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Distributed communication poses novel challenges for efficient operation of

such networks and requires design considerations that are fundamentally dif-

ferent from those of classical point-to-point communication systems. This the-

sis studies two such design issues, (1) delay management and (2) security, and

attempts to understand the information-theoretic limits of distributed commu-

nication with regard to these issues.

First, the tradeoff between delay and partial reconstruction in peer-to-peer

(P2P) networks is studied, i.e., the number of messages a peer must obtain

to reconstruct a given fraction of the data. Using a binary erasure version of

the multiple descriptions (MD) problem to model the P2P network, the thesis

presents coding schemes based on systematic MDS (maximum distance separa-

ble) codes and random binning strategies that achieve a Pareto optimal delay-

reconstruction tradeoff. The erasure MD setup is then used to propose a layered

coding framework for MD, which is then applied to vector Gaussian MD and

shown to be optimal for symmetric scalar Gaussian MD with two levels of re-

ceivers and no excess rate at the central receiver.

Second, delay-reconstruction tradeoffs are studied for a more decentralized

network in which peers are allowed to encode and generate their own mes-

sages based on their current partial knowledge of the file, and a coding scheme

based on erasure compression and Slepian-Wolf binning is presented. The cod-



ing scheme is shown to provide a Pareto optimal delay-reconstruction tradeoff

for the case of symmetric peers (i.e., each peer generates packets of the same

rate). In the process of characterizing the aforementioned tradeoff, an improved

outer bound on the rate region of the general multi-terminal source coding prob-

lem from information theory is also established. It is further shown that in the

case of asymmetric peers, the aforementioned coding scheme is not optimal.

Third, lossy compression is studied from the viewpoint of security. An ad-

versarial lossy source coding problem is considered in which a source is en-

coded into n packets, any t of which may be altered in an arbitrary way by

Byzantine adversaries. The decoder receives the n packets and, without know-

ing which packets were altered, seeks to reconstruct the original source to meet

a distortion constraint. A layered architecture for this problem is examined,

which separates lossy compression from coding for adversarial errors. This ar-

chitecture is shown to be optimal for binary sources with Hamming distortion

and Gaussian sources with quadratic distortion, yet suboptimal in general.

Finally, an adversarial 3-encoder lossless source coding problem with multi-

ple sources is considered in which the number of packets corrupted by adver-

saries is unknown to the honest entities in the network. It is shown that this

problem is equivalent to an instance of the symmetric MLD (multi-level diver-

sity) coding problem with three sources and three encoders, in which there are

no adversaries but the decoder may receive only a subset of the three messages

and then reconstructs a subset of the three sources.
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Altuǧ, Ilan Shomorony, Alireza Vahid, Nithin Michael, Meng Wang, Enrique

Mallada, Ania Kacewicz, Sergio Bermudez, and Oliver Kosut. I am indebted

to Oliver in particular for his insights on Byzantine networks and his proof for

Theorem 16 in Section 4.4.

I thank my professors and colleagues from undergrad who helped me de-

velop my interest and expertise in the field of communication networks: Muriel
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CHAPTER 1

INTRODUCTION

Modern-day networks are constantly and rapidly growing in size. Not only

an appreciably larger amount of data is being transferred over vast geographic

distances, but users are also expecting improved QoS, leading to more stringent

requirements on delay, error rates, and dropped packets. The sheer size of the

networks and the amount of traffic has led to a push in building distributed

architectures to increase efficiency and reduce cost. Distributed systems pro-

vide a number of advantages over centralized systems; they are, for instance,

more scalable as the number of users grows and require only partial knowl-

edge of the network. However, while centralized point-to-point communication

has been relatively well-studied and its fundamental limits well-understood,

we still lack an understanding of many fundamental problems in decentralized

communication. For instance, how do we best allocate network resources in

distributed/cloud storage systems? How do sensors in a distributed sensor

network communicate efficiently while meeting power constraints? What are

the communication requirements to meet performance and QoS guarantees in

decentralized networks and how are they different from those in centralized

networks? What security and privacy issues can arise in distributed systems

and how do they affect communication? In this thesis, we focus on two such

design issues, delay and security, and attempt to understand the information-

theoretic limits of communication with regard to these issues.
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1.1 Delay-reconstruction Tradeoffs in Content-sharing Net-

works

Typically, content is distributed from servers to clients via transmission of pack-

ets over a network. For the purposes of sharing content, e.g., a file, participants

can act as both server and client by both uploading and downloading packets to

and from other participants, as is the case in gossip communication or peer-to-

peer architectures (e.g., [1, 2, 3]). One metric that is widely used to measure the

performance of file sharing systems is the average amount of time a user must

spend in the network, i.e., the average time taken to download the whole file.

There are two schools of thought about how to build such a system; one is to

divide the file into a number of pieces which are then circulated among partic-

ipants without any coding. Participants therefore acquire a partial copy of the

file as soon as they download their first packet. Such a strategy is susceptible

to the coupon collector problem; the initial few packets can be acquired rapidly,

but it takes much longer to collect the final few packets [4] which significantly

increases the overall download time per participant. The delay performance of

BitTorrent, a prominent P2P architecture based on this school of thought, has

been thoroughly analyzed [5]-[8].

A competing school of thought is to first encode file pieces using random lin-

ear network coding [9] or rateless fountain codes. P2P protocols based on foun-

tain codes have been considered in [11, 18], and random linear network cod-

ing has been employed in P2P technology in [12]-[15]. The advent of fountain

codes [16]-[19] has been one of the most important recent advances in coding

for packet networks. Fountain codes operate by generating a virtually infinite
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number of encoded packets such that the original source can be reconstructed

from any sufficiently large subset of these packets. Fountain codes are capacity

achieving and universal for the class of binary erasure channels, and they have

the additional advantage of being rateless in the sense that the number of pack-

ets to be produced at the encoder can be decided in real time. Fountain codes

also obviate the need for feedback from the receiver to the transmitter, and they

have low encoding and decoding complexity.

Fountain codes can eliminate the coupon collector problem [10, Sec. 2], but

they suffer from poor intermediate performance. In the extreme case, it is not

possible to reconstruct any portion of the original source until all of it can be re-

constructed. In contrast, for feedback-based retransmission schemes for the era-

sure channel, each received packet reveals some of the original source. A user-

perceived delay is therefore introduced with fountain codes; if, for instance,

users are downloading a movie, then they must wait for all of the movie to be

downloaded before they can begin watching it.

A fundamental question that arises is whether it is possible to mitigate this

user-perceived delay via partial reconstruction of the source without increas-

ing the overall transmission time. In particular, assuming that the code remains

capacity achieving over erasure channels, how much of the source can be re-

constructed from a given number of received encoded packets? We distinguish

between two types of partial reconstruction: “in-order” reconstruction refers to

sequential reconstruction in which earlier parts of the source are reconstructed

before the latter parts. While many network applications require in-order recon-

struction, “out-of-order” reconstruction may be sufficient for others. It is suffi-

cient for files that are not organized linearly, for example, such as an unsorted
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database. Videos with out-of-order reconstruction could be played by interpo-

lating over the missing portions. This playback would be at a lower quality, but

it could still be useful, say for determining whether the downloaded file is the

desired one.

Methods for improving the intermediate performance of fountain codes,

assuming out-of-order reconstruction, have been investigated in [20]-[22] in a

coding-theoretic setting. The source is encoded into a large number of packets

such that any k suffice for reconstructing the source. Intermediate performance

is then characterized by the fraction of the original source string that can be

reconstructed when m encoded packets are received, where 0 < m < k. An

upper bound on this fraction is provided in [20], and lower bounds, based on

the designing of suitable output degree distributions for various values of m,

that perform close to the upper bound are provided in [20]-[22]. This enhanced

intermediate performance comes at the cost of an increased overall transmis-

sion time, however, i.e., the codes are no longer capacity achieving. Moreover,

as mentioned in [22], designing degree distributions to boost intermediate per-

formance for a particular value of m exacerbates intermediate performance for

other values of m.

In this work, we take a more information-theoretic approach and address

the issue of optimal partial reconstruction without increasing the overall trans-

mission time. We model the source as a bit string that is encoded into n packets.

We impose the constraint that the receiver be able to reconstruct a fraction 1−D

of the source from any k packets, and we require that the sum rate of these

packets equal the minimum rate for which this is possible. We then ask what

fraction of the source block can be reconstructed from m packets, where m < k,
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allowing for out-of-order reconstruction. For this setup, we provide a coding

scheme based on MDS codes that yields significant partial reconstruction while

meeting the aforementioned constraints, and is provably Pareto optimal in m

for 1 ≤ m ≤ k and any n and k, and absolutely optimal for certain values of m,

n and k.

Our source coding problem can be viewed as a binary erasure version of the

multiple descriptions (MD) problem [23]-[32]. Multiple description coding is a

technique in which a source is encoded into several messages that are sent to

the decoder, only a subset of which are assumed to reach their destination. The

decoder uses them to reproduce the source, with the fidelity of the reproduction

depending on which packets are received. The problem considered in this work

amounts to an MD problem with distortion measured using the erasure distortion

measure [33, p. 338]: the decoder’s reproduction of the source may contain era-

sures but not errors, and the fraction of erasures in the reproduction is defined

to be its “distortion” with respect to the original. In the terminology of multiple

descriptions, our rate constraint is called a “no excess rate” condition [25].

It is worth noting that the erasure version of the MD problem has some

unique virtues. The erasure distortion measure is universal in that it can be

reasonably employed for a wide array of digital data sources. This sidesteps

the difficult question of how to measure distortion for complicated, real-world

data sources such as video. The binary erasure MD problem with no excess

rate and no distortion for every k out of n messages is particularly relevant to

peer-to-peer networks, since it can be used to study the tradeoff between the

performance of fountain codes and a competing technology: BitTorrent [3]. For

large n and small k, our MD problem mimics rateless fountain codes, since out

5



of a large number of descriptions, only a relatively small number must be re-

ceived (collected) in order to reconstruct the source with a specified distortion.

For k = n, the MD problem resembles BitTorrent, where all of the relevant pack-

ets must be received to allow for complete reconstruction of the source. Bit-

Torrent provides good intermediate performance but suffers from the “coupon

collector” problem: the initial packets can be acquired quickly at the receiver,

but it takes much longer to obtain the last few packets. By varying n and k in

the binary erasure MD model, the middle ground between fountain codes and

BitTorrent can be explored. Our results suggest that choosing n to be an integer

multiple of k would provide some of the advantages of both technologies.

The erasure MD problem could also serve as a starting point for the design

of practical codes for network rate distortion. In the theoretical development

of modern channel codes such as LDPC, many of the code designs and per-

formance characterizations were first established for the erasure channel [34].

Finally, the erasure MD problem yields results that are more positive in nature

than those of other MD instances. In particular, for many sources, the no excess

rate assumption necessarily yields poor intermediate performance (e.g., [24]): if

a coding scheme is near-optimal for k receptions, it often yields high distortion

for m < k receptions. For the binary erasure MD problem, however, we shall

see that it is possible to obtain good intermediate performance under no excess

rate.
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1.1.1 Results

We shall henceforth use the terms packets, messages, and descriptions inter-

changeably. We focus on binary erasure MD with no excess rate for every k out

of n descriptions, i.e., any subset consisting of k messages, has a total rate of

R(Dk), where Dk is the distortion constraint when k messages are received. We

consider symmetric descriptions, i.e., the rates of the n descriptions are the same

and the distortion constraint depends only on the number of messages received.

In fact, no excess rate implies symmetric descriptions for k < n: if every k out

of n descriptions have sum rate R(Dk), then each rate must be R(Dk)/k. We ex-

amine two distortion criteria; a worst-case distortion criterion, which measures

the reconstruction fidelity by the maximum of the per-letter distortion over all

source sequences, and an average-case distortion criterion, which measures the

reconstruction fidelity by the average of the per-letter distortion over all source

sequences. The average-case criterion is the standard criterion used in the liter-

ature. The worst-case criterion is less commonly used but it has the advantage

of being universal in the sense that it is insensitive to the source distribution,

which in practice is often unknown. Our main contributions are:

1. proposing, for all n and k, coding schemes for both worst-case and

average-case distortion criteria and characterizing their achievable distor-

tion region when m ≤ k descriptions are received at the decoder. The

scheme for worst-case distortion is a zero-error coding scheme based on

MDS (maximum distance separable) codes. The scheme for average-case dis-

tortion is based on random binning and can be viewed as a concatenation

of (n, 1) and (n, k) source-channel erasure codes [29].

2. providing, for both worst-case and average-case distortion criteria, a tight
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lower bound on the distortion when a single message is received at the

decoder. For worst-case distortion, the lower bound holds for all n and k.

Moreover, we show that the MDS coding scheme is Pareto optimal in the

achievable distortions D1, . . . , Dk for all n and k, and, for certain ranges

of n and k, is also absolutely optimal when more than one message is re-

ceived at the decoder. For average-case distortion, our lower bound holds,

modulo a closure operation, for all n and k satisfying
(
1− 1

n

)k ≤ 1
2
. In ad-

dition, for n > 3 and k = 2, we provide a lower bound on the optimal

single-message distortion that differs by exactly 1/n from the distortion

achieved by the random binning scheme. Our results for the special case

in which there is no distortion for k messages (i.e., any k messages allow

the decoder to construct the original source sequence completely) have

appeared in [35] (average-case distortion) and [36] (worst-case distortion).

3. proposing a coding scheme, based on the binary erasure MD coding

schemes, for vector Gaussian MD and showing that it is optimal for scalar

Gaussian MD with two levels of receivers and no excess rate for the cen-

tral receiver. The scheme involves quantizing the vector Gaussian source

according to a given quadratic distortion constraint and then transmit-

ting the quantized version over the n channels according to the aforemen-

tioned binary erasure coding schemes. This demonstrates how the binary

erasure coding schemes can be used as part of a more general, layered

coding scheme for multiple descriptions with a generic source distribu-

tion and arbitrary distortion metric.
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1.1.2 In-Order Reconstruction

Several prior works have considered the problem with in-order reconstruction.

Albanese et al. [38] propose a coding method that involves assigning a prior-

ity level to messages and encoding them into packets. A message can be de-

coded from any subset of packets; however, the priority level of a message de-

termines the minimum number of packets required to reconstruct that message.

This amounts to in-order reconstruction, because messages with higher priority

must be reconstructed before messages with lower priority. The in-order recon-

struction problem can also be viewed as an instance of symmetric multilevel

diversity coding (MLD) [39]. Comparing these results with those in this work

shows that guaranteeing in-order reconstruction requires significantly higher

rates. Walsh et al. [40] study the rate-delay tradeoff for in-order reconstruction

in multi-path networks where time-ordered source packets arrive out of order

at the destination. The channel between the transmitter and receiver is there-

fore different from the packet erasure channel considered here, since any packet

sent by the transmitter eventually arrives at the receiver, albeit not in the order

it was transmitted in. The authors introduce delay mitigating codes with the aim

of minimizing delay at the receiver when the source bits are reconstructed in

order from encoded packets arriving out of order.

1.2 Decentralized Encoding

We next focus on delay-reconstruction tradeoffs in P2P networks with decen-

tralized encoding, i.e., peers generate coded packets based on their own par-

tial copies of the file. Within this context, we address the question posed in

9



Section 1.1: if we assume optimal decentralized encoding and that the packets

might be received in any order, then how much of the file can be reconstructed

from a given number of received packets?

Since the centralized version of the problem was addressed by posing it as a

multiple description problem, it is natural to study the decentralized version

by posing it as an instance of multiple descriptions with distributed encod-

ing, which in the literature is actually called the robust CEO problem [47]. In

the CEO problem, n encoders observe independently corrupted versions of a

source and then transmit encoded messages, based on their partial knowledge

of the source, to a decoder that attempts to reconstruct the source from the n

messages to meet a distortion constraint. There is no communication among

the encoders, as shown in Figure 3.1. In the robust variant of the problem, the

encoders behave as in the CEO problem, but instead of using all n messages to

reconstruct the source, the decoder must reconstruct it from any subset of the n

messages subject to different distortion constraints for each subset.

We employ a particular instance of the robust CEO problem that we call the

binary erasure robust CEO problem. In this instance, the source to be commu-

nicated is binary and i.i.d. uniform. The encoders observe this binary source

passed through independent binary erasure channels. Thus, some of each en-

coder’s file is missing, but none of it is incorrect. Moreover, when the decoder

reconstructs the file, it is not permitted to introduce errors, although it is allowed

to output an erasure for any source bit about which it is uncertain. The “distor-

tion” is the fraction of erasures in its reconstruction. In turn, the decoder could

then create new coded packets from its reconstruction and distribute them to

other peers. Although we focus on the case in which the source is binary, we
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expect that most of the analysis will carry over to uniform sources over larger

alphabets, which could be used to model audio samples, transform coefficients,

video frames, or BitTorrent pieces.

The binary erasure robust CEO problem lends itself to a natural coding

scheme in which individual encoders (peers) perform vector quantization of

their observed partial source sequences using erasure test channels, followed

by Slepian-Wolf binning. This is a particularization of the general scheme pro-

posed in [47]. We first consider the case of symmetric peers and we show, using

very different techniques from those used in the centralized case [36], that this

coding scheme achieves a delay-reconstruction tradeoff that is Pareto optimal

over a range of received messages. The same problem for Gaussian sources

and quadratic distortion measure has been considered in [48] and an achievable

information-theoretic rate region has been derived. Optimality results for the

symmetric case of the Gaussian problem have been presented in [49].

In the process of proving our result, we also establish a new outer bound for

the general multi-terminal source coding problem that improves upon the outer

bound of Wagner and Anantharam [44]. We further show that if we relax the

symmetry assumptions about the encoders, then the coding scheme is no longer

optimal, even for a simple setup with two encoders.

1.3 Lossy Source Coding with Byzantine Adversaries

While the rapid growth of modern-day communication networks makes them

increasingly useful, it also makes them increasingly difficult to protect against

attacks. This is especially true of those networks, such as peer-to-peer systems,

11



in which the nodes are controlled by different entities. In the case of peer-to-

peer networks, malicious users could sabotage the file-sharing process by in-

tentionally transmitting a corrupted version of the file. Similar problems can

potentially arise in ad-hoc networks and distributed storage systems.

There has been considerable work on how to protect transmitted information

against malicious users within the context of channel- and network-coding, and

a number of significant results are available. Yeung and Cai [53] show that if

z unit-capacity edges in an acyclic multicast network are subject to random or

adversarial errors, then the network capacity is C − 2z, where C is the network

capacity when all edges are error-free. Thus if an adversary controls z edges, it

effectively removes 2z edges from the original adversary-free network (see also

[54]-[59] and the references therein). This is reminiscent of the Singleton bound,

and we refer to it as the “factor-of-2” rule. The factor-of-2 rule was also shown

to hold for lossless source coding: it is well known that if a source X is to be

losslessly communicated via n packets, then the sum rate of those packets must

be at least H(X). Kosut and Tong [60] have shown that if t of the n packets can

be altered in arbitrary ways by adversaries, then every n−2t packets must have

sum rate at least H(X). Thus t traitors effectively remove 2t packets from the

original adversary-free problem, i.e., the factor-of-2 rule obtains.

In the context of peer-to-peer systems, often the ultimate goal is to commu-

nicate a file approximately rather than reliably. Codes and fundamental lim-

its for this problem are less well understood (but see [61]-[62]). One natural

approach to this problem is to perform separate compression and adversarial

error-protection. That is, one combines rate-distortion-optimal lossy compres-

sion with network codes that are optimal for the adversarial model at hand.
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We show that this approach is optimal in some cases but suboptimal in

general, even for networks with one sender, one receiver, and no intermediate

nodes. Specifically, we consider the problem in which a source is compressed

to form n packets, any t of which can be altered in an arbitrary way. The de-

coder receives the n packets and, without knowing which packets were altered,

must estimate the source to meet a given distortion constraint. We show that

separate compression and adversarial error correction achieve rate-distortion

performance governed by the factor-of-2 rule, and that this is optimal for bi-

nary sources with the Hamming distortion measure and Gaussian sources with

the mean square error distortion measure. These two optimality results hinge

on a combinatorial result of Kleitman [66] on the maximum size of subsets of

Hamming space with a given diameter, and the Brunn-Minkowski inequality,

respectively.

We then show by means of a counterexample, involving a binary source with

erasure distortion, that separation is not optimal in general. We consider a 3-

encoder problem with one traitor such that one encoder has rate R < 1, while

the other two have rate 1 and can therefore transmit the source sequence exactly.

We determine the optimal distortion for this problem as a function of R and

show that separation cannot achieve it. We note that while source-channel sep-

aration has long been known known to fail in many scenarios (e.g., [63, 64, 65]),

the reason that it fails here seems to be fundamentally different from the stan-

dard examples.
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1.4 Multi-level Lossless Source Coding with Byzantine Adver-

saries

In Section 1.3, we looked at instances of adversarial lossy source coding with the

assumption that the number of adversaries is fixed and known to the honest en-

tities in the network. In real-world networks, this assumption does not hold; in

a P2P system where peers are constantly entering and leaving the network, it is

impossible for a user to know how many malicious peers are present in the sys-

tem at any given time. In such a situation, a peer that is receiving packets from

other peers must be able to detect which of the received packets is corrupted

without knowing a priori how many are corrupted, discard the ones that are

corrupted, and use only the uncorrupted ones to reconstruct the file.

In order to study such networks, the assumption that the number of adver-

saries in the system is fixed and known to the honest entities must be relaxed.

Natural questions that then arise are: what strategies can the decoder use to

detect corrupted packets without knowing a priori how many are corrupted?

How much compression can the encoders perform? How does the performance

of the decoder vary as the number of adversaries changes? What performance

guarantees can be provided when a large number of adversaries is present in the

network as compared to when a smaller number is present? In this regard, the

”adversarial multi-level diversity problem” is a useful model to study. In the ad-

versarial multi-level diversity problem, a number of independent information

sources are compressed by encoders and transmitted to the decoder. Some of

the encoders are adversaries, and the number and identity of these adversaries

is not known to the honest encoders and the decoder. Based on the messages re-
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ceived from the encoders, the decoder attempts to detect potentially corrupted

messages and then completely reproduce as many of the sources as it can. For

instance, if there are n sources, it attempts to reconstruct all n sources if it does

not detect a corrupted message, n − 1 sources if it detects one corrupted mes-

sage, and so on. The goal is to guarantee the reconstruction of a certain number

of sources when a certain number of packets are corrupted.

We look at a simple example with two sources X and Y and three encoders.

The three encoders are either all honest, or at most one of them is a traitor.

In the latter case, the identity of the traitor (and that one is in fact present in

the system) is unknown to the honest encoders and the decoder. The decoder

receives all three messages and losslessly reconstructs both X and Y if it does

not detect a corrupted message. If however, it does detect a corrupted message,

it reconstruct only X and outputs a flag sequence instead of Y indicating that it

has detected a corrupted message.

We show that the rate region of this problem is the same as the rate region

of the 3-encoder symmetric multi-level diversity (MLD) problem [68]. In the

3-encoder symmetric MLD problem, three independent sources X , Y , and Z

are encoded and transmitted by three encoders. There are no traitors, but there

is packet loss in the network, and the decoder may not receive all three mes-

sages. Depending on how many messages it receives, the decoder losslessly

reconstructs a subset of the sources. If it receives one message, then it lossless

reconstructs X alone. If it receives two messages, then it losslessly reconstructs

X and Y , and if it receives all three messages, then it losslessly reconstructs

all three sources. The rate region for the general n-encoder MLD problem was

established in [68], and it was shown that a coding strategy based on superposi-
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tion coding is optimal: X , Y , and Z can be encoded separately at each encoder,

and the resulting codewords then concatenated to form the final message.

The connection between the adversarial multi-level diversity problem and

the MLD problem stems from the Singleton bound, which provides the link

between adversarial packets and packet erasures. As stated in Section 1.3, a

factor-of-2 rule obtains when adversarial error correction is required: t traitors

effectively remove 2t honest packets from the system (i.e., t corrupted messages

have the same effect as 2t packet erasures). When adversarial error detection

is required, however, a “factor-of-1” rule is in effect: t traitors effectively re-

move t packets from the system (i.e., t corrupted messages have the same ef-

fect as t packet erasures)1. In the adversarial multi-level diversity problem, the

decoder is performing adversarial error correction for X and adversarial error

detection for Y . Therefore, if the decoder receives three messages, one of which

is corrupted, then the decoder should be able to losslessly reconstruct X from

every message (factor-of-2 rule), and losslessly reconstruct Y from every pair

of messages (factor-of-1 rule). This is equivalent to the symmetric 3-encoder

MLD problem in which the decoder must losslessly reconstruct X from any one

message, Y from every pair of messages, and Z from all three messages. Since

there are only two sources in the adversarial multi-level diversity problem, we

can take Z to be a zero-entropy source, i.e., a deterministic sequence, which is

known to the encoders and the decoder and does not need to be transmitted. We

show in Chapter 5 that the two problems have the same rate region, and hence

superposition coding is optimal for adversarial multi-level diversity coding.

1The distinction between the factor-of-1 rule and factor-of-2 rule has an analog in coding
theory: a binary code with minimum Hamming distance k can detect up to k− 1 errors, but can
correct up to bk−1

2 c errors.
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1.5 Organization of the Thesis

Chapter 2: We study delay-reconstruction tradeoffs in P2P networks. We for-

mulate the n-channel binary erasure MD problem in Section 2.1. Sections 2.2

and 2.3 are devoted to our results for worst-case distortion and average-case

distortion, respectively. In Section 2.4, we describe the layered architecture for

MD and present our results for vector Gaussian multiple descriptions.

