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The first essay of my dissertation examines whether educational institutions

respond to the threat of financial sanctions as the result of student underper-

formance on high-stakes testing. Federal education legislation passed in 2001

required states to implement a series of annual examinations, with the goal of

having all students from a broad set of demographic and socioeconomic cate-

gories attain proficiency on those exams by 2014. Schools whose students did

not meet proficiency cutoffs in mathematics and English for a single year were

threatened with a set of financial sanctions, such as paying for transportation

costs for students who transfer from the school. Since assignment to treatment

(exposure to sanctions) is a discontinuous function of students’ prior exam per-

formance, a regression discontinuity design allows one to estimate the treatment

effect of the threat of sanctions on future exam performance. Using a panel of

school-level data for elementary school students in New Jersey and California,

the econometric results indicate that in both states there is no statiscially sig-

nificant evidence that the threat of sanctions affects elementary student perfor-

mance in the subsequent school year.

The second essay contributes to the demand estimation literature by ap-

plying a discrete choice analysis to the demand for wine in the United States.

Wine consumption in the United States has increased continuously over the last

twenty years, with the value of total wine sales increasing by more than 200%

over this time period. The goal of the essay is to understand better the demand

for wine by investigating wine consumers’ preferences and decision-making

processes. This is achieved by implementing a nested logit model of consumer



demand that takes into consideration product differentiation in the wine indus-

try. Using nesting structures based on wine quality and origin, the correlation of

individual tastes within constructed categories are estimated. Under a quality

nesting structure, price and varietal offerings have a strong impact on the total

brand market share relative to the share of an outside good. In addition, Amer-

ican wine drinkers who segment along quality tend to prefer European wines,

and exhibit high correlation of tastes at both extremes of the quality spectrum.

The origin-based nesting structure indicates similar effects from prices and va-

rietals, but at a lower magnitude. Wine drinkers who segment based on origin

have strongly heterogeneous preferences towards domestic wines.

The final essay is a methodological implementation of an imputation model

that will be used by the U.S. Census Bureau to assign quarterly hours and earn-

ings to part-time federal workers in the Longitudinal Employer-Household Dy-

namics (LEHD) programs’s infrastructure files. An imputation procedure is

necessary because the LEHD infrastructure source data provided by the Office

of Personnel Management reports only the annualized salary for these work-

ers and does not include information on the number of hours worked. The

Bayesian statistical method implemented in the paper specifes a prior distribu-

tion and likelihood function for several demographic characteristics of federal

workers. These characteristics, along with hours worked, can be identified in

Current Population Survey data. A Dirichlet posterior predictive distribution

is derived and used to generate cell probabilities for each combination of char-

acteristics. Finally, draws are made from the posterior distribution to assign

quarterly hours and earnings to part-time workers. A test implementation of

the imputation strategy is performed, producing internally consistent results.

The results are also compared to external public use data.
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CHAPTER 1

THE TREATMENT EFFECT OF FINANCIAL SANCTIONS ON

LOW-PERFORMING SCHOOLS: A REGRESSION DISCONTINUITY

APPROACH

1.1 Abstract

The No Child Left Behind (NCLB) Act of 2001 brought about a set of nationwide

educational standards in an effort to improve school accountability across the

states. Key components of this legislation are financial sanctions imposed on

schools whose students fail in two consecutive years to make adequate yearly

progress (AYP) on exams in English and mathematics. In this paper, I test

whether the threat of these sanctions leads schools to improve student outcomes

after failure to make AYP in the first year. Using school-level data from New

Jersey and California, I implement a regression discontinuity (RD) design that

exploits the fact that threatened exposure to sanctions is a discontinuous func-

tion of student performance at the assignment threshold. The local linear re-

gression results at the optimal RD bandwidth are not estimated with precision.

The point estimates are between 0.112 (NJ) and 0.129 (CA) standard deviations

in English, and between 0.041 (NJ) and 0.043 (CA) standard deviations in math-

ematics. There is statistically significant evidence at larger bandwidths of a

positive treatment effect in both subjects, although these estimates are generally

larger than those from the economics literature on NCLB. Since only the un-

derperformance of "numerically significant" subgroups may result in sanctions

for schools, I also test whether assignment to treatment in the first year leads to

schools’ attempting to reassign students from subgroups that have the lowest

exam performance. There is evidence in these data to support this hypothe-
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sis, although it isn’t clear that gaming by school administrations is driving the

results. Sanction threats are also shown to lead to increased per-pupil spend-

ing, although quantitatively this is quite limited and not focused on classroom

instruction or other measures that might directly improve performance.

1.2 Introduction

The No Child Left Behind (NCLB) Act of 20011 imposed a set of nationwide edu-

cational standards on individual states, including a regimen of high-stakes test-

ing in mathematics and language arts at the elementary school, middle school,

and high school levels. Although the goal of achieving 100% proficiency in

math and reading for a broad range of student subgroups2 by 2014 is a federal

aim of the legislation, each state was given the flexibility to set its own yearly

benchmarks with regard to the NCLB-designated exams in each subject area.

Schools that meet these subject proficiency benchmarks for all relevant student

subgroups (in addition to a set of auxiliary goals, such as sufficient levels of

student participation in exams, maximum dropout rates, and minimum gradu-

ation rates), are deemed to have achieved adequate yearly progress (AYP) for the

academic year. Likewise, schools that fail to meet these state benchmarks do

not achieve AYP for that year,3 and face a set of financial and organizational

sanctions for each year that they continue to underperform. In the first year

1See http://www2.ed.gov/policy/elsec/leg/esea02/index.html.
2In all states, these subgroups include: 1) the total student population; 2) white students; 3)

African-American students; 4) Hispanic students; 5) Native American students; 6) Asian stu-
dents; 7) students from other demographic categories; 8) special education students; 9) Limited
English Proficient (LEP) students; and 10) economically disadvantaged students. At least 95%
of the students in each subgroup must participate in the NCLB-designated exam.

3If a participating student subgroup does not meet the AYP benchmark, schools may appeal
to "safe harbor" rules that allow them to achieve AYP for that subgroup if they decrease the
number of students receiving lower than proficient scores (the lowest achievement level) by
10% and satisfy a set of secondary requirements.
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Figure 1.1: NCLB Sanctions

of failing to make AYP, a school receives a warning that they are in danger of

being sanctioned, with sanctions being first implemented in the second consec-

utive year (see Figure 1.1 for a yearly breakdown of penalties that apply to all

states).

A number of studies have been conducted to examine whether sanction

threats induce increases in school accountability, mainly focusing on the Florida

and North Carolina school systems.4 In this paper, I use school-level assess-

ment data from New Jersey and California for elementary school students5 to

4See Greene (2001), Jacob (2005), Figlio and Rouse (2006), West and Peterson (2006),
Chakrabarti (2007), Chakrabarti (2008), and Chiang (2009).

5While middle school and high school data are available, the nature of the financial sanctions
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estimate the treatment effect of the threat of sanctions in year t on overall stu-

dent performance in year t + 1. Since I am mainly interested in the incentive

effects from this threat, I do not estimate the effects of the first- and second-

year sanctions themselves. Sanctions in both years can be nontrivial and the

reduction in resources imposed on the schools may mask changes in student

outcomes that are a direct response to the initial threat and are the focus of this

paper.

Both New Jersey and California have diverse student populations that pro-

vide us with information on the performance of a broad range of students. I

exploit the fact that assignment to treatment is a discontinuous function of stu-

dent achievement at the AYP benchmark by using a regression discontinuity

(RD) design. Estimating the effects of this treatment are an important compo-

nent in determining the relative benefits of punitive vs. non-punitive student

accountability policy measures, as well as the heterogeneity of effects that may

arise across different states under NCLB.

Since only exam scores of students in subgroups that meet enrollment cut-

offs are counted towards achieving AYP, I also test whether schools threatened

by sanctions may try to game the examination system by manipulating the test

enrollment of low-performing subgroups. I examine this possibility by esti-

mating the probability that the lowest-performing subgroup in year t goes from

being numerically significant to numerically insignificant in year t+ 1. Finally,

I also examine whether the threat of sanctions leads schools to take more sub-

stantive reform actions such as increasing per-pupil spending in areas that may

directly increase student performance on exams.

The remainder of the paper is organized as follows: Section 1.3 reviews the

imposed (such as paying transportation costs for travel to alternative within-district schools)
would be expected to have less impact due to the presence of fewer of these school types in
many school districts.

4



NCLB-based school accountability system in New Jersey and California; Section

1.4 discusses data sources and construction of variables; Section 1.5 discusses

validity of the RD design for these data and identification of the treatment effect;

Section 1.6 discusses my RD econometric model; Section 1.7 reviews empirical

estimates; and Section 1.8 concludes.

1.3 NCLB-based School Accountability in New Jersey and Cal-

ifornia

Both New Jersey and California require their primary and secondary school stu-

dents to pass grade-level specific high-stakes exams to comply in part with No

Child Left Behind.6 Students may receive scores of "partially proficient", "profi-

cient", or "advanced proficient" on each exam in the subject areas of mathematics

and language arts literacy (see Tables 1.1 and 1.2 for yearly benchmarks by sub-

ject area and grade-specific exams). If each of ten student subgroups (includ-

ing students as a whole) receives scores of "proficient" or "advanced proficient",

such that the combined percentage meets or exceeds the state-implemented cut-

offs for each subject area, then a school will be deemed to have achieved AYP

(with the possible exceptions noted above).

In New Jersey, at least 40 students from each subgroup must be represented

to be counted towards AYP proficiency goals (and to be deemed a "numerically

significant subgroup"), and in California, 100 students from each subgroup must

6New Jersey elementary school students in grades 3 and 4 were required to take the New
Jersey Assessment of Skills and Knowledge (NJASK) from 2003-2007 to satisfy NCLB require-
ments. All students in grades 3-8 were required to take a grade-specific version of the NJASK
after 2008. Beginning in 1999, California elementary school students in grades 3-6 were re-
quired to take a series of exams in the Standardized Testing and Reporting (STAR) program. See
http://www.nj.gov/education/assessment and http://www.cde.ca.gov/ta/tg/sr/cefstar.asp
for additional information on the NCLB-designated exams.
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Table 1.1: New Jersey AYP Targets
Content/Grade Level AYP Targets (Percent Proficient)

2002-2003 2004-2007 2008-2010 2011-2013 2014
Language Arts

Elementary Schools 68 75 59 79 100
Middle Schools 58 66 72 86 100
High Schools 73 79 85 92 100

Mathematics
Elementary Schools 53 62 66 83 100
Middle Schools 39 49 61 80 100
High Schools 55 64 74 86 100

Table 1.2: California AYP Targets
Content/Grade Level AYP Targets (Percent Proficient)

2002-2004 2005-2007 2008 2009 2010
Language Arts

Elementary Schools 13.6 24.4 35.2 46 56.8
Middle Schools 13.6 24.4 35.2 46 56.8
High Schools 11.2 22.3 33.4 44.5 55.6

Mathematics
Elementary Schools 16 26.5 37 47.5 58
Middle Schools 16 26.5 37 47.5 58
High Schools 9.6 20.9 32.2 43.5 54.8

2011 2012 2013 2014
Language Arts

Elementary Schools 67.6 78.4 89.2 100
Middle Schools 67.6 78.4 89.2 100
High Schools 66.7 77.8 88.9 100

Mathematics
Elementary Schools 68.5 79 89.5 100
Middle Schools 68.5 79 89.5 100
High Schools 66.1 77.4 88.7 100

be represented, or at least 50 students that make up 15% or more of total enroll-

ment at the school. States are given broad flexibility in determining whether

a particular school will face sanctions after not achieving AYP in a given year.

For example, in New Jersey, schools that fail to achieve AYP in different subjects

over two years will face immediate sanctions, whereas in California, schools

6



only face sanctions if they do not achieve AYP in the same subject area.

1.4 Data and Variable Construction

I use elementary school-level data from the New Jersey Department of Educa-

tion (NJDOE) for 2002-2008 and from the California Department of Education

(CDE) for 2002-2010 to perform the RD estimation.7 Each observation records

aggregate results from test-takers as a whole, and in certain subgroups, at a spe-

cific elementary school. Since New Jersey changed the assessment exams at the

elementary-school level in the 2008-2009 academic year, I restrict my analysis

to prior years to ensure comparability in exam results. In each year, the NJ-

DOE and the CDE provide the following information for each school: 1) county

where school is located; 2) school district; 3) attendance rate for all students; 4)

assessment scores in mathematics and language arts literacy for all students and

for students in NCLB-specific subgroups; 5) the percentage of students partici-

pating by subgroup and overall (in NJ, cells with symbols rather than numbers

indicate that a subgroup was not numerically significant, and did not count to-

wards AYP); 6) AYP status; 7) the number of consecutive years a school has not

achieved AYP; and 8) the overall graduation rate at the high school level. Cali-

fornia also provides information on the number of students from each subgroup

that sit for the exam.

Tables 1.3 and 1.4 show descriptive statistics for the NJDOE and CDE data

for 2003. In these tables, we see information regarding participation rates and

student exam performance as a whole and for NCLB-specific subgroups. For

7See http://education.state.nj.us/rc/nclb/archive.html for additional in-
formation regarding the New Jersey NCLB assessment data, and
http://www.cde.gov/ta/ac/ay/aypdatafiles.asp for more information regarding the Cal-
ifornia data.
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Table 1.3: Descriptive Statistics, New Jersey Elementary Schools, 2003

Variables (1) (2) (3) (4) (5)
N Mean Std. Dev. Min. Max.

