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To improve the quality of commercial dairy ingredients and consumer 

products, including cheese, fluid milk, milk powders and others, it is important to 

identify and then control factors that contribute to their degradation. Tracking and 

eliminating sporeforming bacteria is a particular concern, as these organisms can resist 

many processing hurdles. Psychrotolerant sporeformers, specifically Paenibacillus 

spp., are important spoilage bacteria for pasteurized, refrigerated foods such as fluid 

milk. A real-time PCR assay targeting 16S rDNA was designed to detect 

Paenibacillus spp. in fluid milk and to discriminate between Paenibacillus and other 

closely related sporeforming bacteria. Specificity was confirmed using 16 

Paenibacillus and 17 Bacillus isolates. All 16 Paenibacillus isolates were detected 

with a mean cycle threshold (Ct) of 19.14 ± 0.54. While 14/17 Bacillus isolates 

showed no signal (Ct > 40), 3 Bacillus isolates showed very weak positive signals (Ct 

= 38.66 ± 0.65). The assay provided a detection limit of approximately 3.25 ! 10
1 

CFU/ml using total genomic DNA extracted from raw milk samples inoculated with 

Paenibacillus. Application of the TaqMan PCR to colony lysates obtained from heat- 

treated and enriched raw milk provided fast and accurate detection of Paenibacillus. 

Heat-treated milk samples where Paenibacillus (" 1 CFU/ml) were detected by this 



 

colony TaqMan PCR showed high bacterial counts (> 4.30 log CFU/ml) after 

refrigerated storage (6°C) for 21 days. We thus developed a tool for rapid detection of 

Paenibacillus that has the potential to identify raw milk with microbial spoilage 

potential as a pasteurized product. 

Replacement of traditional serotyping methods with molecular approaches is 

particularly important for Salmonella, which includes >2,500 different serotypes. We 

evaluated the ability of PFGE, rep-PCR, ribotyping, and MLST to predict serotypes 

for a set of 46 isolates, which were identified to represent the top 40 reported 

Salmonella from human and non-human sources reported by the Centers for Disease 

Control and World Health Organization. MLST was most reliable and able to 

accurately predict serotypes for 42/46 isolates representing the top 40 serotypes. 

PFGE, ribotyping, and rep-PCR were able to accurately predict 35/46, 34/46 and 

30/46 serotypes, respectively. We also integrated a number of available data sources to 

develop and validate a PCR-based O-antigen screen with sequencing of internal fliC 

(H1 antigen) and fljB (H2 antigen) fragments to characterize Salmonella isolates to the 

serotype level. PCR and sequence based serotyping correctly identified 42/46 common 

serotypes. We continued to test our method against a selection of 70 less common 

Salmonella serotypes and were able to accurately predict 62/70 Salmonella serotypes. 

This study provides an initial comparison of the ability to identify Salmonella 

serotypes using (i) different molecular methods that predict serotypes based on 

banding patterns or phylogenetic relationships and (ii) a combined PCR and 

sequencing based approach that directly targets O and H antigen encoding genes. 
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CHAPTER ONE 
 
 
 

IMPROVING THE QUALITY AND SAFETY OF FOOD  
 

 Despite advances in food preservation techniques, bacterial spoilage remains a 

leading cause of global food loss (Gram et al., 2002).  Nearly one-third of all food 

produced worldwide is estimated to be lost post-harvest, much of which can be attributed 

to microbial spoilage (Gustavsson et al., 2011).  Dairy products constitute one of the 

leading sectors impacted by food loss in the US (Kantor et al., 2007).  With increasing 

demand for fluid milk, cheese, and dairy powders, processors must understand the role 

that spoilage bacteria play in product quality, as undesirable microbial growth can result 

in direct economic losses from spoiled products as well as a loss of sales to customers 

who may choose alternative products.  Our review on tracking and eliminating dairy 

associated organisms highlights the main challenges that spoilage bacteria present to the 

dairy industry, with an emphasis on sporeforming bacteria.  Developing an understanding 

of dairy spoilage bacteria, including their growth characteristics and transmission, is 

essential for implementing practical control methods that are necessary for extending the 

shelf lives of dairy products.    

