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The purpose of this research is to understand the molecular mechanism of manganese oxidation 

in Leptothrix discophora SS1 which until now has been hampered by the lack of a genetic 

system.  Leptothrix discophora SS1 is an important model organism that has been used to study 

the mechanism and consequences of biological manganese oxidation. In this study we report on 

the development of a genetic system for L. discophora. First, the antibiotic sensitivity of L. 

discophora was characterized and a procedure for transformation with exogenous DNA via 

conjugation was developed and optimized, resulting in a maximum transfer frequency of   

5.2*10
-1

 (transconjugant/donor). Genetic manipulation of Leptothrix was demonstrated by 

disrupting pyrF via chromosomal integration of a plasmid with an R6Kɣ ori through homologous 

recombination. This resulted in resistance to fluoroorotidine which was abolished by 

complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS-5. This 

genetic system was further used to disrupt five genes in Leptothrix discophora SS1, which were 

considered to be the best candidates for the enzyme encoding the manganese oxidizing activity in 

this bacterium. All of the disrupted mutants continued to oxidize manganese, suggesting that 

these genes may not play a role in manganese oxidation, as hypothesized. MofA a putative 

muticopper oxidase, identified from the oxidizing fraction of Leptothrix discophora SS1 

supernatant to encode the manganese oxidizing activity, was deleted from the genome and the 

cells lacking mofA  did not lose the ability to oxidize manganese. This finding suggests that mofA 



is dispensable to Mn oxidation in Leptothrix. Transposon mutagenesis performed on a ∆mofA 

Leptothrix strain resulted in the isolation of white, non-manganese oxidizing mutants. Mapping 

of the transposon insertions identified insertions in 4 genes located in 2 regions on the 

chromosome. One of the genes, named mnxG2 is a putative multicopper oxidase similar to the 

manganese oxidizing enzyme in Bacillus sp SG-1. The other three genes with insertions encode a 

hypothetical protein, a putative cytochrome c next to a putative copper metallochaperone 

(Sco1/SenC/PrrC) involved in the biogenesis of cytochrome oxidase. Further analysis of the non-

manganese oxidizing mutants identified through transposon  mutagenesis coupled with the draft 

genome sequence of Leptothrix discophora SS1 should provide information about the number 

and the nature of proteins involved in manganese oxidation in this bacterium.  The draft genome 

of Leptothrix discophora SS1 contains 4.2Mb with 3,791 identified protein coding sequences. In 

contrast with previous information of Leptothrix as an obligate aerobic heterotroph, functional 

analysis of the draft genome revealed the potential for a diverse metabolism such as 

fermentation, anaerobic respiration with nitrate and arsenate, sulfur oxidation and carbon 

fixation. The information provided by the draft genome about the metabolism of L. discophora 

SS1 as well as genomic context information about the genes identified to be important in 

manganese oxidation represent an important addition to the genetic system developed for 

Leptothrix, and together with the new metabolic information should expand our understanding of 

the manganese oxidation in Leptothrix discophora SS1. 

 

 

 



i 
 

BIOGRAPHICAL SKETCH 

 

Daniela Bocioaga was born and grew up in Tulcea, Romania, by the shores of the beautiful 

Danube river, where she spent her peaceful years of childhood and the intense years of high 

school. After she received her bachelor in science in biology from the University of Bucharest, 

she travelled to the United States to study bioremediation of heavy metals from mining pits using 

unicellular algae under the guidance of a remarkable advisor and mentor, Dr. Grant Mitman, at 

the University of Montana in Butte. She spent two years, made many good friends and developed 

an interest for the application of microbiology to solve environmental problems. She continued 

her graduate education by pursuing her Ph.D. at Cornell University, under the guidance of Dr. 

Anthony Hay and Dr. Wiliam C. Ghiorse. 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

ACKNOWLEDGEMENTS 

 

 First, I want to thank my main advisor, Dr. Anthony Hay, for believing in me and for 

standing by me on this journey. He continues to be a source of inspiration not only as a scientist, 

but as an individual in the real life. I would like to thank Dr. Bill Ghiorse, who inspired me 

throughout the years with his true passion for (good) teaching and his dedication to the 

undergraduate students.  My thanks extend to my committee members Dr. John Helmann and Dr. 

Len Lion for their contribution to my project that brought insight and helped keep things into 

perspective.  I would like to thank all the entities that provided funding for my research (NSF 

and The Department of Microbiology). 

 As a graduate student I feel that I grew not only to become a better scientist, but I also 

learned to be a better teacher, for which I  want to thank Sue Merkel for all I learned from her 

about teaching and for being my inspiration in this field. 

 Dr. Grant Mitman was the one who planted  the first seed for my pursuing of a Ph.D. and 

I would like to thank him for believing in me and for being an amazing mentor and friend.

 Many thanks to the administrative staff of the department of Microbiology (Shirley, 

Patty, Cathy). My sincere thanks to Shirley, for her support in the darkest hours of editing. 

 Thanks to my lab colleagues, past and present (Andreas, Gabi, Karl, Hanh and many 

more) who have been good friends, teachers and sources of inspiration. 

 I will always be thankful to my parents for instilling in me a love and respect for 

knowledge and education and for continuing to support me with their unconditional, endless 

love; to my best friend, my dear sister, for quietly extending her help when I needed the most and 

to my own little family. 



iii 
 

DEDICATION 

 

To my parents, who made me strong and taught me unconditional love 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

 

Biographical sketch                              iii  

Dedication                                  iv 

Acknowledgements                    v 

Table of contents                  vi                                                                                                                                        

 

CHAPTER 1: Introduction:  Background and significance of biological manganese              

oxidation                                                                                      1                              

 

1.1 Manganese in the environment                                                                          1 

1.2 Abiotic and biological Mn oxidation. Mn oxides                                              2 

1.3 Mn oxidation by Leptothrix discophora SS-1                                                    3 

1.4 Manganese oxidation by other microorganisms the state of knowledge           6                                                                                                                                                                       

1.5 Multicopper oxidases and their potential for enzymatic manganese oxidation                                                                     

1.6 Significance of manganese oxidation to bacteria and the environment           10 

1.7 References                                                                                                        12                                                                          

 

CHAPTER 2: Development of a genetic system for a model manganese oxidizing  

 proteobacterium, Leptothrix discophora SS1                                                   18 

 

 2.1 Abstract                                                                                                            18 

 2.2 Introduction                                                                                                      19 

 2.3 Materials and methods                                                                                     21                     

 2.4 Results and discussion                                                                                     27              

 2.5 Conclusion                                                                                                       46 

 2.6 References                                                                                                        47 

 

CHAPTER 3: Isolation of Leptothrix discophora SS1 transposon mutants that cannot 

oxidize manganese                                                                                                50 

 

 3.1 Abstract                                                                                                            50 



v 
 

 3.2 Introduction                                                                                                     51 

 3.3 Material and methods                                                                                      54             

 3.4 Results and discussion                                                                                     59                          

 3.5 Conclusion                                                                                                       78 

 3.6 References                                                                                                        81 

 

CHAPTER 4: In silico evidence for metabolic diversity of Leptothrix discophora SS1         84 

 

  4.1 Introduction                                                                                                      85                                                                                                                             

  4.2 Materials and methods                                                                                     86                                                                                                                                      

  4.3Results and discussion                                                                                      87 

  4.4 Conclusion                                                                                                     101 

  4.5 References                                                                                                      103                            

   

 

CHAPTER 5: Summary and reccomendations for future work                                           107 

  5.1 References                                                                                                      111 

 

APPENDIX A: Proteins identified by LC MS/MS in bands with manganese oxidizing activity 

from SDS PAGE of SS1 concentrated supernatant                                          112 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

CHAPTER ONE: INTRODUCTION 

Background and significance of biological manganese oxidation 

 

 

1.1 Manganese in the environment 

 Manganese is ubiquitous in the environment. It comprises about 0.1% of the Earth's crust  

which makes it the second most abundant transition metal in the Earth’s crust, after iron (1). In 

nature it occurs as a component of more than 100 minerals, including various sulfides, oxides, 

carbonates, silicates, phosphates, and borates (2). In these (and other) compounds Mn can occur 

in 11 oxidation states, from -3 to +7, but the most important environmentally are II, III and IV. 

Oxidation state is important since it controls the solubility and bioavailability of Mn to most 

forms of life which require Mn in trace amounts as an essential micronutrient (3). Mn(II) 

(manganous) cation is the most important soluble form of manganese in nature (4), while Mn 

(IV) forms highly insoluble oxides, hydroxides and oxyhydroxides (4). Mn(III) is unstable in 

neutral environments and readily disproportionates to Mn(II) and Mn(IV). The distribution of 

Mn among these three oxidation states in the environment is controlled by pH, oxygen 

concentration and microbial activity (2). Environments with low pH such as acid mine drainage 

or low oxygen concentrations (such as anoxic regions of lakes and other bodies of water, deep-

sea hydrothermal vents, waterlogged soils or anaerobic sediments) will favor the presence of Mn 

(II), whereas at high pH and/or increased oxygen concentration Mn(IV) will dominate.  

Manganese is an essential trace element for all organisms. It is a component of some 

metalloenzymes, such as superoxide dismutase, arginase, and some phosphate-transferring 

enzymes (5). In plants, manganese atoms are involved in the light-mediated oxidation of H2O to 
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O2 in photosystem II. High intracellular concentrations of Mn
2+

 have been reported to function as 

a protectant against superoxide toxicity in a microaerophilic bacterium, Lactobacillus plantarum 

(6). 

 

1.2 Abiotic and biological Mn oxidation. Mn oxides  

 Oxidation of Mn(II) to Mn(IV) in natural environments can occur as an abiotic process or 

a biological process and results in a mixture of manganese oxides, hydroxides and 

oxyhydroxides. Reports of biological manganese oxidation in nature have been made almost a 

century ago (7) and there has been a long debate as to whether manganese oxidation is an abiotic 

or biological process. It is now generally agreed that the majority of naturally occurring Mn 

oxides are biogenic in nature, derived directly from biological Mn oxidation processes or from 

the subsequent alteration of biogenic oxides (8). 

 Abiotic oxidation of aqueous Mn(II) is energetically favorable under neutral aerobic 

conditions, however the reaction rates are very small and this reaction is not significant for pH 

values smaller than 8 or 9. Measured values of Mn oxidation in many marine and fresh water 

environments show that Mn (II) is oxidized at much higher rates (as much as 5 orders of 

magnitude higher) than those predicted by the thermodynamic conditions of the environment (9). 

The difference between the expected Mn oxidation rates from thermodynamic calculations and 

the measured rates for a particular environment was attributed to oxidation of Mn by 

microorganisms. Microorganisms can mediate the oxidation of Mn in a direct or indirect fashion. 

During indirect oxidation, microorganisms can locally increase the pH or the concentration of 

oxygen in their surrounding environments; this localized change in environmental conditions 

will in turn favor the oxidation of Mn. Direct oxidation involves a bacterial–produced enzyme as 
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a catalyst and it is mostly a cell associated process with Mn oxides deposited on the cell surfaces 

(10). 

 Mechanistically, chemical manganese oxidation occurs as two sequential one-electron 

reactions: Mn(III) oxides are formed first and then converted to Mn(IV) oxides (4). In abiotic 

manganese oxidation, Mn(III) represents a distinct intermediate step followed by slow 

disproportionation and protonation reactions to form Mn(IV) oxides. Studies of the manganese 

oxidation in Bacillus sp. spores show that biological manganese oxidation also proceeds as a 

sequence of two enzymatically mediated one-electron transfer reactions, however Mn(III) 

intermediate is transient and short lived; it could be soluble or enzyme-complexed and does not 

occur as a solid intermediate as it does in abiotic Mn(II) oxidation (11). These findings are 

interesting when linked with the multicopper oxidases (MCO), the enzymes proposed to catalyze 

the biological oxidation of Mn(II) which are known to catalyze the transfer of one electron only 

during oxidation-reduction reactions (12). This suggests that either more than one MCO 

catalyzes the oxidation of Mn(II) to Mn(IV) or that a novel MCO is involved that is capable of 

catalyzing  a two-electron transfer reaction (11).  Preliminary experiments with manganese 

oxides produced by Leptothrix discophora SS1 also had an average oxidation state of 3.32, while 

aged manganese oxides reached an oxidation state close to 4, suggesting that manganese 

oxidation in Leptothrix could also proceed as a two-step process including a Mn(III) intermediate 

as in Baccilus. Also, manganese oxidation in Leptothrix discophora SS1 was microscopically 

observed as large aggregates of membranous particles (“blebs”)(13). Purification of such 

aggregates to yield a single protein greatly decreased the manganese oxidizing activity of this 

protein, suggesting that the process might be catalyzed by a complex of proteins or proteins and 

polysaccharides rather than a single protein. More recent data about enhanced Mn oxidation in 
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the presence of light in planktonic Roseobacter-like bacterium also supports the idea that an 

additional metabolite may be involved in the oxidation process (14).  

 

1.3   Mn oxidation by Leptothrix discophora SS-1 

 L. discophora SS1, the model organism for studding Mn oxidation, is a gram negative, 

sheathed, rod-shaped bacterium that can oxidize both iron and manganese. It was isolated by Dr. 

Bill Ghiorse from a fresh water, swamp-like environment in the Sapsucker Woods, Ithaca, NY 

(15). In this environment it exists either as a Mn oxidizing surface film, with the appearance of 

an oil “sheen”, or associated with the roots of Lemna plants, located a few millimeters under the 

surface. It has a “swarmer” life stage, with motile flagellated single cells which eventually start 

growing into a chain. In natural environments the chains are surrounded by a ”sheath” containing 

heteropolysaccharides which is encrusted with Mn and Fe oxides (16). For this reason it was 

initially believed that the sheath is the site for Mn oxidation activity. However, in a strain of L. 

discophora SS1 which lost its ability to form a sheath upon culturing under laboratory 

conditions, the Mn oxidizing ability was unaffected (17). On medium with less glucose (PYG), 

most of the activity is secreted in the supernatant, while when more glucose is available, most of 

the activity remains cell associated (13).  Initial approaches to study Mn oxidation in L. 

discophora SS1 employed biochemical methods (17–19). A Manganese Oxidizing Factor (MOF) 

was isolated and partially purified from culture supernatant of L. discophora SS1. This factor 

oxidized manganese and staining with periodic acid/Schiff’s reagent suggested that 

polysaccharides material was associated with MOF. It was therefore proposed that the Mn(II) 

oxidation factor in Leptothrix discophora SS1 may be an oxidizing complex consisting of 

glycoprotein(s) associated with anionic polysaccharides that resides in membranous “blebs” (13). 
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Further investigation using the biochemical approach was challenging, due to the difficulty of 

purifying MOF as well as to the loss in activity upon purification. 

 A genetic approach for studying this process resulted in finding the putative sequence of 

mofA, the gene proposed to encode the manganese oxidizing activity protein (20). Antibodies 

raised against purified MOF were used to screen an expression library of L. discophora SS1 and 

α-MOF positive clones were used to isolate the corresponding gene, mofA. Further sequencing 

downstream of mofA revealed two more open reading frames, mofB and mofC, which are 

suggested to form an operon with mofA.  The derived amino acid sequence of mofA indicates a 

molecular weight of 174 kDa. Further attempts to characterize the role of mofA, B and C were 

unsuccessful (21) due to the lack of genetic tools amenable to L. discophora SS1. Initial 

heterologous expression of mofA alone in E. coli resulted in a protein without Mn oxidizing 

activity while the expression of the entire operon was toxic to the cells (22). Upon further 

optimization, the mof operon could successfully be expressed in E.coli, however the Mn 

oxidizing activity could not be recovered (23). Chemical and UV mutagenesis methods did not 

render any mutants that did not oxidize manganese and no DNA transfer system could be 

established for L. discophora SS1 so far (24). Tandem mass spectrometry of manganese 

oxidizing band from  polyacrylamide gel electrophoresis of concentrated Leptothrix supernatant 

did not identify MofA as one of the proteins present in these band (Daniela Bocioaga, 

unpublished results). Although a variety of methods, such as biochemistry, microscopy, 

proteomics, molecular biology and genetics have been used (with varying levels of success) to 

gather knowledge about the manganese oxidation process in Leptothrix discophora SS1, the 

development of a genetic system for this bacterium seems imminent, in order to make further 

progress in understanding this process. 
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1.4 Manganese oxidation by other microorganisms: the state of knowledge 

 Observation and study of bacterial Mn oxidation for over a century revealed that a wide 

variety of phylogenetically diverse microorganisms can oxidize Mn and that these manganese 

oxidizers inhabit very diverse environments. Knowledge about this process accumulated at a 

slow pace, due to the difficulty of isolating and culturing the Mn oxidizing bacteria under 

laboratory conditions as well as the low amenability of many of these bacteria to genetic 

techniques. Although a variety of bacteria that can oxidize manganese have been isolated from 

diverse environments, a more detailed study of Mn oxidation has been limited to L. discophora 

SS1, Pseudomonas putida strains GB-1 and MnB1, Bacillus sp. strain SG-1, Pedomicrobium 

sp.ACM 3067 and Aurantimonas sp. SI185-9A1. 

 The manganese oxidizing activity for Bacillus sp SG-1, isolated from marine sediment in 

a manganese enrichment culture, was identified in the spore coat of dormant spores (25). 

Transposon mutants that did not oxidize manganese had insertions in 7 genes (mnxA-G), 

presumably in an operon (26, 27). Further tandem mass spectrometry of manganese oxidizing 

bands identified peptides of one of the proteins predicted to be a multicopper oxidases, MnxG 

(28, 29). While heterologous expression of mnxG in E.coli did not result in a manganese 

oxidizing protein, co-expression of mnxEFG was sufficient to recover manganese oxidation (30).  

Pseudomonas putida MnB1, an isolate from a Mn oxide-encrusted pipeline and Pseudomonas 

putida GB-1 both oxidize manganese in the early stationary phase. Mutants that did not oxidize 

manganese were obtained when 2 genes encoding putative multicopper oxidases, mcoA and 

mcoB were deleted simultaneously in Pseudomonas putida GB-1 (31). Also, a two component 

regulatory pathway MnxS1/MnxS2 and MnxR is essential for Mn(II) oxidation in P. putida GB-

1 (32). In a separate experiment, transposon mutants that did not oxidize manganese had 
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insertions in genes involved in the general secretion pathway, the cytochrome c maturation 

pathway or the tryptophan biogenesis pathway (33–36). 

 A transposon  insertion in moxA, encoding a putative multicopper oxidase as in the case 

of the aforementioned Bacillus and Pseudomonas, eliminated the  manganese oxidation activity 

in Pedomicrobium sp.ACM 3067; in addition, two more genes flanking moxA were identified, 

moxB and moxC, and proposed to have some involvement in Mn oxidation as part of a moxBAC 

operon (37, 38). 

 Aurantimonas sp. SI185-9A1 was isolated from the oxic/anoxic interface (120m deep) of 

the Saanich inlet, based on its ability to oxidize manganese. A heme type peroxidase was 

identified by tandem  mass spectroscopy as the dominant protein in a manganese oxidizing band; 

genome mining of the draft genome of Aurantimonas sp. identified two more proteins, putative 

multicopper oxidases, MoxA/B that have been proposed to have a role in manganese oxidation, 

however their role was not confirmed with tandem mass spectroscopy (39, 40). 

