
  

 

ANALYSIS OF FLOWERING TIME, HYBRID VIGOR, YIELD, 

AND LODGING IN MAIZE 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

by 

Sara Johanna Larsson 

January 2013



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 Sara Johanna Larsson 



 

 

ANALYSIS OF FLOWERING TIME, HYBRID VIGOR, YIELD, 

AND LODGING IN MAIZE 

 

Sara Johanna Larsson, Ph. D.  

Cornell University 2013 
 

Maize (Zea mays L.) is an important crop and an excellent model organism to study 

genetic systems. It captures remarkable diversity, which can be observed on both the 

genotypic and phenotypic level. Because of its diversity, maize responded very 

effectively to artificial selection during domestication and improvement. Maize 

adapted to very diverse environments. This adaptation has been possible through 

heritable changes in flowering time, responses to photoperiod and temperature, and 

plant architecture. Understanding the underlying architecture of these traits will allow 

us to utilize all the variation offered and increase productivity for a more sustainable 

agriculture. The following studies focus on analysis of three different traits.  

 First, is a reanalysis of one of the first generation structured association 

mapping studies of the Dwarf8 locus with flowering time, using new mapping 

populations and statistical approaches. This trait is highly correlated with population 

structure, and we found that basic structured association methods overestimate the 

phenotypic effect in the region, while mixed model approaches perform better. 

Combined with analysis of the maize NAM population, it is concluded that the QTL 

effects at the general location of the d8 locus are from extended haplotypes and that d8 

is not associated with flowering time.  



 

 Second, hybrids were developed using the NAM inbred population crossed to a 

common tester to examine hybrid vigor in terms of plant height and flowering time, as 

well as yield. A number of QTL were identified for all three traits using joint linkage 

mapping. Additionally, reasonable prediction accuracies (~0.55) were obtained using 

ridge regression in the hybrids. This study gives us a better understanding of yield and 

hybrid vigor.  

 Last, damage caused by lodging is a significant problem in maize production, 

resulting in 5–20 % annual loss in yield. In this study, more than 1,500 diverse inbred 

lines crossed to a common tester were evaluated across multiple environments. Due to 

a large sample size and despite multiple environments with lodging events occurring 

at different points in time, we were able to utilize joint linkage mapping to identify a 

number of QTL with small effects for lodging. 

 



 

iii 

BIOGRAPHICAL SKETCH 

 

Sara enrolled at the Swedish University of Agriculture Sciences with a major in 

horticulture. During this time she took courses in plant genetics and biotechnology and 

her interest and inspiration in genetics and breeding increased. She also did 

undergraduate work and her bachelor thesis in Dr. Margareta Welander’s laboratory, 

mentored by Dr. Li-Hua Zhu. Sara’s work focused on the evaluation of the doa1 gene 

as a selectable marker in transformation of apple rootstock M26, as well as 

transformation of a vector containing GA20 oxidase gene into Agrobacterium. After 

receiving her Bachelor of Science in Horticulture she pursued a Masters of Science at 

the same university, continuing to build on part of the research she did during her 

undergraduate studies. Sara’s interest in plant breeding continued to develop and she 

left the field of gene transformation to explore and get more exposure in quantitative 

genetics. 

During her first years as a master student, Sara applied and was awarded a full 

scholarship for one year at Cornell University. There, she had the opportunity to attend 

courses, especially those focused on plant breeding, population genetics, and 

quantitative genetics. It was also during this year she had the opportunity to meet Dr. 

Edward Buckler and learn about the research performed in his laboratory at Cornell 

University. Sara spent the summer in the cornfield working along side the inspiring 

researchers in the Buckler lab, as well as learning about the interesting projects they 

were pursuing, and getting hands-on experience with amazingly diverse germplasm. 

She got an extension on her scholarship and the opportunity to stay at Cornell to finish 



 

iv 

her research on flowering time in maize and its impact of the Dwarf8 gene. 

After receiving her Masters of Science as well as her degree as horticulturist 

from the Swedish University of Agriculture Sciences, she worked briefly as a 

laboratory technician in the Buckler Laboratory before she was admitted to the 

Department of Plant Breeding and Genetics at Cornell University and joined the 

laboratory of Dr. Edward Buckler as a graduate student. 

During her time at Cornell, Sara worked primarily on examining the genetic 

architecture underlying heterosis of plant height and flowering time, as well as yield. 

She developed an extensive hybrid population using the inbred lines in the nested 

association mapping (NAM) population and managed the field evaluation for these 

hybrids in widespread yield trials in nine environments over two years. Sara has 

facilitated the collection of over 150,000 points of phenotypic data. She has gained 

experience and skill in a large number of statistical tools used to analyze genetic data: 

from the use of mixed models to generate best linear unbiased predictions (BLUPs) for 

phenotypes to control for environmental field effects, to joint linkage mapping for 

identification of QTL, to different strategies for association mapping and controlling 

for population structure. Furthermore, Sara has used genomic selection models to 

estimate marker effects across the genome for hybrid vigor to examine prediction 

accuracies.



 

v 

 

 

 

 

 

 

 

I thankfully dedicate this dissertation to my parents, Lars-Åke and Eva Larsson, for 

their unconditional support of my pursuit of knowledge.  

Tack pappa och mamma för att ni alltid finns där för stöd och uppmuntran.   



 

vi 

ACKNOWLEDGMENTS 

 
I would like to express my gratitude to the many individuals who have, in one way or 

another, contributed to this dissertation as well as all the significant empirical and 

analytical work that has been performed over the last five years. 

A very special thanks to my advisor, Dr. Edward S. Buckler, for giving me 

the opportunity to join his lab as a summer intern six years ago. During these years in 

the Buckler Lab, I have gotten the chance to learn high-throughput phenotyping and 

genotyping technologies, and to work with large datasets and statistical tools among 

many other things. This exposure to a diverse group of people (whether they be plant 

biologists, computer programmers, or statisticians) has exposed me to a much wider 

breadth of knowledge than most. I am extremely grateful for the opportunity Dr. 

Buckler has provided me to broaden my professional experience and prepare me for 

future challenges. 

I am very fortunate and particularly grateful to all of the scientists who I have 

had the chance to work with and who have so generously shared their wide experience 

and skills (from designing experiments to managing data and analyses). In particular, 

thank you to our field manager, Nicholas Lepak, for sharing his knowledge, 

resources, and assisting with everything field related; from seed storage, to planting, 

making tools for phenotyping, and harvest. Many collaborators from the Maize 

Diversity Project at Cornell and at other institutions provided significant phenotyping 

efforts contributing to the data necessary for this dissertation. I would like to thank all 

of you. Special thanks go to Dr. James Holland at North Carolina State University, 

Dr. Sherry Flint-Garcia and Dr. Michael McMullen at University of Missouri, Dr. 



 

vii 

Mitchell Tuinstra at Purdue University, Dr. Jode Edwards at Iowa State University, 

and Dr. Elhan Erzos at Syngenta Seeds. Without these collaborators assisting in 

planting, managing, and harvesting the yield trial I would never have been able to 

perform experiments on the NAM hybrids. I would also like to thank my colleagues: 

Kelly Swarts and Alberto Romero, as well as Drs. Jason Peiffer, Cinta Romay, 

Denise Costich, Feng Tian, Nengyi Zhang, Fei Lu, and all the undergraduate interns 

who have assisted with seed counting and packing, planting, phenotyping, and 

harvesting over the years. I would like to thank the teams behind HapMap I and II, as 

well as the Genotyping by Sequencing (GBS) pipeline for generating large datasets of 

high quality genotypic data. In particular, Robert Elshire, Drs. Sharon Mitchell, 

Michael Gore, Jer-Ming Chia, Jeffery Glaubitz, Qi Sun, the members of the 

Institute of Genomic Diversity. 

These projects have included large sample sizes and generated large amounts 

of phenotypic and genotypic data. I would like to thank the bioinformatics and 

statistical genetic groups at Cornell who have shared their experience and skills with 

me. Dallas Kroon for managing databases for seed storage and phenotypes. Terry 

Casstevens for his development of software tools. Dr. Peter Bradbury for his 

extensive help with tools for genetic mapping and SNP imputation. Dr. Alexander 

Lipka for his help and input on statistical analysis as well as always making the time 

to answer my million questions about how to code in R. Drs. Zhiwu Zhang and 

Jeffery Endelman for our discussions regarding statistics which helped in my 

understanding and analysis of the genomic data. 

I am particularly thankful to my supporting advisors Drs. Timothy Setter and 

Margaret Smith for their knowledge in the fields of plant physiology and plant 



 

viii 

breeding, respectively. I very much appreciate the continued input and instruction 

from my committee members. 

Finally, I would like to thank Sara Miller for the help she has given me during 

the past years and all the time she spent editing.



 

ix 

TABLE OF CONTENTS 
 
BIOGRAPHICAL SKETCH        iii 
DEDICATION         v 
ACKNOWLEDGMENTS        vi 
TABLE OF CONTENTS        ix 
LIST OF FIGURES         x 
LIST OF TABLES         xii 
LIST OF ABBREVIATIONS        xiv 
 
CHAPTER 1 INTRODUCTION        
INTRODUCTION         1 
REFERENCES         8 
 
CHAPTER 2 LESSONS FROM DWARF8 ON THE STRENGTHS AND 
WEAKNESSES OF STRUCTURED ASSOCIATION MAPPING 
ABSTRACT          11 
AUTHOR SUMMARY        12 
INTRODUCTION         13 
RESULTS          20 
DISCUSSION          29 
CONCLUSION         32 
MATERIAL AND METHODS       34 
REFERENCES         40 
SUPPLEMENTAL MATERIAL       45 
 
CHAPTER 3 ANALYSIS OF HYBRID VIGOR AND YIELD IN DIVERSE 
MAIZE HYBRIDS 
ABSTRACT          48 
INTRODUCTION         48 
METHOD AND MATERIAL       52 
RESULTS          57 
DISCUSSION          70 
REFERENCES         76 
SUPPLEMENTAL MATERIAL       80 
 
CHAPTER 4 GENETIC ANALYSIS OF LODGING IN DIVERSIE MAIZE 
HYBRIDS 
ABSTRACT          85 
INTRODUCTION         86 
MATERIAL AND METHOD       90 
RESULTS          94 
DISCUSSION          100 
REFERENCES         105 
SUPPLEMENTAL MATERIAL        109 
 



 

x 

LIST OF FIGURES 

Figure 2.1. Pearson correlation coefficient between multiple traits.  

Figure 2.2A. Genome wide association results for flowering time (days to silking) in 
the 282 association panel using genotyping by sequencing (GBS) and 55k SNPs.  

Figure 2.2B. GWAS results for flowering time (days to silking) using three models in 
the chromosomal region surrounding tb1 (Chr. 1; 265,745,979-265,747,712 bp) and 
d8 (Chr. 1; 266,094,769-266,097,836 bp).  

Figure 2.2C. GWAS results for flowering time (days to silking) using three models in 
the chromosomal region surrounding tb1 (Chr. 1; 265,745,979-265,747,712 bp) and 
d8 (Chr. 1; 266,094,769-266,097,836 bp).  

Figure 2.3. Effect estimates in days for NAM subpopulations carrying QTL in the 
region of d8, P-value < 0.05.  

Figure 2.4. LD on chromosome 1 for the subpopulations, Northern Flint (red), stiff 
stalk (blue), non-stiff stalk (green), tropical (yellow), of the 282 association panel.  

Figure 2.5. R2  between the 6 bp indel in d8 and all the other sites on chromosome 1.  

Supplement Figure 2.1. Genome wide association results for flowering time (days to 
silking) in the 282 association panel using genotyping by sequencing (GBS) and 55k 
SNPs. The naïve model, which does not account for population structure, was fitted at 
each SNP. 

Supplement Figure 2.2. Genome wide association results for flowering time (days to 
silking) in the 282 association panel using genotyping by sequencing (GBS) and 55k 
SNPs. The Q model was fitted at each SNP to account for population structure (Q). 

Supplement Figure 2.3. Physical positions of tb1 and d8 on RefGen_v2.  

Supplement Figure 2.4. The region around tb1 and d8 on chromosome 1 
(265,495,979 – 266,347,836 RefGen_v2), and all identified gene transcripts. 

 Supplement Figure 2.5. Genome wide association results for flowering time (days to 
silking) in the NAM population using maize HapMapv1 and HapMapv2 SNPs.  

Supplement Figure 2.6. R2 between MITE in vgt1 and all the other sites on 
chromosome 8.  

Figure 3.1. Distribution of plant height values for the female inbred (blue), 
corresponding hybrid (red), and mid-parent heterosis (green). 



 

xi 

Figure 3.2. Genotypes divided into low and high recombination rate plotted against 
effect estimates for inbred, hybrid, and best-parent heterosis in plant height. 

Figure 3.3. Prediction accuracies for plant height and days to anthesis in hybrids 
estimated using ridge regression within subfamilies.  
 
Figure 3.4. Prediction accuracies for best-parent heterosis and mid-parent heterosis 
for plant height estimated using ridge regression within subfamilies.  
 
Figure 3.5. Prediction accuracy for yield in hybrids estimated using ridge regression 
within subfamilies. 
 
Figure 4.1. Correlation between root lodging, stalk lodging, and total lodging across 
the five environments.  
 
Figure 4.2. Correlations between the three lodging traits and other developmental 
traits measured in the middle environments, where lodging occurred at flowering.  
 
Figure 4.3. Correlations between the three lodging traits and other developmental 
traits measured in the late environments, where lodging occurred after flowering.  
 
Figure 4.4. Total percentage of lodging from the five damaged environments 
regressed again yield evaluated in the three environments without significant lodging 
damage.  
 
Figure 4.5. Distribution of QTL mapped using joint linkage mapping across the ten 
chromosomes.  

 



 

xii 

LIST OF TABLES 

Table 2.1. Association between polymorphisms at the d8 locus and variation in 
flowering time in the 92 and 282 association panel, and association between 
polymorphisms in the region between d8 and tb1 (d8/tb1) and variation in flowering 
time in the 282 line association panel. 
 
Table 2.2. Genetic variance explained by respective model used for the association 
study. 
 
Table 2.3. Results from association study between polymorphisms within d8 and a 
range of traits using MLM (Q+K). 
 
Table 3.1. Percent of plots and percent of plants per environment damaged by root 
lodging, stalk lodging, and total lodging. 
 
Table 3.2. Correlation between yield, plant height, days to anthesis, and days to silk.  
 
Table 3.3. Correlation between hybrid yield and traits measured in the corresponding 
female inbreds.  
 
Table 3.4. Heritability estimates for the yield, flowering time and plant height 
measure in the hybrids, within and across environments. 
 
Table 3.5. Results for joint linkage mapping for plant height, days to anthesis, and 
days to silk. Mapping was performed on data collected on inbred, hybrid, best-parent 
heterosis, and mid-parent heterosis.  
 
Table 3.6. F-test results from comparing distribution of effect estimates in regions 
with low and high recombination rate. Correlation between recombination rate and 
effect estimates in low and high recombination regions. 
 
Table 3.7. Results for joint linkage mapping for yield.  
 
Table 3.8. Prediction accuracy for individual subfamily for hybrid yield and plant 
height within each subfamily.  
 
Supplement table 3.1. Average phenotypic value for each population within 
environment, and average BLUE for each population. 
 
Supplement table 3.2. Average phenotypic values across environments for female 
inbreds, male inbred, hybrid, mid-parent heterosis, and best-parent heterosis.  
 
Supplement table 3.3. T-test for recombination rate at QTL intervals for respective 
trait. 
 
Table 4.1. Date of planting and storm events, and information on weather conditions. 



 

xiii 

As well as, percent of plots per environment damaged by lodging. GDDs are 
calculated with a base temperature of 10 C. 
 
Table 4.2. Average yield in T/ha of genotyped grouped according to percentage of 
lodging damage per plot for individual environments. 
 
Table 4.3. Prediction accuracy for stalk lodging, root lodging, and total lodging within 
the early, middle and late environment.  
 
Table 4.4. Mapped QTL and overlapping intervals with other lodging studies. 
 
Supplement table 4.1. Positions of QTL identified by joint linkage mapping for root, 
stalk and total lodging in middle and ate environments, and effects within 
subpopulations.  
 
Supplement table 4.2. List of candidate genes for lodging.  
 

 



 

xiv 

  LIST OF ABBREVIATIONS 

BLUE – Best Linear Unbiased Estimation 

BLUP – Best Linear Unbiased Prediction  

bm1- brown midrib1 

bm3- brown midrib3  

bp – base pair  

CAD - cinnamyl alcohol dehydrogenease 

CesA – cellulose synthase 

Chr – Chromosome 

cM – centi Morgan 

COMT- caffeic O-methyl transferase 

D2A – days to anthesis 

D2S – days to silk 

d8 – Dwarf8 

FDR – False Discovery Rate 

GAI –  Gibberellic Acid Insensitive  

GBS – Genotyping by Sequencing 

GDD – Growing Degree Day 

GEBV – Genomic Breeding Values 

GLM – General Linear Model 

GWAS – Genome Wide Association Study 

HapMap – Haplotype Map  

HMM – Hidden Markov Model 

Indel – insertion/deletion 

k – subpopulations determined by software such as STRUCTURE 

K – Kinship matrix  



 

xv 

kb – kilobases 

LD – Linkage Disequilibrium  

LSmeans – Leased Squares means 

MAF – Minor Allele Frequency  

MAS – Marker Assisted Selection 

Mb – Mega bases 

Mg/ha – mega grams / hectare  

MITE – Miniature Inverted-repeat Transposable Element 

MLM – Mixed Linear Model  

NAM – Nested Association Mapping 

NCBI – National Center for Biotechnology Information 

NIR – Near Infra Red 

NSS – Non-Stiff Stalk 

PCA – Principle Component Analysis 

PVP - Plant Variety Protection 

Q – Population structure 

QTL – Quantitative Trait Locus 

RefGen_v2 – Reference Genome version 2 

RIL – Recombinant Inbred Line  

RPR – Rind Puncture Resistance 

SA – Structured Association  

SH2-like domain – Src Homology 2-like domain 

SNP - Single Nucleotide Polymorphism 

SSS – Stiff Stalk Synthetic 

tb1 - teosinte branched1 

vgt1 - vegetative to generative transition 1 



1 

CHAPTER 1 

INTRODUCTION 

 
Maize (Zea mays L.), a New World crop, is the largest production crop in the world 

today, contributing billions of dollars to agriculture [1], and has outpaced Old World 

crops such as wheat and rice. Maize is currently grown on 97 million acres in the 

United States [2], and used for protein, oil, starch, animal feed, ethanol, and other bio-

based products. In addition, maize is a model organism. The maize genome is one of 

the most complicated genomes, but maize also allows for controlled cross-pollinations 

and is easy to evaluate for a number of phenotypes. The species captures remarkable 

diversity; it is roughly 11-fold more diverse than humans [3]. This diversity can be 

observed on both the genotypic and phenotypic level. Maize varies in height from less 

than one meter to over six meters and ranges vastly in biomass and carbon allocation. 

In the same manner, maize kernels vary approximately 10-fold in their oil and protein 

content [4].  

The domesticated maize being cultivated today retains about 57% of the 

diversity of its ancestor, teosinte [5], and 77% of the diversity of landraces [3]. During 

domestication and adaptation, maize went through genetic bottlenecks due to selection 

pressure. As a result linkage disequilibrium decay varies across the genome, as well as 

across subpopulations. The diversity of maize arises from millions of years of 

mutations and recombinations, and because of the high level of diversity it has 

responded very effectively to artificial selection over time. Maize has been able to 

adapt to very different environments, from northern Europe and Canada to the lowland 
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tropics and to the high Andes. This adaptation has been possible through heritable 

changes in flowering time, responses to photoperiod and temperature, and plant 

architecture [6]. 

Archaeological and genetic findings suggest that maize was domesticated in 

the Balsas River Basin of southwestern Mexico roughly 10,000 years ago, around the 

same time period as most major crop plants [7–9]. Domestication was driven by 

growers selecting preferred seeds based on size and other advantageous characteristics 

over multiple generations. This resulted in increased allele frequencies of favorable 

traits, as well as reducing overall diversity [10]. During the domestication process 

from its wild ancestor teosinte (Zea mays ssp. parviglumis) to maize (Zea mays ssp. 

mays), the plant architecture dramatically changed from widely branched with 

multiple inflorescences with dispersible seeds, to a single stalk plant with seed 

attached on one single inflorescence. Maize moved from Mexico via the American 

westward expansion across North American to the Corn Belt where it is the dominant 

crop today [11]. 