Overall, Language Arts
Participation Rate (%) 2252 99.5 1.5 72.3 100
Proficient (%) 2250 70.6 15.8 0 97.7
Advanced Proficient (%) 2250 6.5 8.2 0 71.8

Overall, Mathematics
Participation Rate (%) 2252 99.7 1.3 73.7 100
Proficient (%) 2249 42.9 12.2 0 84.6
Advanced Proficient (%) 2249 21.8 15.3 0 92.3
African American, Language Arts
Proficient (%) 629 53.9 17.0 0 100
Advanced Proficient (%) 629 2.0 4.1 0 47.6
African American, Mathematics

Proficient (%) 630 29.4 13.9 0 86.4
Advanced Proficient (%) 630 5.5 7.1 0 49.2

Hispanic, Language Arts
Proficient (%) 532 59.2 16.7 10 100
Advanced Proficient (%) 532 2.4 4.6 0 54.1

Hispanic, Mathematics
Proficient (%) 535 36.2 13.5 0.9 77.8
Advanced Proficient (%) 535 8.8 10.2 0 70.8

White, Language Arts
Proficient (%) 1615 77.8 9.9 28.6 100
Advanced Proficient (%) 1615 8.8 9.1 0 71.4

White, Mathematics
Proficient (%) 1614 48.4 8.9 9.1 77.1
Advanced Proficient (%) 1614 27.4 14.3 0 90.9

example, in New Jersey, we see that there were 630 schools in which African

American students participated in the NCLB mathematics exam. Among those

schools, the average mathematics exam score at the proficient level for African

American students was 29.4%, and the highest percentage of African American

students achieving a proficient score in mathematics at any of these schools was

86.4%.
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Table 1.4: Descriptive Statistics, California Elementary Schools, 2003

Variables (1) (2) (3) (4) (5)
N Mean Std. Dev. Min. Max.

Overall, Language Arts
Participation Rate (%) 3889 99.0 2.1 18.8 100
Proficient or Advanced Proficient (%) 3858 31.4 15.3 0 93.3

Overall, Mathematics
Participation Rate (%) 3889 98.7 2.4 8.6 100
Proficient or Advanced Proficient (%) 3857 39.3 14.9 0 95.6

African American, Language Arts
Proficient or Advanced Proficient (%) 2024 25.0 13.5 0 88.2

African American, Mathematics
Proficient or Advanced Proficient (%) 2020 28.7 14.3 0 87.7

Hispanic, Language Arts
Proficient or Advanced Proficient (%) 3613 23.2 10.9 0 85.8

Hispanic, Mathematics
Proficient or Advanced Proficient (%) 3611 32.5 11.8 0 94.6

White, Language Arts
Proficient or Advanced Proficient (%) 3128 44.1 15.6 0 100

White, Mathematics
Proficient or Advanced Proficient (%) 3127 48.8 15.9 0 96.9

1.4.1 Assignment Variable Construction

In an RD design, different values of the assignment variable, Xj , determine

whether a unit j under consideration is exposed to the treatment. For a

given threshold value, Xj = c, we can define assignment to treatment as:

Dj = 1 fXj � cg, where Dj is a binary treatment variable for all units j. In the

NCLB context,8 we have a "sharp" RD design, whereby treatment is determined

solely by the value of the assignment variable (i.e., the probability of treatment

is one for Xj � c and 0 for Xj < c).9 We can reduce the dimensionality of

8This excludes the relatively few cases in which a school would have achieved AYP by stu-
dent subgroup assessment scores but does not due to failing a secondary criterion such as par-
ticipation; it also exludes the cases in which a school would not achieve AYP by assessment
performance, but does so through other means such as "safe harbor".

9Since treatment (exposure to the threat of financial sanctions) is defined for failing to reach a
cutoff in the NCLB context, I define the converse relationships for assignment to treatment, i.e.,
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the assignment problem to a univariate problem by choosing the scores for a

specific subgroup each year the exams are administered, thereby constructing a

single assignment variable. This procedure allows us to estimate the joint av-

erage treatment effect for both language arts literacy and mathematics, rather

than the average treatment effect for each individual subject area.

Following Gill et al. (2007), I use a normalized version of the minimum sub-

group assessment score as the univariate assignment variable. This variable com-

prises the assessment score for the lowest-performing student subgroup i for

a given subject area s, school j, and year t. Since we are using the lowest-

performing subgroup, assignment to treatment binds for this group (i.e., as long

asX < c for the minimum subgroup, we could raise the performance of all other

subgroups with no consequent change in AYP status). I subtract the AYP cutoff

from the assessment score for each subject area and student subgroup to center

the threshold value, c, at zero:

Xmin = min
i;s
fassessment_scoreis � AYP_benchmarksg (1.1)

where i 2 f0; 1; :::9g is the student subgroup (I define subgroup 0 as that con-

taining all students), and s 2 fM;Lg is the subject component.

1.4.2 Outcome Variable Construction

I define the outcome variable, Yijs(t+1) as the standardized assessment score for

student subgroup i 2 f0; 1; :::9g, in school j, subject area s 2 fM;Lg, and year

t + 1 when students take the relevant NCLB-designated exam in year t. This

variable is defined for years 2003-2008 in New Jersey and years 2003-2010 in

California. The standardization is performed over statewide means and stan-

assignment occurs for values of the assignment variable below the cutoff. I write the standard
conditions here to be consistent with the prototypical RD design.

10



dard deviations. Because the outcome variable does not appear in the data for

subgroups that are not numerically significant, low sample sizes make estima-

tion of outcomes for these subgroups infeasible. Therefore, in the subsequent

analysis I will focus on the performance of students as a whole (i.e., subgroup

0).

1.5 The Regression Discontinuity Approach

1.5.1 Assessing the Validity of the RD Design for the New Jer-

sey and California Data

The results from an RD design in a neighborhood of the threshold

fc� h � Xi � c+ hg, for some bandwidth, h, can be considered "as good as"

those from a randomized experiment when individuals cannot precisely ma-

nipulate the assignment variable, X (Lee and Lemieux, 2010). It can be shown

that imprecise manipulation of treatment assignment is equivalent to the con-

tinuity of the conditional density of the assignment variable at the cutoff. I

implement the local linear density estimator proposed by McCrary (2008) to

determine whether the RD design is valid for the New Jersey and California

assessment data. See Figures 1.2 and 1.3 for graphs of the assignment variable

conditional density function for elementary schools.

As we can see from the graphs, there is a slight discontinuity in the con-

ditional density at the cutoff. For the New Jersey data, the discontinuity point

estimate is 0.0869 with a standard error of 0.1175, producing a t-statistic of 0.739.

We cannot reject the null hypothesis that the point estimate is statistically sig-

nificantly different from zero at traditional significance levels, which provides
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Figure 1.2: Assessing Continuity of the Conditional Density of X, New Jersey
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evidence that the RD design is valid for these data. For the California data, the

discontinuity point estimate is 0.0599 with a standard error of 0.0318, producing

a t-statistic of 1.88 and a p-value of 0.0602. The value of this point estimate is

more ambiguous than that for the New Jersey data. It cannot be rejected at tra-

ditional significance levels, although there may be concern that there is potential

manipulation of the assignment variable.10

1.5.2 Identification of the Treatment Effect

A consequence of the continuity of the conditional density of the assignment

variable is that the treatment effect of interest, � , is identified at the threshold.

Following Lee and Lemieux (2010), we consider a set of equations for an RD

10The choice of different kernels or bandwidths affects the smoothness of the density, but does
not introduce discontinuities to the graph.
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Figure 1.3: Assessing Continuity of the Conditional Density of X, California
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design:

Y = D� +W�1 + U (1.2)

D = 1fX � cg (1.3)

X = W�2 + V (1.4)

where Y is an outcome variable, D is an indicator variable for the treatment,

and W is a vector of observable characteristics that may affect the assignment

variable, X . For given values of W and U (w and u, respectively), consider the

conditional probability of W and U given X , P (W = w, U = u j X = x). By

Bayes’ Rule, we have:

P (W = w;U = u j X = x) = f(x jW = w;U = u)
P (W = w;U = u)

f(x)
. (1.5)

Therefore, the continuity of P (W = w;U = ujX = x) depends on the continuity

of the conditional density of X , f(x jW = w;U = u).
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Denote Yi(1) as the "potential" outcome if unit i is exposed to the treatment,

and Yi(0) as the "potential" outcome if unit i is not exposed to the treatment.

We define the average treatment effect in an "-neighborhood of the assignment

cutoff, c, as:

lim
"#0
E[Yi j Xi = c+ "]� lim

""0
E[Yi j Xi = c+ "] = E[Yi(1)� Yi(0)jX = c] (1.6)

Then, we have:

lim
"#0
E[Yi j Xi = c+ "]� lim

""0
E[Yi j Xi = c+ "] (1.7)

= � + lim
"#0

P
w;u

(w�1 + u) � P (W = w;U = u j X = c+ ")

� lim
""0

P
w;u

(w�1 + u) � P (W = w;U = u j X = c+ ")

= �

where the last equality follows by the continuity of P (W = w;U = u jX = c+").

This, in turn, follows from the continuity of the conditional density of X , as

shown above. Thus the treatment effect, � , is identified when estimating a

valid RD design.

1.6 Econometric Model

1.6.1 Nonparametric RD Estimation: Local Linear Regression

I estimate the extent to which an elementary school’s exposure to the threat of

financial sanctions in year t affects student performance in year t+ 1. Since the

RD design depends on local estimates of the regression function at the assign-

ment cutoff point, RD estimates of the treatment effect, � , may be biased when

performing linear parametric estimation if the functional form is misspecified.
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While using linear estimation when the true functional form is nonlinear will

minimize specification errors globally, there may still be large specification er-

rors locally, such as at the cutoff point, leading to biased estimates (Lee and

Lemieux, 2010). To reduce the importance of the bias, I use a local linear re-

gression estimation procedure. This estimation procedure amounts to running

separate linear regressions within bins in a small neighborhood of the cutoff

point, where the approximation to the true regression line is more plausibly lin-

ear. The procedure also generates consistent estimates of the treatment effect

(Hahn, Todd, and van der Klaauw, 2001).

More formally, let Yijs(t+1) denote the standardized assessment score for stu-

dent subgroup i, in school j, subject area s, and year t + 1. Let the assignment

variable Xmin � c denote the centered student performance at school j in year t

for the lowest-performing student subgroup i, as described above. Let �T de-

note the expected value of year t + 1 performance for a school that is exposed

to the treatment and has an assignment value within a bandwidth, h, below the

cutoff and let �NT denote the expected value of year t + 1 performance for a

school that is not exposed to the treatment and has an assignment value exceed-

ing the cutoff within the same bandwidth. For schools that are exposed to the

treatment, I estimate:

Yijs(t+1) = �T + �T (Xmin � c) + "ijs(t+1) s.t. � h � Xmin � c < 0 (1.8)

and for schools that are not exposed to the treatment, I similarly estimate:

Yijs(t+1) = �NT + �NT (Xmin � c) + "ijs(t+1) s.t. 0 � Xmin � c � h (1.9)

Then the estimated treatment effect, b� , is precisely the estimated difference be-

tween the two intercepts from these regressions: b�T � b�NT . In practice, I use

a pooled regression, so that the estimates and standard errors for the treatment
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effect can be computed directly:

Yijs(t+1) = �NT + �D + �NT (Xmin � c) + (�T � �NT )D(Xmin � c) + "ijs(t+1);

s.t. � h � Xmin � c � h (1.10)

where D is a binary treatment indicator and � = �T � �NT is the treatment

effect. By including interaction terms between D and X , the model allows the

slope of the regression function to differ on both sides of the cutoff. Requiring

(�T = �NT )would use data from the non-treatment side of the cutoff to estimate

the intercept from the treatment side (and vice-versa), violating the spirit of the

RD design.

1.6.2 Choosing the Optimal Bandwidth

Choice of the optimal bandwidth, h, above involves a tradeoff between bias and

efficiency. By using a larger bandwidth, the treatment effect can be estimated

more precisely, since more data are available for the estimation. However, as

we move farther from the cutoff point, a linear model may poorly approximate

the underlying regression function, introducing bias. I apply the asymptotically

optimal bandwidth choice rule proposed by Imbens and Kalyanaraman (2009),

which constructs an estimator to the optimal bandwidth, hopt, that minimizes

the mean squared error criterion:

hopt = argminMSE(h) = argminE [(b� � �)]2 (1.11)

where b� is the estimated treatment effect.11 This bandwidth is optimal in the

sense that it attempts to find mutually exclusive, equally-sized neighborhoods

11Imbens and Kalyanaraman (2009) devise a data-dependent way in which to find
the optimal bandwidth and provide Stata programs to implement their model. See
http://www.economics.harvard.edu/faculty/imbens/software_imbens
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on either side of the regression discontinuity threshold that best fit a local linear

regression function. In more convention cross-validation procedures, optimal-

ity is defined in terms of the fit over the entire support of the data (see Imbens

and Kalyanaraman, 2009). Since the expression in equation (11) is infeasible,

Imbens and Kalyanaraman introduce the following feasible estimator defined

at the RD threshold, c:

bhopt =
0B@ 2 � b�2(c)= bf(c)�bm(2)

+ (c)� bm(2)
� (c)

�2
+ (br+ � br�)

1CA
1=5

�N�1=5, (1.12)

where N is the sample size, bf(x) is the estimator for the density function

of the assignment variable, b�2(x) is the estimator for the conditional variance

function of the assignment variable, and bm(2)
� (x) and bm(2)

+ (x) are estimators for

the left and right second derivatives of the assignment variable, respectively.