 One aspect that appears to be consistent in most of the manganese oxidizers for which 

manganese oxidation was studied at the molecular level is the involvement of multicopper 

oxidases as the enzymes that potentially catalyze the manganese oxidation process.  

 

1.5 Multicopper oxidases and their potential for enzymatic manganese oxidation 

 Multicopper oxidases (MCO) constitute a large family of proteins with approximately 

500 homologs found in all three domains(41) and one of the most diverse groups of proteins, 

both in terms of their sequences, functions, and distribution in organisms. These proteins are 

involved in a wide range of functions, such as oxidation of different organic substrates (laccases, 

phenoxazinone synthase, ascorbate oxidase, bilirubin oxidase), copper resistance (CueO in E. 
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coli, CopA and C in Pseudomonas syringae pv. tomato), oxidation and acquisition of iron (Fet3p 

in yeast, ceruloplasmin in humans) (42) and melanin production and UV protection (43, 44). 

Other multicopper proteins lacking known functions have been recently postulated from direct 

sequencing of genomes, such as the Aquifex aeolicus periplasmic cell division protein (45). A 

wide diversity also exists in terms of substrate specificity: many of the MCO’s such as the plant 

and fungal laccases, have broad substrate specificity, being able to oxidize multiple substrates 

including both metals and organics (46), while others have more defined substrate specificity like 

the ascorbate oxidase and ceruloplasmin (47). A multicopper oxidase that can oxidize manganese 

directly has not yet been described in bacteria (48). Therefore MofA, MnxG, McoA, McoB, 

MoxA would be the first ones in this family with this function.  

 Multicopper oxidases are a class of Cu enzymes which utilize the redox property of the 

copper ion as a cofactor for the oxidation of different substrates (41). In these proteins Cu ions 

are coordinated to three or four ligands donated by the amino acid residues, usually histidines 

(but other residues, too), which are the conserved residues of the Cu binding sites. Four types of 

copper-binding sites exist based on the number of Cu ions that participate in the binding site and 

their spectral behavior: type I (one Cu ion), type II (one Cu ion, different coordination) type III 

(2 Cu ions) and type IV (3 Cu ions). In general, MCO’s contain four copper atoms distributed 

between one type I Cu site, and a trinuclear cluster of three Cu ions coming from a type II and a 

type III sites (but MCO’s with 5 and 6 copper atoms also exist (41, 47). Type I Cu is involved in 

the oxidation of substrate by four subsequent one-electron oxidations. These electrons are further 

used in the trinuclear cluster in a four-electron reduction of oxygen to water (49). The quaternary 

structure of the proteins and the positioning of the domains provide the functional proximity 
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between the type I Cu and the trinuclear cluster to facilitate transfer of electrons from the type I 

Cu to the trinuclear cluster (12, 47). 

 The assignment of MofA, MnxG, McoA, McoB and MoxA to the MCO class of proteins 

was made based on their sequence characteristics, particularly the presence of conserved Cu 

binding motifs. Even if these proteins are proposed to catalyze the same reaction, there is little 

homology between MofA, MnxG, McoA, McoB and MoxA as well as between these putative 

manganese oxidizing MCO’s and other multicopper oxidases, except for the copper binding 

motifs. However, it is not uncommon for different multicopper oxidases to share very little 

sequence similarity (41). The multicopper class of proteins is known to require Cu as a cofactor. 

The sequence of mofA, mcoA, mcoB, mnxG and moxA contains the Cu binding motifs and 

preliminary experiments showed that addition of Cu increased Mn(II) oxidation when added to 

the growing cultures. 

 Due to the wide range of functions and substrates that MCO’s can have, more 

experimental evidence is necessary to unequivocally prove the manganese oxidizing role of these 

multicopper oxidases. For exemple, CumA, a putative multicopper oxidase initially proposed to 

be the manganese oxidizing enzyme in Pseudomonas putida GB-1 appears to be widely 

distributed within the genus Pseudomonas, occurring in both Mn(II) oxidizing and non-Mn(II) 

oxidizing strains (48, 50). Recently it was shown that this putative MCO does not catalyze 

manganese oxidation in Pseudomonas.  
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1.6 Significance of manganese oxidation to bacteria and the environment 

 Manganese is an essential trace element for all organisms. It is a component of some 

metalloenzymes, such as superoxide dismutase, arginase, some phosphate-transferring enzymes 

(5) as well as part of the complex involved in photosysthesis. Since most organisms can only use 

soluble manganese, oxidation of Mn(II) can cause this ion to become limiting and affect growth. 

This can be of practical importance in agriculture and plant diseases caused by manganese 

deficiency are known (7). Biogenic Mn oxides resulting from biological manganese oxidation 

are highly reactive mineral phases in soils, sediments and waters, are strong oxidants and have 

high sorptive capacities and ion exchange capacities (4).  They have large surface areas with high 

negative charges and can adsorb a variety of cations on their surfaces and incorporate metal like 

Cu, Co, Cd, Ni, Sn, Zn, Pb in their crystal structure. This can further decrease the dissolved trace 

metals and radionuclides concentration in the environment by orders of magnitude (3). On a 

more practical side the sorption properties of (biogenic) manganese oxides could make available 

an in situ method for removing toxic metals from water (51). 

 As some of the strongest oxidizing agents in the environment after oxygen, Mn oxides 

can promote the degradation of a wide array of complex organics including humic substances, 

PCB’s, phenols, chlorinated anilines (52, 53). Degradation of humic and fulvic acids by  

manganese oxides results in a variety of biologically available organic compounds, possibly 

making available to microbial communities a source of carbon from otherwise biologically 

refractory pools (54). Thus, by mediating the production of manganese oxides, the manganese 

oxidizing bacteria also could play an important role in the biogeochemical cycling of organic 

carbon (55). 
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  The possible involvement of one or more enzymes in manganese oxidation suggests that 

this process must impart some selective advantages to microorganisms, although the present state 

of knowledge about this process cannot demonstrate a specific function. It is possible that 

manganese oxidation could function as a defense mechanism against toxic metals, reactive 

oxygen species, UV light or predation or as a scavenging mechanism for trace metals. 

Manganese oxides could play a role as storage of an electron acceptor for use in anaerobic 

respiration or when oxygen concentrations are low (56). Such a scenario is not unlikely for 

Leptothrix discophora SS1 considering its environment, an oxic/anoxic interface for which 

variations in the concentration of oxygen are expected (57). Cells coated with manganese oxides 

tend to adhere more strongly to surfaces, so that manganese-oxidizing cells might benefit from 

the "biofilm effect", concentrating nutrients from nutrient-poor liquid environments (7).  The 

highly reactive manganese oxides can break down fulvic acids and provide a carbon source 

otherwise unavailable to bacteria (54), which may impart benefits to the microbial community. It 

is less likely that, for some species, manganese oxidation may provide no benefit to the cell at 

all, but could be only a by-product of some other function.  

 The presence of the Mn(III) intermediate in the reaction sequence may add to the  

environmental importance of biological manganese oxidation. Mn(III) is a strong oxidant, 

implicated in the degradation of lignin by fungi and the oxidation of sulfur and nitrogen 

compounds, while Mn(III) organic complexes are labile with respect to other ligands. Thus 

manganese oxidizing bacteria can be an important source of this powerful oxidant in many 

aquatic and terrestrial settings (11, 58, 59). 
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CHAPTER TWO 

DEVELOPMENT OF A GENETIC SYSTEM FOR A MODEL MN-

OXIDIZING PROTEOBACTERIUM, LEPTOTHRIX DISCOPHORA SS1 

 

 

2.1 ABSTRACT 

Though many bacteria can oxidize manganese, the genetic determinants controlling this process 

are not well understood. Leptothrix discophora SS1 is an important model organism that has 

been used to study the mechanism and consequences of biological manganese oxidation 

especially as it relates to the cycling of carbon and heavy metals.  Understanding the molecular 

underpinnings of manganese oxidation in L. discophora SS1 has been hampered by the lack of a 

genetic system. In this study we report on the development of a genetic system for L. discophora 

SS1. First, the antibiotic sensitivity of L. discophora SS1 was characterized and a procedure for 

transformation with exogenous DNA via conjugation was developed and optimized, resulting in 

a maximum transfer frequency of 5.2*10
-1

 (transconjugant/donor). Genetic manipulation of 

Leptothrix was demonstrated by disrupting pyrF via chromosomal integration of a plasmid with 

an R6Kɣ ori through homologous recombination. This resulted in resistance to fluoroorotidine 

which was abolished by complementation with an ectopically expressed copy of pyrF cloned 

into pBBR1MCS-5. This genetic system should be amendable to a systematic analysis of the 

genes involved in manganese oxidation in L. discophora SS1.  
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2.2 INTRODUCTION 

 Leptothrix discophora SS1 is a filamentous gram negative β proteobacterium best known 

for its ability to oxidize soluble manganese (II) to insoluble manganese oxides (III and IV). 

When it was isolated, these oxides encrusted the sheath that surrounded the filaments making the 

cells clearly visible via light microscopy and gave rise to its early classification as a “sheathed” 

bacterium (1). In its native habitat, rafts of sheathed Leptothrix impregnated with the brown-

black ferro-manganese oxides are also visible to the naked eye as a metallic surface film that 

refracts light much like a sheen of oil  (2). It was probably the macroscopic manifestation of this 

microscopic process that led scientist to the discovery and characterization of Leptothrix and the 

closely related genus Sphaerotilus which were described in the scientific literature as early as 

1797. In fact, Leptothrix was among the first microorganisms to be described in detail by early 

microbiologists (3). 

 The result of biological manganese oxidation is a mixture of Mn(III) and Mn(IV) oxides. 

These products are some of the strongest oxidants in the environment after oxygen and have 

great adsorption capacities, binding a wide variety of cations including heavy metals to their 

surfaces (4). These properties emphasize the geochemical importance of manganese oxides in 

fresh water and marine systems and attract the interest of a community of scientists such as 

microbiologists, geochemists and water scientists. While the importance of microbial manganese 

oxidation in biogeochemical cycling has become increasingly evident since it’s discovery more 

than 200 years ago (3, 5-7), the basic questions about the physiological importance of this 

process to the organisms that perform it, how it happens, and what proteins or cofactors are 

involved have only recently begun to be addressed. 
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 Although several enzymes responsible for manganese oxidation in other bacteria have 

been reported (8-10), the molecular determinants of manganese oxidation by Leptothrix 

discophora are poorly characterized. Our understanding of manganese oxidation by Leptothrix 

has been hampered by the lack of a genetic system. Although studies of morphology, physiology 

and biochemistry that do not necessarily require tractable genetic systems, have  increased our 

knowledge about the biology of Leptothrix discophora (11) and it’s so called manganese 

oxidizing factor (MOF), attempts to study MOF by cloning and heterologously expressing the 

genes thought to be involved did not result in a protein that oxidized manganese (12). Despite 

previous efforts to develop a genetic system in Leptothrix SS1 (13), no successful introduction of 

exogenous DNA in to L. discophora SS1 by transformation, conjugation or transduction has 

been reported. To move forward in the study of manganese oxidation in this organism, it seems 

imperative that a genetic system be developed. 

 Here we report on the development for the first time of a genetic system for Leptothrix 

discophora SS1. We show that the transfer of exogenous DNA to L. discophora via conjugation 

is possible at rates comparable to those of other gram negative bacteria. We demonstrate that a 

pVIK165 derivative, containing the widely-used R6Kɣ conditional origin of replication, was able 

to integrate into the Leptothrix chromosome via homologous recombination thus allowing us to 

insertionally inactivate pyrF, whose product is required for uracil auxotrophy and 5-fluorouracil 

sensitivity (14). Finally we complemented the pyrF insertion mutant in trans with a plasmid-born 

copy of pyrF that restored uracil auxotrophy and 5-Fluorouracil sensitivity. This system should 

allow for a more systematic analysis of the genetic underpinnings of L. discophora biology 

including manganese oxidation as described in chapter 3 of this dissertation. 
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2.3 MATERIALS AND METHODS 

Culture conditions and growth media  

 Leptothrix discophora SS1 was maintained on 2XPYG medium (15) (per liter: 0.5 g 

peptone, 0.5 g yeast, 0.5 g glucose, 0.6 g MgSO4
.
 7H2O, 0.07g CaCl2 and 3.57g Hepes, adjusted 

to pH 7.2 with 1M NaOH) either on plates or poured tubes. Transfers to fresh plates were made 

every 2 weeks. Cultures for most experiments were grown in 60 mL glass tubes containing with 

20 mL 2xPYG medium with antibiotics amended as needed and shaken at 120 rpm. When larger 

volumes were needed, cells were grown in 50 mL of 2xPYG medium in 250 mL glass flasks. 

Minimum Salts Vitamin Glucose medium (MSVG, per liter 0.24g (NH4)2SO4, 0.06g MgSO4
.
 

7H2O, 0.07g CaCl2, 0.02g KH2PO4, 0.03 Na2HPO4 and 2.38g Hepes, 0.5 glucose and adjusted to 

pH 7.2 with 1M NaOH) (15) was also used and amended with 1% casamino acids  and/or 50 

µgmL
-1

 uracil  when needed. Antibiotics were used as needed at the following concentrations: 50 

µgmL
-1

 kanamycin (Km), 15 µgmL
-1 

nalidixic acid (Nal), 50 µgmL
-1

 rifampicin (Rif), 50 µgmL
-1

 

streptomycin, 10 µgmL
-1 

tetracycline, 10 µgmL
-1 

gentomicin, 12.5 µgmL
-1 

chloramphenicol, 100 

µgmL
-1 

ampicilin. 5-FOA (5-fluororotidine) was prepared as 1000x DMSO stock solution and 

used at a concentration of 50 µgmL
-1

 when needed. 

 

Assessment of L. discophora SS1 sensitivity to antibiotics and isolation of spontaneous 

antibiotic resistant mutant 

 A 10 mL aliquot of an actively growing culture of L. discophora SS1 was inoculated into 

40 mL of 2xPYG. This culture was allowed to reach logarithmic phase (approximately 2 days) at 

which point Nal was added to a concentration of 15 µgmL
-1

. This culture was shaken at 120 rpm 

for about 7 days, after which it was spun down, the supernatant was removed and the cells were 
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inoculated in 50 mL of fresh 2xPYG with 15 µgmL
-1 

Nal. This culture was allowed to grow for 7 

days at which point 5 mL were removed, concentrated to 100 microliters and spread onto solid 

2xPYG medium containing 15 µgmL
-1 

Nal.  Colonies that appeared after approximately one 

week were re-streaked onto fresh antibiotic-containing plates and upon confirmation of their 

resistance were used for further experiments. Subsequently, a similar approach was used to 

isolate rifampicin and nalidixic double mutants as well as rifampicin, nalidixic and streptomycin 

triple resistant mutants from Nal
+
 and Rif

+
 Nal

+
 L. discophora derivatives respectively. 

Table 2.1: Strains and plasmids used 

Species or plasmid Relevant characteristics  Source or reference 

L. discophora SS1 Wild type (2) 

L. discophora SS1 Nal+ Spontaneous Rif and Nal  resistant mutant This work 

L. discophora SS1:pJSpyrF pyrF interrupted mutant This work 

E. coli S17-1 ʎ pir ʎ pir lysogen (34) 

 

pBBR1MCS2 Broad host range vector, Km resistant (20) 

pBBR1MCS Broad host range vector, Cm resistant (20) 

pBBR1MCS3 Broad host range vector, Tet resistant (20) 

pBBR1MCS4 Broad host range vector, Amp resistant (20) 

pBBR1MCS5 Broad host range vector, Gm resistant (20) 

pVIK165  (29) 

pJSpyrF pVIK165 cloned with internal pyrF used 

for homologous recombination 

This work 

pBBR1MCSp pBBR1-MCS cloned with pyrFpurB, 

complementation plasmid 

This work 
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Routine bacterial mating 

 For routine matings, 20 mL of L. discophora SS1 cultures from mid logarithmic to 

stationary growth stage and 5 mL of an overnight E. coli donor were centrifuged separately and 

washed with 20 and 5 mL of 2xPYG respectively. The suspension was centrifuged again, the 

supernatant was removed and donor and recipient cells were mixed and placed on a 2XPYG 

plate without antibiotics. Mating was allowed to occur for 16 to 24 hours, after which the mating 

mix was scraped off the plate into 1mL of 2xPYG medium. Serial dilutions (10
-1

to -10
-5

) of this 

cell suspension were plated onto 2xPYG plates containing the respective selective antibiotic and 

manganese. Most of the conjugations were selected on media with and without manganese in 

parallel to asses any effect manganese might have on conjugation outcome. Dilutions of the 

recipient before and after mating were also plated to assess the survival of Leptothrix during the 

mating process. 

 

Optimization of conjugation 

Age of the recipient 

  For experiments that assessed how age of recipient affected conjugation, L. discophora 

SS1 was grown in 10 replicates (20 mL each). Two replicates were used for each time point 

(early log phase, mid log phase, late log phase, stationary phase and late stationary phase). The 

donor culture was refreshed at appropriate intervals such that each mating mix contained donor 

of the same OD and age. 

Donor to recipient ratio 

 To assess the effect of donor to recipient ratio on conjugation, both donor (E coli S17) 

and recipient (L. discophora SS1) were grown to mid log phase and late log phase respectively 
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(OD=0.4 for E coli and OD= .25 for L. discophora SS1) and the cells numbers/mL were 

determined by plating serial dilutions. Next, 10 mL of E coli and 100 mL of L. discophora SS1 

grown to OD=0.4 and 0.25 respectively were concentrated 100 times for Leptothrix and 10 times 

for E. coli and the thick suspensions were used to obtain the ratios indicated in a final volume of 

500µL.  

Mating time 

 Six identical mating mixes were prepared as described in section 3) and were allowed to 

mate (in duplicate) for 6 hours, 12 hours and 18 hours, after which time they were plated as 

described above. 

Recovery after mating 

 Two identical mating mixes were set up and mated for the same amount of time and 

under the same conditions, after which one of the mating mixtures was re-suspended in 1mL 

2XPYG and dilutions plated immediately. The other replicate was re-suspended in 20 mL of 

liquid 2xPYG without antibiotics, and allowed to recover for 6 to 8 hours by shaking on a rotary 

shaker at 120 RPM. Cells were then collected by centrifugation, re-suspended in 1mL 2xPYG 

and dilutions were plated as in the case of mating without recovery. 

Manganese effect on conjugation 

 Mating mixes were always plated in parallel on plates containing manganese and plates 

without manganese for all of the factors assessed.  