Maize lines have been under extensive improvement since domestication, and 

look far removed from their wild ancestors. Despite this dramatic change in 

phenotype, the effect on the genome wide diversity and mean haplotype length has 

been insignificant in improved lines. Modern breeding has been focused on optimizing 

traits that have been relatively easy to select for [6]. This suggests that significant 

progress can still be made by increasing diversity at loci that have not been under 

improvement in the past by introducing new germplasm into the breeding programs or 

breaking up already present haplotypes. 
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The majority of the germplasm used in today’s breeding programs arises from 

one of the around 300 races of maize, and most of the inbred lines can be traced by 

pedigree back to two open pollinated populations, Reid Yellow Dent and Lancaster 

[12]. In addition, practically all commercial hybrids on the US market in the late 

1980s were founded by six public lines or close relatives to them, namely C103, Mo17 

and Oh43 belonging to the Lancaster variety, and B37, B73 and A632 from the Reid 

variety [13]. The level of diversity has continued to decrease as time goes on. A study 

from the mid-2000s shows that the US commercial germplasm is now based on a mere 

seven lines: B73, LH82, LH123, PH207, PH595, PHG39 and Mo17 [14]. 

At present, commercial maize in the US is almost entirely hybrids. The inbred-

hybrid breeding system we currently use was introduced by Shull and East at the turn 

of the 20th Century [15–17]. At first, the performance of the hybrid combinations was 

not improved enough to outweigh the financial risk of switching from the traditional 

open pollinated populations. Hybrid maize was not widely used until Jones introduced 

the double cross hybrids [12]. Additionally, the use of hybrids was delayed by the 

Great Depression. Farmers were resistant to invest in the new hybrid seed that they 

could not save for the next season as they were accustomed to with the open pollinated 

populations. However, the New Deal gave farmers access to capital to buy the 

improved hybrid seed and thus the modern seed companies were born [11].  

As maize is a hybrid crop, breeding programs are divided into the development 

of inbred lines and hybrid development. Genetic improvement is made in the inbred 

development by utilizing recombination to create new allelic combinations. The 
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combining ability between lines is evaluated in the hybrid development by crossing 

lines from opposite heterotic groups. The main heterotic groups in US maize breeding 

are the Stiff Stalk Synthetic (SSS) and Non-Stiff Stalk (NSS). Since the establishment 

of these heterotic groups, the genetic distances and allele frequency differences have 

increased between the two groups due to improvements by selection [12]. 

The main breeding objectives for modern maize improvement are machine 

harvestability, increasing yield, reducing negative effects of biotic and abiotic stresses, 

increasing overall plant health, and environmental adaptation [18]. The work in this 

dissertation focuses on flowering time, hybrid vigor, yield, and lodging. Flowering 

time is essential for maize since it is an outcrossing species and needs to have 

synchronized flowering with neighboring plants to secure fertilization, and it has to 

flower early enough in the season to reach full maturity before the first frost. 

Flowering time is a quantitative trait controlled by a large number of loci with small 

effects [19]. Despite its importance, only one locus has been cloned in maize so far 

[20]. 

Yield is the highest valued trait when it comes to maize breeding and it is 

relatively easy (although costly) to measure, but genetically very complex, most likely 

influenced in one way or another by all 40,000 genes in the maize genome. While 

much attention has been devoted to heterosis / hybrid vigor, it is not the only 

explanation for the increase in maize yield; in addition, there have been genetic 

improvements of inbred lines and significant changes in farm management. Scientists 

have researched hybrid vigor for over a hundred years and a number of hypotheses to 

explain it have been proposed, and it is still a very active field of research.  
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The last trait discussed in this dissertation is lodging. Lodging is a serious 

problem in corn production, resulting in lost yield. A large effort has been made to 

breed for lodging resistance. But few studies have been performed. It is a very difficult 

trait to evaluate and replicate under natural field conditions at full maturity, which 

makes genetic studies problematic.  

Over time, a dramatic portion of maize improvements has been made by 

phenotypic selection. However, breeding strategies, breeding objectives, and growing 

environments are not constant. More recently, technologies to generate and handle 

large sets of genotypic data have becoming available. A number of statistical tools are 

developed to utilize the genotypic and phenotypic resources to make further 

improvements.   

One of the first association studies in plants [21] was published over a decade 

ago and although association studies are not always straightforward, due to population 

structure and rare haplotypes [22,23], there are ample successful studies [24–32]. 

Another approach is linkage mapping using bi-parental populations rather then 

association populations and few markers, which results in mapping with lower 

resolution [19,33]. For breeding purposes, association and linkage mapping can be 

used for two main objectives: to understand the genetic architecture of a trait and to 

identify loci across the genome contributing to a trait of interest. The knowledge of 

these loci can be used to develop genetic markers linked to the underlying genes. 

Genotypes in a breeding program can be screened genetically and genome wide 

selection and predictions can be made even on the seeds before field evaluations are 

needed. A successful example of marker assisted selection (MAS) [34] is the work 
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done on increasing Vitamin A content in maize, where association mapping was used 

to identify genetic markers linked to genes in the pathway [28]. The marker 

information is now used in the HarvestPlus program in Africa to improve local 

germplasm for Vitamin A content (Personal communication T. Rocheford).  

With the continued reduction in the cost of genotyping, field evaluation is, in 

many cases, becoming the more costly and limiting factor in breeding programs and 

genetic research. An alternative approach or complement to association and linkage 

mapping is genomic selection, using genome wide markers to predict a trait. Genomic 

selection was first applied in animal breeding [35] using high-density markers all 

treated as random effects across the genome. The advantages of genomic selection are 

that a training population is established and extensively genotyped and phenotyped to 

train the statistical models. The models are used to predict the phenotype on lines with 

only genotypic data. This allows shortening of the breeding cycle as well as the ability 

to make selections based on genotypes before lines are evaluated in the field [36,37]. 

Plant breeding has been the important practical application of genetics in the 

20th Century. Now, with a radically expanded genetic toolset, we are able to focus on 

breeding on a whole different level and at an entirely different speed. No longer are 

we limited to large phenotypic variation and growing seasons. We can dissect and 

understand the underlying characteristics of traits controlled by large numbers of loci 

with small effects. We can mine the ever-expanding genotypic data sets for 

advantageous allelic combinations to improve crops. As the world’s population 

increases, arable land shrinks, and the climate changes, the ability to rapidly improve 

crops will be vital. 
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CHAPTER 2 

LESSONS FROM DWARF8 ON THE STRENGTHS AND WEAKNESSES OF 

STRUCTURED ASSOOCIATION MAPPING  

 

ABSTRACT 
 

The strengths of association mapping lie in its resolution and allelic richness, but 

spurious associations arising from historical relationships and selection patterns need 

to be accounted for in statistical analyses. Here we reanalyze one of the first 

generation structured association mapping studies of the Dwarf8 (d8) locus with 

flowering time in maize using the full range of new mapping populations, statistical 

approaches, and haplotype maps. Because this trait was highly correlated with 

population structure, we found that basic structured association methods overestimate 

phenotypic effects in the region, while mixed model approaches perform substantially 

better. Combined with analysis of the maize nested association mapping population (a 

multi-family crossing design), it is concluded that most, if not all, of the QTL effects 

at the general location of the d8 locus are from rare extended haplotypes that include 

other linked QTLs and that d8 is unlikely to be involved in controlling flowering time 

in maize. Previous independent studies have shown evidence for selection at the d8 

locus. Based on the evidence of population bottleneck, selection patterns, and 

haplotype structure observed in the region, we suggest that multiple traits may be 

strongly correlated with population structure and that selection on these traits has 

influenced segregation patterns in the region. Overall, this study provides insight into 
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how modern association and linkage mapping, combined with haplotype analysis, can 

produce results that are more robust. 

 

AUTHOR SUMMARY 
 

Eleven years ago, association mapping was a cutting-edge tool used to identify regions 

of a genome associated with phenotypic variation. One of the first association studies 

performed in plants was reported in Thornsberry, et al. (2001). Since then, researchers 

continued to develop new and improved genotyping, phenotyping, and statistical 

methods to examine the relationship between genotype and phenotype. Reanalysis of 

the old data for the d8 locus and flowering time, as well as new and improved data 

sets, gives us a unique opportunity to examine the strengths and weaknesses of 

association studies. These new analyses reveal that the results reported in 2001 

significantly overestimated the association between genotype and phenotype, in 

particular the estimated effect size. The key issues with the Thornsberry et al. (2001) 

study were lack of control for population structure and relatedness between 

individuals, as well as a potential confounding between the phenotype and the 

population structure examined. The new analysis demonstrates a marginal association 

between d8 and flowering time, and a minimal effect (if any). 
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INTRODUCTION 
 

Association mapping, which was developed as a necessity for large-scale human 

studies, is commonly used in conjunction with family (linkage) mapping in plant and 

animal genetic studies. The application of association mapping for plants was 

originally assessed in Thornsberry J.M. (2001) [1] with Buckler as senior author. It 

was concluded that association mapping offers higher resolution than linkage mapping 

due to quicker linkage disequilibrium (LD) decay, that structured association mapping 

is crucial for controlling false positives arising from population structure, and that 

Dwarf8 (d8) (RefGen_v2 position: Chr. 1; 266,094,769-266,097,836 bp) is associated 

with flowering time. This initial study has been cited extensively, and has been the 

basis of several reanalyses of d8. New data and statistical tools give us the opportunity 

to reevaluate this locus. Results show that the d8 associations reported by Thornsberry 

et al. (2001) are likely false positives (i.e., spurious associations), which resulted from 

insufficient correction of population structure. Indeed, the application of association 

mapping to animal and plant studies has been very successful, culminating in many 

important findings [2–10]. In this light, Thornsberry et al (2001) was a pioneering 

study, which has attracted a lot of interest to the area and led to more studies and the 

development of techniques to control for population structure and familial relatedness. 

When the phenotype is strongly correlated with population structure (e.g., flowering 

time), it is often difficult to obtain statistically significant results when the models 

used include covariates accounting for population structure. This leads to uncertainty 

when determining which associated sites are causative. Thus, linkage mapping is a 
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valuable complementary approach in these situations, and in maize, large-scale 

connected mapping populations issued from diverse founders have been developed 

[11,12] in order to conduct joint linkage-association analyses [10,13,14]. 

A major issue with association studies is false positives. In particular, indirect 

associations that are not causal will not be eliminated by increasing the sample size or 

the number of markers [15]. The main sources of such false positives are linkage 

between causal and noncausal sites, more than one causal site, and epistasis. These 

indirect associations are not randomly distributed throughout the genome and are less 

common than false positives arising from population structure. This makes them more 

difficult to control for than false positives arising from population structure. 

The identification of a statistically significant association between a genotypic 

marker and a trait is considered to be proof of linkage between the phenotype and a 

casual site. This assumption is true for random mating populations with fast LD decay 

[16]. However, it is important to consider that population structure is typically present 

in association panels and it has an impact on the results. Population structure exists 

among all species in forms such as colonies, ethnic groups, and other subdivisions 

based on selection or geography. Typically, population structure leads to spurious 

associations between markers and the trait [17].  

 The ability to account for population structure in a given data set is influenced 

by the population size, the number of markers, the level of admixture, and the 

divergence in allele frequency between the subpopulations [18]. One commonly used 

method for controlling population structure is structured association (SA), which relies 

on randomly selected markers from the genome to estimate population structure. This 
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estimate is then incorporated into the association analysis [16,18,19]. Another 

methodology for controlling population structure is to conduct a principal component 

analysis (PCA) [20,21]. This approach summarizes the variation observed across all 

markers into a smaller number of underlying component variables. One interpretation 

of these principal components relates them to separate, unobserved subpopulations 

from which the individuals in the data set originate. The loadings (i.e., coefficient 

values) of the individuals for each principal component describe their relationship to 

the subpopulations. Both SA and PCA are limited to correcting for spurious 

associations by clustering on a global level of genetic variation. Thereby, they do not 

adequately capture the relatedness between individuals. 

Correcting for population structure is not sufficient to eliminate all false 

positives. Therefore, the unified mixed linear model (MLM; also called the Q+K 

model) [22] was developed to further reduce the false positive rate by controlling for 

both population structure and cryptic familial relatedness. This approach uses a mixed 

model framework that has traditionally been used by animal geneticists [23,24]. 

Specifically, covariates accounting for population structure are included as fixed 

effects (Q), and the individuals in the association panel are included as random effects. 

A kinship matrix (K) is calculated to estimate the variance-covariance between the 

individuals. Typically, the covariates used in the unified MLM are either principal 

components of the markers or covariates from SA approaches (e.g., STRUCTURE 

[17]). The advantages of the MLM are that it crosses the boundary between family-

based and population-based samples. However, not all associations that are eliminated 
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will be false. If a polymorphism is perfectly correlated with population structure, it is 

not possible to differentiate between true and false positives. 

The initial study by Thornsberry et al. (2001) identified nine polymorphisms 

within d8 [25] that were associated with variation in flowering time in an association 

panel consisting of 92 diverse inbred lines. The most significant site was an 18 bp 

deletion (RefGen_v2 position: Chr. 1; 266,094,529 bp) in the promoter region. A 6 bp 

indel (RefGen_v2 position: Chr. 1; 266,095,483) was also identified. This allele is 

over-represented in Northern Flint lines and is located near a Src Homology 2-like 

domain, which is an important binding domain within this class of transcription 

factors. The initial association analysis was performed using logistic regression 

analyses, accounting for population structure. Population structure was estimated as a 

modification of SA using STRUCTURE software [18] with k=3. 

Using a general linear model (GLM) without population structure, Andersen et 

al. (2005) obtained similar results for six of the nine d8 polymorphisms identified by 

Thornsberry et al. (2001). However, when including population structure in the model, 

(using STRUCTURE with both k=2 and k=3 subpopulations), it was found that the 

association results were overestimated. Each subpopulation was also analyzed 

separately, and a spurious association was still detectable [26]. 

Camus-Kulandaivelu et al. (2006) examined the association between d8 and 

flowering time using a panel of 375 inbred lines (including the 92 from the initial 

study) as well as a panel consisting of 275 traditional landraces from American and 

European origins [27]. Population structure was estimated using STRUCTURE, and 

association analysis was performed using both GLM and logistic regression. Their 
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analysis revealed that the 6 bp indel at 266,095,483 bp (identified in Thornsberry et 

al., 2001) was spuriously associated with flowering time when covariates accounting 

for population structure were not included. In contrast, no association between d8 and 

flowering time was detected in the inbred panel when accounting for population 

structure. However, this spurious association was still detectable in the traditional 

landraces panel, including Andean material that has no relationship to the Northern 

Flint material. 

The d8 gene produces a signaling factor involved in the gibberellin pathway. 

Gibberellins are types of endogenous plant growth regulators [28]. Maize d8 and 

wheat Rht-B1/Rht-D1 have been shown to be orthologous of the GAI gene [25]. 

Mutants of d8 have severe height phenotypes due to alterations of the DELLA 

domain. In maize, these are dominant, gain-of-function mutations, suggesting that d8 

is a negative regulator. Conversely, recessive mutants of the GAI gene in Arabidopsis 

result in loss-of-function, specifically in polypeptides truncated upstream of the SH2-

like domain. As a consequence, the gene product does not function as a negative 

regulator, resulting in normal height phenotypes [1]. 

Two evolutionary processes have likely impacted the d8 locus. First, the 

associated allele, specifically the 6 bp indel reported in Thornsberry et al. (2001), is 

related with Northern Flint maize. Maize originated from southern Mexico, where 

there are long growing seasons and high temperatures. As maize agriculture expanded 

from Mexico through the Southwestern United States to the Eastern United States 

(with its shorter growing season and lower temperatures), a severe bottleneck occurred 

in maize diversity, resulting in the Northern Flint subpopulation [29]. The bottleneck 
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created extensive long range LD in this subpopulation. Northern Flints were 

substantially isolated from all other maize subpopulations [29] until the introduction of 

the Southern Dents in the 1600s [30]. 

Additionally, the d8 locus is located only 347,057 bp from the tb1 (teosinte 

branched1) locus (RefGen_v2 position: Chr. 1; 265,745,979-265,747,712 bp), which 

is one of the key genes involved in maize domestication [31]. The tb1 locus lost much 

of its diversity during the domestication process [31,32]. The original d8 study [1] 

identified evidence of purifying selection with substantial diversity loss; however, 

there was little LD identified in the region between d8 and tb1. Although unconfirmed, 

some Northern Flint allied germplasm (e.g. sweet corn, P39) have a morphology that 

looks like the undomesticated tb1 phenotype. It is likely that the region around d8 and 

tb1 has been through a bottleneck with multiple selective sweeps, resulting in complex 

extended haplotypes. 

Most of the loci controlling flowering time in maize have been identified 

through QTL studies. Of these, only d8 and vegetative to generative transition 1 (vgt1) 

have been confirmed with association and fine mapping [33]. Located on chromosome 

8, vgt1 is arguably the most important flowering time locus in maize. It contains an 

APETALA2-like gene, ZmRap2.7, which is controlled by an enhancer region about 70 

kb upstream [33]. The association between vgt1 and flowering time is supported by a 

study conducted in the maize nested association mapping (NAM) population, where a 

major QTL was identified in this region [11]. This study also detected an allelic series 

at this QTL, suggesting that more than one causative allele is present. One of these 

alleles is from northern germplasm and is in linkage with a MITE whose association 
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with early flowering time was confirmed in the NAM population [11]. Although the 

lack of the vgt1 early flowering allele did not completely explain the late flowering 

time, a SNP identified in the ZmRap2.7 gene showed association with the late 

flowering effect [11]. 

An association study by Ducrocq et al. (2008) reported P-values for vgt1 

association several magnitudes lower that those obtained by Salvi et al. (2007). Both 

studies accounted for population structure. Compared to Salvi et al. (2007), Ducrocq et 

al. (2008) used a more genetically diverse and larger association panel, including a 

higher number of lines from Northern Flint and European germplasm [34]. In the case 

of d8, the association between the site and the trait becomes less significant, and even 

undetectable, when increasing the number of lines examined. This supports no 

association between the 6 bp indel in d8 and flowering time in maize. Including d8 in 

the model when performing association mapping for flowering time does not change 

the result for the SNPs in vgt1 [34]. This indicates that there is no interaction between 

the two loci. 

The purpose of this study was to reanalyze the work of Thornsberry et al. 

(2001) utilizing some of the latest association mapping methodologies and data sets. 

This study compared association results from various statistical approaches using a 

maize diversity panel and the NAM population [11,12]. Single nucleotide 

polymorphisms (SNPs) and insertions/deletions (indels) from recent genotyping 

efforts (e.g., HapMap sequencing from Gore et al. 2009 [35] and Chia et al. 2012 [36]) 

were used to evaluate these various approaches and the d8 association. 
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RESULTS 

 
Association Study 

The results from the Thornsberry et al. (2001) study showed significant association at 

both the 18 bp deletion (266,094,829 bp) in the promoter region and the 6 bp indel 

(266,095,483 bp). Our reanalysis of the two sites using the Q model and a 

significantly larger association panel (consisting of 282 lines) resulted in less 

significant associations at both loci (Table 2.1). By increasing the number of lines we 

are able to obtain a larger sample size within each of the subpopulations and thus, 

more accurately estimate the underlying population structure (i.e., Q).  

Sampling has a larger effect on some sites than others. The 6 bp indel is more 

significantly associated with flowering time in the smaller population (92 lines) than it 

is in the 282 association panel analyzed with MLM (K model) without controlling for 

population structure, but controlling for familial relatedness. The site is, in fact, 

carried by Northern Flint lines, which are underrepresented in the smaller population. 

The results for the 282 association panel suggest that the GLM (Q) approach 

overestimates the association. In contrast, the MLM (Q+K) approach, which accounts 

for both population structure and relatedness between individuals, gives a moderately 

significant association between the 6 bp indel (P-value = 0.0127) and flowering time 

variation (Table 2.1). 
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Table 2.1. Association between polymorphisms at the d8 locus and variation in flowering time in the 92 
and 282 association panel, and association between polymorphisms in the region between d8 and tb1 
(d8/tb1) and variation in flowering time in the 282 line association panel.  

a A general linear model not controlling for population structure. 
b A mixed linear model controlling for kinship but not population structure. 
c A general linear model controlling for population structure (k=5). 
d A mixed linear model controlling for both population structure (k=5) and kinship. 
 
The proportion of the genetic variation explained by the different models varies 

significantly. In this study, the best models are the Q+K and K models (the latter being 

a MLM that only includes familial relatedness between individuals as random effects) 

because they explain the highest amount of the genetic variance (Table 2.2). The 

reason for the minimal difference between the two models is that K most likely 

controls for the majority of the relatedness between individuals. 

This study confirms the weak association between the 6 bp indel in d8 and 

flowering time analyzed using both GLM and MLM approaches (Table 2.1). 

However, the association is not as significant as previously reported by Thornsberry et 

al. in 2001. Additionally, the GLM and MLM analyses of the 282 association panel 

imply there is no association between the 18 bp deletion in d8 and flowering time 

(Table 2.1). The initial study by Thornsberry et al. (2001) found this site to be the 
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most significant. Our results from the Q+K and K models yielded a more significant 

P-value for the 92 association panel than the 282 association panel. 

We also sequenced a 3 bp indel (266,097,198 bp), which is present in tropical 

late-flowering lines when we examined sequences available at NCBI. However, new 

genotypic data for the 282 association panel suggest that there is no association 

between this site and variation in flowering time in maize (Table 2.1). 

