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Since its invention in 1981 [4] by Gerd Binnig and Heinrich Rohrer, scanning

probe microscopy is used to image a surface by probing various sample proper-

ties at resolutions from 100 nm to 1 Angstrom. In this work, the measurements

of electric force microscopy where a cantilever oscillates above the sample are

studied. A theoretical framework to calculate the experimental observables,

noncontact friction and cantilever frequency fluctuations, is provided. The dy-

namical fluctuations probed by electric force microscopy are shown to be re-

lated to sample properties such as dielectric fluctuations, carrier dynamics, and

Coulomb interactions between charge carriers. The theoretical calculations are

compared to the measured data and found to be within reasonable error, on

organic thin films, organic transistor and doped Si samples.

The cantilever frequency noise on organic thin films is shown to be from

the dielectric fluctuations. A semi-infinite semiconductor is used as a model

to study the effect of dielectric fluctuations, carrier dynamics, and inter-carrier

interactions on frequency noise. A semi-infinite semiconductor model was de-

veloped which predicts a suppression in frequency noise with increase in carrier

density, in disagreement with noise measurements on organic transistor where

the frequency noise is independent of carrier density. The semi-infinite model

is therefore extended to a layered structure, enabling the evaluation of the ef-

fects of finite thickness of semiconductor and the confinement of the charge



carriers to few monolayers close to the semiconductor-insulator interface in or-

ganic transistor. The layered structure explains the cantilever frequency noise

measurements on an organic transistor, and predicts that noncontact friction

measurements can be used to assess the effects of inter-carrier Coulomb interac-

tions on charge motion in organic semiconductors. Noncontact friction data on

doped Si has a one-over-square root dependence in charge density that is also

explained by our semi-infinite model.
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CHAPTER 1

INTRODUCTION

1.1 Electric force microscopy

Electric Force Microscopy (EFM)[33, 34, 37] employs of a charged cantilever tip

oscillating above the surface of a sample. In this work, we show that the can-

tilever tip is capable of measuring the dynamical fluctuations from molecular

motions and carrier dynamics in the sample. This capability is illustrated in

Chapters 2, 3 and 4. Noncontact friction and cantilever frequency fluctuations

are the two experimentally measured observables. Noncontact friction is mea-

sured by driving the cantilever at its resonance frequency ωc, turning off the

drive, and recording the following decay of the amplitude.[30, 31]. This non-

contact friction is related to the time-varying random forces from the sample by

fluctuation-dissipation theorem, and is further discussed in Sec. 1.2.1. In EFM,

the cantilever frequency vs. time is measured, fluctuations of the cantilever fre-

quency about the mean value are calculated, and a power spectrum of frequency

fluctuations is computed. Frequency jitter is calculated from the power spec-

trum of frequency fluctuations by integrating over the frequency range of cor-

responding to the measurement bandwidth of the experiment. The frequency

jitter measurements are shown to be related to fluctuations in the potential, elec-

tric field, and its derivatives produced by the sample in Sec. 1.2.2.

In Chapter 2, a theoretical basis for measurements on organic polymers is

provided, and the source of dynamical fluctuations is shown to be thermal di-

electric fluctuations in the polymer film. In Chapter 3, the theoretical treatment

to calculate the cantilever frequency fluctuations for an organic transistor is de-
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veloped that is applicable when both dielectric and charge density fluctuations

are present. In Chapter 4, a quantitative comparison is made to both measured

noncontact friction data on doped Si and frequency jitter data on organic tran-

sistor. Noncontact friction calculations for organic transistor are also presented

in Chapter 4.

Two geometries of measurement are possible with EFM: the tip oscillation

may be either parallel [26, 30, 31, 58, 67, 68, 69] or perpendicular [20, 21] to

the plane of vacuum-sample interface. Parallel motion measurements use ul-

trasensitive cantilevers and are only available to few groups, while the perpen-

dicular motion uses widely available commercial cantilevers. Secs. 1.1.1 and

1.1.2 show the basic assumptions involved in determining noncontact friction

and frequency jitter for these two geometries. In each geometry the cantilever

is maintained above the sample in a noncontact mode. Fig. (1.1) shows the

choice of coordinate system and the cantilever tip and sample alignment for the

parallel-motion case. The vacuum-sample interface is parallel to the xy plane

(located at z = 0) and z < 0 corresponds to the sample. The equilibrium position

of the cantilever is maintained at x = 0, y = 0, and z = d. A tip-sample voltage Vts

is applied between the cantilever tip and the metal layer below the sample. In

the parallel-motion experiment, the tip motion is taken to be one-dimensional

along x, referred to as parallel motion. The tip-sample height d remains ap-

proximately constant during the motion and the cantilever can be thought of

as oscillating in a plane parallel to the vacuum-sample interface at a tip-sample

height of d. Since the tip-sample height remains constant, the tip-sample capac-

itance in this geometry is constant for a fixed tip-voltage Vts, and so the charge

on the tip is constant. In the perpendicular motion experiment, the tip motion

is one-dimensional along z. The tip-sample height varies during the perpendic-

2



ular motion while the cantilever tip is oscillating along a normal (z-axis) to the

vacuum-sample interface (xy-plane). In this geometry, the tip-sample capaci-

tance varies as a function of tip-sample height, and consequently the tip charge

varies during the cantilever oscillation.

Figure 1.1: A schematic sketch of an electric force microscopy measure-
ment. Cantilever tip is shown near a sample of dielectric layer
of thickness h on metal. The tip-sample height is d and a volt-
age Vts is applied between the cantilever tip and metal. The
choice of coordinate system is as shown. Figure reproduced
from Ref.[69], with permission.

3



1.1.1 Parallel Motion

In this geometry of EFM, the cantilever oscillation is approximated to be along

the x-axis. The cantilever tip is modelled as a point charge, oscillating with

cantilever resonance frequency fc ≡ ωc/2π, experiencing noncontact friction γ

and a time-varying capacitive force Fx from the sample. The equation of motion

of this point charge oscillating along the x-direction is given by the Langevin

equation [30, 31, 67, 68, 69],

mẍ = −mω2
c x − γx + Fx, (1.1)

Fx = −
∂W(x, t)
∂x

, (1.2)

W(x, t) =
1
2

c(z)(Vts + ϕ(x, t))2, (1.3)

where m is the effective mass related to the cantilever force constant by m ≡

kc/ω
2
c , W(x, t) is the capacitor energy of the tip-sample arrangement, the tip-

sample voltage Vts = Vapp − φc is the applied voltage adjusted for the measured

surface contact potential φc, c(z) is the capacitance of the cantilever tip and sam-

ple separated by a distance z, and ϕ(x, t) is the time-varying fluctuating potential

due to the sample at the tip location (x, y, z) ≡ (x, 0, d). The angular resonance

frequency in Eq. (1.1) is ωc = 2π fc. In the experiment, the applied tip-sample

voltage is much greater than the fluctuating sample-induced potential, Vts >> ϕ

and so Eq. (1.3) is written as [21, 69, 67],

W ≈
1
2

c(z)V2
ts + qcϕ(x, t), (1.4)

and the capacitive force at the cantilever tip from Eq. (1.2) is,

Fx = −qc
∂ϕ(x, t)
∂x

, (1.5)

where qc ≡ c(d)Vts. The fluctuating sample-induced potential in Eq. (1.4) is writ-

ten as a sum of an average electrostatic potential φ(x) and a quantity fluctuating
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in time δϕ(x, t).

ϕ(x, t) = φ(x) + δϕ(x, t),

φ(x) = 〈ϕ(x, t)〉. (1.6)

The average electrostatic potential φ(x) and fluctuating quantity δϕ(x, t) are Tay-

lor expanded about x = 0.

φ(x) ≈ φ(0) −
x2

2
Exx,

δφ(x, t) ≈ δφ(t) − x δEx(t) −
x2

2
δExx(t), (1.7)

where the average electric field Ex from the sample at cantilever equilibrium

position (0,0,d) is 0 due to the assumed lateral symmetry of the sample. The x-

gradient of the average electric field in the x-direction is Exx ≡ ∂
2φ(x)/∂x2|x=0. The

fluctuating potential in time is δφ(t) ≡ δφ(x, t)|x=0, the fluctuating electric field in

x-direction is δEx(t) ≡ ∂δφ(x, t)/∂x|x=0,y=0,z=d, and the fluctuating x-gradient of the

x component of the electric field is δExx(t) ≡ ∂2δφ(x, t)/∂x2|x=0,y=0,z=d. Using Eqs.

(1.6) and (1.7), the capacitive force in Eq. (1.5) is linearized in x and written in

terms of a static shift in resonance frequency ∆ fc, a time-varying fluctuating

resonant frequency δ fc(t), and a random time-varying force δF(t) as follows [30,

31, 67, 68, 69],

Fx = δF(t) −
(
2kcx

fc

)
(∆ fc + δ fc(t)), (1.8)

∆ fc = −
fcqcExx

2kc
, (1.9)

δ fc(t) =
fcqc δExx(t)

2kc
, (1.10)

δF(t) = qc δEx(t). (1.11)

Section 1.2 shows how the experimental observables, non-contact friction and

frequency jitter, may be determined for parallel motion from Eqs. (1.10) and

(1.11).
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1.1.2 Perpendicular Motion

Similar equations as in Sec. 1.1.1 can be written for a cantilever tip modelled as

a point charge oscillating along the z-axis, normal to the vacuum-sample inter-

face. The equation of motion of this point charge is [21, 20, 32]

mz̈ = −mω2
c(z − d) − γż −

∂W(z, t)
∂z

, (1.12)

W(z, t) = −
1
2

c(z)(Vts − δϕ(z, t))2, (1.13)

≈ −
1
2

c(z)V2
ts + c(z)Vts δϕ(z, t). (1.14)

Here the time-varying fluctuating potential from the sample δϕ(z, t) is at

(x, y, z) ≡ (0, 0, z), and the electrostatic interaction with the sample is modelled by

a stochastic potential energy W(z, t) [27]. The term with squared potential fluc-

tuations obtained from expansion of Eq. (1.13) is neglected in Eq. (1.14) because

the squared of the fluctuating potential is negligible in comparison to the other

terms. This W(z, t) differs from W(x, t) in its dependence on tip-sample height.

Here the tip-sample voltage Vts = Vapp−φc is the applied voltage adjusted for the

surface contact potential φc from measurements. Since the tip-sample distance

z varies during perpendicular motion, the capacitance is also Taylor expanded

about the equilibrium tip-sample distance at z = d,

δϕ(z, t) ≈ δφ(t) − (z − d)δEz(t) −
(z − d)2

2
δEzz(t),

c(z) ≈ c(d) + (z − d)c(1)(d) +
(z − d)2

2
c(2)(d), (1.15)

where the fluctuating potential in time is δφ(t) ≡ δφ(z, t)|z=d, the fluctuating av-

erage electric field in z-direction is δEz(t) ≡ ∂δφ(z, t)/∂z|z=d, and the fluctuating

z-gradient of the z component of the electric field is δEzz(t) ≡ ∂2δφ(z, t)/∂z2|z=d.

The capacitance at a tip-sample height z = d is c(d), and the first and second
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derivatives of capacitance at d are c(1)(d) and c(2)(d), respectively. The force

Fz ≡ −∂W(z, t)/∂z is then linearized and written in the following form

Fz = Fc + δF(t) −
2kc(z − d)

fc
(∆ fc + δ fc(t)), (1.16)

in terms of a static shift in resonant frequency ∆ fc and a dynamic fluctuating

shift in resonant frequency δ fc(t).

∆ fc = −
fc

4kc
V2

ts c(2)(d), (1.17)

δ fc(t) = −
fc

2kc
(−Vts c(2)(d) δφ(t) + 2Vts c(1)(d) δEz(t) + Vts c(d) δEzz(t)). (1.18)

Fc =
1
2

c(1)(d)V2
ts, (1.19)

δF(t) = −Vts c(1)(d) δφ(t) + Vts c(d) δEz. (1.20)

Fc in Eq. (1.19), which is independent of both time and coordinate, is a term that

introduces a sample-induced shift in the equilibrium height of the cantilever tip.

In the parallel motion case, the terms responsible for such a shift vanish. δF(t)

in Eq. (1.20) fluctuates in time, and represents the random force in the Langevin

equation that is related to friction by the fluctuation-dissipation theorem. Sec.

1.2 shows how the experimental observables, noncontact friction and frequency

jitter, may be determined for perpendicular motion from Eqs. (1.18) and (1.20).

1.2 Experimental observables

1.2.1 Noncontact friction

Using the point-charge models for parallel and perpendicular motions of the

cantilever described in Secs. 1.1.1 and 1.1.2 respectively, the experimental ob-

servables, noncontact friction and frequency jitter, are calculated in this section
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under the linear response assumption. In the past decade, noncontact friction

on various samples has been measured experimentally using AFM cantilevers

[40, 57], and also studied theoretically [30, 31, 43, 52, 55, 69]. The cantilever tip

is modelled as a harmonic oscillator experiencing time-varying random forces

from the sample as in Eqs. (1.1) and (1.12). The spectral density of random force

fluctuations at the cantilever tip CδFδF( fc) is related to noncontact friction by the

fluctuation-dissipation theorem [15, 16, 22, 30, 31, 40, 45, 55, 57, 69],

γ =
CδF δF( fc)

kBT
, (1.21)

CδF δF( fc) =

∫ ∞

0
cos(2π fct) 〈δF(t) δF(0)〉dt, (1.22)

where the random force δF(t) at the cantilever tip in parallel and perpendicular

motion are given in Eqs. (1.11) and (1.20), respectively. For parallel motion, δF(t)

is given by Eq. (1.11), and consequently the noncontact friction in Eq. (1.21) is

written in terms of the auto-correlation function of electric field fluctuations in

the x direction at the equilibrium position of the tip.

γ‖ =
q2

c

kBT
CδEx δEx( fc). (1.23)

The cosine transform of the auto-correlation function of the electric field fluctu-

ations at frequency f = fc is denoted by CδEx δEx( fc) and is given by

CδEx δEx( fc) ≡
(

∂2

∂x1∂x2
Cδφ δφ(r2, d, r1, d; fc)

)
r1=r2=0

, (1.24)

where

Cδφ δφ(r2, z2, r1, z1; f ) ≡
∫ ∞

0
cos(2π f t) 〈δφ(r2, z2, t) δφ(r1, z10)〉dt. (1.25)

Here, Cδφ δφ(r2, z2, r1, z1; f ) is the cosine transform of the auto-correlation function

of potential fluctuations at two different locations (r2, z1) and (r2, z2), and ri (≡

(xi, yi)) is the vector parallel to the interface and zi is the height above the sample

surface.
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Similarly, for perpendicular motion δF(t) is given by Eq. (1.20), and noncon-

tact friction from Eq. (1.21) is written in terms of the auto-correlation, cross-

correlation functions of potential and electric field fluctuations at the tip as

γ⊥ ≡
V2

ts

kBT

[
c2(d) CδEz δEz(d, d, ωc) +

(
c(1)(d)

)2
Cδφ δφ(d, d, ωc) − 2c(d) c(1)(d) Cδφ δEz(d, d, ωc)

]
,

(1.26)

where CδEz δEz is the cosine transform of the auto-correlation function of electric

field fluctuations in z-direction, Cδφ δφ is the cosine transform of the potential

auto-correlation and Cδφ δEz is the cosine transform of the cross-correlation of the

potential and the z component of the electric field fluctuations. These corre-

lation functions are obtained from the potential auto-correlation by taking the

appropriate number of derivatives using

Cnm(z1, z2, f ) =
∂n+m

∂zm
1 ∂zn

2
Cδφ δφ(r1 = 0, z1, r2 = 0, z2, f ). (1.27)

From Eq. (1.27) all the correlation functions in Eq. (1.26) are determined;

CδEz δEz(d, d, fc) ≡ C11(z1, z2, f )|z1=d,z2=d, f = fc , Cδφ δEz(d, d, fc) ≡ C01(z1, z2, f )|z1=d,z2=d, f = fc

and Cδφ δφ(d, d, fc) ≡ C00(z1, z2, f )|z1=d,z2=d, f = fc . Eqs. (1.24) and (1.27) show that all

the correlation functions in Eqs. (1.23) and (1.26) of the noncontact friction fol-

low from the two-point (at (r1, z1) and (r2, z2)) correlation function of potential

fluctuations. The model for the calculation of this potential correlation function

is shown in Sec. 1.3. Chapter 4 shows friction calculations from Eqs. (1.23) and

(1.26), for doped Si and organic semiconductors.

1.2.2 Frequency jitter

The second experimental observable of interest is fluctuations in the cantilever

frequency. This is calculated for both parallel and perpendicular motions from
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Eqs. (1.10) and (1.18), respectively. In this work, the calculations and measure-

ments of cantilever frequency fluctuations for perpendicular motion of the can-

tilever are shown. Previous theoretical and experimental efforts for parallel mo-

tion measurements have shown that EFM is capable of sensing dielectric fluc-

tuations from organic thin-film polymers [67, 68, 69]. In EFM, the fluctuations

in cantilever resonance frequency are measured in time. A record of cantilever

frequency versus time is converted into the power spectrum of frequency fluc-

tuations as discussed in Ref. [20]. Frequency jitter is the area under this power

spectrum in the experimental frequency range fmin to fmax.

Jitter =

∫ fmax

fmin

d f Pδ fc( f ). (1.28)

where Pδ fc( f ) is the power spectrum of cantilever frequency fluctuations,

Pδ fc( f ) ≡ 4
∫ ∞

0
dt cos(2π f t) 〈δ fc(t) δ fc(0)〉. (1.29)

The factor of 4 in Eq. (1.29) insures the normalization
∫ ∞

0
d f Pδ fc( f ) = 〈(δ fc)2〉.

