (8.9) 169.0 (9.3) 167.3 (9.1) 169.4 (9.1) 169.5 (9.7) 
Current smokers, % 20.5 7.0 12.9 10.2 11.1 26.9 32.8 
Former smokers, % 40.9 50.4 42.6 39.6 56.7 25.8 23.8 
Baseline pack-years† 11.2 (17.1) 15.3 (22.3) 16.9 (25.8) 14.3 (15.8) 25.7 (21.3) 17.4 (18.0) 11.3 (11.9) 
Baseline FEV1, mL  3280 (792) 1887 (625) 2371 (687) 2452 (682) 2215 (652) 3516 (861) 3238 (876) 
Baseline FEV1/FVC, % 77.5 (6.2) 79.0 (11.8) 78.3 (10.2) 76.0 (10.0) 74.8 (7.9) 78.5 (8.2) 83.1 (6.6) 
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Definition of abbreviations: ARIC = Atherosclerosis Risk in Communities; B58C = British 1958 Birth Cohort; BHS = Busselton 

Health Study; CARDIA = Coronary Artery Risk Development in Young Adults; CHS = Cardiovascular Health Study = FHS, 

Framingham Heart Study; Health ABC = Health, Aging, and Body Composition; KORA = Cooperative Health Research in the 

Region of Augsburg; LBC1921 = Lothian Birth Cohort 1921; LBC1936 = Lothian Birth Cohort 1936; PIVUS = Prospective 

Investigation of the Vasculature in Uppsala Seniors; RS = Rotterdam Study; SAPALDIA = Swiss Study on Air Pollution and Lung 

Diseases in Adults; SD = standard deviation; SHIP = Study of Health in Pomerania. 
* Data are presented as mean (SD) unless otherwise indicated; total no. participants = 27249, total no. FEV1 measurements = 62130. 
† Pack-years are calculated among current and former smokers at study baseline.
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Table 3.2 Model estimates for the rate of change in FEV1 in never smokers and effects of other smoking patterns (compared with 

never smokers) on the rate of change in FEV1 (mL/year)* 

Study 

Annual FEV1 change in 
never smokers  

(referent group) 

Additional Effect† of smoking patterns on annual FEV1 change 

Persistent smokers Intermittent smokers Former smokers 
β SE β SE β SE β SE 

ARIC -14.0 1.3 -12.4 1.7 -5.5 2.1 -5.3 1.4 
B58C -29.6 1.5 -9.4 2.8 -2.2 3.4 -3.0 3.0 
BHS -23.0 1.0 -20.0 3.0 -8.0 2.0 -9.0 2.0 
CARDIA -26.4 0.5 -6.7 1.3 -0.2 1.0 1.0 1.2 
CHS -35.0 1.1 -2.2 3.3 -4.6 2.2 -2.4 1.7 
FHS -26.0 0.6 -8.1 1.3 -2.9 1.0 -1.1 0.8 
Health ABC -39.7 1.3 -12.9 6.1 -6.8 4.4 -2.6 1.7 
KORA -22.1 3.7 2.2 7.2 -10.4 9.3 2.8 5.2 
LBC1921 -10.0 3.6 -11.6 15.7 2.8 14.4 -18.8 4.9 
LBC1936 -32.3 3.6 -19.0 9.9 40.1 16.8 4.3 5.3 
PIVUS -21.1 2.5 -15.9 8.2 -21.7 13.4 -3.9 3.9 
RS -27.5 3.7 -1.8 9.0 9.3 8.6 -4.6 4.5 
SAPALDIA -29.7 1.2 -7.4 2.3 -2.0 2.6 -2.8 2.1 
SHIP -31.8 2.8 -0.4 10.9 -0.1 3.9 -15.0 7.3 
14-cohort meta-analyzed 
estimate -26.9 0.3 -8.8 0.7 -2.6 0.6 -2.3 0.5 

 

Definition of abbreviations: ARIC = Atherosclerosis Risk in Communities; B58C = British 1958 Birth Cohort; BHS = Busselton 

Health Study; CARDIA = Coronary Artery Risk Development in Young Adults; CHS = Cardiovascular Health Study; FHS = 

Framingham Heart Study; Health ABC = Health, Aging, and Body Composition; KORA = Cooperative Health Research in the 
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Region of Augsburg; LBC1921 = Lothian Birth Cohort 1921; LBC1936 = Lothian Birth Cohort 1936; PIVUS = Prospective 

Investigation of the Vasculature in Uppsala Seniors; RS = Rotterdam Study; SAPALDIA = Swiss Study on Air Pollution and Lung 

Diseases in Adults; SE = standard error; SHIP = Study of Health in Pomerania. 
* Data shown are the effect estimates (β and SE) of the time and smoking-by-time interaction terms in the preliminary mixed effects 

model fully adjusted for all specified variables except the SNP terms. Time represents the rate of change in FEV1 in never smokers 

and the smoking-by-time interaction term represents the effects of the other three smoking patterns on the rate of change in FEV1, 

compared with never smokers. Smoking categories are defined as persistent (smoke throughout follow-up), intermittent (stop 

and/or start smoking during follow-up) and former (smoke only prior to start of follow-up). 
† Effect estimates in smoking categories are added to estimate in never smokers to compute the actual rate of change in each group 

(for example, in ARIC, the point estimate of the rate of change in FEV1 in persistent smokers was -14.0 - 12.4 = -26.4 mL/year). 
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Table 3.3 Association of the most statistically significant SNPs with the rate of change in FEV1 (mL/year) in the meta-analysis of 

14 cohort studies (n = 27249)* 

SNP Chr Position Closest Gene(s) Coded 
Allele Frequency β SE P Value 

rs12137475 1 44059735 ST3GAL3 T 0.11 -3.5 0.8 3.90 × 10-6 

rs766488 1 61583103 NFIA A 0.31 1.4 0.3 6.60 × 10-6 

rs17698444 1 215483178 ESRRG/GPATCH2 C 0.89 -2.2 0.5 2.62 × 10-6 

rs12692550 2 159958017 BAZ2B T 0.17 -1.7 0.4 5.16 × 10-6 

rs2260722 13 113236292 TMCO3 A 0.72 -1.5 0.3 1.83 × 10-6 

rs4077833 15 79419738 IL16/STARD5/TMC3 C 0.10 2.3 0.5 5.71 × 10-7 

rs8027498 15 89595638 SV2B A 0.25 1.4 0.3 9.41 × 10-6 

rs8051319 16 15794449 MYH11 T 0.60 1.7 0.3 5.12 × 10-6 

rs740557 17 62451139 CACNG4 C 0.85 -2.3 0.5 3.59 × 10-6 
 

Definition of abbreviations: Chr = chromosome; SE = standard error; SNP = single-nucleotide polymorphism. 
* Data reported are the meta-analysis results of the SNP-by-time interaction term from the GWAS mixed effects model. A positive 

β-coefficient indicates an attenuation of FEV1 decline and a negative β-coefficient an acceleration of FEV1 decline. 
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Table 3.4 Association of the most statistically significant SNPs with the rate of change in FEV1 (mL/year) in the meta-analysis of 

the five cohort studies with ≥3 FEV1 measurements per participant (n = 10476) 

SNP Chr Position Closest Gene(s) Coded 
Allele Frequency β SE P Value 

rs10209501 2 28536881 FOSL2/PLB1 A 0.33 1.6 0.4 7.09 × 10-6 

rs12692550 2 159958017 BAZ2B T 0.18 -2.0 0.4 2.02 × 10-6 

rs1729588 3 110790025 FLJ25363/MIR4445 A 0.30 1.6 0.4 8.38 × 10-6 

rs10764053 10 19863644 C10orf112 T 0.47 1.5 0.3 4.15 × 10-6 

rs507211 11 86054387 ME3 A 0.25 2.1 0.4 2.18 × 10-8 
 

Definition of abbreviations: Chr = chromosome; SE = standard error; SNP = single-nucleotide polymorphism. 
* Data reported are the meta-analysis results of the SNP-by-time interaction term from the GWAS mixed effects model. A positive 

β-coefficient indicates an attenuation of FEV1 decline and a negative β-coefficient an acceleration of FEV1 decline. 
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Figure 3.1 Association of the chromosome 15 locus with the rate of change in FEV1 in the meta-analysis of 14 cohort studies. A) 

Regional association plot, where the X-axis is Megabase (Mb) position and Y-axes are the negative log of the P value on the left 

and recombination rate on the right. The sentinel SNP is colored in purple and linkage disequilibrium to the sentinel SNP is 

depicted by degree of color according to the legend. B) Forest plot for rs4077833, where the size of the square for each study 

represents its contributing weight to the meta-analysis.  
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Figure 3.2 Association of the chromosome 11 locus with the rate of change in FEV1 in the meta-analysis of the five cohort studies 

with ≥3 FEV1 measurements per participant. A) Regional association plot, where the X-axis is Megabase (Mb) position, and the Y-

axes are the negative log of the P value on the left and recombination rate on the right. The sentinel SNP is colored in purple and 

linkage disequilibrium to the sentinel SNP is depicted by degree of color according to the legend. B) Forest plot for rs507211, 

where the size of the square for each study represents its contributing weight to the meta-analysis.  
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ONLINE DATA SUPPLEMENT 

Methods 

Pulmonary function assessment 

 Study-specific information on spirometry protocols was reported previously (1). 

Additional descriptions of spirometry tests specific to this longitudinal study are provided 

below. 

ARIC measurements were completed at two time points (baseline and approximately 

3 years later) in accordance with the standardized guidelines of the American Thoracic 

Society (ATS), as previously described (2).  Measurements were made with a Collins Survey 

II water-seal spirometer (Collins Medical, Inc.) and Pulmo-Screen II software (PDS 

Healthcare Products, Inc.). 

The British 1958 birth cohort (B58C) is a longitudinal study of all people born in 

England, Scotland and Wales during one week in 1958. At age 35 years, spirometry was 

performed in 1156 cohort members with a history of asthma, wheezy bronchitis or pneumonia 

during childhood or early adult life, and a subsample of 293 cohort members with no history 

of any of these conditions (3). At age 45 years, measurements of ventilatory function were 

repeated as part of a more general biomedical examination of the entire cohort (4). The results 

contributed to the present meta-analysis relate to 827 individuals with valid spirometry on 

both occasions (5), plus genome-wide genotyping performed on DNA samples collected at the 

45-year follow-up. On both occasions, spirometry was performed in the home by trained 

research nurses, after daily calibration of the instrument using a 1L syringe. Measurements 

were taken in the standing position, without noseclips. At age 35 years, at least three (and up 

to eight) forced expiratory maneuvers were recorded by dry bellows spirometer (Vitalograph 
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R-model or S-model; Vitalograph, Buckingham, UK) until two technically satisfactory 

measurements of forced expiratory volume in the first second (FEV1) within 5% of each other 

were obtained. At age 45 years, at least three (and up to five) spirograms were recorded by 

pneumotachograph (Micro; Vitalograph, Buckingham, UK) until three technically satisfactory 

blows had been obtained. On each occasion, the highest technically satisfactory values of 

FEV1 and forced vital capacity (FVC) were used in the analysis. 