Chapter 3: We study delay-reconstruction tradeoffs in P2P networks with de-

centralized encoding. In Section 3.1, we formulate the binary erasure robust

CEO problem more precisely and describe our coding scheme. In Section 3.2

we consider the symmetric version of the binary erasure robust CEO prob-

lem and show that the above coding scheme provides a Pareto optimal delay-

reconstruction tradeoff. In Section 3.3, we consider an asymmetric, two encoder

version of the problem and show that the coding scheme is not optimal.

Chapter 4: We formulate the lossy source coding problem with Byzantine ad-

versaries. In Section 4.2, we present the separation-based coding scheme for

general sources and arbitrary distortion measures and show that it achieves the

factor-of-2 rule. In Sections 4.3 and 4.4, respectively, we prove that our scheme

is optimal for uniform binary sources with Hamming distortion and Gaussian

sources with squared error distortion. In Section 4.5, we show that the factor-

of-2 rule is pessimistic for binary sources and erasure distortion.

Chapter 5: We study lossless source coding with multiple sources and an un-

known number of adversaries and show its equivalence to the symmetric MLD

problem.
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CHAPTER 2

ERASURE MULTIPLE DESCRIPTIONS

In this chapter, we study delay-reconstruction tradeoffs in P2P networks. We

formulate the n-channel binary erasure MD problem, and state and prove our

results for worst-case distortion and average-case distortion, respectively. We

subsequently propose a layered architecture for MD and present our results for

vector Gaussian multiple descriptions.

2.1 Notation and Problem Formulation

We use uppercase letters to denote random variables, bold letters to represent

vectors and script letters to denote their ranges. Realizations of random vari-

ables are denoted by lowercase letters, and realizations of random vectors are

denoted by bold lowercase letters. A superscript appearing with a vector (e.g.,

Xl) indicates the length of the vector. Matrices are also represented in boldface.

Let {Xt}∞t=1 be a memoryless uniform binary source, with the random variables

Xt taking values in the alphabet X = {+,−}. Let X̂ be the reconstruction space

{+,−, 0}, where 0 denotes the erasure symbol, with an associated distortion

measure d : X × X̂ → {0, 1,∞} such that

d(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

∞ otherwise.

The above per-letter measure is known as the erasure distortion measure [33,

p. 338]. An encoder is a function f (l)
i : X l → {1, . . . ,M (l)

i }. A decoder is a function

g
(l)
K :

∏
k∈K{1, . . . ,M

(l)
k } → X̂ l, where K is the set of descriptions received.
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LetN = {1, . . . , n}. The n-channel multiple descriptions problem, illustrated

in Figure 2.1, can be formulated as follows. There are n encoders. Encoder

f
(l)
i , i ∈ N , encodes and transmits a description of a length-l source sequence

Xl over channel i. The receiver either receives this description without errors or

it does not receive it at all. Excluding the case where none of the descriptions is

received, the receiver may receive 2n−1 different combinations of the n descrip-

tions. Thus it can be represented by the 2n − 1 decoding functions g(l)
K , K ⊆ N ,

K 6= ∅. Based on the set of descriptions received, the receiver employs the cor-

responding decoding function to output a reconstruction of the original source

string subject to a distortion constraint. We consider symmetric descriptions,

i.e., each description has the same rate and the distortion constraint depends

only on the number of descriptions received.

We measure the fidelity of the reconstruction using two distortion criteria: a

worst-case distortion criterion, under which distortion is measured by taking the

maximum of the per-letter distortion over all source sequences, and an average-

case distortion criterion, under which distortion is measured by taking the aver-

age of the per-letter distortion over all source sequences. We define achievability

for the two criteria as follows. Let X̂l
K = g

(l)
K ({f (l)

k (Xl) : k ∈ K}) be the recon-

struction sequence corresponding to the source sequence Xl.

Definition 1 (Worst-case distortion). The rate-distortion vector (R,D1, . . . , Dn) is

achievable if for some l there exist encoders f (l)
i , i ∈ N and decoders g(l)

K , K ⊆ N ,

K 6= ∅, such that

R ≥ 1

l
logM

(l)
i for all i, and

Dk ≥ max
K:|K|=k

max
xl∈X l

[
1

l

l∑
t=1

d(xt, x̂K,t)

]
.
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We useRDworst to denote the set of achievable rate-distortion vectors.

Definition 2 (Average-case distortion). The rate-distortion vector (R,D1, . . . , Dn)

is achievable if for some l there exist encoders f (l)
i , i ∈ N and decoders g(l)

K , K ⊆ N ,

K 6= ∅, such that1

R ≥ 1

l
logM

(l)
i for all i, and

Dk ≥ max
K:|K|=k

E

[
1

l

l∑
t=1

d(Xt, X̂K,t)

]
.

We use RDavg to denote the set of achievable rate-distortion vectors and

RDavg to denote its closure. We describe our results for worst-case distortion

in the next section and for average-case distortion in Section 2.3. For both dis-

tortion criteria, we consider the case where there is no excess rate for every k out

of n descriptions, i.e., kR = R(Dk) = 1 − Dk, where R(·) is the Shannon rate-

distortion function. ThusR = (1−Dk)/k. We shall henceforth useRk(Dk) to de-

note (1−Dk)/k. Our goal is to characterize the achievable distortionsD1, . . . , Dn

for both distortion criteria.

 
 Encoder 1 

 
Encoder 2 

 
Encoder 3 

 
Encoder n 

 
 
 
 
 
 
 
 
 
   Decoder 

 
. 
.    
. 

Channel 2

Channel 3

Channel n

Source X 
Reconstruction 

Channel 1

 

Figure 2.1: The n-channel multiple descriptions problem

It should be pointed out that the k = n case is particularly simple. Let

Di, i ∈ N be the distortion constraint when the receiver receives imessages. No
1All logarithms and exponentiations have base 2 unless explicitly stated.
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excess rate for n descriptions dictates that the sum-rate of the n messages is ex-

actly (1−Dn), which in turn implies that the rate of each message is (1−Dn)/n.

The problem then reduces to characterizing the optimal D1, . . . , Dn. Consider

a coding scheme that takes a source string of length l and erases the last lDn

bits. The remaining l(1 − Dn) bits are divided into n disjoint parts, each con-

sisting of l(1 − Dn)/n bits. Encoder i transmits the l(1 − Dn)/n bits in the ith

part to the decoder over the ith channel, with erasures in place of the remaining

l− l(1−Dn)/n bits. Thus upon reception of any k descriptions, the decoder can

reconstruct kl(1 − Dn)/n bits of the original source string. Clearly, this scheme

achieves Dk = 1 − k(1 − Dn)/n under both the worst-case and average-case

distortion criteria. Moreover, for any code that achieves the rate-distortion vec-

tor (1 −Dn/n,D1, . . . , Dn), every description has rate (1 −Dn)/n and therefore

the point-to-point rate distortion function dictates that any set of k message can

reveal no more than a fraction k(1 − Dn)/n bits of the original source string.

Thus

max
K:K=k

max
xl∈X l

[
1

l

l∑
t=1

d(xt, x̂K,t)

]
≥ 1− k(1−Dn)

n
,

and

max
K:K=k

E

[
1

l

l∑
t=1

d(Xt, X̂K,t)

]
≥ 1− k(1−Dn)

n
.

Thus the aforementioned coding scheme achieves the optimal D1, . . . , Dn under

both the worst-case and average-case distortion criteria.

We use the insight obtained from the k = n case to construct codes for the

more complicated case in which k < n. No excess rate for a particular set of

k descriptions requires that the information transmitted over those k channels

be independent. Since we impose no excess rate for every size-k subset of de-

scriptions, the information transmitted over any k channels must be mutually

independent. The coding scheme for k = n ensures that this condition is met
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by dividing an erased version of the source string into n disjoint (and therefore

independent) parts and transmitting them uncoded over the n channels. This

strategy of sending independent uncoded bits works as long as the bits trans-

mitted over each channel are disjoint. In particular, ifRk(Dk) = (1−Dk)/k ≤ 1/n

(equivalently, Dk ≥ 1− k/n), the source string can always be divided into n dis-

joint, equal parts, each containing a fraction Rk(Dk) of the total number of bits.

If Dk < 1 − k/n, however, then Rk(Dk) > 1/n and it is not possible to divide

the source string into n disjoint parts each containing a fraction Rk(Dk) of the

total number of bits, since each part must then contain more than 1/n of the

total number of bits. Transmitting uncoded bits, therefore, will be optimal for a

rate up to 1/n only; in order to achieve a rate larger than 1/n, additional infor-

mation about the source must be transmitted along with each description, and

this information must be mutually independent for every set of k descriptions.

Random binning schemes can be designed in order to convey independent in-

formation about the source to the decoder such that any k messages reveal the

source string to a specified distortion. Such schemes, however, suffer from the

“cliff effect”; nothing can be reconstructed from fewer than k messages, and

once k messages have been received, additional messages provide no reduction

in distortion at all.

By using a hybrid of these two approaches, i.e., transmission of uncoded

bits and random binning, we can achieve an incremental reduction in distortion

with each additional message while still satisfying the necessary independence

conditions. With fewer than k messages, the decoder can partially reconstruct

the source string using the uncoded bits alone. With k or more messages, the

decoder can use the random binning component to decode the source string to

a specified distortion Dk, and can then use the uncoded bits in the messages
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to further reduce distortion. The resulting distortion therefore decreases lin-

early with the number of messages received, with a sudden downward jump at

k when additional information about the source can be decoded from the bin-

ning. Figure 2.2 depicts how the achievable distortion varies with the number

of descriptions received at the decoder when Dk = 0. We provide outer bounds

on the distortion region which show that such a hybrid scheme is optimal in a

number of scenarios.
In General

1 2 3 k − 1 k k + 1 n

1

Descriptions received

D
is

to
rt

io
n

Figure 2.2: The achievable distortion region for Dk = 0. The achievable dis-
tortion decreases linearly with the number of descriptions received up to k − 1
descriptions, and drops abruptly to zero upon reception of k or more descrip-
tions.

The threshold Dk = 1−k/n plays an important role in our coding scheme. If

Dk ≥ 1 − k/n, then transmission of independent uncoded bits over the n chan-

nels as described above is sufficient. IfDk < 1−k/n, then in addition to sending

uncoded bits, we also send coded information. For the worst-case distortion

measure, we describe this scheme in detail in Section 2.2.1, using MDS codes

to realize the coding. Achievability for average-case distortion follows from the

achievability result for worst-case; however, an alternative proof is included in

Appendix A.8 that does not rely on MDS arguments by using random binning

instead. The optimality results for the two distortion criteria are different, with

our results for worst-case distortion being the stronger of the two.
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2.2 The Worst-case Distortion Criterion

We begin by presenting a zero-error coding scheme based on systematic MDS

codes that works for finite blocklengths. The scheme consists of two parts—

uncoded bits and an MDS-code component. With each message, the encoder

sends uncoded bits along with an encoded version of the source, using an (n, k)

systematic MDS code for the encoding. The decoder outputs the bits revealed

by the systematic part of the MDS code as the source reconstruction if less than

k descriptions are received. If k or more descriptions are received, the decoder

uses the uncoded bits and the bits revealed by the systematic part of the MDS

code to decode the encoded erased version by applying an MDS decoding al-

gorithm. The following subsection discusses the achievable distortion region of

the MDS coding scheme.

2.2.1 An Achievability Result

Definition 3. Given n, k ≤ n, and Dk ∈ [0, 1], define

R̃ = (Rk(Dk), 1−Rk(Dk), . . . , 1− (k − 1)Rk(Dk), Dk,

Dk −Rk(Dk), . . . , Dk − (n− k)Rk(Dk)), and

R̂ =
(
Rk(Dk), 1−

1

n
, . . . , 1− k − 1

n
,Dk,

(
n− k − 1

n− k

)
Dk,(

n− k − 2

n− k

)
Dk, . . . ,

(
1

n− k

)
Dk, 0

)
.

Theorem 1. Let Dk be a rational number in the interval [0, 1]. For any n and k ≤ n, if

Dk ≥ 1− k
n

, then R̃ ∈ RDworst. If Dk < 1− k
n

, then R̂ ∈ RDworst.

Proof. Case I: Dk ≥ 1− k
n
, Dk rational
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Since Dk is rational, there exists a positive integer l′ such that l′Rk(Dk) is a pos-

itive integer. Choose a blocklength l = αnl′, where α is any positive integer.

Observe a length-l source sequence Xl, and divide Xl into n disjoint parts such

that each part contains l/n = αl′ bits. (The division is the same regardless of the

source realization.) Label the parts Xi, i ∈ N . Choose lRk(Dk) bits from each

of the n parts (since Dk ≥ 1 − k
n

, lRk(Dk) ≤ l
n

and therefore lRk(Dk) bits can be

chosen from each part). Denote by Yi the set of lRk(Dk) bits chosen from Xi.

Transmit Yi uncoded over the ith channel.

The decoding is trivial. Ifm descriptions, say (Y1, . . . ,Ym), are received, out-

put X̂l
m as the reconstruction of Xl, where X̂l

m is such that themlRk(Dk) bits cor-

responding to (Y1, . . . ,Ym) are non-erased and the other (l−mlRk(Dk)) bits are

erasures. Since the reconstruction sequence has l −mlRk(Dk) erasures regard-

less of the source sequence, the worst-case distortion Dm is (l −mlRk(Dk))/l =

1 − mRk(Dk). When k descriptions are received, the worst-case distortion is

1− kRk(Dk) = Dk. Thus R̃ ∈ RDworst.

Case II: Dk < 1− k
n
, Dk rational

For this case, we present an achievability scheme based on MDS (maximum dis-

tance separable) codes2. Let m be the smallest integer such that 2m ≥ n and
mnk(n−k)
n(1−Dk)−k is an integer (such an m exists because Dk is rational). Define q = 2m,

and construct a q-ary MDS code of length q− 1 and dimension k. By repeatedly

puncturing this (q − 1, k) MDS code, we obtain a punctured MDS code of size

(n, k) [42, p. 190]. The punctured coordinates are revealed to the decoder. Let G1

be the generator matrix of the punctured (n, k) MDS code, and assume without

2A (n, k) MDS code is a linear code that satisfies the Singleton bound, i.e., the Hamming
distance between any two codewords is at least n − k + 1. Reed-Solomon codes, for instance,
are MDS codes.
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loss of generality that G1 is systematic, i.e., G1 is of the form [Ik|A], where Ik is

the k × k identity matrix and A is a k × n − k matrix over the finite field GF(q).

Construct matrices G2, . . . ,Gn by shifting the columns of G1 to the right, i.e., Gi

is the matrix formed by shifting the columns of G1 by i− 1 places, with the last

i− 1 columns of G1 wrapping around. In particular, if G1 = [Ik|a1 . . . an], where

a1, . . . , an are the columns of A, then Gi = [an−i+2 . . . an|Ik|a1 . . . an−i+1].

Encoding: The encoding procedure is illustrated in Figure 2.3. Let Xl be the

observed source string, of length l = mnk(n−k)
n(1−Dk)−k bits. Divide Xl into n disjoint

parts, each of length mk(n−k)
n(1−Dk)−k bits. (The division is done the same way regard-

less of the source realization.) Let Xi, i ∈ N denote the last lDk
n−k bits of the ith

part. Construct an erased version Xe
l by replacing the last lDk

n−k bits in each of the

n parts by erasures. Thus Xl
e has l(1− nDk

n−k ) = mnk bits. Each of the n parts of Xl
e

has mk bits and can therefore be treated as a concatenation of k binary strings of

length m, such that each of these binary strings is the binary representation of

an element in GF(q). Thus each of the n parts of Xl
e can be mapped to a vector of

length k in GF(q). Label these vectors Zj, j ∈ N . Let Yj = ZjGj, j ∈ N . Thus

the Yj are length-n vectors in GF(q). Let Yji = Zjgji denote the ith element of Yj

(here gji is the ith column of Gj). Transmit (Xi, Yji : j ∈ N ) over the ith channel.

Decoding: Suppose c < k descriptions are received at the decoder. LetM ⊂

N denote the set of indices of the received descriptions. Assume without loss

of generality that i ∈ M. Thus the decoder receives Xi and Yji = Zjgji : j ∈ N .

Thus lDk
n−k bits are revealed to the decoder via Xi. Now for a fixed i, exactly

k of the Gj, j ∈ N , (in particular, Gi−k+1, . . . ,Gi) will have their ith column

in the systematic part. Thus one symbol from k of the Zj, j ∈ N , can be de-

coded. By mapping these decoded symbols to their binary representations, the
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Figure 2.3: The MDS encoding procedure.

decoder can obtain a partial reconstruction of Xl. Let X̂i represent the recon-

structed source bits due to the ith description. Output (X̂i : i ∈ M) as the

reconstruction of Xl. If m > k descriptions are received, then any k descriptions

reveal k symbols from each of the Yj, j ∈ N . Also, since the punctured co-

ordinates are known to the decoder, it can construct a longer codeword from

every partially received codeword by adding erasures in place of the punc-

tured coordinates. The longer codewords can be treated as codewords from

the original (q − 1, k) MDS code. The original MDS code can subsequently be

decoded by applying an erasure decoding algorithm [42, Ch. 9] and all the

Zj vectors can be recovered. Mapping the Zj vectors to their binary represen-

tations reveals the erased version Xl
e of the original source string Xl. Output

{(X1, . . . ,Xm)} ∪ {Xl
e\(X1, . . . ,Xm)} as the reconstruction of Xl.

Analysis: We now argue that the above scheme achieves the rate-distortion

vector (Rk(Dk), 1− 1
n
, 1− 2

n
, . . . , 1−k−1

n
, Dk, (

n−k−1
n−k )Dk, (

n−k−2
n−k )Dk, . . . , (

1
n−k )Dk, 0).

For any source string Xl, every description (say the ith description) consists

of (Xi, Yji : j ∈ N ). Xi consists of lDk/(n − k) bits. Now since Yji is an
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element of GF(q), it can be represented by m bits. Thus (Yji : j ∈ N ) is a

length-n vector in GF(q), and can be represented by mn bits. Every descrip-

tion therefore consists of mn+ lDk/(n− k) bits. Since the source string consists

of l = mnk(n− k)/(n(1−Dk)− k) source symbols, every description has rate

mn+ lDk/(n− k)

l
=

1−Dk

k
= Rk(Dk).

Moreover, every description received at the decoder reveals lDk/(n− k) bits via

Xi, and exactly one symbol from k of the Zj, j ∈ N . Each of these k symbols is

an element of GF(q) and can be represented by m bits. Thus every description

reveals lDk/(n− k) + mk bits to the decoder. (We note that the bits revealed by

any two descriptions are disjoint. The uncoded bits Xa and Xb are disjoint by

definition for any two descriptions a and b. Now suppose descriptions a and

b revealed the same symbol from some Zj . Then Yja = Zjgja = Zjgjb = Yjb,

which implies a = b.) Thus if c < k descriptions are received, the decoder can

reconstruct c(lDk/(n− k) +mk) bits of the original source sequence. Thus

Dc = 1−
c( lDk
n−k +mk)

l

= 1− cDk

n− k −
cn(1−Dk)− ck

n(n− k)

= 1− c

n
.

If c ≥ k descriptions are received, say descriptions 1, . . . ,m, then

(X1, . . . ,Xm) reveal clDk/(n−k) bits. Moreover, the erased version of the source

sequence, Xl
e, can be reconstructed by applying the MDS erasure decoding al-

gorithm. The bits revealed by (X1, . . . ,Xm) are disjoint from the bits revealed

by Xl
e. The total number of bits revealed, therefore, is clDk/(n− k) +mnk. Thus

Dc = 1−
c lDk
n−k +mnk

l
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= 1− cDk

n− k −
n(1−Dk)− k

n− k
=

(
n− c
n− k

)
Dk.

Thus R̂ ∈ RDworst.

2.2.2 Optimality Results

In this section we present optimality results for the MDS coding scheme de-

scribed in the previous subsection. We first establish some preliminary results

in Appendix A.1 which will be used in the proofs of the following theorems. The

optimality results presented here are stronger than those for average-case dis-

tortion (Section 2.3.2) and yield a more complete characterization of the achiev-

able distortion region. Since we are dealing with worst-case distortion con-

straints, the following results hold for any source distribution.

Theorem 2. For any n and k, if Dk ≥ 1 − k
n

and rational3, then

∀ (Rk(Dk), D1, . . . , Dk, . . . , Dn) ∈ RDworst, Dm ≥ 1−mRk(Dk) for all m ∈ N .

Proof. Let Dk ≥ 1 − k
n

. If a code achieves a certain distortion under worst-case

distortion, then it will achieve that distortion under average-case distortion as

well. The result therefore follows from the first part of Theorem 7.

Definition 4. Let Xl be a vector taking values in X l. An erased version of Xl is a

vector X̃l(X) (where X̃l(·) is a function of the X string), taking values in X̂ l, such that

@ t ∈ {1, . . . , l} such that X̃t(X) = + and Xt = − or X̃t(X) = − and Xt = +.
3For this theorem and subsequent theorems in this subsection, we consider rational values

for Dk since any code over a finite blocklength can yield rational distortions only.

29



The following lemma is integral to the proofs of our optimality results for

worst-case distortion. Intuitively, the lemma says that for any code that encodes

length-l source sequences into n pairwise independent messages, there exists a

source sequence for which each of the l bits can be revealed by at most one of

the n messages.

Lemma 1. Let X̃l
1(X), X̃l

2(X), . . . , X̃l
n(X) be erased versions of the source string Xl ∈

X l. Suppose Xl is i.i.d. uniform overX l. If for all t ∈ {1, . . . , l}, I(X̃it(X); X̃jt(X)) =

0 ∀ i, j ∈ N , i 6= j, then

max
xl∈X l

n∑
i=1

[
1

l

l∑
t=1

d(xt, X̃it(x))

]
≥ n− 1.

Proof. See Appendix A.9.

The following theorem proves that the MDS coding scheme is optimal for all

n and k when a single-message is received at the decoder.

Theorem 3. For any n and k, if Dk < 1 − k
n

and rational, then

∀ (Rk(Dk), D1, . . . , Dk, . . . , Dn) ∈ RDworst, D1 ≥ 1− 1
n

.

Proof. See Appendix A.2.

The following theorem shows that the MDS coding scheme is Pareto optimal

in the distortions D1, . . . , Dk−1.

Theorem 4. For any n and k, R̂ is Pareto optimal in D1, . . . , Dk−1, i.e., there does

not exist (R′, D′1, . . . , D
′
n) ∈ RDworst such that either R′ < Rk(Dk), or R′ ≤ Rk(Dk),

D′i ≤ 1− i
n

for all 1 ≤ i ≤ k − 1 and D′j < 1− j
n

for at least one j, 1 ≤ j ≤ k − 1.

Proof. See Appendix A.3.
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The following theorem shows that for certain values of m, n and k, the MDS

coding scheme is optimal when m messages are received.

Theorem 5. For any n and k, if m ≤ k
2

and m|n (m divides n), then

∀ (Rk(Dk), D1, . . . , Dk, . . . , Dn) ∈ RDworst, Dm ≥ 1− m
n

.

Proof. See Appendix A.4.

It is worth noting that that our converse bounds for Dk < 1 − k
n

are sharper

than the cooperative or cut-set bound, which is given by Dm ≥ 1−mRk(Dk).

2.3 The Average-case Distortion Criterion

2.3.1 An Achievability Result

Theorem 6. Let Dk ∈ [0, 1]. For any n and k ≤ n, if Dk ≥ 1 − k
n

, then R̃ ∈ RDavg.

If Dk < 1− k
n

, then R̂ ∈ RDavg.

Proof. Theorem 6 is implied by Theorem 1. However, an alternate, more conven-

tional proof based on random binning arguments, which also proves Theorem 6

for the closure regionRDavg, is included in Appendix A.8.

2.3.2 Optimality Results

We now present optimality results for average-case distortion. These optimal-

ity results deal primarily with single-message optimality, i.e., when only one
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message is received at the decoder, and are weaker than the optimality results

proved earlier for worst-case distortion. Moreover, the optimality results per-

tain to the achievable regionRDavg itself rather than its closureRDavg. In other

words, there exists a “closure gap” between the inner bound in Theorem 6 and

the outer bounds presented below. It should be evident from the proofs of the

optimality results in the previous section that for converse proofs, only the pair-

wise independence condition between the component variables X̂it and X̂jt is

important, and this condition follows from independence at the block level. The

difficulty is that when we attempt to prove an outer bound for the closure, no

excess rate imposes a weaker independence condition on the transmitted mes-

sages; messages need not be completely mutually independent but rather nearly

mutually independent (i.e., for any k messages f1, . . . , fk, no excess rate yields

Ik(f1; . . . ; fk) ≤ εn for some ε > 0, rather than Ik(f1; . . . ; fk) = 0).

A similar situation for the simpler case of two-channel MD with no excess

rate for two descriptions was addressed by Ahlswede in [25], where he used

“wringing techniques” to prove a tight outer bound without a closure gap. The

wringing technique is a way to infer near independence at the component level

given near independence at the block level. By conditioning on suitable random

variables, the wringing technique ensures, given two random vectors that are

nearly pairwise independent, that they are also nearly pairwise independent

in each component. More precisely, if I(Xl
1;Xl

2) ≤ εl for some ε > 0, then for

any δ > 0 there exist t1, . . . , tm ∈ {1, . . . , l} (where m ≤ εl/δ) such that for all

t ∈ {1, . . . , l}, I(X1t;X2t|X1t1X2t2 , . . . , X1tmX2tm) < δ.