 The US dairy industry has a particular interest in fluid milk spoilage, as nearly 

20% of conventionally pasteurized (high temperature short time; HTST) fluid milk is 

discarded prior to consumption each year (Kantor et al., 1997).  In the US, the shelf-life 

of fluid milk ranges from approximately 1-3 weeks.  Most consumer complaints result 

from the growth of psychrotolerant bacteria, typically either non-sporeforming Gram-

negative rods or Gram-positive sporeforming bacteria (Fromm and Boor, 2004; Hayes et 
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al., 2002; Huck et al., 2008; Ranieri and Boor 2009).  In the absence of non-sporeforming 

Gram-negative rods (e.g., Pseudomonas spp.), Gram-positive psychrotolerant 

sporeformers can survive pasteurization as spores, germinate, and then grow during 

refrigerated storage to numbers capable of causing off-flavors or curdling of milk (De 

Jonge et al., 2010(Huck et al., 2007; Ranieri et al., 2009; Ranieri and Boor, 2009; De 

Jonghe et al., 2010).       

 The predominant Gram-positive sporeforming bacteria isolated from milk are 

Bacillus spp. and Paenibacillus spp.  During refrigerated storage of pasteurized milk, 

Paenibacillus spp. become the predominant spoilage organisms, typically representing 

over 95% of the bacterial population identified late in shelf-life (> 10 days) (Ranieri and 

Boor, 2009).  Paenibacillus spp. are generally present in very low numbers in raw milk 

and early in pasteurized milk shelf-life, yet can reproduce to high numbers during cold-

storage.  Numerous microbiological tests have been applied to raw milk with the goal of 

predicting shelf-life performance of the milk, but none are adequately predictive of HTST 

pasteurized fluid milk shelf-life (Martin et al., 2011). The aim of our second study was to 

develop a novel PCR assay targeting 16S rDNA so that specific identification of 

Paenibacillus spp. could be performed rapidly.  The objectives of this study were to: (i) 

design primers and a probe for detection of Paenibacillus spp. while limiting non-specific 

detection of closely related Bacillus spp. (ii) validate primers and probe using a real-time 

PCR assay on select Paenibacillus and Bacillus isolates from a collection of over 1200 

isolates from fluid milk and dairy environments, and (iii) develop a systematic approach 

to aid in identification of Paenibacillus spp. from raw milk.  The results of this study 

provide the food industry with an assay to monitor the quality of raw milk. 



! 3!

 In addition to food spoilage concerns, food safety continues to affect all aspects of 

the farm to fork continuum.  In the US alone, it was recently estimated that the economic 

burden from health losses due to foodborne illness totals over $77 billion annually 

(Scharff, 2012). The identification of Salmonella serotypes remains an important public 

health concern as non-typhoidal Salmonella causes an estimated 93.8 million cases of 

gastroenteritis globally each year (Majowicz et al., 2010).  In the US, the CDC estimates 

that non-typhoidal Salmonella accounts for 1.03 million cases of gastoenteritis, 19,000 

hospitalizations, and 378 deaths annually, making it a leading cause of foodborne illness 

(Scallan et al., 2011).  The financial burden of foodborne illnesses is also substantial, as 

the annual economic cost of non-typhoidal Salmonella infections, not including costs to 

the government or food industry, totals over $4.4 billion dollars in the U.S. (Scharff, 

2012). To better understand its transmission throughout the food chain and to aid in 

epidemiological investigations, accurate discrimination of Salmonella spp. is critical.     