 

Plasmid construction/DNA manipulations 

 A fragment of 640 bp was PCR amplified from the internal portion of the pyrF gene of L. 

discophora SS1 using primers designed to add SacI and XbaI restriction sites to each end of the 
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fragment (nucleotides encoding restriction sites are underlined in the primer sequence) pyrF int 

ForSacI and pyrF int RevXbaI (table 2); the resulting fragment was cloned into the SacI/XbaI 

sites of pVIK165 carrying a Km marker, to create plasmid pJSpyrF. This plasmid was 

transformed into E.coli S17 and one transformed colony that up took the plasmid was selected 

and used to mate with L. discophora Nal
+
.  Transconjugant L. discophora SS1 colonies were 

selected onto 2xPYG Nal, Km, Mn plates and checked by PCR for the integration of plasmid 

into the chromosome. To create the complementation plasmid, a 3Kb fragment of DNA 

containing both pyrF and purB genes as well as their native promoter located upstream of purB 

were amplified from L. discophora SS1 using primers pyrF upKpnI and purB RevSacI. The PCR 

product was cleaned, digested and ligated into the Kpn and SacI sites of pBBR1MCS generating 

plasmid pBBR1MCSp. This plasmid was transformed into E. coli S17 and one clone harboring 

the plasmid was further used as a donor in a mating to create L. discophora pBBR1MCSp. 

 

Plasmid stability in L. discophora SS1 

 L. discophora pBBR1-MCS2 and L. discophora pJSpyrF were initially scraped from 

plates, inoculated into 20 mL 2xPYG with appropriate antibiotics and allowed to grow to late 

exponential phase, when 5mL from each culture were transferred to 15mL of fresh medium 

containing antibiotics. When this culture reached late exponential growth, 2mL were used to 

inoculate 2 tubes of 18mL of 2XPYG medium with and without Km and allowed to grow for 2 

days after which time 100µL were removed and dilutions were spread onto plates with and 

without Km. Similar transfers of 2mL from the culture grown without antibiotics to media with 

and without antibiotics were performed every two days, for 6 transfers spanning 18 days. This 

experiment was performed in triplicate and each triplicate was spread on two plates. Colony 
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forming units were averaged and compared to assess plasmid stability with and without 

antibiotic pressure. 

 

Interruption of pyrF, assessment of 5-Fluororotidine (FOA) sensitivity/resistance and 

Uracil auxotrophy/prototrophy 

 pJSpyrF was introduced into Leptothrix by conjugation and the mating mix was plated on 

three media in parallel: nalidixic acid/kanamycin and nalidixic acid/kanamycin /5-FOA to select 

for integrants that abolished the activity of PyrF and on nalidixic acid/5-FOA to account for 

spontaneous 5-FOA mutants. The cultures were first grown to late logarithmic phase under, 

using antibiotics when needed. For 5-FOA resistance/sensitivity 500 µL of each culture to be 

tested were inoculated in 19.5 mL of fresh 2PYG amended with appropriate antibiotics and 5-

FOA when needed. For uracil prototrophy/auxotrophy, 500 µL were removed and centrifuged to 

remove the supernatant. Cells were washed with 500µL of MSVG prior to inoculation into fresh 

medium with or without 50 µg/mL uracil.   
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2.4 RESULTS AND DISCUSSION 

Characterization of antibiotic sensitivity of L. discophora and isolation of several 

spontaneous antibiotic resistant mutants 

 Antibiotic markers are the building blocks of a genetic toolbox (16); to develop a genetic 

system for L. discophora SS1 we therefore first analyzed its susceptibility to antibiotics. Initial 

results were gathered from a disc assay, by spreading 100ul of a stationary phase culture of L. 

discophora SS1 on solid medium, on top of which we applied sterile filter paper discs soaked in 

antibiotic solution of the tested concentration (table 1). L. discophora SS1 showed zones of 

inhibition for all 11 antibiotics tested. Next, we determined minimum inhibition concentrations 

(MICs) in liquid cultures, by testing growth in several dilutions of each antibiotic.  MICs in 

liquid cultures were as follows: rifampicin (5µg/mL), ampicillin (1 µg/mL), kanamycin (1 

µg/mL), tetracycline (0.5 µg/mL), gentamicin (1 µg/mL), chloramphenicol (0.5 µg/mL), 

streptomycin/spectinomycin (1 µg/mL), and nalidixic acid (0.5 µg/mL). These results indicate 

that several different antibiotic markers could be used in downstream genetic manipulations. 

When antibiotic resistance was acquired by Leptothrix, either by spontaneous mutation or 

provided on a plasmid, the concentration of antibiotics was adjusted as to not interfere with the 

growth pattern, but to still be effective as selection after genetic manipulations, as seen in table 

2.2.   
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Table 2.2 Sensitivity, MIC and working concentrations of several antibiotics tested on Leptothrix 

discophora SS1 

Antibiotic tested Disc quantity 

(µg/mL) 

Inhibition zone 

(mm) 

MIC liquid 

(µg/mL) 

Working concentrations 

(µg/mL) 

Kanamicin 30 26 1 50 

Ampicilin 100 40 1 75 

Rifampicin 5 0 5 50 

Nalidixic acid n/a n/a 0.5 15 

Streptomicin 10 34 1 50 

Gentomicin 10 21 0.5 8 

Tetracycline 30 21 0.5 10 

Chloramphenicol 5 12 0.5 8 

Novobiocin  30 10 Not tested Not used 

Penicilin 10 30 Not tested Not used 

Spectinomycin 100 32 Not tested Not used 

 

The growth pattern of the antibiotic resistant mutants was similar to that of the wild type for the 

concentrations tested (Figure 2.1) 

 

Figure 2.1: Nalidixic acid resistant L.discophora SS1 grows like the wild type 
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Optimization of efficient DNA transfer into L. discophora SS1 by conjugation 

 Previous attempts to establish a DNA transfer protocol by electroporation or chemical 

competence were not successful (13), most likely due to the low survival of Leptothrix cells after 

the washes required by these methods. Moreover, repeated inconsistencies in the growth of 

Leptothrix when transferred from liquid to solid medium raised a question about the viability of 

the cells that undergo plating and added another layer of uncertainty. DNA transfer by 

conjugation is a natural event that happens often in the environment (17). The minimal 

manipulation of cells required for this process would eliminate some of the problems 

encountered with electroporation or chemical competency and in turn could increase the 

probability of DNA transfer. Other potential advantages that conjugation might have are related 

to the possible restriction system incompatibilities between the donor and recipient as well as the 

size of the vector transferred. The incompatibilities between the restriction systems of the donor 

and Leptothrix cells is overcome by the fact that in conjugation, transferred DNA enters the 

recipient as a single strand and is methylated following second strand synthesis, thus bypassing 

the restriction system of the cells (18). Also, while the size of the transferred DNA is a limitation 

for electroporation,  it does not affect conjugation, as large vectors and genomes have been 

successfully transferred (19). 

 An initial conjugation using a Leptothrix culture from mid log phase and the broad host 

range vector pBBR1MCS2 carried by E. coli S17 host yielded only a single transconjugant 

colony (approximately 10
-9 

efficiency). Plasmid pBBR1MCS2 is a broad-host-range vector with 

a small size (5144 bp) and compatibility with IncQ, P and W which has made it a good candidate 

for many bacterial systems relying on conjugation (20). While this proved to us that conjugation 

was possible, the development of a functional genetic system requiring much higher levels of 



 

30 

 

conjugation prompted the testing of a number of parameters to optimize the efficiency of plasmid 

transfer.   

 Efficiency of transfer (frequency of transfer) is defined in multiple ways in the literature 

(21). The most common way of defining it is as transconjugants/donors, although other 

definitions are used as well, such as transconjugants/recipients and transconjugants/surviving 

recipients or donors (22). We initially considered using the latter definition in our case, given the 

poor survival of Leptothrix to washing and plating established previously (13) and to account for 

the loss of cells. We reasoned that washing of cells prior to mating and keeping them at very 

high densities, with possibly reduced access to oxygen during the mating period, could challeng 

cells and decrease survival.  If this was the case, calculating the efficiency of transfer as 

transconjugants/surviving recipients would provide the most accurate result. To assess this we 

plated dilutions of the mating mix and determined  Leptothrix’s viability after the mating period. 

In general, we did not see significant loss of viability after mating compared to the initial 

cultures and adopted trasnconjugants/donors as our definition of efficiency of mating.  

Ratio of donor to recipient 

 This is often the factor that is first tested and optimized in efforts to obtain better transfer 

efficiency. Although it was initially thought that a ratio of donor to recipient of 1:1 would result 

in the highest frequency of plasmid transfer, reports on the development of genetic systems for 

other organisms have shown that ratios that favor either the donor or the recipient produce better 

results in a strain specific manner. For example, while a ratio of 1:1 gave a maximum number of 

transconjugants for conjugation between E. coli strains (23) or between lactococcal species (24), 

a ratio that favored E.coli  donors 10
5
:1 yielded the best efficiency for transfer to 

Bifidobacterium strains (22).  Another study, however, found that results varied depending on 
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the kinds of donors, recipients and the mobile element used (25). We tested a range of ratios that 

favored either Leptothrix (the recipient) or E. coli S17 (the donor) and found out that  Leptothrix 

seemed to follow the general rule, with highest plasmid transfer (0.52) and plasmid integration 

(0.008) rates observed when the ratio of donor to recipient was close to 1:1 (Table 2.3). In 

general, when ratios favored the Leptothrix  1:3, 1:7 or 1:10, the efficiency of transfer dropped 

rapidly three to six orders of magnitude, with no transconjugants observed when the ratio 

favored Leptothrix 1:100. The change in efficiency was less dramatic when the ratio changed in 

favor the donor: we saw 30 times fewer transconjugants for ratios that favored the donor 12:1 

and 500 times fewer for ratios that favored E. coli 50 to 1. 100,000 fewer transconjugants were 

obtained at ratios that favored the donor 1000:1.  This pattern is not particularly surprising, since 

it is hard to imagine how increasing the number of recipients while maintaining the number of 

donors could increase the number of transconjugants unless secondary transfer between 

recipients was occuring. The failure of increased donor numbers, which should have increased 

the possibility of cell-to-cell contact and hence the transfer of plasmid DNA from donor to 

recipient was unexpected.  
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Table 2.3 Frequency of transfer of replicative and non-replicative plasmids from E.coli S17 to L. 

dischophora SS1.  The frequency of transfer varied for different ratios of donor to recipient, 

being the highest at an approximately 1 to 1 ratio. Ratios that favor the donor (E. coli) 10 times 

or more resulted in the lowest efficiency, with no transconjugants for ratio of 1:100; The results 

are the mean of two biological replicates, with each replicate plated on two plates. a, b, c: data in 

each of the a, b, c groups was obtained from three independent experiment 

 

Plasmid used Donor 
total cfu # 

Recipient  
total cfu # 

Transconjugant   
total cfu # 

Ratio 
Donor/ 
recipient 

Frequency of transfer  

(donor/ 
transconjugant) 

Replicative plasmids 

 3*1010 2.6*1012 0 1 : 100a 0 

 3*1011 2.6*1012 1.8*106 1 : 10a 6*10-6 

pBBR1MCS2 (KmR) 2*1011 1.5*1012 5*106 cells 1 : 7a 2.5*10-5 

 5*1011 1.5*1012 108 cells 1 :  3a 2*10-4 

 5*107 3.6*107 2.6*107 1.4 :  1b 0.52 

 2.5*108 2*107 4.5*106 12 : 1b 1.8*10-2 

 1012 5*1010 109 50 : 1c 10-3 

 4.5*108 4*106 1.4*106 112 : 1b 3.11*10-3 

 4*1011 4*108 5*106 1000 : 1 1.25*10-5 

pBBR1MCS3 (TetR) 1012 5*1010 5*108 50 : 1c 5810-4 

Non-replicative plasmids and plasposoms 

pJS:mofA250 (KmR) 2.5*108 2*107 2.5*105 12 : 1b 10-3 

 5*107 3.6*107 4*105 1.4 : 1b 8*10-3 

 1012 5*1010 5*108 50 : 1c 5*10-4 

 4.5*108 4*106 1.5*105 112 :1b 3.3810-4 

pJS:mofA330  (KmR) 1012 5*1010 7*108 50 : 1c 7*10-4 

pUTminiTn5tet  1012 5*1010 108 50 : 1c 10-4 
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Growth stage of recipient 

 The impetus for testing this factor was the assumption that cells harvested at different 

growth stages would have different susceptibilities to conjugation.  Conjugation is an energetic 

expense both for the donor as well as for the recipient. It was hypothesized that logarithmically 

growing cells would have more resources to spend on conjugation as opposed to cells in 

stationary phase and that this difference would affect the number of transconjugants. By 

assessing the number of transconjugants from recipient cultures kept identical except for their 

age, we wanted to evaluate whether there were other growth stage dependent factors, besides 

energetic considerations, that could affect the outcome of conjugation. Similar numbers of 

transconjugants were obtained for early log phase and mid log phase and these values were an 

order of magnitude lower than transconjugants obtained with Leptothrix from either late 

logarithmic, stationary or late stationary phase (Data not shown).  

 

Time of mating 

 The amount of mating time has been reported to have an effect on the number of 

transconjugants for some bacteria but not others (17). We wanted to determine the optimal time 

of mating for Leptothrix that would allow sufficient time for the plasmid transfer to occur, but 

not too long as to energetically deplete and stress the cells. Mating times of 6 and 12 hours 

resulted in similar number of transconjugants whereas the number was an order of magnitude 

lower for matings that lasted for 18 hours (Data not shown). 
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Recovery versus no recovery after mating 

  We tested this parameter to determine if cells exposed to mating conditions experience 

stress. A period of time without the antibiotic pressure was used to allow transconjugants to 

recover before they were plated on antibiotic selective plates. We had already observed, 

independently of the conjugation experiments, that plating the same number of cells under the 

same conditions could sometimes result in different numbers of colony forming units (CFUs) 

and hypothesized that plating itself may constitute a stress for Leptothrix cells. Giving mated 

cells a recovery period would allow them to better confront this stress. To this end, the mated 

mixture was re-suspended in 20 mL of liquid 2xPYG without antibiotics, and allowed to recover 

for six hours (with shaking).  After that the cells were collected by centrifugation, re-suspended 

in 1mL 2xPYG and treated identically to the non-recovered cells. The generation time for 

Leptothrix is three hours under optimal, logarithmic growth conditions, therefore six hours was 

expected to not result in more than a doubling, and this should not require any adjustments to the 

calculation of efficiency. The same number of transconjugants was obtained for both recovered 

and non-recovered mating mixes, indicating that recovery of mated cells in liquid media before 

plating was not needed (Data not shown). 

 

Selecting on Manganese versus no Mn plates 

 The role that manganese oxidation plays in the life of a manganese oxidizing bacterium is 

still in question (26). In the light of this we wanted to determine if the presence of manganese in 

the selection plates would have an effect on the number of transconjugants obtained. 

Observations in our lab and other reports (27), suggest that some antibiotics such as kanamycin 

interfere with manganese oxidation. However, there was not a significant difference between 
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transconjugant numbers obtained on plates with manganese compared to the plates without 

manganese. 

 Based on the results obtained from testing these parameters, an optimized protocol was 

established that was used thereafter for routine Leptothrix conjugation: 20 mL of cultures grown 

in liquid medium to late log phase (OD=0.25) were mixed with the E. coli recipient in a in a 1 to 

1 ratio and allowed to mate for 6 to 12 hours on solid 2XPYG medium after which the mating 

mixture was diluted and plated directly on plates containing manganese, without recovery.  It 

was imperative that 2 or 3 dilutions of the mating mixture be plated, since a very dense or dilute 

mating mixture often did not yield any transconjugants. Dilutions in the range of 10
-2

 and 10
-3

 

typially resulted in tens or hundreds of well separated transconjugant colonies per plate. In 

general visible colonies of transconjugants transformed with replicative plasmids would appear 

after 6-7 days, while transconjugants in which the plasmid integrated into the chromosome 

would only become visible after 10-12 days. Importantly, while transconjugants were obtained 

from most of the conjugations, it was difficult to obtain an identical number of transconjugants 

even from identical replicates of the same experiments inoculated from the same culture. This 

suggests that there are variations within each culture of Leptothrix that affect the viability and 

readiness of cells to undergo conjugation.  

 

Plasmid stability in L. discophora 

 Some plasmids can be stably maintained in a host even without the selective pressure 

(antibiotics, in most cases) while other plasmids are easily lost once the selective pressure is 

removed (28). The stability or instability of a plasmid in a host can therefore be used to 
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advantage when developing genetic systems that rely on recombination so long as they contain 

appropriate selection and counter selection markers. Because certain antibiotics (Km) interact 

with manganese oxidation in Leptothrix discophora SS1 and some assays to quantify manganese 

oxidation would require removal of antibiotics from the medium, we assessed the stability of 

both the broad host range vector pBBR1MCS2 (20) and of the suicide vector pJSmofA250, the 

latter having a conditional ori that replicates only in hosts containing the Pir protein (29). In this 

case, our pJS derivative contained a 250bp portion of the gene encoding the putative manganese 

oxidizing factor mofA that allowed it to integrate into the chromosome via homologous 

recombination (described in chapter 3). Loss of plasmids from the cells was detectable in both 

cases when the antibiotic selection was removed (Figure 2.2). In the case of pBBR1MCS2, after 

growing a culture for 3 days (first transfer) without antibiotic selection (approximately 18 

generations) 20% fewer CFUs were obtained on plates with the antibiotic as compared to plates 

without antibiotic. When an aliquot from the first transfer was grown again for 3 days without 

antibiotics (second transfer) and plated on selective and non-selective plates, a further decrease 

in CFU was observed, suggesting that without the antibiotic the plasmid continued to be lost. 

After 6 transfers and approximately 100 generations, only 20% of the cells that grew on non-

selective media also grew on kanamycin plates, suggesting that the plasmid had been lost from 

the other 80%. The integrated pJS plasmid followed a similar trend, albeit with a less abrupt 

slope. . The loss of pBBR1MCS at approximately 1% per generation was small enough to allow 

this plasmid to be valuable as a tool for complementing mutations that will be generated. By 

comparison, the same plasmid experienced 100% loss within 12 generations in a Geobacter 

sulfurreducens host (28). 
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Figure 2.2: Loss of replicative plasmid pBBR1-MCS2 (triangles) and chromosome integrated 

plasmid pJSmofA250 (squares) from Leptothrix discophora SS1 cells respectively, over more 

than 100 generations (7 transfers over 18 days) in the absence of antibiotic selection.  

 

Construction of a 5-fluroorotic acid resistant uracil auxotroph by disruption of orotidine 5’ 

phosphate decarboxylase (pyrF) and restoration of function upon complementation 

a) Identification of a potential gene to disrupt 

  To demonstrate the efficiency of the genetic system we developed for L.discophora  SS1 

we disrupted pyrF which is predicted to encode orotidine 5’ phosphate decarboxylase, an 

enzyme involved in the de novo synthesis of pyrimidines (30). Insertion of pJS:pyrF by 

homologous recombination resulted in resistance to 5-FOA and uracil auxotrophy (Figure 6a and 
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6b). When a wild type copy of the gene was provided in trans on pBBR1MCS-5 (a gentamicin 

resistant derivative of pBBR1MCS-2), the activity was restored (Figure 6a and 6b). 