It seems natural to employ the wringing technique to remove the closure

gap in the optimality results presented here. However, there is one important
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difference between our MD problem and the two-description problem consid-

ered in [25] which renders the wringing technique ineffective in our case. In the

two-description case with no excess rate for two descriptions, there is only one

set of descriptions (i.e., the set containing both descriptions) for which no excess

rate is imposed, resulting in a single pairwise independence condition. In our n-

description case with no excess rate for every k descriptions, there are
(
n
k

)
sets of

k descriptions for which there is no excess rate, and thus there are
(
n
k

)
indepen-

dence conditions, one for each of the
(
n
k

)
sets. If one applies existing wringing

techniques here, then one would obtain a set of conditioning variables for each

of the
(
n
k

)
constraints. If these sets of variables happened to be the same for all

of the constraints, then we could conclude component-wise independence in all(
n
k

)
cases, but there is no guarantee that this will happen. Developing wringing

techniques for this setup would be useful future work.

The following theorem shows that when only one message is received at the

decoder, our coding scheme is optimal, modulo a closure operation, for all n

and k satisfying
(
1− 1

n

)k ≤ 1
2
. Recall that, given Dk, we use Rk(Dk) to denote

(1−Dk)/k.

Definition 5. For any fixed Dk, define

D∗1 = inf{D1 : (Rk(Dk), D1, . . . , Dk, . . . , Dn) ∈ RDavg}.

Theorem 7. For any n and k ≤ n, if Dk ≥ 1 − k
n

, then for any

(Rk(Dk), D1, . . . , Dk, . . . , Dn) ∈ RDavg, Dm ≥ 1 − mRk(Dk) for all m ∈ N . If

Dk < 1− k
n

, Dk is rational4, and
(
1− 1

n

)k ≤ 1
2
, then D∗1 ≥ 1− 1

n
.

Proof. See Appendix A.5.

4For this theorem and subsequent theorems in this subsection, we consider rational values
for Dk since any code over a finite blocklength can yield only rational distortions.
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We note that
(
1− 1

n

)k ≤ 1
2

implies k ≥ 1
log(n/n−1)

:= λ(n). Since λ(n)/n →

1/ log e as n → ∞, the second part of Theorem 7 provides a lower bound on D∗1

for a large range of k when n is large.

The following theorem proves single-message optimality for the coding

scheme when n = 4 and k = 2. This case is not included in Theorem 7.

Theorem 8. Let Dk < 1− k
n

and rational. If n = 4 and k = 2, then D∗1 ≥ 1− 1
n

.

Proof. See Appendix A.6.

Theorem 7 handles the regime in which k is large. We now study the other

extreme, i.e., when k is small. In particular, we look at the k = 2 case. The follow-

ing theorem provides a lower bound on the optimal single-message distortion

for n > 3 and k = 2. This lower bound differs from the distortion achieved by

our coding scheme by exactly 1/n, and thus becomes progressively tighter as n

increases.

Theorem 9. Let Dk < 1− k
n

and rational. If k = 2, then for n > 3, D∗1 ≥ 1− 2
n

.

Proof. See Appendix A.7.

We conjecture that the lower bound in Theorem 9 is not tight and that our

scheme is in fact optimal. Evidence for this is provided by Theorem 8.

2.4 A General Multiple Descriptions Architecture

The scheme described above provides a substrate that can be used to construct

no-excess-rate multiple descriptions codes for a general source using only a
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point-to-point rate-distortion code for that source. We illustrate this idea for

a Gaussian source, where the resulting scheme is optimal in a certain sense.

The extension to arbitrary sources should be clear from the proof. Suppose that

(Xt)
∞
t=1 is a memoryless Gaussian process, where Xt is a vector of length N and

has a marginal distributionN (0,Kx). The distortion for a source-reconstruction

pair (Xl, X̂
l
) is measured as E

[
1
l

∑l
t=1(Xt − X̂t)(Xt − X̂t)

T
]
. We compare distor-

tions in the positive definite sense, i.e., DA < DB iff DA −DB < 0.

Definition 6. The rate-distortion vector (R,D1, . . . ,Dn) is achievable if for some

l there exist encoders f (l)
i : RN×l → {1, . . . ,M (l)

i }, i ∈ N and decoders g(l)
K :∏

k∈K{1, . . . ,M
(l)
k } → RN×l, K ⊆ N , K 6= ∅, such that

R ≥ 1

l
logM

(l)
i ∀ i, and

Dk < E

[
1

l

l∑
t=1

(Xt − X̂K,t)(Xt − X̂K,t)T
]
∀ K ⊆ N , |K| = k,

where X̂
l

K = E[Xl|f (l)
i (Xl), i ∈ K].

We use RDgauss to denote the set of achievable rate-distortion vectors and

RDgauss to denote its closure. We consider symmetric descriptions, i.e., each

description has the same rate Rg and the distortion constraint depends only on

the number of descriptions received. We consider the case where there is no

excess rate for every k out of n descriptions, i.e., kRg = R(Dk), where R(·) is the

Shannon rate-distortion function and

R(Dk) = min
D̃

1

2
log
|Kx|
|D̃|

s.t. D̃ 4 Dk and

D̃ 4 Kx.

Thus Rg = 1
k
R(Dk) bits/symbol.
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Definition 7.

RG =
(
Rg,

Dk + (n− 1)Kx

n
,
2Dk + (n− 2)Kx

n
, . . . ,

(k − 1)Dk + (n− k + 1)Kx

n
,Dk, . . . ,Dk

)
.

Theorem 10. RG ∈ RDgauss.

Proof. It suffices to show that for any ε > 0, the rate-distortion vector

RG+ε =

(
Rg + ε,

Dk + εI + (n− 1)Kx

n
, . . . ,

(k − 1)(Dk + εI) + (n− k + 1)Kx

n
,

Dk + εI, . . . ,Dk + εI

)

is achievable. For any ε > 0, we know from rate-distortion theory that there

exist integers l and l′, with l′ ≤ l(R(Dk) + ε), such that any source sequence

Xl of l symbols can be compressed to a sequence Yl′ consisting of l′ bits and

then reproduced from Yl′ with distortion 4 Dk + εI. Fix ε and choose a block-

length nl. Using the aforementioned rate-distortion code, we can compress the

length-nl source sequence (consisting of n blocks, each of length l) into a bi-

nary sequence Ynl′ taking values in X . Now Ynl′ can be treated as n blocks of

length l′ each, and can be transmitted to the decoder over the n channels using

the MDS-coding based scheme proposed in Section 2.2.1. Thus every descrip-

tion contains l′ uncoded bits (i.e., one of the n blocks) of Ynl′ . In particular, the

decoder should be able to completely reconstruct Ynl′ upon reception of any

k descriptions, i.e., there is no distortion for every k out of n descriptions (this

corresponds to a special case of Theorem 1 with Dk = 0). Thus every set of k

descriptions must reveal nl′ bits, and therefore the rate of a single description

is R̃ = nl′/knl = l′/kl bits per symbol of Xl. Moreover, since every description
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contains l′ uncoded bits, the decoder can reconstruct ml′ bits (i.e., m blocks) of

Ynl′ upon reception of any m < k descriptions.

We now argue that RG+ε is achievable. The rate of every description is R̃ =

l′/kl ≤ (R(Dk) + ε)/k ≤ Rg + ε. Moreover, any m < k descriptions reveal ml′

bits (m blocks) of Ynl′ completely, and reveal nothing about the other n − m

blocks. Thus the decoder can reconstruct a fraction m/n of Xnl (i.e., m out of the

n blocks of Xnl) from the m blocks of Ynl′ revealed to it with distortion at most

Dk + εI, and must reconstruct the remaining fraction without any information

(incurring distortion Kx). If we take the time average over all blocks, we can see

that the decoder can reconstruct Xnl with distortion at most m(Dk+εI)+(n−m)Kx
n

.

When k or more descriptions are received, the decoder is able to reconstruct

Ynl′ completely and can reconstruct Xnl with distortion at most 4 Dk + εI.

Next, we show that, for the special case of symmetric scalar Gaussian mul-

tiple descriptions with two levels of receivers (where one receiver reconstructs

the source from any k out of n descriptions with distortion Dk and the second

receiver reconstruct the source from all n description with distortion Dn), and

no excess rate for the second receiver, the aforementioned scheme achieves the

optimal Dk. It has been shown by Wang and Viswanath [43, Theorem 1] that

given distortion constraints Dk and Dn, the symmetric multiple description rate

for an i.i.d. vector Gaussian source with mean 0 and covariance Kx is

R̂ = sup
Kz�0

1

2
log

(
|Kx|

1
n |Kx + Kz|

n−k
kn |Dn + Kz|

1
n

|Dn|
1
n |Dk + Kz|

1
k

)
.

Thus the sum rate of the n descriptions is

nR̂ = sup
Kz�0

1

2
log

(
|Kx||Kx + Kz|

n−k
k |Dn + Kz|

|Dn||Dk + Kz|
n
k

)
. (2.1)
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Theorem 11. For scalar Gaussian multiple descriptions (i.i.d. N (0, σ2
x) Gaussian

source) with two levels of receivers (distortion constraints Dk and Dn, respectively)

and no excess rate for the second receiver, Dk ≥ k
n
Dn + n−k

n
σ2
x.

Proof. Assume WLOG that σ2
x = 1. Reducing (2.1) to the scalar case and using

the no excess rate condition gives

1

2
log

(
1

Dn

)
= sup

λ>0

1

2
log

(
1

Dn

· (1 + λ)
n−k
k (Dn + λ)

(Dk + λ)
n
k

)
,

which implies

0 = sup
λ>0

1

2
log

(
(1 + λ)

n−k
k (Dn + λ)

(Dk + λ)
n
k

)
.

Define f(λ) = (1+λ)
n
k
−1(Dn+λ)

(Dk+λ)
n
k

. Then

0 = sup
λ>0

loge f(λ)

= sup
λ>0

(n
k
− 1
)

loge(1 + λ) + loge(Dn + λ)− n

k
loge(Dk + λ)

= sup
λ>0

loge
Dn + λ

1 + λ
+
n

k
loge

1 + λ

Dk + λ

= sup
λ>0

loge

(
1 +

Dn − 1

1 + λ

)
+
n

k
loge

(
1 +

1−Dk

Dk + λ

)
.

Define

g(λ) =
(Dn−1

1+λ
)2

2(1− |Dn−1
1+λ
|)2

+
( 1−Dk
Dk+λ

)2

2(1− | 1−Dk
Dk+λ

|)2
.

Using the fact that

loge(1 + x) ≥ x− x2

2(1− |x|)2
for |x| < 1

we obtain

0 ≥ sup
λ>0

(
Dn − 1

1 + λ
+
n

k

(
1−Dk

Dk + λ

)
− g(λ)

)
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1−Dn

1 + λ
≥ n

k

(
1−Dk

Dk + λ

)
− g(λ)

Dk + λ

1 + λ
≥ n

k

(
1−Dk

1−Dn

)
− Dk + λ

1−Dn

g(λ).

Now let λ→∞. Then Dk+λ
1−Dn g(λ)→ 0 and Dk+λ

1+λ
→ 1. We thus have

1 ≥ n

k

(
1−Dk

1−Dn

)
⇒ Dk ≥

k

n
Dn +

n− k
n

.
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CHAPTER 3

OPTIMAL DELAY-RECONSTRUCTION TRADEOFFS IN PEER-TO-PEER

NETWORKS

In this chapter, we study delay-reconstruction tradeoffs in P2P networks

with decentralized encoding. We formulate the binary erasure robust CEO

problem more precisely and describe our coding scheme. We then consider the

symmetric version of the binary erasure robust CEO problem and show that our

coding scheme provides a Pareto optimal delay-reconstruction tradeoff. We also

consider an asymmetric, two encoder version of the problem and show that the

coding scheme for the symmetric case is not optimal for this example.

3.1 Problem Formulation and Coding Scheme

We begin with the formulation of the binary erasure robust CEO problem, de-

picted in Figure 3.1. Let N = {1, . . . , n} and X = {+,−}. Let X be a uni-

form binary random variable taking values in X . We assume that this source

is i.i.d. over time, and we denote a length-l sequence of X by X l. Define

Yi = Ni · X, i ∈ N , where N1, . . . , Nn are independent Bernoulli random vari-

ables with 0 < Pr(Ni = 0) = pi < 1. Thus each Yi is the output of passing

X through a binary erasure channel (Figure 3.2) with erasure probability pi,

and takes values in X̂ = {+,−, 0}, where 0 denotes the erasure symbol. There

are n encoders, each of which is a function fi : X̂ l →
{

1, . . . ,M
(l)
i

}
, i ∈ N .

Encoder fi, i ∈ N , observes Y l
i and transmits an encoded version of it over

channel i. The decoder either receives this description without error or does not

receive it at all. Excluding the case in which none of the messages is received,

the receiver may receive 2n − 1 different combinations of messages. Thus it can
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be represented by 2n − 1 decoding functions gK, K ⊆ N , K 6= ∅ of the form

gK :
∏

k∈K

{
1, . . . ,M

(l)
k

}
→ X̂ l. Based on the set of received messages K, the re-

ceiver employs the corresponding decoding function to output a reconstruction

X̂ l
K of the original source string X l.

Figure 3.1: The binary erasure robust CEO problem

Figure 3.2: A binary erasure channel (BEC) with erasure probability p

We measure the fidelity of the reconstruction using a family of distortion

measures, {dλ}λ>0, where

dλ(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

λ otherwise.

We are particularly interested in the large-λ limit, wherein erasures incur unit

cost while errors are penalized highly. In this regime, dλ approximates the era-

sure distortion measure [33, p. 338].

In general, one could impose a distortion constraint for every subset of re-

ceived messages. This generality is not needed here, however, so we will only

measure the distortion as a function of the number of received messages.
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Definition 8. (R1, R2, . . . , Rn, D1, D2, . . . , Dn) is an achievable rate-distortion vec-

tor if there exists a block length l for which there exist encoders fi, i ∈ N , and decoders

gK, K ⊆ N , K 6= ∅ such that

Ri ≥
1

l
logM

(l)
i

Dk ≥ E

[
1

l

l∑
t=1

dλ(Xt, X̂Kt)

]
for all K s.t. |K| = k.

(3.1)

LetRDCEO(λ) denote the set of achievable rate-distortion vectors. Define

RDCEO =
⋂
λ≥1

RDCEO(λ).

It is worth noting that

Dk ≥ max
K,|K|=k

∏
i∈K

pi,

since when all of the corresponding Yi are erased for a given subset of mes-

sages, the decoder gets no information about X whatsoever and is forced to

output erasures instead. We use RDCEO to denote the closure of RDCEO. In

a P2P context, the encoders represent peers in the network that have access to

partial copies Yi of the received file X . Peers generate encoded packets in a de-

centralized fashion, without communicating with other peers, based on their

own partial knowledge of the file. The erasure distortion measure measures

how much of the file is reconstructed from these encoded messages.

A natural achievability scheme for this setup is vector quantization using

erasure test channels followed by Slepian-Wolf binning at each encoder. Since

this is a particularization of a scheme in [47], we provide only a high-level de-

scription and refer the reader to [47] for a detailed treatment. For a fixed block-

length l, Encoder i, i ∈ N first performs vector quantization of the possible Y l
i

sequences using an erasure test channel (Figure 3.3).
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Figure 3.3: Erasure test channels

Specifically, Encoder i chooses a parameter qi for the erasure test channel and

generates codewords i.i.d. according to the output distribution of this channel

when the input is Yi. These codewords are then divided randomly amongst 2nRi

bins. Then given the Y l
i sequence, the encoder searches for a codeword with

which it is typical, and transmits the index of the bin containing this codeword.

The decoder receives the bin indices transmitted by a subset of the encoders and,

if possible, uses typicality considerations to identify the codewords within the

bins that were selected by those encoders. In particular, the decoder searches

for codewords that are typical with respect to the output distributions of the

encoders’ test channels. These codewords will collectively reveal some of the

source bits X l but not others, and the decoder creates a reconstruction X̂ l of the

file that specifies the known bits while leaving the remaining ones erased.

The aforementioned scheme exhibits a fundamental tradeoff between inter-

mediate performance (i.e., the fraction of the file that can be reconstructed when

only a subset of the messages is received) and the overall efficiency of the file

transfer (i.e., the fraction of the file that can be reconstructed when all n mes-

sages are received). Although the scheme is valid for the case where pi and Ri

are different for different encoders, and we have stated it in its most general

form, important insight can be gained into the above tradeoff if we consider the

special case in which the encoders are symmetric. We therefore consider the
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scenario in which all of the Yi have the same erasure probability, pi = p, the

rates are identical, Ri = R, and all of the encoders use the same test channel

parameter, i.e., qi = q for all i.

Let us first understand the performance of the scheme in the symmetric case.

Consider the portion of the string X l that the decoder will be able to reconstruct

as a function of the number of messages received. For the first few messages,

the decoder will be unable to recover the codewords chosen by the encoders.

As such, it will be unable to reproduce any of the bits of X l, and accordingly its

reconstruction will be entirely erasures. After sufficiently many messages, say

k, have been received, the decoder will be able to determine all k codewords

from the bin indices and thereby determine some of the source bits. More pre-

cisely, the decoder will have access to k codewords, each of which is a copy

of the source string with a fraction p + (1 − p)q of the bits erased. Since the

erasures in different codewords are independent, the fraction of erasures in the

reconstruction will be

Dk = (p+ (1− p)q)k

which by our choice of distortion measure is also the distortion. If additional

messages are then received, their associated codewords can be determined

through typicality considerations. These additional codewords will allow the

decoder to reproduce even more of the bits of the source. In fact, the fraction of

erasures in the reconstruction will be

Dm = (p+ (1− p)q)m

wherem is the number of received messages. In particular, we haveDm = D
m/k
k .

The relation Dm = D
m/k
k captures the tradeoff between the fraction of the file

that can be reconstructed fromm ≤ nmessages (intermediate performance) and
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the overall efficiency of the file transfer (i.e., the fraction of the file that can be re-

constructed from all n messages, which in this case is 1−Dn = 1−Dn/k
k ). Notice

that the above scheme enables us to operate between two extremes in P2P tech-

nology which exhibit the same aforementioned tradeoff; (i) peers share packets

without coding (e.g., BitTorrent), and (ii), peers share fully encoded packets (e.g.,

network coding). Letting k = 1 allows us to recover the “no coding” case; there

is no binning, and every message reveals a partial source string to the decoder.

Letting k = n allows us to recover the “coding” case; every quantized codeword

is binned, and the decoder can only recover the codewords when all nmessages

have been received.

Figure 3.4: Performance of the achievability scheme for n = 10, p = 0.1, and
encoder rate R = 0.25. The solid curve corresponds to k = 1 (no coding), the
dotted curve to k = 10 (coding), and the dashed curve to k = 5.

By varying k, therefore, we can interpolate between the “coding” and “no

coding” extremes. Figure 3.4 illustrates the performance of the scheme for

n = 10 and p = 0.1. The solid curve corresponds to k = 1 (no coding), the

dotted curve to k = 10 (coding), and the dashed curve to k = 5. An encoder rate

R = 0.25 was used for all three cases. Notice that the “no coding” case yields

good intermediate performance; 20% of the file can be reconstructed from a sin-

gle message, and the distortion falls to 0.8. The overall efficiency, though, is
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not good; about 15% of the file cannot be reconstructed even when all of the

messages have been received. The “coding” case performs contrary to the “no

coding” case: nothing at all can be reconstructed with fewer than n messages

(Dm = 1 for m < n), but once n messages have been received, everything can be

reconstructed (the distortion is almost 0). The k = 5 curve, however, illustrates

how the aforementioned scheme allows partial reconstruction of the source with

fewer than n messages as opposed to the “coding case” (the decoder can out-

put a partial reconstruction as long as k messages have been received), and also

achieve a better overall efficiency with n messages than the “no coding” case (in

fact, with k = 5, almost all of the file can be reconstructed from n messages).

The ability to partially reconstruct the source can prove vital in the context

of distribution of content, e.g., video files, in P2P networks. In such a scenario,

our coding strategy can be implemented on the level of video frames rather

than bits, treating the entire video file as a coding block. In this case, users

with a partial reconstruction of the video file can watch the whole video by

interpolating over the missing frames. This would lead to lower buffering delay

(in Figure 3.4, for instance, the delay is halved for k = 5 as compared to the

“coding” case) and might at the same time yield adequate playback quality,

depending on the purposes of the user. As more messages are received, users

would be able to reconstruct a higher quality video. Partial reconstruction also

provides other advantages in this context; peers with partially reconstructed

files can transmit uncoded bits to peers that are still waiting to receive enough

messages to start decoding. This would lead to smaller user-perceived delays

than with network coding, without compromising the overall efficiency of the

download. Moreover, if users accidentally downloaded the wrong file, they

would be able to stop the download after viewing the partial file.
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In the next section, we prove optimality results for the delay-reconstruction

tradeoff exhibited by the aforementioned coding scheme with symmetric en-

coders. In order to achieve distortion Dk with k messages and fixed encoder

rate R, we must have kR ≥ R(Dk), where R(·) is the Shannon rate-distortion

function for the robust CEO problem. In practice, having kR strictly greater

than R(Dk) is wasteful, since the additional rate can be used to convey useful

information about the source and lower the distortion below Dk. We therefore

focus on the case when kR = R(Dk), which implies that the encoder rate is just

sufficient to achieve distortionDk with any k messages. This scenario is referred

to as no excess rate in information theory.

3.2 Pareto Optimality of the Scheme in the Symmetric Case

We now show that for symmetric encoders, given k and Dk, the tradeoff Dm =

D
m/k
k between the distortion and the number of received messages is Pareto

optimal. In particular, we will show that any scheme that achieves distortion

Dk for k messages must have Dm ≥ D
m/k
k . It is known from the results in [44]

that the minimum per-encoder rate required to achieve a given distortion Dk

when any k messages are received is

R =
1−Dk

k
+ g(D

1/k
k ) (3.2)

where1 g(·) is given by

g(x) =


h(x)− (1− p)h(x−p

1−p ) p ≤ x ≤ 1

0 x > 1.

1All logarithms and exponentiations in [44] have base e whereas we use base 2 here. There-

fore the corresponding expression in [44] is R = 1
k (1−Dk) log 2 + g(D

1
k

k ).
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By choosing the erasure test channel parameter q accordingly, the scheme de-

scribed above can achieve equality in (3.2). We next show that with this choice

of q, the scheme is Pareto optimal with respect to (Dk, Dk+1, . . . , Dn): any scheme

(with the same rate R) that achieves a strictly lower Dm for some k ≤ m ≤ n

must achieve a strictly larger Dm for some k ≤ m ≤ n.

Theorem 12. If (R, . . . , R,D1, . . . , Dn) ∈ RDCEO, and

Dk = inf
{
D : (R, . . . , R, 1, . . . , 1︸ ︷︷ ︸

k−1

, D, 1, . . . , 1) ∈ RDCEO
}
,

i.e., R is as given by (3.2), then Dm ≥ (Dk)
m
k for all m ≥ k.

Note that this result makes no optimality claims about the performance of

the scheme when fewer than k messages are received. Under this scheme, the

decoder will be unable to recover the transmitted codewords in this regime, so

it will be forced to declare an erasure for every bit in its reconstruction. It would

be interesting to determine if the performance in this regime can be improved,

perhaps by using the ideas in [37].

In order to prove this theorem, we first establish a new outer bound for a

general problem in distributed rate-distortion.

3.2.1 Outer Bound on the Rate Region of the Multi-terminal

Source Coding Problem

Consider the general problem in which we have an arbitrary number of dis-

crete memoryless sources Y1, . . . , Yn, with Yi taking values in the set Yi, en-

coders fi, i ∈ N , a hidden source Y0 that is not directly observed by any en-
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coder or the decoder, and a side information source Yn+1, taking values in the

set Yn+1, which is observed by the decoder but not by any encoder. In particular,

{Y0,t, Y1,t, . . . , Yn,t, Yn+1,t}∞t=1 is a vector-valued, finite-alphabet and memoryless

source. Although we consider finite-alphabet sources here, the outer bound is

extensible to continuous or countable alphabets, e.g., Gaussian sources, by using

the approach in [44]. Encoder fi observes a length-l sequence of Yi and transmits

a message to the decoder based on the mapping

f
(l)
i : Y li →

{
1, . . . ,M

(l)
i

}
.

The decoder seeks to reconstruct the sources, or functions of the sources, from

subsets of messages fK = {f (l)
k , k ∈ K}, where K ⊂ N ,K 6= ∅. Since we al-

low the reconstruction of functions of the sources instead of, or in addition to,

the sources themselves, we represent the reconstructed sequences by V l
1 , . . . , V

l
J

(with Vj,t, t ∈ {1, . . . , l}, j = 1, . . . , J, taking values in the set Vj). Given a sub-

set of messages K ⊂ N ,K 6= ∅ and j ∈ {1, . . . , J}, the decoder thus uses the

mappings (
gjK
)(l)

: Y ln+1 ×
∏
k∈K

{
1, . . . ,M

(l)
k

}
→ V lj.

We have J distortion measures

dj :
n+1∏
i=0

Yi × Vj → R+,

one for each constraint.

For every j ∈ {1, . . . , J}, we impose a common distortion constraint for

all size-k subset of messages used to reconstruct V l
j . More precisely, for every

j ∈ {1, . . . , J}, all
(
n
k

)
subsets of messages of size k, when used to reconstruct

V l
j , must satisfy a single distortion constraint. Thus there are nJ distortion con-

straints in total. Let YK denote (Yk)k∈K, and Yic denote Y{i}c . Moreover, Yi,a:b

denotes {Yi,a, Yi,a+1, . . . , Yi,b}.
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Definition 9. The rate-distortion vector (R,D) =

(R1, . . . , Rn, D1,1, D2,1, . . . , Dn,1, D1,2, . . . ,Dn,2, . . . ,

D1,J , . . . , Dn,J)

is achievable if for some l there exist encoders f (l)
i , i ∈ N , and decoders (gjK)l, K ⊂

N ,K 6= ∅, j = 1, . . . , J , such that

Ri ≥
1

l
logM

(l)
i , and

Dk,j ≥ max
K:|K|=k

E

[
1

l

l∑
t=1

dj(Y0,t,YK,t, Yn+1,t, Vj,t)

]
.