 The genus Salmonella is divided into two species, Salmonella enterica and 

Salmonella bongori.  Salmonella enterica is divided into 6 subspecies, including 

subspecies I (enterica), II (salamae), IIIa (arizonae), IIIb (diarizonae), IV (houtenae), 

and VI (indica) (Grimont and Weill, 2007).  The traditional method of subtyping 

Salmonella below the subspecies level has been serotyping, which has been applied for 

over 70 years (Grimont and Weill, 2007; Guibourdenche et al., 2010).  Currently, there 

are over 2,500 known serotypes, with the majority (over 1,500) belonging to S. enterica 

subsp. enterica, which is also the group having clinical relevance due to its common 

isolation from humans and warm-blooded animals (CDC, 2011).   
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 Classical serotyping is performed according to the White-Kauffmann-Le Minor 

scheme, which identifies the somatic (O) and flagellar (H) antigens based on 

agglutination of bacteria with specific sera.  Despite its widespread use, traditional 

serotyping has a number of drawbacks.  Serotyping of Salmonella takes at least 3 days to 

complete, is labor intensive, requires maintenance of over 250 typing sera as well as 350 

different antigens, and is unable to type rough or mucoid strains.  Furthermore, 

serotyping is often not sensitive enough to provide the level of discrimination needed for 

foodborne illness outbreak investigations, and cannot be used to infer phylogenetic 

relationships.  As a result of many traditional serotyping pitfalls, researchers have 

investigated a number of alternative methods to subtype Salmonella.  

 The purpose of our study was to develop and test a PCR and sequence based 

approach for predicting Salmonella serotypes that was at least as reliable at predicting 

serotypes as existing subtyping methods. We first evaluated PFGE, rep-PCR, ribotyping, 

and MLST for their ability to predict serotypes for 46 isolates representing clinically 

relevant Salmonella serotypes.  Then, we characterized the same set of 46 isolates using 

PCR and sequencing, plus an additional set of 70 isolates that represented less common 

Salmonella serotypes.  Our PCR and sequencing based approach allows for continuity 

with traditional serotyping data, reduces the need for expensive or proprietary equipment, 

and could be integrated into an open-source web-based database permitting review of 

sequence data for enhanced accuracy.
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CHAPTER TWO 
 

TRACKING AND ELIMINATING SPOREFORMERS IN DAIRY SYSTEMS1 
 
 

INTRODUCTION 

One challenge encountered with the production of dairy foods is the potential for 

product spoilage from microbial growth.  Undesirable microbial growth can cause 

immediate, direct economic losses from spoiled products as well as long-term loss of 

sales to consumers who may choose to avoid consumption of food products associated 

with an unpleasant experience.  Due to the highly perishable nature of dairy products, 

maintenance of product quality requires considerable attention to detail (Pasteurized Milk 

Ordinance, 2009).  Many factors directly influence shelf-life, including raw milk quality, 

processing and handling parameters at the plant, equipment cleaning and maintenance, 

and temperature control throughout the entire dairy continuum.  A lapse in control at any 

point can result in loss of product through bacterial spoilage.  Development of an 

understanding of dairy spoilage bacteria, including their growth characteristics and 

transmission, is essential for implementing practical control methods necessary for 

extending the shelf lives of dairy products.   

Of spoilage microorganisms of importance to the dairy industry, sporeforming 

bacteria represent a group that may be the most diverse and difficult to combat.   These 

microbes can cause spoilage across the full spectrum of dairy products.  To illustrate, the 

presence of sporeforming bacteria is associated with late blowing gas defects in some 

cheese products (Klijn et al., 1995; Quiberoni et al., 2008) reduced shelf-life in ultra-high 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Published!in!the!Australian!Journal!of!Dairy!Technology!(Ranieri!and!Boor,!2010).!
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temperature (UHT) fluid milk (Hammer et al., 1995; Scheldeman et al., 2006) and 

increased spoilage of valued-added products when milk powders contaminated with 

spores are used as food ingredients (Scott et al., 2007).  Some sporeforming bacteria can 

survive high-temperature-short-time (HTST) pasteurization conditions, and subsequently 

grow in milk stored at refrigeration temperatures, thus limiting pasteurized fluid milk 

shelf-life.  So, how does the dairy industry battle ubiquitously present microbes that can 

exist in a dormant spore state that enables bacterial survival in the presence of multiple 

stresses, such as heat, drying, and acid exposure, but then promotes germination and 

subsequent multiplication to large numbers when present in a favorable environment (our 

food)?  