Within a harmonic approximation, the cantilever in perpendicular motion is

modelled in Sec. 1.1.2. The expression for cantilever resonance frequency fluc-

tuations thus obtained in Eq. (1.18) is used to write Pδ fc( f ) in terms of auto-

correlation and cross-correlation functions of the potential, the electric field, and

electric field derivatives [21, 32],

Pδ fc( f ) =

(
fcVts

kc

)2 [
(c(2)(d))2Cδφ δφ(d, d, f ) + 4c(1)(d)c(2)(d)CδEz δφ(d, d, f )

+2c(0)(d)c(2)(d)CδEzz δφ(d, d, f ) + 4
(
c(1)(d)

)2
CδEz δEz(d, d, f ) − 4c(d)c(1)(d)CδEz δEzz(d, d, f )

+c(2)(d)CδEzz δEzz(d, d, f )
]
. (1.30)

The correlation functions of fluctuations in potential and potential gradients are

determined from Eq. (1.27). For example, CδEzz δEzz(d, d, f ) ≡ C22(z1, z2, f )|z1=d,z2=d, f ,

CδEzz δEz(d, d, f ) ≡ C21(z1, z2, f )|z1=d,z2=d, f , and so on. The experimental observ-

ables, noncontact friction in Eqs. (1.23) and (1.26) and frequency jitter in Eqs.
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(1.28) and (1.30), only require calculating the cosine transform of the poten-

tial auto-correlation function in Eq. (1.25). The rest of the auto- and cross-

correlation functions are calculated from the potential auto-correlation by tak-

ing derivatives using Eq. (1.27). In Sec. 1.3, the calculation of this potential

auto-correlation in Eq. (1.25) is the main focus.

1.2.3 Anharmonic corrections

The anharmonic correction to the fluctuating frequency shift in Eq. (1.18) from

the higher order terms in the expansion of stochastic potential energy W(z, t)

is shown in this section. The stochastic potential energy W(z, t) in Eq. (1.14) is

written as the sum of a static and a fluctuating term,

W(z, t) ≈ W(z) + δW(z, t), (1.31)

W(z) ≡ −
1
2

c(z)V2
ts, (1.32)

δW(z, t) ≡ c(z)Vts δϕ(z, t). (1.33)

Expansion of W(z) about the equlibrium coordinate z = d is written in terms

of derivatives denoted as Wn(d) ≡ dnW(z)/dzn|z=d, and similarly δW(z, t) has been

expanded in terms of the derivatives δWn(z, t) ≡ dnδW(z)/dzn|z=d. The anharmonic

corrections are introduced to the time-varying shift in frequency in Eq. (1.18) as

follows,

δ fc(d, t) =
fc

2kc

[
δW2(d, t) + k−1

c (W3(d)δW1(d, t) + W1(d)δW3(d, t))

−
5z2

rms

6
W3(d)δW3(d, t) +

z2
rms

4
δW4(d, t)

]
. (1.34)

Here, δW2(d, t) is the time-varying shift introduced by W(z, t) in the harmonic ap-

proximation. Terms two and three involving the product of W1 and W3 are terms
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obtained when the shift in the equilibrium height induced by the W1(d, t) term is

introduced to z−d, and the cubic anharmonic term from W3(d, t) is rearranged for

this shift. The fourth term, the product of W3 and δW3(d, t), is the second order

perturbation correction of the cubic anharmonicity in the adiabatic approxima-

tion where potential energy fluctuations of δW3(d, t) are considered slow com-

pared to the time period of oscillation. The adiabatic approximation is valid here

because the majority of sample-induced cantilever frequency fluctuations occur

on time scales four order of magnitude smaller than the cantilever period. This

term is calculated using time-independent perturbation theory for the W3 term

[19], and extending this result to a slow time-varying term, W3(d, t). The fifth

term in Eq. (1.34) is the first order perturbation correction from the quartic term

to the time-varying shift in frequency [42], calculated under the same adiabatic

approximation. The last two perturbation corrections are proportional to z2
rms,

the mean-squared displacement of the cantilever from its equilibrium position,

and it is equivalent to half of the squared amplitude.

The measured frequency jitter on all the samples in this work [21, 32] is ob-

served to be proportional to V2
ts, and hence arises from terms that are linear in Vts

in Eq. (1.34). The terms containing W3 are proportional to V3
ts, and so do not con-

tribute to the measured jitter. The harmonic term δW2(d, t), and the quartic term

∝ δW4(d, t), are linear in Vts. The quartic term is ∝ z2
rms. While this term is not nec-

essarily negligible, it was measured to be small at even the smallest tip-sample

separations (Supporting Information of Ref. [21]). The amplitude dependence,

and the magnitude of the anharmonic correction, are further discussed in Chap-

ter 2 (Fig. (2.6)), for the case of thin-film organic polymers.

12



1.3 Calculation of the potential auto-correlation function

Classical mechanical linear-response theory has been shown to be valid for

cantilever measurements in parallel motion over thin-film organic polymers

[68, 69]. The validity of the linear response assumption will be tested for a

thin-film organic polymer, an organic transistor, and for doped Si in subsequent

Chapters. The frequency jitter must have a quadratic dependence on Vts if the

linear-response assumption is valid. Under the linear-response assumption, the

equilibrium potential autocorrelation is calculated by introducing a fictitious

time-varying charge q(t), at position (r1, z1) above the sample surface. The in-

teraction of the fictitious charge and the sample generates a reaction potential

above the sample at location (r2, z2) denoted by φ(r2, z2, t). The classical pertur-

bation Hamiltonian of this interaction at the location of the charge q(t) at (r1, z1)

is given by

Hint = q(r1, z1; t) φ(r1, z1; t). (1.35)

Classical mechanical linear response theory relates the reaction potential to

the equilibrium potential auto-correlation function via the response function

Φ̂q(ω)[46, 67, 69]

φ̂(r2, z2, f ) = q̂(r1, z1, f )Φ̂q( f ), (1.36)

Φ̂q( f ) ≡ [2πi fCδφ δφ(r1, z1, r2, z2, f ) −Cδφ δφ(0)]/(kBT ), (1.37)

where

Φ̂q( f ) ≡
∫ ∞

0
dt e−i2π f tΦq(t) (1.38)

From Eqs. (1.36) and (1.37), the equlibrium potential auto-correlation can be

written in terms of a reaction potential from the sample as

Cδφ δφ(r1, z1, r2, z2; f ) =
kBT
2π f

Im
(
φ̂(r2, z2, f )
q̂(r1, z1, f )

)
. (1.39)
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The macroscopic potential φ(t) obeys the conventional form of the Maxwell’s

equations and is related to the microscopic fluctuating potential ϕ in Eq. (1.15)

by φ = 〈ϕ(z, t)〉. The reaction potential φ(r2, z2, f ), is determined from macrosopic

electrodynamics by solving the boundary-value problem of a charge at a dis-

tance d above the sample. The solution of this boundary-value problem, and

the frequency jitter and noncontact friction calculations are shown for organic

thin-film polymers, organic transistors and doped Si samples in Chapters 2, 3

and 4, respectively.
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CHAPTER 2

MOLECULAR MOTIONS PROBED BY ELECTRIC FORCE MICROSCOPY

Fluctuations in organic thin-film polymers have been measured using Electric

Force Microscopy by Professor John Marohn and his group [20, 21, 30, 31, 67,

68, 69]. This chapter analyzes the measurements [20, 21] of the dielectric fluc-

tuations over poly(vinyl acetate) (PVAc) for frequencies around 1Hz at room

temperature. A commercial AFM cantilever was employed to measure the

power spectrum of cantilever frequency fluctuations as a function of frequency,

tip-sample distance, and tip voltage. Analogous to the previous experimental

and theoretical efforts on frequency noise measurements on thin-film organic

polymers for the parallel motion of the cantilever tip on the sample surface

[67, 68, 69], here the theory for the perpendicular motion of the cantilever tip

is developed, and a quantitative comparison to the frequency noise measure-

ments on PVAc is provided. The theory developed quantitatively explains the

dependence of the power spectrum of cantilever frequency fluctuations on fre-

quency, tip-sample distance and tip-voltage. The inputs to theory for these cal-

culations of cantilever frequency noise are the sample thickness, sample dielec-

tric spectrum, tip radius, tip-sample distance, tip voltage, cantilever resonance

frequency, and force constant. The cantilever frequency fluctuations are shown

to originate from the equilibrium fluctuations of the electrostatic potential (and

its derivatives at the cantilever tip) arising from thermal dielectric fluctuations

in the sample. This work thus provides a basis for dielectric-loss imaging of

organic thin-film polymers. It also provides a theoretical basis for interpreting

perpendicular-geometry cantilever measurements on new samples [21].
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2.1 Experiment

The EFM experiments are performed on a polyvinylacetate (PVAc) sample [21].

A PVAc layer of thickness h = 63 nm was spin cast onto a gold-covered sili-

con substrate. The scanning probe measurements on PVAc were performed at a

pressure of 0.5 × 10−6 mbar and at a temperature of 20.7 ◦C. The cantilever was

driven by a custom bulit positive feedback circuit at its resonance frequency of

fc ≈ 46.0 kHz. The position of the cantilever was extracted, and fed to a soft-

ware frequency demodulator to convert the cantilever position into a frequency

vs. time signal. The Fourier transform of autocorrelation function of frequency

fluctuations was used to obtain the frequency noise spectra. A ring-down mea-

surement was performed to determine the cantilever’s quality factor, Q ≈ 2500.

The force constant kc = 0.85 N/m was determined from the equipartition princi-

ple kc = kBT/
〈
x2

th

〉
, where the root-mean-squared amplitude

〈
x2

th

〉
of the thermo-

mechanical fluctuations was obtained from observations of cantilever position

fluctuations. Experiments were carried out as detailed in Sec. experimental

methods of Ref. [21] and Chapter 3 of Nikolas Hoepker’s thesis [20]. Further

details of experiment may be found in Refs. [20, 21, 30, 31, 67, 68, 69].

2.2 Theoretical modelling

With the cantilever perpendicular motion modelled as in Secs. 1.1.2, 1.2.2, and

1.3, it is only necessary to calculate the potential auto-correlation at the can-

tilever tip in order to calculate the cantilever frequency noise for perpendicular

motion using Eq. (1.30). As laid out in Sec. 1.3, the equilbrium potential auto-

correlation is related to the reaction potential φ(r2, z2, f ) by Eq. (1.39), in the lin-
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ear response approximation. In this section, we calculate the reaction potential

at (r2, z2) by solving the boundary-value problem of a charge q(r1, z1, t) located at

(r1, z1) above an organic thin-film polymer of thickness h, backed by a conduc-

tor. Here, z = 0 is the plane of the vacuum-sample interface, z > 0 is vacuum

where the fictitious charge is located at a distance z1 above the interface, and

z < 0 corresponds to the sample. We model the PVAc sample used in measure-

ments as a dielectric layer of thickness h over a conductor. Figure. (2.1) shows

the experimental sketch of cantilever and the PVAc sample, and the inset in the

experimental sketch shows the scanning electron microscope image of the can-

tilever tip taken by Nikolas Hoepker [20, 21]. The tip-radius is read as 40 nm

from the inset of the Figure. (2.1). Without loss of generality for a perpendic-

Figure 2.1: Electric force microscopy measurements on a thin layer of or-
ganic film of thickness h over a conductor. The cantilever tip is
positioned at a distance d above the sample surface. The inset
shows scanning electron microscope (SEM) image of the can-
tilever tip. The tip-radius is read as 40 nm from this image.
Figure reproduced from Ref.[21], with permission.
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ular motion of the cantilever, the motion is taken along z-axis, and so we only

need to calculate the autocorrelation of potential fluctuations between locations

(r1 = 0, z1) ≡ z1 and (r2 = 0, z2) ≡ z2. The Maxwell’s equations for a point charge

located at z1 in vacuum are

∇ × E = −iωµ0H, (2.1)

∇ ×H = iωε0E, (2.2)

∇ · E =
q(z1, ω)
ε0

δ(z − z1). (2.3)

Eqs. (2.1)-(2.3) can be combined to give a second-order equation for the electric

fields in vacuum:

∇2E +
ω2

c2 E =
q(z1, ω)
ε0

∇(δ(z − z1)), (2.4)

where c ≡ 1/
√
µ0ε0 is the speed of light. The spatial Fourier transform in the

plane of the interface involves an intergral over r = (x, y) as follows

Ê(k, z, ω) =

∫
dr eik·r E(r, z, ω). (2.5)

The second-order differential equation for the electric field vector in Eq. (2.4) is

written in terms of its components, in Fourier space (k, z) as

∂2Êx

∂z2 − k̃2Êx = −ik
q(z1, ω)
ε0

δ(z − z1), (2.6)

∂2Êz

∂z2 − k̃2Êz =
q(z1, ω)
ε0

∂

∂z
δ(z − z1), (2.7)

k̃ ≡
√

k2 − (ω/c)2. (2.8)

The solution to these equations is

Êx =
ik̃
k

(
q(z1, ω)

2ε0

)
e−k̃|z−z1 | +

ik̃
k

Arxne−k̃z, (2.9)

Êz =
q(z1, ω)

2ε0
e−k̃|z−z1 |(2Θ(z − z1) − 1) + Arxne−k̃z, (2.10)
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with k aligned along x-axis. The magnetic field in vacuum is calculated from

∇ × E = −iωµ0H with Êx and Êz given by Eqs. (2.9) and (2.10), respectively. The

magnetic field in vacuum may be written in a compact form as,

Ĥy = −
ω

µ0kc2 Êz. (2.11)

The absence of charge carriers in the dielectric gives ∇ · E = 0 as an additional

Maxwell equation inside the dielectric. These equations can be solved in a sim-

ilar fashion to obtain the following general solution for the electric fields in the

dielectric in 0 < z < −h,

Êx = C1eη̃z + C2e−η̃z, (2.12)

Êz =
ik
η̃

(C1eη̃z −C2e−η̃z), (2.13)

Ĥy =
−iωεrel(ω)
η̃µ0c2 (C1eη̃z −C2e−η̃z), (2.14)

η̃ =
√

k2 − (ω/c)2εrel(ω). (2.15)

These field equations, Eqs. (2.9)-(2.11) and (2.12)-(2.14), are solved using the con-

tinuity conditions for Ex, ε(ω)Ez and Hy at dielectric-conductor interface located

at z = −h and at vacuum-dielectric interface located at z = 0. The following 3

conditions are obtained when these continuity conditions are written at both the

interfaces,

C1e−η̃h + C2eη̃h = 0, (2.16)

ikεrel(ω)
η̃

(C1 −C2) = −
q(z1, ω)

2ε0
e−k̃z1 + Arxn, (2.17)

C1 + C2 =
ik̃
k

(
q(z1, ω)

2ε0

)
e−k̃z1 +

ik̃
k

Arxn. (2.18)

Using these conditions, the reaction field amplitude Arxn is obtained.

Arxn = −
q(z1, ω)

2ε0
e−k̃z1

(
εrel(ω) − θd

εrel(ω) + θd

)
, (2.19)

θd ≡
η̃

k̃
tanh η̃h. (2.20)
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The sample reaction field at (k, z) due to a point charge at z1 is Êz,rxn(k, z, ω) =

Arxne−k̃z from Eq. (2.10). The reaction potential is related to this reaction field by

Ez,rxn = −∂φ(z, ω)/∂z. Thus, the reaction potential in k-space is φ(z, ω) = Ez,rxn/k̃.

The reaction field at z = z2 in r-space for r ≡ (x, y) = (0, 0) is obtained by taking

the inverse of the spatial Fourier transform as

φ(z2, ω) = −
q(z1, ω)

4πε0

∫ ∞

0
dk

k
k̃

e−k̃(z1+z2)
(
εrel(ω) − θd

εrel(ω) + θd

)
. (2.21)

The reaction potential in Eq. (2.21) is inserted into Eq. (1.39) to obtain the po-

tential autocorrelation function in the linear response assumption for r1 = 0 and

r2 = 0. Further, the quasistatic limit c→ ∞ is applied to obtain an expression for

the potential autocorrelation that is valid for the low frequencies probed by the

measurement.

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) = −
kBT

4πε0ωh
Im

∫ ∞

0
dye−y(z1+z2)/h

(
εrel(ω) − θd

εrel(ω) + θd

)
,

θd = tanh y. (2.22)

With Eq. (2.22) as the potential autocorrelation in Eq. (1.27), the rest of the cor-

relation functions in Eq. (1.30) are calculated by taking derivatives as explained

in Sec. 1.2.2. These correlation functions are substituted into Eq. (1.30) to ob-

tain the power spectrum of cantilever resonance frequency fluctuations at the

equilibirum position of cantilever (0, 0, d) over thin-film organic polymers:

Pδ fc( f ) =

(
fcVts

kc

)2 kBT ε′′rel(ω)
2πε0ωh

[
(c(2)(d))2J0(d, d, ω) + 4c(1)(d)c(2)(d)J1(d, d, ω)

+2c(0)(d)c(2)(d)J2(d, d, ω) + 4
(
c(1)(d)

)2
J2(d, d, ω) − 4c(d)c(1)(d)J3(d, d, ω)

+c(2)(d)J4(d, d, ω)
]
, (2.23)

where

Jn(z1, z2, ω) ≡
∫ ∞

0
dy(−y/h)ne−y(z1+z2)/h

(
tanh y

|εrel(ω) + tanh y|2

)
. (2.24)
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2.3 Results and discussion

Figure 2.2: Spectral density of cantilever frequency fluctuations at heights
d = 90 nm (blue, upper line) and 240 nm (red, lower line), for
tip voltages ranging from −4 V to +4 V, measured on PVAc. A
1/f guideline is shown. Figure reproduced from Ref.[21], with
permission.

Figure (2.2) shows measured power spectra of cantilever resonance fre-

quency fluctuations on PVAc for two tip-sample distances, d = 90 nm and

d = 240 nm, and a range of voltages from −4 V to 4 V. Two grey regions are

marked as L and H. Region L is a low-frequency region where the frequency

noise spectra are ∝ 1/ f while region H is a high frequency region around 25 Hz

where there are spikes in the spectrum. The region beyond the spikes is ob-

served to increase ∝ f 2. This f 2-dependence of the power spectrum is in-

dependent of tip voltage and tip-sample distance, and so is attributed to the

noise in the interferometer displacement sensor [1, 21, 39, 69]. This instrumen-

tation noise does not interfere with measurements below 10 Hz, the focus of

the analysis presented here. On the other hand, the 1/ f region and the spikes

around 25 Hz of the spectra depend on tip voltage and tip-sample distance.

More noise (blue line) is observed when the tip is closer to the sample, and so

these features are attributed to electrostatic tip-sample interactions. These low-
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frequency features are further analyzed by studying the voltage dependence of

the power spectrum integrated over a well defined frequency range. This inte-

Figure 2.3: Cantilever frequency jitter as a function of tip voltage at var-
ious tip-sample separations (50 nm - ^, 62 nm - ×, 90 nm - �,
180 nm - +, 240 nm - ◦). JL in A is integration from 0.4 to 3 Hz of
L-region in Fig. (2.2) and JH in B is integration from 23 to 25 Hz
of H-region in Fig. (2.2). Solid lines are fits to experimentally
measured data: JL is ∝ V2

ts and JH is ∝ V4
ts. Figure reproduced

from Ref.[21], with permission.

grated power spectrum as defined in Eq. (1.28), called frequency jitter, is shown

in Fig. (2.3) at various tip-sample distances. In Fig. (2.3A), the power spectrum

is integrated from 0.4 to 3 Hz over the L-region, and shows JL ∝ V2
ts. In Figure.