(3.3)

As in [44], we useRD? to denote the set of achievable rate-distortion vectors

andRD? to denote its closure. We use the following definitions from [44].

Definition 10. Let Y0, Y1, . . . , Yn+1 be generic random variables with the distribution

of the source at a single time. Let Γo denote the set of finite-alphabet random variables

γ = (U1, . . . , Un, V1, . . . , Vj,W, T ) satisfying

(i) (W,T ) is independent of (Y0,YN , Yn+1),

(ii) Ui ↔ (Yi,W, T ) ↔ (Y0,Yic , Yn+1,Uic), shorthand for “Ui, (Yi,W, T ) and

(Y0,Yic , Yn+1,Uic) form a Markov chain in this order”, for all i ∈ N , and

(iii) (Y0,YN ,W )↔ (UN , Yn+1, T )↔ (V1, . . . , Vj).

Definition 11. Let ψ denote the set of finite-alphabet random variables Z with the

property that Y1, . . . , Yn are conditionally independent given (Z, Yn+1).

There are many ways of coupling a given Z ∈ ψ and γ ∈ Γo to the source.

We shall only consider the Markov coupling for which Z ↔ (Y0,YN , Yn+1) ↔ γ.

We now state our outer bound.
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Definition 12. LetRDo(Z, γ) =

{
(R,D) :

∑
i∈K

Ri ≥ max
(
I(Z;UK|Yn+1, T ), I(Z;UK|UKc , Yn+1, T )

)
+
∑
i∈K

I(Yi;Ui|Z, Yn+1,W, T ) ∀K ⊆ N , and

Dk,j ≥ max
K:|K|=k

E[dj(Y0,YK, Yn+1, Vj)], j = 1, . . . , J

}
.

Then define

RDo =
⋂
Z∈ψ

⋃
γ∈Γo

RDo(Z, γ).

Theorem 13. RDo is an outer bound on the rate-distortion region for the general prob-

lem, i.e.,RD? ⊆ RDo.

Proof. See Appendix B.1.

The new bound is more general than the bound in [44]. Even if we apply it to

the setup of [44], however, the new bound offers an improvement. Specifically,

whereas the bound in [44] lower bounds the sum rate of a subset K of mes-

sages by I(Z;UK|UKc , Yn+1, T ), the new bound improves upon it by taking the

maximum of I(Z;UK|UKc , Yn+1, T ) and I(Z;UK|Yn+1, T ). This improvement is

useful for establishing the main result. Notice that if we have the Markov chain

Ui ↔ (Yi, T ) ↔ (Uic), then I(Z;UK|UKc , Yn+1, T ) ≤ I(Z;UK|Yn+1, T ). Since, in

our setup, a weaker Markov chain condition (Definition 10, (ii)) is being im-

posed, the above inequality might not hold here. However, as we show in the

proof of Theorem 12, using I(Z;UK|Yn+1, T ) instead of I(Z;UK|UKc , Yn+1, T )

yields a tight lower bound, which suggests that the outer bound in [44] could

be loose for our setup.
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3.2.2 Proof of Theorem 12

We begin with the following lemma.

Lemma 2. Suppose pm ≤ D and that (U, X, X̂K,Y,W, T ) for all K, |K| = m is such

that

(i) (X,Y,UKc ,W )↔ (UK, T )↔ X̂K,

(ii) Ui ↔ (Yi,W, T )↔ (X,Yic ,Uic) for all i ∈ N , and

(iii) 1
m

∑
i∈K I(Yi;Ui|X,W, T ) ≤ g(D1/m).

Let D̃ = maxK:K=mE[dλ(X, X̂K)]. For δ ∈ (0, 1/2], if

λ ≥ max

4

(
32m

δp(1− p)

)2m

,

(
D̃

δ

)2
 ,

then D̃ ≥ D − ξ(D̃, δ) for some continuous ξ ≥ 0 satisfying ξ(D̃, 0) = 0.

Proof. See Appendix B.2.

Proof of Theorem 12. It suffices to prove Theorem 12 for a single subset of mes-

sages of size m ≥ k. Fix δ ∈ (0, 1/2], and suppose λ satisfies

λ ≥ max

[
4

(
32m

δp(1− p)

)2m

,

(
Dk

δ

)2
]
.

It follows from Theorem 13 by taking Z = X in the definition of RDo(Z, γ)

(Definition 12) and from the monotonicity of Ro(D, λ) with respect to λ that

there exist R ∈ R+ and γ ∈ Γo such that, for all subsets K of size k,

Dk + δ ≥ E[dλ(X, X̂K)], and

kR + δ ≥ kRo(D, λ) + δ

≥ I(X;UK|T ) +
∑
i∈K

I(Yi;Ui|X,W, T ).

(3.4)
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From (3.2) and (3.4), it follows that

I(X;UK|T )

k
+

1

k

∑
i∈K

I(Yi;Ui|X,W, T )

≤ (1−Dk)

k
+ g(D

1
k
k ) +

δ

k
. (3.5)

Now by the data processing inequality, I(X;UK|T ) = I(X;UK, T ) ≥ I(X; X̂K).

Let ε = 1(X · X̂K = −1). We then have

I(X;UK|T ) ≥ H(X)−H(X|X̂K)

= 1−H(X, ε|X̂K)

= 1−H(ε|X̂K)−H(X|ε, X̂K)

≥ 1− h(Dk/λ)− Pr(X̂K = 0)

≥ (1−Dk)− h(δ).

Using this and (3.5), we can upper bound 1
k

∑
i∈K I(Yi;Ui|X,W, T ) as

1

k

∑
i∈K

I(Yi;Ui|X,W, T ) ≤ g(D
1
k
k ) +

h(δ)

k
+
δ

k
. (3.6)

We will now show

1

m

m∑
i=1

I(Yi;Ui|X,W, T ) ≤ g(D
1
k
k ) +

h(δ)

k
+
δ

k
, m ≥ k. (3.7)

Suppose that the Ui are ordered according to the mutual informations

I(Yi;Ui|X,W, T ), i.e., we have an ordered list of messages U1, . . . , Um in

which, for all i, j ∈ {1, . . . ,m}, Ui and Uj are such that I(Yi;Ui|X,W, T ) ≤

I(Yj;Uj|X,W, T ) when i ≤ j. The last k elements of this list, Um−k+1, . . . , Um,

must satisfy (3.6), i.e.,

1

k

m∑
i=m−k+1

I(Yi;Ui|Y0,W, T ) ≤ g(D
1
k
k ) +

h(δ)

k
+
δ

k
. (3.8)
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All other elements in the list yield equal or strictly smaller mutual informations.

Therefore, if we average over a larger subset of messages, the average will never

increase. We thus have

1

m

m∑
i=1

I(Yi;Ui|X,W, T ) ≤ 1

k

m∑
i=m−k+1

I(Yi;Ui|X,W, T ).

Using this and (3.8), we obtain (3.7). Define

(Dk − ζ(Dk, δ))
1
k = g−1

(
g(D

1
k
k ) +

h(δ)

k
+
δ

k

)
for some continuous ζ ≥ 0 satisfying ζ(Dk, 0) = 0. We then have

1

m

m∑
i=1

I(Yi;Ui|X,W, T ) ≤ g((Dk − ζ(Dk, δ))
1
k ). (3.9)

From (3.9), we obtain, by using Lemma 2,

Dm ≥ (Dk − ζ(Dk, δ))
m
k − ξ(Dm, δ)

for some continuous ξ ≥ 0 satisfying ξ(Dm, 0) = 0. The proof is completed by

letting λ→∞ and then δ → 0.

3.3 Suboptimality in the Asymmetric Case

In the previous section, we considered symmetric peers and showed that

the coding scheme described in Section 3.1 provides a Pareto optimal delay-

reconstruction tradeoff. If we consider asymmetric encoder observations, i.e.,

the binary erasure probabilities pi of the channels from X to Yi are not identi-

cal, then it becomes natural that encoders encode at different rates, since some

encoders (with smaller pi) will have a better knowledge of the source.

We now consider a very simple asymmetric case with two encoders and

show that the achievable scheme is no longer optimal; more precisely, the choice
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of an erasure test channel is no longer optimal. Encoder 1 observes the binary

source X directly (i.e., p1 = 0), while Encoder 2 observes an erased version Y

of the source with p2 = p > 0. Both encoders transmit messages to a decoder,

which then attempts to reconstruct X upon reception of both messages. This

setup is referred to as a one-helper problem (Figure 3.5), and the two encoders,

Encoders 1 and 2, are referred to as the main encoder and the helper, respec-

tively. The goal is to characterize the tradeoff between the rate of the main en-

coder, R1, the rate of the helper, R2, and the resulting distortion.

Figure 3.5: The erasure one-helper problem

Before showing that erasure test channels are suboptimal for this problem,

it is worth mentioning why this suboptimality is unexpected. Existing results

in distributed rate-distortion theory suggest a connection between binary era-

sure problems and their quadratic Gaussian counterparts. For instance, for the

Wyner-Ziv problem, both instances have no rate loss [51], and this is shown us-

ing erasure and Gaussian test channels, respectively. Similarly, the only two in-

stances of the CEO problem for which conclusive results are available at all rates

are the erasure [44] and Gaussian [50] ones, and again the optimal schemes use

erasure and Gaussian test channels, respectively. For the quadratic Gaussian

version of the one-helper problem [52], Gaussian test channels are known to

achieve the entire rate region. This suggests that erasure test channels might

be optimal for the erasure version, yet we shall see that they are not in general,

even if the decoder’s goal is to reproduce X losslessly.
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Figure 3.6: A family of symmetric test channels

Specifically, we show that for some rate constraints R2 on the helper, the

alternate family of test channels Vb(ε) depicted in Figure 3.6 meet the helper’s

rate constraint while allowing the primary encoder to use less rate. The opti-

mal test channel for the lossless one-helper problem, given a rate constraint R2

on the helper, is given by the optimal solution to the following optimization

problem [33]:

min
p(v|y)

H(X|V ) (3.10)

s.t. I(Y ;V ) ≤ R2

X ↔ Y ↔ V.

If we restrict the minimization to the family of channels Vb(ε) and the class of

erasure channels Ve(q), then it suffices to show that given a rate constraint R2 on

the helper, the optimal H(X|Vb) is smaller than the optimal H(X|Ve). Figure 3.7

depicts the optimalH(X|Vb) andH(X|Ve) againstR2. Notice that for low values

of R2, H(X|Vb) is lower than H(X|Ve), signifying that erasure test channels are

the worse of the two families of channels.

The superiority of the Vb(ε) test channel can be understood as follows.

Define a Bernoulli random variable E such that E = 1 when Y is erased

and E = 0 when Y is not erased. Since E is a function of Y , we have

56



Figure 3.7: Plot of H(X|Vb) (solid) and H(X|Ve) (dashed) against R2 for p = 0.1.
For low values of R2, H(X|Vb) is smaller than H(X|Ve).

I(Y ;Vb(ε)) = I(Y,E;Vb(ε)) = I(E;Vb(ε)) + I(Y ;Vb(ε)|E). Likewise, I(Y ;Ve(q)) =

I(E;Ve(q)) + I(Y ;Ve(q)|E). Now I(E;Vb(ε)) = 0, i.e., Vb(ε) communicates no in-

formation about whether Y is erased. In contrast, I(E;Ve(q)) > 0, i.e., erasure

test channels expend positive rate transmitting information about the location

of erasures in Y l. This information is not pertinent to the problem of recon-

structing X , and is therefore wasteful. Of course, when ε > 0, X can never be

determined with certainty from the output of the Vb(ε) channel. If the goal is

to reproduce X l from the helper’s codeword, then the Vb(ε) would be a poor

choice. Here, however, the helper’s objective is simply to minimize H(X|V ).

Thus the erasure test channel is suboptimal, although Figure 3.7 shows that

the benefit of using the alternate test channel Vb(ε) is small. Indeed, numerical

solution to (3.10) for various problem instances suggest that erasure test chan-

nels are very nearly optimal and are therefore sufficient in practice. Showing

this rigorously is an interesting problem for future work.
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CHAPTER 4

LOSSY SOURCE CODING WITH BYANTINE ADVERSARIES

In this chapter, we study source coding in the presence of Byzantine adver-

saries. We formulate the lossy source coding problem with Byzantine adver-

saries. We present the separation-based coding scheme for general sources and

arbitrary distortion measures and show that it achieves the factor-of-2 rule. We

prove that our scheme is optimal for uniform binary sources with Hamming

distortion and Gaussian sources with squared error distortion, and then show

that the factor-of-2 rule is pessimistic for binary sources and erasure distortion,

and provide a joint source-channel coding based scheme that is optimal for a

three-encoder instance of this problem.

4.1 Problem Formulation

Let {Xt}∞t=1 be an i.i.d. source, with the random variablesXt taking values in the

(possibly infinite) alphabet X . There are n encoders, t of which are traitors, that

observe X l and transmit a message to a decoder, which then attempts to recon-

struct X l from the received messages up to a specified distortion. The traitors’

goal is to maximize the expected distortion in the decoder’s reconstruction, and

they choose their messages in order to fulfill this goal, with full knowledge of

X l, the other n− 1 messages, and the decoder’s decoding strategy. The number

of traitors, t, is known to all the encoders and the decoder. However, their loca-

tion among the n encoders (i.e., which of the n encoders are traitors) is unknown

to the honest encoders and the decoder. Moreover, the traitors can observe X l

and then decide which encoders to take over. The traitors’ location among the

n encoders and their actions can therefore be different for different source se-

58



quences.

Let X̂ denote the reconstruction space, with an associated distortion measure

d : X × X̂ → IR. Let N = {1, . . . , n}. A code (f1, . . . , fn, g) is a collection of en-

coders fi : X l → {1, . . . ,M (l)
i }, i ∈ N , and a decoder g :

∏n
i=1{1, . . . ,M

(l)
i } → X̂ l.

A rate-distortion vector (R1, . . . , Rn, D) is said to be achievable if for all suffi-

ciently large l, there exist encoders fi and a decoder g such that

Ri ≥
1

l
logM

(l)
i for all i, and

D ≥ E

 max
H⊂N
|H|=n−t

max
CHc

1

l

l∑
t=1

d(Xt, g(C1, . . . , Cn))

 , where Ci = fi(X
l) ∀i ∈ H.

Let RD denote the set of achievable rate-distortion vectors, and let RD denote

its closure. Moreover, let R(·) denote Shannon’s rate-distortion function.

Definition 13. RD∗ = {(R1, . . . , Rn, D) : ∀S ⊂ N , |S| = n − 2t,
∑

i∈S Ri ≥

R(D)}.

Note that RD∗ is the factor-of-2 region. The following theorem, proved in

the next section, shows thatRD∗ is achievable.

Theorem 14. Suppose there exists a reconstruction sequence X̂ l
0 ∈ X̂ l such that

d(xl, X̂ l
0) is finite for all xl ∈ X l. ThenRD∗ ⊂ RD.

4.2 A Separation-based Achievability Scheme

The achievability scheme we present in order to prove Theorem 19 consists of

two stages: rate-distortion quantization and adversarial error correction. Our

coding scheme separates the lossy source coding part of the problem from the
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adversarial error correction part. The lossy source coding part is taken care of in

the first stage. The second stage deals with adversarial error correction, treating

the quantized sequences generated in the first stage as a message to be transmit-

ted over a channel with adversarial errors. The first stage corresponds to source

coding (rate-distortion quantization) and the second stage corresponds to chan-

nel coding for transmitting the quantized sequences from the first step over the

non-stochastic, packetized, adversarial channel depicted in Figure 4.1, where

the original message W is transmitted to the decoder in the form of n packets,

t of which are corrupted by traitors. Source-channel separation dictates that re-

liable communication can occur as long as R(D) < C, where C is the capacity

of the channel. In Section 4.6 we show that the capacity of the channel shown

in Figure 4.1 is in fact minS,S=|n−2t|
∑

i∈S Ri. With source-channel separation, re-

liable communication can occur as long as R(D) ≤ minS,S=|n−2t|
∑

i∈S , which is

the statement of Theorem 19.

Figure 4.1: A non-stochastic, packetized adversarial channel where the original
message is transmitted as n packets, t of which are corrupted by traitors.

Proof of Theorem 19. Choose ε > 0, δ > 0, and 0 ≤ α < (n − 2t)ε. Given the

source distribution p(x), fix p(x̂|x) such that I(X; X̂) = R(D). Compute p(x̂) =∑
x p(x)p(x̂|x).

Rate-distortion quantization: Fix a blocklength l, and generate a codebook
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C consisting of 2(lR(D)+α) sequences X̂ l drawn randomly and i.i.d. from the

marginal distribution p(x̂). Index the sequences in C by w ∈ {1, . . . , 2l(R(D)+α)}.

Random binning: For all i ∈ N , Encoder i bins the 2(lR(D)+α) sequences in C

uniformly and independently into 2l(Ri+ε) bins.

Encoding: Observe a length-l source sequence X l and find a w such that

(X l, X̂ l(w)) are distortion typical [33, p. 319]. If there is more than one such

w, pick w to be the least one. If there is no such w, set w = 1. Let bi = fi(X̂
l(w))

be the bin index of X̂ l(w) at Encoder i. Encoder i transmits bi to the decoder.

Decoding: For each set of n− t messages, the decoder attempts to generate a

reconstruction of X l. In particular, for H ⊂ N , |H| = n− t, the decoder searches

the bins indexed by bi, i ∈ H , for a sequence X̂ l
H such that fi(X̂ l

H) = bi for all

i ∈ H . If there is exactly one such sequence X̂ l
H in the bins indexed by bi, i ∈ H ,

set X̂ l
H to be the reconstruction for the set H . If there is no such sequence, or

there is more than one such sequence, set X̂ l
H = ∅.

Consider now the
(
n
t

)
sequences X̂ l

H the decoder generates forH ⊂ N , |H| =

n− t. If there exists exactly one sequence X̂ l such that X̂ l
H = X̂ l for all X̂ l

H 6= ∅,

output X̂ l as the reconstruction of X l. If X̂ l
H = ∅ for all H , or if X̂ l

H1
6= X̂ l

H2
for

some H1, H2 ⊂ N , output X̂ l
0 as the reconstruction.

Error analysis: There is at least one set H of n − t encoders that are all hon-

est. By virtue of the encoding strategy, there is guaranteed to be at least one

sequence common to all the bins indexed by bi, i ∈ H. If there is only one

such sequence (and this would be the true quantized sequence X̂ l), the decoder

would output this sequence as the reconstruction for H. If, however, there is

more than one sequence common to all the bins, then the decoder would set
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X̂ l
H = ∅. Define the error event

FH : X̂ l
H 6= ∅ and X̂ l

H 6= X̂ l,∀H ∈ N , |H| = n− t.

Define E = {X̂ l
H = ∅}∪ (

⋃
H FH). Observe now that since there are t traitors,

any set H of size n − t has at least n − 2t honest encoders. Denote the honest

encoders in H by SH . Note that the encoders in SH will send bin indices cor-

responding to the true quantized sequence X̂ l. Denote by ESH the event that

the bins reported by SH contain more than one common sequence. Then Ec
SH

is the event that the bins reported by SH contain exactly one common sequence

(which would be X̂ l). If Ec
SH

occurs, then no matter what the traitors ScH ∩ H

do, the decoder will output either X̂ l or ∅ for H (this is because if the traitors

choose to send the bin indices for X̂ l, then the decoder would find X̂ l in all the

bins in H , and therefore output X̂ l; if however, the traitors choose to send bin

indices for a different sequence, then the decoder would not find that sequence

in at least one of the bins reported by the honest encoders in SH , and will there-

fore output ∅). Thus it is evident that FH will occur only if ESH occurs. Hence

Pr(FH) ≤ Pr(ESH ).

Now let f−1
i (fi(X

l)) denote the preimage of the message that the ith encoder

sends for X l. Define E ′S = |⋂i∈S f
−1
i (fi(X

l))| 6= 1. Thus E ′S is the event that

the bins corresponding to the messages sent by the encoders in S do not contain

exactly one common sequence. Notice that ESH ⊂
⋃
S,|S|=n−2tE

′
S for all H , and

therefore E ⊂ ⋃S,|S|=n−2tE
′
S .

Suppose now that for any set S of n − 2t encoders,
∑

i∈S Ri > R(D). We

bound Pr(E) as follows. By the union bound,

Pr(E) ≤
∑
S:

|S|=n−2t

Pr(E ′S)
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=
∑
S:

|S|=n−2t

Pr(∃X̃ l ∈ C, X̃ l 6= X̂ l : fi(X̃
l) = fi(X̂

l) ∀i ∈ S)

=
∑
C

p(C)
∑
S:

|S|=n−2t

Pr(∃X̃ l ∈ C, X̃ l 6= X̂ l : fi(X̃
l) = fi(X̂

l) ∀i ∈ S
∣∣C = C)

=
∑
C

p(C)
∑
xl

p(xl)
∑
S:

|S|=n−2t

Pr(∃X̃ l ∈ C, X̃ l 6= x̂l : fi(X̃
l) = fi(x̂

l) ∀i ∈ S

∣∣∣∣X l = xl, C = C)

≤
∑
C

p(C)
∑
xl

p(xl)
∑
S:

|S|=n−2t

∑
x̃l∈C
x̃l 6=x̂l

Pr(fi(x̃
l) = fi(x̂

l) ∀i ∈ S
∣∣X l = xl, C = C)

≤
∑
C

p(C)
∑
xl

p(xl)
∑
S:

|S|=n−2t

|C|2−l
∑
i∈S(Ri+ε)

=
∑
C

p(C)
∑
xl

p(xl)
∑
S:

|S|=n−2t

2l(R(D)+α)2−l
∑
i∈S(Ri+ε)

≤
∑
C

p(C)
∑
xl

p(xl)
∑
S:

|S|=n−2t

2−l((n−2t)ε−α)

=
∑
C

p(C)
∑
xl

p(xl)

(
n

2t

)
2−l((n−2t)ε−α)

=

(
n

2t

)
2−l((n−2t)ε−α),

where the last inequality follows because
∑

i∈S Ri > R(D). Notice now that

if Ec occurs, then the decoder outputs the true quantized sequence X̂ l for H,

and for every H , H 6= H, the decoder either outputs X̂ l or ∅. Thus the decoder

outputs X̂ l as the reconstruction of X l. If, however, E occurs, then the decoder

reconstructs the wrong quantized sequence. Let l be sufficiently large so that,

by the rate-distortion theorem, the distortion when Ec occurs is less than D + δ
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when averaged over X l and C. We have

Ef,gEX

 max
H⊂N
|H|=n−t

max
CHc

1

l

l∑
t=1

d(Xt, X̂t)

 ≤ (D + δ)(1− Pr(E)) + dmax Pr(E)

≤ D + δ + dmax

(
n

2t

)
2−l((n−2t)ε−α).

The right hand side can be made smaller than D + ε by letting l → ∞ and then

α, δ → 0. Thus there exists a code that achieves (R1 + ε, . . . , Rn + ε,D + ε).

4.3 Converse for Uniform Binary Sources with Hamming Dis-

tortion

In this section, we prove that the achievability scheme in Section 4.2 is optimal

for a uniform binary source with Hamming distortion. For Hamming distortion,

given the binary source alphabetX = {+,−}, the reconstruction space X̂ = X =

{+,−}. The Hamming distortion measure d : X × X → {0, 1} is given by

d(x, x̂) =


0 if x̂ = x

1 otherwise.

Theorem 15. For a uniform binary source and Hamming distortion measure, RD∗ =

RD.

Given a target distortion D for some rate vector in RD∗, the Shannon rate-

distortion function for a uniform binary source with Hamming distortion is

given by R(D) = 1 − h(D), where h(·) is the binary entropy function. There-

fore, in order to prove Theorem 15, we need to show that for any subset of

encoders S of size n − 2t, D ≥ h−1(1 −∑i∈S Ri). Before proving Theorem 15,
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however, we shall state and prove a lemma which provides an upper bound on

the number of binary strings of length ` such that any two strings differ in at

most 2`δ places, where δ < 1/2. In proving this lemma, we shall make use of a

result of Kleitman [66], earlier conjectured by Paul Erdős: the number of binary

strings of length ` such that any two strings differ in at most 2k places is at most∑k
i=0

(
`
i

)
.

Lemma 3. For any set S of binary strings of length `, where |S| ≥ 2, there exists a pair

of strings in S that differ in at least
(
2`h−1

(
1
`

log(|S| − 1)
)
− 1
)

places, where h−1 is

the inverse of the binary entropy function.

Proof. Let δ = h−1
(

1
`

log(|S| − 1)
)
. Thus δ < 1/2 and |S| − 1 = 2`h(δ). We have

|S| > |S| − 1

= (|S| − 1)(δ + 1− δ)`

= (|S| − 1)
∑̀
i=0

(
`

i

)
δi(1− δ)`−i

≥ (|S| − 1)

b`δc∑
i=0

(
`

i

)
δi(1− δ)`−i

= (|S| − 1)

b`δc∑
i=0

(
`

i

)
(1− δ)`

(
δ

1− δ

)i

≥ (|S| − 1)

b`δc∑
i=0

(
`

i

)
(1− δ)`

(
δ

1− δ

)`δ

= (|S| − 1)

b`δc∑
i=0

(
`

i

)
δ`δ(1− δ)`(1−δ)

= (|S| − 1)

b`δc∑
i=0

(
`

i

)
2−`h(δ)

=

b`δc∑
i=0

(
`

i

)
.
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By the aforementioned result in [66],
∑b`δc

i=0

(
`
i

)
is the maximum number of binary

strings such that any two strings differ in at most 2b`δc places. Since |S| >∑b`δc
i=0

(
`
i

)
, there must exist a pair of strings in S that differ in at least 2b`δc+ 1 ≥

2(`δ − 1) + 1 = 2`δ − 1 places.