One challenge for the dairy industry is to identify route(s) of entry for spoilage 

bacteria, including sporeformers, into food products.  When spoilage microbes are 

typically present at very low initial levels in the food products, then development of 

effective control measures also requires an understanding of the number of microbes 

necessary to cause spoilage.  Further, not all members of a bacterial genus are equally 

likely to be present in a dairy processing system or to cause product loss through spoilage.  

Therefore, analytical approaches that enable accurate differentiation among closely 

related bacterial strains (i.e., subtyping) as well as quantification are essential for 

development and implementation of effective intervention strategies.  Emerging 

molecular tools have allowed researchers to track transmission of various 

microorganisms in food production and processing systems, from farms to processing 

plants (Nightingale et al., 2004; Thimothe et al., 2004) and beyond.  In the case of dairy 

product spoilage, molecular tools also have been used to identify some key sporeforming 
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bacteria (e.g., Fromm and Boor 2004; Huck et al., 2007a).  Ultimately, the ability to 

control spoilage bacteria – and particularly sporeforming bacteria – that have the 

potential to grow in dairy products under typical storage conditions, will reduce product 

loss and improve customer satisfaction by ensuring provision of nutritious, safe, high-

quality consumer foods. 

 

QUALITY AND SHELF-LIFE OF FLUID MILK 

While many tests have been developed to assess raw milk quality (somatic cell 

count, standard plate count, coliform count, preliminary incubation count, psychrotrophic 

bacteria count, etc.; Frank and Yousef 2004), an important practical question is whether 

or not the results from these tests predict raw milk performance post-pasteurization.  

Some processors have chosen to use the preliminary incubation (PI) test as a predictor of 

pasteurized product shelf-life.  The PI test involves holding raw milk at 55°F (12.8°C) for 

18 hours prior to performing a standard plate count.  The theory behind the test is that 

preliminary incubation will enable detection of bacterial contaminants in milk (from dirty 

equipment, soil, etc.) that may be able to multiply during storage of raw milk, prior to 

pasteurization.  To test the predictive ability of the PI test for the performance of the 

pasteurized product, commingled raw milk from dairy plant silos and corresponding 

commercially pasteurized milk samples were collected from four NYS fluid milk 

processing plants (Woodcock and Boor, unpublished).  Raw milk samples were subjected 

to a number of microbiological tests, including: somatic cell count, coliform count, lab 

pasteurization count, psychrotrophic bacteria count, spore count and preliminary 

incubation count.  All pasteurized milk samples were held at 6°C and tested for coliform 
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and standard plate counts at 1, 10, 14, and 21 days post-pasteurization.  Additionally, all 

pasteurized milk samples were evaluated for flavor characteristics by a trained sensory 

panel on days 1, 10, 14 and 21 post-pasteurization.  None of the raw milk tests, including 

the PI test, were effective in predicting the post-pasteurization performance of the raw 

milk as reflected by the shelf-life characteristics of the pasteurized products.  In the 

absence of post-pasteurization contamination, psychrotolerant gram-positive 

sporeforming microbes were responsible for limiting the shelf-lives of the commercially 

pasteurized products.   However, no currently existing raw milk assay will rapidly and 

accurately quantify the presence of this group of microbes.  Therefore, a new raw milk 

test, capable of quantifying very low levels of psychrotolerant sporeforming microbes, 

would be an invaluable tool for the dairy industry. 