Table 2.2. Genetic variance explained by  
respective model used for the association study. 

 

Our study confirms the results presented by Camus-Kulandaivelu et al. (2008) [37], 

that there are regions between d8 and tb1 associated with variation in flowering time 

(Table 2.1) (Supplemental Figures 2.3 and 2.4). However, these sites are moderately 

significant at "=0.05 when using the K and Q+K models. Association mapping of d8 

on other traits results in a number of weak associations with other traits, in addition to 

flowering time (e.g., plant height, ear height, and node number) (Table 2.3). All the 

associations are in the same range of significance as flowering time. No clear pattern 

can be observed between correlation among traits except for what can be expected ( 
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e.g., the high correlation between days to silk and days to anthesis) (Figure 2.1).  

Collectively, these results undermine the conclusion that d8 is of more importance for 

flowering time than any of the other traits. 

Table 2.3. Results from association study between polymorphisms within d8 and a range of traits using 
MLM (Q+K). 

 
 

 

From a genome-wide perspective, there were a large number of sites with a similar 

degree of association (from the MLM approach) with flowering time as d8 (Figure 
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2.2A). The contrasting results from the various models fitted at the SNPs in the 

genomic regions surrounding d8 and tb1 are illustrated in Figures 2B and 2C. In 

particular, the GLM model overestimated the significance of the results in comparison 

to the Q+K and K models. GWAS of flowering time detected SNPs within d8 that 

have a weak statistically significant association at !=0.05 (Figure 2C). 

 

 

 

 

 

Figure 2.2A. Genome wide association 
results for flowering time (days to silking) 
in the 282 association panel using 
genotyping by sequencing (GBS) and 55k 
SNPs. The Q+K mixed linear model was 
fitted at each SNP to account for 
population structure (Q) and kinship (K).  

Figure 2.2B. GWAS results for flowering 
time (days to silking) using three models in 
the chromosomal region surrounding tb1 
(Chr. 1; 265,745,979-265,747,712 bp) and 
d8 (Chr. 1; 266,094,769-266,097,836 bp). 
All GBS and 55K SNPs between 255 Mb 
and 270 Mb on Chr. 1 are included in the 
figure.  Brown lines indicate results from 
naïve model, red lines indicate results from 
Q model, and blue lines indicate results 
from Q+K model. 

Figure 2.2C. GWAS results for flowering 
time (days to silking) using three models in 
the chromosomal region surrounding tb1 
(Chr. 1; 265,745,979-265,747,712 bp) and 
d8 (Chr. 1; 266,094,769-266,097,836 bp). 
All GBS and 55K SNPs between 265 Mb 
and 267 Mb on Chr. 1 are included in the 
figure. Black markers on the right are 
significant SNPs located within d8. Black 
markers on the left are significant SNPs 
located within tb1. Triangles indicate 
results from naïve model, squares indicate 
results from Q model, and diamonds 
indicate results from Q+K model. 

d8 tb1 
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Linkage Mapping 

Linkage mapping of flowering time in the NAM population detected a number of 

QTL. A small QTL (P-value = 0.0127) colocalized with d8 (RefGen_v2 position: Chr. 

1; 269,321,476-269,322,794 bp), supporting the association identified by association 

mapping (Figure 2.3). In the initial study by Thornsberry et al. (2001), the effect of d8 

was estimated to be between 7-10 days. The d8 polymorphism should be in three of 

the mapping families, and modest effects are seen in the right direction for all three, 

but the estimated effect is always less than half a day. 

Additionally, many of the subfamilies appear to have other QTL along this 

section of chromosome 1 (RefGen_v2 position: Chr. 1; 231,701,106-231,703,173 bp 

and Chr. 1; 286,977,415-287,063,457 bp), but the favored positions are millions of 

base pairs away. It is quite possible that the mapping position of these joint linkage 

QTL could be synthetic, but there is little to no support for a QTL in this exact region.  

A GWAS in the NAM population for flowering time using 26.5 million 

segregating SNPs was performed [35,36]. This approach in the NAM population 

offers in-depth power and resolution because it utilizes both historic and recent 

recombination. No significant sites were identified in the region of d8 (Supplemental 

Figure 2.5). This supports the result that d8 is not associated with flowering time. 
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Figure 2.3. Effect estimates in days for NAM subpopulations carrying QTL in the region of d8, P-value 
< 0.05. Light gray bar shows QTL effect estimate at marker position 116 (RefGen_v2 position: Chr. 1; 
231,701,106-231,703,173 bp) (137.6 cM) on the NAM map. Dark gray bar shows QTL effect estimate 
at marker position 155 (181.3 cM). d8 is located closest to marker 135 (RefGen_v2 position: Chr. 1; 
269,321,476-269,322,794 bp), (RefGen_v2 position: Chr. 1; 286,977,415-287,063,457 bp), (162.2 cM). 
* indicates taxa with the 6bp deletion in d8. 
 

Haplotype Structure 

Hapmap data [35] [36] suggest extended haplotypes for Northern Flint lines in the 

region of d8. Data show modest Fst between temperate and tropical subpopulations. 

However, there could potentially be differences in diversity between these two groups 

and Northern Flint lines. Hapmap data are only available for a few Northern Flint 

lines, which limits these studies. 

GBS SNPs were used to examine the range of LD decay within the different 

subpopulations (Northern Flint, stiff stalk, non-stiff stalk, and tropical) of the 282 

association panel. Extended LD is observed for the Northern Flint lines compared to 

the other subpopulations. Likewise, the stiff stalk lines, which were only founded from 
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16 inbred lines, also show a pattern of extended haplotypes, although not as extreme 

as the Northern Flints (Figure 2.4). The extended haplotype pattern in the Northern 

Flints make it difficult to control for false positives and to identify the causative SNP 

using association mapping. 

 

The 6 bp indel in d8 is carried by Northern Flint lines. When we examine the LD 

between the 6 bp indel and the 13,815 high coverage GBS SNPs on chromosome 1 

(Figure 2.5), an extended area around the 6 bp exhibits fairly high values of R2. This is 

additional evidence that extended haplotypes exist in the Northern Flint lines in the d8 

region. In fact, there are two regions with high LD at 20 Mbp and 0.9 Mbp away, 

which contain previously identified domestication gene candidates (i.e., 

Figure 2.4. LD on chromosome 1 for the subpopulations, Northern Flint (red), stiff stalk (blue), non-
stiff stalk (green), tropical (yellow), of the 282 association panel. White dot indicates the median R2 
for the bin. This graph shows that there is more extended LD in Northern Flint than in other 
subpopulations. 
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GRMZM2G034217 RefGen_v2 position: chr. 1 246,720,001 – 247,030,000, a 

mitochondrial transcription termination factor) [38]. In contrast, LD between the 

MITE in vgt1 and the 7,539 GBS SNPs on chromosome 8 (Supplemental Figure 2.6) 

show sites with high R2 values close to the position of the MITE, but LD decays much 

more rapidly. To test for two-way interaction between the 6 bp and 18 bp indels and 

the MITE, a series of mixed models including two-way interaction terms were fitted. 

The most significant interaction was between the 18 bp indel and the MITE (P-value 

0.0418). However, this association is not likely to be statistically significant after 

controlling for the multiple testing problem across the entire genome. 

 

 

 

 

Figure 2.5. R2 between the 6 bp indel in d8 and all the other sites on chromosome 1. Blue dots indicate 
results from 13,815 GBS SNPs present in 200 or more of the 282 lines. Red dots indicate results from 
7,695 55K SNPs present in 200 or more of the 282 lines.  
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DISCUSSION 

 
Association Study 

The results underscore the importance of properly accounting for population structure 

in association studies. The analysis in Thornsberry et al. (2001) divided their 92 

association panel into three subpopulations. This subdivision did not fully account for 

population structure, and thus, the effect of the d8 allele carried by Northern Flint lines 

was overestimated. In contrast, our study accounted for population structure using 

both k = 3 (stiff stalk, non-stiff stalk, and tropical) and k = 5 (stiff stalk, non-stiff stalk, 

tropical, sweet corn, and popcorn) subpopulations. This was important for sites such as 

the 6 bp indel within d8, which is present at a higher frequency in Northern Flint lines 

(which includes sweet corn), and this signature of population structure was 

unaccounted for when k=3 was used. 

 Of all the models tested, the Q+K model [22] was the most suitable approach 

for analyzing the 282 association panel because it controls for both population 

structure and cryptic familial relatedness. It is especially important to control for the 

latter with traits such as flowering time, which is highly correlated with population 

structure. Additionally, the Q+K model is beneficial for association studies because Q 

and K capture different types of long range LD [22,39]. 

In general mixed models sufficiently account for population structure and 

familial relatedness. In contrast, false positives arising from other sources, although 

rare, are typically unaccounted for in association studies. For example, spurious 

associations could arise from markers that are in long-range LD with causative 
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polymorphisms. These associations violate a basic assumption made in GWAS; 

namely, independence between markers. Additionally, causative polymorphisms for 

one trait may not necessarily be causal for another highly correlated trait (and, hence a 

spurious association), but will be statistically associated with both traits. Finally, when 

a trait is controlled by multiple loci in LD, it is likely that the site with the largest 

effect is an indirect association. One reason for this result arises from differing minor 

allele frequencies among the causal sites. All three of these types of false positives do 

not occur randomly across the genome and thus, they are more challenging to 

eliminate. Haplotype-based association studies is one approach for addressing many of 

these issues. Nevertheless, multiple sites, selection for multiple traits, and population 

structure result in spurious associations and these need to be accounted for when 

performing association studies. 

 

Contrast with Linkage Mapping 

Association mapping is limited when the trait analyzed is correlated with population 

structure. However, linkage mapping can overcome this problem by crossing 

individuals with known relatedness, spurious associations can be broken. 

In this study, we were able to detect a small QTL at the general location of d8. 

However the favored QTL locations are on both sides of d8: RefGen_v2 position Chr. 

1; 231,703,173 - 287,063,457. Association results suggest that the majority of the 

QTL effects detected around d8 are from rare extended haplotypes that include other 

linked QTLs. Another possible explanation for the weakness of the QTLs detected is 
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the population sampled. The associated haplotype is present only in Northern Flint 

lines, which are underrepresented in the population. 

 

Haplotype Structure 

Flowering time is strongly correlated with population structure. Our study showed that 

d8 had a very small effect on flowering time. One possible explanation for this result 

is that d8 is associated with another trait that was selected along with flowering time 

(e.g., cold tolerance). This hypothesis is supported by the extended haplotype pattern 

observed in Northern Flint lines as well as the associations that are detected with traits 

like plant height and node number. Northern Flint lines are underrepresented in both 

the 282 association panel and the NAM population, and it is difficult to scrutinize 

associations with low allele frequencies. Northern Flint lines have been shown to be 

distinctive compared to other subpopulations, especially in regions like d8 and tb1, 

which have been under selection pressure. 

Consistent with the findings of previous studies on the d8 locus, we observed a 

strong correlation between d8 and population structure. Thus, the functional site of d8 

is not likely to be involved in flowering time. Indeed, d8 and tb1 are strong integrators 

in plant signals that are adjacent to each other on chromosome 1. However, our results 

demonstrated that these signals are a signature of population structure instead of true 

biological signals. The extended LD in the Northern Flint lines around d8 supports the 

hypothesis that this gene is regulated in a similar manner as tb1 and vgt1. For both tb1 

and vgt1, cis-acting regulatory sites located more than 50 kb from the actual genes 

have been shown to be the functional regions and not the genes themselves [31,33,40]. 
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Signatures of selection on d8 have been observed in teosinte [41]. Because 

apical dominance (tb1) and gibberellin signaling (d8) have both played key roles for 

domestication phenotypes, it is likely that the genomic region surrounding d8 and tb1 

has been under selection since early maize domestication. Northern Flint lines differ 

from Corn Belt dent lines in a number of traits such as leaf angle, plant height, and 

cold tolerance. Thus, the long range LD block around d8 could be a signature of 

selection from the development of Northern Flint lines that happens to be associated 

with one of these traits distinguishing Northern Flint from Corn Belt dent. 

Consequently, it has been possible to detect a weak association between flowering 

time and d8 because of the correlation between flowering time and the Northern Flint 

specific traits due to population structure. Using this rationale, it may be possible to 

detect associations between the d8 locus and phenotypes such as carbon allocation and 

harvest index, when considering the differences in the usage of Northern Flints (sweet 

corn and silage) and Corn Belt dent. 

 

CONCLUSION 

 

The basic d8 associations identified in Thornsberry et al. (2001) have been replicated 

by other independent groups [26,27], but population structure has always remained a 

consistent issue. This reanalysis using SNPs within and near d8 suggests that these 

associations are either incorrect or vastly overestimated. This work implemented more 

powerful statistical approaches, germplasm resources, and whole genome sequencing 

data, enabling a more thorough understanding of this locus. 
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This analysis underscores the importance of controlling for population 

structure. All three previously published studies on the d8 locus illustrate how naïve 

association results overestimated effect sizes. In our study, we used the unified MLM 

to control for both population structure and relatedness between individuals, which are 

more accurate in effect estimation and give a truer level of significance. Even in 

species with rapid LD decay, like maize, it is possible to have subpopulations that can 

exhibit LD many orders of magnitude greater than the average length. This long range 

LD resulted in the extended haplotype lengths observed in Northern Flint lines for the 

genomic region surrounding d8. Northern Flint lines are underrepresented in the 

association panel, which makes it difficult to accurately account for the population 

structure of this subpopulation. Another issue is the strong correlations between traits. 

It is very likely that in the case of d8 there has been selection for other correlated 

traits, such as cold tolerance. Because of the correlation between the population 

structure and flowering time, we can detect a weak association between flowering time 

and d8, but d8 does not actually have an effect on time of flowering. Genes like d8 

have been targets of strong selection and, as such, are among the hardest to identify in 

GWAS and accurately estimate their effect size. NAM-like linkage populations with 

bi-parental crosses in a reference design to minimize population structure may be 

necessary for dissecting the most structured traits. 

 Although our results strongly suggest that the previously reported association 

between d8 and flowering time is an artifact of population structure, further research 

on this complex locus is warranted. The long range LD present at d8 for Northern 

Flint lines is a signature of selection, and it is important to determine the traits that are 
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regulated by this gene. By applying the appropriate statistical models, we have shown 

that flowering time is not one of these traits. 

 

MATERIAL AND METHODS 

 
Germplasm 

The association panel consists of 282 diverse maize lines that have been previously 

described [42]. These lines can be subdivided into five major subpopulations, namely 

stiff stalk, non-stiff stalk, tropical or semitropical lines (related to the non-stiff stalk 

lines), sweet corn and popcorn. The association panel includes the 25 founder lines of 

the NAM population. The maize NAM population consists of 5,000 RILs 

(Recombinant Inbred Lines) derived from crossing B73 with 25 diverse maize inbred 

lines, and then selfing for 5 generations [43]. 

 

Phenotypic Data 

Phenotypic data were collected from the NAM population and the 282 association 

panel, grown in eight environments including Ithaca, NY, Clayton, NC, Champaign, 

IL, and Colombia, MO, during the summers of 2006 and 2007. Flowering time was 

measured separately for female flowers (number of days-to-silk) and male flowers 

(days-to-anthesis) from the day of planting. The flowering date was defined as the day 

when the anthers or silk were visible on 50% of all plants within a row. 
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Sequencing Data 

DNA sequence data were obtained for d8 from Thornsberry et al. (2001), available at 

NCBI. Primers were designed for PCR amplification of gene fragments of interest 

from the 282 lines in the association panel. 

Each PCR product was cleaned by treating the samples with Exonuclease 

(ExoI) and Shrimp Alkaline Phosphatase (SAP) and incubated at 37°C for 3 min 

followed by 80°C for 10 min. The samples were prepared for sequencing using a 

mixture with a total volume of 10 #l containing 0.7 #l forward primer, 0.7 #l reverse 

primer (5 pmol/#l), 0.5 #l Big Dye terminator, 1.7 #l 5x sequencing buffer, 7.1 #l 

distilled water and the PCR product. The thermal cycler was set on the following 

program: Initial denaturation at 96°C for 4 min, followed by 30 cycles at 96°C for 10 

sec, 50°C for 5 sec and 60°C 4 min, with a final, incubation at 10°C. Sanger(3730XL) 

DNA sequencing was performed using an Applied Biosystems Automated 3730 DNA 

Analyzer. The software BioLign alignment and multiple contig editor with codon code 

phred-phrap analysis was used for alignment using consensus sequence contigs and 

sequence quality scores. 

The alignments from NCBI were also used to reanalyze the results published in 

the initial study by Thornsberry et al. (2001). 

To obtain sequence data for the region between d8 and tb1, the same protocol 

was used as described above. However, primer sequences were obtained from Camus-

Kulandaivelu et al. (2008) 
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Statistical Analysis 

Field Spatial Correction 

Best linear unbiased predictions (BLUPs) of the lines in the 282 association panel and 

the NAM population were the same as those reported in Buckler et al. (2009). These 

were obtained from a random effects model fitted in ASREML version 2.0 software 

[44] that accounts for spatial correlation and field effects.  

 

Association Mapping – Candidate gene study  

TASSEL (Trait Analysis by aSSociation, Evaluation, and Linkage) was used for data 

processing analysis [45], and results were confirmed by using SAS [46]. Association 

between polymorphisms and phenotypes were evaluated using General Linear Model 

(GLM) and Mixed Linear Model (MLM) by incorporating phenotypic and genotypic 

data, population structure (Q) and kinship matrix (K). 

Population structure was predicted using a Bayesian approach that estimates 

the relationship between subpopulations by grouping genotypic correlations at 

unlinked markers within the population with the software STRUCTURE [18] as 

described in [42]. This approach uses the proportion of an individual’s genome that 

originated from each subpopulation to estimate the genetic background matrix (Q). 

In MLM, the familial relatedness between the individuals is taken into 

consideration through a kinship matrix. This model corrects for spurious associations 

arising from population structure and familial relatedness [47]. In this study we used 

marker-based kinship, which was determined on the basis of the definition that 

random pairs of inbreds are unrelated. Kinship was calculated using the software 
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package SPAGeDi [48]. It has been suggested that marker based kinship is more 

appropriate for association studies than kinship based on pedigree records [19,40]. The 

same set of markers was used to create the population structure and kinship matrix. 

 

The GLM approach in this study for phenotype, y, is: 

y = X! + "         (1) 

Where, the X! term represents the fixed effects, including genotypes and population 

structure, Q, and " is a vector of residual effects following a multivariate normal 

distribution with mean 0 and variance-covariance matrix $2
%I. The naïve model is the 

same as GLM without the population structure effect. 

 

The MLM approach in this study is the same model as used by Yu et al., 2006. 

Mixed model, for phenotype, y, is:  

y = X! + Z# + "         (2) 

Where, the X! term represents the fixed effects, including genotypes and population 

structure, Q, and the Z# term represents random line effects, including the matrix of 

kinship coefficients, K, and vector of polygene background effects. " is a vector of 

residual effects following a multivariate normal distribution with mean 0 and variance-

covariance matrix $2
%I. 

 

Genome Wide Association Study 

Genome-wide association studies (GWAS) were carried out in the 282 association 

panel using 51,741 SNPs obtained from the Illumina MaizeSNP50 BeadChip and 
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591,552 SNPs from the genotyping by sequencing (GBS) protocol [49]. Three 

different approaches that take into account varying degrees of population structure and 

familial relatedness were undertaken. The first approach, called the naïve approach, 

uses a model similar to the one presented in Equation (1), except that the Q matrix 

representing population structure is not included among the fixed effects. The next 

approach is the GLM approach, which uses the model in Equation (1), with the first 

five principal components (PCs) of the non-industry subset of the Illumina 

MaizeSNP50 BeadChip SNPs (34,368 SNPs) included as fixed effects to represent 

population structure. The final approach is the MLM approach, with the 

aforementioned first five PCs representing population structure, and a kinship matrix 

calculated from the non-industry subset of these SNPs for the variance-covariance 

matrix of the random line effects. This kinship matrix is calculated using the method 

of [50]. In each approach, these models are fitted to each SNP. After all SNPs with 

minor allele frequencies (MAFs) less than 0.05 are removed from the analysis, the 

Benjamini-Hochberg [51] procedure adjusts for the multiple testing problem by 

controlling the false discovery rate (FDR) at 0.05. This phase of the anlaysis was 

conducted using the genome association and prediction integrated tool (GAPIT) 

package in the R programming language [52]. 

 

Joint-Linkage Mapping 

Joint Linkage Mapping of BLUPs for the phenotype across environments was 

performed using the proc GLMSelect in SAS, as described in Buckler et al. (2009) 
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[11]. BLUPs were calculated for each phenotype and used together with imputed 

genetic marker intervals and stepwise regression to identify QTLs. Missing marker 

data were imputed by utilizing genetic distance between missing and flanking 

markers. A permutation procedure was implemented to obtain empirical "=0.05 

thresholds for including and excluding terms in the joint linkage model [53].   