The authors implement this optimal bandwidth by constructing an algorithm

for estimating these functions.

1.7 Estimation Results

The results from the local linear regression procedure for schools that are threat-

ened with financial sanctions (i.e., those schools that fail to achieve AYP for one

year) are in Tables 1.5 and 1.6. The dependent variable is the standardized

overall performance of elementary school students in year t+ 1 for assignment

to treatment occurring in year t. In the first column of the table are a set of spec-

ifications that vary by the length of the neighborhood of the cutoff in which the

regression is performed. The preferred specification is that using the optimal

bandwidth, h, derived by Imbens and Kalyanaraman (2009). Standard errors

are clustered at the county level.
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Table 1.5: Effect of Threat of Sanctions in Year t on Overall Elementary School
Student Performance in Year t+1, New Jersey, 2002-2008

Bandwidth/Specification Standardized Test Score in Year t+ 1
(percentage points) Language Arts Mathematics

(1) (2)
5 0.063 (0.108) [342] -0.073 (0.115) [342]
7.6 (LA), 7.2 (M) (optimal) 0.112 (0.086) [527] 0.041 (0.095) [504]
10 0.055 (0.075) [685] 0.072 (0.081) [685]
15 -0.015 (0.062) [1079] 0.016 (0.071) [1079]

Table 1.6: Effect of Threat of Sanctions in Year t on Overall Elementary School
Student Performance in Year t+1, California, 2002-2010

Bandwidth/Specification Standardized Test Score in Year t+ 1
(percentage points) Language Arts Mathematics

(1) (2)
5 -0.009 (0.148) [287] 0.008 (0.123) [287]
6.3 (LA), 5.9 (M) (optimal) 0.129 (0.140) [341] 0.043 (0.119) [333]
10 0.277 (0.136)** [409] 0.288 (0.120)** [409]
15 0.166 (0.129) [429] 0.181 (0.107)* [429]

Notes: Heteroskedasticity-robust standard errors clustered at the county level
in parentheses. Sample sizes in brackets. Optimal bandwidth determined by
the Imbens/Kalyanaraman (2009) MSE criterion. Analysis performed on
schools without any prior exposure to sanctions.

As we see in the table, the treatment effect on student performance in both

language arts literacy and mathematics is mainly positive, but the point esti-

mates are not estimated with precision. For language arts, the model indicates

that a one percentage point increase in the assignment variable leads to an in-

crease of 0.112 standard deviations of students’ exam performance in New Jer-

sey and an increase of 0.129 standard deviations in California.

In mathematics, it leads to an increase of 0.041 standard deviations in New

Jersey, and an increase of 0.043 standard deviations in California, although again

the results are not statistically significant. As a robustness check, I also run the

local linear regression at a set of bandwidths that are smaller and larger than the
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optimal one. In both New Jersey and California, the treatment effects are almost

uniformly positive irrespective of the bandwidth chosen. At bandwidths larger

than the optimal one, we see positive and statistically significant results in Cali-

fornia. At a bandwidth of 10, the model indicates an increase of 0.277 standard

deviations in student performance in language arts literacy and an increase of

0.288 standard deviations in mathematics. At a bandwidth of 15, there is an

increase of 0.181 standard deviations in mathematics. These latter results are

larger than those from recent work done on accountability pressure and student

achievement at the elementary school level in Florida (Chiang, 2009).

In Figures 1.4 through 1.7, we also see the resulting discontinuity of the treat-

ment at the AYP threshold. Each of the figures shows a more-steeply sloped

regression line (in absolute value) to the left of the cutoff (indicating the region

in which treatment occurs), and a less-steeply sloped line (in absolute value) to

the right of the cutoff. The difference in intercepts between these lines indicates

the estimated treatment effect, b� .12

1.7.1 Numerically Significant Subgroups

As mentioned above, in both New Jersey and California, only scores from nu-

merically significant subgroups are counted toward AYP proficiency results. It

is reasonable to postulate that schools may try to game the testing system by

encouraging students in low-performing and underrepresented subgroups, at

the margin, not to sit for the NCLB-designated exams. For example, there is

evidence that states have reclassified low-performing students into special edu-

cation so that such students would take non-standard exams that do not count
12The differences in slopes for each of the four main sets of results were also statistically

insignificant at the optimal bandwidth.
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Figure 1.4: Effect of Threat of Sanctions in Year t on Overall Elementary School
Student Performance in Year t+1, New Jersey, 2002-2008
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Notes: The results in the graph correspond to the optimal bandwidth
specifications in Table 1.5 for language arts literacy. The slope of the regression
line on either side of the AYP threshold is that computed within the optimal
bandwidth.

towards AYP.13

Since California provides data on the number of students from each sub-

group that sit for each exam, I can test whether this type of gaming behavior

occurs due to exposure to the treatment. In particular, I test to see whether the

subgroup that contains the worst-performing students in year t becomes nu-

merically insignificant in year t+1. In this way, schools can try to make AYP in

the following year by excluding these students from the schoolwide results.

13See Deere and Strayer, 2001; Figlio and Getzler, 2002; Jacob, 2005; and Cullen and Reback,
2006.
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Figure 1.5: Effect of Threat of Sanctions in Year t on Overall Elementary School
Student Performance in Year t+1, New Jersey, 2002-2008
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Notes: The results in the graph correspond to the optimal bandwidth
specifications in Table 1.5 for mathematics. The slope of the regression line on
either side of the AYP threshold is that computed within the optimal
bandwidth.

I estimate the following model:

NSSijs(t+1) = �NT + �D + �NT (Xmin � c) + (�T � �NT )D(Xmin � c) + "ijs(t+1);

s.t. � h � Xmin � c � h (1.13)

where NSSijs(t+1) is a binary variable that takes a value of 1 when students in

subgroup i, in school j, and subject area s, are not numerically significant in year

t + 1 after being exposed to the treatment in year t. All other variables are as

defined above. The results for each subgroup that could be tested (low sample

sizes made regressions for Whites, Asians, and Native Americans infeasible)

are found in Table 1.7. These regressions were run at the average of the subject-
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Figure 1.6: Effect of Threat of Sanctions in Year t on Overall Elementary School
Student Performance in Year t+1, California, 2002-2010
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Notes: The results in the graph correspond to the optimal bandwidth
specifications in Table 1.6 for language arts literacy. The slope of the regression
line on either side of the AYP threshold is that computed within the optimal
bandwidth.

specific optimal bandwidths computed above, with standard errors clustered at

the county level.

As we can see in the table below, all of the results have the expected signs

based on the average performance of each subgroup on the NCLB exams. The

subgroups containing African American, Hispanic, Limited English Learner,

and disabled students are more likely to become numerically insignificant in

the subsequent year when these groups have the lowest exam performance in

the current year and a school is threatened with sanctions.

The point estimate for Limited English Learner students is strongly statisti-
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Figure 1.7: Effect of Threat of Sanctions in Year t on Overall Elementary School
Student Performance in Year t+1, California, 2002-2010
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Notes: The results in the graph correspond to the optimal bandwidth
specifications in Table 1.6 for mathematics. The slope of the regression line on
either side of the AYP threshold is that computed within the optimal
bandwidth.

cally significant, suggesting that there is an approximately 12% probability that

such students as a whole become numerically insignificant after the school is

exposed to the threat of sanctions. These results are only suggestive, since we

cannot ascertain for certain why these students are excluded in the subsequent

year. It is less likely that Limited English Learners are reclassified so as not

to sit for the NCLB exam, because these students could be moved into regu-

lar classes without much effect on AYP performance (due to the low number

of these students). Since Limited English Learner students are the lowest per-

forming subgroup in approximately 80% of the schools that are exposed to the
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Table 1.7: Effect of Threat of Sanctions in Year t on Probability of Numerically
Insignificant Subgroup in Year t+1, California, 2002-2010

Student Subgroup Numerically Insignificant in Year t+ 1

African American 0.282 (0.234) [28]
Hispanic 0.057 (0.062) [32]
Limited English Learner 0.115 (0.039)*** [274]
Students with Disabilities 0.250 (0.329) [24]

Notes: Heteroskedasticity-robust standard errors in parentheses. Sample sizes
in brackets. Each row shows results in year t+ 1when the student subgroup
had the lowest performance in year t for schools without any prior exposure to
sanctions. Regression results at optimal bandwidth determined by the
Imbens/Kalyanaraman (2009) MSE criterion.

treatment, it may more likely be the case that parents who are dissatisfied with

their child’s performance are simply moving them to other schools in the dis-

trict or moving out of the district. The data indicate that approximately 57%

of schools in which Limited English Learner students become numerically in-

significant are in multiple school districts, further suggesting that parents may

be moving their children to other within-district schools.

1.7.2 Changes in Per-Pupil Spending

An additional way to check whether positive increases in student assessment

scores in year t+1 are due to substantive policy changes, rather than gaming of

the testing system, is to estimate the extent to which the threat of sanctions af-

fects per-pupil spending levels. If spending levels are augmented in areas that

may directly increase performance when schools do not meet AYP, this may sug-

gest that positive test score increases are the result of these spending increases.

Since school finance data from New Jersey break out per-pupil spend-

ing into categories such as classroom costs, administrative costs, and opera-
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tions/maintenance costs, I use these data to test the response in exam scores

to student spending at the district level.14 I am particularly interested in the

relative spending response that may occur in areas that most directly improve

student performance, such as classroom costs.

I estimate the following model:

Sj(t+1) = �NT + �D + �NT (Xmin � c) + (�T � �NT )D(Xmin � c) + Sjt + "j(t+1);

s.t. � h � Xmin � c � h (1.14)

where Sj(t+1) is a per-pupil spending variable in district j in year t + 1, Sjt

is the lagged value of the relevant spending variable, and all other variables

are as defined above. All spending variables are expressed in 2002 dollars and

then logged. As in earlier models, the variable of interest is D, exposure to the

treatment. The regression results are found in Table 1.8.

As we see in the table, there are statistically significant total per-pupil spend-

ing increases of approximately 1% due to exposure to the treatment, resulting

in a $113 increase. Total classroom costs, while not estimated precisely, increase

by less than 1%, or $50 per student. Within this category, classroom services

(such as amounts paid for speech therapy, classroom equipment, or assembly

speakers) decline by approximately 13%, which translates into a reduction of

$12.

While most of the spending categories show increases after exposure to the

treatment, the point estimates for classroom spending (which would be ex-

pected to directly increase student performance) are quantitatively limited rel-

ative to other categories. For example, total administrative costs increased by

approximately 2%, food services costs increased by about 5%, and personal ser-

vices costs (an employee benefits category) increased by almost 8%. Therefore,
14See http://nj.gov/education/guide/2011/ind.shtml for descriptions of each category of

per-pupil spending.
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Table 1.8: Effect of Threat of Sanctions in Year t on Per-Pupil Spending in Year
t+1, New Jersey, 2002-2008

Dependent Variable Estimated Effect Mean Computed Effect
($ per pupil) ($ per pupil) ($ per pupil)

(1) (2) (3)
ln(Total Costs) 0.011 (0.004)** $10,274 $113
ln(Total Classroom Costs) 0.008 (0.010) $6,214 $50
ln(Classroom Salaries) 0.008 (0.011) $5,882 $47
ln(Classroom Supplies) 0.055 (0.047) $239 $13
ln(Classroom Svcs) -0.133 (0.112) $92 -$12
ln(Total Support Svcs) 0.025 (0.014)* $1,475 $37
ln(Support Salaries) 0.020 (0.011)* $1,292 $26
ln(Total Admin. Costs) 0.023 (0.019) $1,154 $27
ln(Admin. Salaries) 0.024 (0.023) $931 $22
ln(Plant Oper./Maint.) -0.007 (0.009) $1,183 -$8
ln(Oper./Maint. Salaries) -0.0002 (0.018) $617 -$0.12
ln(Food Services Costs) 0.048 (0.154) $32 $2
ln(Extracurricular Costs) -0.00004 (0.026) $186 -$0.01
ln(Personal Services) 0.078 (0.043)* $0.23 $0.02
ln(Total Equip. Costs) 0.103 (0.197) $53 $5

Notes: Heteroskedasticity-robust standard errors in parentheses. Sample size
for all rows is 503. Each row is a separate regression and shows spending in
year t+ 1 for schools exposed to the treatment in year t, and without any prior
exposure to sanctions. All spending variables are in 2002 dollars. Mean of
spending variables are exponentiated and averaged over all years. Regression
results at optimal bandwidth determined by the Imbens/Kalyanaraman (2009)
MSE criterion.

while per-pupil spending increases in response to the treatment, this spending

does not appear to be primarily focused on those categories that would directly

increase student performance. This leaves open the possibility that other fac-

tors are responsible for increases in student test scores on the NCLB-designated

exams. In multiple school districts, it may also be the case that increases in

funding may arise from shifts in spending from non-failing schools to those that

do not meet AYP, which would be an unintended consequence of NCLB. Since

detailed data on within-district funding transfers are not publicly available, it is

26



not possible to directly test this hypothesis without access to unpublished data.