We are now in a position to prove Theorem 15. Let (f1, . . . , fn, g) be a code

that achieves the rate-distortion vector (R1, . . . , Rn, D), and let S = {1, . . . , n −

2t}. Define, for any given source sequence xl, the setM(xl) = {x̃l ∈ X l : fi(x̃
l) =

fi(x
l) ∀i ∈ S}. Let McS , cS ∈ {1, . . . , 2l

∑
i∈S Ri} be the values taken by the set

M(X l). Thus McS is the pre-image of the set of codewords cS . Since there are

2l
∑
i∈S Ri sets of codewords covering 2l sequences, we have

1

2l
∑
i∈S Ri

2l
∑
i∈S Ri∑

cS=1

|McS | =
2l

2l
∑
i∈S Ri

= 2l(1−
∑
i∈S Ri).

Suppose that the set S contains honest encoders only, and the traitors con-

stitute either the set of encoders T1 = {n − 2t + 1, . . . , n − t} or the set T2 =

{n − t + 1, . . . , n}. Suppose further that (x′)l is the observed source sequence,

and the encoders in S send codewords c′S to the decoder. Thus (x′)l ∈Mc′S
. Since

there are |Mc′S
| sequences in Mc′S

, Lemma 3 tells us that there exists a sequence

(x′′)l ∈Mc′S
such that d((x′)l, (x′′)l) ≥ 2lδ− 2 bits, where δ = h−1(1

l
log |Mc′S

| − 1).

Suppose T1 is the honest set, and the encoders in T1 send the codewords corre-

sponding to (x′)l. Then the set T2 of traitors could send codewords correspond-

ing to the fake sequence (x′′)l. Thus the decoder would receive the set of mes-

sages (c′S , cT1(x′), cT2(x′′)). Note, however, that the same set of messages would

be received by the decoder if (x′′)l were the true source sequence and T1 rather

than T2 were the traitorous set, and the traitors decided to report (x′)l to the de-

coder. In either case, the decoder must output the same reconstruction, say x̄l,
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since it cannot distinguish between the two cases. We thus have the following

sequence of inequalities:

∑
xl∈Mc′S

max
i=1,2

max
CTi

l∑
t=1

d(xt, x̂t)

≥ max
CT2

l∑
t=1

d(x′t, x̂
′
t) + max

CT1

l∑
t=1

d(x′′t , x̂
′′
t ) +

∑
xl∈M

c′S
xl 6=(x′)l,(x′′)l

max
i=1,2

max
CTi

l∑
t=1

d(Xt, X̂t)

≥
l∑

t=1

d(x′t, x̄t) +
l∑

t=1

d(x′′t , x̄t) +
∑

xl∈M
c′S

xl 6=(x′)l,(x′′)l

max
i=1,2

max
CTi

1

l

l∑
t=1

d(Xt, X̂t)

≥
l∑

t=1

d(x′t, x
′′
t ) +

∑
xl∈M

c′S
xl 6=(x′)l,(x′′)l

max
i=1,2

max
CTi

1

l

l∑
t=1

d(Xt, X̂t)

≥ 2lh−1

(
1

l
log |Mc′S

| − 1

)
− 2 +

∑
xl∈M

c′S
xl 6=(x′)l,(x′′)l

max
i=1,2

max
CTi

1

l

l∑
t=1

d(Xt, X̂t),

where the penultimate inequality follows from the triangle inequality. We can

now remove (x′)l and (x′′)l from Mc′S
and apply Lemma 1 to the remaining

|Mc′S
| − 2 sequences. We can do this iteratively, stopping when 3 or fewer se-

quences remain. This yields the lower bound

∑
xl∈Mc′S

max
i=1,2

max
CTi

l∑
t=1

d(xt, x̂t) ≥

⌊ |M
c′S
|

2

⌋
−1∑

k=0

(
2lh−1

(
1

l
log(|Mc′S

| − 1− 2k)

)
− 2

)

≥
|Mc′S

|−2∑
j=0

(
lh−1

(
1

l
log(|Mc′S

| − 1− j)
)
− 1

)
.

Let N =
∑2l

∑
i∈S Ri

cS=1 (|McS | − 1) = 2l − 2l
∑
i∈S Ri . Now

EX

[
max
H

max
CHc

1

l

l∑
t=1

d(Xt, X̂t)

]
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≥ EX

[
max
i=1,2

max
CTi

1

l

l∑
t=1

d(Xt, X̂t)

]

=
2l

∑
i∈S Ri∑

cS=1

∑
xl∈McS

max
i=1,2

max
CTi

1

l

l∑
t=1

d(xt, x̂t)p(x
l)

≥
2l

∑
i∈S Ri∑

cS=1

|McS |−2∑
j=0

1

l
·
(
lh−1

(
1

l
log(|McS | − 1− j)

)
− 1

)
· 2−l · N

N

(a)

≥ h−1

 1

lN

2l
∑
i∈S Ri∑

cS=1

|McS |−2∑
j=0

log(|McS | − 1− j)

 2−lN −
2l

∑
i∈S Ri∑

cS=1

|McS |−2∑
j=0

1

l
· 2−l

(b)

≥ h−1

1

l

2l
∑
i∈S Ri∑

cS=1

(
(|McS | − 1) ln(|McS | − 1)− (|McS | − 1)

ln 2

)
· 1

N

 2−lN

− 1

l
2−lN

= h−1

 1

lN

2l
∑
i∈S Ri∑

cS=1

(|McS | − 1) log(|McS | − 1)−
2l

∑
i∈S Ri∑

cS=1

|McS | − 1

ln 2

 2−lN

− 1

l
2−lN

≥ h−1

 1

lN

2l
∑
i∈S Ri∑

cS=1

(|McS | − 1) log(|McS | − 1)− 1

l ln 2

 2−lN − 1

l

(c)

≥ h−1

(
1

lN
· 2l

∑
i∈S Ri

 1

2l
∑
i∈S Ri

2l
∑
i∈S Ri∑

cS=1

(|McS | − 1)


· log

 1

2l
∑
i∈S Ri

2l
∑
i∈S Ri∑

cS=1

(|McS | − 1)

− 1

l ln 2

)
2−lN − 1

l

= h−1

(
1

lN
2l

∑
i∈S Ri

N

2l
∑
i∈S Ri

log

(
N

2l
∑
i∈S Ri

)
− 1

l ln 2

)
2−lN − 1

l

= h−1

(
1

l
log(2l(1−

∑
i∈S Ri) − 1)− 1

l ln 2

)
(1− 2−l(1−

∑
i∈S Ri))− 1

l
,

where (a) follows from the convexity of h−1(x) in x, (b) follows from the fact

that
∑m

i=1 lnx ≥ m lnm − m and because h−1(x) is nondecreasing in x, and (c)

follows from the convexity of x log x in x and because h−1(x) is nondecreasing
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in x. Letting l→∞ completes the proof.

4.4 Converse for Gaussian Sources with Squared Error Distor-

tion

In this section, we prove that the achievability scheme in Section 4.2 is optimal

for a Gaussian source with squared error distortion. The squared error distor-

tion measure d : R×R→ R+ is given by d(x, x̂) = (x− x̂)2.

Theorem 16. For a Gaussian source and squared error distortion measure, if there

exists a reconstruction symbol X̂ such that E[d(X, X̂)] is finite, thenRD∗ = RD.

Given a target distortion D, the Shannon rate-distortion function for a Gaus-

sian source with squared error distortion is given by R(D) = 1
2

log σ2/D, where

σ2 is the variance of the source. Therefore, in order to prove Theorem 16,

we need to show that for any subset of encoders S of size n − 2t,
∑

i∈S Ri ≥
1
2

log σ2/D. Let (f1, . . . , fn, g) be a code that achieves the rate-distortion vector

(R1, . . . , Rn, D), and let Ci be the codeword transmitted by the ith encoder. For

any S ∈ N , |S| = n− 2t, we have

∑
i∈S

Ri ≥
1

l

∑
i∈S

H(Ci)

≥ 1

l
H(CS)

≥ 1

l
I(X l;CS)

=
1

l
h(X l)− 1

l
h(X l|CS)

=
1

2
log 2πeσ2 − 1

l
h(X l|CS).
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Thus, in order to prove Theorem 16, it suffices to show that 1
l
h(X l|CS) ≤

1
2

log 2πeD. Let H1 and H2 be two sets in N such that |H1| = |H2| = n − t

and H1 ∩H2 = S. Define

QD = {xl : max
i=1,2

max
CHc

i

1

l

l∑
t=1

d(Xt, X̂t) ≤ D}.

For every codeword cS , let QD|cS = {xl ∈ QD : fS = cS}. Then

Pr(X l ∈ QD′) =
∑
cS

Pr(CS = cS) Pr(X l ∈ QD′|CS = cS)

≤
∑
cS

Pr(CS = cS) Pr(X l ∈ QD′|cS |CS = cS)

= Pr(X l ∈ QD′|CS ). (4.1)

Since the code achieves distortion D, we have

D ≥ E

 max
H⊂N
|H|=n−t

max
CHc

1

l

l∑
t=1

d(Xt, X̂t)


≥ E

[
max
i=1,2

max
CHc

i

1

l

l∑
t=1

d(Xt, X̂t)

]

=

∫ ∞
0

Pr

[
max
i=1,2

max
CHc

i

1

l

l∑
t=1

d(Xt, X̂t) > D′

]
dD′

≥
∫ ∞

0

Pr
[
X l /∈ QD′

]
dD′

≥
∫ ∞

0

Pr
[
X l /∈ QD′|CS

]
dD′, (4.2)

where the last inequality follows from (4.1).

Let D̃ = inf{D′ : X l ∈ QD′|CS}. Since the set QD′|cS is non-decreasing in D′,

the event {X l /∈ QD′|CS} is identical to the event {D̃ > D′}. Hence from (4.2),

D ≥
∫ ∞

0

Pr(D̃ > D′)dD′ = E(D̃).
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Fix ∆ > 0 and let D̃∆ = ∆d D̃
∆
e be a quantized version of D̃. Observe that since

D̃∆ ≤ D̃ + ∆,

E(D̃∆) ≤ E(D̃ + ∆) ≤ D + ∆. (4.3)

We then have

1

l
h(X l|CS) =

1

l
h(X l|CS , D̃∆) +

1

l
I(X l; D̃∆|CS)

≤ 1

l
h(X l|CS , D̃∆) +

1

l
H(D̃∆). (4.4)

Consider the first term in (4.4). Note that D̃ ≤ D̃∆, so X l ∈ QD̃∆|CS . Therefore,

by the uniform bound on entropy,

h(X l|CS , D̃∆) ≤ E[log Vol(QD̃∆
|CS)]. (4.5)

Now consider the second term in (4.4). Since D̃∆ is quantized, it can be shown

using a maximum entropy distribution result that

H(D̃∆) ≤ E(D̃∆)

∆
h

(
∆

E(D̃∆)

)
, (4.6)

where h(q) = −q log q − (1 − q) log(1 − q) is the binary entropy function. The

right hand side of (4.6) is increasing in E(D̃∆), so using (4.3) gives

H(D̃∆) ≤ D + ∆

∆
h

(
∆

D + ∆

)
. (4.7)

Now consider two sequences xl, x′l ∈ QD′|cS . Suppose the decoder receives

the set of codewords (cS , cH1\H2 = fH1\H2(xl), cH2\H1 = fH2\H1(x′l)). First observe

that this set of messages could have been produced if X l = xl and H1 were

the set of honest encoders. Then the nodes in H2\H1, which are all traitors,

could send cH2\H1 . Since xl ∈ QD′|cS , the estimate x̂l must by definition satisfy

1
l
d(xl, x̂l) ≤ D′. However, the same set of messages could have been produced if

X l = x′l and H2 were the set of honest encoders, and the traitors H1\H2 decide
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to send cH1\H2 . Since the decoder produces just one estimate for a given set of

received codewords, the very same estimate x̂l, by the same reasoning, must

satisfy 1
l
d(x′l, x̂l) ≤ D′. Hence we have

1

l

l∑
t=1

(x(t)− x̂(t))2 ≤ D′

1

l

l∑
t=1

(x′(t)− x̂(t))2 ≤ D′,

which can be rewritten as

||x− x̂||2 ≤
√
lD′

||x′ − x̂||2 ≤
√
lD′.

Therefore, by the triangle inequality, for any xl, x′l ∈ QD′|cS , ||x− x′||2 ≤ 2
√
lD′.

Thus QD′|cS has diameter at most 2
√
lD′. The following lemma from [67] upper

bounds the volume of subsets of Rl as a function of their diameter.

Lemma 4. The volume of any subset of Rl is no more than that of the l-ball with the

same diameter.

Lemma 4 tells us that the volume of QD′|cS is no more than the volume of

an l-ball with radius
√
lD′. The latter can be shown to be less than (2πeD′)

l
2 .

Combining this with (4.5) and (4.7) gives

1

l
h(X l|CS) ≤ 1

l
E[log(2πeD̃∆)

l
2 ] +

1

l

D + ∆

∆
h

(
∆

D + ∆

)
≤ 1

2
log(2πeE[D̃∆]) +

1

l

D + ∆

∆
h

(
∆

D + ∆

)
≤ 1

2
log(2πe(D + ∆)) +

1

l

D + ∆

∆
h

(
∆

D + ∆

)
,

where the penultimate inequality follows from the concavity of log x in x and

the last inequality follows from (4.3). Letting l →∞ and then ∆→ 0 completes

the proof.
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4.5 Uniform Binary Sources with Erasure Distortion

In this section, we show that for uniform binary sources with erasure distor-

tion, the factor-of-2 rule is pessimistic, and there exists a coding scheme which

can achieve points outside the rate region proposed in Section 4.1. We will con-

sider a special case of the 3-channel Byzantine multiple descriptions problem

in which one of the channels transmits at rate R and the other two transmit at

rate 1. One of the three encoders is a traitor. We shall henceforth refer to this

special case as the R − 1 − 1 problem. Assume without loss of generality that

Encoder 1 transmits at rate R and Encoders 2 and 3 transmit at rate 1. Thus

Encoders 2 and 3 send the complete source sequence X l to the decoder, since

their respective channels are not rate-constrained. Given the source alphabet

X = {+,−}, define the reconstruction space X̂ = {+,−, 0}, where 0 denotes the

erasure symbol. The erasure distortion measure is given by

d(x, x̂) =


0 if x̂ = x

1 if x̂ = 0

∞ otherwise.

(4.8)

LetRDeras be the set of achievable rate-distortion pairs as defined in Section 4.1,

and letRDeras denote its closure.

Theorem 17. RDeras = {(R,D) : D ≥ 2h−1(1 − R)}, where h−1(·) is the inverse of

the binary entropy function h.

Proof. (Achievability) Note that 2h−1(1 − R) < 1 − R, which is the distortion-

rate function for a uniform binary source with erasure distortion. We will show

that for any D and any R > 1 − h(D/2) (equivalently D > 2h−1(1 − R)), the
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rate-distortion pair (R,D) is achievable. In particular, we will show that for any

ε > 0, there exists a code with rate less than R+ ε and distortion less than D+ ε.

Define D̃ = D/2, and let R > 1 − h(D̃). Let p(x̃|x) denote a binary symmetric

channel (BSC) with crossover probability D̃. We construct an encoder similar

to a rate-distortion encoder for a binary symmetric source (BSS) with Hamming

distortion.

Random codebook generation: Compute p(x̃) =
∑

x p(x)p(x̃|x). Fix a block-

length l, and generate 2lR + 1 sequences X̃ l drawn randomly and i.i.d from the

marginal distribution p(x̃). Assign each codeword an index w ∈ {0, 1, . . . , 2lR}.

The codebook is revealed to the encoders and the decoder.

Encoding: Choose δ > 0. Encoder 1 observes a length-l source sequence X l,

and encodes X l by w, w 6= 0, if X l and X̃ l(w) are jointly typical, i.e., the Ham-

ming distance between X l and X̃ l(w) is less than l(D̃ + δ). If there is more than

one such w, the smallest is used. If there is no such w ∈ {1, . . . , 2lR}, Encoder 1

sends w = 0. Since lR + 1 bits are required to describe the 2lR + 1 indices, the

rate of this code is R + 1/l. Encoders 2 and 3 send the whole sequence X l.

Decoding: If Encoders 2 and 3 send the same source sequence X l, then X l

is the true source sequence, since at least one of Encoders 2 and 3 is honest.

Output X̂ l = X l as the reconstruction. If Encoders 2 and 3 send different source

sequences, then one of them is the traitor, and Encoder 1 is honest. In this case,

if Encoder 1 sent w = 0, output the all erasure string. Otherwise, if one of the

sequences sent by Encoders 2 and 3 is not jointly typical with the index sent by

Encoder 1, then that encoder is the traitor. Output the sequence sent by the other

encoder as the reconstruction. If, however, Encoders’ 2 and 3 sequences are both

jointly typical with the index sent by Encoder 1, output a reconstruction X̂ l such
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that X̂ l has the same value for the bits for which Encoders’ 2 and 3 sequences

agree, and has erasures for the bits for which Encoders’ 2 and 3 sequences differ.

Distortion analysis: Let us consider the possible traitor locations and actions

for each source sequence. If the traitor chooses to take over Encoder 1, then

Encoders 2 and 3 will send the true source sequence and the decoder will be

able to decode correctly regardless of the source sequence. Suppose the traitor

takes over one of Encoder 2 or Encoder 3. Assume without loss of generality

that the traitor takes over Encoder 3. Then Encoder 2 will send the true source

sequence, and Encoder 1 will send an index that is jointly typical with the true

source sequence. If the traitor sends the true source sequence, the decoder will

be able to decode correctly, so suppose the traitor chooses to send a spurious

sequence. If the fake sequence sent by the traitor is not jointly typical with the

index sent by Encoder 1, the decoder will output the sequence sent by Encoder

2, which is the true source sequence. Suppose now that the traitor sends a source

sequence which is jointly typical with the index sent by Encoder 1, but different

from the true source sequence. Then the decoder will output a partially erased

reconstruction based on the bits that are common between the true sequence

and the fake sequence. Thus, for any source sequence for which Encoder 1

transmits an index w 6= 0, the only strategy for the traitor which will yield non-

zero distortion is to send a source sequence which is jointly typical with the

index sent by Encoder 1, but different from the true source sequence. It therefore

makes sense for the traitor to pursue this strategy for every source sequence. In

this case, let X l
2 and X l

3 be the true and fake sequences respectively. Since both

X l
2 and X l

3 are jointly typical with X̃ l(w), where w is the index sent by Encoder

1, the Hamming distance between X̃ l(w) and X l
2 (and X̃ l(w) and X l

3) is at most

l(D̃ + δ). By the triangle inequality, therefore, the Hamming distance between
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the true sequence X l
2 and the fake sequence X l

3 is at most 2l(D̃ + δ).

Let Pw = {xl ∈ X l : the encoder transmits the index w}. We thus have

EX

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(Xt, X̂t)

]

=
∑
xl∈X l

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(xt, x̂t)

]
p(xl)

=
2lR∑
w=0

∑
xl∈Pw

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(xt, x̂t)

]
p(xl)

=
∑
xl∈P0

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(xt, x̂t)

]
p(xl)

+
2lR∑
w=1

∑
xl∈Pw

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(xt, x̂t)

]
p(xl)

≤
∑
xl∈P0

1 · p(xl) +
2lR∑
w=1

∑
xl∈Pw

2(D̃ + δ)p(xl),

since, when w = 0, the decoder outputs the all-erasure string (which yields

distortion 1), and whenw 6= 0, the traitor sends a fake sequenceX l
3 which differs

in at most 2l(D̃+δ) bits from the true source sequence, as described earlier. Thus

the distortion when w 6= 0 is at most 2(D̃ + δ). Recall that the set P0 (the set of

sequences for which the encoder transmits w = 0) is the set of sequences for

which no typical codeword can be found. Let Pe be the total probability of these

sequences. The total probability of the rest of the sequences can be bounded by

1. We thus have

EX

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(Xt, X̂t)

]
≤
∑
xl∈P0

1 · p(xl) +
2lR∑
w=1

∑
xl∈Pw

2(D̃ + δ)p(xl)

≤ 1 · Pe + 2(D̃ + δ) · 1

= 2D̃ + 2δ + Pe.

Since we are using a rate-distortion code of rate R > R(D̃) = 1− h(D̃) for a BSS
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with Hamming distortion, Pe, averaged over a random choice of codebooks, can

be made arbitrarily small as l → ∞. Therefore, there exists a sufficiently large

blocklength l such that 1/l < ε and 2δ + Pe < ε. Thus there exists a code with

rate R + 1/l < R + ε and average distortion less than 2D̃ + ε = D + ε.

We will now prove the converse to Theorem 17.

Proof. (Converse to Theorem 17) Let (f, g) be a code that achieves the rate-

distortion pair (R,D). For this code, define, for any given source sequence xl,

the setM(xl) = {x̃l ∈ X l : f(x̃l) = f(xl)}. Let Mi, i ∈ {1, . . . , 2lR} be the values

taken by the set M(X l). Thus Mi is the pre-image of the ith codeword. Since

there are 2lR codewords covering 2l sequences, we have

1

2lR

2lR∑
i=1

|Mi| =
2l

2lR
= 2l(1−R).

Suppose Encoder 3 is the traitor, and suppose that unless the pre-image of the

codeword sent by Encoder 1 contains a single source sequence (in which case

Encoder 3 sends that source sequence), Encoder 3 always sends a fake source

sequence X̃ l which is in the pre-image of the codeword sent by Encoder 1 but

is different from the sequence X l sent by Encoder 2 (which is the true source

sequence). The true and fake sequences will differ in at least one bit. The situ-

ation, from the point of view of the decoder, is identical to the situation where

X̃ l is the true source sequence, X l is the fake source sequence, and Encoder 2,

rather than Encoder 3, is the traitor. Since the distortion is maximized over all

traitor locations and actions, the decoder cannot output either + or − for any

bit in which X l and X̃ l differ, since outputting either would result in infinite

distortion under one of the two aforementioned scenarios. The decoder, there-

fore, must output an erasure for any bit in which X l and X̃ l differ. Given a
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sequence xl ∈ Mi, let DMi
(xl) be the maximum Hamming distance of xl from

any sequence in Mi. In the extreme case that |Mi| = 2l, i.e., all sequences map to

the same codeword, the traitor will be able to find a source sequence differing

in l bits for every sequence. Thus DMi
(xl) = l for all xl, and the decoder would

be forced to output the all erasure string for every source sequence, resulting in

a distortion of 1.

Now suppose |Mi| < 2l for all i. Since there are |Mi| source sequences in Mi,

Lemma 3 tells us that the traitor will be able to find a sequence xlw ∈ Mi such

that DMi
(xlw) ≥ 2lδ − 2 bits, where δ = h−1(1

l
log |Mi| − 1). We can remove xlw

from Mi and apply Lemma 1 to the remaining |Mi| − 1 sequences. Doing this

iteratively yields the lower bound

∑
xl∈Mi

DMi
(xl) ≥

|Mi|−2∑
j=0

(
2lh−1

(
1

l
log(|Mi| − 1− j)

)
− 2

)
.

Let N =
∑2lR

i=1(|Mi| − 1) = 2l − 2lR. Now

EX

[
max

α∈{1,2,3}
max
Cα

1

l

l∑
t=1

d(Xt, X̂t)

]

≥ EX

[
max
C3

1

l

l∑
t=1

d(Xt, X̂t)

]

≥
2lR∑
i=1

∑
xl∈Mi

1

l
DMi

(xl)p(xl)

≥
2lR∑
i=1

|Mi|−2∑
j=0

1

l
·
(

2lh−1

(
1

l
log(|Mi| − 1− j)

)
− 2

)
· 2−l · N

N

(a)

≥ 2h−1

1

l

2lR∑
i=1

|Mi|−2∑
j=0

log(|Mi| − 1− j) · 1

N

 2−lN −
2lR∑
i=1

|Mi|−2∑
j=0

2

l
· 2−l

(b)

≥ 2h−1

1

l

2lR∑
i=1

(
(|Mi| − 1) ln(|Mi| − 1)− (|Mi| − 1)

ln 2

)
· 1

N

 2−lN
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− 2

l
· 2−l

2lR∑
i=1

(|Mi| − 1)

= 2h−1

1

l

 2lR∑
i=1

(|Mi| − 1) log(|Mi| − 1)−
2lR∑
i=1

|Mi| − 1

ln 2

 · 1

N

 2−lN

− 2

l
· 2−lN

≥ 2h−1

 1

lN

2lR∑
i=1

(|Mi| − 1) log(|Mi| − 1)− 1

l ln 2

 2−lN − 2

l

(c)

≥ 2h−1

2lR

lN

 1

2lR

2lR∑
i=1

(|Mi| − 1)

 log

 1

2lR

2lR∑
i=1

(|Mi| − 1)

− 1

l ln 2

 2−lN

− 2

l

= 2h−1

(
1

lN
· 2lR · N

2lR
log

N

2lR
− 1

l ln 2

)
2−lN − 2

l

= 2h−1

(
1

l
log(2l(1−R) − 1)− 1

l ln 2

)
(1− 2−l(1−R))− 2

l
,

where (a) follows from the convexity of h−1(x) in x, (b) follows from the fact

that
∑m

i=1 lnx ≥ m lnm − m and because h−1(x) is nondecreasing in x, and (c)

follows from the convexity of x log x in x and because h−1(x) is nondecreasing

in x. Letting l→∞ completes the proof.