 This gene was chosen because it lends itself to both positive and negative selection 

strategies. Its ortholog (URA3) has been widely used in yeast genetic systems and more recently 

in bacteria, especially to create markerless mutations in strains with multiple natural antibiotic 

resistance determinants (31)(32). pyrF codes for the last of the five enzymes found in the 

pathway for de novo production of pyrimidines (Figure 2.3).  Under normal circumstances, PyrE 

orthologs (orotate phosphoribosyl transferase) convert orotate to orotidine monophosphate 

(OMP) which is further transformed to UMP (uridine monophosphate) by PyrF.  UMP is the 

precursor of all pyrimidine nucleotides. When 5-FOA is added to the medium, it is converted to 

5-F-OMP (5-fluoro-orotylidate) by PyrE and then to 5-F-UMP by PyrF. While 5-FOA and to 5-

F-OMP are not toxic, the accumulation of 5-F-UMP leads to inhibition of macromolecular 

synthesis (RNA) and cell death. Disruption of pyrF stops the activity of orotidine 5’ phosphate 

decarboxylase, preventing the production of toxic 5-F-UMP essentially rendering them resistant 

to 5-FOA. The other consequence of pyrF interruption is the loss of de novo uracil production, 

rendering the cells uracil auxotrophs. This combination of resistance/sensitivity to 5-FOA and 

uracil auxotrophy/prototrophy allows this strategy to be employed as both positive and negative 

selection (33).  
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Figure 2.3 (top row) De novo pyrimidine biosyntetic pathway in Leptothrix discophora SS1 is 

predicted to include 5 enzymes and culminates with production of UTP; the enzymes and 

substrates are as follows: PyrB, aspartate transcarbamoylase PyrC-Dihydroorotase, PyrD-

Dehydroorotate dehydrogenase, PyrE-Orotate phosphoribosyl transferase and PyrF- Orotidine 5’ 

monophosphate (OMP) decarboxylase; OMP- orotidin 5-phosphate, UMP- uridine 5-

phosphate.(bottom row) The same pathway will produce toxic compounds deadly to the cell 

when 5-FOA enters the pathway as an orotate analog at the PyrE step and is further transformed 

by PyrF to toxic 5-F-UMP that accumulates in the cell and causes death. 

 

 We chose to disrupt pyrF for several reasons: a) in searching the draft genome of L. 

discophora SS1 we identified putative pyrF homolog whose upstream and downstream regions 

contained open reading frames similar to the other four genes specific for the de novo pyrimidine 

synthesis (pyrB, pyrC, pyrD and pyrE); b) we were able to isolate spontaneous 5-FOA resistant 

Leptothrix mutants (data not shown), we thus had preliminary evidence that this was an efficient 

selection system that resulted in an easily identified and tested phenotype; c) pyrF has potential 
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to be developed into a more refined genetic tool allowing for the construction of markerless 

second deletions in a marked first deletion background. 

b) Gene disruption and in trans complementation 

 After mating, hundreds of Leptothrix transconjugants were obtained on both nalidixic 

acid/kanamycin and nalidixic acid/kanamycin /5-FOA, while zero to one or two colonies were 

obtained on nalidixic acid/5-FOA, confirming that the majority of 5-FOA resistant mutants arose 

due to insertion of the plasmid at the pyrF locus and not to the acquisition of spontaneous 

resistance to 5-FOA. 

 Single-crossover integration at the pyrF locus would result in the generation of two 

partial copies of the pyrF gene in the chromosome, one truncated at the 3’end the other at the 5’ 

end, separated from one another by 5000kb of plasmid. This scenario was confirmed by PCR 

(Figure 2.5). While the internal pyrF fragment could be amplified from both the wild type 

Leptothrix SS1 and the pyrF mutant (Figure 2.5, panel a), the full gene could not be amplified 

from the Leptohtrix SS1:pJSpyrF mutant (Figure 2.5, panel b). When the extension time was 

increased to 3 minutes, an approximately 6 kb PCR product resulted, consistent with the 

amplification of the entire plasmid that disrupted  pyrF (data not shown). A primer pair designed 

to anneal to the region upstream of pyrF and to the GFP encoding gene on the plasmid only 

amplified a product from the integration mutant and not the wild type, confirming the presence 

of the plasmid in the chromosome at the pyrF locus (Figure2.5, panel c).  

 



 

41 

 

 

Figure 2.4: Schematic representation of pyrF disruption by integration of the plasmid pJSpyrF 

into the chromosome of L. discophora SS1 by homologous recombination at the pyrF locus; a) 

an internal fragment of the pyrF gene was cloned in to the multicloning site of plasmid pVIK165 

to generate pJSpyrF, which also carries the genes for Km resistance and GFP expression; b) 

because pJSpyrF requires the pir protein to replicate, it can only persist in the cell by integration 

into the chromosome which is facilitated by the presence of the cloned fragment of pyrF; c) 

integration of the plasmid into the chromosome interrupted the chromosomal copy of pyrF 

resulting in two nonfunctional pyrF fragments. 
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Figure 2.5:  Electropherogram of PCR products from the L. discophora pyrF mutant confirms 

disruption of the gene. a) pyrF int For/Rev amplify the pyrF internal fragment used for 

homologous recombination from both the wild type (1), the insertion mutant (2) and the plasmid 

pJSpyrF (3)  b) pyrF full For/Rev located upstream and downstream of pyrF amplify the entire 

pyrF gene; as expected, PCR product is only seen for the wild type (1), but not the insertion 

mutant (2) or the plasmid (3)  c) pyrF full For/GFP rev pyrF  can only amplify from the insertion 

mutant (2), but not the wild type (1) due to no annealing site for GFPrev primer or the plasmid 

(3), due to no annealing site for the pyrF full primer 

 

 To confirm that the resistance to 5-FOA was a result of disrupting the activity of 

orotidine 5’ monophosphate (OMP) decarboxylase (PyrF) and not to unexpected secondary 

mutation or some unanticipated effect on downstream gene expression, a wild type copy of pyrF 

with its native promoter was provided on plasmid pBBR1MCS resulting in plasmid 

pBBR1MCSp. An in silico search of the upstream region of pyrF for its native promoter revealed 
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that the gene purB (involved in the synthesis of purines) was located only 11 nucleotides 

upstream of pyrF and that the nearest easily identifiable  promoter was upstream of purB. 

Although purB should not be required for complementation, the complementation construct 

included the putative promoter upstream of purB, as well as pyrF because efforts to artificially 

clone the purB promoter immediately adjacent to pyrF failed consistently. L. discophora 

SS1:pJSpyrF was transformed with the replicative pBBR1MCSp and transconjugants were 

readily obtained on nalidixic acid, kanamycin and chloramphenicol.  If pyrF was successfully 

expressed from the complementation plasmid, then transconjugant Leptothrix 

SS1:pJSpyrFpBBR1MCSp cells should have an active PyrF that would convert 5-FOA to its 

toxic compounds and the cells would not be able to grow in the presence of 5-FOA.  Restoring 

PryF activity also means restoring the de novo production of uracil, hence the cells would return 

to uracil prototrophy and should be able to grow in minimal medium without uracil. As seen in 

Figure 2.6.a), the complemented strain behaved in a similar manner to wild type Leptothrix SS1 

and could not grow in medium with 5-FOA. In contrast, 5-FOA did not have a toxic effect on 

SS1:pJSpyrF with or without the vector control. When assessed for uracil requirements, the pyrF 

interrupted mutant with or without the empty vector could not grow in medium without uracil, 

confirming a loss of de novo uracil production in the growth of these mutants. Growth of the 

mutant, however, was indistinguishable from the wild if uracil was provided in the medium 

(Figure 2.6.b).  Again, Leptothrix SS1:pJSpyrF pBBR1MCSp showed wild type uracil 

prototrophy and 5-FOA sensitivity providing clear evidence of complementation. 

 Overall these assays confirm that the genetic system described here enabled successful 

manipulation of a gene of interest in L. discophora SS1.  
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 Although our mutant retained its antibiotic marker this work suggests that a clean 

deletion of pyrF could be constructed with the same vector by flanking the neo gene on pVIK165 

with sequences upstream of pyrF on one side and downstream of pyrF on the other. The first 

round of selection on Km would select for plasmid integration upstream or downstream of pyrF, 

while a second round of selection on 5-FOA would select for deletion of pyrF. Use of a mutant 

with a clean pyrF deletion together with a second pVIK165 derivative that contained a wild type 

copy of pyrF , would allow for selection of transconjugants into other chromosomal locations 

based on the restoration of de novo uracil biosynthesis and therefore growth on minimal 

medium. In theory, such a system could be used again and again to generate multiple markerless 

mutations in the same background. 
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Figure 2.6  a (top) and b (bottom) Complementation of L. discophora SS1:pyrF mutant a with a 

wild type copy of pyrF located on pBBR1MCS restores the wild type phenotype, rendering the 

cells sensitive to 5-FOA and uracil prototrophs;  a) comparison of  maximum growth in the 

absence (light bars) and presence (dark bars) of 5-FOA;  b) maximum growth in the absence and 

presence of uracil of the uracil. 
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2.5 CONCLUSION 

 Overall, we were able, for the first time, to develop a genetic system for L. discophora 

and to confirm its effectiveness by inactivating a gene of interest (pyrF), showing loss of 

function, then complement in trans with a wild type copy on a plasmid and recovery of the 

function of the interrupted gene. We have shown that plasmid DNA can be introduced into 

Leptothrix cells by conjugation at high frequencies of transfer that are comparable with other 

microbial systems and most importantly enable further genetic manipulations such as isolation of 

chromosomal integrants. Moreover, we have demonstrated that we can also deliver plasmids 

encoding transposons to Leptothrix SS1, which should open the way to random insertional 

inactivation. Together these techniques should help us identify previously uncharacterized genes 

that may have a role in manganese oxidation while also scrutinizing the role that previously 

implicated genes such as mofA play in this important process. Lastly, the 

deletion/complementation of pyrF provides proof of concept that pyrF has potential as a 

selectable marker in Leptothrix and could be further developed into a more powerful tool for 

creating multiple deletions in the same strain. 
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CHAPTER THREE 

ISOLATION OF LEPTOTHRIX DISCHOPHORA SS1 ∆MOFA 

TRANSPOSON MUTANTS THAT CANNOT OXIDIZE MANGANESE 

 

3.1 ABSTRACT 

The recent development of a genetic system for Leptothrix discophora SS1 coupled with the 

availability of a draft genome sequence has opened up the possibility of identifying the genetic 

determinants of manganese oxidation by this important model organism. Currently, two classes 

of proteins, multicopper oxidases and heme peroxidases, have been shown to catalyze 

manganese oxidizing activity in bacteria. In strain SS1, MofA, a putative multicopper oxidase, 

has long been thought to be responsible for manganese oxidation.  We report here, however, that 

SS1 still oxidized manganese like wild type colonies on plates even when 94% of mofA was 

deleted. In addition, interruption of two other putative multicopper oxidases, mcoA and mcoB 

and two putative heme peroxidases, hemA and hemB that were similar to genes known to encode  

manganese oxidation in other organisms, did not affect manganese oxidation by SS1. Screening 

of a transposon mutant library of SS1 also failed to yield any manganese-oxidation deficient 

mutants. Transposon mutagenesis of the ∆mofA mutant, however, resulted in the isolation of 

more than 60 mutants that show no or altered manganese oxidation activity on plate. None of the 

non-manganese oxidizing mutants characterized had insertions in genes initially considered as 

candidates likely to encode manganese oxidation (mofA, mcoA, mcoB, hemA, hemB) or to mofA2 
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which shares 85% nucleotide identity with mofA. The insertions in manganese deficient mutants 

were located in four genes, in two distinct regions on the chromosome. One of the genes, named 

mnxG2 (region 2) was annotated as a putative multicopper oxidase similar to the manganese 

oxidizing enzyme in Bacillus sp SG-1. The other three genes all appeared to be in the same 

operon (region 1) and are predicted to encode a hypothetical protein, a putative cytochrome c, 

and a putative copper metallochaperone (Sco1/SenC/PrrC) for the biogenesis of cytochrome 

oxidase. Further analysis of these genes should help elucidate the mechanism of manganese 

oxidation in Leptothrix discophora SS1 and address the possibility of redundant manganese 

oxidation systems (mofA and mnxG2), as was recently reported for Pseudomonas putida GB-1. 

 

  

3.2 INTRODUCTION 

Leptothrix discophora SS1 (SS1) is a model organism for the study of manganese 

oxidation in bacteria. Other well-studied manganese oxidizers include Pseudomonas putida 

MnB-1, Bacillus sp SG-1 and Pedomicrobium sp. ACM 3067  (1–4). Although the study of 

manganese oxidation in the laboratory has focused primarily on these organisms, there is 

abundant evidence that this process is wide spread in nature, both in terms of the phylogenetic 

diversity of the bacteria involved (3, 5, 6) as well as of the environments in which it can occur 

(7–9). The ubiquity of this process coupled with the fact that it is enzymatically driven is 

somewhat surprising given that the selective benefits to the cells performing it are unclear (10, 

11). Why would microorganisms invest energy to catalyze a process with no apparent immediate 
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benefit?  It is hoped that by learning how the process happens, what enzymes and genes are 

involved, that we may learn more about the biological context of the process and further 

understand why it happens. 

There is unequivocal evidence that manganese oxidation at circumneutral pH is 

enzymatic (7). While initial experiments were focused on proving the enzymatic nature of this 

process within bacteria (1, 12–14), more recent publications have reported on efforts to identify 

the genes and proteins responsible for this process (4, 15). The manganese oxidizing 

proteins/enzymes fall in two groups: multicopper oxidases (16, 17) and manganese peroxidases 

with Ca
2+

 binding domains (4) (Table 3). Besides these proteins which have been reported to 

perform manganese oxidation itself, transposon mutagenesis experiments in Pseudomonas putida 

GB-1 and Bacillus sp SG-1 identified a number of other genes which, when disrupted, abolished 

manganese oxidation. These were genes encode proteins involved in the cytochrome c 

maturation pathway (ccm) (18), in the general secretory pathway (ssh genes) (19) and in the 

production of tryptophan.  In addition to transposon mutagenesis, a variety of other techniques 

such as proteomics, classic molecular biology and reverse genetics have been used to try and 

identify the genes coding for manganese oxidation (table 3). The multicopper oxidase MnxG of 

Bacillus sp. SG-1 was identified by transposon mutagenesis (20, 21) while the MCO MoxA of 

Pedomicrobium was discovered using a primer walking approach (17).  

Although the involvement of some of these genes (PputBG-1_2447 and PputGB-1_2665, 

mnxS1, mnxS2 and mnxR in P. putida GB-1, moxA in Pedomicrobium) is supported by evidence 

that satisfies Koch’s molecular postulates (16, 17, 22), evidence for the role of mofA, the putative 

multicopper oxidase reportedly involved in manganese oxidation by SS1 does not. This gene was 

initially identified by raising antibodies against a manganese oxidizing factor, which were then 
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used to screen an expression library of SS1 in E. coli (23). Although this preliminary evidence 

was important, the protein encoded by mofA was of a different size than that which was used to 

raise the antibodies. Heterologous expression of mofA in E. coli failed to yield manganese 

oxidation activity (3, 24) and we failed to find any mofA-encoded peptides in the manganese 

oxidizing fraction of SS1 supernatant (data not shown). In addition, the lack of a genetic system 

for SS1 has meant that it was not possible to interrupt or delete this gene in order to establish its 

role in manganese oxidation.  

The recent development of a genetic system for SS1 (Chapter 2), however, coupled with 

a draft genome sequence (Chapter 4), has opened up the possibility of determining the role of 

mofA and other candidate genes utilizing traditional genetics techniques. Here we show that 

disrupting mofA as well as other four candidates genes (mcoA, mcoB, hemA and hemB) related to 

known manganese oxidizing factors had no effect on the ability of Leptothrix discophora SS1 to 

oxidize manganese. To avoid confounding results that might have occurred due to polar effects 

we even went so far as to completely delete mofA and still found that Leptohrix was able to 

perform manganese oxidation. Finally, transposon mutagenesis, which had failed to abolish 

manganese oxidation in the wild type, was undertaken in the mofA deletion since a recent report 

suggests that manganese oxidation may be encoded by redundant systems in some bacteria (16). 

Importantly, this effort resulted in the isolation of scores of manganese oxidation deficient 

mutants. Sequencing of the transposon insertions revealed two regions (four genes) in SS1 which 

appear to play a role in manganese oxidation. Further analysis of these genes should help 

elucidate the mechanism of manganese oxidation in Leptothrix discophora SS1. 

 



 

54 

 

3.3 MATERIALS AND METHODS 

Bacterial strains and culture conditions 

 Leptothrix discophora SS1 was maintained on solid 2XPYG medium (25) (per liter of 

deionized water: 0.5 g peptone, 0.5 g yeast, 0.5 g glucose, 0.6 g MgSO4
.
 7H2O, 0.07g CaCl2 and 

3.57g Hepes, adjusted to pH 7.2 with 1M NaOH) either on plates or poured tubes. Cultures on 

plates had to be refreshed every 10 days to 2 weeks to ensure culture viability. When needed, a 

few colonies were removed from the plate and inoculated into 20 mL of liquid medium in 60 

mL glass tubes. This culture was allowed to grow at room temperature, shaking at 120 rpm, to 

late-logarithmic phase (OD= 0.25) and was used as an inoculum as necessary. Antibiotics were 

used as needed at the following concentrations: 50 µgmL
-1

 kanamycin, 15 µgmL
-1 

nalidixic 

acid, 50 µgmL
-1

 streptomycin, 10 µgmL
-1 

tetracycline, 10 µgmL
-1 

gentamicin, ampicillin 80 

µgmL
-1

.  Manganese was added to media after autoclaving from a stock of 100mM of sterile 

MnSO4
.
7H2O to a final concentration of 100µM. The E. coli strains used in this study were 

grown in lysogeny broth (LB) medium (per liter of deionized water:  5g  NaOH, 10g yeasts 

extract and 10g peptone) at 37
0
C, with antibiotics when necessary at the following 

concentrations: 50 µgmL
-1

 kanamycin, 50 µgmL
-1

 streptomycin, 10 µgmL
-1 

tetracycline, 25 

µgmL
-1 

gentomicin, ampicillin 150 µgmL
-1

.  
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Table 3.1: Strains and Plasmids used in this study 

Species or plasmid Relevant characteristics  Source or 

reference 

SS1 SS1 Wild type 1 

SS1 SS1 Nal+ Spontaneous Rif and Nal acid resistant This work 

SS1 SS1 Nal pJSmofA250int  Mutant with an insertion in mofA This work 

SS1 SS1 Nal pJSmcoIIAint  Mutant with an insertion in mcoA This work 

SS1 SS1 Nal pJSmcoIIBint  Mutant with an insertion in mcoB This work 

L. discophora SS1 

Nal
+
pLD55hemAint 

 Mutant with an insertion in hemA This work 

L. discophora SS1 

Nal
+
pLD55hemBint 

 Mutant with an insertion in hemB This work 

L. discophora SS1 Nal
+
∆mofA  Mutant with deleted mofA This work 

L. discophora SS1 

Nal
+
∆mofATn5 

Mutant with deleted mofA and Tn5 insertions This work 

E. coli S17-1 ʎ pir ʎ pir lysogen  

pVIK165 Suicide vector, Km resistant 22 

pJS:mofA250int pVIK165 cloned with internal mofA used for 

homologous recombination 

This work 

 

pKNG101orf-gm-mofB pKNG101 cloned with a cassette of gm and 

flanking regions of mofA 

This work 

pLD55 Suicide vector, Tet and Amp resistant  

pLD55hemAint pLD55 cloned with an internal fragment of 

hemA 

This work 

pLD55hemBint pLD55 cloned with an internal fragment of 

hemB 

This work 

pJSmcoAint pLD55 cloned with an internal fragment of 

mcoA 

This work 

pJSmcoBint pLD55 cloned with an internal fragment of 

mcoB 

This work 

pUTminiTn5 Tet Transposon delivery plasmid, Tet resistant  
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Sequence analyses 

A draft genome sequence of Leptothrix discophora SS1 was used to create a database for 

local BLAST using BioEdit software. This was then interrogated to identify manganese 

oxidation candidate genes for insertional mutagenesis and to also identify the genes interrupted 

in manganese-oxidation deficient transposon mutants. Nucleotide and amino acid sequences of 

manganese-oxidizing factors from Pseudomonas putidaGB-1 (Accession number NC_010322), 

Bacillus sp.SG-1 (Accession number U31081), Pedomicrobium sp ACM 3067 (Accession 

number AM049177) and Aurantimonas sp. strain SI85-9A1 (Accession number 

NZ_AAPJ00000000) were downloaded from NCBI and used as queries for the BLAST search. 