1.8 Conclusion

The No Child Left Behind Act of 2001 set out to raise school accountability

across the states by imposing financial sanctions on schools whose students do

not achieve specific levels of proficiency in English and mathematics. This

paper contributes to the school accountability literature by testing whether

schools, when threatened with these sanctions in the subsequent academic year,

increase student performance so as to avoid being sanctioned. Using a regres-

sion discontinuity approach that exploits the discontinuity of treatment as a

function of the AYP proficiency cutoff, I find no statistically significant evidence

at the optimal bandwidth that student performance in both English and math-

ematics change after sanctions are threatened. There is statistically significant

evidence at larger bandwidths that the treatment effect is positive in both sub-

jects. However, these point estimates are generally larger than those found in

more recent studies on student accountability in other states.

I also examine whether schools try to improve the likelihood of achiev-

ing AYP by encouraging low-performing subgroups not to sit for a particular

NCLB-designated exam. The point estimates in this test provide evidence to

support the hypothesis that these subgroups are more likely to become numer-

ically insignificant when they have the lowest exam performance in the prior

year. In particular, Limited English Learners, who comprise nearly 80% of the

lowest-performing subgroups across all schools, are about 12% less likely to be

numerically significant after exposure to the treatment. However, we cannot

conclude from this evidence that gaming of the system is occurring. The con-

sistently low performance of Limited English Learners in particular may lead
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parents simply to remove these students from the failing school district.

Finally, examining responses to per-pupil spending show that total spending

costs increase by about 1% after exposure to the treatment. Total spending on

classroom instruction increases by a similar percentage, although this is less

than the response levels for spending categories that would not be expected to

directly increase student performance. This suggests that other factors may be

responsible for increases in student performance on NCLB exams. If increases

in funding in multiple school districts result from shifts in spending from non-

failing to failing schools, then this may be an unintended consequence of the

NCLB legislation. Additional research should be performed across other states

to examine both the effects of punitive vs. non-punitive school accountability

policies, as well as the potential for gaming of the NCLB examination system by

schools.

28



BIBLIOGRAPHY

[1] Chakrabarti, R. (2007). "Vouchers, Public School Response and the Role of
Incentives: Evidence From Florida", Staff Report Number 306, Federal Re-
serve Bank of New York.

[2] Chakrabarti, R. (2008). "Impact of Voucher Design on Public School Perfor-
mance: Evidence From Florida and Milwaukee Voucher Programs", Staff
Report Number 315, Federal Reserve Bank of New York.

[3] Chiang, H. (2009). "How Accountability Pressure on Failing School Affects
Student Performance", Journal of Public Economics, 93: 1045-1057.

[4] Cullen, J. and R. Reback (2006). "Tinkering Toward Accolades: School Gam-
ing under a Performance Accountability System", In: Gronberg, T. and D.
Jansen (Eds.), Improving School Accountability: Check-Ups or Choice, Ad-
vances in Applied Microeconomics, 14 Elsevier Science, Amsterdam, pp. 1-34.

[5] Deere, D. and W. Strayer (2001). "Competitive Incentives: School Account-
ability and Student Outcomes in Texas", Working Paper. Department of
Economics, Texas A&M University.

[6] Figlio, D. and L. Getzler (2002). "Accountability, Ability, and Disability:
Gaming the System", Working Paper 9307. National Bureau of Economic
Research.

[7] Figlio, D. and C. Rouse (2006). "Do Accountability and Voucher Threats
Improve Low-Performing Schools?", Journal of Public Economics 90: 239–
255.

[8] Gill, B., J.R. Lockwood III, P. Razquin, K. Booker, and R. Zimmer (2007).
"State and Local Implementation of the No Child Left Behind Act: Volume
I—Title I School Choice, Supplemental Educational Services, and Student
Achievement." U.S. Department of Education, Office of Planning, Evalua-
tion and Policy Development.

[9] Greene, J. (2001). "An Evaluation of the Florida A-Plus Accountability and
School Choice Program", Manhattan Institute for Policy Research, New
York.

[10] Hahn, J., P. Todd, and W. van der Klaauw (2001). “Identification and Es-
timation of Treatment Effects with a Regression-Discontinuity Design”,
Econometrica, 46(4): 201-209.

29



[11] Imbens, G. and T. Lemieux (2008). "Regression Discontinuity Designs: A
Guide to Practice", Journal of Econometrics, 142(2): 615-635.

[12] Imbens, G. and K. Kalyanaraman (2009). "Optimal Bandwidth Choice for
the Regression Discontinuity Estimator", National Bureau of Economic Re-
search Working Paper No. 14726.

[13] Jacob, B. (2005). "Accountability, Incentives, and Behavior: The Impact of
High-Stakes Testing in the Chicago Public Schools", Journal of Public Eco-
nomics 89: 761–796.

[14] Jacob, B. and L. Lefgren (2004). "The Impact of Teacher Training on Student
Achievement: Quasi-experimental Evidence from School Reform Efforts in
Chicago", Journal of Human Resources, 39(1): 50-79.

[15] Lee, D. and T. Lemieux (2010). "Regression Discontinuity Designs in Eco-
nomics", Journal of Economic Literature, 48: 281-355.

[16] Papay, J., J. Willett and R. Murnane (2011). "Extending the Regression-
Discontinuity Approach to Multiple Assignment Variables", Journal of
Econometrics, 161(2): 203-207.

[17] West, M. and P. Peterson (2006). "The Efficacy of Choice threats within
School Accountability Systems: Results from Legislatively Induced Exper-
iments. Economic Journal 116, C46–C62.

[18] Wong, V., P. Steiner, and T. Cook (2011). "Analyzing Regression Disconti-

nuity Designs with Multiple Assignment Variables: A Comparative Study

of Four Estimation Methods", Mimeo., Northwestern University.

30



CHAPTER 2

A DISCRETE CHOICE ANALYSIS OF THE U.S. DEMAND FOR WINE

2.1 Abstract

Using the Berry (1994) nested logit discrete choice model that directly incor-

porates features of product differentiation, I analyze the behavioral processes of

American wine drinkers and estimate the demand for wine in the United States.

Two separate nesting structures that segment the wine market by price-based

quality levels and country of origin are implemented. Recognizing the endo-

geneity of wine prices and within-group market shares, I apply a two-stage least

squares (2SLS) instrumental variables estimation procedure. The estimation of

demand parameters reveals several facts about the U.S. demand for wine. Un-

der a quality-level nesting structure, price and varietal offerings have a strong

impact on the total brand market share relative to the share of the outside good.

In addition, American wine drinkers who segment along quality tend to prefer

European wines, and exhibit high correlation of tastes at both extremes of the

quality spectrum. The origin-based nesting structure indicates similar effects

from prices and varietals, but at a lower magnitude than the quality model.

Wine drinkers who segment based on origin have strongly heterogeneous pref-

erences towards domestic wines, perhaps reflecting greater product differen-

tiation among U.S. brands. Further, drinkers of European wines show high

correlation of preferences, while those who drink Australian wines show low

correlation. This latter result may again be due to higher levels of product

differentiation among Australian wine brands. Finally, using the demand pa-

rameters, the market share own-price elasticity is derived and is shown to be

monotone increasing under a quality level nesting structure.
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2.2 Introduction

The demand for wine in the United States has been growing continuously for

the last twenty years, and has recently seen a rebound after the financial crisis

of 2008-2009 (see Figure 2.1). Beverage preferences of American consumers

have clearly been undergoing a change during this time, and in a milestone,

Americans as a whole now drink more wine than the French.1 In this paper,

my goal is to better understand the demand for wine in the United States by

investigating the preferences and decision-making processes of American wine

drinkers.

The paper contributes to the wine demand literature by applying a discrete

choice analysis that takes into consideration the significant level of product dif-

ferentiation in the wine industry. In the nested logit model that I implement

(Berry, 1994), individual wine brands are assigned to groups within different

nesting structures based on quality levels and country of origin. This assign-

ment allows me to understand the level of heterogeneity of preferences for wine

among consumers in those groups through estimation of a correlation parame-

ter embedded in the model. Significantly, the model allows for use of market-

level data, and accounts for the endogeneity of prices and within-group market

shares by deriving a linear estimating equation that allows one to apply instru-

mental variables methods such as two-stage least squares (2SLS).

Once consumer preferences towards wine are understood in more detail

through the application of the present discrete choice model, it is my hope that

this knowledge can be put to several uses. Researchers can extend these models

to produce more salient research of wine demand, while at the same time pri-

1See http://articles.latimes.com/2011/jun/01/business/la-fi-wine-rebound-20110601 for
more information on the recent rebound in American consumption of wine. As noted in the
article, the French still drink more than Americans do on a per capita basis.
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Figure 2.1: Total Wine Sales in the United States: 1991 - 2011 (Source: Wine
Institute)
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vate wine producers can have a better understanding of consumers’ tastes and

provide more targeted offerings.

The remainder of the paper is organized as follows: Section 2.3 reviews pre-

vious studies of the demand for wine; Section 2.4 discusses the discrete choice

theoretical model and derives the wine demand estimating equation; Section 2.5

discusses data sources and construction of variables; Section 2.6 reviews empir-

ical estimates; and Section 2.7 concludes.

2.3 Previous Studies of Wine Demand

There is a large literature on the empirical estimation of wine demand with two

primary areas of focus. The first area focuses on applying a demand system
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such as the Almost Ideal Demand System (AIDS) to estimate demand parame-

ters and elasticities.2 These studies generally focus on the demand for alcoholic

beverages, of which wine is a component in the system of demand equations.

While demand system models are well-suited to learning about aggregate fea-

tures of consumer demand theory, such as testing for homogeneity and sym-

metry restrictions, they cannot be used to learn about consumer preferences to-

wards differentiated products such as wine. In particular, these systems do not

allow specific attributes of products to enter the model and are thus unsuited

to understanding consumers’ tastes for such attributes. Therefore, while the

present paper does use aggregated data, I am most interested in estimating the

heterogeneity of preferences across different nesting structures and thus apply a

nested logit model rather than more general demand systems used in previous

work.

The second literature focuses mainly on single-equation analyses of demand

for alcoholic beverages.3 While more flexible than demand systems, they suffer

from the same inapplicability towards features of demand under product dif-

ferentiation due to their inability to focus on specific attributes of wine products

at the brand level.

There are two previous studies of which I am aware that feature a discrete

choice approach to wine demand in the United States. The first4 applies this

approach to the study of white wine demand. While using a discrete choice

model, the analysis is still carried out at an aggregate level and does not specif-

ically take product differentiation into account.

The second study5 applies a product differentiation model to wine demand

2See, for example, Heien and Pompelli (1989); Jones (1989); Andrikopoulos, Brox and Car-
valho (1997); Blake and Nied (1997); and Chang, Griffeth, and Bettington (2002).

3See, for example, Lee and Tremblay (1992); and Blaylock and Blisard (1993).
4Pompelli and Heien, 1991.
5Davis, Ahmadi-Esfahani and Iranzo, 2008.
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in the United States, but potentially suffers from biased estimates due to sample

selection bias. It focuses on the top 50 wine brands in the U.S. and includes

in the outside good the remaining wine brands in the data set. Since there are

thousands of domestic and foreign wine brands in the U.S. directly competing

with the top 50 brands that may be included in the data, it isn’t immediately

obvious why they should be excluded from the sample.

2.4 Discrete Choice Analysis Under Product Differentiation

2.4.1 The Nested Logit Discrete Choice Model

Discrete choice analysis describes the behavioral process by which individual

agents make choices among a countable set of options.6 For any product j, we

denote the mean utility level for consumer i as:

�j � xj� � �pj + �j (2.1)

where xj are observed product demand characteristics, �j represent the

mean valuation of unobserved (by the econometrician) demand characteristics

(e.g., regarding product quality), pj is the price, and � is the mean valuation of

the taste parameter.

The standard logit discrete choice model makes the assumption that vari-

ation in consumer preferences is embodied in the distribution of unobserved

consumer preferences, which is assumed to have an independently and identi-

cally distributed extreme value distribution exp(� exp(��)), where � is the dis-

tribution of unobserved consumer preferences about �j . The i.i.d. assumption

6See McFadden (1974) for an early, seminal contribution to the field. Train (2009) provides a
comprehensive overview of discrete choice models, including the nested logit model.
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imposes strong restrictions on demand substitution patterns by requiring prod-

uct differences to depend only on the mean utility level for the product, �j . This

implies that cross-price elasticities are not affected by individual product char-

acteristics or prices.

For example, two products, a and b, that have the same market share will

have the same cross-price elasticity with any other product, whether a and b are

close substitutes or of very different quality and price. This is known as the

independence from irrelevant alternatives (IIA) property and appears to be quite

unreasonable in the case of wine, for which individual product characteristics

are likely to place a large role in differentiating products.

To allow for more flexible correlation patterns, I apply the nested logit discrete

choice model, which assigns products to a set of groups (or "nests") for which

it is assumed that the IIA property holds for products within a group, but does

not hold for products across groups. More formally, let there be j = 1; :::; N

products and assign each of the products to G + 1 mutually exclusive and ex-

haustive groups, g = 0; 1; :::G. The set of products j in group g is referred to as

Jg. Group 0 contains one element, j = 0, known as the "outside good". The

outside good can be purchased instead of one of the products, j = 1; :::N and

does not respond to price changes among these N grouped goods.