(2.3B), the power spectrum is integrated from 23 to 25 Hz over the H-region in

Fig. (2.2), and shows JH ∝ V4
ts. Hoepker [20, 21] measured the stage vibration

spectrum using laser interferometry and showed that the jitter in Fig. (2.3B) is
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a consequence of external mechanical vibrations [20, 21]. Turning our atten-

tion to low frequency noise originating in tip-sample electrostatic interactions

[23, 50, 51, 64, 65, 68, 69], the L-region in Fig. (2.2), the frequency spectra shows

a 1/ f -dependence as predicted by Eq. (2.23) of the model when the dielectric

function εrel(ω) = ε′rel(ω)− iε′′rel(ω) is independent of frequency. The independence

of εrel(ω) on frequency is seen from the dielectric measurements at low frequen-

cies in Fig. (2.5). The quadratic dependence in tip voltage of frequency jitter JL

in Fig. (2.3A) is also obtained from our model by the integrating power spec-

trum in Eq. (2.23) from 0.4 to 3 Hz. This finding validates our use of linear

response assumption in Sec. 1.3 in the calculation of the equilibrium correlation

functions in Eq. (1.30). Any non-linear behaviour of the frequency jitter would

have given higher orders of dependence on voltage. With the expression for

the power spectrum as in Eq. (2.23), a model for the tip-sample capacitance c(z)

as a function of tip-sample height z is needed, in order to quantitatively fit our

theory to measured data. Fig. (2.4) shows the measured capacitance second-

derivative (◦) inferred from Eq. (1.17) for known values of fc and kc, and the

measured static shift in resonance frequency ∆ fc. The figure also shows a cal-

culated capacitance second-derivative from sphere and cone models versus tip-

sample distance. Following Cherniavskaya et al.[10], the irregular pyramid of

cantilever tip is modelled as cone with a sphere at its tip. The sphere model for

tip-sample capacitance consists of a sphere charge of radius R representing the

probe tip with centre located at a height d + R above the vacuum-sample inter-

face. The sample is represented by a dielectric layer with relative permittivity εr

and thickness h over a conductor. The capacitance from this model was used to

quantitatively fit the data from parallel motion measurements on organic thin-
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Figure 2.4: Measured capacitance second derivative, C2, versus tip height
(◦). The solid lines are the predicted contributions from a 40 nm
sphere, a cone with a half angle of 16 deg, and both sphere plus
cone. The dashed lines show predictions for a cone angle of
20 deg. Inset: Fit coefficient c in JH = c V4

ts from Fig. (2.3B) (cir-
cles) and prediction (line) from vibration noise determined by
interferometry. Figure reproduced from Ref.[21], with permis-
sion.

film polymers in the earlier work [67, 68, 69], with good agreement.

c(z) = 4πε0R
∞∑

n=1

(
sinhα

sinh nα

)
,

α = cosh−1
[
1 +

z
R

+
h
εrR

]
. (2.25)

The formula for the second derivative of capacitance in the cone model is ob-

tained using a uniform line charge approximation [10]. For a small cone half

angle θ and a tip-sample height much less than the length of the line charge (L),
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z << L, and the second derivative of the cone capacitance is [10]

c(2)(z) =
8πε0

β2z
,

β = ln
(
1 + cos θ
1 − cos θ

)
. (2.26)

Figure 2.5: Measured dielectric spectrum of PVAc. Figure reproduced
from Ref.[21], with permission.

In Fig. (2.4), the second derivative of capacitance from sphere model in Eq.

(2.25) (with R = 40 nm (from Fig. (2.1)) and εr from Fig. (2.5)) better predicts

the tip-sample capacitance at small tip-sample distances, while the cone model

(Eq. (2.26)) works better at large tip-sample distances. A cone with a half angle
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of θ = 16 deg was used in the calculation of the solid lines (green, magenta),

while the dashed lines (green, magenta) use a cone angle of 20 deg. The sum of

the sphere and cone contributions (θ = 16 deg), indicated as total in Fig. (2.4),

is in close agreement with the second derivative of capacitance inferred from

measurements of static shift in resonance frequency [20]. This agreement vali-

dates the use of the cone-sphere model in calculations for further quantitative

comparison to frequency jitter. Fig. (2.5) is the measured dielectric spectrum of

PVAc, and it is seen that ε′′( f ) is a constant in the frequency range 0.4 to 3 Hz.

This measured dielectric spectrum is used in the calculations of frequency jit-

ter. Eq. (2.23) predicts a 1/ f dependence for a constant ε′′( f ), and thus the 1/ f

dependence observed in the low frequency region of frequency spectra mea-

surements in Fig. (2.2), is in agreement with the model. The tip-sample distance

dependence and the magnitude of the noise are studied by calculating the fre-

quency jitter from Eqs. (1.28) and (2.23), with fmin = 0.4 Hz and fmax = 3 Hz. In

spite of the better fit to the second derivative of capacitance seen with the cone

plus sphere model of capacitance in Fig. (2.4), only the sphere model is used

in the jitter calculations. This is justified because the cone contribution to jitter

was shown to be negligible [20, 21] compared to the sphere contribution to jitter.

Hence, Figs. (2.6) and (2.7) only show the sphere contribution to jitter.

Fig. (2.6) shows the comparison of experimentally obtained jitter values (◦)

for different tip-sample distances. The figure also shows the jitter calculated

from Eqs. (1.28) and (2.23) plus a thermal noise floor of thermomechanical posi-

tion fluctuations (solid lines) for two effective tip-sample distances –d (top) and

d + R (bottom)– versus the tip-sample height. The spectrum of frequency noise

due to thermomechanical position fluctuations is independent of frequency and
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Figure 2.6: Jitter measured (◦) on PVAc versus tip-sample height. Solid
lines are jitter calculated from the sphere model of capacitance
by integrating Eq. (2.23) from 0.4 to 3 Hz. The solid line (bot-
tom) is calculated for an effective tip-sample height of d + R,
with the total charge located at the centre of the sphere. The
solid line (top) is for an effective tip-sample height of d when
the charge is located at the bottom of the sphere. The jit-
ter is predicted to lie within the shaded grey region, in excel-
lent agreement with experiment. The dashed lines add contri-
butions from anharmonic tip-sample interactions to the solid
lines. Figure reproduced from Ref.[21], with permission.
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given by[1, 21, 39, 68, 69]

Ptherm
δ fc ( f ) =

kBT fc

2πx2
rmskcQ

, (2.27)

where xrms = 32 nm is the root-mean-squared cantilever amplitude in the experi-

ment and Q is the cantilever quality factor determined experimentally and given

in Sec. 2.1 as 2500 [21, 68]. A shaded grey area is shown between the lower and

upper bound (solid lines) from the theoretical calculation to mark the region in

which the experimental data may lie. The upper and lower bounds for jitter are

obatined by using two different effective heights for the equilibrium position of

the charge. The jitter calculation needs merging of two different models: One is

the point charge located above the sample to calculate potential autocorrelation

function in Sec. 1.3, and the other is the model for tip-sample capacitance in

Eq. (2.25) where the spherical tip of radius R is located at a height z above the

sample. The lower bound for jitter is obtained by having the point charge in

the calculation of potential autocorrelation at d + R, at the centre of the spherical

charge of radius R in the capacitance formula. The upper bound of jitter is ob-

tained when the point charge is located at a height d above the sample, which is

the bottom of the spherical tip of radius R. Excellent agreement is observed be-

tween measured jitter and jitter calculation with an effective tip-sample height

of d, with the charge is located at the bottom of the sphere. The dashed lines

in Fig. (2.6) are the anharmonic corrections from the quartic term in Eq. (1.34)

for the effective tip-sample heights d and d + R. It is seen from the figure that

anharmonicity only enhances jitter at the smallest values of tip-sample heights,

and overall does not contribute much to total jitter. Further, from Eq. (1.34) the

anharmonic correction from the quartic term is ∝ z2
rms ≡ A2/2 where A is the am-

plitude. Hoepker [20] studied the frequency jitter dependence on amplitude,

and recorded the same order of dependence as predicted by Eq. (1.34) for jitter.
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Figure 2.7: Total jitter calculated (topmost solid line) with an effective tip-
sample height of d and jitter data (◦) versus tip-sample height,
drawn from Fig. (2.6). The rest of the lines are contributions
to the total jitter (top most solid line) from individual terms
in the power spectrum Eq. (2.23) integrated from 0.4 to 3 Hz.
In increasing order of magnitude of contribution, these are: J0

(dashed line), arising from the autocorrelation of voltage fluc-
tuations, J1 (dot-dashed line), from a cross-correlation of elec-
tric field and voltage fluctuations, J2 (dotted line), arising from
both the autocorrelation in electric field and cross-correlation of
electric field gradient and voltage, J3 (solid line with ◦), arising
from a crosscorrelation of electric field and electric field gra-
dient, and J4 (solid line with �), arising from autocorrelation
of field gradient fluctuations. Figure reproduced from Ref.[21],
with permission.
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Fig. (2.7) shows the various contributions to total jitter from different terms

in the power spectrum. Terms plotted include auto- and cross-correlation terms

of fluctuations in the potential, the z component of the electric field and z-

gradient of electric field in z-direction, integrated from 0.4 to 3 Hz. The total

jitter (solid line) is practically the same as the jitter calculated in Fig. (2.6) for

an effective tip-sample height of d and measured jitter is shown as ◦. The jitter

contributions obtained when the terms in Eq. (2.23) are integrated separately

from 0.4 to 3 Hz are also indicated in the Figure. The dominant term in these

contributions arising from J4, which is the autocorrelation term of electric field

gradient fluctuations, while the least contributing term is J0 corresponding to

the autocorrelation of potential fluctuations. Unlike Israeloff and co-workers

[12, 13, 50, 51, 64, 65], who interpreted their measurements of cantilever fre-

quency fluctuations over polymer films to be resulting solely from voltage fluc-

tuations at tip driven by polarization fluctuations in the sample, our analysis

shows that the electric field gradient fluctuations and other contributions (Fig.

(2.7)) at the tip need to be included in the calculation of total jitter. We find that

their magnitude is greater than the jitter contribution from voltage fluctuations.

2.4 Summary

The frequency noise measured by EFM on the surface of a thin polymer film is

shown to be arise from the dielectric fluctuations of the polymer. The assump-

tion of linear response is validated by the observed quadratic voltage depen-

dence of the integrated frequency noise. Solving the boundary-value problem

to calculate the reaction potential from the sample due to the introduction of

a fictitious charge connects the equilibrium correlation functions in the linear
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response limit to the microscopic dielectric fluctuations of the polymer. In-

putting the measured dielectric spectrum and the physical parameters of the

experimental set up into the theory reproduces the observed dependencies on

frequency, voltage and tip-sample separation. It is shown that any external

mechanical vibrations can be distinguished from the frequency noise induced

by molecular motions unambiguously due to their appearance at slightly high

frequencies and their quartic voltage dependence [20, 21]. The theory shows

that the measurements around 1 Hz are from the dynamics in the dielectric

spectrum of PVAc in the 0.4 to 3 Hz frequency range. This frequency range

for PVAc at room temperature is associated with orientational dynamics of

polar polymer segments and α-relaxation associated with the glass transition

[12, 13, 47, 50, 51, 64, 65]. Thus, it is established that the EFM measurements in

perpendicular motion are related to the molecular motions of the sample using

the theoretical framework presented in this chapter.
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CHAPTER 3

CHARGE CARRIER DYNAMICS AND INTERACTIONS IN ELECTRIC

FORCE MICROSCOPY

Electric force microscopy measures surface electrostatic potential maps in elec-

tronic devices as a function of temperature, charge density, and applied bias

[7, 28, 36, 63]. In this chapter, motivated by the electric force microscopy fluc-

tuation measurements on organic transistors in the Marohn group, a theory

for frequency jitter measurements is developed that is applicable to samples in

which there are fluctuations from charge carrier dynamics present in addition

to dielectric fluctuations. Chapter 2 showed theoretical calculations and exper-

imental measurements for organic polymer thin-films, and established that the

frequency noise measured on these films is due to the thermal dielectric fluctu-

ations in the polymer. Here, we use the same linear response theory assump-

tions as in Chapters 1 and 2 to calculate the experimental observables. A differ-

ent boundary-value problem is solved to calculate the reaction potential from a

sample that has charge carrier dynamics in the organic polymer. Several works

have studied the effect of charge carriers in semiconductors on the calculation of

the Casimir-Lifshitz force [14, 44, 60]. Similar to these studies, Maxwell’s equa-

tions coupled to a transport equation for the free charges is used to calculate

the cantilever frequency noise in EFM. Current fluctuation behaviour of organic

semiconductors has been studied using trapping-detrapping and charge perco-

lation models in the films [8, 9]. It also has been shown recently that inter-carrier

interactions in organic field-effect transistors enhance the performance of elec-

tronic ratchet circuits [48]. The model shown in this chapter describes the fre-

quency noise generated by a molecular material with mobile charges. A main

focus in organic electronics has been to develop atomic-scale models of charge
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transport [3, 6, 17, 18, 35, 38, 41, 66]. The input to these models is electron-

transfer equations and a description of the energetic disorder in the sample’s

ensemble of molecules. The models thus developed are used to predict device

current versus temperature and electric field. These models generally neglect

the long-range inter-carrier Coulomb interactions. In the few cases where long-

range inter-carrier interactions have been considered, the effect of inter-carrier

interactions was apparent only in a sophisticated electronic ratchet device [48]

or in a simpler transistor device but at extremely high charge concentrations

[18]. In contrast, the model developed in this chapter is a macroscopic model of

charge fluctuations in an organic transistor that accounts for long-range inter-

carrier interactions. The inter-carrier Coulomb interactions are predicted to

suppress voltage fluctuations (and hence cantilever frequency noise) over the

transistor by orders of magnitude, even at very low concentrations. The work

presented here thus provides a new approach for calculating and observing the

effects of inter-carrier Coulomb interactions in organic semiconductors.

3.1 Theoretical modelling

3.1.1 Maxwell’s equations coupled to charge transport

The cantilever frequency noise spectrum for perpendicular motion is given by

Eq. (1.30), and in the linear response assumption, the equilibrium potential au-

tocorrelation function is related to the reaction potential by Eq. (1.39). Similar

to the boundary-value problem in Sec 2.1, z = 0 is the vacuum-sample inter-

face, z < 0 is the sample, and z > 0 is vacuum. The cantilever motion is taken
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along the z-axis, the position of the time-varying charge q(r1, z1, t) is taken as

(r1 = 0, z1) ≡ z1, and the reaction potential from the sample φ(r2, z2, f ) in Eq.

(1.39) is calculated at (r2 = 0, z2) ≡ z2. The field equations in vacuum are given

by Eqs. (2.9)-(2.11). Maxwell’s equations in the semiconductor sample are

∇ × E = −iωµ0H, (3.1)

∇ ×H = iωε(ω)E + J, (3.2)

ε(ω)∇ · E = n ≡ e (ρ+ − ρ−) , (3.3)

where ε(ω) is the dielectric function of the medium, n is the total charge den-

sity of positively and negatively charged carriers in the medium, and ρ+/− is

the number density of positive/negative charge carriers. The current in the

medium J is the sum of an Ohmic term and a diffusive term as follows

J = σ0E − D∇n. (3.4)

This current includes Coulomb interactions and carrier density fluctuations in

the medium. Two simplifying assumptions are made here. One is the charge

carrier density of both positive and negative charge carriers is ρ̄, and so total

charge carrier density is 2ρ̄. The other is the use of Einstein relation between dif-

fusion and mobility (µ) D = µkBT/e, and the macroscopic conductivity-mobility

relation σ0 = 2eµρ̄. Assuming for simplicity that both positive and negative

carriers have the same diffusion constant, the conductivity σ0 and diffusion co-

efficient D are related by

σ0 =
2ρ̄e2D
kBT

. (3.5)

Using Eqs. (3.1)-(3.4), a second-order differential equation for the electric field

vector is obtained

∇2E +
ω2εeff(ω)

c2 E = ∇(∇ · E)
(
1 − i

ωεrel(ω)
c2 D

)
, (3.6)
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εeff(ω) ≡ εrel(ω) − i(Ω/ω), (3.7)

Ω ≡ σ0/ε0. (3.8)

Here, εeff(ω) is the effective dielectric function, and εrel(ω) = ε(ω)/ε0 is the relative

dielectric function of the medium. The effective dielectric function for a medium

is obtained when the current in a dielectric medium is given by the Ohm’s law

[24, 44]. The electric field vector in Eq. (3.6) is written in terms of its components

Ex and Ez for the transverse (Ey = 0) magnetic mode [14, 59] as

∂2Êx

∂z2 +

(
s̃2 − ik2 Ds2

ω

)
Êx = −ik

(
1 −

is2D
ω

)
∂Êz

∂z
,

iDs2

ω

∂2Êz

∂z2 +
(
s̃2 − k2

)
Êz = −ik

(
1 −

is2D
ω

)
∂Êx

∂z
, (3.9)

s2 =
ω2εrel(ω)

c2 , s̃2 =
ω2εeff(ω)

c2 . (3.10)

Equations in (3.9) are second-order coupled differential equations for the electric

field components Ex and Ez. These equations are decoupled by going to fourth-

order differential equations in both the components [14, 59](
∂2

∂z2 − η
2
+

) (
∂2

∂z2 − η
2
−

)
Êx,z = 0, (3.11)

η2
+ = k2 +

κ2

εrel(ω)
+

iω
D
, (3.12)

η2
− = k2 − s̃2, (3.13)

κ2 ≡
σ0

Dε0
. (3.14)

The conductivity and diffusion relation in Eq. (3.5) when used in Eq. (3.14) gives

the squared inverse Debye screening length in the medium with unit relative

dielectric constant κ2 = 2ρ̄e2/ε0kBT . The variable Ω in Eq. (3.8) is a frequency

associated with the time scale of carriers diffusing one Debye screening length

in vacuum. The solutions of the electric field components to these fourth order

differential equations are of the form

Êx = A+eη+z + A−eη−z, (3.15)
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Êz =
iη+A+

k
eη+z +

ikA−
η−

eη−z, (3.16)

Ĥy =
−iωs̃
µ0η−

A−eη−z, (3.17)

where A− and A+ are two unknown constants. The continuity conditions of Ex,

Hy, and ε(ω)Ez at the vacuum-sample interface (at z = 0) are used to determine

the unknown quantities. Solving these three boundary conditions at z = 0 using

field equations in vacuum (Eqs. (2.9)-(2.11)), and the field equations in semi-

conductor (Eqs. (3.15)-(3.17)) gives Arxn, the reaction generated from the semi-

infinite semiconductor in the presence of a point charge,

Arxn = −
q(z1, ω)

2ε0
e−k̃d

(
εrel(ω) − θs

εrel(ω) + θs

)
, (3.18)

θs ≡
1
η+k̃

(
k2 +

(
η+η− − k2

1 − iΩ/ωεrel(ω)

))
. (3.19)

This Arxn has the same form as that for the thin-film organic polymer in Eq. (2.19)

with a new θs as in Eq. (3.19). Similar to Eq. (2.21), the reaction potential from

the semiconductor is obtained by replacing θd by θs in Eq. (2.21). The sample re-

action potential thus obtained is then inserted into Eq. (1.39) to obtain the equi-

librium potential auto-correlation function in the linear response assumption.