 

Linkage Disequilibrium 

To calculate the linkage disequilibrium between the SNPs within d8, tested in this 

association study, against the rest of the genome the LD function SitebyAll in the 

TASSEL software was used [45]. For genotypic data, the Illumina MaizeSNP50 

Beadchip was used, as well as 458k GBS (Genotyping by Sequencing) SNPs [49]. 
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SUPPLEMENTAL MATERIAL 

 

Supplemental Figure 2.1. Genome wide association results for flowering time (days to silking) in the 
282 association panel using genotyping by sequencing (GBS) and 55k SNPs.  The naïve model, which 
does not account for population structure, was fitted at each SNP. 

 

Supplemental Figure 2.2. Genome wide association results for flowering time (days to silking) in the 
282 association panel using genotyping by sequencing (GBS) and 55k SNPs.  The Q model was fitted at 
each SNP to account for population structure (Q). 
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Supplemental Figure 2.3. Physical positions of tb1 and d8 on RefGen_v2. Positions of SNPs are 
obtained by blasting primer sequences using www.maizesequence.org and are approximate. Sites above 
the line in solid black boxes are evaluated in this study. Sites below the line in dashed boxes are from 
the study by Camus-Kulandaivelu et al. (2008). 

 

 

Supplemental Figure 2.4. The region around tb1 and d8 on chromosome 1 (265,495,979 – 266,347,836 
RefGen_v2), and all identified gene transcripts available at www.maizesequence.org. There are no 
other obvious candidate gene for flowering time in the region.  

 



 

46 

 

Supplemental Figure 2.5. Genome wide association results for flowering time (days to silking) in the 
NAM population using maize HapMapv1 and HapMapv2 SNPs. There are no significant sites identified 
in the region of d8 (indicated by the gray line). 

 

Supplemental Figure 2.6. R2 between MITE in vgt1 and all the other sites on chromosome 8. Blue dots 
indicate results from 7,539 GBS SNPs present in 200 or more of the 282 lines. Red dots indicate results 
from 4,197 55K SNPs present in 200 or more of the 282 lines.  
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CHAPTER 3 

ANALYSIS OF HYBRID VIGOR AND YIELD  

IN DIVERSE MAIZE HYBRIDS  

 

ABSTRACT 
 

Hybrids created from the maize Nested Association Mapping (NAM) population were 

developed to examine hybrid vigor and yield. To better understand where in the 

genome loci affecting these traits are located and the relationship with recombination 

rate, this large hybrid population was evaluated in trials in nine environments over 

multiple years. All hybrids in the study show better phenotypic values than their 

inbred parents, expressing heterotic effect. The use of joint linkage mapping enables 

the identification of QTL associated with yield, as well as plant height and flowering 

in hybrids and their respective heterotic effects. A number of the mapped QTL are 

located in or on the edge of the pericentromeric regions with restricted recombination 

rate. Ridge regression was used to calculate marker effect estimates across the genome 

to predict breeding values in the hybrids. Considering the modest sample sizes within 

each subfamily, reasonable prediction accuracies for plant height and flowering were 

obtained using a five-fold cross-validation.  

 

INTRODUCTION 
 

The most important goal for maize breeding is grain yield. Over the last century, 

approximately half of improvement in yield is due to genetic improvement by plant 
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breeders, while the remainder is improvements in agronomic practices [1]. Yield is a 

measure of overall plant health, and it is frequently a result of genotypic stress 

tolerance. The majority of the increase in yield due to genetic improvements is 

through increased stress tolerance [2], and better interaction between genotype and 

agronomic management [1], rather than through specific focus on increased yield 

potential or heterotic effect. The increase in stress tolerance is a consequence of 

selection for improved yield stability under a range of environmental conditions. 

Under optimal conditions the yield potential per plant has not changed significantly 

over the last 20-40 years, and yield potential is at least three times greater than the 

average US yield [2]. Since the introduction of the use of hybrids in maize further 

increases in the heterotic effect has not appeared to have a major influence on yield 

increase because the heterotic effect seems to have been almost constant since the 

1930s [3]. Still, there has been a yield increase of a mean of 0.1 Mg/ha per year since 

hybrid introduction [4]. 

An enormous breakthrough in the breeding of maize was the development of 

hybrids. Shull first defined heterosis in maize over a century ago [5], as ‘the 

superiority of heterozygous genotypes with respect to one or more characters in 

comparison with the corresponding homozygotes’. Since then maize breeders have 

turned a simple field observation into the basis of almost all modern maize breeding 

[6]. In addition, since maize is a natural outcrossing species, plant breeders have 

developed an “unnatural” state of inbred maize, which cannot be found in the wild. 

This might be why maize hybrids express a relatively high heterotic effect. The 

heterotic effect of a hybrid relates to the genetic distance between the two parents 
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[7,8], and the level of adaptation to the growing environment of the parents. These 

adaptations include altered flowering time, disease resistance, growth habits and stress 

tolerance.  

Over the past hundred years, four main hypotheses have been proposed as the 

explanation of heterosis, and none of them are necessarily mutually exclusive. First, 

epistasis being the interaction between genes at two or more loci affecting the 

expression of the phenotype of interest and may lead to superior performance. 

Epistasis is most likely less important on a general level but of more importance in 

specific hybrid combinations. Epistasis seems to be more important to selfing species, 

like rice [9]. Second, the dominance model was first proposed by Bruce (1910) [10] 

and Keeble and Pellew (1910) [11] and is based on the complementary effect of 

dominance factors introduced from each parent. Heterosis has been explained as 

partial or complete dominance in maize [12]. Third, the overdominace model proposes 

the heterozygous combination of alleles at the same locus to express greater 

phenotypic values than either homozygous combination [9]. In the overdominance 

model no linkage is required between the acting loci, nor is the involvement of 

multiple loci necessary to express a heterotic effect in the hybrid. Last, pseudo-

overdominance extends the concept of dominance by including linkage [13,14]. A 

locus can seem to act in an overdominant fashion when it in fact is a number of genes 

that are linked due to lack of recombination in the region, the Hill-Robertson effect 

[15,16]. Locations of identified QTL for heterosis frequently correspond with 

pericentromeric regions (e.g. [17–19]).  
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The contribution of the different hypothesis proposed to control heterosis is 

most likely influenced by reproductive system [9]. For example, self-pollination 

supports maintaining of epistatic networks throughout the genome, but also exposes 

recessive and deleterious alleles to selection pressure in a relatively short period of 

time. In outcrossing species, deleterious recessive alleles remain in the genome for a 

longer time in a heterozygote state, often in the regions with restricted recombination. 

Inbred lines in modern maize breeding may have inherited this genetic load. While 

deleterious alleles in the inbreds are complemented for in hybrids, it might not fully 

explain the superiority of hybrids. Most genes in hybrids have a gene expression equal 

to the mid-parent value [20], but a significant proportion of the genes do not follow 

that assumption [21,22].  

The chromosomal arms, regions near the end of the chromosome, exhibits 

higher recombination rates relative to physical distance, and the opposite is true in the 

pericentromentic regions [16,23,24]. Correlations of 35% between residual 

heterozygosity and the inverse of recombination rate suggest that large effects for 

heterosis are located in regions with low recombination. This proposes that 

recombination rate is the major factor determining residual heterozygosity and 

contributor of maintaining a higher level of heterozygosity. Regions with increased 

residual heterozygosity had more than 30% of all genes and nearly average diversity 

[24]. The suppressed level of recombination in these genetically divergent centromeric 

regions hinders the most optimum allelic combination to be formed [24]. This 

evidence argues for pseudo-overdominance as a major source of the heterotic effect 

due to linkage between loci in repulsion [25,26]. 
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In this study hybrids of the NAM population have been developed to further 

examine the hypothesis proposed that pericentromeric regions with low recombination 

rate and higher than average level of heterozygosity have a large effect on hybrid 

vigor based on the pseudo-overdominance model. With the use of joint linkage 

mapping, QTL have been identified for yield as well as plant height and flowering 

time in inbreds, hybrids, and their heterotic effects. Here, we get a better 

understanding of the relationship between effect estimates in hybrids and 

recombination rate by analysis on a haplotype level. In addition, we evaluate whether 

this diversity can be modeled through genomic prediction approaches to predict 

agronomic traits in hybrids. 

 

MATERIAL AND METHOD 

 
Germplasm 

In this study we are using the maize nested association mapping (NAM) population 

developed by the Genetic Architecture of Maize and Teosinte Project consortium [16]. 

NAM was created by selecting 25 inbreds to maximize diversity, and crossing them to 

the reference inbred, B73. From each of the 25 subfamilies, 200 progeny were chosen, 

selfed for five generations and subsequently sib-mated. This resulted in a mapping 

population of nearly 5,000 RILs. From these RILs, we selected a subset of 60-70 lines 

from each subfamily (except the popcorn subfamily Hp301), and created hybrids by 

crossing to the male tester PHZ51. PHZ51 is a non-stiff stalk line developed by 

DuPont Pioneer with expired Plant Variety Protection (PVP), it is a yellow dent 
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classified as “mixed” developed by crossing PH814 and PH848 [27]. The subset of 

NAM female lines for hybrid development was based upon flowering time. The 

earliest RILs from the late subfamilies and the latest RILs from the early subfamilies 

were selected to reduce flowering time variation and make hybrid production using 

isolation plots more manageable.  

 

Field Evaluation 

Hybrids were grown and evaluated in Sandhills NC, Bradford MO, West Lafayette IN, 

and Slater IA in the summer of 2010, as well as Kinston NC, Bradford MO, West 

Lafayette IN, Ames IA, and Aurora NY in the summer of 2011. All nine environments 

were cultivated in a conventional manner with respect to fertilization, weed, and pest 

management. Hybrids were planted in two-row plots with a single replication per 

environment, except for the field in NY 2011, which was planted in single rows and 

only developmental traits were measured. The experiment was blocked by subfamily 

to avoid competition for space and light interception resulting from height variation. 

Entries were randomized within blocks, and blocks were randomized within 

environments. Due to weather conditions, five environments possessed substantial 

variation for root and stalk lodging. In 2010, Bradford MO, Slater IA, and Sandhills 

NC were damaged by lodging, and in 2011 the Bradford MO environment and West 

Lafayette IN environment were also damage by lodging. Because of the damage, yield 

data was obtained from only six of the eight fields planted in two-row plots for yield 

evaluation (excluding the 2011 Bradford MO environment and 2011 West Lafayette 

IN environment which were damage to such an extent that it was impossible to harvest 
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the fields). Data for plant height were collected from eight of the nine environments 

evaluated for developmental traits (excluding the 2011 Bradford MO environment 

which was severely damaged by lodging early in the season). Data for flowering were 

collected from seven of the nine environments. Excluding the 2011 Bradford MO 

environment for the same reason as for plant height as well as the 2010 Sandhills NC 

environment because of shortage of personnel at that particular time of the season.  

 

Phenotyping 

All phenotypic data of the hybrids were collected on a plot basis. Number of days 

from planting until half the plants in a plot shed pollen or had a visible silk was used 

as the criterion to measure days to anthesis and days to silk, respectively. All other 

traits were measured at full maturity after flowering. Plant height was measured as the 

distance from the soil line to the base of the flag leaf. Yield was measured using a 

two-row combine and moisture was measure automated on the combine. Yield was 

adjusted to15.5% moisture content and reported in tons per hectare.  

In this study, when reporting results for inbreds it refers to the female inbreds 

(NAM RILs). The flowering time data for the NAM RILs were obtained from the 

Buckler et al., 2009 study [28], and plant height data was obtained from Peiffer et al., 

[29]. Data for leaf traits (length, width and angle) is from the Tian et al., 2011 study 

[30] and traits for female and male inflorescence were obtained from the Brown et al 

2011 study [31]. All other traits were collected by the Genetic Architecture of Maize 

and Teosinte Project but have yet not been made public.  
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Based on previous collected data for the inbreds and data collected for the 

hybrids in this study, best-parent heterosis and mid-parent heterosis were calculated. 

Best-parent heterosis is the difference between the hybrid value and the better value 

from the female and male inbred, and mid-parent heterosis is the difference between 

the hybrid value and the average value between the female and male inbred.  

 

 

Genotyping 

Genotypic data for joint linkage mapping was collected as previously described 

[16,28]. In total, 1,106 markers were scored on an Illumina GoldenGate Assay across 

the NAM RILs. 

To estimate marker effects across the genome and calculate prediction 

accuracies using ridge regression, the NAM RILs were genotyped at low coverage 

using the GBS platform [32]. As a result of the relatively low coverage, about 80% of 

the data for individual markers was missing and about 80% of the heterozygous loci 

were called as homozygotes. An HMM (Hidden Markov Model) algorithm was used 

to correct the heterozygote calls to about 99.8% accuracy [33]. Following that a set of 

markers to be used in fitting a regression model was imputed from the GBS data at 

0.2cM intervals based on flanking markers. The marker values identified the parent of 

origin, with B73 coded as 0 and the non-B73 parent coded as 2. Heterozygous loci 

were coded as 1. For the imputed sites, if the flanking markers were identical, the site 

was set to that value. If the flanking markers were not identical, an interpolated value 

was used based on the relative genetic distance from each of the flanking markers. 
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Statistical Analysis 

Statistical analyses were performed using SAS [34] software, and R [35] scripts and 

libraries. Best Linear Unbiased Estimations (BLUEs) for all phenotypes across 

environments were calculated as LSmeans with range position as fixed effect for each 

genotype within block using SAS software.  

After deriving BLUE, the base package in R was used to calculate Pearson 

correlation coefficients and to study relationships between hybrid yield and 28 

different phenotypes evaluated in the inbreds at the genotypic level across and within 

the NAM subfamilies. 

To characterize genetic architecture, joint linkage mapping of BLUEs across 

environments was performed using proc GLMSelect in SAS. After adjusting for 

differences between NAM subfamilies, an imputed set of 1,106 markers were nested 

within each NAM subfamily and regressed against BLUEs for each of the phenotypes 

across in a stepwise manner, as described in Buckler et al. (2009) [28]. For the 

stepwise procedure, model inclusion and exclusion of subfamily nested markers were 

discerned by comparison with a null distribution based on permutation testing. The p-

value derived from the null distribution for model inclusion was 0.001 at an alpha 

level of 0.05. 

To assess our ability to predict breeding values from all assayed genetic 

diversity, we performed genomic prediction by ridge regression BLUP in R using the 

rrBLUP package [36]. Genomic relationship matrices were calculated using 7,389 

marker intervals for the NAM population. To calculate effect estimates for each 
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marker across the genome for each phenotype, genetic matrices were regressed against 

each phenotypic BLUE including all phenotypic values within each subfamily. The 

same calculations were made to estimate genomic estimated breeding values (GEBVs) 

for each phenotype. These calculations were also made within each subfamily. 

Accuracy for the prediction was determined by Pearson correlation of the predicted 

GEBVs and the observed values. This was accomplished by fitting all genotypes into a 

ridge regression model. To assess overfitting and the robustness of the modeling 

approach, each subfamily was randomly divided into five mutually exclusive 

subpopulations, and four of the five subpopulations were used to construct a model, 

which was fitted to the last remaining subpopulation. Accuracy of the prediction was 

averaged across the five subpopulations. The process was repeated with 20 different 

randomizations of the five subpopulations. This was performed for each trait. 

 

RESULTS 

 

Phenotypes 

Due to weather conditions such as rain and strong winds, five environments possessed 

substantial root and stalk lodging (Table 3.1) (For details refer to chapter four). From 

85-99 percent of the plots in the five environments had one or more plants lodged, and 

13-59 percent of the plants had visible damage. As a result, the IN11 and MO11 

environments were not harvestable and the final dataset for yield consisted of six 

environments. The MO11 environment was also excluded from the dataset of plant 

height, and NC10 and MO11 were excluded form the dataset of flowering time, 
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leading to a total of eight environments for plant height and seven environments for 

flowering time.  

Table 3.1. Percent of plots and percent of plants per environment damaged by root lodging, stalk 
lodging, and total lodging. 
  IA10 IN11 MO10 MO11 NC10 
% damaged plots root  96 78 75 6 7 
% damaged plots stalk  11 87 67 99 83 
% damaged plots total  96 98 91 99 85 
% damaged plants root  21 11 18 0.2 12 
% damaged plants stalk  0.6 48 10 41 0.3 
% damaged plants total  21 59 8 41 13 

 

In this study, all evaluated hybrid genotypes express hybrid vigor for plant height in 

terms of best-parent heterosis as well as mid-parent heterosis (Figure 3.1; Supplement 

table 3.1). In terms of flowering time, this was not true for a small number of 

subfamilies (Supplement table 3.2).  
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Trait correlation 

Across the hybrid NAM population, days to anthesis and days to silk were strongly 

correlated (Table 3.2). Flowering time was moderately positively correlated with plant 

Figure 1. Distribution of plant height values for 
the female inbred (blue), corresponding hybrid 
(red), and mid-parent heterosis (green).  
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height but negatively correlated with yield (Table 3.2). There was no correlation 

between plant height and yield across the NAM population. By subfamilies the 

correlation for all the traits varied between r = -16 to r = 0.46, except for the two 

flowering traits which varied between r = 0.40 to r = 0.98. At least one subfamily or 

more showed very low or no correlation between the traits.  

 

Table 3.2 Correlation between yield (T/ha), plant height (cm), days to anthesis, and days to silk. Top 
table reports correlations across NAM. Middle table reports highest and lowest directional correlation 
within the subfamilies. Bottom table reports highest and lowest absolute correlation within subfamilies. 
* indicates a significance of <0.01 and ** indicates a significance od <0.001.  

 
Correlation across NAM 

   
 

  Yield Plant height d2a d2s 

 
Yield ---------------- 0.00 -0.23** -0.26** 

 
Plant height   ---------------- 0.19** 0.22** 

 
d2a     ---------------- 0.89** 

 
d2s       ---------------- 

      
 

Directional correlation within subfamilies 
  

  
high 

   
 

  Yield Plant height d2a d2s 
low Yield ---------------- 0.34* 0.70** 0.70** 

 
Plant height -0.33* ---------------- 0.44* 0.46** 

 
d2a -0.70** -0.16 ---------------- 0.98** 

 
d2s -0.70** -0.17 0.40** ---------------- 

      
 

Absolute correlation within subfamilies 
  

  
high 

   
 

  Yield Plant height d2a d2s 
low Yield ---------------- 0.34* 0.70** 0.70** 

 
Plant height 0.02 ---------------- 0.44* 0.46** 

 
d2a 0.00 0.00 ---------------- 0.98** 

 
d2s 0.00 0.00 0.40** ---------------- 

 

The NAM inbred populations have been scored for numerous traits by the maize 

community over the last several years. These NAM hybrids provide an opportunity to 
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examine how predictive these measures are to hybrid performance. In general no 

strong correlations were found across the NAM populations between hybrid yield and 

developmental traits measured in the inbreds (Table 3.3). Exceptions are the negative 

correlations with days to silk (r = -0.25) and days to tassel (r = -0.22), as well as plant 

height (r = -0.10) and ear height (r = -0.14). The strongest positive correlation was 

with 20 kernel weight, r = 0.11. Analysis within subfamilies show that all traits had 

very low, or no, impact on yield in at least one of the subfamilies. However, every trait 

also had a modest correlation (r = 0.22 – 0.50), positive or negative, with yield in all 

of the subfamilies. Each of the 28 traits examined had both positive and negative 

correlations with yield. The same traits had a modest negative correlation in one 

subfamily and positive correlation in another. The strongest correlation with yield was 

with plant height (r = 0.44) and ear height (r = 0.46). In addition the strongest negative 

correlation was between days to tassel and yield (r = -0.50). Maximum correlation for 

ear weight (r = 0.27) and 20-kernel weight (r = 0.30) was relatively modest.  

For plant height, the correlation between inbred and hybrid was 0.51. By subfamily it 

ranged between 0.28 and 0.72. For days to anthesis, the correlation across NAM was 

0.48, and it varied from 0.19 to 0.71 within subfamilies. Same patterns were observed 

for days to silk and days to anthesis.  
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Table 3.3. Correlation between hybrid yield and traits measured in the corresponding female inbreds.  
Results are shown across all the NAM population, as well as directional and absolute correlation  
within subfamilies. * indicates a significance of <0.01 and ** indicates a significance od <0.001.  
 