If we let 1fj 2 Jggjg be the indicator function that takes a value of one if

j 2 Jg, and zero otherwise, then we can write the utility function for the nested

logit model as:

uij = �j +
P
g

�
1fj 2 Jggjg� ig

�
+ (1� �g) �ij (2.2)

where 0 � �g < 1 is a correlation parameter for group g, � ig is a taste parameter

that is common to all goods in group g, and �ij follows an extreme value distri-

bution. Cardell (1997) shows that if �ij follows an extreme value distribution,
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then
�
� ig + (1� �g) �ij

�
does as well. Equation (2) shows how the nested logit

model allows for within-group correlation of tastes for common products as a

function of �g. As �g approaches one, the within-group correlation of utility

approaches one; as �g approaches zero, the correlation approaches zero. As

we can see, this model allows the degree of heterogeneity for consumer prefer-

ences to differ across groups. Similar discrete choice models (See Bresnahan,

1981, 1987) are more restrictive in this regard, requiring � to be the same across

groups. Since demand for wine depends on both observable factors (e.g., va-

rietal, country of origin), as well as unobservable factors (e.g., brand quality,

perceived brand prestige), it would be seem more realistic that consumers’ pref-

erences would differ across different nesting structures. Therefore, we will ap-

ply the approach indicated above in the subsequent analysis.

2.4.2 The Nested Logit Model Applied to Wine Choice

Quality Nesting Structure

Applying the nested logit discrete choice model above to wine choice, the con-

sumer’s decision to purchase a particular brand of wine can be modeled as a

series of nests, as shown in Figure 2.2. At the top level, the consumer chooses

between the outside good and wine. After deciding to purchase wine, at the

second level the consumer chooses among a series of product groups.

In this particular nesting structure, I group wine brands according to five

price-based quality levels that are commonly used in the wine industry,7 g =

1; 2; 3; 4; 5, where the groups correspond to Economy, Popular Premium, Pre-

7While there are different pricing conventions used in the wine industry, the five qual-
ity categories noted above follow a standard segmentation. See wine industry newslet-
ter http://www.winespiritsdaily.com/publications_daily.php?id=12 for the price-based quality
categories used in this paper.
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Figure 2.2: Wine Choice Model - Quality Nesting
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mium, Super Premium, and Ultra Premium, respectively. Table 2.1 describes

these quality levels in more detail. As mentioned above, there are G+1 groups

in total and the outside good is the only element of group 0. At the bottom

nesting level, consumers choose a specific brand of wine from a specific quality

category.8

Origin Nesting Structure

A second nesting structure that I use to model wine choice is the country or

continent of origin. Conditional on purchasing wine, at the second level the

consumer chooses among five product groups, g = 1; 2; 3; 4; 5, where the groups

in this case correspond to the United States, Europe, South America, Australia,

and South Africa, respectively. At the bottom nesting levels, consumers again

choose among specific wine brands from these groups.9

8Although this framework sets up a seemingly ordered decision tree, no sequential decision-
making process should be inferred. The nested logit model only assumes that individuals
choose among specific wine brands; the tree merely reflects correlation patterns among prod-
ucts. See Hensher, Rose, and Greene (2005, chap. 13).

9As indicated below, I only focus on regions that appear in the data as producing table wines
(i.e., non-fortified, non-sparkling wines).
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Table 2.1: Price-Based Wine Quality Levels

Quality Level Price Range for 750 mL Bottle

Economy < $5.00
Popular Premium $5.00 - $7.99
Premium $8.00 - $10.99
Super Premium $11.00 - $14.99
Ultra Premium $15 and above

Notes: Specific price ranges from wine industry newsletter
winespiritsdaily.com.

Table 2.2 lists the frequency of brands by origin. As we see in the table, the

United States and Europe comprise approximately 86% of the data in any given

year.

The Berry Product Differentiation Model and Demand Estimation

The nested logit model is frequently estimated at the level of individual con-

sumer choice using consumer microdata (see Train, 2009). However, most wine

consumption data, including the data used in this paper, are aggregated up to

the state or national level, requiring an aggregate nested logit model based on

wine brand market shares. In addition, since wine prices and within-group

market shares (discussed below) are endogenously determined, and enter the

discrete choice demand framework nonlinearly, this prevents a direct applica-

tion of linear instrumental variables methods to the wine product choice model.

I therefore apply the theoretical work done by Berry (1994), which shows

how to transform a nonlinear nested logit discrete choice model into a linear

form that can be estimated with an instrumental variables procedure using

market-level data. In particular, for wine brand j in group g, define the within-
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Table 2.2: Wine Brands by Country of Origin
Country/State of Origin Number of Brands

2001 2002 2003
Argentina 38 40 44
Australia 140 160 168
California (U.S.) 879 928 931
Chile 84 97 90
France 456 519 466
Germany 101 102 101
Greece 11 14 12
Hungary 12 13 12
Italy 474 527 508
New Zealand 39 48 54
New York (U.S.) 24 27 24
Oregon/Washington (U.S.) 153 159 164
Other U.S. 222 230 213
Portugal 25 28 26
South Africa 54 57 55
Spain 128 136 132
Total 2,840 3,085 3,000

Notes: The following countries had fewer than ten brands in any given year:
Austria, Bulgaria, Canada, Israel, Lebanon, Mexico, Morocco, the Netherlands,
Romania, Russia, and the former Yugoslavia. Variations in sample sizes due to
number of brands in each year with zero recorded sales.

group market share function as:

sj=g(�; �g) =
e�j=(1��g)

Dg

(2.3)

where the denominator, also known as the "inclusive value" is defined as:

Dg �
P
j2Jg

e�j=(1��g) (2.4)

and can be interpreted as the the total utility from all wines j in group g.

Moving up one level in the nesting structure, the probability of choosing

group g (i.e., the group market share function) is defined as:

sg(�; �g) =
D
(1��g)
g�P

g

D
(1��g)
g

� . (2.5)
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Thus, the total market share function for wine j is the product of the within-

group share, sj=g, and the probability of choosing group g, sg:

sj(�; �g) = sj=g(�; �g)sg(�; �g) =
e�j=(1��g)

D
�g
g

�P
g

D
(1��g)
g

� . (2.6)

For the outside good, as the only member of g = 0, we define the mean utility

level as �o � 0, implying Do = 1, so that when the outside good is chosen, we

have:

so(�; �g) =
1�P

g

D
(1��g)
g

� . (2.7)

If we define the total market share of wine j relative to the outside good as
sj(�;�g)

so(�;�g)
and take logs of this expression, we get:

ln(sj)� ln(so) =
�j

(1� �g)
� �g

�
ln(sg)� ln(so)
(1� �g)

�
(2.8)

where the last term in brackets is ln(Dg), derived from equation (7). Substitut-

ing for �j from equation (3) and rearranging terms, we arrive at our estimating

equation:

ln(sj)� ln(so) = xj� � �pj + �g ln(sj=g) + �j . (2.9)

I estimate the demand parameters � = (�; �; �g) for all g 2 G (for both the

quality and origin nesting structures) by regressing differences in log market

shares on xj , pj , and ln(sj=g) using a 2SLS procedure that uses distance to the

United States, exchange rates, and a world crop index as instruments for market

price and the within-group market share.10

10I also fit a three-level nested logit model that comprised the cross of quality levels and coun-
tries of origin, producing 25 categories. While the correlation coefficients for the 25 categories
are difficult to interpret, the effects of price and varietal on the relative overall market share
were similar to the two-level model presented here.
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Once the demand parameters are estimated, we can write the own-price elas-

ticity for wine j in group g as:11

"j;j =
@sj
@pj

pj
sj
= �pj

�
�g

(1� �g)
sj=g + sj �

1

(1� �g)

�
. (2.10)

Using the estimated demand parameters for price and within-group prefer-

ences, and the relevant market shares, I calculate the own-price elasticity at the

group level for each nesting structure using revenue-weighted averages of the

individual brand elasticities in each group.

2.5 Wine Data and Variable Construction

To perform the estimation, I use market-level supermarket and drug store point-

of-sale scanner data from a proprietary data set constructed by IRI InfoScan Re-

views of domestic and foreign wine sales in the entire United States.12 Each ob-

servation in the data is an individual brand of wine. The data cover the period

2001-2003 and include the brand name, the type of wine13, dollar sales, aver-

age retail price per 750mL bottle, country of origin (including state of origin for

U.S. states CA, OR/WA, and NY), a quality description14 and a varietal/non-

varietal15 indicator.

The data do not include sales at retail wine stores, wineries, or restaurants,
11The equation for own-price elasticity is not indicated in Berry (1994). See the appendix for

a detailed derivation.
12The data set was originally purchased from IRI InfoScan Reviews by the late Frank Vannerson

of Princeton, NJ.
13The wine types are: 1) Table; 2) Fruit Varietal; 3) Dessert; 4) Fortified; 5) Vermouth-Apertif;

and 6) Sake/Plum.
14As mentioned above, the wine quality types are: 1) Economy; 2) Popular Premium; 3) Pre-

mium; 4) Super Premium; and 5) Ultra Premium.
15A "varietal" is a wine made from a single grape variety such as Merlot or Chardonnay.

By U.S. law, a wine must contain at least 75% of the grape variety to allow use of the vari-
ety on the wine label (see http://www.ttb.gov/labeling/index.shtml for more information on
federal labeling requirements). Wines made from more than one grape variety are denoted
"non-varietal".
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Table 2.3: Descriptive Statistics, Wine Scanner Data, 2002

Variables (1) (2) (3) (4) (5)
N Mean Std. Dev. Min. Max.

Revenue (2003 dollars) 3,085 1,181,945 7,664,858 15.07 1.56 x 108

Price (2003 dollars) 3,085 13.13 9.69 2.24 146.14
Varietal 3,085 0.78 0.42 0 1
Total Market Share, sj 3,085 0.00003 0.00008 1.46 x 10�9 0.004
Quality Nests
Economy 3,085 0.03 0.17 0 1

Within-Group, sj=g 89 0.01 0.06 4.72 x 10�7 0.56
Popular Premium 3,085 0.24 0.43 0 1

Within-Group, sj=g 741 0.001 0.008 3.89 x 10�9 0.11
Premium 3,085 0.29 0.45 0 1

Within-Group, sj=g 882 0.001 0.006 5.69 x 10�9 0.11
Super Premium 3,085 0.19 0.39 0 1

Within-Group, sj=g 585 0.002 0.01 2.23 x 10�8 0.29
Ultra Premium 3,085 0.25 0.43 0 1

Within-Group, sj=g 777 0.001 0.008 6.48 x 10�8 0.19
Origin Nests
United States 3,085 0.44 0.50 0 1

Within-Group, sj=g 1,344 0.001 0.004 2.32 x 10�9 0.05
Europe 3,085 0.43 0.50 0 1

Within-Group, sj=g 1,339 0.001 0.005 1.23 x 10�8 0.09
South America 3,085 0.04 0.21 0 1

Within-Group, sj=g 137 0.01 0.03 1.15 x 10�7 0.30
Australia 3,085 0.07 0.25 0 1

Within-Group, sj=g 208 0.005 0.03 3.04 x 10�8 0.25
South Africa 3,085 0.02 0.13 0 1

Within-Group, sj=g 57 0.02 0.04 5.81 x 10�6 0.19

Notes: Quality levels defined in Table 2.1.

and as such only cover approximately 40% of all wine sales in the United

States16. I restrict the sample to brands identified as "table wine", to isolate

the U.S. demand for non-fortified, non-sparkling wines. Table 2.3 provides de-

scriptive statistics for the wine scanner data in 2002.

16See http://www.symphonyiri.com/SolutionsandServices/Detail.aspx?ProductID=181 for
more information on the IRI InfoScan data.
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2.5.1 Outside Good, Market Share, and Product Characteristics

Variable Construction

I follow Berry (1994) in computing the outside good for the wine market. Since

the nesting structure used in this paper is exhaustive, I assume that when con-

sumers do not choose to purchase wine, they purchase beer or distilled spirits

instead. Therefore, I take total alcohol sales in the United States as the base for

computing the relevant market.

In examining national-level sales data compiled by the Wine Institute and

the Economic Research Service of the U.S. Department of Agriculture,17 I have

determined that the data used in this paper comprise approximately 4% of the

total sale of alcohol (wine, beer, and spirits) during the time period studied. I

therefore construct the observed total market share, sj , in the relevant year by

dividing the sales for a specific wine brand j by total alcohol sales in that year.

In computing the within-group market share, sj=g, for each nesting structure,

I use the total revenue for the specific group g as the denominator. The within-

group shares are then interacted with a set of nesting dummies to perform the

estimation. The share of sales outside of the nesting structure that makes up

the remainder of alcohol sales in the United States is used to construct the share

of the outside good.

The product characteristics for each wine brand are indicators for varietals

and country of origin. I construct a set of origin dummies for use in the quality

nesting estimation. The average price per 750 mL bottle is also converted to

2003 dollars for each year to ensure consistent quality assignments.

17See http://www.wineinstitute.org/resources/statistics/article639 for historical statistics
on table wine sales and http://www.ers.usda.gov/briefing/cpifoodandexpenditures/

Data/Expenditures_tables/table4.htm for historical statistics on total alcohol expenditures in
the United States.
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2.5.2 Instrumental Variables Construction

Since wine prices, and therefore within-group market shares, are likely to be cor-

related with unobservable product characteristics that also affect relative total

market shares, we must use an instrumental variables procedure to counteract

the potential bias caused by this endogeneity. I use three sets of variables to in-

strument for price and within-market shares: 1) exchange rates;18 2) world crop

indices;19 and 3) distance from country of origin to the United States.20 Each ob-

servation in all of the instrumental variable data sets is a country-year, covering

all of the countries and years included in the IRI supermarket data set described

above.