The Busselton Health Study (BHS) is a longitudinal survey of the town of Busselton 

in the south-western region of Western Australia that began in 1966. Lung function was 

measured at 9 time points. Spirometric measures of forced expired volume in one second 

(FEV1) and forced vital capacity (FVC) were assessed as described previously (6, 7). 

Spirometry was performed at CARDIA years 0, 2, 5, 10 and 20 examination visits, 

adhering to the ATS guidelines. At CARDIA years 0, 2, 5 and 10 examination visits, 

spirometry was performed using the Collins Survey 8-liter water-sealed spirometer and the 

Eagle II microprocessor (Warren E. Collins, Inc., Braintree, MA) in a sitting position with 

noseclips, as per the 1979 ATS criteria (8). Specifically, each subject performed a minimum 

of three trials with expirations recorded to the FVC plateau, which occurs after six seconds of 

expiration and was maintained for at least one second before terminating the forced expiratory 

maneuver. If, at the end of the three trials, there were at least three acceptable tracings, and 

with the maximum FVC and FEV1 reproduced to within 5% or 100 mL, whichever is greater, 

no more trials were performed. At CARDIA year 20 examination visit, a dry rolling-seal 

SensorMedics model 1022 spirometer fitted by OMI (Viasys Corp, Loma Linda, CA) was 

used for spirometry testing in a standing position with noseclips. The criteria for 

reproducibility were changed at the year 20 visit - the two largest FVC values were to agree 
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within 150 ml, and the two largest FEV1 values were also to agree within 150 ml, consistent 

with the 1994 update by the ATS (9). A comparability study performed on 25 volunteers at 

the LDS Hospital (Salt Lake City, UT) demonstrated excellent consistency between the old 

and new machines; the average difference between the Collins Survey and OMI spirometer 

was 6 mL for FVC and 21 mL for FEV1. 

In CHS, spirometry was completed on three occasions (baseline and after 4 and 7 

years of follow-up) for the original cohort recruited in 1989-90. The spirometry procedures 

for pulmonary function testing have been previously described (10, 11). Briefly, spirometry 

technicians were centrally trained and certified prior to recruitment of participants.  A 

standard spirometry system, including a Collins Survey I water-seal spirometer (Collins 

Medical, Inc., Braintree, Massachusetts) and software from S&M Instruments (Doylestown, 

Pennsylvania), was used by technicians at all four recruitment centers. Stringent quality 

assurance procedures for spirometry testing exceeded ATS recommendations (10). 

In FHS, spirometry at the 5th, 6th, and 7th Offspring Cohort examinations was 

performed using a Collins Survey II spirometer (Collins Medical, Inc., Braintree, MA), 

interfaced to pulmonary function data acquisition and quality control software (S and M 

Instruments, Doylestown, PA) and calibrated daily. Spirometry at the 8th Offspring Cohort 

examination was performed using a Collins CPL system (nSpire Health Inc., Longmont, CO) 

which was calibrated daily. Spirometric maneuvers were performed according to 

contemporaneous ATS (9, 12) or European Respiratory Society (ERS)-ATS standards (13). 

Spirometry in Health ABC was completed at four time points (baseline, years 4, 7 and 

9) in accordance with standardized guidelines of the ATS, as previously reported (14). The 

study used a horizontal, dry rolling seal HF6 Spirometer (Sensor Medics Corporation, Yorba 
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Linda, CA, USA) during clinical visits, and the EasyOne Model 2001 diagnostic spirometer 

(ndd Medizintechnik AG, Zurich, Switzerland) during home visits starting in year 8. The two 

devices were evaluated for comparability and provided virtually identical values. All FEV1 

measures meeting the ATS criteria for acceptability were included in the current study. 

The KORA studies (Cooperative Health Research in the Region of Augsburg) are a 

series of independent population based studies from the general population living in the 

region of Augsburg, southern Germany (15, 16). KORA F4 including 3,080 individuals was 

conducted from 2006-08. Baseline lung function tests were performed in random subsample 

of subjects born between 1946 and 1965 (age range 41-63 years, n = 1,321). Spirometry was 

performed in line with the ATS/ ERS recommendations (13, 17) using a pneumotachograph-

type spirometer (Masterscreen PC, CardinalHealth, Würzburg, Germany) before and after 

inhalation of 200 μg salbutamol. The spirometer was calibrated daily using a calibration pump 

(CardinalHealth, Würzburg, Germany), and additionally, an internal control (examiner) was 

used to ensure constant instrumental conditions. Under the guidance of the experienced 

examiners at least 3 and at most 8 trials were recorded to obtain at least 2 acceptable and 

reproducible flow-volume curves. After completion of each test, the curves were visually 

inspected, maneuvers with artifacts excluded and results evaluated according to ATS/ERS 

recommendations [3]. The present study is based on maximum values of FEV1 measured 

before bronchodilation. On average 3.1 years later subjects were reexamined by spirometry 

(KORA F4L, n = 1,050, response rate 79.5%). Conditions for lung function measurements, 

including the examiners and the data evaluation, were the same in both cohorts. Both studies 

were approved by the Ethics Committee of the Bavarian Medical Association and informed 
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consent was obtained from the study participants. Genotypes were available for 890 of those 

individuals. 

In the Lothian Birth Cohorts (LBC) spirometry was completed at two time points; at 

70 and 73 years of age in LBC1936 and at 79 and 87 years of age in LBC1921. For both 

cohorts a Micro Medical Spirometer was used, assessments were conducted sitting down 

without noseclips. The accuracy of the spirometer is ± 3% (following ATS recommendations 

in standardization of spirometry 1994 update for flows and volumes). 

Spirometry was performed at two time-points (baseline and year 5) in the Prospective 

Investigation of the Vasculature in Uppsala Seniors (PIVUS) (18). The study was 

performed in accordance with ATS recommendations (9) using the α spirometer; Vitalograph 

Ltd; Buckingham, UK. The best value from three recordings was used. The Ethics Committee 

of the University of Uppsala approved the study, and the participants gave their informed 

consent. 

The Rotterdam Study (RS) is a prospective population-based cohort study founded in 

1990 in a suburb of Rotterdam, the Netherlands. The first cohort (RS I) consists of 7,983 

participants, aged 55 years and over. Performing of spirometry was introduced in 2004. 

Spirometry was performed by trained paramedical personnel using a SpiroPro® portable 

spirometer (Erich Jaeger, Hoechberg, Germany) and using a Carefusion MasterScreen PFT 

(as of 2009), according to ATS/ERS guidelines. Measurements were done at the visit of the 

Rotterdam Study’s research facility. FEV1, FVC and FEV1/FVC ratio were measured. All 

spirometry measures were validated by two researchers, of which one is a specialist in 

respiratory medicine, by assessment of all applicable flow-volume and flow-time curves. 
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Spirometry in SAPALDIA was completed at two time points 11 years apart. Identical 

spirometry devices and protocols were used at both examinations for SAPALDIA (19, 20) 

(Sensormedics model 2200, Yorba Linda, USA). At least three forced expiratory lung 

function maneuvers were performed by each participant and a minimum of two acceptable 

forced expiratory flows, FVC and FEV1 complying with ATS criteria were obtained (9). 

Expiratory flow measures with the highest sum of FVC and FEV1 were taken from the same 

flow-volume curves to calculate the ratio of FEV1/FVC. No bronchodilator was administered. 

Participants were requested not to use beta-2-agonists or anticholinergic inhalers four hours 

prior to and long-acting beta agonists, oral beta-2-agonists, theophyline or oral antimuscarinic 

medication eight hours prior to the time of appointment of the examination. 

Spirometry in SHIP was conducted using a variable pressure bodyplethysmograph 

equipped with a pneumotachograph (VIASYS Healthcare, MasterScreen Body/Diff., 

JAEGER, Hoechberg, Germany) which met the ATS criteria (12). The procedures were 

conducted in a sitting position with subjects wearing a noseclip. The volume signal was 

calibrated with a 3.0 litre syringe connected to the pneumotachograph, in accordance with the 

manufacturer’s recommendations, and at least once daily. Barometric pressure, temperature 

and relative humidity were registered every morning. Volume calibration referred to ATP-

conditions (Ambient Temperature Pressure) but resulting lung volumes were expressed as 

BTPS-corrected (Body Temperature Pressure Saturated) (12, 21). The tests were performed in 

accordance with ATS and ERS recommendations (21, 22) in the following order: 1) 

determination of static lung volumes, 2) forced spirometry. 

 

Statistical analysis 
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 In each cohort study, a linear mixed effects model was constructed to model the 

longitudinal trajectory of FEV1, which includes two components: the baseline FEV1 levels 

and the rate of change in FEV1 during follow-up. A continuous time (slope) variable was 

included in the model to quantify the time (in years) elapsed between each FEV1 

measurement point and the study baseline and the coefficient estimate for time conveys the 

rate of change in FEV1 over time (mL/year). To allow for variation in baseline FEV1 and the 

rate of change in FEV1 across participants, the intercept and time variable were specified as 

both fixed and random effects. This model is commonly used for repeated measurements over 

time on the same participant, and takes the simple form: 

FEV1ij = α + β*tij + ai + bi*tij + eij, 

where α and β are fixed population effects for intercept and time (slope), respectively; ai and 

bi are the individual intercept and slope for participant i; tij is the time value corresponding to 

the jth FEV1 measurement for participant i; and FEV1ij is the FEV1 value for participant i at 

the jth measurement time; finally, eij represents the independent random error term and its 

values are assumed to be normally distributed (mean 0, variance σ2). It is assumed that the 

random effects, ai and bi, are each independently, normally distributed with mean 0 and 

variance σa
2 and σb

2, respectively; ai and bi are not independent and their covariance is σab. 

Therefore, the mixed effects model explicitly estimates the covariate effects, random effects, 

the variance for each random effect, and the covariance between each pair of random effects. 

In addition, the mixed effects model provides flexibility in handling unbalanced longitudinal 

data, which is common in longitudinal cohort studies, and allows participants with only one 

FEV1 measurement to be included in the analysis as well as those with more than one 

measurement. 
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 During the model development process, we performed exploratory analyses in the 

Health ABC study to demonstrate that it was sufficient to model the longitudinal change in 

FEV1 using the linear effect of the time variable. This was also the only available option for 

the other cohort studies with only two repeated measurements per participant. 