Sporeforming bacteria are responsible for multiple concerns regarding the safety 

and quality of dairy products.  For example, sporeforming bacteria can produce enzymes 

that degrade milk components to yield objectionable off-flavors, generate gas that can 

cause structural defects in cheese and produce toxins that can cause human illness (De 

Jonghe et al., 2010).  As fluid milk handling and processing are central to dairy foods 

manufacturing, the following discussion is focused on understanding the role of 

sporeforming bacteria from farm to finished product in HTST pasteurized fluid milk 

products.   

In the United States, the shelf-life of conventionally processed HTST pasteurized 

fluid milk is approximately 2-3 weeks (Fromm and Boor 2004; Carey et al., 2005; Gandy 

et al., 2008; He et al., 2009; Ranieri and Boor 2009).  The perishable nature of fluid milk 

products contributes to significant product loss throughout the food processing and 



! 9!

handling continuum, representing approximately 20% of all foods lost by US processors, 

retailers and consumers (Kantor et al., 1997).  Many factors have been identified that 

affect pasteurized milk quality and shelf life, including the microflora of the raw milk 

supply, design and handling parameters at the processing plant, cleaning, sanitation and 

maintenance programs, and control of the finished product through the retail distribution 

chain (Carey et al., 2005).  Stringent emphasis on cleaning and sanitation measures in 

processing plants is essential for control of post-pasteurization bacterial contamination, a 

frequent cause of reduced product quality that can result in dramatic limitations in fluid 

milk shelf-life (Hayes et al., 2002; He et al., 2009; Ranieri and Boor 2009).  When post-

pasteurization contaminants are successfully eliminated from fluid milk processing 

systems, the next biological barrier to further shelf-life extension of HTST-processed 

fluid milk products beyond approximately 21 days becomes evident.  This barrier is the 

presence of psychrotolerant, sporeforming spoilage bacteria, particularly Bacillus and 

Paenibacillus spp.  (Ralyea et al., 1998; Fromm and Boor 2004; Huck et al., 2007b; 

Ranieri and Boor, 2009).   

 Bacillus spp. represent a diverse group of aerobic or facultatively anaerobic, rod 

shaped, gram-positive, sporeforming bacteria (Logan and De Vos 2009).  They exhibit a 

wide range of physiological abilities, with some strains able to tolerate extreme 

temperature, pH and salt conditions.  Bacillus spp. can be isolated from soil or from 

environments contaminated with soil, which explains their presence on dairy farms and in 

processing plants.  The spores of Bacillus are particularly troublesome, as they can 

exhibit extreme resistance to heat, radiation, disinfectants and dessication (Logan and De 

Vos 2009).   
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Paenibacillus spp. are also aerobic or facultatively anaerobic, rod shaped 

sporeforming bacteria.  Paenibacillus spp. have been only recently recognized as a 

genera distinct from Bacillus spp. (Ash et al., 1993).  Traditional microbiological 

methods do not differentiate Bacillus spp. and Paenibacillus spp., which may at least 

partially explain the relative absence of dairy industry literature on Paenibacillus spp.  As 

a further complication, while Paenibacillus spp. are considered gram-positive based on 

their cell wall structure, in a gram stain, they frequently appear to be gram-variable (both 

purple and pink) or even gram-negative (pink) (Huck et al., 2007b).  The natural habitat 

of Paenibacillus spp. is soil, and they are considered to have an important role in 

composting plant material through the excretion of extracellular enzymes.  Typical 

isolation practices for Paenibacillus and Bacillus spp. from environmental samples 

exploit their sporeforming characteristics.   In general, samples are heated to destroy non-

sporeforming microbes and to stimulate spore germination, thus encouraging 

multiplication of vegetative Bacillus and Paenibacillus spp. in the sample (Priest 2009).  

Spore recovery from raw milk is reported to be optimal following heat treatment at 80°C 

for 12 mins (Frank and Yousef 2004). 