Intuitively, these variables would be expected to be correlated with move-

ments in wine prices. I ran first-stage regressions for both the price and within-

market share variables and tested the joint significance of the instruments. The

F -statistic for the price regression was 30.50 and the statistic for the within-

group market share regression was 49.04. Therefore, these instruments sat-

isfy the instrument relevance requirement. The first two are plausibly uncorre-

lated with unobservable product characteristics, satisfying instrument exogene-

ity, while crop production may have an indirect effect on wine quality, although

this is unclear. The instruments are also interacted with a set of nesting dum-

mies to perform the estimation.

18Exchange rates were downloaded from the International Monetary Fund’s exchange rate
archives: http://www.imf.org/external/np/fin/data/param_rms_mth.aspx.

19World crop production indices by country were downloaded from the World Bank:
http://data.worldbank.org/indicator/AG.PRD.CROP.XD.

20Distances were calculated using: http://www.distancefromto.net/countries.php.
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2.6 Empirical Results

2.6.1 Estimated Demand Parameters

Quality Nesting Structure

Table 2.4 shows the estimated demand parameter results of the 2SLS regres-

sions for the quality nesting structure. As we see in the table, wine price has

a negative and strongly significant effect on total relative market share, which

is expected. Consumers in the U.S. also appear to prefer varietal wines over

nonvarietals to a large degree during this time period. The origin dummies

suggest that wines from France21, Germany, and Italy are preferred by Ameri-

cans, with wines from Australia slightly behind this grouping. The coefficients

on the within-group share variables indicate a large degree of heterogeneity be-

tween consumers of wines in differing quality segments. Preferences appear to

be highly correlated at both extremes of the quality spectrum, with consumers

of Ultra Premium wines having the highest level of homogeneity of tastes.

At the lower end of the spectrum, it may be reasonable to believe that corre-

lation of preferences may be due to infrequent purchases of wine. For example,

individuals in this category may have very little knowledge of wine and may

follow common cues about varietals or the countries that produce the "best"

wines. At the other end of the spectrum, individuals may be very knowledge-

able about wine, and may have a common understanding regarding the types

of attributes that produce enjoyable wines.

If knowledge is continuous in quality levels, then in the middle of the qual-

21One may recall in the popular press a U.S. boycott of French wine shortly after 9/11. There
is evidence to suggest that seasonality, rather than changing preferences towards French wine,
were responsible for temporary declines in French wine consumption during this period (see
Ashenfelter, Ciccarella, and Shatz, 2007).
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Table 2.4: Estimated Demand Parameters, Quality Nesting, IV Regression, 2001-
2003

Dependent Variable: ln(sj)� ln(so) Estimated Parameters
Price (�) -0.186 (0.066) ***
�

Varietal 0.433 (0.160) ***
Australia 0.229 (0.128) *
United States 0.169 (0.074) **
Chile 0.057(0.276)
France 0.402 (0.203) **
Germany 0.330 (0.177) *
Italy 0.283 (0.125)**
2002 0.115 (0.092)
2003 0.024 (0.090)

Correlation of Within-Group Preferences (�g)
ln(sj=g): Economy 0.728 (0.145) ***
ln(sj=g): Popular Premium 0.883 (0.116) ***
ln(sj=g): Premium 0.565 (0.180) ***
ln(sj=g): Super Premium 0.779 (0.216) ***
ln(sj=g): Ultra Premium 0.925 (0.185) ***

Notes: 2SLS regression performed using the following instruments: distance to
United States, exchange rates and world crop index. Price and within-group
market share treated as endogenous variables. Heteroskedasticity-robust
standard errors in parentheses. Analysis performed on wine brands with
positive sales. *, **, *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

ity spectrum, it is reasonable to surmise that individuals may be just beginning

to acquire information regarding wines and are thus developing more hetero-

geneous preferences. There may be a greater selection of wines at this level as

well, and indeed, wines in the Premium category make up almost a third of all

the brands sold in the data (see Table 2.3).

Origin Nesting Structure

Table 2.5 shows the estimated demand parameters for the origin nesting struc-

ture. In this structure, the price of wine has a similarly negative effect on to-
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Table 2.5: Estimated Demand Parameters, Origin Nesting, IV Regression, 2001-
2003

Dependent Variable: ln(sj)� ln(so) Estimated Parameters
Price (�) -0.171 (0.075) **
�

Varietal 0.222 (0.124) *
Popular Premium 0.300 (0.132) **
Premium 0.266 (0.126) **
Super Premium 0.243 (0.041) ***
Ultra Premium 0.079 (0.114)
2002 0.087 (0.063)
2003 0.185 (0.084) **

Correlation of Within-Group Preferences (�g)
ln(sj=g): United States 0.538 (0.052) ***
ln(sj=g): Europe 0.771 (0.037) ***
ln(sj=g): South America 0.832 (0.055) ***
ln(sj=g): Australia 0.762 (0.069) ***
ln(sj=g): South Africa 0.636 (0.026) ***

Notes: 2SLS regression performed using the following instruments: distance to
United States, exchange rates and world crop index. Price and within-group
market share treated as endogenous variables. Heteroskedasticity-robust
standard errors in parentheses. Analysis performed on wine brands with
positive sales. *, **, *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

tal relative market share. Varietals also are favored by U.S. consumers who

segment by country of origin, but not as strongly as in the previous model.

The quality dummies suggest that market share relative to the outside good in-

creases in a similar fashion for American wine drinkers of popular premium,

premium and super premium quality levels. There is less of a positive effect

on market share from consumption of ultra premium brands. The correlation

coefficients indicate that American drinkers of South American wine have the

lowest heterogeneity of tastes, while those who consume wine produced in the

U.S. have the greatest. The latter finding may be explained by the variety of

American wine brands available domestically. This is corroborated in Table 2.2,

48



in which we see that American-produced wines make up approximately 45%

of the data. On the other hand, only about 4% of the brands are from South

America, which may lead to strong convergence of tastes.

Drinkers of wines from Europe have low heterogeneity of preferences,

whereas drinkers of Australian wine appear to exhibit more heterogeneity.

While European wines comprise approximately 41% of the data, there may be

less overt product differentiation among these wines, relative to wine from the

United States or Australia. This may lead to stronger correlation of preferences

among these wine drinkers. For the same reason, even though Australian wines

comprise about 5% of the data, there may be a greater variety of wine types for

American consumers to sample.22

2.6.2 Elasticities

Tables 2.6 and 2.7 show market-share own-price elasticities for quality and

origin segmentations, respectively. As mentioned earlier, these results are

revenue-weighted averages of individual brand elasticities that are elements of

each specific group. This may be driving the generally larger magnitudes of the

elasticities in both tables.

In Table 2.6, we see that own-price elasticities are increasing monotonically

in quality levels. This may suggest that drinkers of relatively more expensive

wines are more adept at finding substitutes for brands that have increased in

price. This would coincide with the idea noted above that these drinkers tend

to be more knowledgeable about wine.

In Table 2.7, we find own-price elasticities for drinkers of wines from partic-

ular regions. The results suggest that American drinkers of domestic wine ex-

22See, for example, http://www.vinodiversity.com/ and http://www.aavws.com/public/.
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Table 2.6: Wine Market Share Own-Price Elasticity, Quality Nesting, 2001-2003
Economy Popular Premium Premium

2001 -0.962 -1.83 -3.27
2002 -0.859 -1.55 -2.70
2003 -0.841 -1.59 -2.83
Overall -0.896 –1.68 –2.98

Super Premium Ultra Premium
2001 -4.33 -6.45
2002 -3.54 -5.23
2003 -3.74 -5.57
Overall –3.94 -5.85

Table 2.7: Wine Market Share Own-Price Elasticity, Origin Nesting, 2001-2003
United States Europe South America Australia South Africa

2001 -1.96 -5.07 -9.19 -4.22 -2.61
2002 -1.97 -5.09 -9.24 -4.25 -2.62
2003 -1.88 -4.85 -8.79 -4.04 -2.50
Overall -1.94 -5.00 -9.08 -4.17 -2.58

Notes: See equation (2.10) for own-price elasticity formula and the appendix
for a derivation.

hibit demand behavior that is the least price-elastic, whereas drinkers of South

American wine exhibit behavior that is the most price-elastic.

2.7 Conclusion

In this paper, I have applied a nested logit discrete choice model with two sep-

arate nesting structures to examine the behavioral process by which American

wine drinkers choose different brands of wine. The theoretical foundation for

this model lies in recognizing the high degree of product differentiation inher-

ent in the production of wine. Using market-level data on wine sales, average

prices per unit, and product characteristics of individual wine brands, I have

used a 2SLS regression procedure to estimate demand parameters from the dis-

50



crete choice model and have calculated market share own-price elasticities us-

ing these parameters.

Applying the quality level nesting structure, I have found that wine prices

and varietal wine offerings have a strong impact on total relative market share.

In addition, American wine drinkers who focus on quality segmentation tend

to prefer European wines, and exhibit a strong correlation of preferences at both

extremes of the quality spectrum. Own-price elasticities for this nesting struc-

ture are monotone increasing in quality levels, indicating perhaps an ability of

more knowledgeable wine drinkers to readily find substitutes for higher-priced

wine brands.

The origin-based nesting structure indicates similar effects from prices and

varietals, but at a lower magnitude than the quality model. Wine drinkers who

segment based on origin have a high level of preference heterogeneity towards

domestic wines, perhaps reflecting greater product differentiation among U.S.

brands. Further, drinkers of wines from Europe show high correlation of pref-

erences, while those who drink Australian wines show low correlation. This

latter result may again be due to higher levels of product differentiation among

Australian wine brands.

It should be noted that it is difficult to distinguish between preferences for

wine, as reflected in higher prices, and price changes that simply result from

higher transport costs. I do not attempt to separate out these effects in this

paper, although it could have implications for the correlation results that I find.

More research on the wine industry using discrete choice models under price

differentiation should be undertaken, so that researchers and wine producers

alike can learn more about the behavioral processes of wine choice.
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2.8 Appendix. Derivation of Own-Price Elasticity for Wine

Brand j: "j;j

Since total market share, sj, is continuous in its arguments, we can use calculus

to derive the own-price elasticity:

"j;j =
@sj
@pj

pj
sj
= �pj

�
�g

(1� �g)
sj=g + sj �

1

(1� �g)

�
. (2.11)

For convenience, we rewrite the total market share for wine j from equation

(2.6) above:

sj(�; �g) =
e�j=(1��g)

D
�g
g

�P
g

D
(1��g)
g

� (2.12)

where, again:

Dg �
P
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Now, we apply the chain rule to @kjg
@pj

:
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Further define M(1)g � D�g
g and M(2)g �

P
g
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(1��g)
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Applying the chain rule to @M(1)g

@pj
, we get:
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Since j 2 Jg for one and only one group g, applying the chain rule to @M(2)g

@pj

gives us:
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Therefore, we have:

@Mg

@pj
= M(2)g

"
��kjg�g

M
(1��g)=�g
(1)g (1� �g)

#
+M(1)g

�
��kjg
M(1)g

�
=

��kjgM(2)g�g

M
(1��g)=�g
(1)g (1� �g)

� �kjg. (2.19)

Returning to the original equation for @sj
@pj

, we have:
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After rearranging terms and noting that sj=g = kjg=
�
M(1)g

�1=�g (see equation (2.3)

above), we get:
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CHAPTER 3

A BAYESIAN IMPUTATION ALGORITHM OF QUARTERLY EARNINGS

FOR PART-TIME FEDERAL WORKERS IN THE U.S. CENSUS BUREAU

LONGITUDINAL EMPLOYER-HOUSEHOLD DYNAMICS

INFRASTRUCTURE FILES

3.1 Abstract

In this paper, I describe a Bayesian imputation procedure of annual hours and

quarterly earnings for part-time, seasonal, and intermittent (PTSI) federal work-

ers in the OPM administrative data that are integrated into the LEHD infrastruc-

ture files. Using a template probability model composed of an informative

Dirichlet prior, I illustrate the functional form for the posterior distribution and

the parameters for this distribution. Construction of the estimation sample is

discussed and the empirical Bayes procedure that applies the probability model

to this sample is described. The resulting data set of imputed hours and earn-

ings is tested, and is found to be both internally and externally consistent. Us-

ing 14 quarters of confidential OPM data, I find that the imputed hours distri-

bution is qualitatively similar across all quarters, showing frequency spikes at

common intervals with almost identical magnitudes. The modal hours worked

in each of the distributions is approximately 35 hours/week. Weekly imputed

hours and earnings data are also compared to the Merged Outgoing Rotation

Groups (MORG) in the Current Population Survey. The percentage difference

between imputed hours and earnings for PTSI workers in the OPM data and

part-time workers in the public administration industry in the MORG are ap-

proximately 3 and 2 percent, respectively. The match for imputed earnings

grows monotonically stronger over time for the years examined.
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3.2 Introduction

Administrative records from the Office of Personnel Management’s (OPM) Cen-

tral Personnel Data File (CPDF) provide earnings and employment information

for federal workers that are integrated into the existing Longitudinal Employer-

Household Dynamics (LEHD) infrastructure files. In contrast to the state UI

wage data that are the source for private-sector earnings information in these

files, quarterly earnings for federal workers are not recorded by OPM. The

OPM data provide only an annual measure of earnings, without additional in-

formation regarding the distribution of earnings across quarters. Under the

assumption that full-time federal workers work approximately equal numbers

of hours each quarter, quarterly earnings for these workers can be assigned by

taking the annual earnings measure and dividing it equally across each quarter.