In addition, an automatically annotated version of the draft genome was interrogated using 

searches for “multicopper oxidases” and “hemolysin-type calcium binding proteins”. Rapid 

Annotation Subsystem Technology (RAST) and National Microbial Pathogen Database 

Resource (NMPDR)  were used to determine the location of transposon insertions (26).  

 

Plasmids constructs for disruption of genes 

Suicide vectors used for constructing plasmids for recombination were either pVIK165 

(Km
R
) (27) for disruption of mofA, mcoA and mcoB genes, or pLD55 (Amp

R
, Tet

R
) for disruption 

of hemA and hemB genes. For each construct, an internal fragment of approximately 600 bp of 

each gene was amplified by PCR with primers that had restriction sites corresponding to the 

target vector (see table 2), the PCR products were cleaned, digested and then cleaned again after 

digestion. Target vectors for each construct were digested with the corresponding enzymes, 

cleaned and ligated with the digested internal PCR fragments as explained above. This ligation 

mixture was then transformed into E. coli S17-1 ʎ pir and transformants were selected on plates 
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containing Km for pVIK165 constructs (mofA, mcoA and mcoB) or Tet and Amp for pLD55 

constructs (hemA and hemB).  After confirming that the transformants harbored the plasmid with 

the correct Leptothrix gene fragment they underwent conjugation with SS1. Conjugations 

between E. coli S17-1 ʎ pir pBBR1MCS2 (Km
R
) and E.coli S17-1 ʎ pir pBBR1MCS3 (Tet

R
) were 

set up in parallel, as controls for the efficiency of conjugation. 

  

Confirmation of plasmid integration and gene disruption 

PCR was used to confirm that the plasmids recombined into the chromosome of SS1 at 

the correct site.  Each strain was compared the wild type and the purified plasmid (from E. coli). 

Primer combinations were designed to amplify the internal fragments (positive control) or the 

entire gene.   

 

Conjugation 

All plasmids were transferred into SS1 by conjugation, since it is the only means of DNA 

transfer presently available for this bacterium. For routine matings, 20 mL of SS1 cultures from 

mid logarithmic to stationary growth stage and 5 mL of an overnight E. coli donor were 

centrifuged separately and washed with 20 and 5 mL of 2xPYG respectively. The suspension 

was centrifuged again, the supernatant was removed and donor and recipient cells were mixed 

and placed on a 2XPYG plate without antibiotics. Mating was allowed for 16 to 24 hours, after 

which the mating mix was scraped off the plate into 1mL of 2xPYG medium. Dilutions (10 
-1

to 

10 
-4

) of this cell suspension were plated onto 2xPYG plates containing the respective selective 

antibiotic and manganese. Most of the conjugations were selected on media with and without 

manganese in parallel to asses any effect manganese might have on the conjugation outcome. 
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Dilutions of the recipient before and after mating were also plated to assess the survival of SS1 

during the mating process. 

 

Determination of optimal (toxic) sucrose concentration for counter-selection 

The optimal sucrose concentration to be used in the selection of mutants that had 

undergone a second round of recombination and lost the integrated plasmid was determined 

based on growth results in liquid and on solid 2XPYS (S=sucrose) medium for the following 

range of concentrations: 0.05%, 0.5%, 1%, 2%, 3%, 4%, 5% sucrose. To make the media, a 

solution of  0.5g/L peptone, 0.5g/L yeast extract, 0.06g/L MgSO4
.
7H2O, 0.07g/L CaCl2

.
2H2O 

and 3.4g/L Hepes buffer was first adjusted with 1M NaOH to pH=7.3 and then autoclaved. The 

appropriate amount of sucrose was then added from a sterile 40% stock to the hot media. Growth 

tests in liquid were done in 20mL volumes in glass tubes. For growth on solid substrates, plates 

with different concentrations of 2XPYS were spread with 100µL of a fresh Leptothrix culture. 

Growth was assessed by reading the optical density (OD) of liquid cultures and by counting the  

SS1 colonies that grew on plates for solid medium. 

 

Arbitrary PCR for transposon mapping  

 Arbitrary PCR was used to obtain products flanking the site of insertion (28). For each 

transposon mutant a colony was scraped from the plate and re-suspended in 500 µL of 15mM 

Hepes buffer, centrifuged and re-suspended in 50 µL PCR water and maintained at -20
o
C. Primer 

sets were Arb2/TetRP2for the first PCR and Arb1/TetRP1 for the second PCR (primer sequences 

are found in table 2). The first PCR reaction contained the following in a total volume of 20 µL: 

5 µL of 2xPCR Buffer (New England Biolabs), 1 µL each of forward and reverse primer, 1 µL of 
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the cell suspension, 2µL H2O.  The thermocycling conditions for the first reaction were as 

follows: 1) 95
0
C, 3 min 2) 95

0
C, 30 seconds 3) 42

0
C for 30 seconds 4) 68

0
C for 3 minutes, repeat 

steps 2 through 4, 10 times 5) 95
0
C for 30 seconds 6) 52

0
C for 30 seconds 7) 68

0
C for 3 minutes, 

repeat steps 5 through 7, 30 times. These PCR products were brought to 100 µL by adding 80 µL 

PCR-grade H2O and were used as a template for the second PCR. The 100 µL reaction of the 

second PCR included: 50µL of 2xPCR Buffer, 10µL each of forward and reverse primer, 10µL 

of diluted (1:5, as described) first PCR product for each corresponding clone, 20µL H2O. The 

second PCR included a touch-down step for the temperature interval 60
0
C to 50

0
C in the 

following program: 1) 95
0
C, 3 min 2) 95

0
C, 30 seconds 3) 60

0
C for 30 seconds, minus 1

0
C per 

cycle 4) 68
0
C for 3 minutes, repeat steps 2 through 4, 10 times 5) to 95

0
C for 30 seconds 6) 50

0
C 

for 30 seconds 7) 68
0
C for 3 minutes, repeat steps 5 through 7, 30 times. A 10µL aliquot from 

each reaction was analyzed by gel electrophoresis for the presence and quality of PCR product. 

The remaining of each reaction was then cleaned using an ethanol precipitation method and 

submitted for sequencing.  

 

 

3.4 RESULTS AND DISCUSSION 

Interruption of orthologs of known Mn oxidation factors does not alter Mn oxidation in 

SS1 

Identification of candidate genes 

In addition to mofA, five other genes were identified in the Leptothrix discophora SS1 

draft genome by BLASTp analysis that shared sequence similarity with genes implicated in 

manganese oxidation in other bacteria (Table 3.2). Among these was mofA2, which shares 85% 
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nucleotide identity with mofA and was located approximately 1Mb downstream from mofA.  The 

protein encoded by mofA2 is predicted to be 1,697 amino acid (aa) long (MofA is 1,661 aa). 

Given that multicopper oxidases have been reported to be involved in manganese 

oxidization in many bacteria (Table 3.2) (29), we searched the draft genome of SS1 for genes 

encoding other putative multicopper oxidases. This resulted in the identification of two other 

genes, ORF00945 and ORF01827, annotated as type II multicopper oxidases and predicted to be 

946 and 973 AA respectively. For ease of discussion, we renamed these mcoA and mcoB 

respectively. They are 82% identical to one another over 98% of their sequence, but are 

separated by approximately 1Mb. None of the neighboring genes shared any sequence similarity.  

Another  recent study identified heme peroxidases as a new class of enzymes involved in 

manganese oxidation (Table 3.2) (4). A search of the annotated SS1 genome for genes encoding 

enzymes resulted in two hits, specifically ORF03379 annotated as hemolysin-type calcium 

binding region and ORF03380, a rhizobiocin/RTX toxin and hemolysin-type calcium binding 

protein which we renamed hemA and hemB. The corresponding proteins are 1450 and 2557 aa 

long respectively and the genes overlap by 3 nucleotides, suggesting that these two genes might 

be co-transcribed. Local BLAST analysis of the SS1 genome using the aa sequence of MnxG, 

the proposed manganese oxidizing enzyme from Bacillus sp. SG-1, did not result in any 

significant matches (18 identities over 7,039 nucleotide query).  
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Table 3.2 Proteins known or suggested to be involved in manganese oxidation in different 

bacteria. 

 

Strain 
Protein type Gene Evidence for involvement in Mn 

oxidation   
Reference 

L. discophora 
Multicoper oxidase  
(MCO) 

mofA Biochemical evidence of activity (25) 

Pedomicrobium 
Multicoper oxidase  
(MCO) 

moxA Genetic (gene interruption) 
Biochemical evidence of 
enzymatic activity 

(14) 

Aurantimonas 
sp. 

Heme binding 
peroxidases with 
hemolysin type Ca2+ 
binding domains 

mopA 
(mn 
peroxidase) 

Proteomics: tandem mass 
spectrometry 

(4) 

Erythrobacter 
sp. 

Heme binding 
peroxidases with 
hemolysin type Ca2+ 
binding domains 

mopA 
 

Proteomics: tandem mass 
spectrometry 

(4) 

 
 
 
 
 
 
P. putida 

Multicoper oxidase  
(MCO) 

PputGB-
1_2447 

Genetic/deletion/complementati
on 

(16) 

PputGB-
1_2665 

Genetic/deletion/complementati
on 

(16) 

Cytochrome c 
biogenesis operon 

ccm 
operon 

Tn mutagenesis (18, 36) 

General secretory 
pathway 

xcp genes Tn mutagenesis (19) 

TCR (two component 
regulatory pathway) 
          Putative sensor 
histidine kinase 
          Putative sensor 
histidine kinase 
          Response 
regulator 

mnxS1 
mnxS2 
mnxR 

Genetic/(deletion/complementa
tion) 

(22) 

TCA cycle 
(trichloroacetic acid) 

 Tn mutagenesis (36) 

Tryptophan 
biosynthetic pathway 

 Tn mutagenesis (36) 

Bacillus SG-1 
Multicoper oxidase  
(MCO) 

mnxG Genetic, biochemical, 
Proteomics 

(37, 38) 

Spore coat proteins mnxA-F Tn mutagenesis (20, 21) 
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We therefore considered mofA, mcoA, mcoB, hemA and HemB (Table 3.3) to be the best 

candidates for encoding manganese oxidation activity in SS1 (although we mentioned mofA2 as 

a potential candidate above, it was not included in the interruption experiments since it was 

discovered later, after additional genome sequencing and assembly refinements).  We disrupted 

each of them to determine if they were involved in manganese oxidation. Recombinants were 

obtained for all 5 genes at a frequency of 10
-3

 to 10-
5 

after 9 days. There was no difference in the 

numbers of transconjugants observed on the plates with or without manganese.  All 

transconjugants still oxidized manganese although a delay in manganese oxidation and a 

decrease in brown color formation were observed when compared to the wild type. 

 

Table 3.3 Genes identified in silico in L. discophora as potential candidates for encoding a 

protein that catalyzes manganese oxidation 

Gene name in 

L. discophora 

AA Gene Annotation  

(Craig Venter) 

Gene annotation 

( Rast) 

mofA 1665 Fibronectin type III domain protein Putative protein 

hemA 1450 Heme peroxidase Alkaline phosphatase 

hemB 2557 Heme peroxidase Alkaline phosphatase 

mcoIIA 946 Multicopper oxidase typeII Glycoprotein gp2 

mcoIIB 973 Multicopper oxidase typeII Glycoprotein gp2 

 

 

  Manganese oxidation activity occurs when cells enter stationary phase (12) . It is possible 

that the small difference observed in the manganese oxidizing activity of the mutants was a 

consequence of an altered growth rate causing a delay in reaching stationary phase. Additionally, 
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the less intense brown color of the transconjugants colonies was likely due at least in part, to 

interference by the antibiotics used in the medium for manganese oxidation (30). It has been 

reported (17) that kanamycin and rifampicin inhibited manganese oxidation of Pedomicrobium 

sp. ACM 3067 cultures, grown without manganese. The same authors presented supporting 

evidence that this inhibition is due to the ability of antibiotics to block Mn(II) adsorption onto 

preformed manganese oxides, rather than a direct inhibition of the enzymatic Mn(II) oxidation. 

To verify that the decrease in brown color in the transconjugants was due to the presence of the 

antibiotics, the color intensity of the transconjugant colonies was compared to that of two control 

strains SS1 pBBR1MCS2 and SS1 pBBR1MCS3. These strains harbor replicative plasmids (that 

do not interrupt any genes) but encode resistance to kanamycin (on pBBR1MCS2) and 

tetracycline (on pBBR1MCS3)(31). These strains also had colonies that were less brown than the 

wild type and of similar brown color to the transconjugants. 

It is also possible that even if the candidate genes were involved in Mn oxidation, the 

translated product of the two fragments could somehow retain some activity or reconstitute a 

functional protein, although this is unlikely, especially for the putative multicopper oxidase 

MofA, since the homologous internal fragment for the interruption of mofA was designed so as to 

disrupt two of the four putative copper binding centers of this predicted multicopper oxidase. 

Although the resulting MofA fragment would still have one of the copper binding centers intact, 

it has been shown that all of the copper centers have to be present to ensure an active 

multicopper oxidase (32). 

Although interrupting these candidate genes did not eliminate manganese oxidation 

activity in SS1, these results cannot unequivocally disprove the involvement of the gene products 

in manganese oxidation. Given the lack of a clean deletion and the ambiguous results from the 
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observed attenuation in manganese oxidation, we undertook optimization of a cleaner gene 

deletion strategy and also considered the possibility that mofA2 which shares 85% nucleotide 

identity with mofA may have a redundant role in manganese oxidation. 

 

 

Deletion of mofA does not eliminate Mn oxidation 

To eliminate some of the ambiguity raised by merely interrupting the genes as discussed 

above we used a double recombination strategy with sucrose counter-selection to completely 

delete mofA. Sucrose counter-selection relies on the enzyme levansucrase (encoded by sacB) to 

induce toxicity to cells expressing this enzyme when exposed to sucrose (33). Numerous 

gentamycin and streptomycin resistant colonies were obtained when pKNG101orf-gm-mofB, 

which also encodes sacB, was transformed into SS1 by conjugation. PCR analyses of these 

colonies confirmed that the plasmid had recombined into the chromosome of these 

transconjugants in either orf or mofB, both of which flank mofA (data not shown).  Initial 

attempts, however, using previously described conditions (5% sucrose) (34) to obtain sucrose 

resistant derivatives of Leptothrix::pKNG101orf-gm-mofB tranconjugants failed. We therefore 

undertook an assessment of the effects of sucrose on growth of the wild type since high 

concentrations of sucrose can result in significant osmotic stress to cells. Importantly, 5% 

sucrose in the medium prevented growth of wild type Leptothrix, possibly explaining why no 

double recombinants were initially obtained. Sucrose at 3%, however, was tolerated although it 

still reduced growth rate (Figure 3.1).  
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Figure 3.1: Determination of the effects of sucrose concentration on growth of wild type 

Leptothrix: sucrose concentration above 3% greatly reduce the growth of Leptothrix discophora 

 

Growth of Leptothrix::pKNG101orf-gm-mofB on medium containing gentamycin and 

3% sucrose led to the isolation of hundreds of streptomycin sensitive colonies. PCR analyses 

confirmed that in approximately 5% of these colonies, a second recombination event resulted in 

deletion of 94% of mofA (Figure 2). Surprisingly, these ∆mofA mutants still oxidized manganese 

and no difference in the brown color was distinguishable between the wild type, 

Leptothrix::pKNG101orf-gm-mofB and Leptothrix ∆mofA mutant grown on solid media. These 

results clearly demonstrate that although mofA has been reported to encode the manganese 

oxidizing enzyme in Leptothrix discophora SS1, deleting it does not eliminate the ability of 

Leptothrix cells to oxidize manganese.   
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Figure 3.2 a) Schematic of first and second recombination events leading to the deletion of mofA: 

A first recombination event should result in integration of the pKNG101-orf-Gm-mofB plasmid 

at either orf ormofB (not shown) locations in the chromosome of SS; a second recombination 

event would either remove the plasmid and reconstitute the wild type (not shown) or remove the 

mofA fragment, resulting in a deletion of mofA. 
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Figure 3.2 b) Schematic showing the expected PCR product in the wild type Leptothrix and the 

∆mofA mutant 
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Figure 3.2 c) Electropherogram of the PCR products obtained from amplification of mofA and 

upstream and downstream regions in the wild type, the ∆mofA mutant and the pKNG101orfmofB 

integrant; a) L. discophora wild type, b) L. discophora ∆mofA c) L. discophora pKNG101-orf-

gm-mofB;  primer sets used are 3a, 3b, 3c= mofA For/Rev,  1a,1b, 1c=orfmofB For/rev , 2a, 2b, 

2c=orfmofC For/Rev. 

 

While we saw  no obvious decrease in the level of manganese oxidation by the mutant, 

one way to rationalize a role for MofA given the carefully conducted, though incomplete 

previous results (23) is to hypothesize that it is a dispensable part of a redundant multi-enzyme 

complex. This possibility was suggested initially, before the identification of mofA and in fact 

was a reason that manganese oxidation activity was attributed to a Manganese Oxidizing Factor 

(MOF) rather than a single enzyme (12, 25). Given the presence of mofA2, which is closely 

related to mofA and the other genes interrupted above, the possibility of redundancy cannot be 

ignored. This is especially true given the recent finding of redundant manganese oxidizing 
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systems in Pseudomonas putida GB-1 (16) and our own failure to identify manganese oxidation-

deficient transponson mutants, despite screening more than 4 x 10
5 

colonies (data not shown). 

 

Transposon mutagenesis of a ∆mofA mutant results in a non-oxidizing phenotype 

One of the obvious candidates for a redundant manganese oxidation system was mofA2. 

The most direct way of investigating the role of mofA2 in manganese oxidizing process would 

have been be to create a mofA2 deletion in the SS1 ∆mofA background. We reasoned, however, 

that transposon mutagenesis of SS1 ∆mofA was a better first approach since it did not make any a 

priori assumptions about the nature of any putative redundant manganese oxidation system and 

would thus allow us determine if other enzymes played a role in manganese oxidation. 