In each cohort study, a preliminary mixed effects model was constructed based on the 

above modeling framework and was additionally adjusted for the following covariates: gender, 

standing height at each time point, baseline age and baseline smoking pack-years, smoking 

status during study follow-up, the product term of smoking status x time, and study site and 

principal component variables for genetic ancestry as needed (family structure was accounted 

for where needed, for example in the Framingham Heart Study). Smoking status during study 

follow-up was defined as a four-level categorical variable as follows: never smokers at all 

time points (referent group), persistent smokers defined as current smokers at all time points, 

former smokers at all time points, and intermittent smokers defined as inconsistent smoker 

status across time points (switching between current and former status). The above main 

effects estimated how these covariates affected baseline FEV1 and the product term of 

smoking status x time estimated the effects of the three smoking statuses on the rate of change 

in FEV1 in comparison to never smokers. 

 Using the above preliminary model, each cohort study evaluated the presence and 

magnitude of covariance between the random intercept and time effects. When a meaningful 

covariance was present, the mixed effects model was specified to account for the covariance 

explicitly. Otherwise, the two random effects were specified as independent for model 

parsimony. Subsequently, residual diagnosis was performed in each cohort study based on the 

same preliminary model to exclude FEV1 measurements detected as outliers (i.e., 
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|standardized residual| > 3 or 4, as determined by each study). Effect estimates of important 

covariates were compiled from all cohort studies for quality control and summary of overall 

patterns. The above preliminary modeling analyses were performed using Proc Mixed in SAS 

or lme4 or pedigreemm in R in each cohort study. Effect estimates for selected covariates 

across all cohort studies are presented in Table 1 and Supplementary Table E2. 

 For the final GWAS model, a SNP main effect and SNP x time interaction term were 

included in the above preliminary model; these terms estimated the effects of SNP genotype 

on baseline FEV1 and the rate of change in FEV1, respectively. All cohort studies performed 

the final GWAS analysis using either lme4 or pedigreemm (in FHS to account for familial 

correlation) in R. Study-specific results for both the SNP main and SNP x time interaction 

effects were shared and meta-analyses were performed using METAL software (23) with the 

inverse variance weighting method to combine effect estimates after applying genomic 

control correction (24). 

 

Rationale for the meta-analysis of five cohort studies  

 There is noticeable phenotypic heterogeneity among the 14 cohort studies in the meta-

analysis, as reflected by several important aspects of the longitudinal study design (Table 1). 

Two important factors related to the quality of the outcome measurement are the number of 

repeated measurements of lung function and the follow-up duration. Five cohort studies, 

namely BHS, CARDIA, CHS, FHS, and Health ABC, had ≥3 repeated measurements and 

relatively long follow-up durations in comparison to other studies, allowing for more precise 

estimation of the longitudinal trajectory in pulmonary function. This was supported 

empirically by the preliminary mixed effects model results, and the observation that these five 
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cohort studies reported the smallest standard errors for the estimated rate of change in FEV1 

in the reference group of never-smokers (Table 2). In light of this, we performed a second 

meta-analysis based on these five cohort studies with the goal to reduce noise due to 

phenotypic heterogeneity and thus gain improved statistical association signals. 

 

SNP selection for follow-up analyses 

 The most statistically significant SNPs were first identified using a significance 

threshold of P ≤ 1 x 10-5 in either meta-analysis; all of the most statistically significant SNPs 

had a minor allele frequency above 5% (Tables E2 and E3). These SNPs were evaluated for 

regional linkage disequilibrium (LD), and multiple SNPs from a region were selected only 

when they met the p-value criterion and had an r2 estimate less than 0.7 with each other, 

according to HapMap CEU as implemented in SNAP (25).  Among SNPs in a given region 

with r2 values of 0.7 or greater with each other, the SNP with the lowest p-value was selected 

for follow-up analysis. 

 

Expression Profiling 

 The mRNA expression profiles of the implicated genes at the novel chromosome 11 

and 15 loci were determined using reverse transcription polymerase chain reaction (RT-PCR). 

Human airway smooth muscle (HASM) cells were isolated from healthy bronchial tissue of 

patients (with no previous history of asthma) undergoing surgery, and cultured as described 

previously (26). Written consent was given by the patients and approval was granted by the 

Nottingham Local Ethical Research Committee (ref. EC00/165). Undifferentiated human 

bronchial epithelial cells (HBEC) (Lonza/Clonetics, Slough, UK) were maintained in culture 
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as described previously (27). Expression profiling by PCR used cDNA templates synthesised 

from total RNA, using the Superscript First-Strand Synthesis System for RT-PCR (Invitrogen/ 

Life Technologies Ltd., Paisley, UK), from cultured HASM and HBEC, as well as 

commercially available total lung and brain tissue (Ambion/Life Technologies Ltd.) and 

PBMC (3H Biomedical AB, Uppsala, Sweden). Primer sequences for the genes of interest are 

given in Table E7. PCR used the following cycling conditions: 35 cycles of 94°C for 1.5 

minutes, 55°C for 1.5 minutes, and 72°C for 1.5 minutes, followed by 72°C for 10 minutes. 

Amplicons were extracted from agarose gels using the StrataPrep DNA Gel Extraction Kit 

(Agilent Technologies UK Ltd., Cheshire, UK) and validated by sequencing, using the 

BigDye Terminator v3.1 Cycle Sequencing Kit, in conjunction with an ABI PRISM 310 

Genetic Analyser (Applied Biosystems/ Life Technologies Ltd.). 

 In addition, publicly available gene expression profiles of lung specimens from COPD 

patients (N=219) and controls (N=137) were obtained from the Lung Genomics Research 

Consortium (LGRC) site (http://www.lung-genomics.org/). Mean expression levels of the 

implicated genes at the novel chromosome 11 and 15 loci were compared between COPD 

patients and controls. The P value for the difference in means between the two groups was 

calculated using the two-sample t-test.  

 Finally, the most statistically significant SNPs at both loci (rs4077833 and rs507211, 

respectively) were tested for eQTL associations, using a publicly accessible eQTL database of 

lymphoblastoid cell lines (28). A statistical significance threshold of P < 0.05 was used in 

both analyses.

http://www.lung-genomics.org/
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Supplementary Table 3.5 Details of SNP genotyping, quality control (QC), imputation, and statistical analysis across the 14 

cohort studies 

Study Genotyping 
platform 

QC filters for excluding 
genotyped SNPs 

N, genotyped 
autosomal 

SNPs passing 
QC 

Imputation 
software 

NCBI 
Build for 

imputation 
reference 
(HapMap 

CEU) 

N, SNPs 
used for 
analysis 

(MAF>1%) 

Statistical 
analysis 
software 

Genomic 
control 
factor 
(λgc) 

ARIC Affymetrix 
6.0 

call rate<95%, 
HWE P<10-6, 
MAF<1%, or 

no chromosomal location 

669,450 MACH 
v1.0.16 

build 36, 
release 22 2,449,419 lme4, R 1.04 

B58C* 

Illumina 
550K (2 

deposits) + 
610K 

call rate<95%,  
HWE P<10-4, 
MAF<1%, or 

inconsistent  (P<10-4) 
allele frequencies across 3 

genotype deposits 

519,040 MACH 
v1.0.16 

build 35, 
release 21 2,460,629 lme4, R 1.01 

BHS Illumina 
610-Quad 

 

call rate<95%,  
HWE P<5.7x10-7, or 

MAF<1% 
549,294 MACH 

v1.0.16 
build 36, 
release 22 2,420,960 lme4, R 1.05 

CARDIA Affymetrix 
6.0 

call rate<95%,  
HWE P<10-4, or 

MAF<2% 
578,568 BEAGLE build 36, 

release 22 2,276,434 lme4, R 1.03 

CHS 
Illumina 

HumanHap 
370CNV 

call rate<97%, 
no heterozygotes, 

HWE P<10-5, 
>2 duplicate errors, 

Mendelian inconsistency 
(for HapMap CEU trios), 

or 

306,655 BIMBAM build 36, 
release 22 2,190,045 lme4, R 1.00 
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Study Genotyping 
platform 

QC filters for excluding 
genotyped SNPs 

N, genotyped 
autosomal 

SNPs passing 
QC 

Imputation 
software 

NCBI 
Build for 

imputation 
reference 
(HapMap 

CEU) 

N, SNPs 
used for 
analysis 

(MAF>1%) 

Statistical 
analysis 
software 

Genomic 
control 
factor 
(λgc) 

no mapping in dbSNP 

FHS† 

Affymetrix 
500K + 50K 
Human Gene 

Focused 
Panel 

call rate<97%, 
HWE P<10-6, 

MAF<1%,  
differential missingness 

related to genotype 
(mishap procedure in 
PLINK) with P<10-9, 

Mendelian errors>100, or 
absence from HapMap 

378,163 MACH 
v1.0.15 

build 36, 
release 22 2,411,786 pedigremm

, R 1.09 

Health ABC 
Illumina 

Human1M-
Duo 

call rate < 95%,  
HWE P<10-6, or 

MAF > 1% 
914,263 MACH build 36,  

release 22 2,470,255 lme4, R 1.04 

KORA Affymetrix 
6.0 call rate<93% 909,622 IMPUTE 

0.4.2 
build 36,  
release 22 2,368,243 lme4, R 0.99 

LBC1921 Ilumina 610-
Quadv1 

call rate<98%, 
HWE P<10-3, or 

MAF<1% 
542,050 MACH 

v1.0.16 
build 36,  
release 22 2,302,855 lme4, R 0.97 

LBC1932 Ilumina 610-
Quadv1 

call rate<98%, 
HWE P<10-3, or 

MAF<1% 
542,050 MACH 

v1.0.16 
build 36,  
release 22 2,304,176 lme4, R 1.01 

PIVUS 

Illumina 
OmniExpress 

+ 
Metabochip 

monomorphic, HWE 
P<10-6, call rate <95% if 

MAF>=5%, or call 
rate<99% if MAF<0.05 

738,879 IMPUTE 
2.0 

build 36,  
release 22 2,436,058 lme4, R 1.00 

RS Illumina call rate<98%, 537,405 MACH build 36, 2,377,064 lme4, R 0.96 
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Study Genotyping 
platform 

QC filters for excluding 
genotyped SNPs 

N, genotyped 
autosomal 

SNPs passing 
QC 

Imputation 
software 

NCBI 
Build for 

imputation 
reference 
(HapMap 

CEU) 