4.6 Channel Coding Theorem

In this section we make precise the fact that separation breaks for erasure dis-

tortion. We begin by proving a capacity result for the channel depicted in Fig-

ure 4.1. A set of messages, indexed by {1, . . . , 2lR} is to be transmitted over

the channel. Encoder i encodes the message using the encoding function fi :
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{1, . . . , 2lR} → {1, . . . , 2lRi}. If i ∈ H , then Encoder i’s codeword is Ci = fi(W ),

where W is the message to be transmitted. If i ∈ Hc, then Encoder i can choose

Ci arbitrarily, with full knowledge of W and the other n − 1 codewords. The

decoders employs the decoding function g :
∏n

i=1{1, . . . , 2lRi} → {1, . . . , 2lR}

produces an estimate Ŵ = g(C1, . . . , Cn) of the original message W .

For the message w, define the indicator function

1f,g(w,H,C
Hc

) =


0 if ŵ = w

1 if ŵ 6= w

given that the set of honest encoders is H and the traitors transmit the code-

words CHc . For the code (f, g), we define the average probability of error as

Pe(f, g) =
1

2lR

2lR∑
w=1

max
H⊂N

H=|n−t|

max
CHc

1f,g(w,H,C
Hc

).

Definition 14. A rateR is said to be achievable if there exists a sequence of codes (f, g),

indexed by the blocklength l, such that Pe(f, g)→ 0 as l→∞.

Theorem 18. All rates R such that R < min S⊂N
S=|n−2t|

∑
i∈S Ri are achievable. If R >

min S⊂N
S=|n−2t|

∑
i∈S , then Pe(f, g)→ 1 as l→∞.

The proof of achievability for Theorem 18 is very similar to the proof of The-

orem 19 and is omitted. We prove the converse below. It is worth noting that

Theorem 18 admits a strong converse.

Converse to Theorem 18. SupposeR >
∑n−2t

i=1 Ri and let T1 = {n−2t+1, . . . , n−t}

and T2 = {n − t + 1, . . . , n}. Fix a code (f1, . . . , fn, g) and consider the first

n − 2t encoding functions f1, . . . , fn−2t. Define M(w) to be the set of source

sequences such that for all w′ ∈M(w), fi(w′) = fi(w), i = 1, . . . , n−2t. Note that
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given a random message W , the range of the random variable M(W ) partitions

the original set of messages {1, . . . , 2lR}. Since the sum rate of the first n − 2t

encoders is
∑n−2t

i=1 Ri, the number of partitions is 2l
∑n−2t
i=1 Ri . We can therefore

label the partitions as M1,M2, . . . ,M
2l

∑n−2t
i=1

Ri
. For each partition Mi, we have

the following two cases:

1. there exists w̃ ∈ Mi such that if the encoders in T1 transmit fi(w̃) for all

i ∈ T1, then the decoder outputs Ŵ = w̃ regardless of the messages trans-

mitted by encoders in T2. We refer to w̃ as a “leader” message.

2. for all w ∈ Mi, there exists a set of messages Ci, i ∈ T2, such that if the

encoders in T1 transmit fi(w̃) for all i ∈ T1 and the encoders in T2 transmit

Ci, i ∈ T2, then the decoder outputs Ŵ 6= w.

We now argue that for any message in Mi that is not a leader message, the

traitors can cause the decoder to make an error by outputting a different mes-

sage. If the first case holds, then the traitors simply have to take over the en-

coders in T1 and transmit fi(w̃), i ∈ T1 where w̃ is the leader message. If Case 2

holds, then the traitors simply have to take over T2 and transmit the messages

that would result in an error at the decoder. We can also argue that if there is

more than one leader message in Mi, then the traitors can cause an error for ev-

ery leader. More precisely, if w̃ and w′ are two leader messages, then the traitors

can cause an error for w̃ by taking over T1 and transmitting fi(w′), i ∈ T1. If there

is only one leader in Mi, then, by the above argument, the traitors can cause er-

rors for all messages other than the leader. Therefore, at most one message for

every partition can be decoded correctly. Since there are 2l
∑n−2t
i=1 Ri partitions, at

most 2l
∑n−2t
i=1 Ri can be correctly decoded. We can therefore compute the proba-
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bility of error as follows:

Pe(f, g) =
1

2lR

2lR∑
w=1

max
H⊂N

H=|n−t|

max
CHc

1f,g(w,H,C
Hc

)

=
1

2lR

2l
∑n−2t
i=1

Ri∑
j=1

∑
w∈Mj

max
H⊂N

H=|n−t|

max
CHc

1f,g(w,H,C
Hc

)

≥ 1

2lR
(2lR − 2l

∑n−2t
i=1 Ri)

= 1− 2−l(R−
∑n−2t
i=1 Ri),

which goes to 1 as l→∞.

Notice now that according to Theorem 18, the capacity of the corresponding

channel in the R − 1 − 1 problem is R. For source-channel separation, the con-

dition R(D) ≤ R must hold. But the scheme proposed in Section 4.5 achieves

works for R(D) > R, which implies that the channel is being operated above

capacity. Even though operating the channel above capacity is useless from the

point of view of reliable communication, it appears to be beneficial from the

point of view of rate-distortion. Note that in the end the decoder has to choose

from two messages only, one of which it knows is the correct message. This is

not sufficient for reliable communication, since the decoder cannot unequivo-

cally determine which of the two messages is correct. However, the reduction

to two messages, one of which is correct yields benefits from the point of view

of rate-distortion since the two messages are constrained to be within a certain

distortion-typical set.

It is instructive to consider theR−1−1 problem for the Hamming distortion

case. Since separation is optimal in the Hamming case, we have R(D) ≤ R (cf.

Theorem 19 and Theorem 15). Consider now the R − R − R problem, i.e., all

three encoders have rate R. Theorems 19 and 15 tell us that we must again have
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R(D) < R. Thus in the Hamming case, the R − 1 − 1 and R − R − R problems

have the same rate region. This signifies that in theR−1−1 Hamming problem,

the extra rate available to the encoder from Encoders 2 and 3 is useless; the

same distortion could be achieved if Encoders 2 and 3 transmitted at the lower

rate R. This is because it is optimal for the decoder to output the quantized

sequence transmitted by Encoder 1 (which is the centroid of the corresponding

Hamming ball) even if Encoders 2 and 3 send the complete source sequence as

in the R − 1 − 1 problem. The adversarial channel reveals a lot of information

to the decoder through the source sequence that the traitor chooses to transmit,

since the decoder eventually receives two source sequences, one of which is the

true source sequence. However, this additional information is not useful at all

since all the decoder needs to know to make an optimal decision is Encoder 1’s

quantized sequence.

The erasure distortion measure, however, is more stringent than the Ham-

ming distortion measure, since it does not allow the decoder to make errors in its

reconstruction. For this reason, the decoder needs to be absolutely certain about

any non-erased bit it outputs in its reconstruction and output erasures for any

bit about which it is not certain. This is not the case with Hamming distortion,

since the decoder can always guess for any bit about which it is uncertain. In

order to to achieve the same distortion, the erasure distortion measure requires

the decoder to have more information than the Hamming distortion measure.

It turns out that the information revealed by the adversarial channel, which is

useless in the Hamming case, accounts for the additional information required

in the erasure case. This allows Encoder 1 to transmit at a rate lower than the

erasure rate-distortion function by performing Hamming quantization instead

of erasure quantization, with the remaining information being supplied to the
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decoder by the adversarial channel.

Acknowledgements

The author would like to thank Sriram Vishwanath for helpful discussions re-

garding the formulation of the adversarial lossy source coding problem and

Oliver Kosut for supplying the proof in Section 4.4.

84



CHAPTER 5

MULTI-LEVEL LOSSLESS SOURCE CODING WITH BYZANTINE

ADVERSARIES

In this chapter, we study lossless source coding with multiple sources and

an unknown number of adversaries. We consider a three-encoder version of the

problem with two sources and one potential adversary, and show its equiva-

lence to the three encoder symmetric MLD problem, proving in the process that

superposition coding is optimal for adversarial multi-level diversity coding.

5.1 Problem Formulation

Let {Xt, Yt}∞t=1 be an i.i.d. source, with {Xt}∞t=1 independent of {Yt}∞t=1, where

the random variables Xt and Yt take values in the finite alphabets X and Y , re-

spectively. There are three encoders, each of which observes the pair of length-`

sequences (X`, Y `) and transmits a message to a decoder. The three encoders

are either all honest, or there is at most one traitor among them. The goal of the

traitor, should one be present, is to sabotage the communication by not allowing

the decoder to losslessly reconstruct the observed sequences, and it chooses its

message in order to fulfill this goal, with full knowledge of (X`, Y `), the other

two messages, and the decoder’s decoding strategy. It is unknown to the honest

encoders and the decoders a priori whether a traitor is present, and if there is

one, its location among the three encoders. Moreover, if present, the traitor can

observe (X`, Y `) and then decide which of the three encoders to take over. The

traitor’s location among the encoders and its actions can therefore be different

for different realizations of the sources. The decoder receives the three messages

from the encoders and attempts to detect the presence of a corrupted message.
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If it does not detect a corrupted message, it outputs a lossless reconstruction

of both X` and Y `. If it detects a corrupted message, then it losslessly recon-

structs only X` and, along with its reconstruction for X`, outputs either Y ` (if it

can be correctly decoded) or a “flag” sequence indicating that it has detected a

corrupted message.

Let Ỹ` denote the set {Y` ∪ ∅}, where ∅ is a special “flag” sequence. A code

(f1, f2, f3, g) is a collection of encoders fi : X ` × Y` → {1, . . . ,M (`)
i }, i ∈ {1, 2, 3},

and a decoder g :
∏3

i=1{1, . . . ,M
(l)
i } → X ` × Ỹ`. Denote by X̂` and Ŷ ` the

decoder’s reconstructions of X` and Y `. Let α ∈ {1, 2, 3} denote the location of

the traitor if one is present, and Cα the message it transmits to the decoder. For

a fixed code, fixed α and Cα, and a fixed source realization (x`, y`), define the

indicator function 1e(f , g, α, Cα, x
`, y`)

=


1 if Cα = fα(x`, y`) and (x̂`, ŷ`) 6= (x`, y`)

1 if Cα 6= fα(x`, y`) and (x̂`, ŷ`) 6= (x`, y`) and (x̂`, ŷ`) 6= (x`, ∅)

0 otherwise,

where f = (f1, f2, f3). The probability of error Pe is defined as

Pe , E[max
α

max
Cα

1e(f , g, α, Cα, X
`, Y `)].

Definition 15. A rate vector (R1, R2, R3) is said to be achievable if for any ε > 0 and

sufficiently large `, there exist encoders f1, f2, and f3 and a decoder g such that

Ri + ε ≥ 1

`
logM

(`)
i for i = 1, 2, 3, and (5.1)

ε ≥ Pe. (5.2)

LetR denote the set of achievable rate-distortion vectors.
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Definition 16. R∗ = {(R1, R2, R3) : for i = 1, 2, 3,

Ri = r1
i + r2

i ,

where r1
i , r

2
i ≥ 0 and

r1
i ≥ H(X) for 1 ≤ i ≤ 3

r2
i + r2

j ≥ H(Y ) for 1 ≤ i < j ≤ 3}.

Theorem 19. R =R∗.

In proving Theorem 19, we shall use the rate region of the three-encoder

symmetrical multi-level diversity (MLD) coding problem, which is a special

case of the n-encoder MLD problem as defined in [68]. We use the notation

in [68]. Suppose v is a vector in {0, 1}3. We say a vector u ≥ v if ui ≥ vi for

1 ≤ i ≤ 3. Define

Ωα
3 = {v ∈ {0, 1}3 : |v| = α}

where |v| denotes the Hamming weight of v, and Ω3 = ∪3
α=1Ωα

3 . Denote by Gv

the set {i : vi = 1} and let (S1, S2, S3) be 3 sources, taking values in alphabets

Si such that S1 = X and S2 = Y , while S3 = Z is a zero-entropy source, i.e., a

deterministic sequence. Let

dα :
α∏
i=1

Si ×
α∏
i=1

Si → {0, 1}

denote the Hamming distortion measure. For a given blocklength `, we define

encoders

Fi :
3∏
i=1

S`i → {1, . . . ,M `
i }, i ∈ {1, 2, 3},

and decoders

Tv :
∏
i∈Gv

{1, . . . ,M `
i } →

|v|∏
j=1

S`j v ∈ Ω3
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and

∆v = `−1E

[∑̀
t=1

d|v|((S1,t, . . . , S|v|,t), (Ŝ1,t(v), . . . , Ŝ|v|,t(v)))

]
v ∈ Ω3

where (Ŝ1,t(v), . . . , Ŝ|v|,t(v)) = Tv(Fi(S
`
1, S

`
2, S

`
3), i ∈ Gv. The rate vector

(R1, R2, R3) is said to be achievable if for every ε > 0 and sufficiently large `,

there exist encoders Fi and decoders Tv as defined above such that

Ri + ε ≥ 1

`
logM `

i for all i and (5.3)

ε ≥ ∆v for all v ∈ Ω3. (5.4)

We call (Fi, Tv) an MLD code. LetRMLD denote the set of achievable rate vectors.

This definition of the MLD region is based on a symbol-error (i.e., Hamming

distortion) definition of error probability. We can similarly define a block-error

probability version of the MLD rate region. Define

Pv = Pr((S`1, . . . , S
`
|v|) 6= (Ŝ`1(v), . . . , Ŝ`|v|(v))).

Definition 17. The rate vector (R1, R2, R3) is said to be achievable for the block-error

MLD problem if for every ε > 0 and sufficiently large `, there exist encoders Fi and

decoders Tv as defined above such that

Ri + ε ≥ 1

`
logM `

i for all i and (5.5)

ε ≥ Pv for all v ∈ Ω3. (5.6)

Let RMLD,blk denote the set of achievable rate vectors. We show in Ap-

pendix C.1 that RMLD = RMLD,blk. The superposition rate region, stated in

Definition 18, is optimal for the MLD problem, as shown in [68]. Note that since

Z is a zero-entropy source, this region is equivalent toR∗.
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Definition 18. Rsup{(R1, R2, R3) :

Ri =
3∑

α=1

rαi for 1 ≤ i ≤ 3

for some rαi ≥ 0, satisfying, for 1 ≤ α ≤ 3,

r1
i ≥ H(X) for 1 ≤ i ≤ 3

r2
i + r2

j ≥ H(Y ) for 1 ≤ i < j ≤ 3

r3
1 + r3

2 + r3
3 ≥ H(Z)}.

In order to prove Theorem 19, we shall show that R = RMLD,blk(= RMLD).

This, together with the result in [68] which states thatRMLD = Rsup(= R∗), will

then imply thatR = R∗.

Theorem 20 (Theorem 1 in [68]). RMLD = Rsup.

Theorem 21. R = RMLD,blk.

Before proving Theorem 21, we will prove a few lemmas that will be integral

to the proof. Consider an MLD code (F1, F2, F3, Tv,v ∈ Ω3) under the block-

error probability definition (Definition 17). For each v ∈ Ω3, define the set1

EF,Tv := {(x`, y`) : X̂`
v 6= x` if v ∈ Ω1

3 and (X̂`
v, Ŷ

`
v ) 6= (x`, y`) if v ∈ Ω2

3 ∪ Ω3
3},

where X̂`
v and Ŷ `

v are the reconstructions output by decoder Tv for the source

sequence (x`, y`).

Now consider a code (f1, f2, f3, g) for the problem at hand. Define the set

Ef ,g := {(x`, y`) : max
α

max
Cα

1e(f , g, α, Cα, x
`, y`) = 1}.

1The 3-encoder MLD problem has three sources X , Y , and Z. However, since we assume Z
is a zero-entropy source, i.e., a deterministic sequence, we shall only consider sources X and Y .
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Lemma 5. Given an MLD code (f1, f2, f3, Tv,v ∈ Ω3), there exists a code (f1, f2, f3, g)

for the problem at hand, with the same encoders as the MLD code, such that Ef ,g ⊂⋃
v∈Ω3
Ef ,Tv .

Proof. Consider an MLD code (f1, f2, f3, Tv,v ∈ Ω3). We will construct a code

(f1, f2, f3, g) for the problem at hand with the same encoders as the MLD en-

coders, and a decoder such that Ef ,g ⊂
⋃

v∈Ω3
Ef ,Tv . The decoder receives all

three messages, one of which could potentially be corrupted. The decoder re-

constructs X` as follows. For each of the three singleton decoders Tv, v ∈ Ω1
3,

the decoder reconstructs X`, thus obtaining three reconstructions X̂`
1, X̂`

2, and

X̂`
3. It then outputs its own reconstruction of X` by choosing randomly from the

sequences with maximal multiplicity among X̂`
1, X̂`

2, and X̂`
3: if at least two of

the three reconstruction are equal, the decoder outputs the common sequence

as X̂`. Otherwise, it outputs a randomly chosen sequence from X̂`
1, X̂`

2, and X̂`
3

as its reconstruction.

The decoding process for Y ` is similar. For every pair of messages, the de-

coder produces reconstructions Ŷ `
12, Ŷ `

13, and Ŷ `
23 using the MLD decoders Tv for

v ∈ Ω2
3. If all of the Ŷ `

12, Ŷ
`

13, and Ŷ `
23 sequences are identical, the decoder outputs

the common sequence as its reconstruction for Y `. Otherwise, it outputs Ŷ ` = ∅.

Consider now a sequence (x`, y`) ∈ Ef ,g, and suppose the traitor takes over

Encoder α, α ∈ {1, 2, 3} and transmits message Cα. Then either

1. Cα = fα(x`, y`) and (x̂`, ŷ`) 6= (x`, y`), or

2. Cα 6= fα(x`, y`) and (x̂`, ŷ`) 6= (x`, y`) and (x̂`, ŷ`) 6= (x`, ∅).

Consider the first case. An error would occur for a source sequence (x`, y`)
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(i.e., (x`, y`) ∈ Ef ,g) if

(i) all three reconstructions X̂`
1, X̂`

2, and X̂`
3 are mutually different, or

(ii) at least two of X̂`
1, X̂`

2, and X̂`
3 are identical, but not equal to x`.

(iii) at least one of Ŷ `
12, Ŷ

`
13, and Ŷ `

23 is not equal to y`.

In the first two cases, it is evident that at least one of X̂`
1, X̂`

2, and X̂`
3 is not equal

to x`, which implies that the sequence (x`, y`) ∈ Ef ,Tv for that encoder-decoder

pair. Likewise, in the third case, since at least one of Ŷ `
12, Ŷ

`
13, and Ŷ `

23 is not equal

to y`, (x`, y`) ∈ Ef ,Tv for that pair of encoders and the corresponding weight-2

decoder. Thus (x`, y`) ∈ ⋃v∈Ω3
Ef ,Tv .

Consider the second case. An error would occur for a source sequence

(x`, y`) (i.e., (x`, y`) ∈ Ef ,g) if

(i) all three reconstructions X̂`
1, X̂`

2, and X̂`
3 are mutually different, or

(ii) at least two of X̂`
1, X̂`

2, and X̂`
3 are identical, but not equal to x`.

(iii) all of Ŷ `
12, Ŷ

`
13, and Ŷ `

23 are identical, but not equal to y`.

In the first two cases, it is evident that at least one of X̂`
1, X̂`

2, and X̂`
3 is not equal

to x`. In the first case, at least two of the messages are uncorrupted, and hence

if all three reconstructions are different, then the reconstructions from the two

uncorrupted messages must also be different, which implies that the sequence

(x`, y`) ∈ Ef ,Tv for one of the honest encoder and the corresponding decoder.

Likewise, in the second case, at least one of the two identical reconstructions

must be from an honest encoder, which implies that the sequence (x`, y`) ∈ Ef ,Tv
for that encoder and decoder. Therefore, the sequence (x`, y`) ∈ Ef ,Tv for some
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v ∈ Ω1
3, and thus (x`, y`) ∈ ⋃v∈Ω3

Ef ,Tv . Similarly, in the third case, one pair of

encoders is honest, and the reconstruction from this honest pair of encoders is

not equal to y`, which implies that (x`, y`) ∈ Ef ,Tv for those two encoders and the

corresponding weight-2 decoder. Therefore, (x`, y`) ∈ ⋃v∈Ω3
Ef ,Tv .

Consider a code (f1, f2, f3, g) for the problem at hand. For a given source

realization (x`, y`), defineMfi(x
`, y`) to be the set of source sequences such that

for all (x̃`, ỹ`) ∈ Mfi(x
`, y`), fi(x̃`, ỹ`) = fi(x

`, y`), for i ∈ {1, 2, 3}. Moreover,

suppose Mfi(X
`, Y `) takes set values M1

fi
,M2

fi
, and so on. Then, for a fixed

i, the sets Mj
fi

are the pre-images of the messages transmitted by Encoder fi,

and form a partition over the set of source sequences. For a fixed Mj
fi

, define

GMj
fi

:= {(x`, y`) ∈Mfi,j : (x`, y`) /∈ Ef ,g}.

Lemma 6. For i ∈ {1, 2, 3}, and for any j, if (x`, y`) ∈ GMj
fi

and (x̃`, ỹ`) ∈ GMj
fi

, then

x` = x̃`.

Proof. Assume WLOG that i = 1, and suppose there exists j such that the set

GMj
f1

contains two source sequences (x`, y`) and (x̃`, ỹ`) such that x` 6= x̃`. The

decoder receives all three messages, one of which may be potentially corrupted.

Suppose (x`, y`) is the true source sequence, and that the message transmitted

by Encoder f3 is corrupted by a traitor. Encoders f1 and f2, being honest, trans-

mit f1(x`, y`) and f2(x`, y`), respectively. The traitor transmits f3(x̃`, ỹ`). Since

(x`, y`) ∈ GMj
f1

(and therefore (x`, y`) /∈ Ef ,g by definition), the decoder outputs

X̂` = x` regardless of Encoder f3’s message.

Now suppose (x̃`, ỹ`) is the true source sequence. Then Encoder f1 trans-

mits f1(x̃`, ỹ`). Then the traitor can take over Encoder f2 and transmit f2(x`, y`),

which would mean, as described above, that the decoder would output X̂` =
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x` 6= x̃` regardless of Encoder f3’s message, leading to an error. Thus (x̃`, ỹ`) ∈

Ef ,g and therefore (x̃`, ỹ`) /∈ GMj
fi

, which is a contradiction. Hence x̃` must be

equal to x`.

Consider again a code (f1, f2, f3, g) for the problem at hand. We can similarly

define sets that are intersections of the pre-images of two encoder messages.

More precisely, for a given source realization (x`, y`), defineMfi,fj(x
`, y`) to be

the set of source sequences such that for all (x̃`, ỹ`) ∈ Mfi,fj(x
`, y`), fi(x̃`, ỹ`) =

fi(x
`, y`) and fj(x̃

`, ỹ`) = fj(x
`, y`). Moreover, supposeMfi,fj(X

`, Y `) takes set

values M1
fi,fj

,M2
fi,fj

,M3
fi,fj

and so on. Then, for fixed i and j, the sets Mk
fi,fj

are intersections of the pre-images of the two messages by Encoders fi and fj ,

and form a partition over the set of source sequences. For a fixedMk
fi,fj

, define

GMk
fi,fj

:= {(x`, y`) ∈Mk
fi,fj

: (x`, y`) /∈ Ef ,g}.

Lemma 7. For 1 ≤ i < j ≤ 3, and for any k, |GMk
fi,fj

| ≤ 1.

Proof. Suppose (X`, Y `) is the observed source sequence. For every possible set

of three messages that the decoder receives, it must output reconstructions for

X` and Y `. For a given triple of messages, the decoder may either decide that

there is no traitor and output (X̂`, Ŷ `) as its reconstruction, or it may decide

that a traitor is present and output (X̂`, ∅). The messages from Encoders f1 and

f2, assuming they are not corrupted, tell the decoder that the observed source

sequence is in one of the setsMk
f1,f2

. Suppose Encoder f3 transmits a message

C3. For each set Mk
f1,f2

, define the set Sk := {(x`, y`) ∈ Mk
f1,f2

: (X̂`, Ŷ `) =

(x`, y`) if C3 = f3(x`, y`)}. We claim that

1. if (x`, y`) /∈ Sk, then (x`, y`) ∈ Ef ,g, and

2. if |Sk| > 1, then Sk ⊂ Ef ,g.
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To see why Claim 1 is true, consider (x`, y`) /∈ Sk. Then if C3 = f3(x`, y`),

(X̂`, Ŷ `) 6= (x`, y`). Therefore, if (x`, y`) is the true source sequence and the

traitor takes over Encoder f3 and transmits f3(x`, y`), the decoder will output

(X̂`, Ŷ `) 6= (x`, y`), resulting in an error. Thus (x`, y`) ∈ Ef ,g. To see why Claim

2 is true, suppose |Sk| > 1 and consider (x`, y`) ∈ Sk and (x̃`, ỹ`) ∈ Sk. Then

if (x`, y`) is the true source sequence, the traitor can transmit f3(x̃`, ỹ`), causing

the decoder to output (X̂`, Ŷ `) = (x̃`, ỹ`) which would result in an error. Thus

(x`, y`) ∈ Ef ,g. Similarly, if (x̃`, ỹ`) is the true source sequence, then the traitor can

transmit f3(x`, y`) which would result in an error. Thus (x̃`, ỹ`) ∈ Ef ,g. Therefore,

Sk ⊂ Ef ,g.