  
Within subfamily 

  

Directional 
correlation 

Absolute 
correlation 

  
Across 
NAM max min max min 

Germination Count 0.02 0.29 -0.25 0.29 0.01 

Stand Count 0.05 0.24 -0.29 0.29 0.00 

Days to Silk -0.25** 0.16 -0.48** 0.48** 0.00 

Days To Anthesis -0.22** 0.20 -0.50** 0.50** 0.01 

Tassel Length -0.08* 0.28 -0.19 0.28 0.00 

Main Spike Length -0.05 0.32 -0.09 0.32 0.02 

Tassel Primary Branches -0.03 0.12 -0.29 0.29 0.03 

Ear Number 0.10** 0.37* -0.19 0.37* 0.00 

Number of Nodes Ear - Roots -0.17** 0.28 -0.27 0.28 0.01 

Number of Nodes Tassel - Ear -0.09** 0.22 -0.41* 0.41* 0.01 

Number of Brace Root Nodes -0.06 0.38* -0.31 0.38* 0.00 

Plant Height -0.10** 0.44** -0.33* 0.44** 0.00 

Ear Height -0.14** 0.46** -0.11 0.46** 0.01 

Leaf Length -0.13** 0.25 -0.28 0.28 0.02 

Leaf Width -0.06 0.26 -0.26 0.26 0.00 

Upper Leaf Angle -0.02 0.29 -0.22 0.29 0.01 

Middle Leaf Angle -0.03 0.33* -0.20 0.33* 0.01 

Tillering Index -0.03 0.35* -0.19 0.35* 0.00 

Cob Diameter -0.04 0.26 -0.33* 0.33* 0.00 

Cob Weight -0.02 0.29 -0.28 0.29 0.01 

Ear Diameter 0.00 0.21 -0.34* 0.34* 0.02 

Ear Length 0.02 0.22 -0.20 0.22 0.00 

Seed Set Length 0.01 0.28 -0.18 0.28 0.01 

Ear Row Number 0.03 0.20 -0.28 0.28 0.00 

Total Kernel Volume 0.04 0.24 -0.26 0.26 0.02 

Ear Weight 0.05 0.27 -0.15 0.27 0.00 

Ear Rank Number -0.01 0.28 -0.28 0.28 0.00 

20 Kernel Weight 0.11** 0.30 -0.14 0.30 0.00 
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Heritability 

Heritability for the traits measured in the hybrids was calculated using mixed model 

with spatial correction in ASReml [37]. The heritability across the environments 

varied between 0.65 and 0.79 for the three traits, yield, flowering time, and plant 

height (Table 3.4).  

Table 3.4. Heritability estimates for the yield, flowering time and plant height measure  
in the hybrids, within and across environments.  
  Yield Flowering time Plant height 
Across env 0.66 0.79 0.65 
NC10 0.67 Na 0.64 
MO10 0.65 0.84 0.67 
WL10 0.65 0.73 0.64 
IA10 0.64 0.77 0.66 
NC11 0.68 0.86 0.66 
IA11 0.66 0.84 0.67 
WL11 Na 0.79 0.65 
NY11 Na 0.73 0.63 

 

Joint linkage mapping 

Using this smaller subset of genotypes, we remapped QTL in the inbreds to evaluate 

the change in statistical power. Fourteen QTL were mapped for the inbreds for both 

plant height and flowering time (Table 3.5). This is a smaller number than previously 

reported [28,29]. An even smaller number of QTL were identified for hybrids (10 for 

plant height, 4 for days to anthesis, and 5 for days to silk). For best-parent heterosis 

and mid-parent heterosis a larger number of QTL was identified for plant height (7 for 

best-parent heterosis, and 5 for mid-parent heterosis) than flowering time (2 for days 

to anthesis best-parent heterosis, 2 for days to anthesis mid-parent heterosis, 4 for days 
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to silk best-parent heterosis, and 1 for days to silk mid-parent heterosis). A larger 

number of QTL was mapped for best-parent heterosis than mid-parent heterosis.  

A minority of the identified QTL were located in the pericentrometic regions 

(within 10cM from the centromere) with restricted recombination rate (Table 3.5). It 

should be noted that a number of the QTL here classified, as being located on the 

chromosomal arms were on the edge, in the regions between the arms and 

pericentromeric regions, depending on how the pericentromeric regions were defined.  
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Table 3.5. Results for joint linkage mapping for plant height, days to anthesis, and days to silk. 
Mapping was performed on data collected on inbred, hybrid, best-parent heterosis, and mid-parent 
heterosis. Table reports QTL location as chromosome and cM position. Gray boxes indicates QTL 
located in pericentromeric regions (within 10 cM from the centromere).  

Plant Height 
   Inbred Hybrid Best-parent heterosis Mid-parent heterosis 

chr1 60.8cM chr1 0.9cM chr1 115cM chr2 97.5cM 
chr1 116.2cM chr2 28.2cM chr2 98.9cM chr2 98.9cM 
chr3 18.2cM chr2 84.2cM chr3 15cM chr3 129.8cM 
chr3 79.3cM chr2 136.3cM chr3 129.8cM chr7 43.9cM 
chr4 65.9cM chr3 90cM chr4 60.6cM chr10 58.4cM 
chr4 116.1cM chr5 98.2cM chr5 81.7cM   
chr5 58.3cM chr7 69.8cM chr9 53.1cM   
chr5 108.8cM chr8 62.3cM     
chr6 22.1cM chr9 64.5cM     
chr7 72.2cM chr10 44.8cM     
chr8 57.5cM       
chr8 70.6cM       
chr9 56.7cM       
chr10 32.4cM       

    Days to Anthesis 
   Inbred Hybrid Best-parent heterosis Mid-parent heterosis 

chr1 20.1cM chr1 79.9cM chr3 65.2cM chr3 65.2cM 
chr1 84.9cM chr2 129.8cM chr9 49.5cM chr6 61.8cM 
chr2 63cM chr3 65.2cM     
chr2 67.9cM chr10 41.9cM     
chr2 127.3cM       
chr3 56cM       
chr3 123.9cM       
chr4 118.4cM       
chr5 72.5cM       
chr6 96.4cM       
chr8 67.4cM       
chr9 53.1cM       
chr9 74cM       
chr10 41.9cM       

    Days to Silk 
   Inbred Hybrid Best-parent heterosis Mid-parent heterosis 

chr1 17.4cM chr1 87.9cM chr2 17.8cM chr2 17.8cM 
chr1 84.6cM chr2 129.8cM chr2 19.5cM   
chr2 63cM chr7 63.7cM chr3 140.7cM   
chr2 127.3cM chr7 71.2cM chr9 49.1cM   
chr3 56cM chr10 41.9cM     
chr3 115.8cM       
chr3 131.4cM       
chr4 55.8cM       
chr5 65.4cM       
chr7 75.3cM       
chr8 70.6cM       
chr9 62cM       
chr10 41.9cM       
chr10 91cM       
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T-tests with two-tail distribution and two-sample unequal variance were used to 

examine the difference in recombination rate in the mapped QTL intervals for inbreds, 

hybrids, best-parent heterosis and mid-parent heterosis (Supplemental table 3.3). Only 

two combinations were marginally significant for difference in recombination rate: 

comparison days to anthesis best-parent heterosis and days to silk inbred gave p-value 

of 0.029, and days to anthesis best-parent heterosis and days to anthesis inbred gave p-

value of 0.054.  

The 7,389 marker intervals used to estimate effects across the genome were 

divided into two sets; low recombination rate and high recombination rate. F-test 

between the two datasets show that there was a highly significant difference of effect 

variance in low and high recombination regions, particularly for inbreds and hybrids 

(Table 3.6). Small differences in correlation between recombination rate and effects 

were observed in the two datasets. In inbreds r = 0.029 in regions with low 

recombination and r = 0.009 in regions with high recombination. The opposite pattern 

is true for the hybrids. The intervals with the largest effects were located in regions 

with low, but not the lowest, level or recombination (Figure 3.2). 

 

Figure 3.2. Genotypes divided into low and high recombination rate plotted against effect estimates for 
inbred, hybrid, and best-parent heterosis in plant height. 
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Table 3.6. F-test results from comparing distribution of effect estimates in regions with low and high 
recombination rate. Correlation between recombination rate and effect estimates in low and high 
recombination regions. 
  Inbred Hybrid Heterosis 
F-test 2.6 10-273 2.6 10-223 2.6 10-36 
Correlation (low cM/Mb) 0.029 0.008 -0.038 
Correlation (high cM/Mb) 0.009 0.020 0.003 

 
Four QTL were mapped for yield in the hybrids using joint linkage mapping (Table 

3.7). The QTL on chromosomes 7 and 10 were located in the pericentromeric regions 

(10 cM within the centromere). The mapped loci on chromosome 3 and 5 were on the 

edge of the edge between the pericentromeric region and the chromosome arm. All of 

the four mapped QTL were in intervals with a recombination rate lower that the 

average across the genome, 1.382 cM/Mb. QTL for yield had in previous studies [17–

19,38] been mapped to the same general regions as reposted in this study. 

Table 3.7. Results for joint linkage mapping for yield. Result reports QTL location as chromosome and 
cM position. Gray boxes indicate QTL located in pericentromeric regions. cM/Mb is recombination rate 
in the QTL interval. 
Chromosome  cM position cM/Mb 

3 33.7 1.293 
5 50.8 0.595 
7 49.1 0.198 

10 41.1 0.165 
 

Genomic prediction 

This study generated reasonably high prediction accuracies for both plant height and 

flowering time in the hybrids taking into account the five-fold cross-validation and 

that the models were trained on a population size of around 50 lines. For plant height 

the accuracy was r = 0.57 across the NAM subfamilies with prediction estimated 
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within each subfamily (Figure 3.3). Equivalent estimations for flowering time gave an 

accuracy of r = 0.71. 

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!
!!

!

!

!

!!

!

!

!

!
!

!

!

!

!
!!

!
!

!
!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

! !

!!

!

!

!
!

!

!

!

!

!

!
!

!
!

!
!

!

!
!

!

!!

!
!

!

! !

!

!
!

!

!

!

!

! !

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

! !

!

!
!

!

!

!

!

!

!
!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!
!

!

!
!

!

!

!
!

! !

!! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!!! !

!

!

! !

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!
!

!!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!
!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!
!

!

!
!

!
!

!

!

!!

!

!

!

!

!

!!

!
!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!
!

!

!
!

!

!

!!

!

!

!

!

!

!
! !

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

! !

!!
!

!
!

!

!

!

!

!

!
!

!
!

!

!

!

!

!!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

! !

!

!

!

!

!

!

!

!!

!

!
!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
! !

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!

!

!

!

!

!

!

!

!

!
!

!!

!

!
!

!

!!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

230 240 250 260 270

20
0

22
0

24
0

26
0

28
0

Prediction Accuracy of Plant Height

Predicted Value (cm)

O
bs

er
ve

d 
Va

lu
e 

(c
m

)

!

!

!

!
!

!
!

!

!
!
!

!
!

!

!

!
!

!
!

!

!!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!
!

!

! !

!
!

!

!
!

!

!

!
!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!
!!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!

!

!

!

! !

!

!

!

!

!

!
!

!

!

!
!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!
!
!

!

!

!

!

!

!

!!

!

!

!

!

!!

!
!

! !

!

!

!

!

!

!

!
!!

!!

!

!
!!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!
!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!
!

!

!

!
!

!

!
!

!!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!
!!

!!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!!

!

!!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!
!!

! !!
!

!

!

!

!!

!!

!

!

!

!

!
!!!

!

!

!!

!!!

!

!

!
!

!

!

!

!!

!

!

!

!

! !

! !

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!!

!! !

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

! !!

!

!

!!

!

!

!

!

!! !

!

!

!
!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!!
!

!
!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

! !!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!! !

!

!

! !

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!
!

!

!!

!

!

!

!

!

!

!!

!

!

!
!

!

!!

!

!

!

!
!

!

!

!!!

!!

!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!!

!
!

!!

!

!
!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!
!

!
!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!
!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!
!

!

!

!!
!
!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!
!

!!!

!

!

!

!

!

!

!
!

!!

!
!

!

!!

!

!

!

!

!

!!

!

!!

!!

!
!

!

!

!
!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!

!

!

!

!

!

!!!

!
!

!

!!
!

!!

!

!

!

!

!

!

!!

!!

!

!!

!

!

!

64 66 68 70 72 74

65
70

75
80

85

Prediction Accurcy of Days to Anthesis

Predicted Value (days)
O

bs
er

ve
d 

Va
lu

e 
(d

ay
s)

 

Figure 3.3. Prediction accuracies for plant height and days to anthesis in hybrids estimated using ridge 
regression within subfamilies.  
 
Heterosis was estimated as both best-parent heterosis and mid-parent heterosis. Using 

ridge regression to predict breeding values for the traits resulted in accuracies 

comparable to predictions for the hybrid value. For plant height, best-parent heterosis 

was predicted with an accuracy of r = 0.6, estimated within subfamily. Prediction 

accuracy for mid-parent heterosis for plant height was estimated to r = 0.50 (Figure 

3.4). 
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Figure 3.4. Prediction accuracies for best-parent heterosis and mid-parent heterosis for plant height 
estimated using ridge regression within subfamilies. 
 

By using ridge regression we were able to predict the values of yield in the hybrids 

with an accuracy of r = 0.55, by performing the estimation within subfamily with a 

five-fold cross-validation (Figure 3.5).  
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Figure 3.5. Prediction accuracy for yield in hybrids  
estimated using ridge regression within subfamilies. 
 

 



 

68 

Prediction accuracy for hybrid yield and plant height within individual subfamilies 

ranged from 0.01 to 0.61 (Table 3.8). In some cases, one trait was predicted with high 

accuracy in a subfamily and a second trait with a low accuracy in the same subfamily. 

We do also observe negative correlations in some of the subfamilies.  

Table 3.8. Prediction accuracy for individual subfamily  
for hybrid yield and plant height within each subfamily.  
* indicates a significance of <0.01 and  
** indicates a significance of <0.001.  

Subfamily Yield Plant Height 
B97 0.03 0.45** 
CML103 0.05 0.26 
CML228 0.06 0.69** 
CML247 0.33* 0.17 
CML277 0.43** 0.68** 
CML322 0.18 0.37* 
CML333 0.01 0.11 
CML52 -0.61** 0.19 
CML69 0.08 0.49** 
Il14h NA -0.13 
Ki11 0.43* 0.25 
Ki3 -0.25 -0.47** 
Ky21 0.03 0.27 
M162W 0.08 0.11 
M37W -0.28 0.38* 
Mo18W -0.03 0.17 
MS71 -0.58** 0.03 
NC350 -0.56** 0.28 
NC358 -0.61** 0.46** 
Oh43 -0.36* 0.39* 
Oh7B -0.61** -0.08 
P39 NA -0.22 
Tx303 -0.39* 0.35** 
Tzi8 0.27 0.3 
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DISCUSSION 

 
Heritability 

Heritability estimated for the traits measured in the hybrids in this study were of 

moderate values (Table 3.4). The moderate heritability does have a negative effect on 

the analyses and limits our ability to map QTL as well as the accuracy of genomic 

prediction. These heritability estimates can be due to the nature of the traits. We 

expect flowering time and plant height to have high heritability. Traits such as yield, 

which are more influenced by the environment and most likely controlled by a large 

number of loci tend to have lower heritability. A second reason is the lodging damage 

that a number of the fields suffered. It is very possible that damage related to lodging 

events can be much more than just the visual breakage of the plants, such as insect and 

pathogen infestation, interruption in xylem and phloem and, unbalance in carbon 

relocation, resulting in phenotypic values that do not represent the genotype in a good 

location. 

 

Trait Correlation 

Across the NAM hybrids, taller plants flower in general later (Table 3.2), a pattern that 

has been seen in maize before (i.e. [39–41]). The negative correlation between 

flowering time and yield can be explained by the proportion of tropical material in the 

NAM population. These tropical lines are less adapted to the growing environment 

than the more temperate material. In US temperate material, flowering time and grain 
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yield are positively correlated. Hybrids with a longer season yield more and have 

higher grain moisture [42].  

There are no correlations between plant height and yield across the NAM 

population, but within subfamilies the correlation varies from slightly negative to 

moderately positive. The positive correlation can be explained by the correlation 

between plant height and flowering time. Later flowering and more biomass result in 

higher carbon fixation, which can be used for grain fill. In conclusion, there is no 

general relationship between flowering time, plant height, and yield across the NAM 

population, except between days to anthesis and days to silk. To be able to use 

flowering time or plant height to predict yield it will be more accurate and efficient 

within subfamilies or at least using smaller groups of related subfamilies.    

Correlation between female inbreds and hybrids across NAM for flowering 

and plant height is around 0.50, suggesting that inbreds can be used to predict the 

hybrid values to a certain extent. Level of correlation of the three traits varies by about 

0.20 to 0.70 implying prediction based on inbred values can be much more successful 

in some subfamilies than others.  

In general no strong correlations were observed for hybrid yield and 28 

different traits measured in the female inbreds (Table 3.3). The strongest positive 

correlation was 20-kernel weight with a value of only 0.11. This suggests that a single 

trait evaluated in inbreds is probably not very successful to predict hybrid 

performance. Within subfamilies, all traits have very low or no impact on yield. All 

inbred traits also have negative affect in one subfamily and positive in another. To 

successfully be able to use data collected in inbreds to predict hybrid yield, a model 
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has to been developed including a number of traits, but the importance of the traits 

will vary depending on the population. In addition, the population cannot be too 

genetically diverse. 

 

Joint linkage mapping 

In this study QTL were mapped for yield in hybrids (Table 3.7) as well as plant height 

and flowering time for inbreds, hybrids and their heterotic effects (Table 3.5). Due to 

the relatively small sample size, this study identified about one third of the QTL that 

have been identified in previous studies of the NAM inbreds for flowering time [28] 

and plant height [29]. Here we used about one third of the full NAM population (5,000 

RILs), which results in less power to detect QTL using this method. Additionally, a 

number of the field locations were damaged by environmental conditions, which had a 

negative impact on the quality of the collected data.  

Over the years, a large number of studies have been performed to genetically 

map loci affecting yield. In this study, four loci were mapped for yield using joint 

linkage mapping. QTL in the same regions have previously been mapped for all four 

QTL: QTL on chromosome 3 [18], chromosome 5 [39,43], chromosome 7, and 

chromosome 10 [12,18].  

Substantial portions of the identified QTL are located in, or near, the 

pericentromeric regions, regions with restricted recombination rate. These results 

agree with previous findings by other research groups using different experimental 

design and germplasm [18,19]. Findings suggest that loci controlling these traits are 
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more frequently located in regions with low recombination rate. As a result, this 

supports the pseudo-overdominance hypothesis to explain heterosis.   

No significant differences were observed when comparing recombination rate 

in the QTL intervals mapped for inbreds, hybrids and heterosis. Though, it should be 

pointed out that nearly all of the QTL intervals had a recombination rate lower then 

the average value of the 1,106 marker intervals on the NAM map. When comparing 

the marker effects estimated using ridge regression and dividing the dataset into two 

halves (low and high recombination rate), F-tests between the two datasets were 

significant for inbred, hybrid, and heterosis (Table 3.6). The largest effect estimates 

are located in regions with restricted but not the lowest level of recombination rate. 

This agrees with the findings from the joint linkage mapping, where a number of the 

QTL are located in the pericentromeric regions. Additionally, an even larger 

proportion is located on the edge between the centromeric regions and the 

chromosomal arms. These regions have sufficient recombination for new haplotypes 

to form, but limited enough for linkage between loci leading to pseudo-

overdominance. These regions may also have the lowest genic space to recombination 

ratio.   

At this moment we can neither accept nor reject the pseudo-overdomiance 

hypothesis. The data in this study is analyzed on a haplotype level as the sequence for 

the tester, PHZ51, was not available at this time. This poses an important challenge as 

recombination rate, heterozygosity, and gene density are substantially correlated at 

these larger scales. Analysis on a nucleotide level is required to break up this 

relationship and to be able to get a better understanding of how these characteristics 
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are affecting the manifestation of hybrid vigor. To complement the findings in this 

study the genetic material needs to be sequenced with higher resolutions. Especially 

the tester, PHZ51, needs to be sequenced, which will enable us to model dominance 

on a SNP level. 

 

Genomic prediction 

Yield is the most important trait in maize breeding. However, it has a moderate 

heritability and is controlled by a large number of loci with small effects. These 

factors make improvement of yield a complex task. Furthermore, evaluating new 

hybrid combinations is an expensive and labor-intensive process. Statistical methods, 

first used in animal breeding [44] have been developed to perform genomic selection 

or prediction [45,46].  

Here we were able to use ridge regression (rrBLUP) to predict hybrid breeding 

values in the NAM hybrid population as well as heterotic effect with reasonable 

accuracies (around r =0.55) (Figures 3-5), particularly, when taken into consideration 

that predictions were performed within each subfamily using a five-fold cross-

validation resulting in a training population of around 50 lines. On the other hand, 

there are large variations of prediction accuracies within individual subfamilies (Table 

3.8). The prediction accuracies for yield can be low, and high for plant height in the 

same subfamily.  

Negative prediction accuracies were observed in some of the subfamilies in 

this study. Similar findings have been observed in other populations and species 

[47,48]. Prediction accuracy has been shown to be influenced by heritability of the 
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trait, number of genetic markers, model used, population size, and genetic distance 

(Heslot 2012). In this study, phenotypes had moderate heritability due to the nature of 

the trait and environmental effects (field damage), subfamilies were of small sample 

sizes, and the subfamilies captured a relatively large proportion of diversity. These are 

factors that potentially can explain the negative correlations. Additionally, the 

negative correlations may not have a biological explanation but rather be a result of 

the Simpson’s paradox [49], whereby a trend in different groups of data disappears or 

changes direction when the data for the groups are joined. Further investigations have 

to be made to better understand the underlying factors of the negative prediction 

accuracies.   