N, SNPs 
used for 
analysis 

(MAF>1%) 

Statistical 
analysis 
software 

Genomic 
control 
factor 
(λgc) 

HumanHap 
550K 

HWE P<10-6, or 
MAF<1% 

v1.0.15 release 22 

SAPALDIA 
Illumina 

Human 610K 
quad 

call rate<97%, 
HWE P<10-4, or 

MAF<5% 
582,892 MACH 

v1.0.16 
build 36, 
release 22 2,456,064 lme4, R 1.11 

SHIP Affymetrix 
6.0 none 869,224 IMPUTE 

v0.5.0 
build 36, 
release 22 2,450,720 lme4, R 0.99 

 

Definition of abbreviations: ARIC = Atherosclerosis Risk in Communities; B58C = British 1958 Birth Cohort; BHS = Busselton 

Health Study; CARDIA = Coronary Artery Risk Development in Young Adults; CHS = Cardiovascular Health Study; FHS = 

Framingham Heart Study; Health ABC = Health, Aging, and Body Composition; HWE = Hardy Weinberg equilibrium; MAF = 

minor allele frequency; KORA = Cooperative Health Research in the Region of Augsburg; LBC1921 = Lothian Birth Cohort 1921; 

LBC1936 = Lothian Birth Cohort 1936; PIVUS = Prospective Investigation of the Vasculature in Uppsala Seniors; RS = Rotterdam 

Study; SAPALDIA = Swiss Study on Air Pollution and Lung Diseases in Adults; SHIP = Study of Health in Pomerania; SNP = 

single-nucleotide polymorphism. 
* Three original subsets of B58C were combined for this analysis, following a new phase of genotyping with a common platform. 
† To account for relatedness among subjects, the linear mixed effects regression model implemented in FHS used the pedigreemm 

package that adjusts for family structure (29). 
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Supplementary Table 3.6 Regression results for single nucleotide polymorphisms associated with the rate of change in FEV1 

(mL/year) at P < 1 × 10-5 in the meta-analysis of 14 cohort studies (N=27,249) 

SNP Chr Position Closest 
Gene(s) 

Coded 
Allele 

Noncoded 
Allele Frequency β SE P Value Heterogeneity 

P Value 
rs12137475 1 44059735 ST3GAL3 T C 0.11 -3.52 0.76 3.90 × 10-6 0.48 
rs766488 1 61583103 NFIA A G 0.31 1.37 0.30 6.60 × 10-6 0.84 

rs17698444 1 215483178 ESRRG 
/GPATCH2 C G 0.89 -2.21 0.47 2.62 × 10-6 0.69 

rs12692550 2 159958017 BAZ2B T C 0.17 -1.69 0.37 5.16 × 10-6 0.08 
rs2260732 13 113235802 

TMCO3 

A G 0.28 1.42 0.31 4.83 × 10-6 0.25 
rs2260722 13 113236292 A G 0.72 -1.51 0.32 1.83 × 10-6 0.27 
rs2479753 13 113240886 C G 0.28 1.42 0.31 4.77 × 10-6 0.22 
rs2259541 13 113253338 C G 0.72 -1.43 0.31 4.69 × 10-6 0.20 
rs3935740 15 79413780 IL16/STARD5 

/TMC3 
A G 0.09 2.23 0.49 4.54 × 10-6 1.00 

rs4077833 15 79419738 C G 0.10 2.31 0.46 5.71 × 10-7 0.96 
rs8027498 15 89595638 SV2B A G 0.25 1.43 0.32 9.41 × 10-6 0.32 
rs8051319 16 15794449 MYH11 T C 0.60 1.46 0.32 5.12 × 10-6 0.60 
rs740557 17 62451139 CACNG4 C G 0.85 -2.28 0.49 3.59 × 10-6 0.80 

 

Definition of abbreviations: Chr = chromosome; SE = standard error; SNP = single-nucleotide polymorphism.  



99 
 

Supplementary Table 3.7 Regression results for single nucleotide polymorphisms associated with the rate of change in FEV1 
(mL/year) at P < 1 × 10-5 in the meta-analysis of the five cohort studies with ≥3 FEV1 measurements per participant (N=10,476) 

SNP Chr Position Closest 
Gene(s) 

Coded 
Allele 

Noncoded 
Allele Frequency β SE P Value Heterogeneity 

P Value 
rs10186544 2 28536678 

FOSL2/PLB1 

T C 0.33 1.58 0.35 7.26 × 10-6 0.72 
rs10198727 2 28536753 A T 0.67 -1.58 0.35 7.45 × 10-6 0.71 
rs10209416 2 28536819 A G 0.33 1.58 0.35 7.23 × 10-6 0.71 
rs10209501 2 28536881 A G 0.33 1.58 0.35 7.09 × 10-6 0.71 
rs12692550 2 159958017 BAZ2B T C 0.18 -2.01 0.42 2.02 × 10-6 0.02 

rs1729588 3 110790025 FLJ25363 
/MIR4445 A G 0.30 1.60 0.36 8.38 × 10-6 0.33 

rs10764052 10 19863473 

C10orf112 

T C 0.46 1.50 0.33 6.68 × 10-6 0.69 
rs10764053 10 19863644 T G 0.47 1.53 0.33 4.15 × 10-6 0.76 
rs12219073 10 19870510 C G 0.54 -1.55 0.34 4.78 × 10-6 0.72 
rs17729837 10 19900824 A C 0.52 -1.50 0.33 6.21 × 10-6 0.69 
rs10740924 10 19907692 C G 0.53 1.47 0.32 4.55 × 10-6 0.39 
rs7095285 10 19909284 A G 0.53 1.47 0.32 4.23 × 10-6 0.39 
rs1409737 10 19926336 A G 0.53 1.45 0.32 6.52 × 10-6 0.39 
rs12770750 10 19928004 T C 0.47 -1.45 0.32 6.38 × 10-6 0.45 
rs7898799 10 19929473 T C 0.53 1.53 0.33 4.94 × 10-6 0.34 
rs10740927 10 19930342 T G 0.47 -1.45 0.32 6.36 × 10-6 0.45 
rs7915851 10 19933596 A G 0.53 1.46 0.32 6.10 × 10-6 0.46 
rs627684 11 86050787 

ME3 

A G 0.31 1.78 0.35 3.70 × 10-7 0.60 
rs601988 11 86050799 A G 0.31 1.77 0.35 4.46 × 10-7 0.56 
rs507123 11 86054358 A G 0.33 1.81 0.35 2.30 × 10-7 0.45 
rs507211 11 86054387 A G 0.25 2.09 0.37 2.18 × 10-8 0.65 
rs626049 11 86054989 T C 0.31 1.74 0.35 7.20 × 10-7 0.50 
rs594361 11 86064432 A G 0.69 -1.78 0.35 3.85 × 10-7 0.56 
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rs642245 11 86067184 A G 0.19 2.19 0.42 1.43 × 10-7 0.40 
 

Definition of abbreviations: Chr = chromosome; SE = standard error; SNP = single-nucleotide polymorphism.
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Supplementary Table 3.8 Association of the 14 sentinel SNPs from the meta-analyses in the AGES-Reykjavík study (AGES) and 

the Lung Health Study (LHS) for the rate of change in FEV1 (mL/year) 

SNP Chr Closest 
Gene(s) 

Coded 
Allele Freq 

Meta-analysis* AGES 
(n = 1,494) 

LHS 
(n = 4,048) 

β SE P Value β SE P 
Value β SE P 

Value 
Meta-analysis of 14 cohort studies (n = 27,249) 
rs12137475 1 ST3GAL3 T 0.11 -3.5 0.8 3.90 × 10-6 1.2 1.5 0.42 2.6 2.5 0.30 
rs766488 1 NFIA A 0.31 1.4 0.3 6.60 × 10-6 0.1 0.7 0.94 -2.0 1.3 0.12 

rs17698444 1 ESRRG 
/GPATCH2 C 0.89 -2.2 0.5 2.62 × 10-6 -0.4 1.0 0.72 -0.2 1.9 0.93 

rs12692550 2 BAZ2B T 0.17 -1.7 0.4 5.16 × 10-6 0.4 0.9 0.66 -0.6 1.6 0.72 
rs2259541 13 TMCO3 C 0.72 -1.5 0.3 1.83 × 10-6 0.8 0.7 0.29 0.0 1.3 0.99 

rs4077833 15 IL16/STARD5
/TMC3 C 0.10 2.3 0.5 5.71 × 10-7 -0.3 1.1 0.79 -0.5 2.0 0.80 

rs8027498 15 SV2B A 0.25 1.4 0.3 9.41 × 10-6 0.1 0.8 0.87 -1.7 1.4 0.22 
rs8051319 16 MYH11 T 0.60 1.7 0.3 5.12 × 10-6 -0.6 0.7 0.35 0.4 1.3 0.76 
rs740557 17 CACNG4 C 0.85 -2.3 0.5 3.59 × 10-6 -2.2 1.2 0.08 2.7 2.5 0.27 
Meta-analysis of the five cohort studies with ≥3 more FEV1 measurements per participant (n = 10,476) 
rs10209501 2 FOSL2/PLB1 A 0.33 1.6 0.4 7.09 × 10-6 -0.3 0.7 0.62 -1.3 1.3 0.31 
rs12692550 2 BAZ2B T 0.18 -2.0 0.4 2.02 × 10-6 0.4 0.9 0.66 -0.6 1.6 0.72 

rs1729588 3 FLJ25363 
/MIR4445 A 0.30 1.6 0.4 8.38 × 10-6 0.9 0.7 0.20 0.9 1.3 0.48 

rs10764053 10 C10orf112 A 0.47 1.5 0.3 4.15 × 10-6 0.5 0.6 0.40 -0.6 1.2 0.62 
rs507211 11 ME3 A 0.25 2.1 0.4 2.18 × 10-8 1.0 0.7 0.15 0.3 1.4 0.85 

 

Definition of abbreviations: Chr = chromosome; Freq = frequency; SE = standard error; SNP = single-nucleotide polymorphism. 
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* Association results of the 14 sentinel SNPs with the rate of change in FEV1 (mL/year) in the corresponding discovery meta-

analysis are shown for comparison.  
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Supplementary Table 3.9 Association of previously reported loci in GWAS of cross-

sectional lung function (1, 30, 31) with the rate of change in FEV1  (mL/year) in the meta-

analysis of 14 cohort studies (N=27,249) 