Claims 1 and 2 imply that if Sk = ∅ or |Sk| > 1, then GMk
fi,fj

= ∅, and if

|Sk| = 1, then since GMk
fi,fj

⊂ Sk, and therefore |GMk
fi,fj

| ≤ |Sk| = 1.

Lemma 8. Given a code (f1, f2, f3, g) for the problem at hand, there exists an MLD code

(f1, f2, f3, Tv,v ∈ Ω3), with the same encoders, such that for all v ∈ Ω3, Ef ,Tv ⊂ Ef ,g.

Proof. Consider a code (f1, f2, f3, g) for the problem at hand. We construct an

MLD code that has the same encoders f1, f2, and f3. We define the three weight-

1 MLD decoders as follows. LetMj
fi

be the pre-images of the messages sent by

Encoder fi, i ∈ {1, 2, 3}, and let GMj
fi

be as defined previously. The weight-1

decoder corresponding to Encoder fi operates as follows. If Mj
fi

is the pre-

image of the message it receives from Encoder fi, then the decoder looks at the

set GMj
fi

. If GMj
fi

6= ∅, Lemma 6 guarantees that all sequences in GMj
fi

will have

the same X component, say x`. The decoder outputs x` as its reconstruction for

X`. If GMj
fi

is empty, then it randomly picks a sequence fromMj
fi

and outputs

its X component as its reconstruction for X`.

We define the weight-2 MLD decoders similarly. LetMk
fi,fj

be the intersec-
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tion of the pre-images of the messages sent by Encoders fi and fj , 1 ≤ i < j ≤ 3,

and let GMk
fi,fj

be as defined previously. The weight-2 decoder corresponding

to Encoders fi and fj operates as follows. If Mk
fi,fj

is the intersection of the

pre-images of the messages it receives from Encoders fi and fj , then the de-

coder looks at the set GMk
fi,fj

. If GMk
fi,fj

6= ∅, Lemma 7 guarantees that there will

only be a single sequence in GMk
fi,fj

. The decoder outputs this sequence as its

reconstruction for (X`, Y `). If GMk
fi,fj

is empty, the decoder outputs a randomly

chosen sequence fromMk
fi,fj

as its reconstruction.

The weight-3 decoder receives all three messages and operates by outputting

the same reconstruction as the weight-2 encoder that receives messages from

Encoders f1 and f2.

Consider now the error sets of these MLD decoders. The weight-1 decoders

output the X component of the sequences in GMj
fi

6= ∅, if this set is not empty.

An error therefore occurs for all sequences not in GMj
fi

, i.e., all of these sequences

are in Ef ,Tv . Note that all of these sequences are also in Ef ,g, since if (x`, y`) /∈

GMj
fi

, then (x`, y`) ∈ Ef ,g by definition. If GMj
fi

is empty, then the decoder outputs

a randomly chosen sequence from Mj
fi

, which means that all other sequences

inMj
fi

are in Ef ,Tv . Note that in this case, all sequences inMj
fi

are in Ef ,g, since

GMj
fi

is empty. In both cases, therefore, if (x`, y`) ∈ Ef ,Tv , then (x`, y`) ∈ Ef ,g.

The weight-2 decoders output the solitary sequence in GMk
fi,fj

if it is not

empty. An error therefore occurs for all sequences not in GMk
fi,fj

, i.e., all of these

sequences are in Ef ,Tv . Note that all of these sequences are also in Ef ,g, since if

(x`, y`) /∈ GMk
fi,fj

, then (x`, y`) ∈ Ef ,g by definition. If GMk
fi,fj

is empty, then the

decoder outputs a randomly chosen sequence from Mk
fi,fj

, which means that

all other sequences inMk
fi,fj

are in Ef ,Tv . Note that in this case, all sequences in
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Mk
fi,fj

are in Ef ,g, since GMk
fi,fj

is empty. In both cases, therefore, if (x`, y`) ∈ Ef ,Tv ,

then (x`, y`) ∈ Ef ,g.

The error set of the weight-3 decoder is the same as the error set of the

weight-2 decoder corresponding to Encoders f1 and f2, and therefore is a subset

of Ef ,g.

Theorem 21 now follows straightforwardly from Lemmas 5 and 8. We omit

the details.
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APPENDIX A

CHAPTER 2: PROOFS

A.1 Preliminaries

We define a multi-variable mutual information as follows:

IK(X1;X2; . . . ;XK) = D

(
p(X1, . . . , XK)||

K∏
i=1

p(Xi)

)

=
K∑
i=1

H(Xi)−H(X1, . . . , XK).

In particular, I1(X) = 0. The multi-variable mutual information, as defined

above, is a measure of the mutual dependence among K random variables and

is different from McGill’s multivariate mutual information [41]. We note the

following properties of IK(X1;X2; . . . ;XK).

1. IK(Xl
1; . . . ;Xl

K) ≥ 0.

2. IK(X1; . . . ;XK) ≥ Im(X1; . . . ;Xm)+I(K−m+1)(f(X1, . . . , Xm);Xm+1; . . . ;XK),

where f(X1, . . . , Xm) is a function of the random variables X1, . . . , Xm,

m < K.

Remark: This property holds by symmetry for the general case when f(·)

is a function of any size-m subset of X1, . . . , XK .

Proof.

IK(X1; . . . ;XK)

=
m∑
i=1

H(Xi) +
K∑

i=m+1

H(Xi)−H(X1, . . . , Xm)
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−H(Xm+1, . . . , XK |X1, . . . , Xm)

= Im(X1; . . . ;Xm) +
K∑

i=m+1

H(Xi)

−H(Xm+1, . . . , XK |X1, . . . , Xm)

= Im(X1; . . . ;Xm) +
K∑

i=m+1

H(Xi)

−H(Xm+1, . . . , XK |X1, . . . , Xm, f(X1, . . . , Xm))

≥ Im(X1; . . . ;Xm) +
K∑

i=m+1

H(Xi)

−H(Xm+1, . . . , XK |f(X1, . . . , Xm))

= Im(X1; . . . ;Xm)

+ I(K−m+1)(f(X1, . . . , Xm);Xm+1; . . . ;XK),

where the solitary inequality holds because conditioning never increases

entropy.

3. I(X1; . . . ;Xi; . . . ;XK) ≥ I(X1; . . . ; f(Xi); . . . ;XK), where f(Xi) is a func-

tion of the random variable Xi. This is the data processing inequality for

the multi-variable mutual information and is a special case of Property 2.

A.2 Proof of Theorem 3

Let Dk < 1 − k
n

and rational. Let fi, i ∈ N and gK, K ⊆ N ,K 6= ∅, be a code

that achieves (Rk(Dk), D1, . . . , Dk, . . . , Dn). Let Rk(Dk) be the rate of fi, i ∈

N . Consider endowing the source with an i.i.d. uniform distribution over X l
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for analysis purposes. From the proof of Theorem 7 (cf. (A.3) and (A.4)) and

using the fact that the worst-case distortion is no lower than the average-case

distortion, we obtain Ik(fs1 ; . . . ; fsk) = 0.

Let X̂l
si

be the reconstructed source string when the decoder has access to

the sthi description only. By Property 3 of the multi-variable mutual information,

Ik(X̂
l
s1

; . . . ; X̂l
sk

) ≤ Ik(fs1 ; . . . ; fsk) = 0 for all S ⊂ N , |S| = k. By Property 2 of

the multi-variable mutual information, I(X̂l
i; X̂

l
j) = 0 for all i, j ∈ N , i 6= j, and

thus I(X̂it; X̂jt) = 0 for all i, j ∈ N , i 6= j, and t = 1, . . . , l. Now if any two of the

X̂l
si

disagree in a source symbol they reveal, then the resulting single-message

distortion is going to be∞ and the result follows trivially, so suppose that the

X̂l
si

are consistent. Then by Lemma 1, we have

n∑
i=1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, X̂it)

]
≥ n− 1,

which implies

D1 = max
i∈N

max
xl∈X l

[
1

l

l∑
t=1

d(xt, X̂it)

]
≥ n− 1

n
= 1− 1

n
.

This completes the proof.

A.3 Proof of Theorem 4

IfR′ < Rk(Dk), then the sum rate of any k descriptions is strictly less than 1−Dk,

and the source string cannot be reconstructed with distortion Dk. Thus the rate

of each description must be at least Rk(Dk). Now, in light of the previous the-

orem, it suffices to show that for any (Rk(Dk), D1, . . . , Dk, . . . , Dn) ∈ RDworst,

if D1 = 1 − 1
n

, then Dm ≥ 1 − m
n

for m < k. Let S = {s1, . . . , sk} and
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M = {s1, . . . , sm}. Let Xl
M be the source reconstruction when the decoder has

access to set of descriptions indexed by the elements inM. Then from (A.4) and

Properties 2 and 3 of the multi-variable mutual information, it follows that

I(Xl
M;Xl

sm+1
; . . . ;Xl

sk
) ≤ I(Xl

M; fsm+1 ; . . . ; fsk)

≤ Ik(fs1 ; . . . ; fsk) = 0,

and thus I(XM,t;Xsm+1,t; . . . , Xsk,t) = 0 for t = 1, . . . , l. This implies that for

each t, the (n −m + 1) random variables {XM,t;Xsm+1,t; . . . ;Xsn,t} are pairwise

independent, and therefore by Lemma 1,

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]
+

n∑
i=m+1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, Xsi,t)

]

≥ n−m.

Since D1 = 1− 1
n

, we have

max
xl∈X l

[
1

l

l∑
t=1

d(xt, Xsi,t)

]
≤ 1− 1

n

for m+ 1 ≤ i ≤ n, and thus

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]

≥ n−m−
n∑

i=m+1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, Xsi,t)

]

≥ n−m− (n−m)

(
1− 1

n

)
=
n−m
n

= 1− m

n
,

which implies

Dm = max
M⊂N
|M|=m

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]
≥ 1− m

n
.

This completes the proof.
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A.4 Proof of Theorem 5

Since m divides n, we can form n/m sets consisting of m messages each. Denote

these sets by M1, . . . ,Mn/m, where Mi ⊂ {f1, . . . , fn}, |Mi| = m, and Mi ∩

Mj = ∅, i, j ∈ {1, . . . , n/m}, i 6= j. Since m ≤ k/2, there exists a set S =

{s1, . . . , sk} of k messages containingMi andMj for some i, j ∈ {1, . . . , n/m},

i 6= j. Let Xl
Mi

be the source reconstruction when the decoder has access to the

messages inMi only. By Property 2 of the multi-variable mutual information,

it follows that for the set S containingMi andMj ,

I(Xl
Mi

;Xl
Mj

) ≤ I(k−2m+2)(X
l
Mi

;Xl
Mj

; fr; . . . ; fr+k−2m−1)

≤ Ik(fs1 ; . . . ; fsk) = 0,

where fr, . . . , fr+k−2m−1 ∈ {fs1 , . . . , fsk} \ {Mi,Mj}. By Lemma 1, we have

n/m∑
i=1

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XMi,t)

]
≥ n

m
− 1,

and thus

Dm = max
M⊂N
|M|=m

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XM,t)

]

≥ max
i∈{1,...,n/m}

max
xl∈X l

[
1

l

l∑
t=1

d(xt, XMi,t)

]

≥
n
m
− 1
n
m

= 1− m

n
.

This completes the proof.
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A.5 Proof of Theorem 7

The proof of the first part of Theorem 7 is simple. Let Dk ≥ 1− k
n

. No excess rate

for every k descriptions implies that every description has rate Rk(Dk). If the

decoder receives m descriptions, then it receives a sum-rate of mRk(Dk) bits per

source symbol. Using the point-to-point rate-distortion function for a binary

source with erasure distortion, we get Dm ≥ 1−mRk(Dk).

The proof of the second part of Theorem 7 is less trivial. We begin with a

lemma which is similar in spirit to Lemma 1 for worst-case distortion.

Lemma 9. LetX1, . . . , Xn be erased versions (Definition 4) of a uniform binary random

variableX taking values in {+,−}. If
(
1− 1

n

)k ≤ 1
2

and Ik(Xs1 ; . . . ;Xsk) = 0 ∀ S =

{s1, . . . , sk}, S ⊂ N , |S| = k, then
∑n

i=1 Pr(Xi = 0) ≥ n− 1.

Proof.
(
1− 1

n

)k ≤ 1
2
⇒
(

1
2

) 1
k ≥ 1− 1

n
. We have the following four cases:

Case I: There exists i ∈ N such that Pr(Xi = +) > 0 and Pr(Xi = −) > 0.

Assume i = 1 without loss of generality. Since X1, . . . , Xn are erased versions

of the same variable, they can never disagree in the source symbol they reveal

(i.e., if Xi = + for some i ∈ N , then the rest cannot be −, and if Xi = −, then

the rest cannot be +). Thus Pr(X1 = +, Xj = −) = 0, j ∈ {2, . . . , n}. Since

Ik(Xs1 ; . . . ;Xsk) = 0 for any set of k variables containing X1 and Xj , X1 and Xj

must be independent. Thus

Pr(X1 = +) · Pr(Xj = −) = Pr(X1 = +, Xj = −) = 0

⇒ Pr(Xj = −) = 0. (A.1)

Likewise, Pr(X1 = −, Xj = +) = 0 ⇒ Pr(Xj = +) = 0. Thus Pr(Xj = 0) = 1

and so
∑n

i=1 Pr(Xi = 0) ≥ n− 1.

102



Case II: There exists i ∈ N such that Pr(Xi = +) > 0 and Pr(Xi = −) = 0, and

Case I does not hold.

Let S = {s1, . . . , sk} be a size-k subset of N . For all T ⊂ S, denote by ET the

event that Xsj = − ∀ sj ∈ T , and Xsj = 0 ∀ sj /∈ T , sj ∈ S. Now since

Pr(Xsj = −) = 0 from (A.1), Pr(ET ) = 0 ∀ T 6= ∅. Thus

Pr(X = −) ≤
∑
T ⊂S

Pr(ET )

= Pr(Xs1 = Xs2 = . . . = Xsk = 0). (A.2)

Since Pr(X = −) = 1/2 and (Xs1 , . . . , Xsk) are independent, (A.2) yields

k∏
j=1

Pr(Xsj = 0) = Pr(Xs1 = Xs2 = . . . = Xsk = 0) ≥ 1

2
.

In order to lower bound
∑n

i=1 Pr(Xi = 0), we solve

min
∑n

j=1 Pr(Xj = 0)

s.t.
∏k

j=1 Pr(Xsj = 0) ≥ 1

2
∀ S = {s1, . . . , sk} ⊂ N .

This is a convex optimization problem, as can be readily seen by substituting

αj = log Pr(Xj = 0), and can therefore be solved by choosing Pr(Xj = 0) =
(

1
2

) 1
k

for j = 1, . . . , n. Thus
∑n

j=1 Pr(Xj = 0) ≥ n
(

1
2

) 1
k ≥ n(1− 1/n) = n− 1.

Case III: There exists i ∈ N such that Pr(Xi = −) > 0 and Pr(Xi = +) = 0, and

Case I does not hold.

This case is symmetric to Case II.

Case IV: For all i ∈ N , Pr(Xi = +) = Pr(Xi = −) = 0.

We have
∑n

j=1 Pr(Xj = 0) >
∑n

j=2 Pr(Xj = 0) = n− 1.

We are now in a position to prove the second part of Theorem 7. Let Dk <

1− k
n

, Dk rational, and
(
1− 1

n

)k ≤ 1
2
, and let fi, i ∈ N and gK, K ⊆ N , K 6= ∅ be
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a code that achieves the rate-distortion vector (Rk(Dk), D1, . . . , Dk, . . . , Dn). Let

fi, i ∈ N have rate Rk(Dk). We have

lRk(Dk) ≥ H(fi), i ∈ N . (A.3)

Let X̂l
S be the reconstruction when the source Xl is reconstructed from a set

S of descriptions. Since Dk is finite, the decoder cannot make errors in its

reconstruction (which would incur infinite distortion). Thus X̂l
S must be an

erased version of Xl, i.e., for all t ∈ {1, . . . , l}, X̂S,t = Xt or X̂S,t = 0. Then

∀ S = {s1, . . . , sk} ⊂ N , |S| = k, we have

H(fs1 . . . fsk) ≥ H(X̂l
S)

≥ I(Xl; X̂l
S)

= H(Xl)−H(Xl|X̂l
S)

= l −
l∑

t=1

H(Xt|X̂l
S , X1, . . . , Xt−1)

≥ l −
l∑

t=1

H(Xt|X̂S,t)

= l −
l∑

t=1

H(Xt|X̂S,t = 0) · Pr(X̂S,t = 0)

= l −
l∑

t=1

Pr(X̂S,t = 0)

= l − E

[
l∑

t=1

1{X̂S,t=0}

]

≥ l − lDk = l(1−Dk). (A.4)

Thus

Ik(fs1 ; . . . ; fsk) =
k∑
j=1

H(fsj)−H(fs1 . . . fsk)

≤ klRk(Dk)− l(1−Dk) = 0.
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Let X̂l
si

be the reconstruction when the decoder receives the sthi descrip-

tion only. Then Ik(X̂
l
s1

; . . . ; X̂l
sk

) ≤ Ik(fs1 ; . . . ; fsk) = 0 (Property 3) and so

Ik(X̂s1,t; . . . ; X̂sk,t) = 0, t ∈ {1, . . . , l}. By Lemma 9,
∑n

i=1 Pr(X̂it = 0) ≥ (n − 1)

for t ∈ {1, . . . , l}. Thus

1

l

l∑
t=1

n∑
i=1

Pr(X̂it = 0) ≥ n− 1

⇒ max
i

(
1

l

l∑
t=1

Pr(X̂it = 0)

)
≥ 1− 1

n
.

This completes the proof.

A.6 Proof of Theorem 8

We establish two lemmas before proving Theorem 8.

Lemma 10. Let X1, X2, and X3 be Bernoulli random variables such that I(Xi;Xj) =

0, ∀ i, j ∈ {1, 2, 3}, i 6= j, and Pr(X1 = X2 = X3 = 0) ≥ 1
2
. Let p = max(Pr(X1 =

0),Pr(X2 = 0)). Then

Pr(X3 = 0) ≥ 1

2
+
p(1− p)
2p− 1

.

Proof. If p = 1, then the conclusion follows directly from the hypothesis, so

suppose that p < 1. Let pi denote Pr(Xi = 0), p(x1, x2, x3) denote Pr(X1 =

x1, X2 = x2, X3 = x3), and px3|x1,x2 denote Pr(X3 = x3|X1 = x1, X2 = x2).

Let q0 = p0|0,0, q1 = p0|0,1, and q2 = p0|1,1. We thus have p(0, 0, 0) = p1p2q0,

p(0, 1, 0) = p1(1− p2)q1, and p(1, 1, 0) = (1− p1)(1− p2)q2. Then

Pr(X1 = 0, X3 = 0) = p(0, 0, 0) + p(0, 1, 0)

= p1(p2q0 + (1− p2)q1) (A.5)
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Pr(X2 = 1, X3 = 0) = p(0, 1, 0) + p(1, 1, 0)

= (1− p2)(p1q1 + (1− p1)q2). (A.6)

Since (X1, X3) and (X2, X3) are pairwise independent, we have, from (A.5) and

(A.6),

Pr(X1 = 0, X3 = 0) = p1p3 = p1(p2q0 + (1− p2)q1)

⇒ p3 = p2q0 + (1− p2)q1, (A.7)

Pr(X2 = 1, X3 = 0) = (1− p2)p3

= (1− p2)(p1q1 + (1− p1)q2)

⇒ p3 = p1q1 + (1− p1)q2. (A.8)

From (A.7) and (A.8),

p1q1 + (1− p1)q2 = p2q0 + (1− p2)q1

⇒ q2 =
p2q0 − (p1 + p2 − 1)q1

1− p1

. (A.9)

Since p(0, 0, 0) ≥ 1/2 by hypothesis, we have p1p2 ≥ 1/2, and thus p1 +p2−1 > 0.

Now since q2 ≤ 1, (A.9) gives

1 ≥ p2q0 − (p1 + p2 − 1)q1

1− p1

⇒ q1 ≥
p2q0 − (1− p1)

p1 + p2 − 1
. (A.10)

Now

p(0, 0, 0) = p1p2q0 ≥
1

2
⇒ p2q0 ≥

1

2p1

. (A.11)

Assume without loss of generality that p1 ≥ p2. Then p1 + p2 ≤ 2p1. Substituting

this and (A.11) into (A.10) yields

q1 ≥
1

2p1
− 1 + p1

2p1 − 1
=

p1

2p1 − 1
− 1

2p1

. (A.12)

Upon substituting (A.11) and (A.12) into (A.7), we get

p3 ≥
1

2p1

+ (1− p2)

(
p1

2p1 − 1
− 1

2p1

)
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≥ 1

2p1

+ (1− p1)

(
p1

2p1 − 1
− 1

2p1

)
=

1

2
+
p1(1− p1)

2p1 − 1

where the last inequality follows because p2 ≤ p1 and p1

2p1−1
− 1

2p1
> 0.

Corollary 1. Let X1, X2, X3 and X4 be Bernoulli random variables such that

I(Xi;Xj) = 0, ∀ i, j ∈ {1, 2, 3, 4}, i 6= j, and Pr(X1 = X2 = X3 = X4 = 0) ≥ 1
2
.

Then
4∑
i=1

Pr(Xi = 0) ≥ 3.

Proof. Let pi = Pr(Xi = 0). Assume WLOG that p1 ≥ p2 ≥ p3 ≥ p4. Now

p3p4 = Pr(X3 = X4 = 0) ≥ 1/2 by hypothesis, which implies p3 ≥ 1/
√

2 and

p4 ≥ 1/2p3. Applying Lemma 10 to X2, X3, and X4 gives p2 ≥ 1
2

+ p3(1−p3)
2p3−1

. Thus

4∑
i=1

pi = p1 + p2 + p3 + p4

≥ 2p2 + p3 + p4

≥ 2 max

(
p3,

1

2
+
p3(1− p3)

2p3 − 1

)
+ p3 +

1

2p3

≥ min
x∈[ 1√

2
,1]

2 max

(
x,

1

2
+
x(1− x)

2x− 1

)
+ x+

1

2x
.

Since 1
2

+ p3(1−p3)
2p3−1

is monotonically decreasing in p3 for p3 ∈ (1/2, 1], it is easy to

verify that

max

(
x,

1

2
+
x(1− x)

2x− 1

)
=

 x if x ≥ 1
2

+ 1√
12

1
2

+ x(1−x)
2x−1

if x ≤ 1
2

+ 1√
12
,

where 1
2

+ 1√
12

is the admissible solution to the equation x = 1
2

+ x(1−x)
2x−1

. Thus

4∑
i=1

pi ≥ min

(
min

x∈[ 1√
2
, 1
2

+ 1√
12

]
2

(
1

2
+
x(1− x)

2x− 1

)
+ x+

1

2x
,
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min
x∈[ 1

2
+ 1√

12
,1]

2x+ x+
1

2x

)

= min

(
min

x∈[ 1√
2
, 1
2

+ 1√
12

]
1 +

1

2x
+

x

2x− 1
,

min
x∈[ 1

2
+ 1√

12
,1]

3x+
1

2x

)

= min(3, 3) = 3,

where the penultimate equality follows from the fact that 1 + 1
2x

+ x
2x−1

is a

monotonically decreasing in x for x ∈ [ 1√
2
, 1

2
+ 1√

12
] and takes a minimum value

of 3 at x = 1
2

+ 1√
12

, and that 3x + 1
2x

is monotonically increasing in x for x ∈

[1
2

+ 1√
12
, 1] and takes a minimum value of 3 at x = 1

2
+ 1√

12
.

The following lemma is similar to Lemma 9, but is adapted to the n = 4,

k = 2 case, which is not covered by Lemma 9. Lemma 9 requires that n and k

satisfy the inequality
(
1− 1

n

)k ≤ 1
2
, which is violated when n = 4 and k = 2.

Indeed, much of the following proof is similar to that of Lemma 9, except for

Cases II and III, where we use Corollary 1 to bypass the condition
(
1− 1

n

)k ≤ 1
2

which is needed in Case II of the proof of Lemma 9.

Lemma 11. Let X1, . . . , X4 be erased versions of a uniform binary random variable X

taking values in {+,−}. If I(Xi;Xj) = 0, i, j ∈ {1, . . . , 4}, i 6= j, then

4∑
i=1

Pr(Xi = 0) ≥ 3.

Proof. The proof is very similar to that of Lemma 9, so we only summarize the

argument here.

Case I: There exists i ∈ {1, 2, 3, 4} such that Pr(Xi = +) > 0 and Pr(Xi = −) > 0.

Just as in the proof of Lemma 9, we have
∑4

j=1 Pr(Xj = 0) ≥ 4− 1 = 3.

Case II: There exists i ∈ {1, 2, 3, 4} such that Pr(Xi = +) > 0 and Pr(Xi = −) =
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0, and Case I does not hold.

Assume i = 1 WLOG. Then from (A.1), Pr(Xj = −) = 0 for j ∈ {2, 3, 4}. Thus

the Xj are effectively binary random variables such that Pr(X1 = . . . = X4 =

0) ≥ 1/2. By Corollary 1,
∑4

j=1 Pr(Xj = 0) ≥ 3.

Case III: There exists i ∈ {1, 2, 3, 4} such that Pr(Xi = −) > 0 and Pr(Xi = +) =

0, and Case I does not hold.

This case is analogous to Case II.

Case IV: For all i ∈ {1, 2, 3, 4}, Pr(Xi = +) = Pr(Xi = −) = 0.

We have
∑4

j=1 Pr(Xj = 0) >
∑4

j=2 Pr(Xj = 0) = 4− 1 = 3.