This study of the hybrid NAM population has enabled us to map QTL of yield 

as well as inbred, hybrid and heterotic effects for plant height and flowering time. The 

majority of these QTL are located in regions with below average recombination rate. 

In addition, marker effect estimates suggest that regions of the genome with larger 

effects on these traits are in regions with restricted recombination. This study has 

given us a better understanding of the relationship between yield and heterosis with 

recombination. However, there is more to learn, and further genomic data is needed to 

further examine the role of dominance across diverse maize germplasm.
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SUPPLEMENTAL MATERIAL 
Supplement table 3.1. Average phenotypic value for each population within environment, and average 
BLUE for each population.  

  days to anthesis 
  NC10 MO10 WL10 IA10 NC11 IA11 IN11 NY11 BLUE 

Pop1 NA 52.7 60.9 81.5 61.2 71.7 66.2 70.4 68.6 
Pop2 NA 53.9 62.5 83.0 64.2 75.4 69.7 72.4 70.2 
Pop3 NA 54.9 63.5 84.8 64.5 75.7 70.2 75.6 73.5 
Pop4 NA 55.3 64.4 85.1 64.8 76.4 68.5 75.0 71.9 
Pop5 NA 55.4 64.7 84.9 65.0 75.9 69.8 76.3 69.1 
Pop6 NA 54.7 63.0 84.0 62.3 73.7 67.6 73.6 70.6 
Pop7 NA 55.9 63.8 84.6 64.6 75.5 68.5 74.4 71.6 
Pop8 NA 55.7 65.9 86.0 65.5 77.8 69.8 76.0 73.1 
Pop9 NA 55.3 63.9 84.5 65.0 75.6 68.8 74.5 74.0 
Pop11 NA NA NA NA 63.6 71.6 66.8 71.3 67.9 
Pop12 NA 55.1 65.4 84.3 64.1 74.0 68.7 74.8 70.6 
Pop13 NA 55.6 63.3 82.5 64.7 72.5 67.5 71.6 69.9 
Pop14 NA 54.6 63.4 83.0 65.1 72.9 67.9 74.6 70.4 
Pop15 NA 55.4 63.2 83.2 65.2 73.9 70.3 73.6 71.3 
Pop16 NA 55.8 64.2 83.8 65.2 72.6 68.8 72.6 71.4 
Pop18 NA 55.1 64.4 82.7 64.2 73.7 68.8 74.6 68.3 
Pop19 NA 52.8 60.0 81.1 61.8 71.7 67.0 70.3 67.4 
Pop20 NA 54.3 63.8 82.9 63.8 73.4 69.0 73.4 68.0 
Pop21 NA 53.7 61.8 82.1 64.6 73.1 66.6 72.0 73.6 
Pop22 NA 52.0 60.7 81.5 63.3 71.3 65.8 70.7 70.6 
Pop23 NA 54.1 61.5 83.3 64.2 74.2 67.3 72.9 73.3 
Pop24 NA NA NA NA 63.5 70.6 63.9 70.5 65.5 
Pop25 NA 54.2 62.5 83.5 63.3 74.0 69.5 72.7 72.9 
Pop26 NA 54.3 63.8 83.7 63.5 73.9 68.1 73.0 72.1 

            days to silk 
  NC10 MO10 WL10 IA10 NC11 IA11 IN11 NY11 BLUE 

Pop1 NA 54.1 63.7 84.0 61.2 74.5 67.5 71.3 70.4 
Pop2 NA 54.4 65.0 86.2 64.4 77.8 70.0 73.4 78.6 
Pop3 NA 56.8 66.8 88.7 64.9 78.9 71.4 77.2 76.2 
Pop4 NA 57.1 67.7 89.4 65.4 80.4 69.3 77.1 74.6 
Pop5 NA 57.5 67.2 89.0 65.4 79.3 70.7 77.8 71.0 
Pop6 NA 56.4 66.0 87.9 62.2 76.8 68.8 75.2 72.9 
Pop7 NA 59.0 67.5 89.6 65.8 78.8 69.5 76.7 74.4 
Pop8 NA 58.2 68.8 90.9 66.5 81.4 70.9 78.3 76.0 
Pop9 NA 57.5 67.3 88.6 65.9 79.0 70.1 76.5 76.9 
Pop11 NA NA NA NA 64.0 74.1 68.8 72.3 69.5 
Pop12 NA 57.7 68.7 89.7 64.5 78.7 70.3 77.4 73.5 
Pop13 NA 57.5 66.4 87.0 65.7 75.9 69.1 72.9 72.8 
Pop14 NA 57.0 67.1 87.0 65.8 76.2 68.8 76.1 72.8 
Pop15 NA 57.1 65.7 86.4 65.5 76.0 70.8 75.0 73.0 
Pop16 NA 58.2 67.4 88.2 66.1 75.8 70.1 73.9 74.2 
Pop18 NA 58.2 67.9 87.9 64.9 79.5 70.4 77.0 71.1 
Pop19 NA 54.7 62.3 83.1 62.2 74.1 68.4 71.2 68.9 
Pop20 NA 56.3 67.1 87.2 64.3 76.9 70.6 75.5 70.4 
Pop21 NA 55.2 64.9 84.7 65.3 75.9 67.2 72.8 75.7 
Pop22 NA 53.3 63.4 83.5 63.6 73.9 66.9 72.2 72.3 
Pop23 NA 55.9 65.1 87.2 64.7 77.3 68.5 74.5 76.0 
Pop24 NA NA NA NA 64.2 72.7 64.9 72.0 66.8 
Pop25 NA 56.6 65.6 87.8 63.6 77.8 70.5 74.4 75.8 
Pop26 Na 56.7 66.5 87.5 64.0 76.3 69.9 74.8 74.5 
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Supplement table 3.1. Continue. 
  Plant height (cm) 
  NC10 MO10 WL10 IA10 NC11 IA11 IN11 NY11 BLUE 
Pop1 197.2 272.2 249.6 260.7 NA 229.1 267.6 266.6 247.1 
Pop2 208.9 276.4 249.1 263.5 242.1 239.6 261.5 252.7 253.4 
Pop3 213.1 280.4 259.1 249.5 252.7 256.2 253.1 246.8 253.1 
Pop4 186.3 277.5 247.1 257.0 247.3 255.7 266.8 223.3 244.8 
Pop5 205.7 280.1 243.9 249.0 246.4 249.0 276.2 245.4 253.3 
Pop6 225.8 264.9 258.2 258.9 266.8 258.5 277.2 235.9 258.9 
Pop7 223.7 263.3 257.8 252.8 242.4 251.4 287.7 240.4 254.7 
Pop8 206.3 272.5 261.9 262.8 254.1 258.5 282.0 240.3 252.6 
Pop9 221.2 270.7 253.3 262.0 236.5 243.9 279.3 243.4 254.9 
Pop11 NA NA NA NA 235.8 238.1 255.7 265.0 249.2 
Pop12 209.8 277.1 241.0 263.2 253.1 263.6 277.6 245.7 255.9 
Pop13 205.2 248.1 237.4 253.0 209.3 247.3 266.8 248.5 241.4 
Pop14 209.7 284.1 252.6 266.3 246.8 255.6 286.2 255.0 254.6 
Pop15 193.8 269.2 259.4 260.6 234.7 239.4 259.4 241.2 243.0 
Pop16 197.3 267.5 256.3 264.2 246.9 273.5 282.4 268.3 252.1 
Pop18 177.8 269.3 240.4 250.5 244.7 252.3 271.0 249.6 249.6 
Pop19 203.6 257.1 248.9 245.1 229.8 221.8 246.9 230.8 232.2 
Pop20 206.9 276.3 244.6 251.8 257.3 257.5 270.6 248.0 253.7 
Pop21 207.6 271.9 237.1 248.6 219.2 228.2 271.5 246.1 242.1 
Pop22 201.4 278.0 229.5 255.9 218.6 241.4 268.5 245.3 248.7 
Pop23 222.1 277.1 256.8 249.4 244.6 235.5 278.2 249.2 251.2 
Pop24 NA NA NA NA 219.7 221.3 261.4 240.2 243.5 
Pop25 216.8 284.0 266.4 259.8 266.8 270.1 278.1 265.8 258.8 
Pop26 198.0 270.2 248.0 256.0 246.8 244.1 277.9 234.7 251.1 

            Yield (T/ha) 
  NC10 MO10 WL10 IA10 NC11 IA11 IN11 NY11 BLUE 

Pop1 4.5 7.9 8.5 7.4 8.3 6.9 NA NA 7.0 
Pop2 5.2 6.1 8.6 6.7 7.4 5.5 NA NA 6.5 
Pop3 5.1 7.4 8.5 6.5 7.1 5.9 NA NA 6.7 
Pop4 4.6 6.3 8.5 5.8 6.8 5.4 NA NA 6.0 
Pop5 5.3 6.0 8.0 6.3 7.6 5.5 NA NA 6.3 
Pop6 4.6 6.5 8.3 6.9 8.0 6.7 NA NA 6.9 
Pop7 4.9 5.5 8.4 6.0 6.4 5.8 NA NA 6.0 
Pop8 5.1 6.5 7.9 4.9 6.2 4.9 NA NA 5.7 
Pop9 4.2 5.7 8.5 5.9 NA 5.0 NA NA 5.7 
Pop11 NA NA NA NA NA 6.4 NA NA NA 
Pop12 4.8 5.8 7.0 5.1 NA 5.3 NA NA 5.3 
Pop13 5.5 6.8 8.6 7.5 5.7 7.5 NA NA 6.8 
Pop14 4.6 6.5 7.8 6.9 NA 6.6 NA NA 6.7 
Pop15 4.7 6.0 9.1 7.5 6.4 6.9 NA NA 6.8 
Pop16 4.3 5.5 8.2 7.1 NA 7.2 NA NA 6.4 
Pop18 4.6 6.2 8.2 6.7 8.2 5.2 NA NA 6.4 
Pop19 3.9 7.5 8.2 7.8 6.7 6.7 NA NA 6.6 
Pop20 5.3 6.6 8.7 6.7 8.4 6.5 NA NA 7.2 
Pop21 5.4 7.3 8.5 7.1 NA 5.6 NA NA 6.6 
Pop22 4.7 6.9 8.4 8.0 6.0 6.6 NA NA 6.9 
Pop23 4.0 6.9 8.4 7.1 NA 5.6 NA NA 6.0 
Pop24 NA NA NA NA NA 5.6 NA NA NA 
Pop25 5.0 6.2 8.3 6.0 NA 6.1 NA NA 6.1 
Pop26 4.8 6.5 8.5 6.1 NA 6.2 NA NA 6.3 
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Supplement table 3.2. Average phenotypic values across environments for female inbreds, male inbred, 
hybrid, mid-parent heterosis, and best-parent heterosis. 

  Plant height (cm) 
  Female Inbred Male Inbred Hybrid Mid-parent  Best-Parent  
Pop1 173.0 171.0 247.1 75.1 74.0 
Pop2 166.1 171.0 253.4 84.8 82.4 
Pop3 170.0 171.0 253.1 82.6 82.1 
Pop4 167.4 171.0 244.8 75.6 73.8 
Pop5 176.1 171.0 253.3 79.8 77.2 
Pop6 165.3 171.0 258.9 90.7 87.9 
Pop7 187.7 171.0 254.7 75.3 67.0 
Pop8 188.4 171.0 252.6 72.7 64.1 
Pop9 182.9 171.0 254.9 78.0 72.0 
Pop11 178.3 171.0 249.2 74.5 70.9 
Pop12 168.7 171.0 255.9 86.0 84.9 
Pop13 158.8 171.0 241.4 76.5 70.4 
Pop14 180.3 171.0 254.6 78.9 74.3 
Pop15 179.9 171.0 243.0 67.5 63.1 
Pop16 184.2 171.0 252.1 74.5 67.9 
Pop18 173.3 171.0 249.6 77.4 76.3 
Pop19 155.1 171.0 232.2 69.1 61.2 
Pop20 155.0 171.0 253.7 90.6 82.7 
Pop21 157.3 171.0 242.1 78.0 71.1 
Pop22 174.3 171.0 248.7 76.0 74.3 
Pop23 167.1 171.0 251.2 82.2 80.2 
Pop24 145.7 171.0 243.5 85.1 72.5 
Pop25 190.3 171.0 258.8 78.2 68.6 
Pop26 169.0 171.0 251.1 81.1 80.1 

     

 
 

  Days to anthesis 
  Female Inbred Male Inbred Hybrid Mid-parent  Best-Parent  
Pop1 73.8 67.0 68.7 -1.8 -5.2 
Pop2 78.3 67.0 70.2 -2.4 -8.1 
Pop3 80.0 67.0 73.5 0.0 -6.5 
Pop4 80.2 67.0 71.9 -1.8 -8.3 
Pop5 80.1 67.0 69.1 -4.5 -11.1 
Pop6 78.2 67.0 70.6 -2.0 -7.7 
Pop7 78.0 67.0 71.6 -0.9 -6.4 
Pop8 82.1 67.0 73.1 -1.4 -9.0 
Pop9 79.0 67.0 74.0 0.7 -5.0 
Pop11 72.4 67.0 67.9 -1.8 -4.5 
Pop12 79.6 67.0 70.6 -2.7 -9.0 
Pop13 77.7 67.0 69.9 -2.4 -7.7 
Pop14 76.7 67.0 70.4 -1.7 -6.3 
Pop15 78.3 67.0 71.3 -1.3 -7.0 
Pop16 77.4 67.0 71.4 -0.8 -6.0 
Pop18 79.4 67.0 68.3 -4.9 -11.1 
Pop19 71.8 67.0 67.4 -2.1 -4.5 
Pop20 78.3 67.0 68.0 -4.7 -10.3 
Pop21 76.0 67.0 73.6 2.1 -2.4 
Pop22 73.2 67.0 70.6 0.4 -2.6 
Pop23 76.8 67.0 73.3 1.1 -3.5 
Pop24 70.9 67.0 65.5 -3.7 -5.4 
Pop25 77.3 67.0 72.9 0.8 -4.4 
Pop26 78.3 67.0 72.1 -0.6 -6.2 
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  Days to silk 
  Female Inbred Male Inbred Hybrid Mid-parent  Best-Parent  
Pop1 76.0 72.0 70.4 -3.6 -5.6 
Pop2 78.6 72.0 71.8 -3.5 -6.8 
Pop3 82.0 72.0 76.2 -0.8 -5.8 
Pop4 82.0 72.0 74.6 -2.4 -7.4 
Pop5 81.9 72.0 71.0 -6.0 -10.9 
Pop6 79.6 72.0 72.9 -2.9 -6.7 
Pop7 80.3 72.0 74.4 -1.7 -5.8 
Pop8 83.8 72.0 76.0 -1.9 -7.8 
Pop9 81.0 72.0 76.9 0.4 -4.1 
Pop11 74.0 72.0 69.5 -3.5 -4.6 
Pop12 82.4 72.0 73.5 -3.7 -8.9 
Pop13 80.0 72.0 72.8 -3.2 -7.2 
Pop14 78.8 72.0 72.8 -2.6 -6.0 
Pop15 79.5 72.0 73.0 -2.8 -6.5 
Pop16 78.9 72.0 74.2 -1.2 -4.7 
Pop18 82.1 72.0 71.1 -5.9 -10.9 
Pop19 72.5 72.0 68.9 -3.4 -3.9 
Pop20 80.3 72.0 70.4 -5.7 -9.9 
Pop21 77.7 72.0 75.7 0.8 -2.1 
Pop22 74.4 72.0 72.3 -0.9 -2.1 
Pop23 79.2 72.0 75.9 0.3 -3.3 
Pop24 72.4 72.0 66.8 -5.4 -6.2 
Pop25 79.9 72.0 75.8 -0.2 -4.2 
Pop26 81.3 72.0 74.5 -2.1 -6.8 
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Supplement table 3.3. T-test for recombination rate at QTL intervals for respective trait. 
    Plant height (cm) 
    Inbred Hybrid Best-parent  Mid-parent 

Plant Height 

Inbred 1.000       
Hybrid 0.878 1.000     
Best-parent 0.301 0.332 1.000   
Mid-parent 0.328 0.350 0.868 1.000 

Days to anthesis 

Inbred 0.764 0.676 0.262 0.298 
Hybrid 0.506 0.462 0.212 0.254 
Best-parent 0.060 0.104 0.145 0.200 
Mid-parent 0.996 0.927 0.345 0.348 

Days to silk 

Inbred 0.488 0.624 0.438 0.429 
Hybrid 0.617 0.558 0.236 0.276 
Best-parent 0.199 0.215 0.793 0.955 
Mid-parent NA NA NA NA 

    Days to anthesis 
    Inbred Hybrid Best-parent  Mid-parent 

Plant Height 

Inbred         
Hybrid         
Best-parent         
Mid-parent         

Days to anthesis 

Inbred 1.000       
Hybrid 0.638 1.000     
Best-parent 0.054 0.513 1.000   
Mid-parent 0.893 0.706 0.517 1.000 

Days to silk 

Inbred 0.322 0.237 0.029 0.692 
Hybrid 0.790 0.825 0.283 0.797 
Best-parent 0.178 0.145 0.115 0.229 
Mid-parent NA NA NA NA 

    Days to silk 
    Inbred Hybrid Best-parent Mid-parent 

Plant Height 

Inbred         
Hybrid         
Best-parent         
Mid-parent         

Days to anthesis 

Inbred         
Hybrid         
Best-parent         
Mid-parent         

Days to silk 

Inbred 1.000       
Hybrid 0.275 1.000     
Best-parent 0.282 0.161 1.000   
Mid-parent NA NA NA NA 
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CHAPTER 4 

GENETIC ANALYSIS OF LODGING IN DIVERSE MAIZE HYBRIDS 

 

ABSTRACT 
 

Damage caused by lodging is a significant problem in corn production that results in 

an estimated annual yield loss of 5-20%. Over the past 100 years, substantial maize 

breeding efforts have increased lodging resistance by artificial selection. However, 

less research has focused on understanding the genetic architecture underlying 

lodging. Lodging is a problematic trait to evaluate since it is greatly influenced by 

environmental factors such as wind, rain, and insect infestation, which make 

replication difficult. In this study over 1,723 diverse inbred maize genotypes were 

crossed to a common tester and evaluated in five environments over multiple years. 

Natural lodging due to severe weather conditions occurred in all five environments. 

By testing a large population of maize diversity in multiple field environments, we 

detected significant correlations for this highly environmentally influenced trait across 

genotypes grown in multiple environments and with other important agronomic traits 

such as yield and plant height. This study also permitted mapping, and the 

identification of QTL for lodging. A number of identified QTL overlapped with QTL 

previously mapped for stalk strength using nearly the same maize diversity measured 

in an inbred state. QTL intervals mapped in this study also overlapped candidate genes 

in the lignin and cellulose pathways.  
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INTRODUCTION 

 
An important criterion necessary when advancing genotypes in modern maize 

breeding programs is that they are machine-harvestable, i.e. resistant to lodging. 

Lodging is a combination of a plant’s inability to keep an upright position and weather 

conditions, such as rain and wind. Often, lodging is classified into occurring at the 

stalk and occurring at the root [1]. Extensive breeding efforts have been made to 

develop lines with increased lodging resistance [2]. However, due to higher planting 

densities, higher soil fertility levels, and ever changing environmental factors, lodging 

remains an important criterion in maize improvement. Lodging is a major problem in 

corn production causing harvest difficulties and resulting in annual yield losses of 5 to 

20% [3–5]. 

During a plant's growing stage (V5-V8 and V12-R1), the rapid growth of the 

internodes weakens the cell walls increasing the probability for the stalk to break when 

exposed to strong winds [6]. When the plant has reached mature height stalk lodging 

risks are moderate as lignin and other structural material strengthen the cell walls and 

the stalk [7]. Stalk lodging can also occur later in the season near harvest when the ear 

is fully developed and heavier and the stalk cannot support it. The weakness of the 

stalk later in the season is affected by insect infestation (i.e. European corn borer, 

Ostrinia nubilalis Hubner), and stalk rot. In both cases stalk breakage occurs at the 

node below or above the primary ear, and most often results in no or very low yield, 

due to loss of the ear or lack of photosynthetic surface area [6].  
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Root lodging in maize is affected by root characteristics including the number 

of roots on upper internodes, total root volume, root angle from vertical, and diameter 

of roots [8]. With a weakened root system the plant is prone to wind damage resulting 

in snapping or buckling of the stalk at the base of the plant, or roots being pulled out 

of the soil. The risk for root lodging is highest during the mid-vegetative stage before 

brace roots are fully developed [8]. Root lodging early in the season is not devastating 

since plants can regain upright growing pattern due to its plasticity within a week with 

no negative effect on yield. This is not the case after the plant has reached full 

maturity [9].  