Applying the quasistatic limit c → ∞, gives an expression for the potential au-

tocorrelation that is valid at the low frequencies pertinent to the measurements:

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) = −
kBT

4πε0ωd
Im

∫ ∞

0
dye−y(z1+z2)/d

(
εrel(ω) − θs

εrel(ω) + θs

)
,

θs =

(
1

1 − β

) 1 − β  y√
y2 + iω(1 − β)/Ωd

 ,
(3.20)

β ≡
iΩ

ωεrel(ω)
, (3.21)

Ωd ≡ D/d2. (3.22)

The voltage noise in Eq. (3.20) is generated in vacuum above the sample when

interacting charge carriers and dielectric fluctuations are (nonlinearly) coupled
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in a semiconductor sample. This expression involves the conductivity σ0, the

carrier diffusion D, and the dielectric spectrum εrel(ω) of the sample as inputs.

Although deviations from the Einstein relation D = µkBT/e is observed in or-

ganic semiconductors [63], we nevertheless employ the Einstein relation here as

a simplifying assumption for our calculations. The calculation of conductivity

σ0, diffusion constant D and dielectric function εrel(ω) from microscopic proper-

ties is outside the scope of this work.

The autocorrelation of potential fluctuations in Eq. (1.39) can be shown to be

related to the Casimir-Polder free energy of interaction between an atom and

body calculated in Ref.[44]. The interaction free energy F(d) of an atom with a

static polarizability α located in vacuum at distance d from the body is

F(d) =
α

2
∂2

∂z1∂z2
〈δφ(z1) δφ(z2)〉|z1=z2=d, (3.23)

which can be written in terms of the integrated spectrum of electric field fluctu-

ations as

F(d) =
α

π

∫ ∞

0
dωCδEz δEz(d, d, ω). (3.24)

The CδEz δEz(d, d, ω) in Eq. (3.24) is the same as C11(d, d, ω) from Eq. (1.27).

The voltage noise arising exclusively from dielectric fluctuations is obtained

by setting the charge carrier density to 0 (ρ̄ = 0) in Eq. (3.20). In this limit, the

sample physically represents a dielectric continuum, and the voltage noise is

from a semi-infinite dielectric slab,

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) =
kBT

2πε0ω(z1 + z2)
ε′′rel(ω)

|εrel(ω) + 1|2
, (3.25)

where

εrel(ω) = ε′rel(ω) − iε′′rel(ω). (3.26)
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The semi-infinite dielectric limit in Eq. (3.25) is also obtained in Chapter 2, when

the thickness of the thin film organic polymer goes to infinity, i.e., h → ∞ in Eq.

(2.20), and the voltage noise is calculated in the quasistatic limit. Another limit

of interest is when εrel(ω) = 1 and the charge carrier density becomes vanishingly

small, ρ̄ → 0. In this limit, the voltage noise above the sample arises entirely

from the dynamics of dilute charge carriers, and a linear dependence in ρ̄ is

obtained,

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) =

(
ρ̄e2D

4πε2
0ω

2d

)
Re

∫ ∞

0
dy e−y(z1+z2)/d

 √
y2 + iωd2/D − y√

y2 + iωd2/D

 .
(3.27)

The same expression for voltage noise is obtained from non-interacting charges

diffusing in space for z < 0, when these charges are confined below the interface

at z = 0 by a reflecting boundary condition as follows,

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) = 2ρ̄
∫

dri

∫ ∞

0
dzi

∫
dr f

∫ ∞

0
dz fφ(ri, zi + z1)φ(r f , z f + z2)

×

∫ ∞

0
dt cos(ωt)K‖(r f , ri, t)K⊥(z f , zi, t), (3.28)

φ(r, z) =
e

4πε0
√

r2 + z2
, (3.29)

K‖(r f , ri, t) ≡
1

4πDt
e−(r f−ri)2/4Dt, (3.30)

K⊥(z f , zi, t) =
1

√
4πDt

(
e−(z f−zi)2/4Dt + e−(z f +zi)2/4Dt

)
. (3.31)

Here, K‖ is the diffusion propagator in the xy plane, and K⊥ is the diffusion prop-

agator in z-direction for charge motion confined to z < 0. The diffusion constant

is taken to be the same in all 3 dimensions. Eq. (3.28) when evaluated gives the

same expression as in Eq. (3.27). Hence, the voltage noise of our model starting

from the Maxwell’s equations coupled to diffusive charge transport, recovers

the non-interacting charge diffusion result from Eq. (3.28) in the dilute carrier

density limit (ρ̄ → 0) in vacuum. Having established that this model correctly
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predicts voltage noise in the limiting cases when noise is due to 1) dielectric fluc-

tuations, and 2) non-interacting charge carrier diffusion alone, we are now in a

position to study the effects of introducing coupling between dielectric fluctua-

tions, carrier dynamics, and Coulomb interactions between the charge carriers.

The numerical calculations in Sec. 3.2 explore these properties.

3.2 Results and Discussion

The numerical calculations of the voltage noise, and the spectral density of fre-

quency fluctuations, are plotted against f = ω/2π for a wide range of frequen-

cies, and show experimentally accessible frequencies ranging from tenths of Hz

to hundred Hz. Carrier mobilities in organic semiconductors range over sev-

eral orders of magnitude between 10−14 m2V−1s−1 to 10−6 m2V−1s−1 [2, 11, 70].

For these calculations, an intermediate value of mobility in these materials

µ = 10−10 m2V−1s−1 is used. The diffusion constant corresponding to this mo-

bility is obtained from the Einstein relation at T = 300 K, D = 2.6 × 10−12 m2s−1.

Two frequencies are connected to transport: Ω ≡ κ2D is associated with carrier

diffusion over a Debye length in vacuum, and Ωd ≡ D/d2 is associated with

carrier diffusion over a distance comparable to the tip-sample distance.

Figure (3.1) shows the spectral density of voltage fluctuations at a tip-sample

height of d = 100 nm due to Coulomb interactions and carrier dynamics in the

absence of dielectric fluctuations, that is in vacuum (εrel = 1). In the limit of

ω >> Ω and ω >> Ωd for εrel = 1, the voltage noise in Eqs. (3.20) and (3.28) goes

to the same expression,

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) =
kBTΩ

4πε0(z1 + z2)ω2 . (3.32)
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Figure 3.1: Autocorrelation function of fluctuations in potential, denoted
as C00( f ) on the y-axis, vs. frequency, at a tip-sample height
d = 100 nm for charge carriers diffusing in vacuum. Solid
curves for interacting carriers are calculated from Eq. (3.20)
with εrel = 1, while dashed curves for non-interacting carriers
are calculated using Eq. (3.28). The charge carrier densities are
as indicated. Figure reproduced from Ref.[32], with permis-
sion.

Eq. (3.32) is proportional to the charge carrier density, and inversely propor-

tional to ω2. In the opposite limit of ω << Ω, and ω << Ωd, the voltage noise

is independent of frequency, and depends on carrier density to all orders. For

a high carrier density limit in addition to the low frequency limit, the voltage

noise in Eq. (3.20) is inversely proportional to ρ̄ since Ω ∝ ρ̄,

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) =
kBT

2πε0Ω(z1 + z2)
. (3.33)

The solid lines in Fig. (3.1) show these two limits from Eqs. (3.32) and (3.33).

The voltage noise in the high frequency limit is proportional to carrier density

and to f −2, while the low frequency limit is inversely proportional to carrier
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density, and ∝ f 0. The dashed lines correspond to the calculations of voltage

noise of non-interacting charge carrier diffusion from Eq. (3.28). These dashed

lines, in the high frequency limit, are proportional to f −2 and carrier density, and

are indistinguishable from the solid lines. Thus, in the high frequency limit the

carrier interactions are not important in Eq. (3.20). In the low frequency limit,

the dashed lines are ∝ f 1.5 and ∝ ρ̄, and do not show the suppression of noise

with increase in carrier density due to Coulomb interactions as observed in the

solid-line calculations.
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Figure 3.2: Autocorrelation function of fluctuations in potential, denoted
as C00( f ) on the y-axis, vs. frequency, at a tip-sample height
d = 100nm for charge carriers diffusing in a dielectric medium.
Various charge densities are indicated and the characteristic
frequencies are marked f1, f2 and f3. Details in text. Figure re-
produced from Ref.[32], with permission.

Figure (3.2) shows the spectral density of voltage fluctuations for various

charge carrier densities from Eq. (3.20). Fig. (3.2) differs from the solid lines in
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Fig. (3.1) in having a complex-valued dielectric function of the material rather

than vacuum (εrel = 1). The dielectric function of the material is taken to be

a frequency independent quantity, with ε′rel = 4 and ε′′rel = 0.05. Thus, Fig. (3.2)

allows us to study the effects of carrier interactions and dynamics in the absence

of frequency dependence of the dielectric function. The solid line is voltage

noise spectrum for ρ̄ = 0 in Eq. (3.20), and is ∝ f −1. In the high frequency limit,

all of the broken curves representing non-zero charge densities converge to the

ρ̄ = 0 result. In this limit, charge carrier dynamics and interactions are not seen

and all the broken curves converge to the pure dielectric (ρ̄ = 0) result.
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Figure 3.3: Power spectrum of cantilever resonance frequency fluctuations
denoted Pδ fc( f ) as a function of frequency, at a tip-sample
height d = 100 nm above the vacuum-sample interface for
the same parameters as in Fig. (3.2). Figure reproduced from
Ref.[32], with permission.

In the low frequency limit, the voltage noise spectrum for the broken curves

is ∝ f −1, but depends only on κ2 = 2ρ̄e2/ε0kBT and is independent of the car-
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rier mobility and diffusion constant. In this limit, Eq. (3.20) depends on ρ̄ to

all orders and carrier interactions are responsible for the suppression in noise

with increasing charge carrier density evident in Fig. (3.2). The broken curves

corresponding to non-zero ρ̄ in Fig. (3.2) show three characteristic frequencies,

f1 < f2 < f3. For ε′′ << ε′, these frequencies are numerically determined to be

approximately

f1 ≈

√
Ωd

Ω

(
Ω′′

2π

)
, (3.34)

f2 ≈
Ω′

2π
, (3.35)

f3 ≈
Ω2

2πΩ′′
. (3.36)

Here,

Ω′(ω) ≡
Ωε′rel(ω)
|εrel(ω)|2

, Ω′′(ω) ≡
Ωε′′rel(ω)
|εrel(ω)|2

, (3.37)

are two additional frequency scales obtained from Ω (modified by the relative

dielectric function of the material). The frequency regimes when partitioned

with respect to f1, f2 and f3 can be interpreted physically for ρ̄ = 1025m−3 in Fig.

(3.2). In the low frequency regime ( f < f1) corresponding to the longest time

scales, the voltage noise spectrum attains its low frequency asymptotic static

behaviour from the inter-carrier interactions in the dielectric material. In the

plateau region ( f1 < f < f2) in Fig. (3.1), voltage fluctuations are independent

of frequency, and the voltage noise spectrum arises primarily from interacting

carriers in vacuum. In the intermediate regime ( f2 < f < f3) regime, the voltage

noise is ∝ f −2 and the voltage noise spectrum arises from non-interacting charge

carriers diffusing in vacuum in the presence of the charge density indicated in

Fig. (3.1). In the high frequency asymptotic limit ( f > f3) reflecting the shortest

timescales, no effects from carrier transport and interactions are seen, and a pure

dielectric (ρ̄ = 0) result is observed for all charge densities.
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Fig. (3.3) is the spectral density of frequency fluctuations calculated from the

voltage noise spectrum in Eq. (3.20) using Eqs. (1.27) and (1.30). The parameters

used are the same as those for the voltage noise spectrum in Fig. (3.2). The

calculation of the power spectrum of frequency fluctuations requires a model

for the tip-sample capacitance. In Chapter 2, an approximate expression for the

capacitance Eq. (2.25) is used– a charged sphere of radius R over a dielectric slab

of thickness h on a conductor. Here an exactly correct expression for a charged

sphere of radius R with centre at a height d + R above the semi-infinite dielectric

slab with a relative dielectric function ε′rel(0) is used,

c(d) = 4πε0R
∞∑

n=1

(
ε′rel(0) − 1
ε′rel(0) + 1

)n−1 sinhα
sinh nα

, (3.38)

α = cosh−1(1 + d/R). (3.39)

In this Chapter, Eq. (3.38) is used to compute the tip-sample capacitance with

R = 40 nm and Vts = 5 V, fc = 65 kHz, and kc = 3.5 Nm−1 are used to compute

the power spectrum of frequency fluctuations Pδ fc( f ) via Eq. (1.30). Fig. (3.3)

shows similar frequency regimes, carrier density, and mobility dependencies

for the spectral density of frequency fluctuations as that observed for voltage

noise spectrum in Fig. (3.2). This agreement does not imply that voltage noise is

the dominant term in Eq. (1.30). The contributions from all the noise spectrums

of potential and its derivatives to the total noise spectra are discussed below in

Fig. (3.6).

Figs. (3.2) and (3.3) show the effects of carrier dynamics, with inter-carrier in-

teractions in the medium for a frequency-independent relative dielectric func-

tion εrel = 4 − i0.05. In Figs. (3.4) and (3.5), the power spectrum of frequency

fluctuations is shown when a frequency dependent dielectric function is added

to the carrier dynamics, and interactions. A Debye form for the relative dielec-
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Figure 3.4: Power spectrum of cantilever resonance frequency fluctuations
denoted Pδ fc( f ) as a function of frequency, at a tip-sample
height d = 100 nm above the vacuum-sample interface for var-
ious charge densities. The relative dielectric function has the
Debye form with a relatively long relaxation time, τ = 20 s.
Figure reproduced from Ref.[32], with permission.

tric function, εrel(ω) = ε∞+ (εs− ε∞)/(1+ iωτ) with εs = 10.4 and ε∞ = 3.6, is used in

these figures. Fig. (3.4) uses a relatively long timescale of dielectric fluctuations,

τ = 20 s, while Fig. (3.5) uses a fast timescale, τ = 10−5 s. εs and ε∞ are chosen

such that the Debye form of the dielectric function for τ = 20 s reduces to the

static complex number dielectric function εrel = 4− i0.05 at f = 1 Hz. Figure. (3.4)

shows the power spectrum of frequency fluctuations at d = 100 nm for various

charge carrier densities. The carrier density ρ̄ = 0 only shows the power spec-

trum from dielectric fluctuations. For f << τ−1 the power spectrum is constant

in frequency, while for f >> τ−1 the power spectrum is ∝ f −2. Two additional

timescales are introduced with increasing carrier density as seen in Figure. (3.4).

A noise suppression is observed with increasing charge density for asymptotic
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low frequencies while noise enhancement is seen for aymptotic high frequen-

cies. The high frequency limit of Eq. (3.20) when a Debye form of the relative

dielectric functions is used is

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) =
kBT

2πε0(1 + ε∞)2(z1 + z2)ω2

(
Ω +

εs − ε∞
τ

)
. (3.40)
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Figure 3.5: Power spectrum of cantilever resonance frequency fluctuations
denoted Pδ fc( f ) as a function of frequency, at a tip-sample
height d = 100 nm above the vacuum-sample interface for var-
ious charge densities. The relative dielectric function has the
Debye form with a relatively short relaxation time, τ = 10−5 s.
Figure reproduced from Ref.[32], with permission.

In contrast to Fig. (3.4), Fig. (3.5) does not show the asymptotic high fre-

quency limit of the pure dielectric result (ρ̄ = 0) for all carrier densities. For the

parameters used in Fig. (3.4), Ω >> εs − ε∞ and the high frequency asymptotic

limit is proportional to carrier density as predicted in Eq. (3.40). Fig. (3.5) shows
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a similar power spectrum calculation as Fig. (3.4) but a different relaxation time,

τ = 10−5 s. For the charge densities as high as 1022 m−3, Ω << (εs − ε∞)/τ and

the high frequency asymptotic limit is the same as the dielectric result with-

out charge carriers. Unlike the result in Fig. (3.4) where the frequency scales of

carrier transport are seen for higher frequencies than τ−1, when the relaxation

times is smaller, the dielectric fluctuations dominate and the frequency scales

of carrier transport are not seen in Fig. (3.5) for high frequencies. The low fre-

quency behaviour in Fig. (3.5) shows an increase in noise when charge density

goes from 0 to 1020m−3, while a decrease in noise is seen for the charge density

going from 1022m−3 to 1023m−3. Also, the dot-dashed curve for ρ̄ = 0 in Fig. (3.5)

shows the same asymptotic limits– ∝ f 0 for low frequency and ∝ f −2 for high

frequency– as that in Fig. (3.4), except that the frequency scale corresponding to

τ−1 shifts to high frequencies for smaller relaxation times, as expected.