We are now in a position to prove Theorem 8. Let fi, i ∈ N and gK, K ⊆ N

be a code that achieves (1−D2

2
, D1, D2, D3, D4). Using the same argument as that

in the proof of the second part of Theorem 7, we have for i, j ∈ {1, 2, 3, 4}, i 6= j

that I(Xl
i;X

l
j) ≤ I(fi; fj) = 0 and thus I(Xit;Xjt) = 0 for all t ∈ {1, . . . , l}. By

Lemma 13,
∑4

i=1 Pr(Xit = 0) ≥ 3 for t ∈ {1, . . . , l}. It follows that

1

l

l∑
t=1

4∑
i=1

Pr(Xit = 0) ≥ 3

⇒ max
i

(
1

l

l∑
t=1

Pr(Xit = 0)

)
≥ 3

4
.

This completes the proof.

A.7 Proof of Theorem 9

We establish two lemmas before proving Theorem 9.

Lemma 12. Let X1, . . . , Xn be Bernoulli random variables such that I(Xi;Xj) = 0
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∀ i, j ∈ N , i 6= j, and Pr(X1 = X2 = . . . = Xn = 0) ≥ 1
2
. Then

1

n

n∑
i=1

Pr(Xi = 0) ≥ 1− 2

n
.

Proof. Let pi denote Pr(Xi = 0) and let qi = Pr(Xi = 1) = 1 − pi. Since the Xi’s

are pairwise independent, we have

E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

qi

Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

piqi.

Let α >
√

2
n2 (
∑n

i=1 piqi). Then, by Chebyshev’s inequality,

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

qi

∣∣∣∣∣ > α

)
≤ Var

[
1
n

∑n
i=1Xi

]
α2

=

∑n
i=1 piqi
n2α2

<
1

2
.

Let E1 and E2 be the events | 1
n

∑n
i=1 Xi − 1

n

∑n
i=1 qi| ≤ α and X1 = X2 = . . . =

Xn = 0, respectively. Then Pr(E1) > 1
2
, and Pr(E2) ≥ 1

2
by hypothesis. Since

Pr(E1) + Pr(E2) > 1, Pr(E1 ∩ E2) > 0. This implies that

1

n

n∑
i=1

qi ≤ α⇒ 1

n

n∑
i=1

pi ≥ 1− α.

Since α was arbitrary, this implies

1

n

n∑
i=1

pi ≥ 1−

√√√√ 2

n2
(
n∑
i=1

piqi). (A.13)

Moreover,

1

n

n∑
i=1

piqi ≤
1

n

n∑
i=1

qi ≤

√√√√ 2

n2
(
n∑
i=1

piqi).

A little algebra gives

n∑
i=1

piqi ≤

√√√√2
n∑
i=1

piqi ⇒
n∑
i=1

piqi ≤ 2. (A.14)
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Substituting (A.14) into (A.13) yields

1

n

n∑
i=1

pi ≥ 1−
√

2

n2
· 2 = 1− 2

n
.

Lemma 13. Let X1, . . . , Xn be erased versions of a uniform binary random variable X

taking values in {+,−}. If I(Xi;Xj) = 0, i, j ∈ N , i 6= j, then

n∑
i=1

Pr(Xi = 0) ≥ n− 2.

Proof. We have Cases I, II, III, and IV as in the proof of Lemma 9. Cases I and IV

are the same as those in Lemma 9, so we will only mention Cases II and III.

Case II: There exists i ∈ N such that Pr(Xi = +) > 0 and Pr(Xi = −) = 0 and

Case I does not hold.

Assume i = 1 WLOG. Then from (A.1), Pr(Xj = −) = 0 for j ∈ {2, . . . , n}. Thus

theXj’s are always erased when the binary sourceX = −, and so Pr(X1 = . . . =

Xn = 0) ≥ 1/2. By Lemma 12,
∑n

i=1 Pr(Xi = 0) ≥ n− 2. The proof of Case III is

analogous to the proof of Case II.

We are now in a position to prove Theorem 9. Let fi, i ∈ N and gK, K ⊆

N be a code that achieves (1−D2

2
, D1, D2, . . . , Dn). Using the same argument as

that in the proof of the second part of Theorem 7, we have for i, j ∈ N , i 6= j

that I(Xl
i;X

l
j) ≤ I(fi; fj) = 0 and thus I(Xit;Xjt) = 0 for t ∈ {1, . . . , l}. By

Lemma 13,
∑n

i=1 Pr(Xit = 0) ≥ n− 2 for t ∈ {1, . . . , l}. It follows that

1

l

l∑
t=1

n∑
i=1

Pr(Xit = 0) ≥ n− 2.

⇒ max
i

(
1

l

l∑
t=1

Pr(Xit = 0)

)
≥ 1− 2

n
.

This completes the proof.
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A.8 A Random Coding Proof of Theorem 6

Like the MDS coding scheme for worst-case distortion, the random coding

scheme consists of two parts - uncoded bits and an random binning component.

The uncoded component is similar to the uncoded component of the MDS cod-

ing scheme. The difference lies in the encoded component; instead of encoding

an erased version using an (n, k) systematic MDS code, the average-case dis-

tortion encoder randomly bins an erased version of the source and then sends

bin indices to the decoder. The decoder outputs the uncoded bits as the source

reconstruction if less than k descriptions are received. If k or more descriptions

are received, the decoder uses the uncoded bits and the bin indices to decode the

encoded erased version using typicality considerations. A formal description of

the scheme follows.

Case I: Dk ≥ 1− k
n

Assume without loss of generality that Dk is rational (if Dk is irrational, then

we can prove achievability for a sequence of rational distortions in [1 − k/n, 1]

converging to Dk and take limits). Then there exists a positive integer l′ such

that l′Rk(Dk) is a positive integer. Choose a blocklength l = αnl′, where α is

any positive integer. Observe a length-l source sequence Xl, and divide Xl into

n disjoint parts such that each part contains l/n = αl′ bits. (The division is the

same regardless of the source realization.) Label the parts Xi, i ∈ N . Choose

lRk(Dk) bits from each of the n parts (since Dk ≥ 1 − k
n

, lRk(Dk) ≤ l
n

and

therefore lRk(Dk) bits can be chosen from each part). Denote by Yi the set of

lRk(Dk) bits chosen from Xi. Transmit Yi uncoded over the ith channel.

The decoding is trivial. If m descriptions, say (Y1, . . . ,Ym), are received,
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output X̂l
m as the reconstruction of Xl, where X̂l

m is such that the mlRk(Dk) bits

corresponding to (Y1, . . . ,Ym) are non-erased and the other (l−mlRk(Dk)) bits

are erasures. The distortion, therefore, is (l−mlRk(Dk))/l = 1−mRk(Dk). When

k descriptions are received, the distortion is 1−kRk(Dk) = Dk. Thus R̃ ∈ RDavg,

and therefore also lies inRDavg.

Case II: Dk < 1− k
n

The scheme for this case is an extension of the scheme for Case I. It has two com-

ponents; random binning and transmission of uncoded source bits. An erased

version of every source sequence is binned separately at each encoder. The ob-

served source string is divided into n disjoint parts. Each uncoded part is then

sent on one of the n channels along with the corresponding bin index of the

erased version of the source. If less than k descriptions are received, the de-

coder outputs a partial reconstruction based solely on the uncoded parts; if k or

more descriptions are received, the decoder outputs a reconstruction based on

the uncoded parts and the bin indices.

Assume again that Dk is rational. Choose ε > 0, and define R′ = Rk(Dk) −

1/n+ε. SinceDk is rational, there exists a positive integer l′ such that l′Dk/(n−k)

is an integer. Choose a blocklength l = αnl′, where α is any positive integer.

Random binning: Construct n sets of bins such that every set contains 2lR
′

bins. For every length-l source string xl ∈ X l, construct an erased version as

follows. Divide xl into n disjoint parts such that each part contains l/n = αl′

bits (the division is done identically for all source sequences). For each part,

replace the last lDk/(n−k) bits by erasures (since Dk < 1− k
n

, each part contains

l/n > lDk/(n − k) bits). Assign the resulting erased version xe
l uniformly at
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random, and independently from other strings, to one of the 2lR
′ bins in the ith

set, for all i ∈ N . The assignment is done only once for each erased version. This

is important because multiple source strings can have the same erased version.

Denote the assignments by Γi.

Encoding: Let Xl be the observed source sequence. Divide Xl into n disjoint

parts each containing l/n bits as described above. Label the parts Xi, i ∈ N . Let

Bi = Γi(X
l) be the index of the bin containing the erased version of Xl in the ith

bin set. Transmit (Xi, Bi) over the ith channel.

Decoding: If m descriptions, say {(X1, B1), . . . , (Xm, Bm)}, are received,

where m < k, output X̂l
m as the reconstruction of Xl, where X̂l

m

is such that the ml/n bits corresponding to (X1, . . . ,Xm) are non-erased

and the other (l − ml/n) bits are erasures. If m > k descriptions

are received, say {(X1, B1), . . . , (Xm, Bm)}, choose any k descriptions, say

{(X1, B1), . . . , (Xk, Bk)}, and search the bins (B1, . . . , Bk) for a sequence Y such

that Γi(Y) = Bi, i = 1, . . . , k, and Y is consistent with the partially revealed

source string (X1, . . . ,Xk). Output X̂l
m = {(X1, . . . ,Xm)} ∪ {Y} as the re-

construction of Xl. (Thus the non-erased bits in X̂l
m are the bits revealed by

(X1, . . . ,Xm) or by the erased version Y, or both.) There is guaranteed to be at

least one such sequence Y in the bins indexed by B1, . . . , Bk. If there is more

than one such sequence, output the non-erased portion (X1, . . . ,Xm) as the re-

construction of Xl.

Error analysis: We say an error ES has occurred at the decoder if, for a set

S = {s1, . . . , sk} of k descriptions, there exists an erased version Y 6= Xe
l such

that Γsi(Y) = Γsi(Xe
l) for all si ∈ S and Y is consistent with (Xs1 , . . . ,Xsk). Let

CS be the set of erased versions that are consistent with (Xs1 , . . . ,Xsk). Define
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E =
⋃
S,|S|=k ES . We bound Pr(E) as follows.

Pr(E)

≤
∑
S,|S|=k

Pr(ES)

=
∑
S,|S|=k

Pr(∃Y 6= Xe
l,Y ∈ CS : Γsi(Y) = Γsi(Xe

l)

∀si ∈ S)

=
∑
xl

p(xl)
∑
S,|S|=k

Pr(∃Y 6= xe
l,Y ∈ CS :

Γsi(Y) = Γsi(xe
l)∀si ∈ S|Xl = xl)

≤
∑
xl

p(xl)
∑
S,|S|=k

∑
y 6=xe

l

y∈CS

Pr(Γsi(y) = Γsi(xe
l)

∀si ∈ S|Xl = xl)

≤
∑
xl

p(xl)
∑
S,|S|=k

2−klR
′|CS |

=
∑
xl

p(xl)
∑
S,|S|=k

2−kl(
1−Dk
k
− 1
n

+ε) · 2(n−k)( l
n
−l Dk

n−k )

=
∑
xl

p(xl)
∑
S,|S|=k

2−lkε

≤
(
n

k

)
2−lkε.

We now show that for any ε > 0, the (n+ 1)-tuple (Rk(Dk) + ε, 1− 1
n

+ ε, 1− 2
n

+

ε, . . . , 1− k−1
n

+ε,Dk+ε, (n−k−1
n−k )Dk+ε, (n−k−2

n−k )Dk+ε, . . . , ( 1
n−k )Dk+ε, ε) is achiev-

able, and thus R̂ ∈ RDavg. Fix ε > 0 and define R′ as above. In our scheme, any

description (Xi, Bi) has rate R = 1/n + R′, where 1/n is the rate due to Xi and

R′ is the rate due to binning. Thus R = 1/n+ (Rk(Dk)− 1/n+ ε) = Rk(Dk) + ε.

Moreover, if m < k descriptions are received, the decoder outputs ml/n bits as
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revealed by the m descriptions and the other (l −ml/n) bits as erasures. Thus

Dm = 1−m/n < 1−m/n+ ε. If k descriptions are received, say S = {s1, . . . , sk},

the decoder either outputs an erased version of the correct source sequence if

Ec
S occurs, or outputs (Xs1 , . . . ,Xsk) if ES occurs. If Ec

S occurs, then the decoder

receives kl/n bits uncoded from the k descriptions, and is able to figure out a

further (n−k)(l/n− lDk/(n−k)) = l(1−k/n−Dk) bits by using the bin indices

to decode the erased version of the source sequence. Hence the maximum per-

letter distortion over sets of k descriptions is 1 − (k/n + 1 − k/n − Dk) = Dk if

Ec occurs, and 1− k/n if E occurs. Let dS,x be the per-letter distortion achieved

using the set S of descriptions if the observed source string is xl. Thus

Ef,g max
S,|S|=k

EX[dS,X]

≤ Ef,gEX[ max
S,|S|=k

dS,X]

= Ef,gEX

[(
1− k

n

)
· 1E +Dk · 1Ec

]
=

(
1− k

n

)
Pr(E) +Dk(1− Pr(E))

=

(
1− k

n
−Dk

)
Pr(E) +Dk

≤
(

1− k

n
−Dk

)[(
n

k

)
2−klε

]
+Dk,

which can be made smaller than Dk + ε by letting α → ∞. Thus Dk + ε is

achievable for some sufficiently large l. If m > k descriptions are received,

then the decoder receives ml/n bits uncoded, and is able to figure out a further

(n − m)(l/n − lDk/(n − k)) bits by decoding the binned erased version. Thus,

if Ec occurs, the maximum per-letter distortion is 1−m/n− ((n−m)/n− (n−

m)Dk/(n − k)) = (n−m
n−k )Dk, and by the same analysis as above, a distortion of

(n−m
n−k )Dk + ε can be achieved for some sufficiently large l. This completes the

proof.
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A.9 Proof of Lemma 1

For any t ∈ {1, . . . , l}, we have exactly one of the following four cases:

Case I: ∃ i ∈ N s.t. Pr(X̃it(X) = +) > 0 and Pr(X̃it(X) = −) > 0.

Case II: ∃ i ∈ N s.t. Pr(X̃it(X) = +) > 0 and Pr(X̃it(X) = −) = 0, and Case I

does not hold.

Case III: ∃ i ∈ N s.t. Pr(X̃it(X) = −) > 0 and Pr(X̃it(X) = +) = 0, and Case I

does not hold.

Case IV: ∀ i ∈ N , Pr(X̃it(X) = +) = Pr(X̃it(X) = −) = 0.

Let B1, B2, B3 and B4 be the sets of t ∈ {1, . . . , l} satisfying Cases I, II, III and

IV, respectively. Moreover, let |B1| = b1, |B2| = b2, |B3| = b3 and |B4| = b4. Then

b1 + b2 + b3 + b4 = l. Now consider a source string (x∗)l such that x∗t = − if t ∈ B2

and x∗t = + if t ∈ B3. We have

max
xl∈X l

n∑
i=1

[
1

l

l∑
t=1

d(xt, X̃it(x))

]

≥
n∑
i=1

1

l

l∑
t=1

d(x∗t , X̃it(x
∗))

=
1

l

∑
t∈B1

n∑
i=1

d(x∗t , X̃it(x
∗)) +

1

l

∑
t∈B2

n∑
i=1

d(x∗t , X̃it(x
∗))

+
1

l

∑
t∈B3

n∑
i=1

d(x∗t , X̃it(x
∗)) +

1

l

∑
t∈B4

n∑
i=1

d(x∗t , X̃it(x
∗)).

Consider now t ∈ B1. Since X̃1t(X), . . . , X̃nt(X) are erased versions of the same

binary random variable Xt, they can never disagree in the source symbol they

reveal. We therefore have Pr(X̃it(X) = +, X̃jt(X) = −) = 0, j ∈ N , j 6= i. Since

X̃it(X) and X̃jt(X), i, j ∈ N , i 6= j, are pairwise independent, we have

Pr(X̃it(X) = +) · Pr(X̃jt(X) = −)

= Pr(X̃it(X) = +, X̃jt(X) = −) = 0
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⇒ Pr(X̃jt(X) = −) = 0, (A.15)

since Pr(X̃it(X) = +) > 0. Repeating the same analysis with Pr(X̃it(X) =

−, X̃jt(X) = +) yields Pr(X̃jt(X) = +) = 0. Thus Pr(X̃jt(X) = 0) = 1 for all

j ∈ N , j 6= i, and therefore X̃jt(x
∗) = 0 for all j ∈ N , j 6= i. Similarly, it

follows from (A.15) that Pr(X̃jt(X) = −) = 0 for j ∈ N , j 6= i if t ∈ B2 and

Pr(X̃jt(X) = +) = 0 for j ∈ N , j 6= i if t ∈ B3. Thus by construction, X̃ l
i(x
∗),

i ∈ N , must have X̃it(x
∗) = 0 for t ∈ B2 ∪ B3 ∪ B4. It follows that

max
xl∈X l

n∑
i=1

[
1

l

l∑
t=1

d(xt, X̃it(x))

]

≥ 1

l

∑
t∈B1

n∑
i=1

1(X̃it(x∗)=0) +
1

l

∑
t∈B2

n∑
i=1

1(X̃it(x∗)=0)

+
1

l

∑
t∈B3

n∑
i=1

1(X̃it(x∗)=0) +
1

l

∑
t∈B4

n∑
i=1

1(X̃it(x∗)=0)

≥ 1

l
b1(n− 1) +

1

l
b2n+

1

l
b3n+

1

l
b4n

=
1

l
(nl − b1)

= n− b1

l
≥ n− 1.

This completes the proof.
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APPENDIX B

CHAPTER 3: PROOFS

B.1 Proof of Theorem 13

This bound differs only slightly from the outer bound proposed in [44] and

much of the proof is similar to that in [44]. Suppose (R,D) is achievable. Let

f
(l)
1 , . . . , f

(l)
n be encoders and (gjK)l, K ⊆ N be decoders satisfying (3.3). Take any

Z in ψ and augment the sample space to include Z l so that (Zt, Y0,t,YN ,t, Yn+1,t)

is independent over t ∈ {1, . . . , l}. Next let T be uniformly distributed over

{1, . . . , l} and independent of Z l, Y l
0 , Yl

N and Y l
n+1. Then define

Z = ZT

Y0 = Y0,T

Yi = Yi,T for i ∈ N

Yn+1 = Yn+1,T

Ui =
(
f

(l)
i (Y l

i ), Z1:T−1, {Y l
n+1}\{Yn+1,T}

)
for i ∈ N

Vj = Vj,T for j = 1, . . . , J

W = ({Z l}\{ZT}, {Y l
n+1}\{Yn+1,T}).

It can be verified that γ = (UN , V1, . . . , Vj,W, T ) is in Γo and that, together with

Y0, YN , Yn+1, and Z, it satisfies the Markov coupling. It suffices to show that

(R,D) is inRDo(Z, γ). Note that (3.3) implies, for j = 1, . . . , J ,

Dk,j ≥ max
K:|K|=k

E[dj(Y0,T ,YK,T , Yn+1,T , Vj,T )],

i.e.,

Dk,j ≥ max
K:|K|=k

E[dj(Y0,YK, Yn+1, Vj)].
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Second, by the cardinality bound on entropy and the fact that conditioning

never increases entropy,

l
∑
i∈K

Ri ≥ H
((
f

(l)
i (Y l

i )
)
i∈K

)
= I

(
Z l,Yl

K;
(
fi(Y

l
i )
)
i∈K

∣∣∣Y l
n+1

)
. (B.1)

By the chain rule for mutual information,

I
(
Z l,Yl

K;
(
fi(Y

l
i )
)
i∈K

∣∣∣Y l
n+1

)
= I

(
Z l;
(
fi(Y

l
i )
)
i∈K

∣∣∣Y l
n+1

)
+ I

(
Yl
K;
(
fi(Y

l
i )
)
i∈K

∣∣∣Z l, Y l
n+1

)
.

The rest of the proof is similar to that in [44]. The main difference between this

proof and the proof in [44] is that here we do not condition on
(
fi(Y

l
i )
)
i∈Kc in

(B.1). Taking the maximum over this bound and the bound in [44] yields the

desired outer bound.

B.2 Proof of Lemma 2

Assume WLOG that K = {1, . . . ,m}. For each possible realization (w, t) of

(W,T ), let

Dw,t = E[dλ(X, X̂K)|W = w, T = t].

Let S = {(w, t) : Dw,t ≤
√
λ}. Then by Markov’s inequality,

Pr((W,T ) /∈ S) ≤ D̃√
λ
≤ δ. (B.2)

In particular, Pr((W,T ) ∈ S) > 0. Also, for any (w, t) ∈ S,

32m

p(1− p)

(
2Dw,t

λ

)1/m

≤ δ.
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Thus, by Lemma 6 in [44], if (w, t) ∈ S,

1

m

m∑
i=1

I(Yi;Ui|X,W = w,T = t)

≥ g
(
(Dw,t + δ)1/m

)
+ 2δ log

δ

5
.

By averaging over (w, t) ∈ S and invoking Corollary 1 in [44], we obtain

∑
(w,t)∈S

1

m

m∑
i=1

I(Yi;Ui|X,W =w, T = t) · Pr(W = w, T = t)

Pr((W,T ) ∈ S)

≥ g((D̃ + δ)1/m) + 2δ log
δ

5
.

Therefore, 1
m

∑m
i=1 I(Yi;Ui|X,W, T )

≥
[
g((D̃ + δ)1/m) + 2δ log

δ

5

]
· Pr((W,T ) ∈ S)

≥
[
g((D̃ + δ)1/m) + 2δ log

δ

5

]
(1− δ)

= g((D̃ + ξ(D̃, δ))1/m)

for some continuous ξ ≥ 0 satisfying ξ(D̃, 0) = 0. It follows from this and con-

straint (iii) of the lemma that g(D1/m) ≥ g((D̃ + ξ(D̃, δ))1/m). From the mono-

tonicity of g(D1/m) in D (Corollary 1 in [44]), we obtain D̃ + ξ(D̃, δ) ≥ D. Thus

D̃ ≥ D − ξ(D̃, δ), completing the proof.
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APPENDIX C

CHAPTER 5: PROOFS

C.1 Proof: RMLD = RMLD,blk

It can be readily shown that RMLD,blk ⊂ RMLD, since block-error probability

dominates symbol-error probability. Consider now the other direction. Suppose

(R1, R2, R3) ∈ RMLD. Fix ε > 0, and consider a sequence of codes, indexed

by the blocklength `, that satisfies Conditions (5.3) and (5.4). Condition (5.4)

implies that the codes achieve a Hamming distortion of less than ε, which in turn

implies that the encoders can transmit a minuscule amount of rate to allow the

decoders to recover the source completely (and hence achieve Pv ≤ ε). Consider

how much additional rate Encoder fi needs to transmit to allow the decoder to

reconstructX with a vanishingly small block-error probability. We can compute

H(X`|fi(X`, Y `)) as follows. Consider H(Xt|fi(X`, Y `)), t ∈ {1, . . . , `}. Let εt =

Pr(X̂t 6= Xt|f(X`, Y `)). Then, by Fano’s inequality,

H(Xt|fi(X`, Y `)) ≤ H(Xt|X̂t) ≤ h(εt) + εt log(|X | − 1).

Thus

`−1H(X`|fi(X`, Y `)) ≤ `−1
∑̀
t=1

H(Xt|fi(X`, Y `))

≤ `−1
∑̀
t=1

[h(εt) + εt log(|X | − 1)]

≤ h

(
`−1
∑̀
t=1

εt

)
+ `−1

∑̀
t=1

εt log(|X | − 1)

≤ h(ε) + ε log(|X | − 1),

122



where the penultimate inequality follows from the concavity of h(·) and the last

inequality follows from (5.4). By the same analysis, we have

`−1H(Y `|fi(X`, Y `), fj(X
`, Y `)) ≤ h(ε) + ε log(|Y| − 1)

for 1 ≤ i < j ≤ 3, where fi and fj are the original symbol-error MLD encoders.

Define U = X` and V = fi(X
`, Y `). Consider a block-error encoder fi,blk and

the corresponding decoder. If the decoder has access to V , then the block-error

encoder can use a fixed-rate lossless code for U (treating V as side-information

at both the encoder and decoder) that communicates U to the decoder with

vanishing block-error probability at rate H(U |V ). Suppose the block-error en-

coder observes m length-` sequences of the source (say Um = (X`
1, . . . , X

`
m)),

and uses the original symbol-error encoder fi to generate m messages V m =

(fi(X
`
1, Y

`
1 ), . . . , fi(X

`
m, Y

`
m)). The block-error encoder transmits Vm to the de-

coder, and then uses a fixed-rate lossless code with rateH(U |V ) and blocklength

m to encode and transmit Um, treating V m as side-information. By making m

sufficiently large, the block-error probability of losslessly decoding Um can be

made less than ε. The block-error encoder therefore transmits m + 1 messages

to the decoder: m messages generated from the symbol-error encoder, and an

additional message generated from a fixed-rate lossless code.

Likewise, every pair of encoders can encode Y m`, separately fromXm`, using

a fixed-rate lossless code, and then each encoder can transmit disjoint halves of

the resulting codeword. With this scheme, the rate of Encoder fi,blk will be

(Ri + ε) + (h(ε) + ε log(|X | − 1)) + δX + (h(ε) + ε log(|Y| − 1)) + δY .

Making m sufficiently large would guarantee that at this rate the block-error

probability of decodingXm` and Y m` can be made less than ε for all blocklengths
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m`. For blocklengths that are not a multiple of `, the source symbols that do not

form a full length-` block can be transmitted uncoded. The extra rate incurred

will tend to zero asm becomes large. In this way, the block-error probability can

be made less than ε for all sufficiently large blocklengths.
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