SNP Chr Coded 
Allele Frequency β SE P Value* Gene Reference 

Loci associated with cross-sectional FEV1 
rs2571445 2 A 0.39 -0.18 0.29 0.54 TNS1 30 
rs1344555 3 T 0.20 0.24 0.36 0.52 MECOM 1 
rs17035960 4 T 0.07 0.05 0.57 0.93 GSTCD 31 
rs17036052 4 T 0.06 0.32 0.69 0.64 GSTCD 31 
rs17036090 4 T 0.93 0.09 0.57 0.88 GSTCD 31 
rs11727189 4 T 0.07 -0.09 0.58 0.88 GSTCD 31 
rs10516526 4 A 0.93 0.07 0.55 0.90 GSTCD 30 
rs11097901 4 T 0.07 -0.03 0.56 0.95 GSTCD 31 
rs11728716 4 A 0.07 0.05 0.55 0.92 GSTCD 31 
rs17036341 4 C 0.93 -0.01 0.55 0.99 GSTCD 31 
rs17331332 4 A 0.08 0.07 0.55 0.90 GSTCD 31 
rs3995090 5 A 0.61 0.36 0.29 0.21 HTR4 30 
rs6889822 5 A 0.62 0.32 0.29 0.27 HTR4 30 
rs6903823 6 A 0.77 0.32 0.34 0.35 ZKSCAN3 1 
rs7068966 10 T 0.53 -0.35 0.28 0.22 CDC123 1 
rs11001819 10 A 0.48 -0.32 0.29 0.26 C10orf11 1 
Loci associated with cross-sectional FEV1/FVC 
rs2284746 1 C 0.48 -0.46 0.29 0.11 MFAP2 1 
rs993925 1 T 0.34 0.16 0.31 0.60 TGFB2 1 
rs10498230 2 T 0.07 1.59 0.57 0.005 PID1 31 
rs1435867 2 T 0.93 -1.52 0.56 0.006 PID1 31 
rs12477314 2 T 0.21 0.04 0.36 0.90 HDAC4 1 
rs1529672 3 A 0.18 0.64 0.40 0.11 RARB 1 
rs6830970 4 A 0.65 0.16 0.30 0.60 FAM13A 31 
rs2869967 4 T 0.61 0.10 0.29 0.72 FAM13A 31 
rs1032295 4 T 0.59 -0.55 0.30 0.07 HHIP 30 
rs12504628 4 T 0.60 -0.48 0.29 0.10 HHIP 31 
rs1980057 4 T 0.40 0.57 0.29 0.048 HHIP 31 
rs153916 5 T 0.53 -0.10 0.28 0.71 SPATA9 1 
rs11168048 5 T 0.58 0.26 0.29 0.38 HTR4 31 
rs7735184 5 T 0.40 -0.30 0.29 0.29 HTR4 31 
rs2277027 5 A 0.65 -0.37 0.29 0.20 ADAM19 31 
rs1422795 5 T 0.65 -0.34 0.29 0.25 ADAM19 31 
rs2857595 6 A 0.19 0.37 0.38 0.33 NCR3 1 
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SNP Chr Coded 
Allele Frequency β SE P Value* Gene Reference 

rs2070600 6 T 0.05 0.64 0.68 0.34 AGER 30, 31 
rs2798641 6 T 0.19 0.13 0.37 0.72 ARMC2 1 
rs11155242 6 A 0.79 -0.56 0.35 0.11 GPR126 31 
rs6937121 6 T 0.70 -0.79 0.31 0.010 GPR126 31 
rs3817928 6 A 0.79 -0.59 0.35 0.09 GPR126 31 
rs7776375 6 A 0.71 -0.78 0.32 0.015 GPR126 31 
rs16909898 9 A 0.91 -0.82 0.52 0.11 PTCH1 31 
rs10512249 9 A 0.09 0.73 0.50 0.14 PTCH1 31 
rs7068966 10 T 0.53 -0.35 0.28 0.22 CDC123 1 
rs11172113 12 T 0.62 -0.18 0.30 0.55 LRP1 1 
rs1036429 12 T 0.23 -0.14 0.34 0.68 CCDC38 1 
rs12899618 15 A 0.15 0.61 0.40 0.13 THSD4 30 
rs12447804 16 T 0.20 0.02 0.36 0.95 MMP15 1 
rs2865531 16 A 0.59 -0.58 0.29 0.042 CFDP1 1 
rs9978142 21 A 0.85 -0.42 0.41 0.31 KCNE2 1 

 

Definition of abbreviations: Chr = chromosome; SE = standard error; SNP = single-nucleotide 

polymorphism. 
* P values below the statistically significant threshold of 0.05 are shown in bold.  
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Supplementary Table 3.10 mRNA expression profiling of the implicated genes at the two 

novel loci in human lung and control tissues* 

Gene 

Human Tissues/Cells 

Lung 

Human 
Airway 
Smooth 

Muscle Cells 

Human 
Bronchial 
Epithelial 

Cells 

Peripheral 
Blood 

Mononuclear 
Cells 

Brain 

IL16 + + - + + 
STARD5 + + + + + 
TMC3 - - - - + 
ME3 + + + - + 

 

* Primer sequences are provided in Table E7. A “+” sign indicates the presence of the 

transcript, and a “-” sign indicates its absence. All products were sequence verified.  
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Supplementary Table 3.11 Primers for mRNA expression profiling 

Gene Sequence 

IL16 
Forward primer 5’-CTCGCTCAACCTTTCAGAGC-3’ 

Reverse primer 5’-TCTGTGAACCGTAATCACCTTG-3’ 

STARD5 
Forward primer 5’-AGGGAACCTGTACCGAGGAG-3’ 

Reverse primer 5’-GGTGGGTTCCCCTGGAAG-3’ 

TMC3 
Forward primer 5’-CATTCCAGAGCTGATTGCAG-3’ 

Reverse primer 5’-GGTAGCCATTTCCTCAATGC-3’ 

ME3 
Forward primer 5’-GACCTGGACAAGTACATCATTCTC-3’ 

Reverse primer 5’-TGGCAGCAACACCTATGATG-3’ 
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Supplementary Table 3.12 Summary of eQTL look-up for the most significant SNPs at the novel chromosome 11 and 15 loci 

SNP (location) eQTL 
Type 

Associated 
Gene Chr P Value Gene Function 

rs4077833 

(IL16/STARD5/
TMC3 locus on 

chr 15) 

Trans NR1I2 3 6.84 × 10-4 

Nuclear receptor subfamily 1, group I, member 2 (NR1I2) encodes a 
pleiotropic nuclear transcription factor with a key role in the regulation of 
CYP3A4, a cytochrome P450 enzyme that metabolizes more than 50% of 
human clinical drugs (32). NR1I2 is activated by a range of endogenous and 
xenobiotic compounds and binds to response elements in the promoter 
regions of many target genes in complex with the retinoic acid receptor 
RXR. 

rs507211 

(ME3 locus on 
chr 11) 

Trans KIAA1109 4 5.20 × 10-4 

KIAA1109 is part of a linkage disequilibrium block (KIAA1109-TENR-IL2-
IL21 gene cluster) associated with susceptibility to celiac disease (33); this 
region encodes the interleukins IL2 and IL21.  In mice, IL21 levels are 
higher in blood and lung tissues of animals exposed to cigarette smoke vs. 
air-exposed (34). Murine in vitro work shows that IL21 promotes T-cell 
induced apoptosis and cell damage, suggesting a possible link between gene 
expression in this region and lung outcomes (34). Additionally, in mammals 
KIAA1109 is thought to function in the regulation of epithelial growth and 
differentiation, and in tumor development (35). 

 

Definition of abbreviations: Chr = chromosome; eQTL = expression quantitative trait loci; SNP = single-nucleotide polymorphism. 
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Supplementary Figure 3.3 Manhattan and QQ plots for the meta-analysis of the rate of change in FEV1 in 14 cohort studies 
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Supplementary Figure 3.4 Manhattan and QQ plots for the meta-analysis of the rate of change in FEV1 in the five cohort studies 

with ≥3 more FEV1 measurements per participant 
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Supplementary Figure 3.5 mRNA expression profiling in human lung samples from 219 COPD patients and 137 controls for A) 

IL16, B) STARD5, and C) ME3, using publicly available microarray data from the Lung Genomics Research Consortium site 

(http://www.lung-genomics.org/). The y-axes reflect the probe intensities of each gene transcript in the binary logarithm form, with 

the red dots indicating the average probe intensities and the red bars indicating standard deviation. The P values were calculated 

using the two-sample t-test.  

 

A. IL16 

  

http://www.lung-genomics.org/
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B. STARD5 
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C. ME3 
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ABSTRACT 

Background: Most previous studies of diet and lung function focus on individual nutrients or 

foods. Dietary pattern analysis is a strong alternative approach, but little is known about the 

relation between dietary patterns and longitudinal change in lung function. 

Objective: We assessed the relation between dietary patterns and the rate of change in forced 

expiratory volume in 1 s (FEV1) in a longitudinal cohort of North American men. 

Design: Data were collected from 2,560 male adults in the Respiratory Ancillary Study. 

Dietary patterns were derived from food frequency questionnaire data using principal 

component analysis, and linear mixed-effects models were used to examine these patterns 

with the rate of change in FEV1 over ~3 years, adjusting for potential confounders. Given the 

importance of cigarette smoking, interaction between dietary patterns and smoking was 

examined. 

Results: Two dietary patterns were identified: a prudent pattern (high intakes of fruits, 

vegetables, fish, and poultry) and a Western pattern (high intakes of red, fried, and processed 

meats, desserts, and fries). No overall association was observed for either dietary pattern with 

the rate of change in FEV1. When the interaction with smoking was considered, a more 

prudent diet was significantly associated with a slower rate of decline in FEV1 in smokers 

(highest vs. lowest tertile: 38.8 mL per year; 95% CI: 14.4, 63.1), but not in non-smokers 

(highest vs. lowest tertile: -5.2 mL per year; 95% CI: -15.1, 4.7; Pinteraction = 0.001). 

Conclusions: In a population of North American men, a diet rich in fruits, vegetables, fish, 

and poultry was associated with a slower decline in lung function in smokers, whereas a diet 

rich in red, fried, and processed meats, desserts, and fries was not associated with change in 

lung function. 
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INTRODUCTION 

Lung function is an important predictor of morbidity and mortality in the general 

population (1). Forced expiratory volume in 1 s (FEV1), an easily measured spirometric 

parameter, is a reliable indicator of the physiological state of the lungs and airways and 

provides the basis for diagnosing and staging chronic obstructive pulmonary disease (COPD), 

a leading cause of death globally (2). Decline in lung function occurs naturally with aging, but 

it is sometimes accelerated by exposure to cigarette smoke, leading to reduced lung function 

that characterizes COPD (3, 4). Therefore, longitudinal change in lung function is an 

informative predictor of COPD risk, and studies of the rate of change in FEV1 provide 

important insights for understanding disease pathogenesis (5, 6). 