 

Table 3.4 Outcome of transposon mutagenesis of L. discophora ∆mofA: 4.9x10
4 

transposon 

mutants were screened, of which 70% were large colonies and 30% small colonies; 60 

transposon mutants mutant colonies were either white or off white, while 12 colonies were 

darker than the average brown colonies. 

 

 
Transposon  mutants  
 

Frequency 

Total 
4.9 x 10

4  

( 33 plates x 1500 colonies/ plate 

1 

Normal size  3.4x10
4
 

0.7 

Mutants with a visible change 

in color 

            

Dark brown mutant colonies     12 

2.4 x 10 
-4 

            

White mutant colonies             29 

5.9 x 10 
-4 

               

Off –white mutant colonies         31 

 



 

70 

 

Transposon mutants first became visible as pinpoint colonies by the 8th day after plating 

and continued to grow for another week. Similarly to the wild type, and in agreement with the 

manganese oxidizing activity occurring towards stationary growth phase, the colonies were 

transparent-white when they first appeared with most of them slowly turned brown within a 

week. Interrogation of the plates for white, putatively manganese oxidation deficient colonies 

was made by day 14 (and thereafter) during which time almost all of the colonies (98.8%) on the 

plates turned brown.  Interestingly, two general classes of transposon mutant colonies were 

initially observed (Table 3.4). Normal size colonies (70% of the total) were the first to appear 

and reached a typical diameter of 2-3mm at maturity, whereas small colonies only became 

visible 2 to 3 days later. These were evenly distributed on the plates among the larger colonies so 

their small size was not likely caused by nutrient limitation due to high colony density (Figure 

3.3a). An obvious explanation for the cause of this variation is lacking, but different colony 

morphologies on the same plate (with cells coming from the same culture) were often seen with 

Leptothrix cultures (both wild type and mutant strains).  Although they do not appear brown in 

Figure 3.3, these colonies eventually turned brown, suggesting that the delay in manganese 

oxidation was likely due to growth related defects and was not investigated further. 
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Figure 3.3 Colony distribution and appearance of different categories of Leptothrix ∆mofA 

transposon mutants mutants  a) Sector of an original selection plate showing normal (brown 

halo) and small colonies (arrow)  of transposon mutants on initial selection plates; b) Re-streak 

plate indicating the oxidation ability of the transposon mutants from the four categories 

identified: white(I), dark brown++(ii) light-brown (ii) patched white and brown growth (iii)  

 c), d), e), f) Close-up of individual colonies of the different transposon mutants dark brown++ 

(c), white (d) and off white (e, f). 
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In total, approximately 4.9 x10
5
 transposon mutants were screened (> 10X coverage of 

the genome) (Table 3.4). Based on coloration, at least four different types of colonies could be 

identified: a) white colonies, b) darker than normal colonies (brown++); c) whitish colonies with 

streaks or slight coloration from manganese oxides, either in the center of the colony or dispersed 

in the shape of a star towards the edges and d) brown colonies, with the latter making up the 

majority of transposon mutants (Table 3.4, Figure 3.3). 60 white and whitish colonies and 12 

darker brown colonies were lifted off the plates and re-streaked to confirm their manganese 

oxidation status. 29 of the 60 white colonies remained white after re-streaking and thereafter, 

while the remaining 31 either turned various shades of brown or grew in a patched white and 

brown lawn when re-streaked (Figure 3.3b).  Further experiments were done with the 29 mutants 

that remained white as well as with the 12 darker brown mutants. 

 

Identification of the transposon insertion site  

Arbitrary PCR products yield sequence for 23 of the 29 white mutants and 8 out of 12 

dark++ mutants. The sequences were blasted against the draft genome of SS1, as well as against 

the NCBI database. The sites of insertion are summarized in Table 3.5. The 23 white transposon 

mutants mapped in two regions of the chromosome, with 14 mutants inserted in region 1, and 9 

mutants in region 2. Region 1 contains the following genes: Orf1593 annotated as a surface 

antigen (6 mutants), Orf1594, a cytochrome oxidase biogenesis protein Sco1/SenC/PrrC, 

putative copper metallochaperone (one mutant), Orf1595 annotated as a putative cytochrome c 

family protein (four mutants) and Orf1596 annotated as Glycoprotein gp2 (Table 3.5).  
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Table 3.5 Genes identified by transposon mutagenesis of a ∆mofA mutant that produced a white, 

non-manganese oxidizing phenotype; Insertions were identified in 2 regions of the chromosome, 

region one at Orf1593 region and region two at Orf 2655. Although no insertions were identified 

in Orf1592, this gene is 85% identical to Orf2655, for which most insertions were mapped (9). 

Orf1592 and Orf1593 were annotated as hypothetical by RAST, but as MnxG (multicopper 

oxidase responsible for Mn oxidation in Bacillus SG-1) by Craig Venter Institute pipeline. 

Gene # 
(RAST) 

aa # 
mutants 

Gene annotation 
(RAST) 

Alternative 
Annotation 
(Craig Venter 
Institute) 

Blast against (NCBI) 
Leptothrix cholodni (% 
identity) 

Orf 1592 159
7 

0 hypothetical MnxG  Putative MCO,  85%  

Orf 1593 663 6  surface antigen gene -  
 

40-residue yvtn 
family beta-
propeller repeat 
protein 

 40-residue YVTN family 
beta-propeller repeat , 
82%  

Orf 1594 448 1  Cytochrome oxidase 
biogenesis protein 
Sco1/SenC/PrrC, 
putative copper 
metallochaperone 

electron 
transport 
protein 
SCO1/SenC 

Electron transport 
protein SCO1/SenC 
cytochrome c, putative  
88%  

Orf 1595 525 4  cytochrome c family 
protein, putative 

cytochrome c, 
putative 
 

Cytochrome c putative 
SP6 
 69 %  

Orf 1596 472 0 Glycoprotein gp2 hypothetical 
protein 
 

Hypothetical 
75%  

Orf 2665 159
1 

9 Hypothetical protein MnxG Putative MCO, 84% 

1594-
1595 

 2  n/a n/a n/a 

1595-
1596 

 1 n/a n/a n/a 

 

Three other mutants had transposons inserted between two genes, with 2 mutants’ 

insertions mapping between Orf1594 and Orf1595 and one mapping between Orf1595 and 

Orf1596. A search for promoters using BPROM identified a putative promoter in the 398 

nucleotides intergenic region upstream of Orf1593, but no potential promoters were found in the 
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67 nucleotide intergenic region upstream of Orf1594 or in the 46nt upstream of Orf1595, which 

suggests that these three genes might form an operon transcribed from the promoter identified 

upstream of Orf1593 (Figure 3.4).  

 

Figure 3.4: Schematic showing the two genomic regions in which the transposon mutants 

inserted in the non-manganese oxidizing phenotypes of L. discophora ∆mofA mutants. Small 

arrows indicate transposon insertion. Genes in region one are annotated as follows: 

Region 1: 1) Orf 1593, Surface antigen gene; 2) Orf 1594, Cytochrome oxidase biogenesis 

protein Sco1/SenC/PrrC, 3) Orf 1595, Putative cytochrome c family protein, 4) Orf 1592, 

Hypothetical, putative multicopper oxidase 5) Orf 1596  Glycoprotein gp2 6) Orf 1597 

Hypotethical, 7) Orf 1591 Two component system response regulator QseB,  8) Orf 1590 

Sensory histidine kinase, QseC  

Region 2: 1) Orf 2655, hypothetical protein, putative multicopper oxidase 

 

Although there were no mutants identified with insertions in Orf1592, this gene drew 

our attention because it has 85% homology (97% query coverage) with Orf2655 from region 2, 

for which all 9 insertions of region two were mapped. Orf1592 is oriented in opposite direction 
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from Orf1593 and it seems to be transcribed from a second promoter identified in the intergenic 

region between Orf1593 and Orf1592.  Orf1592 is annotated as a hypothetical protein in RAST. 

An alternative annotation obtained from TIGR, however, identifies it as an MnxG homolog, the 

protein responsible for manganese oxidation in Bacillus sp. SG-1, although there is only 28% 

similarity at the amino acid level between MnxG of Bacillus sp. SG1 and Orf1592. This poor 

homology explains why it was not identified in our original homolog-mutagenesis approach. 

Orf1592 was named mnxG1 and Orf2655 was named mnxG2 thereafter.  

A BLASTp of mnxG1 against the NCBI protein database identified a number of 

multicopper oxidases from Nitrosomonas europaea (obligate chemolithoautotroph, ammonia 

oxidizer), Solangium cellulosum (a cellulose degrading saprophyte) and Geobacter 

metallireducens (an anaerobic respirer) with a 40% similarity (over 96% of the sequence) with 

Orf1592. Immediately upstream from mnxG1, there is a predicted two component system 

response regulator QseB (Orf1590) and sensory histidine kinase, QseC (Orf1591). It is important 

to note that a multicomponent regulatory system comprised of the sensor histidine kinases 

MnxS1 and MnxS2 and  the response regulator MnxR were shown to each be required for 

manganese oxidation in P. putida GB-1 (22).  

None of the 23 non-oxidizing clones sequenced mapped in Orf1590 or Orf1591, but it is 

possible that some of the 6 clones that were not mapped might contain an insertion in these 

genes.  This will be pursued further by designing gene specific primers for this region to 

determine if an insertion occurred there in any of the uncharacterized mutants. Finally, three 

proteins upstream of Orf1590 are annotated as type II secretion proteins, likely to be involved in 

the type II secretion machinery. The organization of the genes in region one is conserved in L. 

cholodni, which seems to have two copies of this region (Figure 3.5), as well as in a number of 
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other bacteria, such as Pseudomonads, Geobacter sulfurreducens and Sorangeum cellulosum, 

except for  the orientation of mnxG1 (Orf1592).  

 

Figure 3.5: The genes in region one (at Orf1593) in which 14 of the non-manganese oxidizing 

transposons were mapped are conserved for several other species, including. L.cholodni, P. 

putida GB-1, Geobacter sulfurreducens, S. cellulosum; the genes of interest are: 1) Orf 1593 

Surface antigen gene 2) Orf 1594, Cytochrome oxidase biogenesis protein Sco1/SenC/PrrC,  3) 

Orf 1595, Putative cytochrome c family protein, 4) Orf 1592, Hypothetical, putative multicopper 

oxidase 
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Annotation of the region two transposon mutants revealed that all nine insertions 

mapped to Orf2655 (mnxG2).  BLAST analysis against the NCBI protein database revealed 

mnxG2 to be similar to two putative multicopper oxidases from L. cholodni. It also showed weak 

similarity to PputGB1_2447 (32% over 94% of the sequence). Interestingly, deletion of both 

PputGB1_2447 and another gene (PputGB_2665) encoding a putative multicopper oxidase was 

required to eliminate manganese oxidation activity in P. putida GB-1; deletion of a single gene at 

a time was not sufficient.  Our data are consistent with these results and suggest a redundant Mn 

oxidation system in SS1. 

 

3.5 C ONCLUSION 

The data we have presented here provides new insights into manganese oxidation by SS1, 

but also raises new questions. Although it was believed for a long time that MofA was the 

enzyme required for manganese oxidation in this bacterium, we have unambiguously determined 

that MofA is dispensable for this process. Interestingly, however, we were only able to obtain 

non manganese-oxidizing mutants by further mutagenizing a ∆mofA mutant, since transposon 

mutagenesis of the wild type did not result in any non-manganese oxidizing mutants. Contrary to 

expectation, none of the manganese deficient ∆mofA transposon mutants, however, mapped to 

mofA2, which is 85% similar to mofA. Transposon insertions affecting manganese oxidation were 

not found in any of the other candidate genes initially suspected of being important for 

manganese oxidation either. Surprisingly, other genes including a putative multicopper oxidase, 

a surface antigen, a putative cytochrome c and a cytochrome oxidase biogenesis protein were 

identified as playing a role in manganese oxidation in a ∆mofA background. Given the fact that 
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three of the four genes identified above appear to reside in a single operon, the possibility of 

polar effects should be investigated, though clearly this region is important.  

Recently is has been shown that while expression of the multicopper oxidase responsible 

for manganese oxidation in Bacillus sp SG-1 (mnxG) alone, in E. coli, did not result in a protein 

with manganese oxidation activity, co-expression of mnxDEFG operon resulted in manganese 

oxidation activity (35),  suggesting that MnxG requires MnxD,E,F and that they probably 

function as a complex. This finding  is not surprising, since early observations of the manganese 

oxidizing activity in SS1 also suggested the existence of an oxidizing complex (MOF= 

Manganese Oxidizing Factor) consisting of one or more glycoproteins associated with anionic 

polysaccharides that resides in membranous “blebs”, observed microscopically as large 

aggregates of membranous particles (25) . Under such a scenario it is possible that Orf 1594 and 

Orf1595 could play a similar role in SS1 as do MnxD,E,F in Bacillus, by assisting the putative 

MCO MnxG2 in the process of Mn oxidation.   

The potential redundancy of mofA and mnxG2 needs to be further investigated, by 

assessing the manganese oxidizing activity of both a ∆mnxG2 mutant as well as that of a ∆mofA 

∆mnxG2 double mutant. If the ∆mnxG2 mutant maintains its manganese oxidation activity, then 

an ∆mnxG2∆mofA double knock-out mutant should be created and manganese oxidation 

assessed to investigate the role of mofA. Lack of manganese oxidation in this strain would 

suggest a role for mofA in the manganese oxidation process and restoration of this activity by 

complementation with a wild copy of mofA should solidify this argument.   
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Addendum in proof 

The day before this dissertation was due to be handed in, the Cornell Biotech Center was able to 

reanalyze the identity of peptides extracted from  the manganese oxidizing band of a denaturing 

polyacrylamide gel containing a 1000x concentrate of SS1 supernatant. Comparison with the 

updated draft genome sequence showed that the band contained peptides unique to MnxG1, and 

to two glycoproteins (orfs 1920 and 1921) located just upstream of mnxG1 (orf 1926). These new 

data suggest that the role of mnxG1 needs further investigation since it is possible that the 

arbitrary PCR sequences thought to be unique to mnxG2 could actually come from mnxG1 in 

some cases, given the similarity between the genes. This should be followed up on by designing 

primers that are unique for mnxG1 and mnxG2 and confirming that transposition only occurred in 

mnxG2 as predicted from the sequence of the arbitrary PCR products.   
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CHAPTER FOUR 

IN SILICO EVIDENCE FOR THE METABOLIC VERSATILITY OF 

LEPTOTHRIX  DISCOPHORA SS1 
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4.2 INTRODUCTION 

Leptothrix discophora SS1 is a gram negative, manganese oxidizing 

betaproteobacterium, which together with members from the genus Sphaerotilus, form the 

sheathed group of bacteria (1, 2).  SS1 was isolated from the ferromanganese metallic surface 

film of a swamp near Ithaca NY, however Leptothrix species are widely distributed in 

environments that are characterized by a circumneutral pH, low concentrations of easily 

degradable organic nutrients, an oxygen gradient and a source of reduced iron or manganese 

minerals (3, 4). In such environments Leptothrix discophora SS1 and other manganese oxidizers 

readily oxidize manganese which precipitates as a brown mass outside the cells. Manganese 

oxides are important chemical species in the environment, particularly due to their properties as 

strong oxidants and effective adsorptive surfaces (5, 6)).  From this perspective, the scientific 

community that studies biological manganese oxidation wants to know to what extent and in 

which ways the manganese oxidizing bacteria impact the geochemical cycles in their habitats.  

Progress in this field was slow, particularly because many of the model organisms used to 

study this process were refractory to genetic manipulations (7–9). In this work we report insights 

gained about Leptothrix’s genetic potential as revealed by the draft genome. Together with recent 

advances in developing a genetic system for L. discophora, the availability of a genome creates a 

foundation for further exploratory work to understand the molecular biology of manganese 

oxidation in Leptothrix and the possible role this organism plays in diverse environments. We 

present here general insights gained about Leptothrix’s physiological potential as suggested by 

the draft genome, including genes likely to have a contribution to manganese oxidation in this 

bacterium 
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4.3 MATERIAL AND METHODS 

Bacterial strains 

Leptothrix discophora was grown in 2XPYG media. Genomic DNA was isolated using standard 

protocols for bacteria (10). 

Sequencing 

Shotgun cloning and sequencing were performed at the Memorial Sloan Kettering Cancer Center 

using 454 technology in a combination of pair end and single end reads. Additional sequencing 

was performed at Weil Medical Center, Cornell University, using a Single Molecule Teal Time 

sequencing technology (SMRT) with correction based on 100 bp Illumina reads. Assembly of 

reads was performed by the Computational Biology Service Unit, Cornell University using 

Newbler assembly software and with assistance from Russell Durrant.  The draft genome of 

Leptothrix discophora SS1 was 4.2 Mb assembled in 32 scaffolds. Automated annotation was 

performed using the automated prokaryotic annotation pipeline at J. Craig Venter Institute and 

RAST (Rapid Annotation Subsystems Technology). 

Growth in soft agar tubes 

A low melting temperature, soft agar (0.5%), 2xPYG (11) medium was used for assessing 

growth in tubes. 10 mL soft agar medium was first allowed to cool, after which it was quickly 

mixed homogeneously with 0.5mL of Leptothrix discophora SS1 cell suspension. Tubes were 

capped and growth was observed over a period of several months. 
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4.4 RESULTS AND DISCUSSION 

 

General characteristics of the genome 

Sequence information was obtained from a combination of 454, PacBio, and Illumina 

sequencing.  Though closure was not complete, the 32 scaffolds appear to assemble into one 

chromosome of approximately 4.2 Mb. No plasmids were identified by Newbler assembler, 

although Celera assembler (J Craig Venter Institute) identified sequence behavior that could 

indicate the presence of extra-chromosomal DNA, such as a plasmid (there are many more mates 

from degen-to-degen than degen-to-scaffold). The draft genome sequence of L. discophora is 

approximately 15% smaller than that of L. cholodni (4.9Mb, Table 4.1), which is currently the 

closest relative with a sequenced genome. As expected, the genome has a high G+C content 

(67%), though numerous AT rich regions are present suggesting a history of horizontal gene 

transfer. RAST annotation of the chromosome identified 3734 protein encoding sequences and 

57 RNA genes. The genome includes 793 genes (21%) predicted to encode hypothetical proteins, 

167 (4.4%) putative proteins and 15 proteins of unknown function (0.4%). 
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Table 4.1: General characteristics of the draft genome of L. discophora SS1 as compared to the 

genome of L. cholodni  

 

 

Organic carbon utilization  

All the genes required for classical glycolysis (Embden-Meyerhof pathway) are present. 

The alternative Entner–Doudoroff pathway is also present with the exception of one gene, 6-

phosphogluconolactonase (PGL). It is likely that the pathway is complete, but the gene has not 

been sequenced or identified by the automatic annotation. The pentose phosphate pathway (PP) 

that generates pentoses from glucose and provides the cells with crucial metabolic precursors 

(pentoses for nucleic acid and erythrose for aromatic amino acids) is also present, with the 

exception, again of the  6-phosphogluconolactonase (PGL). All genes are present for the Citric 

Acid Cycle, a crucial pathway that supplies the cell with NADH and three precursor metabolites 

for amino acid synthesis. 