 

PASTEURIZATION PARAMETERS INFLUENCING BACTERIAL GROWTH 

IN FLUID MILK PRODUCTS 

Intuitively, one would predict that the higher the temperature treatment of raw 

fluid milk during pasteurization (within the temperature limits commonly applied for 

HTST processing), the lower the resulting bacterial numbers would be throughout 

product shelf-life.   However, this relationship does not necessarily hold.  The US Grade 
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A Pasteurized Milk Ordinance (Pasteurized Milk Ordinance, 2009) specifies minimum 

processing conditions of 72°C for at least 15 seconds for HTST pasteurized milk products, 

but, for a number of reasons, many US milk processors exceed these minimum 

requirements.  US plants frequently pasteurize milk at temperatures as high as 80°C with 

holding times of up to 30 seconds.  While the initial outcome of the 80°C temperature 

treatment may appear beneficial, i.e., by an immediate reduced recovery of bacteria from 

this milk relative to recovery from milk processed at lower temperatures, many milk 

processors have reported shorter fluid milk shelf-lives (i.e., higher bacterial numbers in 

pasteurized products after fewer days) after shifting to a higher HTST processing 

temperature.   

To investigate the effect of HTST processing temperatures on post-pasteurization 

bacterial numbers, 2% fat raw milk was heated to 60°C, homogenized, and treated for 25 

seconds at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2°C) and then held at 6°C 

for up to 21 days (Ranieri et al., 2009).  Aerobic bacterial plate counts were measured in 

pasteurized milk samples at days 1, 7, 14, and 21 post-processing to compare the relative 

numbers of bacteria growing in milk that had been treated at different temperatures.  

Counter-intuitively, higher bacterial numbers were consistently found in milk that had 

been processed at higher temperatures relative to milk that had been pasteurized at 72.9oC.  

The increased rate of growth among bacteria present in milk pasteurized at 85.2oC 

relative to that among those in milk pasteurized at 72.9oC suggests that factors intrinsic to 

the milk, spores, or both are thermosensitive.  Potential factors that could affect bacterial 

growth rates could include an increased availability of milk-based nutrients in milk 

heated at higher temperatures, or greater destruction of heat sensitive antibacterial factors 
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that are indigenous to the milk.  For example, the lactoperoxidase system is a heat 

sensitive antimicrobial system that is naturally present in milk (Barrett et al., 1999).  It is 

also possible that interactions among sporeformers are influenced by heat (McGuiggan et 

al., 2002).   

To probe the microbial ecology of fluid milk pasteurized at different temperatures 

(i.e., to determine if the differences in bacterial numbers in milk pasteurized at different 

temperatures were due to outgrowth of different microbial populations), 490 

psychrotolerant sporeforming bacteria were isolated from the milk samples during 21 

days of refrigerated storage.  All isolates were identified using a DNA sequence-based 

subtyping method, described in detail below, that differentiates strains on the basis of 

partial DNA sequences obtained for the rpoB gene (Durak et al., 2005; Huck et al., 

2007a).  Regardless of processing temperature, >85% of the isolates characterized at 0, 1, 

and 7 days post-processing were of the genus Bacillus, whereas more than 92% of the 

isolates characterized at 14 and 21 days post-processing were of the genus Paenibacillus.  

Furthermore, although typically present at low numbers in raw milk (<1 spore/mL), 

Paenibacillus spp. were capable of multiplying to numbers higher than 106 CFU/mL in 

pasteurized milk.  The presence of Paenibacillus spp. at low numbers early in pasteurized 

milk shelf-life (1-10 days post-pasteurization), and the capacity of these microbes to 

predominate at the end of shelf-life (days 14-21 post-pasteurization) have been 

highlighted in a number of studies, some of which are summarized in Figure 2.1.  The 

ability of Paenibacillus spp. to limit the shelf-life of pasteurized fluid milk, despite being 

present at very low levels in raw milk, indicates the need to identify and eliminate niches 

where Paenibacillus spp. spores may contaminate or re-contaminate fluid milk products.   
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Figure 2.1:  Percent of isolates characterized at days 1, 7, 10, 14, 17 and 21 following 
pasteurization and subsequent storage at 6°C.  Bacillus spp. represent the predominant 
bacteria isolated directly after pasteurization (days 1-10), however, the predominant 
species by day 14 is Paenibacillus, reflecting the potential for microbes in this genus to 
spoil pasteurized fluid milk.  Figure adapted from Fromm and Boor (2004), Ranieri et al., 
(2009), and Ranieri and Boor (2009). 
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TRACKING SPOILAGE ORGANISMS FROM FARM TO FINISHED PRODUCT 