While smoking is widely recognized as the key risk factor for accelerated loss in lung 

function, as much as 90% of the overall variation in FEV1 decline remained unexplained after 

accounting for the effects of age, height and smoking (7-10). This observation strongly 

suggests the importance of other modifiable risk factors, such as diet, in contributing to 

changes in lung function and COPD risk. In support of this hypothesis, epidemiologic studies 

have confirmed associations between the intake of numerous individual nutrients and foods 

and lung function (11-13). However, most studies do not account for the complexity in dietary 

intake either by directly considering the correlations among nutrients, or by considering 

combinations of foods and/or nutrients that are likely to be interactive or synergistic (14).  

An alternative to studying single nutrients is a dietary pattern approach, which 

characterizes the overall diet by identifying patterns of intake (15). Several studies 

investigated the association of dietary patterns with lung function (16, 17) and COPD (18, 19). 

A diet rich in fruits, vegetables, fish, and whole-grain products was associated with higher 
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cross-sectional lung function levels and lower COPD risk, whereas a diet rich in red meats, 

refined grains, desserts, and fries was associated with lower cross-sectional lung function 

levels and higher COPD risk. These studies are limited by their cross-sectional design, thus 

longitudinal studies are needed to support stronger causal inferences. 

The purpose of the current study was to determine major dietary patterns using 

principal component analysis, and then examine the association of the identified dietary 

patterns with the rate of change in FEV1 over three years in a large, prospective population-

based cohort study of North American men aged 50 and over. Our specific hypothesis was 

that dietary patterns would modify the effect of cigarette smoking on the rate of change in 

lung function, given postulated effects of dietary constituents to mitigate oxidative stress and 

inflammatory burden. 

 

SUBJECTS AND METHODS 

Study Population 

The Respiratory Ancillary Study (RAS) is a post-randomization ancillary study to the 

Selenium and Vitamin E Cancer Prevention Trial (SELECT) and comprises 2,920 male adults 

from 16 study sites that were enrolled between July 2004 and April 2007. Details of SELECT 

have been previously reported (20). Eligibility criteria for SELECT included age (≥55 years; 

≥50 years for African Americans), and participants in RAS comprise a subgroup of men in 

SELECT with selective oversampling of cigarette smokers. Local and Cornell institutional 

review boards approved the RAS and SELECT protocols, and written consent was obtained 

from all participants. 
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Assessment of Dietary Patterns 

Dietary intake information was collected by a 120-item food frequency questionnaire 

(FFQ) administered at study baseline to assess average food intake during the preceding 12 

months. For each food item, participants reported their average frequency of consumption 

during the past year in terms of a specified serving size; nine frequency categories ranging 

from “never or less than once per month” to “2 or more times per day” and three portion sizes 

were provided. These 120 food items were subsequently consolidated on the basis of similar 

nutrient composition and culinary use into 54 distinct food groups as inputs to the factor 

analysis, similar to previous studies of dietary patterns and pulmonary outcomes (16-19). 

In the principal component analysis, an orthogonal transformation (Varimax rotation; 

SAS Institute, Cary, NC) was used to obtain uncorrelated factors, which have simpler 

structure and greater interpretability. The number of factors to retain was determined by 

evaluating the diagram of eigenvalues, the Scree plot, and the interpretability of the factors. 

For each retained factor (i.e., dietary pattern), an individual-level score was constructed by 

summing the observed intake of the component food groups weighted by their respective 

factor loadings; the score quantifies the degree to which an individual conformed to that 

dietary pattern. 

 

Assessment of Lung Function 

Lung function was measured by spirometry at three of four annual visits over a three-

year follow-up period. Spirometry testing followed standardized guidelines of the American 

Thoracic Society (ATS) and used the EasyOne handheld, flow-sensing spirometer, which has 

excellent validity, reliability, and significantly simpler field implementation in comparison to 
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traditional desktop devices (21, 22). All spirometry tests were performed by clinical research 

nurses that were centrally trained in spirometry techniques, including bi-annual refresher 

sessions; all test results were centrally reviewed for quality with weekly feedback to each site 

including as-needed requests for retests in order to continually improve test quality. All FEV1 

measures that met the ATS criteria for acceptability and reliability were used; participants 

with a minimum follow-up duration of 24 months between the first and last FEV1 measures 

were included. 

 

Statistical Analysis 

Linear mixed-effects models were used to investigate the association between dietary 

patterns and the rate of change in FEV1. All models included a random intercept and a 

random time effect at the individual level to differentiate between- and within-individual 

variation, and were adjusted for the following covariates as fixed effects: time (a continuous 

variable quantifying the time distance between each FEV1 measure and the study baseline), 

race/ethnicity, baseline age, standing height, weight, smoking status during follow-up and its 

interaction with time, baseline smoking pack-years, educational attainment, marital status, 

residence status, treatment group in SELECT (selenium as 200 μg/d L-selenomethionine, 

vitamin E as 400 IU/d all rac-α-tocopheryl acetate, and matching placebos, 4-arm design, thus 

3 treatment dummy variables with double placebo as reference group), multivitamin use, and 

energy intake. Given the relatively short follow-up duration of three years, we showed that 

modeling the longitudinal change in FEV1 using the linear effect of the time variable was 

sufficient. Smoking status during follow-up was defined as a categorical variable with four 

classes: never smokers at all time points (reference group), persistent smokers who were 
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current smokers at all time points, former smokers at all time points, and intermittent smokers 

who changed smoking status across time points. Prior to the final analyses, residual diagnosis 

was performed based on the above preliminary model to exclude FEV1 measurements 

detected as outliers (|standardized residual| > 3). The main effect of each dietary pattern on the 

rate of change in FEV1 was tested by including the dietary pattern × time product term in the 

model, where dietary pattern scores were divided into quintiles. The interaction between each 

dietary pattern and smoking status during follow-up was subsequently examined by including 

the dietary pattern × smoking status × time product term, where dietary pattern scores were 

divided into tertiles and smoking status was collapsed into two categories: smokers (persistent 

and intermittent) and non-smokers (former and never) during follow-up to maximize power to 

detect interactions. A test for trend across the quintiles or tertiles of each pattern was 

calculated by treating the categories as an ordinal variable in the mixed-effects models. All 

analyses were conducted using SAS software version 9.2 (SAS Institute, Cary, NC). 

 

RESULTS 

Population Characteristics 

 The present study excluded all participants with missing dietary data from the baseline 

FFQ or with unreasonably high (>4500 kcal/d) or low (<800 kcal/d) energy intakes and those 

that had left >70 food items blank were excluded from the analysis (23). Participants were 

also excluded if they had missing lung function or covariate data. The final study population 

included 2,590 of the 2,920 men from the original cohort (89%; Table 4.1). The average age 

was 62.7 years and about 80% of the men were White. Given the oversampling for cigarette 

smokers, 10.7% and 7.1% of the study participants were persistent and intermittent smokers 
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during follow-up, respectively. The majority of men were married and not living alone, and 

over 40% reported multivitamin use at study baseline. The average baseline FEV1 was 

slightly under 3 L, the average number of FEV1 measures per participant was 3.1, and the 

average follow-up duration was 3.0 years. Based on the mixed effects model that was fully 

adjusted for all confounding variables and did not include the dietary pattern variable, the 

estimated rate of change in FEV1 in never smokers was a decline of 34.6 mL/year. In 

comparison, the rate of decline was 11.4 ± 6.5 mL/year steeper in persistent smokers, 4.2 ± 

7.4 mL/year steeper in intermittent smokers, and 0.5 ± 4.1 mL/year steeper in former smokers. 

 

Dietary Patterns  

Using principal component analysis, two distinct dietary patterns were identified in 

RAS men. The factor loadings of food groups in the two identified patterns are shown in 

Table 4.2. Each individual factor loading value can be approximately interpreted as the 

correlation coefficient between the intake of a food group and a dietary pattern; food groups 

with the largest positive loading values contribute the most to variability in the dietary pattern, 

and those with the most negative values contribute the least. The first pattern, which 

explained the greatest amount of variation in the dietary data (8.6%), was characterized by a 

high intake of fruits, vegetables, fish, and poultry. The second pattern, which explained 5.5% 

of the total variation, was characterized by a high intake of red, fried and processed meats, 

desserts and sweets, butter and margarine, fries, snacks, pizza, refined grains, and potatoes. 

Previous studies of dietary patterns in similar populations have labeled similar patterns as the 

“prudent” and the “Western” patterns, respectively. Together, the “prudent” and “Western” 

patterns explained 14.1% of the variation in the consumption of the 54 food groups. 
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The characteristics of the study participants by dietary pattern group (Table 4.1) show 

that men with a more prudent diet were less likely to be smokers during the study follow-up, 

more likely to have lower smoking pack-years at study baseline, more likely to be married 

and less likely to be living alone, of higher educational status, and more often users of 

multivitamin supplements. In contrast, men with a more Western diet were more likely to be 

smokers during the study follow-up, more likely to have higher smoking pack-years, less 

likely to be married, more likely to have lower educational attainment, and less likely to take 

multivitamin supplements. 

The two dietary patterns were further examined in relation to nutrient intakes using 

Pearson’s correlation coefficients (Table 4.3). In particular, the prudent pattern had a strong 

positive correlation with intakes of dietary fiber, vitamins C, β-carotene, and magnesium and 

a strong negative correlation with intakes of total, saturated, and trans fat. In contrast, the 

Western pattern had a strong positive correlation with intakes of total, saturated, and trans fat 

and a strong negative correlation with intakes of dietary fiber, vitamin C, β-carotene, and 

magnesium. 

 

Dietary Patterns and the Rate of Change in FEV1 

After adjusting models for potential confounding variables, neither the prudent nor the 

Western pattern was statistically significantly associated with the rate of change in FEV1 over 

the three-year follow-up (Table 4.4). The estimated difference in the rate of change in FEV1 

was 1.2 mL per year (95% CI: -11.0, 13.4; P for trend = 0.80) between men in the highest and 

lowest quintiles of the prudent pattern, and 5.2 mL per year (95% CI: -11.5, 21.9, P for trend 

= 0.63) between men in the highest and lowest quintiles of the Western pattern. 
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Given the importance of cigarette smoking as a major risk factor for accelerated lung 

function loss and COPD, and the hypothesis that effects of smoking can be mitigated by 

exogenous sources of antioxidants including dietary sources, the interaction between dietary 

patterns and smoking status was examined in relation to the rate of change in FEV1. After 

adjusting for potentially confounding variables, a more prudent diet was statistically 

significantly associated with a slower rate of decline in FEV1 in smokers, whereas no 

association was observed in non-smokers (interaction P for trend = 0.001; Table 4.5 and 

Figure 4.1). The estimated difference in the rate of change in FEV1 between men in the 

highest and lowest tertiles of the prudent pattern was 38.8 mL per year in smokers (95% CI: 

14.4, 63.1) and -5.2 mL per year in non-smokers (95% CI: -15.1, 4.7). In contrast, no 

interaction was observed between the Western pattern and smoking (data not shown). 