Genes encoding enzymes for the utilization of other carbon sources, such as aminosugars 

(chitin and N-acetylglucosamine) di and oligosaccharides (sucrose, maltose, lactose and 

galactose) sugar alcohols (glycerol and inositol) are also present. 

General features of the 
genome 

L. discophora SS1 L. cholodni 

Number % of total Number % of total 

Size bp 4.2 x 106 
N/A 4909403 100% 

DNA coding bases  N/A 4520554 92% 

G+C content 67.39% N/A 68.9% N/A 

Coding density %  NA 92.08% N/A 

Total genes 3734 100% 4420 100% 

Protein coding genes 3677 98.47% 4363    98.71% 

RNA genes 57 1.52% 57  1.29% 

Protein coding genes with 
function 

2959 
73.03% 3372  76.29% 

Protein coding genes without 
function 

975 
25.45% 991 22.42% 
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Energy metabolism/electron transport 

Though Bergey’s manual describes Leptothrix species as obligate aerobes (12), 

Leptothrix discophora SS1’s draft genome revealed the genetic potential for the ability to 

perform fermentation and respiration using either oxygen or nitrate as terminal electron 

acceptors. 

Fermentation 

66 genes were attributed by RAST to the fermentation subsystem. Among these there 

were genes for the fermentation of lactate, butyrate, biosynthesis of butanol and mixed acid 

fermentation.  Though Leptothrix was originally identified, described and grown as an obligate 

aerobe, in preliminary experiments we observed a tendency towards microaerophily: for 

example, colonies preferred to grow in cracks or holes of the agar plate. Moreover, we were able 

to grow Leptothtrix on plates overlaid with a layer of solid medium as well as in poured tubes 

(1% agar). In poured tubes Leptothrix preferentially grows as a thin layer located a few 

millimeters below the surface (Figure 4.1).  Although we have not tested Leptothrix’s ability to 

grow completely anaerobic, the genetic potential for fermentation supports our experimental 

observations that it can grow (and prefers to) as a microaerophile, potentially fermenting under 

these conditions. 
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Figure 4.1: a) Growth of L. discophora in tubes shows the preferred area of growth under the 

surface b) close-up of a tube showing growth area in brown 3 to 4 millimeters under the surface 

 

Aerobic respiration 

The genes for a complete electron transport chain are present, including complexes I 

through IV. The presence of at least two kinds of terminal cytochrome oxidases (type aa3 and 

type cbb3) suggests the possibility of alternative pathways to enable the bacterium to adjust the 

efficiency of oxidative phosphorylation based on the amount of oxygen present: type aa3 

cytochrome c oxidases are used under high oxygen tension, while type cbb3 cytochrome 

oxidases are used under low oxygen concentrations because they have higher affinity for oxygen.  

Nitrate/Nitrite respiration 

In oxygen limiting conditions nitrate and nitrite are the next preferred terminal electron 

acceptor after oxygen (13–15). Two dissimilar pathways of nitrate respiration, ammonification 
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and denitrification, involve the formation of a common intermediate, nitrite, but end in different 

products, ammonia and gaseous nitrogen oxides (NO or N2O or N2), respectively (16). The 

genome contains a set of genes that suggest the potential for the first steps in denitrification: an 

assimilatory nitrate reductase and four potential nitrate reductases (NirK, NirD, NirB, NirV) as 

well as transporters nitrate/nitrite ABC transporters, a signal transduction nitrate/nitrite sensor 

and response regulator couple as well as a regulatory NnrU family protein, required for 

expression of nitrite and nitric oxide reductases (Nir and Nor). No genes encoding nitric oxide 

reductases (nor), or nitrous oxide reductases (nos) for conversion of NO to N2O or N2O to N2 

respectively, were detected. Thus is seems that Leptothrix is genetically equipped to carry out the 

first two steps of denitrification and is expected to produce NO. The ability to perform only some 

of the steps involved in denitrification is not uncommon (17). 

L. discophora and other organisms in this group often live at liquid air/interface 

environments, where concentration of dissolved oxygen can decrease dramatically within very 

small vertical distance gradients (millimeters). It seems reasonable that L. discophora would 

therefore benefit from alternative ways of generating energy (albeit small) through either 

fermentation or partial denitrification. 

Autotrophy  

 Of the 12 enzymes required for the Calvin cycle, only sedoheptulose-1,7-bisphosphatase 

is missing from the current draft genome. However, this enzymatic activity in bacteria is often 

catalyzed by fructose-1,6-bisphosphatase which has  dual sugar specificity and seems to replace 

sedoheptulose-1,7-bisphosphatase in  other  genomes (18). Moreover, this enzyme is not 

normally used for diagnostics of the Calvin cycle presence in a given organism. However, two 
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enzymes, ribulose bisphosphate carboxylase (RuBisCo) and phosphoribulokinase, which are 

both present in the genome, suggest a functional Calvin cycle. 

 Carboxysomes are often found in microorganisms that fix carbon, as a means of 

sequestering ribulose bisphosphate carboxylase/oxygenase from oxygen (the rate limiting step in 

the process of carbon fixation from CO2). Since no genes coding for carboxyzomes are present, it 

is likely that if L. discophora fixes CO2, it does so under high CO2 pressure which allows normal 

function of RuBisCo without requiring a CO2 concentrating/O2 isolating mechanism (19).   

 Although Leptothrix was isolated and subsequently maintained as an organoheterotroph 

growing on organic carbon, CO2 fixation could represent a convenient alternative for Leptothrix 

enabling it to cope with dynamic environments that occasionally offer a limited supply of simple 

organic carbon for metabolism. 

Oxidation of sulfur compounds 

Another possible adaptation of Leptothrix to its natural habitat is the potential for 

oxidation of reduced sulfur compounds, as these species are abundant at oxic/anoxic interfaces 

(20–22). The electrons derived from sulfur oxidation can be used by aerobic autotrophic bacteria 

during carbon dioxide reduction. The fact that Leptothrix possess both of these capacities 

suggests that it is capable of autolithotrophy. Genes predicted to code for the oxidation of sulfur 

compounds are present in two locations on the chromosome. The first location contains a sulfide 

dehydrogenase (cytochrome C subunit of flavocytochrome C), and soxF-a sulfide dehydrogenase 

flavoprotein chain precursor flanked by an integrase. The gene for a LysR-family regulator is 

located between this sulfur oxidation cluster and the CO2 fixation gene cluster which is 

immediately upstream. The proximity of these clusters begs the question of coordinate regulation 
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given their role in autolithotrophy. The second cluster contains another set of Sox proteins 

required for oxidation of sulfur compounds (sox HBXAZYDC) together with a SoxR regulator 

and is also flanked upstream by an integrase. Upstream of the integrase there is region containing 

tra genes related to those of IncF conjugative plasmids. The presence of two clusters of genes for 

sulfur oxidation separated by a fragment of chromosome containing the tra genes between two 

integrases makes it tempting to speculate that the integration of the plasmid caused the splitting 

of the sox gene cluster. Finally there is a second SoxR homolog located about 100 genes 

upstream that is in close proximity to an ArsR regulator and two putative arsenate reductases. 

 

Tra genes 

This region of the genome actually contains 17 tra genes similar to those of IncF 

conjugative plasmids(23). Conjugative plasmids encode the entire machinery required for their 

transmission to another bacterium. The number of genes encoding this process varies by plasmid 

type, however, Leptothrix appears to have a nearly complete complement, suggesting that it 

might be able to facilitate the transfer of non-self-transmissible plasmids. Although the tra genes 

are most often located on the plasmid rather than the chromosome, similar plasmids can integrate 

into the host’s chromosome, as is the case with the F plasmid of E. coli . An autonomous plasmid 

has not yet been identified in Leptothrix and it would be interesting to know whether the tra 

genes integrated into the chromosome from a plasmid harbored by Leptothrix or by transfer from 

the genome of another bacterium. The latter option would also present the possibility of transfer 

of other genes during the process of plasmid transfer. Alternatively, the tra genes may be part of 

a integrative-conjugative-element (so called ICEs) that does not replicate like traditional 

plasmids, but resides almost exclusively in the chromosome (24).  
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Table 4. 2: The roles of some tra-gene encoded proteins during conjugation; genes in bold have 

been found in the tra cluster in the genome of Leptothrix discophora. 

 

 

 

 

 

 

 

 

Manganese oxidation gene duplication and genomic context of mofA and mofA2 

Initially identified from a clone library using antibodies raised against the manganese 

oxidizing fraction of Leptothrix supernatant, mofA was long thought to be the multicopper 

oxidase that is responsible for manganese oxidation in Leptothrix.  However, as reported in 

chapter 3 of this dissertation, deletion of mofA did not eliminate manganese oxidation. Recent 

availability of the draft genome enabled the identification of another gene, with 85% (AA level) 

similarity to mofA, located approximately 1Mb downstream from it, Orf2977 that we named 

mofA2 (Figure 4.2). Despite nearly 10x coverage of the genome, none of the manganese 

oxidization deficient mutants obtained from transposon mutagenesis of a ∆mofA strain 

contained insertions in mofA2. Rather, analysis of the sites of insertion of 23 manganese 

oxidation deficient mutants revealed that Mn oxidation was dependent on two sets of genes 

located in 2 regions on the chromosome, approximately 1Mb from each other. RAST automated 

annotation identified one of these genes (Orf 2665) to be a homolog of the Bacillus sp. SG-1 

Pili Assembly and Production 
traA, traB, traE, traC, 
traF, traG, traH, traK, 
traL, traQ, traU, traV, traW, 

Inner Membrane Proteins traB, traE, traG, traL, traP 

Periplasmic Proteins traC, traF, traH, traK, traU, traW 

DNA transfer traC, traD, traI, traM, traY 

Surface Exclusion Proteins traS, traT 

Mating Pair Stabilization traN, traG 
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manganese oxidizing protein, MnxG; this gene was named mnxG2. MnxG2 shares 82% of their 

amino acids with Orf 1592, another putative multicopper oxidase which was named mnxG1 

(Figure 3.3). Although there is no direct evidence of the involvement of mofA2 or mnxG1 in 

manganese oxidation in Leptothrix discophora SS1, their high sequence similarity to genes 

involved in this process (mofA and mnxG2) as well as a pattern of duplication of these 

manganese oxidizing enzymes in other manganese oxidizing bacteria (25, 26) prompts us to 

include them in this analysis. 

 

 mofA/mofA2 

Both mofA and mofA2 are annotated as either multicopper oxidases (RAST) or as 

Fibronectin type III domain proteins, according to the J.Craig Venter Institute (JCVI) prokaryotic 

genome annotation pipeline. Multicopper oxidases (MCOs) are part of a large class of mixed 

function oxidases and oxygenases that oxidize their substrates using copper center active sites 

that transfer electrons to dioxygen and water (14, 27, 28). A motif search identified two copper 

center motifs in MofA (one type II, one type III) and three copper center motifs in MofA2 (one 

center of each type). Fibronectins (FN) were discovered and initially thought to occur 

exclusively in animals, but there is increasing evidence of their presence in bacteria (29–31). 

They are extracellular glycoproteins, whose major functional property is to create an 

extracellular matrix (ECM) and support cell adhesion. This is facilitated by the multiple binding 

sites identified along the fibronectin’s fibril-like molecule, which allow for both self-association 

in aggregates as well as binding of several other molecules.  Fibronectin type III repeats are 

predicted to occur in both MofA and MofA2, and some biochemical evidence suggests that MOF 
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is a glycoprotein (32). It is possible that MofA is a protein that encompasses both the functions 

of a multicopper oxidases and that of a fibronectin.  

 Upstream of mofA there is a thiol-disulfide isomerase, a multi-functional protein that 

catalyses the formation and isomerisation of disulfide bonds during protein folding and which 

could play a role in stabilizing the structure of MofA. Two proteins upstream of mofA there is a 

chaperone SecB-like protein, whose predicted role is to maintain proteins to be exported in an 

unfolded state; GspD of the general secretion pathway is located four ORFs downstream from 

mofA. The presence of these ORFs next to mofA as well as the signal peptide identified in the 

sequence of MofA (42) suggests that MofA is transported outside the cell which is consistent 

with the recovery of Mn oxidation activity in Leptothrix culture supernatants. 

Downstream of mofA is the gene for a putative FKBP-type peptidyl-prolyl cis-trans 

isomerase FkpA precursor (EC 5.2.1.8) which is predicted to be a protein folding chaperon and 

which was originally called mofB. Immediately downstream of this is a hypothetical protein 

previously called mofC. These three genes (mofA, mofB and mofC) appear to be organized in an 

operon (ref) and mofB and mofC have been proposed to play a role in manganese oxidation, 

perhaps by assisting folding of MofA. Co expression of mofB with mofA in E. coli did not appear 

to impact mofA folding, while coexepression of all three genes did not recover manganese 

oxidation in E. coli (33). Despite the names, there is no direct biochemical evidence for the 

involvement of any of the three genes in manganese oxidation. Downstream of this is the gene 

for a cytochrome oxidase biogenesis protein Sco1/SenC/PrrC (a putative copper 

metallochaperone) and another hypothetical protein.  Copper centers of MCOs require copper 

ions and the putative metalochaperone could be involved in providing this ion to MofA Cu 

centers. Further downstream there is an RNA polymerase sigma-54 factor RpoN next to a 
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transmembrane regulator protein PrtR. It important to note that a similar  two component 

regulatory couple, containing a sigma-54 dependent response regulator (mnxR) and 2 histidine 

kinases (mnxS1/2) are required for Mn(II) oxidation in Pseudomonas putida GB-1. 

The genomic context of mofA2 is an area dense in two component regulatory systems, 

with three located immediately upstream and one downstream. Upstream of mofA2 there is a 

signal transduction histidine kinase CheA (EC 2.7.3.-) followed by a chemotaxis response 

regulator CheY and a methyl-accepting chemotaxis protein.  These types of proteins work 

together to detect changes in the concentration of signal molecules in the environment and 

transmit this information as chemoreceptor signals to the flagellum to adjust motility. Upstream 

of these there is another two component regulatory system, a Nitrate/nitrite sensor protein (EC 

2.7.3.-) and a LuxR-type response regulator receiver; a third predicted two component regulatory 

system lies immediately upstream, with a signal transduction histidine kinase followed by a 

response regulator similar to UvrY.  UvrY is a global regulator that has been shown to affect the 

transcript levels of more than 200 genes in S. oneidensis (34, 35). It can directly and indirectly 

regulate numerous processes including flagella biosynthesis, the type 2 quorum-sensing system 

and carbon metabolism. Immediately downstream of mofA2 there is a hypothetical protein, 

followed by another regulatory group: a LuxR-family transcriptional regulator, a response 

regulator with sequence similarity to QseB, and a signal transduction histidine kinase similar to 

QseC. In E. coli QseB-QseC two-component system is part of the quorum-sensing regulatory 

cascade involved in the positive regulation of flagella and motility genes (36, 37) and it is 

possible that it plays the same role in Leptothrix.  Although the draft genome does not 

specifically recognize genes of the quorum sensing in Leptothrix, there is evidence that many 

bacteria without a quorum sensing system per se do perceive quorum signals (38).  
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Figure 4.2 Schematic of the genomic context of mofA (line 3) in comparison with that of the 

mofA homolog in L. discophora, mofA2 (line 1) as well as homologs of mofA in L. cholodni (line 

2) and other bacteria (lines 4-7). While a mofA homolog seems to be present in the genome of 

other non- manganese oxidizers (red color arrow) the genomic context surrounding it is not 

conserved  

Although MofA was long thought to catalyze manganese oxidation in Leptothrix 

discophora (32, 39, 40), its deletion did not affect the manganese oxidation ability of this 

bacterium and the role of MofA in manganese oxidation remains unclear. Likewise, it should be 

interesting to find out whether the high similarity between mofA and mofA2 indicates a 

duplication in function, or if mofA2 evolved to perform a different function (paralog of MofA). 

Initial evidence would suggest the latter, since no ∆mofA transposon mutants lacking manganese 

oxidation were isolated that had insertions in mofA2. Maintanence of manganese oxidation 

activity in a strain with a complete deletion of mofA2 should confirm this hypothesis. 
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Alternatively, a more in depth analysis of the sequence of mofA2 by comparison to the mofA 

sequence could reveal differences indicative of changes in the sequence of mofA2 that altered its 

activity. 

 

mnxG1/mnxG2 

mnxG2 was the site of insertion in 9 of the 21 non-manganese oxidizing ∆mofA 

transposon mutants. Although no white mutants with insertions in mnxG1 were found, its 

proximity to a putative operon where 14 insertions were found that resulted in non-manganese 

oxidizing mutants, and its 85% similarity to mnxG2 prompted us to include it in this discussion. 

Both MnxG1 and MnxG2 have been annotated as either hypothetical proteins by RAST or as 

MnxG proteins by JCVI.  Neither MnxG1 or MnxG2 have any homology to MofA or MofA2. 

Domain and motif searches identified MCOs domains, but no fibronectin-like domains, unlike 

MofA and MofA2. However, both mnxG1 and mnxG2 are accompanied by fibronectin type III 

domain proteins in their genomic neighborhoods; four genes upstream of mnxG1 and 12 genes 

downstream of mnxG2 (Figure 4.3). Only MnxG2 has a predicted signal peptide for export, 

while MnxG1 has a transmembrane domain that is predicted to occur in the N terminal. 

 mnxG2 is surrounded by either hypothetical proteins or proteins of unknown function 

(especially downstream). The sixth gene downstream is a copper-translocating P-type ATPase, 

while the 12
th

 gene downstream is a fibronectin type III domain protein. Among other 

hypothetical proteins or proteins of unknown function there is a putative diguanylate cyclase and 

an acyltransferase 3.  
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 Figure 4.3 Genomic context of mnxG2 and mnxG1. mnxG2 (line 1) is surrounded by 

hypotehetical and proteins of unknown function, among which a copper-translocating P-type 

ATPase and a putative diguanylate cyclase. The genomic context of mnxG1 (line 3) includes: (2) 

Sco1/SenC/PrrC, putative copper metallochaperone (3) surface antigen gene and (4) Putative 

cytochrome c family protein.  This arrangement of genes is conserved in L. cholodnii (line 4), 

which has two copies, as well as other non-manganese oxidizers.  
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4.5 CONCLUSION 

 A pattern of duplication of genes involved in manganese oxidation has been observed in 

two well characterized manganese oxidizers: Pseudomonas putida  GB-1,  encodes two MCOs, 

PputGB1_2447 and PputGB1_2665 that are independently capable of oxidizing both Mn(II) and 

Mn(III) and that are only weakly similar to each other (only 38% similarity over 20% of the 

query) (41). For Aurantimonass sp.strain SI85-9A1, preliminary experimental results, coupled 

with genomic mining suggest two variants of the putative Mn (II) oxidase, MoxA1 and MoxA2 

(42). Unlike Pseudomonas, these putative manganese oxidizing proteins are 95% similar to each 

other, and the similarity extends over several genes in an area flanked by transposons, suggesting 

that an entire genetic fragment was duplicated during a transposition event (42, 43).  