The tip-sample height d was maintained constant at 100 nm in Figs. (3.1)-

(3.5). The d-dependence of the noise is explored by calculating the frequency

jitter from the power spectrum of frequency fluctuations using Eq. (1.28). The

frequency jitter is shown in Figs. (3.6) and (3.7) as a function of the tip-sample

height d. The values fmin = 0.2 Hz, and fmax = 3 Hz are taken in Eq. (1.28),

since the EFM measurements on organic transistor with a commercial cantilever

were made in this frequency range [20, 32]. Fig. (3.6) shows the contributions

from individual auto- and cross-correlation functions of potential, field and

field derivatives in Eq. (1.30), when integrated from fmin to fmax. The parame-

ters used in the calculation are ρ̄ = 1021m−3, D = 2.6 × 10−12m2s−1, ε′rel = 4, and

ε′′rel = 0.05. Frequency jitter calculated from Eq. (1.28) is indicated as Total in

Fig. (3.6). The label z, φ refers to integrated jitter contribution from crosscorre-

lation function of fluctuations in electric field in z-direction(z) and potential(φ),
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z, φ ∝ 4c(1)(d)c(2)(d)
∫ fmax

fmin
CδEzδφ( f ). Similarly, the label φ, φ ∝ (c(2)(d))2

∫ fmax

fmin
Cδφδφ( f ),

and so on. As seen in previous jitter calculations done for a dielectric with no

charge carriers [20, 21], Fig. (3.6) for tip-sample heights ranging from d = 50

nm to d = 600 nm, shows that the dominant contribution to jitter arises from

the term containing an autocorrelation function of fluctuations in z-gradient of

z component of the electric field, while the least contribution arises from a term

involving the autocorrelation function of potential fluctuations.
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Figure 3.6: The solid line shows cantilever frequency jitter as a function of
tip-sample height for carrier density ρ̄ = 1021 m−3. Other lines
indicate contributions to jitter from auto- and cross-correlation
of fluctuations in potential, electric field, and electric field gra-
dient (Eq. 1.30). Label z,φ is the crosscorrelation function of
fluctuations in the z component of the electric field and poten-
tial and, zz,z is that of z-gradient of the z component of the elec-
tric field and the z component of the electric field. Details in
text. Figure reproduced from Ref.[32], with permission.

Depending on the tip-sample height in the EFM measurement, the jitter ob-
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Figure 3.7: Cantilever frequency jitter is shown as a function of tip-sample
separation. The charge carrier densities are as indicated. Jit-
ter calculated from potential autocorrelation in Eq. (3.20) are
the solid curves and jitter calculated from potential autocorre-
lation in Eq. (3.25) with an effective relative dielectric function
that includes conductivity are the dashed curves. Both the cal-
culations are in good agreement in the limit of large d. Figure
reproduced from Ref.[32], with permission.

servable of the experiment is shown to probe different characteristics of the car-

rier dynamics from the model calculations. Fig. (3.7) shows frequency jitter cal-

culated for two carrier densities: ρ̄ = 1022m−3, and ρ̄ = 1023m−3. In the limit of

d → 0 in Eq. (3.20), potential autocorrelation reduces to a pure dielectric result

with no charge carriers, as in Eq. (3.25). In the opposite limit of large tip-sample

separation, the potential autocorrelation takes the form of Eq. (3.25) with an ef-

fective relative dielectric function that includes a contribution to the dielectric

spectrum from the conductivity from the charge carriers εeff(ω) = εrel(ω)−iσ0/ε0ω

(Eq. (3.7)). This effective relative dielectric function for the medium is obtained

by substituting Ohm’s law, J = σ0E, in Eq. (3.2) (with the contribution from ther-
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mal fluctuations in carrier density neglected [24]. In Fig. (3.7), the solid lines rep-

resent the full calculation of frequency jitter from Eqs. (3.20), (1.30), and (1.28),

while the dashed lines are from Eqs. (3.25), (1.30), and (1.28), for εrel → εeff in Eq.

(3.25). The diffusion constant used in the calculation is D = 2.7 × 10−12 m2s−1.

Within the assumptions of the model, Fig. (3.7) shows that a cantilever very

close to the sample only probes dielectric continuum fluctuations while the can-

tilever far way probes a continuum result but with εrel → εeff. Figure (2) of

Ref.[14] shows the calculation of the Casimir-Lifshitz free energy for two semi-

infinite dielectric slabs with free charges as a function of separation between

them. This figure shows a similar limiting behaviour for the free energy as that

observed in the Fig. (3.7) for the large tip-sample separation– that is, the full

calculation approaches the εeff(ω) result. This finding shows that an accurate

picture may not be modelled by the use of effective relative dielectric function

because thermal fluctuations from carrier dynamics are not negligible at finite

tip-sample separations.

3.3 EFM measurements on an organic field effect transistor

The experiments were done by Nikolas Hoepker in Professor Marohn’s group

at Cornell University [20, 32]. The major part of this section is from Refs.

[20, 32]. Details of the experiment are provided here since they are relevant

for the comparison to the theoretical calculations. A molecularly doped poly-

mer transistor was fabricated with TPD (N,N’-Bis-(3-methylphenyl)-N,N’-bis-

(phenyl)-benzidine) as the charge-transporting molecule [5, 36, 53, 54], and high

molecular weight polystyrene as the host polymer. Charge hopping models

[3, 6, 17, 38, 41] describe well the dependence of charge transport on molecule
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concentration, electric field, and temperature in these molecularly doped poly-

mer systems. The transistor substrates were fabricated by growing 315 nm

of SiO2 on n+-Si, followed by a patterned deposition of 5 nm of Cr and 30

nm of Au to produce interdigitated source and grain electrodes. The channel

length was 5 µm. From the oxide thickness and the dielectric constant of SiO2

of 4.65ε0 [25], the capacitance per area across the dielectric is estimated to be

Ci = 4.65ε0/315nm = 1.3 × 10−4 Fm−2. The thickness of the TPD film was de-

termined to be 70 nm by profilometry. The device is sketched in Fig. 3.8. The

electrical characteristics of the device were determined, and a current-voltage

plot is shown in the Supplementary Material of Ref. [32]. From these mea-

Figure 3.8: Charged cantilever tip is positioned above an organic field-
effect transistor. Figure reproduced from Ref.[32], with permis-
sion.

surements a (saturation) mobility of µ = 2.7 × 10−10 m2V−1s−1 and a thresh-

old voltage of Vt = −2.9 V was extracted. The cantilever ( fc = 64, 058 Hz,

kc = 3.5 N/m) was driven into self-oscillation using a custom-built feedback
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circuit. A temperature-tuned fiber-optic interferometer (λ = 1310 nm) was used

to track the position of the cantilever. The cantilever position was converted

into a frequency versus time signal using a software frequency demodulator.

Frequency noise spectra were obtained from the Fourier transform of the auto-

correlation function of the frequency fluctuations as in Eq. (1.29). More detail

on the electric force microscope measurements and the frequency demodulator

can be found in Refs. [68] and [21] and their Supporting Information.

Figure 3.9: Measured power spectra of cantilever frequency fluctuations
above an organic field effect transistor are shown for various
tip-sample separations. The tip-sample and gate voltages are
respectively Vts = −3 V and VG = −40 V. The frequency de-
pendence f −1 is shown. Figure reproduced from Ref.[32], with
permission.

Fig. (3.9) shows power spectra of cantilever frequency fluctuations for vari-

ous tip-sample heights for a gate voltage of VG = −40 V. The source and drain
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electrodes was grounded in this experiment. Two frequency regimes are ob-

served for all spectra: 1) a low-frequency regime where Pδ fc ∝ f −1 and the mag-

nitude of the frequency noise increases with decreasing d, and 2) a regime for

f > 20 Hz where Pδ fc ∝ f 2 with superposed frequency spikes. For f > 20 Hz, the

f 2 regime is attributed to the photodetector noise, and the spikes are from me-

chanical vibrations similar to the power spectra meaurements on PVAc shown

in Fig. (2.2) of Chapter 2 [20, 21].

The dependence of the power spectrum on the tip-sample separation im-

plies that the low frequency noise is due to dynamical fluctuations in the or-

ganic semiconductor samples. The d-dependence of cantilever frequency noise

was further examined by integrating the measured power spectra in Fig. (3.9)

using Eq. (1.28), from fmin = 0.2 Hz to fmax = 3 Hz. Cantilever frequency jitter

from three gate voltages– VG = 0 (circles), −20 V (squares), and −40 V (crosses)–

are shown as a function of tip-sample separation d in Figure. (3.10). The data

marked (x) were measured with cantilever over the source electrode in Fig. (3.8)

as a control experiment, and are seen to be not significantly different from the

other data (Fig. (3.8)). These data are expected to agree with data measured for

VG = 0 V, and to show the effect of dielectric fluctuations from TPD as well as

any residual free charge. An increase in gate voltage increases the charge carrier

density in the channel of transistor. The measurements in Fig. (3.10) show how-

ever that the cantilever frequency noise is nearly independent of carrier density.

The solid blue line in Fig. (3.10) is calculated from Eq. (3.28), corresponding to

a model of non-interacting diffusing charge carriers in a two-dimensional plane

with an areal charge carrier density of ρA. To model two-dimensional charge

diffusion K⊥ → δ(zi − z f ), and 2ρ̄→ ρAδ(zi) in Eq. (3.28). The areal charge density

used in Fig. (3.10) is calculated from the capacitance per area of the SiO2 gate
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Figure 3.10: Observed cantilever frequency noise (jitter) integrated from
0.2 Hz to 3.0 Hz as a function of tip sample distance d above
a TPD transistor. The frequency noise was measured at ap-
plied gate voltages of VG = 0 (circles), VG = −20 V (squares),
VG = −40 V (crosses), and, as a control experiment, over the
source electrode (x). The jitter for VG = −40 V is obtained from
frequency integration of the spectra in Fig. 3.9. Also shown is
a prediction from freely diffusing carriers in the absence of a
dielectric (solid blue line). Figure reproduced from Ref.[32],
with permission.

dielectric as follows: ρA = Ci(Vts−VG)/e = 3.0×1016 m−2 with Ci = 1.3×10−4 Fm−2,

VG = −40 V, and Vts = −2.9 V. The diffusion coefficient is estimated from the Ein-

stein relation D = kBTµ/e, using the measured saturation mobility in the poly-

mer as stated above in Sec. 3.3. As can be seen in Fig. (3.10), the calculated jitter

(the solid blue line) overestimates the measured frequency noise by atleast two
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orders of magnitude. The use of the Einstein relation has been shown in some

organic semiconductors [62] to underestimate D by more than one order of mag-

nitude. Correction of the diffusion constant by this factor only contributes to in-

crease in solid blue line, however, and hence increases the discrepancy between

the measured jitter and that calculated from the non-interacting carrier diffu-

sion model. In summary, 1) the cantilever frequency noise spectrum is ∝ f −1,

2) the spectrum is insensitive to the presence of carriers over the range of gate

voltages studied, and 3) a model of non-interacting diffusing carriers on a two-

dimensional surface overstimates the frequency noise even after introducing

corrections to Einstein relation for organic semiconductors.

Figure (3.11) shows voltage noise calculated from Eq. (3.20) for three charge

densities; ρ̄ = 0(dot-dashed), ρ̄ = 1018 m−3(red dotted), and ρ̄ = 2.6 ×

1024 m−3(solid). The parameters used in the calculation are: D = 2.6 × 10−12

m2s−1, and ε′rel = 4 and ε′′rel = 0.05. This value of D corresponds to mobility

µ = 10−10 m2V−1s−1 in the Einstein relation at T = 300 K, which is compara-

ble to the measured saturation value for the transistor. The red dashed line in

Fig. (3.11) corresponds to the voltage noise calculated with the same diffusion

constant and charge density ρ̄ = 1018 m−3 for non-interacting diffusing carriers

from Eq. (3.28). The red dotted curve shows the three characteristic frequen-

cies, f1, f2, and f3 in Eqs. (3.34)-(3.36), similar to voltage noise in Fig. (3.2).

For f >> f3 ≈ 190 Hz, the electrodynamic calculation with charges aymptot-

ically approaches the dielectric result. In f2 < f < f3 with f2 ≈ 0.15 Hz, the

noise exceeds the dielectric result due to the inclusion of the effects from non-

interacting diffusing carriers. For f < f2, inter-carrier interactions set in, and for

f < f1 ≈ 0.015 Hz, an asymptotic low-frequency limit is attained. In Fig. (3.11),

in the low- f limit, the suppression in noise for ρ̄ = 1018 m−3 from inter-carrier
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Figure 3.11: Voltage noise for a dielectric with mobile charges at ρ̄ = 1018

m−3 (dots) is similar at both low and high frequencies to the
noise produced by dielectric relaxation alone at ρ̄ = 0 (dot-
dash). Noise at ρ̄ = 1018 m−3 is overestimated at low frequency
by a calculation based on diffusion of noninteracting carriers
at the same density in vacuum (dashes). At a higher density
ρ̄ = 2.6 × 1024 m−3, the solid curve shows suppression of noise
at low frequency. Figure reproduced from Ref.[32], with per-
mission.

interactions is absent, in contrast to that observed for higher carrier densities in

Fig. (3.2). In the low- f limit, the noise from the diffusion of non-interacting car-

riers in vacuum (red dashed curve) is significantly higher than the voltage noise

at the same carrier density from interacting carriers in a dielectric medium. The

dotted curve for ρ̄ = 1018 m−3 shows a case for which the charge density is high

enough to show noise from noninteracting carriers in vacuum; there is not a sig-

nificant difference from the dielectric result with no charge carriers. An increase

in charge density leads to an increase in the characteristic frequency f1 and the

low- f regime moves into the measurement window around 1 Hz. Additionally,
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the magnitude of the noise is also suppressed as seen for ρ̄ = 2.6×1024 m−3 (solid

black curve) in Fig. (3.11). The three dimensional density used in this calculation

is obtained from the estimated areal charge density for the organic transistor at

VG = −40 V using 2ρ̄ = ρ3/2
A . This areal charge density corresponds to a charge

density in three dimensions that has a comparable mean inter-carrier separa-

tion to that estimated from the assumption that the carriers in a transistor are

rigorously confined to a two-dimensional region. Although a 1/ f dependence

is observed in the low- f regime that is similar to the experimental data, the

magnitude of the noise is strongly suppressed by intercarrier interactions. Also,

the voltage noise calculated from a semi-infinite slab at this density need not be

quantitatively equal to that generated by a two-dimensional sheet with compa-

rable mean inter-carrier separation.

The qualitative agreement of the low- f region of ρ̄ = 1018 m−3 (the dotted

curve in Fig. (3.11)) with experimental data is summarized as, 1) f −1 frequency

dependence, 2) more or less similar to dielectric with no charge carriers result,

and 3) the noise observed is significantly low compared to the non-interacting

carriers diffusing in vacuum. A simple criterion for guiding the experimental

measurements to detect the noise from carrier dynamics cannot be given. Multi-

ple scenarios are possible as shown in Figs. (3.4), and (3.5) based on the interplay

between charge carrier dynmaics, and dielectric relaxation. In the case of slow

dielectric relaxation in Fig. (3.4), the charge carrier effects are seen at all frequen-

cies, while in Fig. (3.5) the voltage noise spectrum from non-zero charge carrier

densities resembles that from dielectric with no charge carrier at high frequen-

cies. Moreover, the parameters used also change the characteristic frequencies

f1, f2 and f3; as each one of these frequencies crosses the measurement window

at 1 Hz, the predicted results change. The electrodynamic treatment in Sec. 3.2.1
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for a semi-infinite dielectric slab with charge transport and interactions is not

applicable directly to the transistor geometry in its current form. The calcula-

tions from the electrodynamic model only provide a qualitative understanding

of the effects of the dielectric fluctuations, carrier dynamics, and carrier trans-

port on the measurement, either when present individually or when coupled

nonlinearly together as in the semi-infinite slab calculation. In Chapter 4, ef-

forts are made in two directions: 1) providing a quantitative comparison to the

measured data on organic transistors, and 2) guiding the experiment to see the

charge carrier effects.

3.4 Summary

The measurable power spectrum of cantilever frequency fluctuations in EFM

over a semiconductor with mobile charge carriers is calculated from Maxwell’s

equations. Here, the current in Maxwell’s equations has contributions from two

terms: Ohm’s law term that includes inter-carrier interactions, and a Fick’s law

term that includes thermal fluctuations of carrier density. Two parameters, dif-

fusion coefficient (D), and conductivity (σ0), are introduced through these two

terms. These parameters may be expressed in terms of carrier density, tem-

perature, and molecular properties; the diffusion constant and the conductivity

would need to be expressed as functions of frequency and wavevector in or-

der to incorporate a full microscopic description of charge transport into our

macroscopic model.

For the case of no molecular motions, i.e. when the dielectric function is set

to unity, the sample is comprised of interacting charge carriers diffusing in vac-
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uum. When the dilute charge carrier limit is taken the result is the same as that

from noninteracting diffusing carriers. The voltage noise calculated for interact-

ing carriers in vacuum in the high frequency limit, agrees with the voltage noise

calculated from noninteracting diffusing carriers, and in the low frequency limit

is significantly suppressed due to intercarrier interactions. When the dielec-

tric function is included as a complex-valued function of frequency, the noise is

enhanced, suppressed, or unchanged relative to the noise from dielectric with

no charge carriers, depending on the form of the dielectric function, and the

frequency range of interest. The dominant contribution to frequency jitter is

from the autocorrelation function of the gradient of electric field fluctuations

yet again, similar to the thin-film organic polymer in Chapter 2 [20, 21]. The

frequency jitter, in the large tip-sample separation limit, may be calculated by

inserting the effective relative dielectric function of the medium that includes

conductivity from Ohm’s law term into the relative dielectric function in the

frequency jitter result for a dielectric continuum. In this limit, the Ohm’s law

term in the current dominates the term with thermal fluctuation in carrier den-

sity. This large tip-sample separation limit is also observed in the calculation of

the thermal Casimir-Lifshitz force between macroscopic bodies [14, 44].

The cantilever frequency noise calculated from a free diffusion model over-

estimates the measured noise by atleast two orders of magnitude, indicating

the importance of including Coulomb interactions in such microscopic charge

transport models. A theoretical framework that includes intercarrier interac-

tions in the calculation of electrical noise of molecular materials has been pre-

sented. The electrodynamic model shown in this chapter qualitatively explains

the effects of dielectric fluctuations, carrier dynamics, and interactions on noise

measurements of semiconductors. The observed noise over a TPD transistor
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was not quantitatively compared to the calculated noise from the model. This

is because the model treats the sample as a semi-infinite semiconductor, while

in the organic transistor sample the carriers are only confined to a few nm-thick

region at the semiconductor-dielectric interface. In Chapter 4, two models are

developed to improve our theoretical description of charge fluctuations in the

TPD transistor, and the calculated noise from these models is studied to explore

the effect of finite thickness of the semiconductor, and the effect of a dielectric

overlayer. Further, quantitative comparison to observed noise on TPD transis-

tor is given and noncontact friction predictions for the transistor are provided.