Evaluating genotypes for lodging is a complex process, given the influences of 

environmental factors that are not easy to control or replicate. One method useful for 

stalk lodging is stalk crushing. The disadvantages to stalk crushing are its destructive 

nature and that it is time and labor expensive [10]. Stalk crushing is highly correlated 

with rind puncture resistance (RPR) [11]. RPR measures the kilograms of force 

required to penetrate the stalk rind using a spike connected to a force gauge [12]. A 

third strategy implemented to indirectly select for stalk lodging is stalk water content. 

It is an indicator of stay-green, which is a sign of increased photosynthetic activity in 

older vegetative parts [11]. Lastly, the use of near infrared (NIR) analysis is being 

used to measure cellulose and lignin [13]. 

Root lodging is most often evaluated as the proportion of lodged plants per plot. A 

plant is considered to be root lodged when it is tilting >30° (e.g. [14,15]). Alternative 

ways to phenotype susceptibility to root lodging is by vertical-pull resistance [8], 

measure of root volume by water replacement, or recording weight of the root clump 
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[16]. To evaluate both stalk and root lodging under controlled wind conditions DuPont 

Pioneer has developed a mobile wind machine that can generate winds up to 100 mph 

[17]. 

Given the apparent relationships between lodging and traits such as stay-green, 

it is a concern that selection for improved stalk strength may cause undesirable 

indirect selection on other agronomic traits. Relationships between stalk strength and 

other agronomic traits are unclear based on existing literature. Selection for increased 

RPR has reduced stalk lodging [18–20]. However, there exist disadvantages to 

selecting genotypes with increased rind thickness and higher stalk lodging resistance. 

Thicker rinds may divert limited carbohydrates from kernel fill. This has the potential 

to result in lower yields [21]. Studies have reported a negative correlation between 

increased stalk strength resistance and decrease in grain yield [22,23]. To the contrary, 

Colbert et al. (1984) [24] found a significant positive relationship, while still other 

studies have observed no significant correlation between increases in stalk strength 

and other morphological traits [11]. This suggests the relationships observed among 

traits may be strongly dependent upon both the germplasm surveyed and the 

environment in which it was observed. 

A number of studies have been performed to better understand the genetic 

architecture underlying lodging. Stalk strength has for example been evaluated as 

RPR, NIR and mechanical strength and genetically mapped. Overall, these findings 

suggest stalk strength is a highly complex trait controlled by a large number of alleles, 

each with small effects, and loci are not necessarily shared among different 

populations [4,6,12,13,25]. 



 

88 

Few QTL have been mapped for root lodging. One of the QTL identified to control 

root lodging is the root-ABA1 QTL on chromosome 2 [14]. Moreover, QTL have 

been mapped for a number of root traits correlated with root lodging (e.g. [26]). One 

explanation for the few studies to identify QTL can be the difficulties to evaluate the 

trait and to replicate experiments in multiple locations. 

Lignin and cellulose content has been shown to influence stalk strength. Lignin 

influences stalk strength and stiffness [7], but also root lodging due to the function of 

lignin in cell elongation [9]. Lignin is structures like xylem (transport for water), 

sclerenchyman and bundle sheath cells. Natural variation in lignin has close to no 

influence on the phenotype [7]. However, the brown midrib genes (bm1 and bm3) alter 

the lignin composition resulting in weaker stalks [27]. These genes encode cinnamyl 

alcohol dehydrogenease (CAD) and a caffeic O-methyl transferase (COMT) [28]. 

Cellulose is located in the vascular bundles and is referred to as the rind. A number of 

the CesA genes in the cellulous pathway are involved in secondary wall formation, 

leading to stronger stalks [29].   

In this study we examined hybrids from crosses of recombinant inbred lines 

(RILs) of the NAM population [30] to the male tester, PHZ51. These hybrids were 

grown in five different field environments and their progenitors were genotyped. All 

five fields were naturally exposed to unique environmental factors and each possessed 

substantial variation for lodging damage among its genotypes. To relate this lodging 

variation to genetic diversity, we employed joint linkage mapping. Range of QTL 

were identified for lodging, some that overlapped with previously identified loci for 

lodging, but also a number of new QTL. 
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MATERIAL AND METHOD 

 
Germplasm 

In this study we used hybrids of the maize nested association mapping (NAM) 

population developed by the Genetic Architecture of Maize and Teosinte Project 

consortium [30] crossed to the male tester PHZ51. NAM was created by selecting 25 

inbreds to maximize diversity, and crossing them to the reference inbred, B73. From 

each of the 25 subfamilies, 200 progeny were chosen self pollinated for five 

generations and subsequently sib-mated. This resulted in a mapping population of 

about 5,000 RILs. From these RILs, we selected a subset of 60-70 lines of each 

subfamily (except the popcorn subfamily Hp301) and created hybrids by crossing to 

the male tester PHZ51, the non-stiff stalk line developed by DuPont Pioneer with an 

expired Plant Variety Protection (ex-PVP). The selection of the subset of NAM female 

inbreds for hybrid development was based upon flowering time. The earliest RILs 

from the late families and the latest RILs from the early families were selected to 

reduce flowering time variation and make hybrid production by isolation plots 

manageable. 

 

Phenotypic Evaluation 

Hybrids were grown and evaluated in Sandhills NC, Bradford MO, West Lafayette IN, 

and Slater IA in the summer of 2010, as well as Kinston NC, Bradford MO, West 

Lafayette IN, and Ames IA in the summer of 2011. All environments were cultivated 

in a conventional manner with respect to fertilization, weed, and pest management. 
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Hybrids were planted in two-row plots with a single replication per environment. The 

experiments were blocked by subfamily to avoid competition for space and light 

interception resulting from variation in height. Hybrids were randomized within 

blocks, and blocks were randomized within environments.  

All phenotypic data were collected on a plot basis. Days from planting until 

half the plants in a plot shed pollen or had a visible silk was used as the criterion to 

measure days to anthesis and days to silk, respectively. All other traits were measured 

at full maturity after flowering. Plant height was measured as the distance from the 

soil line to the base of the flag leaf, and ear height as the distance from the soil line to 

the node of the primary ear. Leaf length and width was measure as the maximum 

length and width of the leaf below the primary ear. Numbers of nodes was divided into 

the number of nodes from the soil line to the node of the primary ear, and from the 

node above the primary ear to the tassel. Root lodging was determined as the fraction 

of lodged plants within a plot. A plant was determined as lodged when a tilt of 30 

degree or greater was observed. Stalk lodging was measured as the proportion of 

plants in a plot with a broken stalk. Yield was measured using a two-row combine and 

moisture was measured automated on the combine. Yield was then adjusted to 15.5% 

moisture content and expressed in tons per hectare.  

 

Genotypic Evaluation 

Genotypic data for joint linkage mapping was collected as previously described 

[30,31]. In total, 1,106 markers were scored on an Illumina GoldenGate Assay across 

the NAM RILs.   
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The NAM RILs were genotyped at low coverage at about 80% using the GBS 

platform [32]. As a result of the relatively low coverage, about 60% of the data for 

individual markers was missing and about 80% of the heterozygous loci were called as 

homozygotes. An HMM algorithm was used to correct the heterozygote calls to about 

99.8% accuracy [33]. Following, a set of markers to be used in fitting a regression 

model was imputed from the GBS data at 0.2 cM intervals based on flanking markers. 

The marker values identified the parent of origin, with B73 coded as 0 and the non-

B73 parent coded as 2. Heterozygous loci were coded as 1. For the imputed sites, if 

the flanking markers were identical, the site was set to that value. If the flanking 

markers were not identical, an interpolated value was used based on the relative 

distance from each of the flanking markers. The 7,389 imputed marker intervals were 

used to estimate marker effects across the genome using ridge regression.  

 

Statistical Analysis 

Statistical analyses were performed using SAS [34] software, and R [35] scripts and 

libraries. Best Linear Unbiased Estimations (BLUEs) for all phenotypes across 

environments were calculated as LSmeans with range position as fixed effect for each 

genotype within block using SAS software.  

After deriving BLUE, the base package in R was used to calculate Pearson 

correlation coefficients and to study relationships between phenotypes at the genotypic 

level across and within both environments and NAM families. 

To better characterize genetic architecture, joint linkage mapping of BLUEs 

across and within environments was performed using proc GLMSelect in SAS. After 
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adjusting for differences between NAM subfamily, an imputed set of 1,106 markers 

were nested within each NAM subfamily and regressed against BLUEs for each of the 

phenotypes across and within environments in a stepwise manner, as described in 

Buckler et al. (2009) [31]. For the stepwise procedure, model inclusion and exclusion 

of family nested markers were discerned by comparison with a null distribution based 

on permutation testing. The p-value derived from the null distribution for model 

inclusion was 0.001 at an alpha level of 0.05. Joint linkage mapping was performed 

with both including and excluding flowering time in the model.  

To assess our ability to predict breeding values from all assayed genetic 

diversity, we performed genomic prediction by ridge regression BLUP in R using the 

rrBLUP package [36]. Genomic relationship matrices were calculated using 7,389 

marker intervals for the NAM population. To calculate genomic estimated breeding 

values (GEBVs) for each phenotype, genetic matrices were regressed against each 

phenotypic BLUE. Accuracy of the prediction was determined by Pearson correlation 

of the predicted GEBVs and the observed breeding values. This was accomplished by 

fitting all genotypes into a ridge regression model. To assess overfitting and the 

robustness of the modeling approach, the population was randomly divided into five 

mutually exclusive subpopulations (five folds), and one of the subpopulations was 

excluded and the other four were used to construct a model which was then fitted to all 

the subpopulations. Accuracy of the prediction was averaged across the five folds. 

This process was repeated with 20 different random partitions of 5 subpopulations for 

each trait. This allowed us to more robustly estimate the average prediction accuracy. 
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RESULTS 

 
Phenotypic evaluation 

In this study we examined five natural occurring lodging events by evaluating the 

same hybrid NAM population in five unique field environments. Due to weather 

conditions, environments possessed substantial variation for root and stalk lodging 

(Table 4.1). In 2010, Bradford MO and Slater IA environments underwent lodging at 

flowering. That same year, the Sandhills NC environment lodged after flowering. In 

2011, the Bradford MO environment underwent lodging early in the season, before 

flowering and West Lafayette IN lodged late in the season after flowering. In analyses 

detailing lodging conditional on flowering stage, phenotypes from Bradford MO and 

Slater IA in 2010 were grouped to define lodging occurring at flowering. Using the 

same principal, data from Sandhills NC in 2010 and West Lafayette IN in 2011 were 

grouped to detail lodging occurring after flowering. 

Table 4.1. Date of planting and storm events, and information on weather conditions (Steremberg 
2012). As well as, percent of plots per environment damaged by lodging. GDDs are calculated with a 
base temperature of 10 C. 

  IA10 IN11 MO10 MO11 NC10 

planting date 4/22/10 5/10/11 5/27/10 5/10/11 4/21/10 

date of lodging 7/18/10 8/13/11 7/18/10 7/3/11 late season 

GDD 830 1291 785 651 NA 

mean temp 75 F 76 F 80 F 78 F NA 

precipitation 0.50 in 0.84 in 1.02 in 1.29 in NA 

max gust speed 71 mph 59 mph 57.5 mph 52 mph NA 

% damaged plots root 96 78 75 6 7 

% damaged plots stalk  11 87 67 99 83 

% damaged plots total 96 98 91 99 85 

% damaged plants root  21 11 18 0.2 12 

% damaged plants stalk  0.6 48 10 41 0.3 

% damaged plants total 21 59 28 41 13 
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All five environments experienced substantial proportion of lodging (Table 4.1). From 

85-99 percent of the plots in the five environments had one or more plants lodged. In 

the MO11 environment, which was damaged by a storm early in the season, the 

majority of the lodging was stalk lodging. The same pattern was observed in the NC10 

environment. IA10 on the other hand had a high proportion of root lodging and low 

proportion of stalk lodging. MO10 and IN11 had relative high percent of both root 

lodging.  

 

Trait correlations:  

Both root and stalk lodging are highly influenced by environmental factors such as 

weather conditions, especially wind and water. Correlations of root lodging among the 

five locations were strongest, 0.31, between the environments IA10 and MO10 (Figure 

4.1). The WL11 environment shows correlation with MO10 and IA10. The NC10 

environment that was exposed to late season lodging shows negative correlation for 

root lodging with the other four environments. Overall this environment did not 

possess much root lodging, since the probability for root lodging to occur is higher 

earlier in the growing season. For stalk lodging, the strongest correlations are found 

between IA10 and MO10 (0.17), NC10 and WL11 (0.25), as well as MO11 and WL11 

(0.21). All correlations were statistically significant (p-value = <0.0001). For total 

lodging the two highest correlations are between MO10 and IA10, and MO11 and 

WL11. MO10 and IA10 are locations that were exposed to severe weather conditions 

at the same date, and at the around the same stage of development.   

 



 

95 

 

!""#$"%&'()*+, !""#$"%&'-.*+, !""#$"%&'/0*+, !""#$"%&'1$**, !""#$"%&'()**,
!""#$"%&'()*+, '''''''''''''''', +23*, '+2+4, +2*5, +2+4,
!""#$"%&'-.*+, 6+2+++*, '''''''''''''''', '+2+7, +243, +2++,
!""#$"%&'/0*+, +285+4, +24*9+, '''''''''''''''', '+2+:, '+2+*,
!""#$"%&'1$**, 6+2+++*, 6+2+++*, +2+874, '''''''''''''''', +2+8,
!""#$"%&'()**, +275;3, +2;8:+, +25:97, +2+8;5, '''''''''''''''',

<#=>?$"%&'()*+, <#=>?$"%&'-.*+, <#=>?$"%&'/0*+, <#=>?$"%&'1$**, <#=>?$"%&'()**,
<#=>?$"%&'()*+, '''''''''''''''', +2*9, +2++, +2+3, '+2+8,
<#=>?$"%&'-.*+, 6+2+++*, '''''''''''''''', '+2+9, +2+4, '+2+4,
<#=>?$"%&'/0*+, +2;:*8, +237*+, '''''''''''''''', +248, +2+9,
<#=>?$"%&'1$**, +24;8+, +2:884, 6+2+++*, '''''''''''''''', +24*,
<#=>?$"%&'()**, +2*3+3, +275:8, +2+*9, 6+2+++*, '''''''''''''''',

@"#=>$"%&'()*+, @"#=>$"%&'-.*+, @"#=>$"%&'/0*+, @"#=>$"%&'1$**, @"#=>$"%&'()**,
@"#=>$"%&'()*+, '''''''''''''''', +245, +2+5, +2*:, +2++,
@"#=>$"%&'-.*+, 6+2+++*, '''''''''''''''', +2+:, +2*9, +2+;,
@"#=>$"%&'/0*+, +2++9;, +2+94+, '''''''''''''''', +24+, +2+5,
@"#=>$"%&'1$**, 6+2+++*, 6+2+++*, 6+2+++*, '''''''''''''''', +24*,
@"#=>$"%&'()**, +2;3;7, +2++::, +2++93, 6+2+++*, '''''''''''''''',  

Figure 4.1. Correlation between root lodging, stalk lodging, and total lodging across the five 
environments. Upper right half of the tables report r-value and lower left half reports p-values. Coloring 
indicates direction of the correlation where bright red = 1 and dark blue = -1.  
 

Environments were grouped by the time of lodging with respect to flowering time, i.e., 

if the lodging event occurred before, at, or after time of flowering. The middle 

environments where lodging occurred at flowering (MO10 and IA10), and late 

environments where lodging occurred after flowering (NC10 and WL11) showed the 

expected patterns of correlation. High correlations were observed between flowering 

traits (days to silk and days to anthesis), and plant and ear height. For the middle 

environments, negative correlation between the traits and yield, especially the lodging 

traits, those have a higher negative correlation (Figure 4.2).  
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Figure 4.2. Correlations between the three lodging traits and other developmental traits measured in the 
middle environments, where lodging occurred at flowering. Upper right half of the table reports r-value 
and lower left half reports p-values. Coloring indicates direction of the correlation where bright red = 1 
and dark blue = -1.  
 

The negative correlation between the lodging traits and yield can also been seen in the 

late environments (Figure 4.3). For the environments with a lodging event later in the 

season, there is also high correlation between the lodging traits and plant and ear 

height.  
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Figure 4.3. Correlations between the three lodging traits and other developmental traits measured in the 
late environments, where lodging occurred after flowering. Upper right half of the table reports r-value 
and lower left half reports p-values. Coloring indicates direction of the correlation where bright red = 1 
and dark blue = -1.  
 

Genotypes within single environments were grouped by percentage of lodging 

damage. The larger proportion of damaged plants results in lower average yield among 

the grouped genotypes (Table 4.2). Genotypes with both low and high level of 

resistance to lodging have the ability to high yields in good season environments 
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(Figure 4.4). Correlation between percentage of total lodging and yield was -0.10 with 

a p-value of 0.0009.  

Table 4.2. Average yield in T/ha of genotypes grouped  
according to percentage of lodging damage per plot for  
individual environments.  

  Average yield 
Percent 
Lodging MO10 IA10 NC10 

0 - 10 6.65 6.72 4.82 

11 - 20 6.01 6.50 4.51 

21 - 30  5.34 5.96 4.27 

31 - 40 4.04 6.07 3.73 

41 - 50 1.30 5.90 3.57 

51 - 60 1.12 4.48 3.13 

61 - 70 0.00 1.96 1.81 

71 - 80 0.00 Na 2.22 

81 - 90 0.00 1.86 1.79 

91 - 100 0.00 0.00 0.00 
 

 
Figure 4. Total percentage of lodging from the five  
damaged environments regressed again yield evaluated  
in the three environments without significant lodging damage.  
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Joint linkage mapping 

We performed joint linkage mapping for root lodging, stalk lodging, and total lodging 

using the 1,106 markers on the NAM map. Analyses were done for the grouped 

environments, middle and late, as well as for each single environment. Most of the 

QTL mapped within individual environments were shared across the grouped 

environments. For the two grouped environments, four QTL for stalk lodging, ten 

QTL for root lodging, and nine QTL for total lodging were identified (Figure 4.5, 

supplemental table 4.1). Joint linkage mapping was performed both excluding and 

including flowering time to account for stage of maturity at the time of the lodging 

event. Including flowering time in the model did not have a significant effect on the 

result of mapped QTL (data not shown).  

1 10 9 8 7 6 5 4 3 2 

Root lodging – middle environment 
Stalk lodging – middle environment 
Total lodging – middle environment 
Root lodging – late environment 
Stalk lodging – late environment 
Total lodging – late environment 

* 

* 
* 

* 

* 

* 

* 

 
Figure 4.5. Distribution of QTL mapped using joint linkage mapping across the ten chromosomes. * 
indicates QTL intervals overlapping with results from stalk strength study in the NAM inbred 
population. Squares indicate QTL overlapping with candidate genes.   
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Genomic prediction 

Genomic prediction using ridge regression was performed across the NAM population 

for both single environments and across grouped environments. For the middle and 

late environments we were able to predict the phenotype using all available data with 

an accuracy of 0.35-0.51 (Table 4.3). When randomly excluding a fifth of the 

phenotypic data and repeating this 20 times, the average accuracy decreases for each 

environment.  

Table 4.3. Prediction accuracy for stalk lodging, root lodging, and total lodging within the early, middle 
and late environment. Top table presents accuracies calculated using all phenotypes into the model. 
Bottom table presents accuracies calculated with a five-fold cross validation.   

Accuracy across all NAM using all genotypes in estimation set 

  Early (1 env) Middle (2 env) Late (2 env) 

Stalk lodging 0.34 0.41 0.40 

Root lodging 0.19 0.51 0.35 

Total lodging 0.33 0.50 0.37 

        

Accuracy across populations using 5-fold cross validation 

  Early (1 env) Middle (2 env) Late (2 env) 

Stalk lodging 0.12 0.16 0.17 

Root lodging -0.06 0.34 0.14 

Total lodging 0.12 0.33 0.16 
 

 

DISCUSSION 

 
Based on phenotypic data from five unique environments with natural lodging events 

we observed negative correlation between lodging traits and yield (Figure 4.2 and 4.3). 

It was also noticed that the higher proportion of damage the lower the yield (Table 

4.2). A number of the genotypes with higher resistance perform more poorly than the 

susceptible genotypes in good seasons (Figure 4.4). This argues for a trade off 
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between breeding for higher yield or more resistant lines. It has been a concern for 

many years that breeding for lodging resistance by increased stalk strength will result 

in decreases in yield [22]. This reasoning is based on the sink-source relationship of 

available carbon in the plant. That is, if more carbon is used for stronger stalks there is 

less available carbon left overall in the plant for grain fill, which occurs later in the 

season [21]. 

In addition, in this study genotypes with less than 10 percent of the plot 

damaged had on average a lower yield than the corresponding genotypes evaluated in 

the environments with no significant damage. This suggests that damage related to 

lodging events can be much more than just the breakage of the plants, such as insect 

and pathogen infestation, interruption in xylem and phloem and, unbalance in carbon 

relocation. Proposing that a resistant line is higher yielding than a susceptible line in a 

damaged field, but this is not always true in a good season environment. Studies have 

to be performed to further investigate this relationship.    