Tracking organisms throughout dairy systems requires the implementation of a 

subtyping method that is reproducible, cost-effective and discriminatory.  One strategy 

for distinguishing among closely related bacterial strains is to develop and employ a 

DNA sequence-based subtyping method (Sukhnanand et al., 2005).  The premise of 

sequence-based subtyping strategies is to obtain and compare a specific DNA 

sequence(s) that is universally present within a specific group of bacteria.  Using 

polymerase chain reaction (PCR), a targeted segment of DNA is amplified from any 

bacterium that shares a specific genetic target.  Following amplification, the DNA 

fragment is sequenced to determine each base pair (A, T, C or G) within the targeted 

region.  By comparing sequences from different isolates, investigators can infer genetic 

relationships.  Specifically, DNA sequences are compared to determine if they are 

identical or different by at least one base pair.  Gene sequences targeted for DNA 

sequence-based subtyping typically encode proteins that are integral to a bacterium’s 

function (known as ‘housekeeping’ genes), to provide an increased likelihood that the 

target will be present in all bacteria of interest. 

Fromm and Boor (2004) utilized a 16S rDNA subtyping method to investigate the 

diversity of bacterial isolates collected throughout product shelf-life from fluid milk 

samples stored at 6oC.  Analysis of the bacterial isolate distribution indicated that 

Paenibacillus spp. and Bacillus spp. were the predominant bacterial isolates found in 

commercial New York State fluid milk.  Additionally, a clear trend was identified in the 

microbial ecology of the pasteurized milk samples during storage at 6oC, as the number 

of Paenibacillus isolates increased from 3 (~6%) on initial day to 30 (~60%) on day 17 of 
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shelf-life (From and Boor 2004).  This study identified the roles of Paenibacillus spp. and 

Bacillus spp. as the biological barriers to shelf-life extension when post-pasteurization 

contamination, typically by gram-negative bacteria (primarily Pseudomonas spp.), is 

adequately controlled. 

While the 16S rDNA subtyping method is presently broadly applied for bacterial 

identification in microbiological research, it did not allow sensitive discrimination among 

unique and distinct strains of psychrotolerant, sporeforming gram-positive bacteria (i.e., 

Paenibacillus and Bacillus spp. could not be clearly differentiated into the appropriate 

genera).  Our goal, therefore, was to develop an assay that would enable classification of 

closely related Bacillus and Paenibacillus spp.  To that end, an rpoB DNA sequence-

based assay was developed that provides an enhanced ability, relative to 16S rDNA 

typing, to discriminate among gram-positive sporeforming bacteria (Durak et al., 2006).  

The enhanced discrimination of the rpoB DNA method relative to the 16S rDNA method 

reflects the fact that the targeted portion of the rpoB gene is less conserved than the 

targeted portion of the 16S rDNA gene (Durak et al., 2006).  The rpoB gene encodes for 

the beta subunit of RNA polymerase in all bacteria.   

Pure bacterial cultures must be used to generate rpoB subtyping data. Following 

enumeration of bacteria from a given sample, representative bacterial colonies are 

selected to represent visually distinct morphologies.  PCR is performed to generate a 740 

bp product from the rpoB gene (Drancourt et al., 2004; Durak et al., 2005).  DNA 

sequences are aligned, then trimmed to a 632-nucleotide fragment in MegAlign 

(DNAstar, Lasergene, Wis., USA), corresponding to nt 2455 to 3086 of the 3,534 rpoB 

open reading frame of Bacillus cereus ATCC 10987 (GeneBank AEO17194, locus tag 
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BCE_0102; Huck et al., 2007a).  The sequences are compared to one another using a 

sequence comparison tool [e.g., BioEdit (Hall 1999)].  If one sequence differs from the 

other(s) by 1 or more base pairs, it is considered to represent a different allelic type (AT).  