In the case of part-time, seasonal, and intermittent federal workers (hereafter

referred to as PTSI workers), this procedure cannot be replicated. (See Ta-

ble 3.1 for information on the number of PTSI workers in the public-use OPM

data.)1 OPM provides a full-time annual earnings equivalent for these work-

ers, which does not allow one simply to spread the recorded annual earnings

measure equally across quarters to arrive at quarterly earnings. To construct a

quarterly earnings measure for PTSI workers, one must first determine the true

annual earnings amount, rather than a full-time equivalent. Learning the true

PTSI annual earnings in turn depends on determining the number of hours that

are worked under these work schedules. With this information known, the true

measure can be constructed by taking the proportion of hours worked relative

to the number of hours that could have been worked by a full-time worker dur-

ing the year and then multiplying this fraction by the recorded full-time annual

1The OPM website www.fedscope.opm.gov/employment.asp contains detailed information
on public-use OPM employment data.
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Table 3.1: Public-Use OPM Employment, 1998-2011
All Federal Workers PTSI Workers Percentage (%)

Year (1) (2) (3)
1998 1,745,553 115,871 6.64
1999 1,709,918 99,874 5.84
2000 1,697,753 99,810 5.88
2001 1,711,325 98,262 5.74
2002 1,757,725 99,235 5.65
2003 1,785,390 101,797 5.70
2004 1,794,798 111,197 6.20
2005 1,798,766 109,427 6.08
2006 1,802,228 113,221 6.28
2007 1,814,638 112,813 6.22
2008 1,889,459 116,557 6.17
2009 1,993,409 121,189 6.08
2010 2,061,320 125,064 6.07
2011 2,070,375 129,063 6.23

Source: OPM - http://www.opm.gov/feddata/html/acpdf.asp

earnings equivalent.

Unfortunately, the number of hours worked is not provided in the OPM

data files, which requires one to impute these hours using statistical imputation

methods. In this paper, I describe a Bayesian imputation algorithm that im-

putes hours worked for PTSI federal workers and that satisfies a set of quality

assessment criteria. Once hours are imputed, the imputed PTSI annual earn-

ings measure is constructed as described above. The quarterly earnings assign-

ment procedure used for full-time workers can then be replicated by dividing

imputed PTSI annual earnings across the quarters depending on the number of

quarters worked by each PTSI worker.

The remainder of the paper is organized as follows: Section 3.3 discusses

the Bayesian probability model for the OPM hours imputation; Section 3.4 il-

lustrates construction of the estimation and imputation samples; Section 3.5 de-
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scribes the empirical imputation procedure; Section 3.6 discusses quality assess-

ment of the hours imputation; and Section 3.7 concludes.

3.3 Probability Model for OPM Hours Imputation

3.3.1 Identifying Assumption

Assume we have data2, fHi; Zi;migNi=1, where Hi is the annual hours worked

for individual i, Zi is a set of covariates for individual i, and mi is an indicator

variable that takes a value of one if the number of hours worked for individual i

is observed in the data. M = (m1; :::;mN), known as the inclusion vector, can be

modeled jointly with the data and describes the missing-data mechanism. The

variable of interest is Hi and in imputing the missing outcomes in the data (i.e.,

those for which mi = 0), we need to identify the probability:

� (HijZi;mi = 0) = Pr (HijZi;mi = 0).

We make the identifying assumption that the observations for whichmi = 0

are missing completely at random (MCAR), such that:

� (HijZi;mi = 0) = � (HijZi;mi = 1) :

That is, the probability that individual i works Hi hours, conditional on a

set of covariates Zi, is the same whether that person is observed in the data or

not. This assumption allows us to bypass further modeling of the missing-data

mechanism and implies that the distribution ofM is completely independent of

the data (i.e., the missing-data mechanism is ignorable). We can therefore use

the observed data to make inferences regarding the number of hours worked for

2This probability model builds on prior work done by John Abowd, Melissa Bjelland, and
Ian Schmutte for the LEHD Human Capital Estimates Project.
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individuals who are missing in the data by sampling from the derived posterior

distribution.

3.3.2 Bayesian Inference

Now assume we have data, fHi; ZigNi=1, as defined above, and we would like to

learn about the probability � (HijZi) (where we have suppressed the missing-

ness indicator, mi). In the subsequent analysis, we want to focus on predicted

probabilities, �, for hours-covariate cells that are indexed by the number of an-

nual hours worked by a PTSI federal worker and the unique combination of

covariates for that worker. More precisely, let R = 35� 52 = 1,820 be the num-

ber of possible hours that a PTSI worker can work annually (a maximum of 35

hours per week for 52 weeks) and let C = 14,400 be the number of possible

covariate combinations (see section 3:4:1 below). Then matrix HZ with row

dimension C and column dimension R has typical element �cr, such that:

c 2 Z = (Z1; :::; ZC) and r 2 H = (H1; :::; HR),

and contains C �R = 14,400 � 1,820 = 26,208,000 hours-covariate cells:

HZ =

0BBBBBBB@

�11 �12 � � � �1;1820

�21 �22 � � � �2;1820
...

... . . . ...

�14400;1 �14400;2 � � � �14400;1820

1CCCCCCCA
.

Since we will be interested in subsample counts defined by hours-covariate

cells, we can rewrite the data vector as fHigNZi=1, where NZ is the number of

observations for a specific covariate combination, Z.
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Likelihood

The number of annual hours worked by PTSI federal worker i, Hi, has discrete

support H , with R possible outcomes. We can therefore characterize the sam-

pling distribution, � (HijZi), over these possible outcomes as multinomial with

parameter � = (�1; :::; �R), such that
PR

r=1 �r = 1. If we let 1(�) be the indica-

tor function that equals one when the condition expressed in the parentheses is

true, and zero otherwise, and assume the observations are i.i.d., the likelihood

function for � (HijZi) can be written (up to a proportionality constant) as:

� (Hj�; Z) _
QNZ
i=1

QR
r=1 �

1(Hi=Hr)
r

=
QR
r=1 �

NZr
r ;

where NZr =
PNZ

i=1 1(Hi = Hr). We interpret NZr as the count of individuals

with covariate combination Z and annual number of hours worked equal toHr.

Prior Distribution

The prior distribution reflects our beliefs regarding the distribution of the

multinomial parameter, �, prior to knowledge of the data. We select an in-

formative prior for � that ensures an analytic solution for the posterior distribu-

tion that follows the same parametric form as the prior distribution. This latter

property is known as conjugacy, and the conjugate prior for the parameters of

the multinomial likelihood is the Dirichlet distribution (a multivariate general-

ization of the beta distribution). We can write the Dirichlet prior distribution

with hyperparameter � = (�1; :::; �R) as:

� (�j�;Z) = 1
B(�)

QR
r=1 �

�r�1
r ,

where �r > 0;8r 2 R and
PR

r=1 �r = 1. The normalizing constant, B(�), is

the multinomial beta function, which can be expressed in terms of the gamma
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function as:

B(�) =

QR

r=1
�(�r)

�

�PR

r=1
�r

� , with �(z) =
Z 1

0

e�ttz�1dt, for z 2 C.

Posterior Distribution

The posterior distribution, � (�jH;Z), summarizes all of the information regard-

ing the multinomial parameter, �, after using the data to update our prior be-

liefs. It is therefore a compromise between the data likelihood, � (Hj�; Z), and

the prior distribution, � (�j�;Z). Using Bayes’ Rule, we can write the posterior

distribution of � as:

� (�jH;Z) = �(Hj�;Z)�(�j�;Z)R
�
�(Hj�;Z)�(�j�;Z)d�

,

where the integral in the denominator is calculated over the support of �. To

derive the posterior distribution, we first derive the numerator:

� (Hj�; Z)� (�j�;Z) =
QR
r=1 �

NZr
r � 1

B(�)

QR
r=1 �

�r�1
r

= 1
B(�)

QR
r=1 �

NZr+�r�1
r .

Now we consider the denominator:Z
�

� (Hj�; Z)� (�j�;Z) d� =
Z
�

1
B(�)

QR
r=1 �

NZr+�r�1
r d�

= 1
B(�)

Z
�

QR
r=1 �

NZr+�r�1
r d�.

Note that for any numbers x; y 2 R+ we can write the multinomial beta

function, B(�), as:

B(x; y) =

Z 1

0

tx�1(1� t)y�1dt.

Replacing x and y with � = (�1,...,�R); t and (1� t) with � = (�1,..., �R); and

noting that � 2 [0; 1], we have:
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B(�) =

Z
�

QR
r=1 �

�r�1
r d�, and therefore, B(NZ + �) =

Z
�

QR
r=1 �

NZr+�r�1
r d�.

Thus the denominator of the posterior is B(NZ+�)
B(�)

, whereNZ = (NZ1 ; :::; NZR).

We can therefore write the posterior distribution of the multinomial parameter,

�, as:

� (�jH;Z) = �(Hj�;Z)�(�j�;Z)R
�
�(Hj�;Z)�(�j�;Z)d�

= 1
B(�)

QR
r=1 �

NZr+�r�1
r � B(�)

B(NZ+�)

= 1
B(NZ+�)

QR
r=1 �

NZr+�r�1
r .

This posterior is Dirichlet with hyperparameterNZ+� = (NZ1+�1; :::; NZR+

�R). As noted above, this result is an implication of our choosing a conju-

gate prior for the parameters of the multinomial likelihood. We will sample

from this posterior distribution to assign multinomial probabilities to hours-

covariates cells, and subsequently use those probabilities to impute hours

worked to PTSI federal workers.

3.4 Data

The data used for the hours imputation are broken down into two main cate-

gories: 1) the estimation sample and 2) the imputation sample.3

3.4.1 Estimation Sample

The estimation sample is used in the imputation procedure both to generate

the likelihood, as well as to construct the parameters for the Dirichlet prior dis-

tribution. We construct this data set by linking information on reported hours

3Sample construction and the empirical Bayes procedure are built on prior work done by Ian
Schmutte for the LEHD Human Capital Estimates Project.
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worked for individuals found in survey data with a set of conditioning variables

for those same individuals found in the LEHD infrastructure files.

Hours Worked Variables

Information on hours worked comes from two sources: 1) the 2000 Decennial

Sample Census Edited File (SCEF)4 and 2) the Current Population Survey (CPS).

The SCEF contains weighted 100-percent and sample characteristics for individ-

uals in the Decennial long form sample and is used to generate sufficiently large

cell counts in the estimation sample. The CPS is a monthly survey of house-

holds and is used to account for time-series variation in the reported number of

hours worked. Each observation in the data is an individual worker.

Annual hours worked are reported in both the SCEF and the CPS as the

product of hours worked per week and the number of weeks worked in the

previous year. Hours per week are restricted to lie between 1 and 99 in these

surveys, however we restrict the maximum number of hours for PTSI workers

to lie between 1 and 35. Thus, as noted above, the maximum number of hours

that can be imputed for these workers is 1,820 = 35� 52.

Conditioning Variables

The conditioning variables, Z, are a set of demographic and earnings charac-

teristics that stratify the set of PTSI workers. Specific combinations of charac-

teristics for each worker imply the assignment of specific annual hours worked

in the imputation procedure. As we will see below, the aggregate count of

workers in each cell that is formed from the combinations of the conditioning

4See http://www.census.gov/main/www/cen2000.html for more information on demo-
graphic and earnings variables in the 2000 Decennial Census, as well as information on the
SCEF.
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variables will determine the likelihood and prior values in the construction of

the posterior distribution.

In each year, there are six conditioning variables derived from demographic

and earnings variables found in the LEHD infrastructure files (Abowd et al.,

2009):

� male - an indicator variable derived from sex

� white - an indicator variable derived from race

� born_us - an indicator variable derived from place of birth (pob)

� nempl_cat - number of jobs held (3 maximum), derived from earnings his-

tories

� sixqwindow - a binary variable of the six-quarter earnings history for the

worker, determined by employment in the four quarters of the contempo-

raneous year and the quarters immediately before and after that year

� decile - the 1999 earnings decile of the worker’s income (in 2000 dollars),

derived from earnings histories.

The ’male’, ’white’, and ’born_us’ variables are transformed from the indi-

cated demographic variables (sex, race, pob), which are found in the LEHD

Individual Characteristic File (ICF) and Person Characteristics File (PCF). The

indicator variable transformations from the ICF/PCF to the estimation sample

(ES) are as follows: 1) ICF (sex = 1/sex = 0) () ES (male = 1/male = 0); 2)

ICF (race = white/race 6= white) () ES (white = 1/white = 0); 3) ICF (pob =

USA/pob 6= USA) () ES (born_us = 1/born_us = 0). The ’nempl_cat’, ’six-

qwindow’, and ’decile’ variables are derived from earnings histories found in

the Employment History File (EHF) and Person History File (PHF).
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There are 14,400 combinations of the conditioning variables and 1,820 possi-

ble imputed values for hours worked, producing an annual matrix of 26,208,000

hours-covariate cells. Only workers between the ages of 14-85 who have pos-

itive hours reported in the SCEF and CPS, as well as positive earnings in the

EHF/PHF, are selected for the estimation sample.

3.4.2 Imputation Sample

The imputation sample comprises the set of PTSI workers in the relevant OPM

data file. We construct the set of conditioning variables in this file so that it can

be merged with the file of covariate-combination-specific multinomial probabil-

ities that are generated from the posterior distribution. Once these probabilities

are attached to the imputation sample, they are used to impute annual hours for

each worker.