 

DISCUSSION 

In this study, we assessed the relation between dietary patterns and the longitudinal 

change in lung function, measured as the rate of change in FEV1, in a large prospective cohort 

of North American men, and explored interaction between dietary patterns and cigarette 

smoking.  With the use of principal component analysis, two distinct dietary patterns were 

identified: a prudent pattern characterized by high intakes of fruits, vegetables, poultry, and 

fish, and a Western pattern characterized by high intakes of red, fried and processed meats, 

desserts and sweets, butter and margarine, fries, snacks, pizza, refined grains, and potatoes. 

Neither pattern was associated with the rate of change in FEV1 in the overall population. 

When the interaction with smoking was considered, a more prudent diet was significantly 

associated with a slower rate of decline in FEV1 in smokers, thus counteracting the 
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detrimental effect of cigarette smoking, but had no association with the rate of decline in 

FEV1 in non-smokers. 

The use of dietary patterns to characterize overall dietary intake provides an additional 

dimension to the epidemiologic research of diet and lung function and COPD. Findings based 

on foods and food groups are relevant to public health, as it is more feasible to give 

population-level dietary advice to modify the intake of a certain food or food group versus a 

particular nutrient. To date, four studies have investigated the relation of dietary patterns with 

lung function and COPD outcomes. In three of them, a prudent dietary pattern rich in fruits, 

vegetables, fish, and whole-grain products was associated with better lung function at one 

time point (17) or reduced risk of incident COPD (18, 19). One study further examined the 

prudent pattern in relation to lung function decline over five years in a subpopulation, but 

found no overall association or interaction with smoking (13). Several factors could have 

affected the detection of an interaction between the prudent pattern and smoking in the above 

study. First, lung function was only measured twice (compared with three measurements in 

the current study), thus the statistical analysis of factors affecting the longitudinal change in 

lung function was likely affected by additional noise, or measurement error, in the outcome 

variable. Another important difference arises in the parameterization of cigarette smoke 

exposure, which was characterized and modeled as the cross-sectional status at study baseline. 

In contrast, we studied the cumulative smoking pattern during follow-up, which better 

represents concurrent oxidative stress due to smoking. Lastly, the population used in the 

above study included both males and females (compared with only males in the current study), 

and it is possible that the relation between diet, smoking, and lung function differs by gender. 

In summary, our findings are consistent with the protective associations reported for the 
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prudent pattern in prior research, and add important novel insights to the evidence base in the 

identification of diet—smoking interactions in relation to the rate of change in lung function.  

Individual foods and nutrients that contribute to the prudent pattern have been studied 

in relation to longitudinal lung function outcomes. In a population of healthy British adults, 

reduced fresh fruit consumption over time was associated with a faster rate of decline in FEV1 

over seven years, with the strongest effects observed in cigarette smokers (24). In older US 

adults, higher intake of fruits and vegetables and higher intakes of individual nutrients with 

antioxidant properties were associated with a slower decline in FEV1 over four years in 

smokers alone (12). Two additional studies reported overall associations of higher apple 

consumption and higher vitamin C intake in relation to slower decline in lung function (13, 

25), regardless of smoking status. This past research on single foods and/or nutrients supports 

the findings reported herein. 

The current study has several strengths. First, we characterized diet in terms of overall 

dietary patterns rather than studying individual nutrients to better reflect the consumption of 

meals consisting of a variety of foods with complex combinations of nutrients that are likely 

interactive or synergistic. Second, we focused on the longitudinal change in lung function as 

the primary outcome, which is understudied as an informative predictor of COPD risk due to 

the scarcity of cohort studies with high-quality longitudinal lung function data and the 

increased complexity in statistical analysis. Third, this study used a large, nationally 

representative population of North American men (22% African American), which was 

selectively enriched for cigarette smokers, allowing for the investigation and detection of 

meaningful interaction between dietary patterns and smoking. Fourth, the longitudinal lung 

function data used in this study was acquired through high-quality spirometry tests performed 
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by trained clinical research nurses and following standardized protocol. Finally, extensive 

data were available on important risk and confounding factors, such as smoking behaviors and 

multivitamin use, allowing the careful adjustment for these factors in statistical models.  

A few limitations should be considered when evaluating the study findings. First, the 

use of principal component analysis to derive dietary patterns involves several arbitrary 

decisions that could affect the results, such as the consolidation of the initial 120 food items 

into 54 food groups. However, the grouping of food items was guided by knowledge of their 

similarity in nutrient profile and culinary use, and was similar to those used in previous 

studies of dietary patterns, allowing direct comparisons to be made to prior work. The 

resulting patterns were interpretable, and consistent with previous studies in similar 

populations. Second, while the labeling of the dietary pattern is subjective, labels were 

assigned according to existing knowledge based on extensive research on dietary patterns in 

Western populations (the factor loading matrix for each pattern and correlation coefficients 

between pattern scores and individual nutrients are provided for further evaluation). Lastly, 

the dietary patterns were derived based on a single FFQ administered at study baseline, thus 

measurement error in the classification may exist. This concern is mitigated by the 

understanding that FFQs are preferred measures of long-term, habitual dietary intake, with 

high validity in assigning the relative ranking of intakes among individuals within a single 

population. 

In conclusion, in this prospective study of dietary patterns in relation to the 

longitudinal change in lung function in a large, representative cohort of North American men, 

we observed an interaction between the prudent dietary pattern and cigarette smoking in 

relation to the rate of change in FEV1. This finding lends further support to the hypothesis 
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that a diet rich in fruits and vegetables is beneficial to lung function. This work extends the 

current evidence base by studying longitudinal outcomes, and finds that a diet rich in foods 

that may contribute to antioxidant capacity and/or to a reduction in inflammation is protective 

in cigarette smokers.  Confirmation of this finding in other populations, particularly among 

women who are actively smoking, is a priority for future research. 
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TABLE 4.1 Characteristics of study participants, overall and by quintile (Q) of dietary pattern score* 

 
Overall 

Population 
(n = 2,590) 

Prudent pattern  Western pattern 
Q1 

(n = 524) 
Q3 

(n = 515) 
Q5 

(n = 508)  Q1 
(n = 507) 

Q3 
(n = 521) 

Q5 
(n = 521) 

Age (y) 62.7 ± 6.4 62.5 ± 6.8 62.9 ± 6.0 62.6 ± 6.4  63.3 ± 6.1 62.8 ± 6.7 61.6 ± 6.1 
White (%) 77.9 70.0 80.6 80.0  79.7 77.7 72.9 
Height (cm) 176.4 ± 7.1 176.5 ± 7.2 176.3 ± 6.8 176.7 ± 7.1  175.6 ± 7.2 176.5 ± 7.2 177.4 ± 6.8 
Weight (kg) 89.4 ± 17.4 88.6 ± 18.0 89.7 ± 17.0 90.5 ± 17.7  86.1 ± 16.5 89.7 ± 16.6 93.6 ± 18.8 
Smoking status during follow-up (%) 

Never smokers 35.3 28.4 36.7 36.6  42.0 35.9 26.1 
Former smokers 46.8 43.7 48.4 51.0  48.3 47.0 47.0 
Intermittent smokers 7.1 9.4 6.6 5.1  3.2 8.1 9.8 
Persistent smokers 10.7 18.5 8.4 7.3  6.5 9.0 17.1 

Pack-years+ 21.4 (7 – 36) 23.9 (12 – 43) 21.1 (7 – 34) 16.4 (7 – 34)  14.1 (7 – 34) 19.2 (7 – 36) 23.9 (14 – 43) 
Married (%) 77.0 71.0 79.0 80.1  78.3 75.8 72.4 
Living alone (%) 14.4 19.5 15.0 12.0  14.8 15.9 15.9 
Educational attainment (%) 

High school 28.4 40.5 25.8 20.9  21.5 30.1 37.0 
College 41.3 42.8 41.9 43.3  41.6 40.5 39.7 
Graduate school 30.3 16.8 32.2 35.8  36.9 29.4 23.2 

Multivitamin use (%) 40.6 35.3 39.4 47.2  45.6 38.8 35.9 
Total energy (kcal) 2303.7 ± 806.3 1898.2 ± 735.2 2227.6 ± 714.7 2806.2 ± 760.5  1582.0 ± 575.8 2132.9 ± 488.4 3285.6 ± 573.9 
FEV1 (mL) 2973.9 ± 678.0 2895.5 ± 666.1 3005.3 ± 673.4 3006.1 ± 672.0  2983.0 ± 627.6 3043.4 ± 688.8 2923.0 ± 684.6 
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* Data presented are from the study baseline, unless otherwise stated. Quintile 1 represents the lowest dietary pattern intake and 

quintile 5 the highest. Data are presented as %, mean ± SD or median (interquartile range). 