 Preliminary experimental data for Leptothrix suggests that similar to Pseudomonas putida 

GB-1, two different putative MCOs, MofA and MnxG2 are involved in manganese oxidation. In 

silico analysis of the draft genome identified that both MofA and MnxG2 each have a homolog, 

MofA2 and with 82% and MnxG1 with 85% sequence similarity, respectively, as encountered in 

Aurantimonas sp.strain SI85-9A1.  

 Experimental evidence coupled with information provided by genome sequences 

establish a platform for investigation of the manganese oxidation process within and among the 

manganese oxidizing bacteria without precedent. For example, preliminary investigation of the 

genome of Leptothrix identified regulatory elements similar to mnxS1, mnxS2 and mnxR, 

required for manganese oxidation in Pseudomonas putida GB-1, that are present in the genomic 

neighborhood of mofA, suggesting that this process could also be regulated in Leptothrix.  Other 

genes shown to play a role in manganese oxidation in Pseudomonas and Bacillus, such as  the 
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cytochrome C biogenesis pathway and genes from the general secretion pathway,  have been 

found in the Leptothrix genome in the vicinity of genes encoding  putative manganese oxidizing 

enzymes and should be investigated for their role in manganese oxidation in this bacterium. 

 A long standing hypothesis for the roles of manganese oxidation in the bacterial cells was 

that energy can be obtained from Mn(II)-derived electrons to the electron transport chain(7, 44).  

The preliminary genome analysis revealed the genetic potential for unexpected respiratory 

versatility and carbon metabolism in Leptothrix discophora that, in theory, could support this 

hypothesis. The recent availability of a genetic system for Leptothrix should facilitate 

experimental testing of a manganese oxidation derived chemoautothrophy. 
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CHAPTER 5 

SUMMARY AND RECCOMENDATIONS FOR FUTURE WORK 

 

In this study I developed for the first time a genetic system for Leptothrix discophora 

SS1, a model organism for the study of manganese oxidation. The antibiotic sensitivity of L. 

discophora SS1 was characterized and a procedure for transformation with exogenous DNA via 

conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2*10
-

1
 (transconjugant/donor). Genetic manipulation of Leptothrix was demonstrated by disrupting 

pyrF via chromosomal integration of a plasmid with an R6Kɣ ori through homologous 

recombination. This resulted in resistance to fluoroorotidine which was abolished by 

complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS-5. pyrF 

has potential as a selectable marker in Leptothrix and could be further developed into a more 

powerful tool for creating multiple deletions in the same strain.  First a Leptothrix mutant with a 

clean pyrF deletion would be created and used together with a second pVIK165 derivative that 

contained a wild type copy of pyrF and the internal regions (or flanking regions, for deletions) of 

the gene of interest. This strategy would allow for selection of integrants into other chromosomal 

locations based on the restoration of de novo uracil biosynthesis and therefore growth on 

minimal medium. In theory, such a system could be used again and again to generate multiple 

markerless mutations in the same background (1).  

In chapter two I was able to utilize some of the genetic tools I developed to investigate the role 

of MofA, a putative multicopper oxidase that has been suggested by others to encode the 

manganese oxidizing fraction of SS1 supernatant. mofA as well as four other genes candidates 

for encoding the manganese oxidizing activity in SS1 were interrupted by homologous 
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recombination and plasmid integration. All five interrupted mutants maintained the ability to 

oxidize manganese, suggesting that these genes may not play a role in manganese oxidation, as 

hypothesized. Deletion of mofA did not affect the ability of cells to oxidize manganese, however 

transposon mutagenesis in this ∆mofA mutant resulted in the isolation of white, non-manganese 

oxidizing mutants with transposon insertions in 4 genes located in 2 regions on the chromosome. 

One of the genes, named mnxG2 is a putative multicopper oxidase similar to the manganese 

oxidizing enzyme in Bacillus sp SG-1. The other three genes with insertions encode a 

hypothetical protein, a putative cytochrome c next to a putative copper metallochaperone 

(Sco1/SenC/PrrC) involved in the biogenesis of cytochrome oxidase.  To completely elucidate 

the role of mofA in this process as well as the role of mnxG1, the manganese oxidation activity of 

a ∆mofA∆mnxG1 mutant should first be investigated. If this mutant is indeed lacking manganese 

oxidation activity, then complementation of this mutant with a wild type copy of mnxG1 should 

recover the manganese oxidation activity and should provide sufficient evidence for the 

requirement of MnxG1 for manganese oxidation. To completely elucidate the role of mofA, an 

SS1∆mnxG1 mutant should be assessed for the ability to oxidize manganese. If this mutant 

would still oxidize Mn, then a double knock-out mutant ∆mnxG1∆mofA should be created and 

manganese oxidation assessed to investigate the role of mofA. Lack of manganese oxidation in 

this strain would suggest a role for mofA in the manganese oxidation process and restoration of 

this activity by complementation with a wild copy of mofA should solidify this argument. 

Additionally, transposon mutagenesis of the SS1∆mnxG1 (if this mutant would still oxidize 

manganese) can help identify other genes important in manganese oxidation as was the case with 

SS1∆mofA transposon mutants. Next the role of the other three genes identified from the non-
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manganese oxidizing transposon mutants (a hypothetical protein, a putative cytochrome c and a 

putative copper metallochaperone) should be elucidated.   

In assessing the manganese oxidation activity of the mutants described we used a 

preliminary, qualitative assessment that only differentiates brown-manganese oxidizing from 

white-non oxidizing strains, but not between different shades of brown, which could be 

indicative of various levels of oxidation activity.  A quantitative method however, such as Leuco 

Berbelin Blue (LBB) (2) which can quantify the amount of Mn(III) and Mn(IV), to measure the 

amount and the rate of manganese oxidizied by different mutants should be used since it could 

provide important additional information about the role of these genes in manganese oxidation. 

This quantitative assessment of manganese oxidation should be applied in particular to the 

remaining 31 off white SS1∆mofA transposon mutants, not included initially in the pool of 

manganese oxidation deficient mutants, because they turned various shades of brown upon re-

streaking. However, these mutants were derived from colonies that were initially off white or 

white with brown streaks, suggesting that the manganese activity was affected to some extent. 

Finally, quantitative analysis of the manganese oxidation activity of the 10 darker brown 

SS1∆mofA transposon mutants as well as identifying the genes of transposon insertions can add 

knowledge about the manganese oxidation in Leptothrix discophora SS1. 

Chapter three provides a short description of the draft genome of Leptothrix discophora 

SS1, which contains 4.2Mb with 3,791 identified protein coding sequences. In contrast  to well 

established descriptions of Leptothrix as an obligate aerobic heterotroph, in silico analysis of the 

draft genome revealed the potential for much greater metabolic diversity than previously 

described, including fermentation, anaerobic respiration with nitrate and arsenate, as well as the 

potential for lithotrophy via sulfur oxidation and carbon fixation (3).  Further work should 
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include a comparison between the draft genome of L. discophora SS1 and the completed genome 

of another manganese oxidizer, L. cholodnii, the closest phylogenetically related  microorganism 

to Leptothtrix with an available genome. For example, initial comparison of these two genomes 

revealed that only L. discophora SS1 contains the 17 tra genes encoding several proteins 

involved in conjugation. Conjugation experiments which would test the ability of SS1 to transfer 

DNA to other microorganisms can confirm whether these genes are functional or the mere result 

of horizontal gene transfer.  The breadth of theoretical information about Leptothrix’s metabolic 

diversity  revealed by the draft genome should be confirmed in experiments designed to test the 

ability of SS1 to grown under anaerobic conditions with nitrate or arsenate as an electron 

acceptor or its ability to ferment. The possibility that manganese oxides could serve as terminal 

electron acceptor (4) can be tested by assessing the dissolution of manganese oxides under 

oxygen limiting conditions (5). Finally, to gain more insight about the role that manganese 

oxidation might play for Leptothrix, the metabolic and genetic information obtained theoretically 

or experimentally in the laboratory should be connected to physical and chemical information 

about the natural habitat of Leptothrix. In this respect, an analysis of the chemical species present 

in the water column of the Sapsucker woods wetlands as well as their vertical distribution and 

seasonal variation could represent important links for completing the manganese oxidation story 

in this bacterium. 
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APPENDIX A 

 

 

 

PROTEINS IDENTIFIED BY LC MS/MS IN BANDS WITH MANGANESE OXIDIZING 

ACTIVITY FROM SDS POLYACRYLAMIDE GEL ELECTROPHORESIS OF SS1 

CONCENTRATED CULTURE SUPERNATANT 
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Leptothrix discophora SS1 culture supernatant was concentrated ~ 1000X and the protein 

mixture separated on a denaturing polyacrylamide gel electrophoresis. Brown bands of 

manganese oxides developed when the gel was soaked in a solution of MnSO4 at approximately 

100kDa marker and 55kDA marker. The brown band corresponding to the ~100kDa marker was 

excised, digested with trypsin and subjected to LC MS/MS (liquid chromatography tandem mass 

spectrometry). The library of peptides generated from the manganese oxidizing band was 

analyzed with MASCOT software used to search the NCBI protein database. 

 

Figure 1: SDS PAGE of concentrated culture supernatant; left, coomassie stain ; right, 

manganese oxidizing activity  

 

 

SDS-PAGE of concentrated culture supernatant 

Coomassie stain (left) and activity stain (right) of MOF 
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An initial initial investigation (2007) of  the peptide library from the proteins contained in the 

active (brown, manganese oxidizing) fraction of SDS PAGE is shown in Table 1. Neither L. 

cholodni’s or L.discohora’s  genome were available at that time. This search identified  35 

proteins, however mofA was not one of the proteins on this list. 

 

Table 1: Proteins identified by MS/MS in SDS PAGE bands with manganese oxidizing activity 

from Leptothrix discophora SS1 concentrated culture supernatant in a search against the NCBI 

protein database in 2007. 

#  Protein hit Organism 

1 gi|110593603 chaperonin GroEL  Acidovorax sp. JS42 

2  gi|84714563  S-adenosyl-L-homocysteine hydrolase  Polaromonas 

naphthalenivorans CJ2 

3  gi|78780103  adenosylhomocysteinase  Prochlorococcus marinus 

str. MIT 9312 

4  gi|118053932  adenosylhomocysteinase Comamonas testosteroni 

KF-1 

5  gi|87200019  adenosylhomocysteinase Novosphingobium 

aromaticivorans DSM 

12444 

6  gi|84712483  2-oxo-acid dehydrogenase E1 component 

homodimeric type  

Polaromonas 

naphthalenivorans CJ2 

7  gi|149690  58-kDa common antigen  

8  gi|94263026  Adenosylhomocysteinase  delta proteobacterium 

MLMS-1 

9  gi|110595193  2-oxo-acid dehydrogenase E1 component, 

homodimeric type  

Acidovorax sp. JS42 

10  gi|397462  excreted protein  Leptothrix discophora 

11  gi|37958861  putative pyruvate dehyrogenase E1 complex uncultured bacterium 

12  gi|30248059  TCP-1 (Tailless complex polypeptide)/cpn60 

chaparonin family  

Nitrosomonas europaea 

ATCC 19718 

13  gi|118602570  chaperonin GroEL  Candidatus Ruthia 

magnifica str. Cm 

(Calyptogena magnifica) 

14  gi|84711720  TonB-dependent siderophore receptor  Polaromonas 

naphthalenivorans CJ2 

15  gi|91786114  branched-chain amino acid aminotransferase  Polaromonas sp. JS666 

16  gi|38606907  Clp protease Lactobacillus johnsonii 

17  gi|27378830  hypothetical protein blr3719  Bradyrhizobium 

japonicum USDA 110 
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18  gi|67938634  Chaperonin Cpn60/TCP-1  Chlorobium 

phaeobacteroides BS1 

19  gi|46445664  probable 60 kDa chaperonin (GroEL)  Candidatus 

Protochlamydia 

amoebophila UWE25 

20  gi|59711416  glutaminyl-tRNA synthetase  Vibrio fischeri ES114 

21  gi|16264406  putative transcriptional regulator protein  Sinorhizobium meliloti 

1021 

22  gi|78044050  hypothetical protein CHY_1823  Carboxydothermus 

hydrogenoformans Z-2901 

23  gi|18311423  ClpC adenosine triphosphatase  Clostridium perfringens 

str. 13 

24  gi|50083807  hypothetical protein ACIAD0571  Acinetobacter sp. ADP1 

25  gi|68544415  hypothetical protein SbalDRAFT_0589  Shewanella baltica OS155 

26  gi|77362306  putative AMP-dependent synthetase and ligase Pseudoalteromonas 

haloplanktis TAC125 

27  gi|77459218  hypothetical protein Pfl_2996 Pseudomonas fluorescens 

PfO-1 

28  gi|84703513  GDP-mannose 4,6 dehydratase  Parvularcula bermudensis 

HTCC2503 

29  gi|88812264  Heavy metal efflux pump CzcA  Nitrococcus mobilis Nb-

231 

30  gi|89076449  hypothetical acyl-coenzyme A synthetase  Photobacterium sp. 

SKA34 

31  gi|113474955  hypothetical protein Tery_1185  Trichodesmium 

erythraeum IMS101 

32  gi|57167968  transcription-repair coupling factor  Campylobacter coli 

RM2228 

33  gi|118729402  Extracellular ligand-binding receptor Delftia acidovorans SPH-1 

34  gi|37527242  hypothetical protein plu3368  Photorhabdus luminescens 

subsp. laumondii TTO1 

35  gi|118587277  N-acetylgalactosamine transferase  Oenococcus oeni ATCC 

BAA-1163 

 

 

A subsequent search of the same peptide library against the currently available L. discophora 

genome as well as the current protein database in NCBI (including the genome of L. cholodni) 

identified the proteins from both L. discophora and L. cholodni as shown in Table 2 and Table 3. 
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Table 2.  Proteins identified by MS/MS in SDS PAGE bands with manganese oxidizing activity 

from Leptothrix discophora SS1 concentrated culture supernatant in a search against the draft 

genome of Leptothrix discophora SS1. 

 Protein ID  Protein score Protein 

mass 

Annotation 

1 fig|6666666.41126.peg.1920 924 88455 Orf 1596 

Glycoprotein 

gp2 

2 fig|6666666.41126.peg.2804 835 33982  

3 fig|6666666.41126.peg.1926 789 169768 Orf 1592 

(mnxG1) 

hypothetical 

protein  

4 fig|6666666.41126.peg.2496 676 52774  

5 fig|6666666.41126.peg.3261 627 81605  

6 fig|6666666.41126.peg.1960 410 39672  

7 fig|6666666.41126.peg.1921 365 49107 Orf1597 

Glycoprotein 

gp2 

8 fig|6666666.41126.peg.1885 365 61917  

9 fig|6666666.41126.peg.2134 339 170217  

10 fig|6666666.41126.peg.3396 321 57440  

11 fig|6666666.41126.peg.2618 295 44474  

12 fig|6666666.41126.peg.2923 240 100730  

13 fig|6666666.41126.peg.301 170 44928  

14 fig|6666666.41126.peg.1384 150 33388  

15 fig|6666666.41126.peg.1386 113 7432  

16 fig|6666666.41126.peg.2305 111 71491  

17 fig|6666666.41126.peg.382 103 33089  

18 fig|6666666.41126.peg.3319 102 153069  

19 fig|6666666.41126.peg.916 90 106708  

20 fig|6666666.41126.peg.2011 86 51517  

21 fig|6666666.41126.peg.3249 77 85192  

22 fig|6666666.41126.peg.718 67 47226  

23 fig|6666666.41126.peg.1827 66 49067  

24 fig|6666666.41126.peg.3596 62 40074  

25 fig|6666666.41126.peg.1334 60 82760  

26 fig|6666666.41126.peg.1708 58 38117  

27 fig|6666666.41126.peg.1380 58 32706  

28 fig|6666666.41126.peg.2144 57 96910  

29 fig|6666666.41126.peg.54 53 46230  

30 fig|6666666.41126.peg.1714 52 80288  
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31 fig|6666666.41126.peg.1539 51 37101  

32 fig|6666666.41126.peg.3248 50 46359  

33 fig|6666666.41126.peg.1413 46 54447  

34 fig|6666666.41126.peg.3164 44 45928  

35 fig|6666666.41126.peg.2141 44 82750  

36 fig|6666666.41126.peg.2881 39 68695  

37 fig|6666666.41126.peg.3075 38 51981  

38 fig|6666666.41126.peg.320 33 50706  

39 fig|6666666.41126.peg.3131 32 39615  

40 fig|6666666.41126.peg.550 31 43003  

41 fig|6666666.41126.peg.74 31 51157  

42 fig|6666666.41126.peg.534 29 14291  

43 fig|6666666.41126.peg.1280 28 30281  

44 fig|6666666.41126.peg.3122 28 108351  

45 fig|6666666.41126.peg.247 26 79289  

46 fig|6666666.41126.peg.826 26 29909  

47 fig|6666666.41126.peg.2995 25 45594  

 

 

 
Table 3:  Proteins identified by MS/MS in SDS PAGE bands with manganese oxidizing activity from 

Leptothrix discophora SS1 concentrated culture supernatant in a search against the NCBI protein 

database in 2013, which includes the genome of L. cholodni. 

  Protein name Protein 

score 

Protein 

mass 

1 gi|171057174 chaperonin GroEL [Leptothrix cholodnii SP-6] 493 57331 

2 gi|124268470 S-adenosyl-L-homocysteine hydrolase [Methylibium 

petroleiphilum PM1] 

424 52247 

3 gi|171058329 pyruvate dehydrogenase subunit E1 [Leptothrix cholodnii SP-

6] 

400 100949 

4 gi|121603402 S-adenosyl-L-homocysteine hydrolase [Polaromonas 

naphthalenivorans CJ2] 

331 52275 

5 gi|171059306 putative multicopper oxidase [Leptothrix cholodnii SP-6] 218 169523 

6 gi|375106021 ABC-type branched-chain amino acid transport system, 

periplasmic component [Burkholderiales bacterium 

JOSHI_001] 

199 40007 

7 gi|171059608 serine hydroxymethyltransferase [Leptothrix cholodnii SP-6] 195 44940 

8 gi|397462 excreted protein [Leptothrix discophora] 161 13385 

9 gi|171058378 extracellular solute-binding protein [Leptothrix cholodnii SP-

6] 

148 44845 

10 gi|239815711 extracellular ligand-binding receptor [Variovorax paradoxus 

S110] 

113 41737 

11 gi|154362103 RNA polymerase beta subunit [Comamonas kerstersii] 102 25502 
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12 gi|91788907 TonB-dependent siderophore receptor [Polaromonas sp. 

JS666] 

99 79219 

13 gi|91786114 branched-chain amino acid aminotransferase [Polaromonas sp. 

JS666] 

87 34686 

14 gi|171058572 glucose-1-phosphate adenylyltransferase [Leptothrix cholodnii 

SP-6] 

64 47304 

15 gi|254445776 Hsp20/alpha crystallin family [Verrucomicrobiae bacterium 

DG1235] 

63 15301 

16 gi|333984547 unnamed protein product [Methylomonas methanica MC09] 63 87203 
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