The noncontact friction calculated from the semi-infinite semiconductor model

in this chapter is compared to the friction data of doped Si [57].
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CHAPTER 4

QUANTITATIVE COMPARISON TO MEASURED DATA ON AN

ORGANIC FIELD-EFFECT TRANSISTOR AND DOPED SILICON

This chapter presents quantitative comparison of the model calculations to EFM

measurements for two sets of data. The two sets of experimental data are the fre-

quency jitter measured on a TPD transistor [20, 32], and the noncontact friction

measured on doped Si [56, 57]. The main focus is on developing a model that

explains the carrier density independence of frequency jitter measurements on

organic transistors in Sec. 3.3. Models I and II, developed in this chapter, are an

extension of the semi-infinite semiconductor model in Chapter 3, to include the

possible effects of the finite thickness of the semiconductor on a dielectric base,

and the confinement of charge carriers to few monolayers at the semiconductor-

SiO2 interface where essentially the rest of the semiconductor acts as a dielectric

overlayer in the organic transistor in Fig. (3.8). Model I in Fig. (4.1) is developed

to study the finite thickness effects of the semiconductor on a SiO2 dielectric

base. The effect of the SiO2 dielectric base, and the finite thickness effect for a

semiconductor of thickness 70 nm is found to be negligible on the cantilever

frequency noise upon extension from the semi-infinite semiconductor model in

Chapter 3. The calculations from model I are shown in Sec. 4.3.1. Model I goes

to the semi-infinite semiconductor model in Sec. 3.1.1 when the finite thickness

of the semiconductor slab on the SiO2 dielectric goes to infinity. Model II is de-

veloped to include the confinement of the charge carriers to few monolayers at

the semiconductor-SiO2 interface [29, 49]. As a result the picture of model II has

a dielectric overlayer of finite thickness over a semi-infinite semiconductor as

an approximation to the organic transistor as shown in Fig. (4.2). Model II goes

to the semi-infinite semiconductor model in Sec. 3.1.1 when the finite thickness
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of the dielectric overlayer on the semi-infinite semiconductor goes to infinity.

The calculations from this model are presented in Sec. 4.3.1, and these explain

the carrier density independence of frequency jitter on organic transistor. These

calculations also show that the carrier dynamics is seen at the frequencies ac-

cessible in a noncontact friction measurement. Ryan Dwyer in Professor John

Marohn’s group is working on measuring the noncontact friction measurements

on organic field-effect transistor. The noncontact friction calculations shown in

Sec. 4.3.2 are predictions for these organic transistor measurements. The mea-

sured noncontact friction data by Stowe, et.al. [57, 56] on doped Si samples for

the parallel motion of the cantilever is quatitatively compared to the friction

calculations from semi-infinite semiconductor model. The friction calculations

show the ρ−1/2 dependence observed on doped Si, when all the experimental

parameters in Stowe measurement are used. The measured friction is fit with

dispersion of Si as the sole adjustable parameter. The distance dependence of

the friction from calculations, and measurements are compared, but observed

to be not in agreement owing to the simplified tip-sample capacitance used in

these calculations. Overall, the semi-infinite semiconductor model presents a

reasonable picture for the noncontact friction measured on doped Si, explain-

ing the experimental observation of the suppression of friction with increasing

carrier density, as arising from the inter-carrier interactions and the dielectric

fluctuations in doped Si.

4.1 Model I

The model of a semi-infinite semiconductor in Chapter 3 is extended to a model

having a layer of semiconductor on a semi-infinite dielectric base as in Fig. (4.1).
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The field equations in vacuum are given by Eqs. (2.9)-(2.11), with Arxn as the

unknown constant to be determined. Here, z > 0 is vacuum, and the semicon-

ductor layer of thickness hs is for −hs < z < 0 with a relative dielectric function

εs(ω). The semiconductor layer is backed by a dielectric base for z < −hs with

the relative dielectric function εd(ω). The fields in the semiconductor layer in

−hs < z < 0 are given by,

Êx = A++eη+z + A+−e−η+z + A−+eη−z + A−−e−η−z, (4.1)

Êz =
iη+

k
(A++eη+z − A+−e−η+z) +

ik
η−

(A−+eη−z + A−−e−η−z), (4.2)

Ĥy =
−is̃2

ωµ0η−
(A−+eη−z − A−−eη−z), (4.3)

with same definitions for the variables, s̃, η+, η−, εeff , and κ as in Sec. (3.1.1),

where εrel → εs. The fields in the dielectric base for z < −hs are given by

Êx = Ceηz, (4.4)

Êz =
ik
η

Ceηz, (4.5)

Ĥy =
−iωεd(ω)
µ0ηc2 Ceηz, (4.6)

η =
√

k2 − εd(ω)(ω/c)2. (4.7)

These field equations are solved using the continuity conditions for Ex, Hy and

ε(ω)Ez at both interfaces: 1) vacuum-semiconductor interface at z = 0, and 2)

semiconductor-dielectric base interface at z = −hs (see B appendix to chapter 4).

Arxn is thus determined to be

Arxn = −
q(z1, ω)

2ε0
e−k̃z1

(
εs(ω) − θI(k, ω)
εs(ω) + θI(k, ω)

)
, (4.8)

θI ≡
εs(ω)
εeff(ω)

[
sinh khs sinh η+hs + α cosh khs sinh η+hs + λ − λ cosh η+hs cosh khs

cosh khs sinh η+hs + α sinh khs sinh η+hs − λ cosh η+hs sinh khs

−λ coth η+hs

+
λ

sinh η+hs

(
sinh η+hs − λ sinh khs

cosh khs sinh η+hs + α sinh khs sinh η+hs − λ cosh η+hs sinh khs

)]
,(4.9)
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Figure 4.1: A sketch of model I where a point charge is located at a tip-
sample separation d. The point charge here represents the can-
tilever tip. The sample is represented by a semiconductor layer
of thickness hs on a semi-infinite dielectric base. The relative
dielectric function of the semiconductor is εs(ω), and that of the
base is εd(ω).

λ ≡

(
1 −

εeff(ω)
εs(ω)

)
k
η+

, α ≡
εeff

εd
. (4.10)

Using Arxn in Eq. (4.8), similar steps from Eqs. (2.20)-(2.22) are followed to de-

termine the potential autocorrelation function Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) as

follows.

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) = −
kBT

4πε0ω
Im

∫ ∞

0
dke−k(z1+z2)

(
εs(ω) − θI

εs(ω) + θI

)
.(4.11)

The power spectrum is determined from Eq. (1.30) and the noncontact friction

is determined from Eqs. (1.23), and (1.26). This model of finite thickness (hs)

for the semiconductor with uniformly distributed charge carriers over a dielec-

tric base as in Fig. (4.1), is an approximation to the transistor geometry in Fig.
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(3.8). The organic transistor has the charges confined to few monolayers in the

semiconductor close to the semiconductor-dielectric base interface. This phys-

ical feature is included in model II in the following section. Sec. (4.3) shows

the calculations from this model, and the effect of varying thickness hs of the

semiconductor on the noise is analyzed.

4.2 Model II

This model is developed to study the effect of screening the noise from a semi-

conductor with charge carriers by a dielectric overlayer as in Fig. (4.2). This is an

approximation to the transistor geometry where the charge carriers are known

to be confined to few monlayers [29, 49] at the semiconductor-SiO2 interface in

Fig. (3.8). Here, z > 0 is vacuum, a dielectric overlayer with dielectric function

εd(ω) is for −hd < z < 0 and, a semiconductor with a dielectric function εs(ω) ex-

tends for z < −hd. The field equations in vacuum are given by Eqs. (3.15)-(3.17),

and Arxn as the unknown constant to be determined. The field equations in the

dielectric overlayer for −hd < z < 0 are given by Eqs. (2.12)-(2.14), and the field

equations in the semiconductor for z < −hd are given by Eqs. (3.15)-(3.17). These

equations are solved using the continuity conditions (see B appendix to chapter

4) for Ex, Hy and ε(ω)Ez at both interfaces: 1) vacuum-dielectric overlayer inter-

face at z = 0, and 2) dielectric overlayer-semiconductor interface at z = −hd. Arxn

is thus determined to be,

Arxn = −
q(z1, ω)

2ε0
e−k̃z1

(
εs(ω) − θII(k, ω)
εs(ω) + θII(k, ω)

)
, (4.12)

θII ≡
εs(ω)
εd(ω)

sinh khd + (1 − λ) εd(ω)
εeff (ω) cosh khd

cosh khd + (1 − λ) εd(ω)
εeff (ω) sinh khd

 . (4.13)

The variables λ, εeff and η+ are as defined in Eqs. (4.10), (3.7) and (3.12) with
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Figure 4.2: A sketch of model II where a point charge is located at a tip-
sample separation d. The point charge in the model is at the
locaton of the cantilvere tip in EFM. The sample is represented
by a dielectric overlayer of thickness hd on a semi-infinite semi-
conductor. The relative dielectric function of the semiconduc-
tor is εs(ω), and that of the dielectric overlayer is εd(ω).

εrel → εs, respectively. Similar steps from Eqs. (2.20)-(2.22) are followed to deter-

mine the potential autocorrelation function from Arxn in Eq. (4.12) as

Cδφ δφ(r1 = 0, z1, r2 = 0, z2; f ) = −
kBT

4πε0ω
Im

∫ ∞

0
dke−k(z1+z2)

(
εs(ω) − θII

εs(ω) + θII

)
.(4.14)

The power spectrum of frequency fluctuations is determined from Eq. (1.30),

and the noncontact friction is determined from Eqs. (1.23), and (1.26). Sec. 4.3

shows the calculations from this model for different thicknesses hd of the dielec-

tric overlayer.
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4.3 Results and discussion

4.3.1 Frequency Jitter

Figure (4.3a) shows the power spectrum of frequency fluctuations P⊥δ fc
( f ) ver-

sus frequency from model I in Sec. 4.1 for the perpendicular motion of the

cantilever. The potential auto-correlation determined from Sec. 4.1 is used in

the calculation of the power spectrum of cantilever frequency fluctuations from

Eqs. (1.27), and (1.30). An approximate simplified expression for the tip-sample

capacitance Eq. (3.38), of a sphere charge of radius R at a height z above the semi-

infinite dielectric is used in Eq. (1.30). The capacitance equation uses R = 40 nm,

and dielectric constant ε′rel(0) = 4 in Eq. (3.38), for all the power spectra, and the

frequency jitter calculations from models I and II in this chapter. The cantilever

resonance frequency, the force constant, and the tip-sample voltage are given

values: fc = 65 kHz and kc = 3.5 N/m and Vts = 3 V, respectively. These val-

ues are corresponding to the organic transistor meaurements in Ref. [32], and

used for all the power spectrum, and jitter calculations in this chapter. The tip-

sample distance is d = 100 nm, and the thickness of the semiconductor layer is

hs = 70 nm. A carrier mobility corresponding to that of the organic transistor

µ = 2.7 × 10−10 m2V−1s−1 from Ref. [32] is used, and the diffusion constant is

estimated from the Einstein relation, D = 7.0 × 10−12 m2V−1s−1. The dielectric

functions in this chapter are taken to be independent of frequency to focus on

the effects of charge carrier dynamics in the dielectric in the absence of dielectric

relaxation. The effects of molecular motion in the dielectric coupled to the car-

rier dynamics have been studied for a semi-infinite semiconductor in Chapter 3.

The dielectric function of the semiconductor layer is assigned an arbitrary value
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Figure 4.3: (a) Power spectrum of frequency fluctuations vs. frequency
at a tip-sample height of d = 100 nm calculated from model
I for different carrier densities. (b) Integrated cantilever fre-
quency jitter for different charge densities. Following param-
eters were used in the calculations from model I in (a) and
(b): semiconductor thickness hs = 70 nm, carrier mobility
µ = 2.7 × 10−10 m2V−1s−1, semiconductor dielectric function
εrel = 3.4 − i 0.05, dielectric constant of SiO2 base εd = 4.85, tip-
radius R = 40 nm, cantilever resonance frequency fc = 65 kHz,
and tip-sample voltage Vts = 3 V.
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εs = 3.4 − i 0.05, and a static dielectric constant of SiO2 εd = 4.85 is used for the

dielectric base. This is reasonable as model I in Fig. (4.1) is a simplified version

of the organic transistor in Fig. (3.8). The thickness of the organic semiconduc-

tor layer with uniform carrier density in model I corresponds to the thickness

of the molecularly doped polymer whose dielectric function is unknown in or-

ganic transistor in Fig. (3.8), while the semi-infinite dielectric base in the model

corresponds to SiO2 layer in organic transistor in Fig. (3.8) . The power spectrum

is plotted for a wide range of frequencies to analyze fully the predictions from

model I. The experimentally accessible frequencies range from tenths of Hz to

100 Hz.

In Fig. (4.3a), for a zero carrier density in the semiconductor layer of model

I, Pδ fc( f ) ∝ f −1, when a frequency-independent dielectric function is used in the

calculation. Increasing the carrier density to ρ = 1015 m−3 gives a power spec-

trum that is same as that for zero carrier density. The three high carrier densi-

ties corresponding to that estimated from three gate voltages VG = 0,−20,−40

V are shown in Fig. (4.3a). As described in Sec. 3.3, the areal carrier density

from VG is estimated as follows: ρA = Ci(|Vt − VG|)/e = 3.0 × 1016m−2, with

Ci = 1.3 × 10−4 Fm−2, VG = −40 V, and Vt = −2.9 V. The three dimensional carrier

density is estimated from the areal carrier density using the relation, ρ = ρ3/2
A .

In this chapter, total carrier density ρ ≡ 2ρ̄ is shown instead of the carrier den-

sity (ρ̄) for positively or negatively charged carriers shown in Chapter 3. Thus,

the three dimensional carrier densities corresponding to VG = −40,−20, 0 V are

ρ = 5.2×1024, 1.6×1024, 1×1023m−3, respectively. In the asymptotic high frequency

limit, the power spectrum of frequency fluctuations for these high carrier densi-

ties is same as the dielectric with no charge carriers, and no effects from carrier

dynamics are seen in this limit in Fig. (4.3a). A decrease in frequency from the
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asymptotic high- f regime results in increase of spectral noise. This regime cor-

responds to the non-interacting carrier diffusion. Further decrease in frequency

leads to a plateau region in the power spectrum for these three carrier densi-

ties. In this regime, the Coulomb interactions are significant but the dielectric

response of the medium is negligible. In the asymptotic low- f limit, there is sup-

pression in frequency noise with increase in carrier density. In this regime, both

Coulomb interactions, and the dielectric response of the medium contribute,

and these inter-carrier interactions contribute to the suppression in frequency

noise observed in the Fig. (4.3a). This analysis is the same as the interpreta-

tion provided in detail for the spectral noise from a semi-infinite semiconductor

with varying carrier densities in Fig. (3.3) of Sec. 3.2 [32]. Figure (4.3b) shows

the integrated frequency jitter calculated from Eq. (1.28) for the power spectrum

in Fig. (4.3a), with fmin = 0.2 Hz, and fmax = 3 Hz. This is the frequency range

of measurements on organic transistor in Sec. 3.3. For this frequency range,

Fig. (4.3a) shows suppression in the power spectrum of frequency fluctuations

with increase in charge density due to inter-carrier interactions. The integrated

power spectrum shows the same behaviour, that is, the magnitude of frequency

jitter J⊥ decreases with increase in ρ.

The effects of finite thickness of the semiconductor layer on the cantilever

frequency noise are not visible for a thickness of hs = 70 nm shown in Fig. (4.3a).

Figure (4.4) shows the power spectrum of frequency fluctuations P⊥δ fc
( f ) for dif-

ferent thicknesses (hs) of the semiconductor layer on the dielectric base SiO2 as

a function of frequency. The carrier density is ρ = 5.2 × 1024 m−3, the tip-sample

height is d = 100 nm, and the rest of the parameters are the same as that in the

calculation of Fig. (4.3a). The power spectrum of frequency fluctuations is the

same as that from the semi-infinite semiconductor result in Sec. 3.2, for thick-
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Figure 4.4: The power spectrum of frequency fluctuations vs. frequency at
a tip-sample height of d = 100 nm from model I for different
thicknesses hs of the semiconductor layer. The carrier density
corresponds to a gate voltage of −40 V, ρ = 5.2 × 1024 m−3. All
the other parameters are the same as listed for Fig. (4.3a).

nesses hs = 70 nm and hs = 1 µm in Fig. (4.4). The thickness effects are significant

when the semiconductor is only few monolayers thick over the SiO2 dielectric

base, as seen from the power spectrum calculations for hs = 10 nm and hs = 1 nm

in Fig. (4.4). Since the thickness of the molecularly doped organic polymer in or-

ganic transistor used for the EFM measurements is hs ≈ 70 nm, the calculations

from model I for organic transistor suggest that the frequency noise is indistin-

guishable from hs → ∞ (the semi-infinite semiconductor case), when model I

is used. In account of no thickness effect from semiconductor, and the fact that

charge carriers are only confined to a few monolayers in the semiconductor at

the interface of semiconductor-dielectric base, another approximate model of

organic transistor, model II as shown in Fig. (4.2) is designed.
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Figure 4.5: (a) The power spectrum of cantilever frequency fluctuations vs.
frequency at tip-sample height of d = 100 nm shown for model
II for different charge carrier densities. (b) Integrated cantilever
frequency jitter for different charge densities. The following
parameters were used in the calculations from model II in (a),
and (b): the thickness of the dielectric overlayer is hd = 69 nm,
the dielectric function of the dielectric and the semiconductor
are taken to be εrel = εd = 3.5 − i 0.05, and the rest of the param-
eters are the same as in Fig. (4.3a).
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Model II consists of a dielectric overlayer of thickness hd on a semi-infinite

semiconductor as shown in Fig. (4.2). The calculations of the power spectrum

and the frequency jitter for model II are shown in Figs. (4.5)-(4.7). Figure (4.5)

is the power spectrum of frequency fluctuations calculated from potential au-

tocorrelation determined for model II in Sec. 4.2, using Eqs. (1.27) and (1.30).