+ Determined as no. of packs smoked per day × no. of years smoked among ever smokers.
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TABLE 4.2 Factor loadings for the prudent and Western dietary patterns at study baseline 

from the principal component analysis* 

Food group Prudent pattern Western pattern 
Leafy vegetables 0.69 - 
Carrots, squashes and yams 0.66 - 
Cruciferous vegetables 0.63 - 
Tomatoes 0.60 - 
Peppers 0.55 - 
Fruits 0.55 - 
Legumes 0.54 - 
Onions and garlic 0.50 - 
Fish 0.44 - 
Avocado 0.34 - 
Dressing (low-fat) 0.32 - 
Corn 0.32 - 
Poultry 0.32 - 
Mixed dishes with meat - 0.50 
Desserts/sweets - 0.47 
Fries - 0.47 
Red meats - 0.46 
Butter and margarine - 0.46 
Condiments - 0.43 
Fried meats - 0.42 
Processed meats - 0.41 
Snacks - 0.39 
Pizza - 0.34 
Refined Grains - 0.32 
Cream soups - 0.31 
Mayo (high-fat) - 0.31 
Potatoes - 0.31 

* Factor loadings represent the correlations between the intakes of food groups and dietary 

pattern scores. Absolute values < 0.30 were not shown for simplicity. Factor loadings 

presented are those computed from the orthogonal rotation.  
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TABLE 4.3 Pearson’s correlation coefficients (r) between the prudent and Western dietary 

pattern scores and nutrient intakes* 

 Prudent pattern Western pattern 
Total fat (g/d) -0.21 0.24 
Saturated fat (g/d) -0.34 0.27 
Monounsaturated fat (g/d) -0.16 0.19 
Polyunsaturated fat (g/d) 0.01+ 0.13 
Trans fat (g/d) -0.38 0.38 
Cholesterol (mg/d) -0.05 0.09 
Carbohydrates (g/d) 0.15 -0.07 
Proteins (g/d) 0.16 -0.04 
Dietary Fiber (g/d) 0.50 -0.21 
Vitamin A (μg/d) -0.08 0.06 
Vitamin C (mg/d) 0.46 -0.22 
Vitamin D (μg/d) 0.12 -0.14 
Vitamin E (mg/d) 0.18 -0.09 
β-Carotene (μg/d) 0.60 -0.25 
Magnesium (mg/d) 0.45 -0.34 
Selenium (μg/d) 0.18 -0.05 

* Intakes of presented nutrients were computed from the food frequency questionnaire 

administered at study baseline and were adjusted for energy intake prior to calculating the 

Pearson’s correlation coefficients using the residual method (26). All correlations were 

significant (P < 0.05), unless otherwise indicated. 
+ P > 0.05.  
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TABLE 4.4 Association between quintile (Q) of dietary patterns and the rate of change in forced expiratory volume in 1s (FEV1)* 

 
Prudent pattern  Western pattern 

β (mL/y) 95% CI P for trend+  β (mL/y) 95% CI P for trend+ 
Q1 (lowest) Reference 

0.80 

 Reference 

0.63 
Q2 6.7 -4.7, 18.2  1.0 -10.9, 12.9 
Q3 4.9 -6.3, 16.2  -6.5 -18.8, 5.9 
Q4 0.1 -11.3, 11.4  3.8 -10.0, 17.7 
Q5 (highest) 1.2 -11.0, 13.4  5.2 -11.5, 21.9 

* Data presented are effect estimates from the linear mixed effects models adjusted for race/ethnicity, age, standing height, weight, 

smoking status during follow-up and its interaction with time, smoking pack-years, educational attainment, marital status, residence 

status, treatment group in SELECT, multivitamin use, and energy intake (all at study baseline, unless otherwise stated). 

+ Dietary pattern quintiles were modeled as a continuous variable in the mixed effects models.  
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TABLE 4.5 Association between tertile (T) of the prudent pattern and the rate of change in forced expiratory volume in 1s (FEV1) 

according to smoking status during follow-up* 

 
Non-smokers  Smokers 

β (mL/y) 95% CI P for trend+  β (mL/y) 95% CI P for trend+ 
T1 (lowest) Reference 

0.31 
 Reference 

0.002 T2 -2.7 -12.5, 7.0  24.8 4.1, 45.4 
T3 (highest) -5.2 -15.1, 4.7  38.8 14.4, 63.1 
Interaction P for trend+, ǂ 0.001 

* Data presented are effect estimates from the linear mixed effects models adjusted for race/ethnicity, age, standing height, weight, 

smoking status during follow-up and its interaction with time, smoking pack-years,  educational attainment , marital status, 

residence status, treatment group in SELECT, multivitamin use, and energy intake (all at study baseline, unless otherwise stated). 

+ Dietary pattern tertiles were modeled as a continuous variable in the mixed effects models. 

ǂ Interaction was modeled using the three-way product term of prudent status × smoking status × time in the mixed effects model.



 
 

153 
 

FIGURE 4.1 Estimated rate of change in forced expiratory volume in 1s (FEV1) according to tertile of prudent pattern intake and 

smoking status during follow-up. Open bars represent the lowest intake tertile (T1), lightshade bars represent the medium intake 

tertile (T2), and dark shaded bars represent the highest intake tertile (T3). The estimates were computed from the linear mixed 

effects model that was adjusted for all covariates and included the prudent pattern × smoking status × time product term 

(interaction P for trend = 0.001). CI = confidence interval. 
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CHAPTER 5 

 

CONCLUSION 

 

Reduced lung function is associated with increased morbidity and mortality at the 

population level (1), and is a primary characteristic of chronic obstructive pulmonary disease 

(COPD) (2). COPD is currently the third leading cause of death in the United States and a 

significant public health burden globally (3-5). Longitudinal change in lung function is an 

informative indicator of COPD risk and serves as a valuable research outcome for gaining 

insights into COPD pathogenesis and for developing effective preventive and curative 

strategies (6-9). 

Cigarette smoking is the most important risk factor for accelerated loss in lung 

function and COPD (10, 11), but other factors, including genetics and nutrition, are postulated 

to also play important roles in explaining the variability in lung function decline and COPD 

susceptibility. Existing population-level research investigating the association of genetic and 

nutritional factors with lung outcomes has generated extensive evidence supporting their 

involvement, but longitudinal studies based on large, representative populations and with 

careful consideration of the effect of smoking are lacking. 

In this context, the three projects comprising this dissertation focus on the role of 

genetics, nutrition, and cigarette smoking in the determination of longitudinal change in lung 

function over the adult life course and in the etiology of chronic obstructive pulmonary 

disease (COPD). Specifically, the overarching goal of this research is to better understand 

whether common genetic variants, both within the antioxidant enzyme network and 
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throughout the human genome, as well as overall patterns in dietary intake contribute to 

individuals’ susceptibility to COPD by influencing the rate of change in lung function beyond 

the natural aging process, particularly in persons experiencing elevated levels of oxidative 

stress from exposure to cigarette smoke. 

These projects were designed to be distinct in terms of objectives, study design, 

population, and statistical methods, but are complementary in addressing major gaps in the 

published literature. A brief summary of each project is presented below. 

 

Genetic Variation in Antioxidant Enzymes, Cigarette Smoking and Longitudinal Change in 

Lung Function (Chapter 2) 

Most published candidate gene association studies of lung function focus on a limited 

set of candidate genes and cross-sectional outcomes. The first project addressed this gap by 

exploring the association of 384 single-nucleotide polymorphisms (SNPs), selected 

systematically from 56 antioxidant enzyme genes, with the rate of change in two lung 

function measures, forced expiratory volume in the first second (FEV1) and the ratio of 

FEV1/forced vital capacity (FEV1/FVC). The analysis was conducted separately in African 

and European American elderly adults from the Health, Aging, and Body Composition 

(Health ABC) study. In European Americans, single-marker analyses confirmed a prior 

finding involving the GCLC SNP rs17883901 in relation to the rate of change in FEV1/FVC. 

In addition, we identified statistically significant gene-by-smoking interactions for two novel 

candidate genes (mGST3 and IHD3B) with the rate of change in FEV1/FVC in European 

Americans, and observed gene-level replications for both genes in African Americans at 

nominal significance. Overall, these findings support the hypothesis that genetic variation in 
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genes contributing to the endogenous antioxidant defense affects longitudinal change in lung 

function, particularly in cigarette smokers who are more susceptible to an imbalance between 

oxidative stress and antioxidant protection.  

 

Genome-Wide Association Studies of Longitudinal Change in Adult Lung Function  

(Chapter 3) 

To explore genetic variation beyond the scope of the antioxidant enzyme network, and 

to address the lack of genome-wide association studies (GWAS) of longitudinal lung function 

outcomes, the second project investigated the association of ~2.5M common SNPs throughout 

the human genome with the rate of change in FEV1, in a combined sample of over 27,000 

adults of European ancestry from 14 prospective cohort studies. The meta-analysis 

incorporating results from all 14 cohorts produced suggestive evidence for association at the 

novel IL16/STARD5/TMC3 locus on chromosome 15. A second meta-analysis using the five 

cohorts with optimal longitudinal lung function data identified the novel ME3 locus on 

chromosome 11 at genome-wide significance. We confirmed the expression of IL16, 

STARD5, and ME3 in multiple lung tissues, and used publicly available microarray data to 

demonstrate differential expression of all three genes in lung samples from COPD patients 

compared with controls. These results together suggest biologically plausible functional links 

between the identified genes and lung function, which are promising candidates for further 

studies. 

 
Dietary Patterns, Cigarette Smoking, and Longitudinal Change in Lung Function (Chapter 4) 

The third project investigated the relation between overall dietary patterns and the rate 
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of change in FEV1 in 2,560 male adults from the Respiratory Ancillary Study. Two distinct 

dietary patterns were derived using principal component analysis based on food frequency 

questionnaire data collected at study baseline: a prudent pattern characterized by high intakes 

of fruits, vegetables, fish, and poultry and a Western pattern characterized by high intakes of 

red, fried, and processed meats, desserts, and fries. Although neither pattern was associated 

with the rate of change in FEV1 in the overall population, when the interaction between 

dietary pattern and smoking was considered, the prudent diet was associated with a slower 

rate of decline in FEV1 only in cigarette smokers. These findings support the hypothesis that a 

diet rich in foods and nutrients that may augment antioxidant and/or anti-inflammatory 

capacity is protective against accelerated lung function loss and COPD in smokers. 

 

Future Directions 

While findings from this dissertation research contribute to a more comprehensive 

understanding of the role of genetics, nutrition, and cigarette smoking in the determination of 

longitudinal change in lung function and COPD susceptibility, it also suggests directions for 

future research. First, the identification of strong gene-by-smoking and diet-by-smoking 

interactions, as reported in the first and third projects, clearly highlights the importance for 

future studies to more carefully characterize and capture the interrelatedness and interaction 

between these three distinct exposures. Although not explicitly pursued in this dissertation 

research, the presence of extensive interaction between genes and nutrients is becoming 

increasingly well-recognized and future population-level studies designed to address such 

questions hold great promise in helping to identify simple nutritional interventions targeting 

specific population subgroups for the prevention and treatment of chronic diseases including 
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COPD. An important observation from the GWAS of longitudinal change in lung function is 

the considerable phenotypic heterogeneity among the 14 cohort studies in the meta-analysis, 

and the challenge it presents to the identification of modest genetic effects on a longitudinal 

outcome at stringent statistical thresholds. Large-scale GWAS meta-analyses involving tens 

of thousands of study participants have so far been successful in the study of cross-sectional 

complex traits and diseases. However, this strategy is unlikely to enjoy the same success 

when applied to longitudinal outcomes, given the considerable increase of noise present in the 

phenotypic data and the possibly smaller genetic contribution as measured by heritability. 

Therefore, future GWAS of longitudinal outcomes face the dilemma of needing to further 

increase sample size by enrolling more individual studies with different characteristics, while 

at the same time reduce phenotypic heterogeneity in order to detect true genetic associations 

with more modest effect magnitude.  
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