The OPM data set used to construct the conditioning variables is the quar-

terly status file. The status file is a snapshot of the federal workforce. Each

observation is an individual federal worker and includes demographic informa-

tion (e.g., sex, race, ethnicity) and job information (e.g., occupation, pay grade,

duty station) for each worker (see OPM, 1990-2012). Since the OPM data does

not contain the same demographic variables as the ICF/PCF, we use different

mappings to construct the covariates.5

Specifically, the ’male’ and ’white’ indicator variables are transformed from

similar ’sex’ and ’race’ variables in the status file as those in the ICF described

above. However, OPM does not record information on the place of birth vari-

able used in the estimation sample. Instead, an indicator for whether a federal

worker is a U.S. citizen (citizen), is used as a proxy for place of birth. If the
5See OPM: Guide to Data Standards, 2012 for a codebook of variables in the OPM Central

Personnel Data File.
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worker is a U.S. citizen (citizen = 1), then that individual is coded as being born

in the United States. This variable is matched to the ’born_us’ indicator vari-

able in the estimation sample. The conditioning variables that are derived from

earnings histories in the EHF/PHF are similarly constructed from the OPM sta-

tus file data. Specifically, individuals who appear in the relevant status files

over the six-quarter window are coded as having worked in the respective quar-

ters.6

3.5 Empirical Hours/Earnings Imputation Procedure

We now describe how the probability model for the OPM hours imputation is

applied to the data.

3.5.1 Likelihood

As noted above, the likelihood values,NZr , are determined by aggregate counts

of workers in each hours-covariate cell that is formed from different combina-

tions of the conditioning variables in the estimation sample. Since the estima-

tion sample draws from both the SCEF and the CPS, their weighted likelihood

contributions to the posterior distribution are described by the following linear

combination:

NZ = � � LSCEF + (1� �) � LCPS ,

where LSCEF and LCPS are the SCEF and CPS likelihood contributions, and

the mixing parameter � = 41
66

is the weight placed on the SCEF contribution.

6An exception is in the construction of the nempl_cat variable, which records the number of
jobs held by an individual. We make the simplifying assumption that the majority of federal
workers hold one position, and do not have additional jobs in either the public or private sectors.
Thus the nempl_cat variable is set equal to 1 for workers in the imputation sample.
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3.5.2 Prior Distribution

We use an informative Dirichlet prior distribution with shape parameter values

that equal the proportion of workers in the estimation sample appearing in a

restricted set of hours-covariate cells. In particular, the proportions are based

on worker counts in cells of white-male-nempl_cat combinations for all values

of annual hours that can be imputed. Since there are twelve categories of this

restricted set of conditioning variables, the total number of cells used for the

prior is 21,840 = 12�1,820.

To smooth the posterior distribution, an uninformative uniform prior is

added to the empirical prior, such that the complete Dirichlet shape parame-

ter is the linear combination:

� = 0:99A+ 0:01B

where A is the empirical prior (i.e., the set of cell frequencies) and B is the

uniform distribution over the set of 1,820 possible imputed annual hours.

3.5.3 Posterior Distribution

The parameter for the Dirichlet posterior distribution, NZ + �, is computed by

taking the sum of the likelihood counts and prior proportions in the last two

sections:

NZ + � = [� � LSCEF + (1� �) � LCPS] + [0:99A+ 0:01B]

where the variables are as described above. To construct the posterior dis-

tribution for PTSI workers, I modified a complete posterior distribution for all

workers (full-time and part-time, federal and private) that satisfied the above-

68



described parametrization.7 The modifications were two-fold: 1) I first re-

stricted the number of hours that could be worked annually for all workers

in the estimation sample. Since the maximum number of hours that can be

worked by a PTSI workers is 1,820, this restriction deleted columns 1,821 to

5,148 from the complete table of multinomial probabilities; and 2) I renormal-

ized the rows of the modified matrix, so that all of the row probabilities summed

to one. This modified posterior distribution was then used to impute missing

hours/earnings for PTSI workers.

3.5.4 Hours/Earnings Imputation

The imputation procedure for annual hours and earnings for part-time,

seasonal/non-intermittent (PTS) workers8 is performed in the following steps

for each of the 14,400 combinations of the conditioning variables, Z, in each

year:

� Step 1: Draw once from the Dirichlet posterior to get the multinomial

parameter, b�, and probabilities for each hours-covariate cell

� Step 2: Draw once from a multinomial distribution with parameter b� to

get imputed annual hours, H 2 (1; :::; 1,820), for each PTS worker

� Step 3: Divide imputed PTS annual hours, H , by the total number of an-

nual hours for full-time federal workers (2,080)9 to get the deflation value,

�.
7The complete posterior was constructed by Ian Schmutte for the Census Bureau’s Human

Capital Estimates Project hours imputation.
8Since seasonal workers may work full-time, but fewer than 12 months during the year, we

can treat them similarly in the imputation procedure to part-time workers. In the data, both sets
of workers work less than full time (annually), and both sets have an annual full-time earnings
equivalent reported.

9An assumption is made that full-time federal workers will work a standard 40-hour work-
week.
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� Step 4: Multiply the deflation value, �, by the reported annual earnings

equivalent in the OPM data to get the imputed annual PTS earnings mea-

sure

� Step 5: Divide the imputed annual PTS earnings measure by the number

of quarters worked to get the imputed quarterly PTS earnings measure.

Since the work schedule for intermittent workers is irregular, by definition,

we modify Step 5 of this algorithm by assigning imputed earnings equally

across the four quarters, or when a regularly worked set of quarters is observed

in the data for a specific worker, we only assign imputed earnings to those ob-

served quarters.10

3.6 Quality Assessment

We analyze the results of the hours and earnings imputations to determine

whether they are internally and externally consistent.

3.6.1 Internal Consistency

We aim for consistent hours distributions for PTSI workers across years/quarters

given that the aggregate demographic information on which the conditioning

variables are derived do not have significant differences across time periods.

The results from the hours imputation were tested using 14 consecutive quar-

ters of the OPM data (2000Q1 - 2003Q4). Annual hours for PTSI workers were

imputed in each quarter and frequency distributions were graphed by annual

hours.
10For example, if a worker is observed in the data as working in November and December

over a sufficiently long time period, then we assign the imputed earnings to the fourth quarter
for that worker.
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The imputed hours frequency graphs for all PTSI workers, as well as for

part-time non-seasonal workers, are displayed in Figures 3.1-3.16 and Figures

3.17-3.32, respectively (see appendix). Qualitatively, the graphs are almost iden-

tical for each of the 16 quarters. The imputed hours frequencies show spikes at

regular hours intervals in each year/quarter (400, 600, 1000, 1500, 1800), corre-

sponding approximately to 8-, 12-, 20-, 30-, and 35-hour workweeks. The spikes

are also of the same magnitude in each of the graphs, with the modal imputed

hours worked for PTSI workers equal to 1800 hours (35 hours/week).

3.6.2 External Consistency

We also aim for imputed hours and earnings for PTSI workers that are consistent

with mean hours and earnings information reported in survey data. The im-

puted OPM data for PTSI workers for the years 2000-2003 were compared with

the Merged Outgoing Rotation Groups (MORG) data in the CPS. The MORG

data contains detailed information on usual weekly earnings and hours worked

for the set of households followed monthly in the CPS.;11

In testing for external consistency, we restrict the imputation sample to part-

time non-seasonal workers to be consistent with the CPS part-time worker des-

ignation, which does not explicitly account for seasonal or intermittent workers.

In the MORG data, part-time workers with positive hours and earnings in the

public administration industry (2002 NAICS: 9370-9590) were selected for com-

parison. Exact values for mean hours and earnings cannot be displayed in this paper

due to confidentiality reasons.

Differences in (weighted) means for samples with unequal variances and

11We do not compare annual earnings between the OPM and MORG data, since the variable
asking how many weeks the interviewee has worked is only asked of 12% of workers in the
MORG files.
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Table 3.2: Imputed OPM Hours/Earnings and MORG Data Comparisons, 2000-
2003

Imputed Weekly Hours
Year Test Statistic Percentage Difference (%)

2000 3.49 4.18
2001 4.24 4.33
2002 3.34 3.49
2003 1.25 1.30
Average 3.08 3.33

Imputed Weekly Earnings
Year Test Statistic Percentage Difference (%)

2000 1.52 3.17
2001 1.10 2.13
2002 0.52 1.02
2003 0.17 0.34
Average 0.83 1.67

Notes: The test statistic is a t-statistic derived from a difference in means
calculation with unequal variances and sample sizes. Sample sizes are as
follows: MORG: 2000 (688); 2001 (871); 2002 (805); 2003 (794), OPM: 2000
(39,637); 2001 (32,734); 2002 (33,614); 2003 (32,243). OPM imputed hours
restricted to part-time non-seasonal workers. MORG workers are part-time
workers in the public administration industry with positive hours worked and
weekly earnings. Weekly hours and earnings in OPM data based on a 52-week
workyear.

sample sizes were tested between the imputed OPM data and the MORG data

for both weekly hours and weekly earnings. Percentage differences in means

were also computed. The results are displayed in Table 3.2.

As we can see from the table, the imputed weekly hours differ from weekly

hours in the MORG by approximately 3 percent, although the test statistic is sta-

tistically significant on average. The imputed weekly earnings differ on aver-

age by approximately 2 percent, and the match appears to grow monotonically

stronger over time. The differences between mean earnings in the imputed

OPM data and the MORG data are not statistically significant for the years that

were tested.
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3.7 Conclusion

In this paper I have described a Bayesian imputation procedure that imputes

annual hours worked and corresponding earnings for part-time, seasonal, and

intermittent federal workers in the OPM personnel data files. This procedure

is necessary because OPM only reports full-time annual equivalent earnings for

these workers, which does not account for their restricted part-time and inter-

mittent work schedules. Using a template probability model composed of an

informative Dirichlet prior, the functional form for the posterior distribution

and the parameters for this distribution are illustrated.

The empirical Bayes procedure is described and the results of the imputa-

tion for hours and earnings are discussed. The empirical procedure produces

results that are both internally and externally consistent for 14 consecutive quar-

ters of data tested. In particular, the frequency distribution of imputed hours

is qualitatively similar across these quarters. Spikes in the data are found at al-

most identical intervals, with similar magnitudes. The modal number of hours

worked is approximately 35 hours/week in all quarters.

The imputed data are also matched in a consistent way to that found in the

CPS Merged Outgoing Rotation Groups (MORG). For part-time workers in the

public administration industry with positive hours and earnings in the MORG,

we showed that the imputed OPM data differ by approximately 2 percent for

weekly earnings and by approximately 3 percent for weekly hours worked. The

match for imputed earnings grows monotonically stronger over time for the

years examined.
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3.8 Appendix. Imputed Hours Frequency Graphs

Figure 3.1: Imputed Hours Frequency, all PTSI Workers, 2000Q1

Figure 3.2: Imputed Hours Frequency, all PTSI Workers, 2000Q2
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Figure 3.3: Imputed Hours Frequency, all PTSI Workers, 2000Q3

Figure 3.4: Imputed Hours Frequency, all PTSI Workers, 2000Q4
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Figure 3.5: Imputed Hours Frequency, all PTSI Workers, 2001Q1

Figure 3.6: Imputed Hours Frequency, all PTSI Workers, 2001Q2
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Figure 3.7: Imputed Hours Frequency, all PTSI Workers, 2001Q3

Figure 3.8: Imputed Hours Frequency, all PTSI Workers, 2001Q4
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Figure 3.9: Imputed Hours Frequency, all PTSI Workers, 2002Q1

Figure 3.10: Imputed Hours Frequency, all PTSI Workers, 2002Q2
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Figure 3.11: Imputed Hours Frequency, all PTSI Workers, 2002Q3

Figure 3.12: Imputed Hours Frequency, all PTSI Workers, 2002Q4
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Figure 3.13: Imputed Hours Frequency, all PTSI Workers, 2003Q1

Figure 3.14: Imputed Hours Frequency, all PTSI Workers, 2003Q2
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Figure 3.15: Imputed Hours Frequency, all PTSI Workers, 2003Q3

Figure 3.16: Imputed Hours Frequency, all PTSI Workers, 2003Q4
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Figure 3.17: Imputed Hours Frequency, all PT Workers, 2000Q1

Figure 3.18: Imputed Hours Frequency, all PT Workers, 2000Q2
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Figure 3.19: Imputed Hours Frequency, all PT Workers, 2000Q3

Figure 3.20: Imputed Hours Frequency, all PT Workers, 2000Q4
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Figure 3.21: Imputed Hours Frequency, all PT Workers, 2001Q1

Figure 3.22: Imputed Hours Frequency, all PT Workers, 2001Q2
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Figure 3.23: Imputed Hours Frequency, all PT Workers, 2001Q3

Figure 3.24: Imputed Hours Frequency, all PT Workers, 2001Q4
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Figure 3.25: Imputed Hours Frequency, all PT Workers, 2002Q1

Figure 3.26: Imputed Hours Frequency, all PT Workers, 2002Q2
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Figure 3.27: Imputed Hours Frequency, all PT Workers, 2002Q3

Figure 3.28: Imputed Hours Frequency, all PT Workers, 2002Q4
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Figure 3.29: Imputed Hours Frequency, all PT Workers, 2003Q1

Figure 3.30: Imputed Hours Frequency, all PT Workers, 2003Q2
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Figure 3.31: Imputed Hours Frequency, all PT Workers, 2003Q3

Figure 3.32: Imputed Hours Frequency, all PT Workers, 2003Q4
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