For the environments with late season lodging events, correlation between 

plant and ear height and lodging traits were observed (Figure 4.3). Similar relationship 

between height and lodging has been reported in previous studies (e.g. [4,25,37]). It is 

basic physics that higher ear placement and heavier ear in the late season in 

combination with either weaker roots or stalk will more likely result in lodging, 

compared to shorter plants with lower ear placement. In addition, there is a 

relationship between total plant height and yield [2] based on taller plants that have in 

general more biomass and thereby higher photosynthetic rate and more carbon fixation 
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that can be relocated to the ear as grain yield. Subsequently, it is not as simple to 

exclusively breed for shorter genotypes to avoid lodging.  

In this study QTL for root, stalk, and total lodging were identified 

(Supplemental table 4.1). A smaller number of QTL were identified than previously 

mapped for stalk strength using RPR in the full set of NAM inbreds [12]. The inbred 

study identified 73 QTL clusters. The main reason for this is most like the difference 

in population size. This study only used about a third of the lines compared to the 

5,000 RIL in the NAM population. Second, the traits in this study are caused by 

environmental conditions, which makes it more difficult to evaluate and replicate. 

Overall, it is suggested that the traits are controlled by a large number of loci with 

small effects. It is likely that we were only able to identify the QTL with the larger 

effects. However, we believe our results are robust.  

Seven of the QTL mapped in this study are located in the same marker 

intervals on the NAM map as QTL identified by using RPR [12]. A large number of 

studies of lodging and stalk strength have been performed over time. We compared 

our results with a few of these studies representing different phenotyping strategies. 

Peiffer et al. (2012) measured stalk strength using RPR in the inbred population that 

was used as female in hybrid development for this study. Flint-Garcia et al. (2003) are 

two of the most extensive studies of stalk strength in maize using RPR. Ching et al. 

(2010) measured stalk strength using mechanical force, and Hu et al. (2012) used RPR 

and NIR.  Overall, our results overlap with these previous studies (Table 4.4) 

[4,6,13,25]. In addition, the QTL for root lodging on chromosome 2 (97.2 – 98.9 cM) 
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is located in the same bin, 2.04, as the root-ABA QTL that has been mapped to 

influence root lodging [14]. 

Table 4.4. Mapped QTL and overlapping intervals with other lodging studies. 
Trait Chr cM 

start 
cM 
end 

Peiffer et 
al. 2012 

Ching et al. 
2010 

Flint-Garcia 
et al. 2003a 

Flint-Garcia 
et al. 2003b 

Hu et al. 
2012 

Root (late) 1 94.9 96.5     x     
Root / Total 
(middle) 1 175.7 176.9 x x     x 

Total (middle) 2 41.5 41.8 x         

Root (middle) 2 54.9 56.8           

Root (middle) 2 72.1 72.1         x 
Root (late) / 
Total (middle) 2 97.5 98.9  x    x     

Root (late) 4 93.2 93.2           

Stalk (middle) 5 10.1 10.9           

Stalk (middle) 6 41.5 42.1 x         

Root (late) 6 43.4 43.7 x         
Root / Total 
(middle) 6 101 106.6 x     x x 
Root / Total 
(middle) 7 69.8 69.8           

Stalk (late) 9 44.5 45.2           

Stalk (middle) 9 47 47.2           

Total (late) 9 89.8 93.5       x   

Root (late)  10 40.1 40.6 x     x   

Total (late) 10 43.4 43.8       x   

Total (late)  10 44.7 44.8       x   

 
A list of 80 genes known to be involved in lignin synthesis, phenylpropanoid pathway, 

vegetative phase change and cellulose were compiled (Supplemental table 4.2). This 

list was compared to the mapped QTL in this study. Eleven of the 80 genes are located 

within 3 Mb from a lodging QTL. Six of the genes are located on chromosome 2, one 

on chromosome 4, two genes on chromosome 7, and two genes on chromosome 9. 

Four of the genes are involved in the lignin synthesis, one in the phenylpropanoid 

pathway, two are involved in the vegetative phase change, and three genes are in the 

cellulose synthesis pathway. 
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Using a very diverse population we predicted GEBVs for lodging with an 

accuracy of approximately 0.30 with a five-fold cross-validation (Table 4.3). This is a 

reasonable value considering the model is trained on data from only two 

environments. A prediction accuracy of 0.33 for total lodging in the middle 

environments is a good start of model development to predict lodging in maize. 

Particularly, considering that lodging is a highly environmentally impacted trait that 

was evaluated under multiple locations and years.  

Since lodging is complex, both genetically and to evaluate, yet a highly valued 

trait, genomic prediction is believed to be very useful in breeding programs. Genomic 

prediction [38] allows selection from larger pools of diversity with reduced 

expenditure of phenotyping resources and field space. This will permit more rapid 

gains than would otherwise be feasible if the accuracy of selection were limited only 

to phenotyped individuals. Other industry studies in maize with data from a 

significantly larger number of more environments evaluating mostly bi-parental 

crosses of corn belt dent material have reported prediction accuracies for lodging of as 

high as 0.70 [39,40]. Hence, there is potential using genomic prediction in breeding 

programs to improve lodging traits in maize.   

Here we have performed one of the largest studies in the public sector of 

natural lodging of diverse hybrids grown in five different environments. The diverse 

population and the greater LD decay have permitted mapping of QTL for root, stalk, 

and total lodging. A number of identified QTL overlap with previous studies on stalk 

strength. In addition, candidate genes influencing stalk and root composition are 
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located in the intervals. This study has given us a better understanding of natural 

lodging in maize, and a good beginning for genomic prediction of lodging.   
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SUPPLEMENTAL MATERIAL 
 
Supplement table 4.1. Positions of QTL identified by joint linkage mapping for root, stalk and total lodging in middle and late environments.  

  middle environments late environments 
trait Root Root Root  Root Root Root Root Root Root Root 
Chr 1 2 2 6 7 1 2 4 6 10 
cM start 175.7 54.9 72.1 101 69.8 94.9 97.5 93.2 43.4 40.1 
cM end 176.9 56.8 72.1 106.6 69.8 96.5 98.9 93.2 43.7 40.6 
RefGen2 start 281,709,021 22,275,514 51,816,033 164,891,527 134,099,896 175,642,801 189,447,059 181,223,123 118,087,791 84,096,310 
RefGen2 end 282,796,367 22,999,224 51,820,222 166,592,347 134,137,353 179,989,018 190,159,942 181,229,893 118,604,616 86,424,768 
F value 4.79 20.74 2.8 3.71 2.3 2.37 2.74 2.29 2.42 2.44 
P-value <0.0001 <0.0001 <0.0001 <0.0001 0.0006 0.0002 <0.0001 0.0004 0.0002 0.0001 
Effect Pop1 -1.52 -0.22 2.13 -1.12 -1.05 -1.57 -1.87 1.63 2.33 0.78 
Effect Pop2 5.10 13.36 2.81 8.39 -4.87 1.52 0.15 4.05 -0.29 -0.89 
Effect Pop3 -0.63 0.85 -0.03 0.06 -2.42 -2.12 -1.80 -0.23 -0.63 -2.58 
Effect Pop4 2.39 7.48 -1.26 2.31 -0.32 1.57 4.06 -2.43 5.74 -1.18 
Effect Pop5 -0.37 0.18 -0.96 0.37 -0.38 -5.92 1.05 2.23 2.52 -4.02 
Effect Pop6 -0.59 -0.90 0.60 4.45 -2.78 0.94 0.55 -1.99 1.00 -1.18 
Effect Pop7 2.34 3.49 1.05 0.95 2.66 1.64 -0.86 1.13 1.19 0.98 
Effect Pop8 10.40 5.21 2.31 2.52 -4.18 -0.85 -0.39 0.58 -0.39 4.79 
Effect Pop9 6.50 0.22 2.71 7.31 -0.17 -0.01 3.09 -3.47 0.85 -1.88 
Effect Pop11 - - - - - 1.08 9.31 -2.15 -3.88 2.74 
Effect Pop12 2.98 5.37 2.61 2.44 -6.00 0.15 -1.47 0.08 -0.37 -2.94 
Effect Pop13 -0.10 -1.08 2.50 1.59 -1.36 -2.33 3.09 -1.04 4.87 -4.64 
Effect Pop14 -1.38 -0.27 3.70 0.08 -0.71 1.97 -0.38 -2.03 3.11 -4.67 
Effect Pop15 2.12 -0.35 6.58 5.69 -4.82 2.19 2.72 3.13 -0.39 3.31 
Effect Pop16 2.01 0.58 1.66 1.79 2.07 0.02 -1.97 -1.38 -0.38 0.11 
Effect Pop18 -0.35 -7.06 10.45 -0.32 1.11 1.13 -0.18 -2.78 0.22 1.99 
Effect Pop19 -3.69 -1.32 4.00 -2.95 -1.96 1.04 -0.65 -2.04 -0.65 -1.67 
Effect Pop20 0.17 0.25 0.62 -1.42 -0.92 0.21 1.36 -2.59 3.41 -1.99 
Effect Pop21 -2.29 3.44 -0.09 0.97 -1.13 2.06 0.47 -2.63 -0.39 3.92 
Effect Pop22 -0.98 -0.40 -0.43 2.55 -0.11 1.46 0.73 -0.53 -0.82 -1.85 
Effect Pop23 -1.74 0.20 9.86 -1.81 2.50 0.98 -2.96 6.73 0.97 2.03 
Effect Pop24 - - - - - 9.30 -11.77 0.14 8.25 3.04 
Effect Pop25 1.14 -0.93 5.23 0.40 -0.95 2.21 2.10 -4.07 -0.52 2.88 
Effect Pop26 1.75 3.71 5.18 0.49 -1.62 4.23 1.12 1.37 -0.07 -0.29 

	
  
  middle environments late environments 
trait Stalk  Stalk  Stalk  Stalk 
Chr 5 6 9 9 
cM start 10.1 41.5 47 44.5 
cM end 10.9 42.1 47.2 45.2 
RefGen2 start 3,396,978 114,741,030 90,969,822 28,399,313 
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RefGen2 end 3,538,875 117,104,582 93,381,704 37,409,502 
F value 2.69 4.76 3.5 2.57 
P-value <0.0001 <0.0001 <0.0001 <0.0001 
Effect Pop1 0.41 -0.28 -0.58 -4.25 
Effect Pop2 0.50 -1.26 0.84 -3.47 
Effect Pop3 0.36 -0.24 0.10 4.27 
Effect Pop4 0.05 0.61 -0.04 0.69 
Effect Pop5 -1.57 -1.28 -1.95 0.98 
Effect Pop6 0.23 -0.24 -2.04 -1.61 
Effect Pop7 -2.12 -0.29 -5.46 2.23 
Effect Pop8 -3.90 -7.74 -2.17 1.59 
Effect Pop9 0.24 -1.23 -0.67 6.57 
Effect Pop11 - - - -2.10 
Effect Pop12 0.98 -1.34 0.29 -2.92 
Effect Pop13 -0.77 -0.60 -2.80 -2.63 
Effect Pop14 -0.04 0.36 0.06 -2.25 
Effect Pop15 -0.86 -2.76 -1.88 -1.78 
Effect Pop16 -2.88 -3.72 -0.58 4.51 
Effect Pop18 0.96 0.35 0.27 0.65 
Effect Pop19 -0.35 0.23 0.39 -4.70 
Effect Pop20 0.20 -0.01 0.05 0.28 
Effect Pop21 0.75 -1.03 0.15 2.58 
Effect Pop22 -0.77 -0.46 -1.78 -3.68 
Effect Pop23 -0.10 0.02 -0.39 -1.36 
Effect Pop24 - - - 12.76 
Effect Pop25 -0.03 0.11 0.04 5.49 
Effect Pop26 1.57 -1.32 0.12 -1.50 
  middle environments late environments 
trait Total Total Total Total Total Total Total Total 
Chr 1 2 2 6 7 10 10 10 
cM start 175.7 41.5 98.9 101 69.8 44.7 89.8 43.4 
cM end 176.9 41.8 103.7 106.6 71.2 44.8 93.5 43.8 
RefGen2 start 281,709,021 15,580,132 190,159,942 164,891,527 134,137,353 111,430,628 147,513,462 99,604,014 
RefGen2 end 282,796,367 15,890,017 195523744 166,592,347 136,868,163 111,779,138 149,164,320 106,794,844 
F value 5.64 2.56 2.99 3.73 2.76 2.46 2.44 2.24 
P-value <0.0001 0.0001 <0.0001 <0.0001 <0.0001 0.0001 0.0001 0.0006 
Effect Pop1 -0.78 -0.30 1.78 -1.32 -1.73 8.04 4.42 -2.96 
Effect Pop2 6.79 9.34 9.15 9.19 -6.39 0.15 4.79 0.85 
Effect Pop3 -0.12 0.23 -0.66 0.59 -2.78 -10.23 5.97 4.18 
Effect Pop4 1.63 5.58 2.92 1.19 -1.42 5.71 4.33 -9.39 
Effect Pop5 0.92 -2.46 2.02 -1.45 0.45 3.05 4.52 -10.70 
Effect Pop6 -0.42 -1.32 4.58 3.04 -3.04 2.86 0.04 -4.28 
Effect Pop7 3.21 4.93 -1.41 4.14 5.67 4.19 3.38 -1.30 
Effect Pop8 13.64 2.45 5.08 3.64 -2.17 4.61 0.26 -0.57 



111 
	
  

Effect Pop9 7.85 0.48 0.51 8.50 0.75 -13.12 1.88 13.28 
Effect Pop11 - - - - - -0.08 1.21 -0.40 
Effect Pop12 0.84 8.21 5.92 2.06 -8.74 -20.60 2.40 13.40 
Effect Pop13 -0.63 2.10 0.57 1.96 1.88 3.43 6.40 -7.23 
Effect Pop14 -1.60 -0.74 3.96 0.19 -0.87 -2.84 -2.13 2.91 
Effect Pop15 5.09 3.95 -0.78 6.96 -3.91 5.20 0.86 -1.92 
Effect Pop16 1.76 7.26 2.64 1.14 3.47 -7.86 5.30 10.95 
Effect Pop18 -0.27 -2.58 7.12 -0.31 0.72 -0.69 4.70 8.60 
Effect Pop19 -3.72 1.32 0.19 -1.85 -2.01 -10.87 -3.64 9.37 
Effect Pop20 1.32 -0.31 2.63 -2.16 -0.23 2.55 1.12 -4.74 
Effect Pop21 -2.33 3.40 -3.72 3.03 1.43 8.67 5.67 -8.32 
Effect Pop22 -0.67 3.00 0.27 0.92 -1.54 -29.33 2.60 29.37 
Effect Pop23 -0.38 3.99 2.44 -3.33 4.72 11.53 -1.57 -14.88 
Effect Pop24 - - - - - 12.95 6.48 -11.86 
Effect Pop25 0.27 4.64 2.42 -1.27 -2.06 5.48 6.52 0.54 
Effect Pop26 0.34 0.83 9.63 2.05 0.85 3.12 1.89 -4.87 
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Supplemental table 4.2. List of candidate genes for lodging. Genes located in QTL intervals are bold.  
Lignin synthesis   chr  position (bp) 
bm1 brown midrib1  5 98,993,016-98,997,371 
bm3 brown midrib3  4 32,249,665-32,251,536 
bm4 brown midrib4 9 154,600,921-154,752,762 
cncr1 cinnamoyl-CoA reductase 1 212,986,619-213,227,291 
cncr2 cinnamoyl-CoA reductase 7 19,497,483-47,934,542 
pox3 peroxidase3 6 131,974,895-132,090,730 
px1  peroxidase1 2 198,482,067-199,166,751 
px3 peroxidase3 7 170,246,381-170,998,616 
px13 peroxidase  13 5 28,335,249-31,688,205 
px14 peroxidase14 2 22,753,277-28,400,591 
cad1 cinnamyl alcohol dehydrogenase1 2 10,531,186-10,535,293 
CCoA-OMT2 Caffeoyl-CoA 3-O-methyltransferase 2  2 16,318,197-16,320,573 
CCoA-OMT1 Caffeoyl-CoA 3-O-methyltransferase 1  6 198,081,373-198,082,561 
4CL2 4-coumarate-CoA ligase 2 2 53,200,444-53,202,745 
        
Phenylpropanoid pathway        
pal1 phenylalanine ammonia lyase1  5 186,677,004-186,680,745 
pal2 phenylalanine ammonia lyase2  2 20,735,071-21,327,621 
pal3 phenylalanine ammonia lyase3  4 143,061,373-143,187,277 
p1 pericarp color1 1 48,117,497-48,128,047 
p2 pericarp color2 1 48,092,238-48,097,446 
chi2 chalcone isomerase 2  2 206,127,228-206,130,402 
whp1 white pollen1  2 223,888,706-223,892,691 
c2 colorless2 4 192,580,450-192,583,847 
        
Vegetative phase change        
tp1 teopod1  7 131,009,736-131,984,320 
tp2 teopod2 10 127,514,254-128,401,699 
gl1 glossy1 7 118,517,870-118,523,644 
gl2 glossy2 2 10,624,501-10,627,540 
gl3 glossy3 4 185,653,178-185,654,761 
gl4 glossy4 4 160,279,269-163,130,361 
gl5 glossy5 4 18,538,004-18,626,350 
gl6 glossy 3 148,437,112-149,058,463 
gl7 glossy7 4 31,272,143-36,545,436 
gl8 glossy8 5 181,197,346-181,200,367 
gl11 glossy11 2 40,487,829-41,096,833 
gl14 glossy14 2 119,771,646-135,856,854 
gl15 glossy15  9 95,739,338-95,742,681 
gl17 glossy17 5 59,698,294-64,729,128 
gl18 glossy18 8 110,709,532-112,836,130 
epc1 early phase change1 8 34,593,113-60,338,399 
        
Cellulose synthesis       
cesa1 cellulose synthase1 8 80,220,224-80,226,330 
cesa2  cellulose synthase2 6 128,560,824-128,566,579 
cesa3   cellulose synthase3 3 11,642,850-11,649,401 
cesa4 cellulose synthase4 7 14,617,522-17,314,017  
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cesa5 cellulose synthase5 1 290,593,939-290,599,907 
cesa6 cellulose synthase6 1 296,254,268-296,259,194 
cesa7 cellulose synthase7 7 37,024,553-37,030,325 
cesa8  cellulose synthase8 7 26,488,357-26,493,319 
cesa9   cellulose synthase9 2 161,123,950-161,130108 
cesa10  cellulose synthase10 1 233,557,986-235,493,684 
cesa11  cellulose synthase11 3 198,366,610-198,371,864 
cesa12 cellulose synthase12 7 117,513,371-117,517,542 
GRMZM2G002523_P01    2 182,334,982-182,339,233 

GRMZM2G011651_P01    5 49,637,565-49,641,824 

GRMZM2G012044_P01    5 204,318,343-204,322,398 

GRMZM2G014558_P01    7 130,702,896-130,707,663 

GRMZM2G015886_P01    10 22,262,131-22,265,986 

GRMZM2G027794_P01    8 172,971,672-172,975,677 

GRMZM2G028353_P01    2 169,757,962-169,762,838 

GRMZM2G044269_P01    1 221,785,864-221,789,385 

GRMZM2G061764_P01     9 51,950,792-51,954,029 

GRMZM2G074546_P02     2 51,750,198-51,754,667 

GRMZM2G074792_P01     6 158,223,202-158,225,989 

GRMZM2G082580_P01    2 170,771,739-170,775,663 

GRMZM2G103972_P01    7 156,222,318-156,226,575 

GRMZM2G104092_P01    9 64,924,031-64,927,122 

GRMZM2G105631_P01    4 234,113,329-234,119,648 

GRMZM2G110145_P01    10 77,269,832-77,275,336 

GRMZM2G113432_P01    7 156,212,521-156,216,820 

GRMZM2G122277_P01    4 31,242,535-31,248,167 

GRMZM2G122431_P01    3 145,175,899-145,178,917 

GRMZM2G150404_P01   2 161,135,365-161,137,790 

GRMZM2G164761_P01   1 239,207,473-239,210,788 

GRMZM2G173759_P01    7 118,581,737-118,584,207 

GRMZM2G339645_P01    7 156,285,531-156,288,622 

GRMZM2G349834_P01    6 102,678,170-102,681,460 

GRMZM2G367267_P01    2 204,658,088-204,661,597 

GRMZM2G405567_P02    5 206,843,832-206,846,794 

GRMZM2G436299_P01    1 104,608,915-104,612,653 

GRMZM2G445905_P03    1 234,254,443-234,264,575 

GRMZM2G454081_P04    3 194,038,733-194,043,307 

GRMZM5G870176_P01    9 26,601,759-26,606,021 
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http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-60144&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-52216&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-72685&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-49366&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-60143&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-69567&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-75086&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-80016&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-86547&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-59224&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-60147&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-62359&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-81019&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-68303&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-84418&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-86409&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-76169&chromosome=NIL
http://maizecyc.maizegdb.org/MAIZE/NEW-IMAGE?type=LOCUS-POSITION&object=GBWI-51773&chromosome=NIL