The thickness of the dielectric overlayer is hd = 69 nm. This is obtained from

the transistor configuration in Fig. (3.8), where the polymer thickness is 70 nm,

and the charge carriers are assumed to be confined to a thickness of 1 nm at the

semiconductor-SiO2 interface. The dielectric function of the dielectric overlayer

and the semiconductor are taken as εrel = εd = 3.4−i 0.05. The carrier mobilty, the

diffusion constant, and the other cantilever constants are same as that used for

the calculation of Fig. (4.3a). Similar frequency regimes for the power spectrum

to those observed in Fig. (4.3a) are seen in Fig. (4.5a). The only notable differ-

ence is seen in the asymptotic low- f region. For high carrier densities, Fig. (4.3a)

showed a significant suppression in noise from Coulomb interactions between

charge carriers. This suppression in power spectrum of frequency fluctuations

is not observed for the calculations from model II where a dielectric overlayer of

thickness hd = 69 nm is added on the semiconductor, and the P⊥δ fc
thus calculated

in Fig. (4.5a) is nearly independent of charge carrier density in the asymptotic

low- f region. The dielectric overlayer screens the noise from the semi-infinite

semiconductor, and so no suppression in noise is seen in Fig. (4.5a). The un-

explained feature in Chapter 3 in the experimental measurements on organic

transistor discussed in Sec. 3.3 is that there is no effect of increasing the gate

voltage of the organic transistor on the cantilever frequency noise. The increase

in gate voltage is known to increase the carrier density in semiconductor for

transistors. The model with dielectric overlayer of thickness hd = 69 nm on
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the semiconductor reproduces the independence of cantilever frequency noise

on carrier density. Figure (4.5b) is the frequency jitter from model II calculated

similarly to that in Fig. (4.3b) for model I. As seen in Fig. (4.5b), the increase in

charge density from 1022 to 1024 m−3 does not change the frequency jitter much

when compared to the significant supression in noise observed in Fig. (4.3b) for

these charge densities in the absence of the dielectric overlayer.
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Figure 4.6: The power spectrum of cantilever frequency fluctuations vs.
frequency at a tip-sample height of d = 100 nm from model
II for different thicknesses hd of the dielectric overlayer. The
carrier density is corresponding to a gate voltage of −40 V, ρ =

5.2 × 1024 m−3. All the other parameters are the same as listed
for Fig. (4.3a).

Figure (4.6) shows the power spectrum of frequency fluctuations P⊥δ fc
( f ) for

various thicknesses (hd) of the dielectric overlayer on a semi-infinite semicon-

ductor. A carrier density of ρ = 5.2 × 1024 m−3 is used here. For a thickness of

hd = 1µm, P⊥δ fc
( f ) ∝ f −1, and is the same as that from a dielectric continuum. As
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the thickness is decreased the carrier dynamic effects become prominent, and in

the limit of hd → 0, the carrier dynamics effects similar to that observed from

a semi-infinite semiconductor model in Chapter 3 for the same carrier density

are observed in Fig. (4.6) as is expected for this limit. For the thicknesses of the

dielectric overlayer applicable to the organic transistor hd = 69 nm, the carrier

dynamics are only seen at high frequencies that are not accessible in the jitter

measurements which has frequency range, fmin = 0.2 Hz to fmax = 3 Hz. The

cantilever frequency jitter calculations for this thickness show no dependence

on carrier density consistent with the jitter measurements on organic transistor

[32]. Figures (4.5), and (4.6) demonstrate that the carrier dynamics effects that

are seen at high frequencies, are accessible in a noncontact friction measurement

on organic transistor for these gate voltages.

Figure (4.7) shows the experimental jitter data for a gate voltage VG = −40

V as solid dots. These jitter measurements are reported in Ref. [20, 32] and Sec.

3.3, for gate voltages VG = 0,−20,−40 V of the organic transistor. The solid and

the dashed lines in Fig. (4.7) are the jitter calculated for three charge densities

ρ = 5.2 × 1024, 1.6 × 1024, 1023 m−3, and a dielectric function εd = εs = 3.4 − iε′′.

These three carrier densities are determined for gate voltages VG = −40,−20, 0 V,

respectively, as discussed earlier in the context of Fig. (4.3a). A carrier mobility

of µ = 2.7 × 10−10 m2V−1s−1 estimated for charge carriers in organic transistor

in Sec. 3.3 is used in the calculation of both the solid and dashed lines. J⊥

is thus calculated from model II for thickness of the dielectric overlayer hd =

69 nm from Eq. (1.28) with fmin = 0.2 Hz, and fmax = 3 Hz. For these three

carrier densities corresponding to the gate voltages VG = −40,−20, 0 V, J⊥ is

independent of carrier density, and all lie on the same solid line in Fig. (4.7).

The magnitude of the jitter in experiment is reproduced in the calculations from

75



æææ
ææ

æ
æææ

æææ
æ

ææ
ææ

æ

æææ

ææ
æ

æ

æ

æ

æ

æ

Εs
² = 0.5

Εs
² = 0.05

50 100 300 600

0.01

10-4

10-6

10-8

d@nmD

J ¦
@H

z2 D

Figure 4.7: Measured cantilever frequency jitter J⊥ for a gate voltage of
VG = −40 V in organic transistor shown as solid dots. The data
for gate voltages VG = −20 V, and VG = 0 are indistinguish-
able from the solid dots, and are shown in Fig. (3.10), but not
included here. The solid and the dashed lines are calculated
from model II for a carrier density ρ = 5.2 × 1024 m−3, corre-
sponding to a gate voltage of VG = −40 V. A relative dielectric
function of εs = εd = 3.4 − iε′′s with ε′′s as indictaed, is used in
the calculation of these lines. The J⊥ result from a different car-
rier density ρ = 1.6 × 1024 m−3 corresponding to VG = −20 V,
is indistinguishable from these lines. The parameters used are
relevant to the transistor measurements in Sec. 3.3: the dielec-
tric overlayer has thickness hd = 69 nm, the carrier mobility is
2.7×10−10 m2V−1s−1, and all the other parameters have the same
values as in Fig. (4.3).

model II for a larger value of the dispersive part of the dielectric function. The

calculation gives a stronger dependence on tip-sample separation compared to

that measured in experiment, but the consistency is seen with the data in the

independence of jitter on carrier density ρ. The disagreement of calculations

with the experimental data in tip-sample height dependence may be attributed
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to the oversimplified choice of the tip-sample capacitance from Eq. (3.38) in the

calculation of J⊥ from Eq. (1.30).

4.3.2 Noncontact friction

The models developed in Chapter 3 and in this chapter are useful in the calcu-

lation of the another experimental observable, noncontact friction. The noncon-

tact friction measurements on doped Si are available from Ref. [57] for compar-

ison with the calculations, while those on organic transistor are being done in

Professor John Marohn’s group. Stowe, et al. [57] have performed noncontact

friction measurements using highly sensitive cantilever on n- and p-type sili-

con samples. These measurements are performed for the cantilever oscillating

in parallel motion, as described in Sec. 1.1.1. Here, we provide a quantitative

comparison between the noncontact friction measured on these samples, and

the friction calculated from our semi-infinite semiconductor model in Sec. 3.1.1.

The noncontact friction for parallel motion of the cantilever is calculated from

Eqs. (1.23) and (1.24). In Eq. (1.24), the potential auto-correlation determined

from Sec. 3.1.1 for a semi-infinite semiconductor is used because sample here is

a doped Si. The noncontact friction, thus determined in terms of θ(k, ω) (in Eq.

(3.20) for y→ kd) for the parallel motion is

γ‖ = −
q2

c

8πε0ωc

∫ ∞

0
dkk2e−2kdIm

(
εrel(ωc) − θ(k, ωc)
εrel(ωc) + θ(k, ωc)

)
. (4.15)

When hs → ∞ in model I, and hd → 0 in model II, these two models reduce

to the semi-infinite semiconductor model in Sec. 3.1.1. The θ(k, ω) for the semi-

infinite semiconductor is also obtained by taking the limit c → ∞ of Eq. (3.19),

and setting εrel = εs. The calculations are shown for noncontact friction from this
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Figure 4.8: Noncontact friction for the parallel motion of the cantilever cal-
culated from Eq. (4.15) for a semi-infinite seniconductor. (a) γ‖
vs. carrier density for different values of dispersion ε′′s in the
relative dielectric function of the semiconductor εrel = 11.9−i ε′′s .
The carrier mobility is µ = 10−5 m2V−1s−1 . (b) γ‖ vs. carrier
density for various mobility values are shown. The relative
dielectric function εs = 3.4 − i 0.05. In (a) and (b), the experi-
mental constants are tip-sample radius R = 80 nm, cantilever
frequency fc = 81 kHz, and tip-sample voltage Vts = 3 V.
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semi-infinite semiconductor whose θ(k, ω) is given by,

θ(k, ω) =
εeff

εs
(1 − λ) , (4.16)

where λ is given by Eq. (4.10).

Figure (4.8a) shows the noncontact friction calculated from Eqs. (4.15) and

(4.16). A tip-sample separation of d = 300 nm, and a dielectric function εs =

11.9 − i ε′′, are used in the calculation. The real part of εs of the semiconductor

is taken as the static dielectric constant of Si. The charge at the tip qc ≡ c(d)Vts

in Eq. (4.15) is determined using the capacitance formula in Eq. (3.38) for Vts = 3

V. A tip-radius R = 80 nm and a relative dielectric function of Si ε′s(0) ≡ 11.9,

are used in the capacitance formula. All the noncontact friction calculations

in this section use a cantilever resonance frequency fc = 81 kHz, the value in

Stowe’s measurements [57]. A tip-sample voltage Vts = 3 V is used in Eq. (4.15)

for Figs. (4.8a), and (4.8b). A mobility of µ = 10−5 m2V−1s−1, and a diffusion

constant estimated from Einstein relation for this mobility D = 2.6 × 10−7 m2s−1,

are used in the calculation of Fig. (4.8a). Figure (4.8a) shows the noncontact

friction calculated from Eq. (4.15) versus carrier density in semiconductor for

different values of dispersion ε′′s in the relative dielectric function εs = 11.9− i ε′′s .

The noncontact friction for parallel motion in the absence of dispersion (ε′′s = 0)

shows two regimes: 1) the low carrier density regime where the carrier density

is sufficiently dilute, so inter-carrier interactions are negligible, and the friction

increases linearly in ρ̄, and 2) the high carrier density regime where the carrier

density is high, the inter-carrier interactions result in suppression of friction,

and γ‖ ∝ ρ̄
−1. A peak value for friction is attained in going from regime 1 to 2.

For non-zero values of ε′′s , two additional carrier density regimes emerge with

the peak approximately at the same carrier density, and the two regimes around

the peak same as that for ε′′ = 0. Figure (4.8a) shows two additional regimes for
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ε′′ = 0.05 and 0.1: 1) the asymptotic low carrier density limit where the friction

is independent of carrier density, and is only from the dielectric fluctuations,

and 2) the asymptotic high carrier density limit where the friction is ∝ ρ̄−1/2, and

the friction is both from dielectric fluctuations and inter-carrier interactions.

Figure (4.8b) shows the friction vs. carrier density for various carrier mobil-

ities in the semiconductor. The three low mobilities: µ = 4 × 10−7, 2.7 × 10−10, 6 ×

10−14 m2V−1s−1 correspond to the range of fast to slow mobilities in organic semi-

conductors [11]. A mobility corresponding to that of the electron mobility in Si,

µ = 0.15 m2V−1s−1, is also shown. While the three low mobilities in organic semi-

conductors in Fig. (4.8b) exhibit all four carrier density regimes as discussed for

the case of non-zero dispersion in Fig. (4.8a), the high electronic mobility of Si

in Fig. (4.8b) only shows the asympotic low and high carrier density limits of

non-zero dispersion. The peak is absent for the mobilities as high as the elec-

tron mobilities in Si. The four carrier density regimes seen in Figs. (4.8a) and

(4.8b) are characterized and explained by using the interpretation developed

for the frequency regimes of Pδ f c( f ) in Fig. (3.3) of Chapter 3. The crossover

frequencies in Eqs. (3.34)-(3.36) using which the four frequency regimes are ex-

plained for Fig. (3.3), are used to deduce the crossover carrier densities for the

case of ε′′s (ωc) << ε′s(ωc). This is seen from determining these crossover carrier

densities numerically. The friction is plotted for different parameters, and the

change in the crossover frequencies with respect to the changed parameters is

noted. From the crossover densities thus determined, in retrospect, it is found

that these crossover carrier densities can be determined by equating the can-

tilever resonance frequency to the crossover frequency, and then rearranging

the terms to give the three crossover carrier densities,

ρ1 =
ε′′s (ωc)
|εs(ωc)|2

ρx, (4.17)
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ρ2 =
|εs(ωc)|2

ε′s(ωc)
ρx, (4.18)

ρ3 =

 |εs(ωc)|4ωcd2(
ε′′s (ωc)

)2 D

 ρx, (4.19)

ρx ≡
ωcε0

eµ
. (4.20)

These carrier densities are such that ρ1 is determined from f3, ρ2 from f2, and ρ3

from f1. All three crossover densities scale as ρx in Eq. (4.20) which is inversely

proportional to mobility. The first two crossover densities ρ1 and ρ2 are inde-

pendent of tip-sample separation d, while the third crossover density ρ3 ∝ d2. ρx

in Eq. (4.20) is also obtained from the condition κ2D = ωc. This condition occurs

when the frequency scale associated with a charge carrier diffusing by a Debye

screening length in vacuum is equated to the cantilever resonance frequency.

With respect to the crossover densities, the four density regimes in Fig. (4.8b)

are given physical interpretation similar to the crossover frequency regimes in

Fig. (3.3) as follows: ρ << ρ1 corresponds to the regime where friction is solely

from the dielectric fluctuation in the sample, and the carrier dynamics is negli-

gible. ρ1 < ρ < ρ2 corresponds to the regime where the friction is ∝ ρ, and an

analytical expression for friction in this regime is obtained,

γ‖ =
q2

c

4πε0ω2
c

(
ε′s(ωc)

(1 + ε′s(ωc))2

) (
κ2D
d3

)
. (4.21)

This is the limit where the inter-carrier interactions, and the dielectric fluctua-

tions have negligible contributions to friction, and the carrier density is dilute.

A maximum value for friction is seen around ρ2. In the ρ2 < ρ < ρ3 regime, the

contribution from the dielectric fluctuations is negligible while the Coulomb

interactions between charge carriers contribute significantly, and friction is in-

versely proportional to ρ,

γ‖ =
q2

c

16πε0

(
ε′s(ωc)
κ2Dd3

)
. (4.22)
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Figure 4.9: Noncontact friction of doped Si vs. doping density at a tip-
sample height d = 300 nm. Measured friction values for elec-
trons(squares), and holes(circles) are obtained from Refs.[57,
56]. The curves are calculated from Eq. (4.15), with ε′′s as in-
dicated. The carrier density used in the calculations is equal to
the dopant density. The tip-sample voltage is Vts = 2 V. The rest
of the parameters are the same as Fig. (4.8), and the experiment.

In the asymptotic high carrier density regime, friction is ∝ ρ−1/2, and given by

γ‖ = −
3q2

c

32πε0ωcd4

(
Im
√
εs(ωc)

|εs(ωc)|

)
κ−1. (4.23)

In this limit, both the dielectric fluctuations and the inter-carrier interactions

contribute to friction. The limits in Eqs. (4.21)-(4.23) are evaluated from Eq.

(4.15) for the corresponding regimes. Figure (4.8a) and the limits evaluated in

Eqs. (4.21) and (4.22), show that the friction around the peak is independent of

dispersion ε′′s (ωc). An increase in ε′′s (ωc) leads to an increase in the carrier density

(ρ1) at which asymptotic low density limit stops, and a decrease in the carrier

density (ρ3) at which the asymptotic high density limit starts. For the three
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mobilities observed in organic semiconductors, Fig. (4.8b) shows that the peak

density increases with decrease in mobility, and the peak shifts to the right as

predicted by Eq. (4.18). For a relatively high mobility as that of electron mobility

in Si semiconductor, there is no peak seen in Fig. (4.8b).

In Figs. (4.9) and (4.10), a quantitative comparison of the noncontact friction

calculated from Eq. (4.15) to the measurements of Stowe, et al. on doped Si sam-

ples of n- and p-type are shown. The use of the linear response assumption in

Sec. 1.3 for the calculation of noncontact friction is validated by the quadratic

dependence on tip-sample voltage of noncontact friction in Ref. [57]. The pa-

rameters used for the quantitative comparison are taken from Ref. [57]: can-

tilever resonance frequency fc = 81 kHz and tip-sample voltage Vts = 2 V. The

relative dielectric function is εs(ωc) = 11.9−ε′′s , with ε′′s taken as an adjustable pa-

rameter. The tip radius R = 80 nm, and the dielectric constant of Si ε′s(0) = 11.9,

are used in Eq. (3.38) for the tip-sample capacitance c(d). Figure (4.9) uses a

tip-sample height of d = 300nm in Eq. (4.15), and the carrier density is taken

to be same as the dopant density of Si [56, 57]. The mobility of holes in Si is

µ = 0.045 m2V−1s−1, and the mobility of electrons in Si is µ = 0.15 m2V−1s−1 for the

concentrations of the carriers of the order of 1020 − 1021m−3 [61]. A fit function

of mobility as a function of carrier density is obtained from the measured data

in Ref. [61] for holes, and electrons in Si. This mobility as a function of carrier

density is used in the friction formula in Eq. (4.15). The diffusion constant is

obtained using the Einstein relation D = µkBT/e for both electrons and holes.

Figure (4.9) shows the friction data [56] from holes, and electrons as circles, and

squares, respectively. Both the curves in Fig. (4.9) use the experimental values

for all the parameters, except for ε′′s whose value is as indicated. Stowe’s friction

data [57] show a ρ−1/2 dependence in Fig. (4.9). For the mobilities as high as the
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mobilities of electrons and holes in Si, the friction calculated from Eq. (4.15) has

only the asymptotic low, and high charge density regimes as in Fig. (4.9). For

the parameters used from Stowe’s measurement [57], the calculated friction is in

the asymptotic high carrier density regime as given by Eq. (4.23), in agreement

with the ρ−1/2 dependence observed for the data. Ref. [57] demonstrated that the

friction is ∝ µ−1 by plotting γ‖µ for holes and electrons vs. dopant density, and

finding it to be a straight line in this range of mobilities and carrier densities.

Equation (4.23), the limit applicable for these charge densities, and mobilities,

has no mobility dependence from the semi-infinite semiconductor model.
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Figure 4.10: Noncontact friction vs. tip-sample height d. Dots are the
measured friction data from Ref.[57], and the solid line is
the friction calculated from Eq. (4.15) for a carrier density of
ρ = 1.4 × 1023m−3. The hole mobility in Si, µ = 0.045 m2V−1s−1,
ε′′rel = 5, and Vts = −2 V are used in the calculation.

Figure (4.10) shows friction vs. tip-sample height d. Circles in the figure
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are the measured friction data [57], and the solid line in the figure is the calcu-

lated friction from Eq. (4.15). The carrier density is calculated using the relation

ρ = 1/(eµ × resistivity). For a 0.1Ω cm p-type Si sample used in the measure-

ments, the carrier density using this relation is 1.4×1023 m−3. The measured fric-

tion shows a dependence of d−2, while the calculated friction shows a stronger

dependence d−4. This discrepancy may be attributed to the use of a simplified

model for tip-sample capacitance c(d) in the calculations. The quantitative com-

parison between the measured, and the calculated friction in Figs. (4.9), and

(4.10), is summarized: 1) the calculation of friction using linear response as-

sumption is valid as the measured friction has a quadratic voltage dependence

in Ref. [57], 2) calculated friction shows the same ρ−1/2 dependence as the mea-

sured data, 3) the calculated friction has both contributions from the Coulomb

interactions and the dielectric fluctuations in the sample, and the suppression

in friction with increase in carrier density is attributed to the inter-carrier in-

teractions in Si at these carrier densities, 4) calculated friction in the range of

carrier densities, and mobilities of Stowe data, is mobility independent as op-

posed to the demonstrated µ−1-dependence of data in Ref. [57], 5) the distance

dependence of the calculated friction is stronger than the measured friction, and

6) the magnitude of calculated friction is good fit to the data with ε′′s as the sole

parameter.

Figure (4.11) shows the friction predictions from model II for the perpendic-

ular motion of cantilever described in Secs. 1.1.2 and 1.2. Noncontact friction for

the perpendicular motion of cantilever is given by Eq. (1.26), and the potential

auto-correlation to evaluate this friction is obtained from model II in Sec. 4.2. In

Figs. (4.5)-(4.7), in the low frequency range ( fmin = 0.2 Hz to fmax = 3 Hz) pertain-

ing to jitter measurements, the calculations from model II rightly predicted the
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Figure 4.11: Noncontact friction for the perpendicular motion of the can-
tilever calculated from model II in Sec. 4.2, for an organic tran-
sistor. (a) γ⊥ vs. carrier density for different carrier mobilities
as indicated, with relative dielectric function of the semicon-
ductor and the dielectric overlayer εd = εs = 3.4 − i 0.05. Red
vertical lines on the x-axis correspond to the carrier densities
estimated from gate voltages VG = −20,−40 V, explained in the
text. (b) γ⊥ for various dispersion values ε′′s in the relative di-
electric function εd = εs = 3.4−i ε′′s , and µ = 2.7×10−10 m2V−1s−1.
The rest of the parameters are in the text.
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carrier density independence of the power spectrum of frequency fluctuations,

and the frequency jitter, as observed in EFM measurements on organic transistor

in Sec 3.3. Figures (4.5)-(4.7) also predicted that the carrier density dependence

is seen at high frequencies, allowing the friction measurements to capture the

carrier dynamics. Figures (4.11a) and (4.11b) show these friction versus carrier

density predictions for organic semiconductors. Figure (4.11a) shows friction

versus the carrier density for different mobilities, and a relative dielectric func-

tion εs = εd = 3.4 − i 0.05, while Fig. (4.11b) shows the same for a mobility of

µ = 2.7×10−10 m2V−1s−1, and various dispersion values. In model II, the thickness

of the dielectric overlayer is hd = 69 nm, and the tip-sample voltage is Vts = 3 V.

The tip-sample capacitance c(d) is calculated from Eq. (3.38), with the tip radius

R = 40 nm, and the relative dielectric constant ε′rel(0) = 4. The long dashed curve

in Fig. (4.11a) is the friction for the electronic mobility in Si. This mobility is

higher than the other three mobilities in organic semiconductors in the figure.

The friction calculated from model II for the high mobility in Si is similar to that

calculated for parallel motion of cantilever in Fig. (4.8b) for the same mobility.

The three low mobilities that are relevant to organic materials show a peak in

friction whose magnitude increases with decrease in mobility. The charge den-

sity at which the peak occurs is also inversely proportional to µ. The solid curve

in Fig. (4.11a) corresponds to the mobility estimated in the organic transistor in

Ref. [32, 20], and the red dashed lines show the carrier densities corresponding

to the gate voltages VG = −20,−40 V of transistor in the experiment, estimated to

be ρ = 1.6× 1024, 5.2× 1024 m−3. The friction calculations in Fig. (4.11a) show that

the effect of the carrier dynamics in organic transistor that were not measurable

in frequency jitter, can be measured in a friction measurement. Figure (4.11a)

uses a arbitrary relative dielectric function as the relative dielectric function of
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the organic semiconductor is unknown (Sec. 3.3). Figure (4.11b) shows friction

vs. carrier density for the transistor mobility for various dispersion values. For a

particular mobility, it is seen in Fig. (4.11b) that increasing the dispersion ε′′s (ωc)

does not change the peak location of friction, but the effects of carrier dynamics

will be masked by the dielectric fluctuations in the sample for a high value of

ε′′s (ωc).

4.4 Summary

The spectral density of frequency fluctuations and the frequency jitter from

model I where there is a finite thickness for semiconductor on a dielectric base,

are shown. These calculations are shown to be not different from semi-infinite

semiconductor presented in Chapter 3, for the thickness of the organic semi-

conductor hs = 70 nm in transistor. Significant finite thickness effects are

seen only for small thicknesses hs = 1, 10 nm from model I. The spectral den-

sity of frequency fluctuations, and the frequency jitter calculations from model

II where there is a dielectric overlayer on a semi-infinite semiconductor are

shown. This model includes the well-known physical feature in the organic

transistor, the confinement of the charge carriers to about one nanometer at

the semiconductor-SiO2 interface. These calculations exhibited the same car-

rier density independence around 1 Hz similar to that observed in the EFM

experiments[32, 20] for the corresponding gate voltages. The dielectric over-

layer of thickness 69 nm is shown to significantly screen the suppression of fre-

quency noise from semi-infinite semiconductor giving approximately the same

result as the dielectric. The calculated jitter from model II is quantitatively com-

pared to the jitter measurements on the organic transistor from Chapter 3. While
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jitter magnitude is fitted with a large dispersion value in the dielectric function,

a stronger tip-sample height dependence of jitter is observed in the calculation.

The stronger tip-sample height dependence may be attributed to the the use of

a simplified tip-sample capacitance expression in the jitter calculations.

The calculations from model II not only explain the jitter measurements on

organic transistor, but also predict that the carrier dynamics may be seen at

higher frequencies that are accessible in a friction measurement for a cantilever

oscillating in a perpendicular motion. It is shown that the friction versus carrier

density calculations for the organic transistor exhibit a peak at a density, and

the location is inversely proportional to the carrier mobility. Depending on the

carrier mobility and the carrier density in the transistor the friction measure-

ments may fall into four different regimes: ∝ ρ0, ∝ ρ, ∝ ρ−1, or ∝ ρ−1/2. It is

also shown that increasing the dispersion ε′′s of the dielectric overlayer leads to

masking of the carrier dynamics effects by stronger dielectric fluctuations in the

friction calculations.

Noncontact friction measurements of Stowe, et.al. [57, 56] for the parallel

motion of the cantilever on doped Si are shown, and quantitatively compared

to the friction calculations from the semi-infinite semiconductor model appli-

cable to this geometry. The friction vs. carrier density calculations are shown

for the parallel motion of cantilever for different mobilities and dispersion val-

ues, and the same four regimes in the friction calculations for perpendicular

motion of the cantilever for the organic transistor are seen. The calculations

from the semiconductor model, particularly for the electronic and hole mobili-

ties in Si, showed the same ρ−1/2 dependence as observed in the Stowe data [57].

The magnitude of the friction is also fit with ε′′s as the sole adjustable parame-
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ter. The stronger distance dependence observed in the calculation is attributed

to the simplified tip-sample capacitance model, and the demonstrated mobility

dependence of friction through arguments in Ref. [57] is not seen from the calcu-

lations. The suppression of friction with increase in carrier density is shown to

arise from the inter-carrier interactions and the dielectric fluctuations in doped

Si.
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CHAPTER 5

CONCLUDING REMARKS

Electric force microscopy employs a charged cantilever tip to sense the fluc-

tuating electrical forces from a sample. The cantilever tip experiencing these

fluctuating electrical forces is modelled as a point charge using the Langevin

equation. The fluctuating electrical forces at the cantilever tip are obtained

from the stochastic potential energy of the tip-sample system. These electri-

cal forces from the sample are linked to the experimental observables in EFM:

the frequency jitter that measures low frequency dynamics in the sample, and

the noncontact friction that measures high frequency dynamics in the sample.

These observables are calculable using a classical mechanical treatment based

on linear response theory and classical electrodynamics of the tip-sample ar-

rangement in the point charge model. The presence of charge carriers in the

sample requires additionally a transport equation for the carriers in coupling

to the Maxwell’s equations. This macroscopic treatment implicitly includes car-

rier interactions and coupling between carrier dynamics and dielectric fluctua-

tions which is not possible in the calculation of experimental observables from

random walk models. The microscopic treatments that are generally used to

study charge motion in organic semiconductors neglect long-range inter-carrier

Coulomb interactions which are included in this macroscopic theory. The the-

ory presented here moreover treats the coupling of charge carriers to molecular

motions at the interface between two different materials.

The EFM observables thus calculated are related to the sample properties:

molecular motions, carrier dynamics and inter-carrier interactions. Cantilever

frequency jitter measurements on organic thin-film polymers are related to
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molecular motions in polymers via the dielectric spectrum of the polymer. In

principle, frequency jitter measurements on a sample with charge carriers are

capable of probing the dielectric fluctuations, carrier dynamics, and inter-carrier

interactions. In the experiment, what is probed depends on the sample geom-

etry and the interplay between dielectric fluctuations, carrier dynamics, and

inter-carrier interactions. A frequency jitter measurement on an organic tran-

sistor with an organic semiconductor thickness of 70 nm only probes dielectric

fluctuations even when the gate voltage is varied to adjust the carrier concentra-

tion in the semiconductor sample. In an organic transistor, the charge carriers

are confined to a few monolayers at the semiconductor-dielectric interface and

the noise at low frequencies in a jitter measurements is screened by the semi-

conductor layers on the top of these few monlayers. The noncontact friction

calculations predict that for attainable gate voltages in a typical organic tran-

sistor, carrier dynamics and inter-carrier interactions can be characterized in an

organic semiconductor sample via a friction measurement.

92



APPENDIX A

APPENDIX TO CHAPTER 3

Maxwell’s equations in the semiconductor are given by Eqs. (3.1)-(3.3). The

current density J is taken to be related to charge density and electric field by Eq.

(3.4). Here, the approach in Refs.[14, 59] is shown in detail to obtain the final

form of current in Eq. (3.4). In this approach a simplifying assumption that both

the positive, and the negative charge carriers have same dynamics is made. This

current density is obtained from the general expression for the current density,

in terms of the charge density n (in Coulomb per cubic metre), and the mean

velocity of carriers v, J ≡ nv, and the Boltzmann transport equation given by(
∂

∂t
+ v.∇

)
v = −

e
m

E −
v2

T

n
∇n −

v
τ
, (A.1)

where m is the effective mass of the carriers in sample, vT is the thermal velocity

given by (kBT/m)1/2, T is the temperature, kB is the Boltzmann constant, −e is the

electronic charge, and τ is the relaxation time of the carriers. The charge density

n is written as a sum of two terms: a static part n0 which is constant throughout

space, and a spatially and temporally varying term n(r)eiωt. Similarly, the static

part of the mean velocity of carriers (drift) due to the external applied field is

taken as 0 in this treatment, and the temporally and spatially varying term is

veiωt. Eq. (A.1) is linearized in eiωt, and this gives(
iω +

1
τ

)
v = −

e
m

E −
v2

T

n0
∇n. (A.2)

The assumption 1
τ
>> ω is made next. The terms in Eq. (A.2) are rearranged

to obtain the velocity as

v = −
eτ
m

E −
v2

Tτ

n0
∇n. (A.3)

93



Equation (A.3) is written in terms of the mobility of the carrier µ = eτ/m, and the

diffusion constant D = v2
Tτ, and substituted in the expression for current density

J = nv. This is again linearized in eiωt, and written in terms of the conductivity

σ0 = −n0µ to give the final form in Eq. (3.4) which is then written in terms of

electric field using Eq. (3.3) as follows

J = σ0E − D∇n, (A.4)

= σ0E − ε(ω)D∇(∇.E) (A.5)

Combining Eqs. (3.1), (3.2), and (A.5) gives the second-order differential equa-

tion for the electric field in Eq. (3.6). Here the following well known property

for the curl is used.

∇ × (∇ × E) = ∇(∇.E) − ∇2E (A.6)

The vector field equation in Eq. (3.6) is then written in terms of the electric field

components Ex and Ez. This gives the coupled equations for of Ex and Ez, in Eq.

(3.9)

Here the steps going from the second-order coupled equations in Eq. (3.9) to

the fourth order uncoupled equations in Eq. (3.11) are shown. The first second-

order coupled equation in Eq. (3.9) has the form

∂2Êx

∂z2 + aÊx = b
∂Êz

∂z
, (A.7)

a =

(
s̃2 − ik2 Ds2

ω

)
,

b = −ik
(
1 −

is2D
ω

)
,

. Equation (A.7) is differentiated twice with respect to z to give

∂4Êx

∂z4 + a
∂2Êx

∂z2 = b
∂3Êz

∂z3 . (A.8)
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The term on the right hand side in Eq. (A.8) ∂3Êz/∂z3, is obtained from the other

coupled equation in Eq. (3.9) written as follows,

d
∂2Êz

∂z2 + cÊz = b
∂Êx

∂z
, (A.9)

c =
(
s̃2 − k2

)
,

d =
iDs2

ω
,

after differentiating with respect to z once. This when substituted into Eq. (A.8)

gives

∂4Êx

∂z4 + a
∂2Êx

∂z2 =
b2

d
∂2Êx

∂z2 −
bc
d
∂Êz

∂z
. (A.10)

Using Eq. (A.7) in Eq. (A.10) gives the fourth order differential equation for Ex

in Eq. (3.11)

∂4Êx

∂z4 + (a − b2/d + c/d)
∂2Êx

∂z2 +
ac
d

Êx = 0. (A.11)

It can be easily shown that ac/d = η2
−η

2
+, and (a−b2/d +c/d) = −η2

−−η
2
+, using Eqs.

(3.12), (3.13), and the definitions of the variables: a, b, c, and d from above. Sim-

ilar derivation for Ez gives the fourth order uncoupled equation for Ez, which

has the same form as Eq. (A.11).
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APPENDIX B

APPENDIX TO CHAPTER 4

The boundary conditions for model I in Sec. 4.1, and model II in Sec. 4.2 are

shown here. For model I, the continuity conditions for Ex, ε(ω)Ez and Hy at the

vacuum-semiconductor interface at z = 0 are written. The equations for the

fields in vacuum are Eqs. (2.9)-(2.11) and contain one unknown amplitude Arxn.

The fields in semiconductor for model I are given by Eqs. (4.1)-(4.3) and contain

unknown amplitudes A++, A+−, A−+, and A−−. Substituting z = 0 in these field

equations, and equating the corresponding fields in vacuum and the semicon-

ductor gives the boundary conditions at the vacuum-sample interface as

A++ + A+− + A−+ + A−− =
ik̃
k

(
q(z1, ω)

2ε0

)
e−k̃z1 +

ik̃
k

Arxn, (B.1)

εs(ω)
(
iη+

k
(A++ − A+−) +

ik
η−

(A−+ + A−−)
)

= −
q(z1, ω)

2ε0
e−k̃z1 + Arxn, (B.2)

is̃2

η−
(A−+ − A−−) =

ω2

kc2 (−
q(z1, ω)

2ε0
e−k̃z1 + Arxn). (B.3)

Similarly, the boundary conditions at the semiconductor-dielectric interface at

z = −hs are written using the field equations in the semiconductor in Eqs. (4.1)-

(4.3), and the field equations in the dielectric in Eqs. (4.4)-(4.7), which contain

the unknown amplitude C.

A++e−η+hs + A+−eη+hs + A−+e−η−hs + A−−eη−hs = Ce−ηhs , (B.4)

iη+

k
(A++e−η+hs − A+−eη+hs) +

ik
η−

(A−+e−η−hs + A−−eη−hs) =
ikεd(ω)
ηεs(ω)

Ce−ηhs , (B.5)

s̃2

η−
(A−+e−η−hs − A−−e−η−hs) =

ω2εd(ω)
ηc2 Ce−ηhs . (B.6)

Eqs. (B.1)-(B.6) are 6 equations in 6 unknowns, and these are soluble to obtain

Arxn for model I as in Eq. (4.8) with θI given by Eq. (4.9).
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Similarly, for model II in Fig. (4.2), the boundary conditions at the vacuum-

dielectric interface at z = 0 and at the dielectric-semiconductor interface at z =

−hd are shown. Using the field equations in vacuum in Eqs. (2.9)-(2.11), and the

field equations of the dielectric Eqs. (2.12)-(2.14), which contaun the unknown

amplitudes C1 and C2, the boundary conditions at the interface at z = 0 are

written as follows,

ik̃
k

(
q(z1, ω)

2ε0

)
e−k̃z1 +

ik̃
k

Arxn = C1 + C2, (B.7)

−
q(z1, ω)

2ε0
e−k̃z1 + Arxn =

ikεd

η̃
(C1 −C2). (B.8)

The continuity conditions of ε(ω)Ez and Hy at the vacuum-dielectric interface are

the same, and hence at this interface only two conditions Eqs. (B.7), and (B.8) are

obtained. The boundary conditions at the dielectric-semiconductor interface at

z = −hd are written using the field equations in the dielectric Eqs. (2.12)-(2.14),

and the field equations in the semiconductor Eqs. (3.15)-(3.17) as shown below.

C1e−η̃hd + C2eη̃hd = A+e−η+hd + A−e−η−hd , (B.9)

kεd(ω)
η̃εs(ω)

(C1e−η̃hd −C2eη̃hd) =
η+A+

k
e−η+hd +

kA−
η−

e−η−hd , (B.10)

εd(ω)
η̃c2 (C1e−η̃hd −C2eη̃hd) =

s̃
η−

A−e−η−hd . (B.11)

The 5 boundary conditions in Eqs. (B.7)-(B.11), when solved for the 5 unknown

amplitudes give Arxn for model II in Eq. (4.12) with θII given by Eq. (4.13).
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