If two sequences are identical (the base pairs are exact matches), the bacteria are 

considered to be the same allelic type. 

 Allelic types are useful for isolate characterization and analysis of contamination 

patterns.  One of the main benefits of a DNA sequence-based subtyping method such as 

rpoB subtyping is the production of unambiguous sequence data, which are highly 

reproducible between laboratories (Aires-de-Sousa et al., 2006).  Additionally, if strains 

are curated, the resulting culture collections are invaluable for further characterization of 

isolates for specific phenotypic or genetic characteristics of interest.  Furthermore, DNA 

sequence-based typing strategies are less expensive than other commonly applied 

subtyping methods, including pulsed field gel electrophoresis (PFGE) and ribotyping.  

One drawback is the need for DNA sequencing equipment or access to a lab with 

sequencing capabilities, which may not be present in a traditional microbiology 

laboratory.  Also, DNA sequence subtyping is a culture-based method that is only 

capable of identifying bacterial colonies that can grow on bacteriological media.  Overall, 

however, sequence based subtyping methods provide a reliable, cost-effective strategy for 

identifying and characterizing bacteria in food production and processing systems. 

In a recent study, the rpoB subtyping method was applied to bacterial isolates that 

had been collected from all segments of the dairy processing continuum (Huck et al., 

2008).  Specifically, samples were collected from dairy farms, raw milk tank trucks, dairy 

plant storage silos, and pasteurized milk. The bacterial isolates obtained from these 
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samples were then subtyped.  The resulting data indicated that some bacterial allelic types 

(i.e., strains) were isolated throughout the dairy system continuum, from the farm to the 

packaged product, suggesting that: potential entry points for sporeforming bacteria occur 

throughout the entire system (e.g., in raw milk bulk tanks, tanker trucks, etc.; Figure 2.2); 

or sporeforming bacteria present in raw milk can be transmitted throughout the entire 

system; or both.  While other studies have examined the presence of Bacillus spp. and 

closely related microbes in milk from the farm (Crielly et al., 1994; Sutherland and 

Murdoch 1994; Lukasova et al., 2001; Scheldeman et al., 2004; Bartoszewicz et al., 

2008), processing plant (Lin et al., 1998; Huck et al., 2007b) and pasteurized packaged 

products (Huck et al., 2007b; Ranieri and Boor 2009), the study reported by Huck et al., 

(2008) used a discriminatory subtyping method to characterize spoilage bacteria, which 

enabled identification of potential contamination points from the dairy farm environment 

to packaged HTST-pasteurized fluid milk products.  Clearly, sporeforming bacteria, 

including those able to grow under refrigeration temperatures, exist in the dairy farm 

environment (i.e. cow bedding materials, cow feed, manure, wash water, and soil).   Thus, 

the farm represents a potential source of contamination with sporeforming bacteria that 

can survive pasteurization conditions used for HTST-pasteurized fluid milk products.  

Importantly, a number of characterized isolates were found only in the commercially 

packaged products, suggesting the potential for contamination or re-contamination of 

fluid milk at the processing plant.   

While initial bacterial subtyping studies focused on isolates collected from dairy 

farms, processing plants and fluid milk in the Northeastern US, a further examination of 

fluid milk processed in 5 different regions across the US was completed to investigate the 
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presence of gram-positive psychrotolerant sporeforming bacteria in other regions.  To 

determine the microbial ecology of milk from 5 geographical regions, 2% HTST 

pasteurized fluid milk samples were obtained from 18 different plants representing the 

Northeast, Southeast, South, Midwest, and West (Ranieri and Boor 2009).  To examine 

the bacterial ecology of the milk during refrigerated storage, isolates were collected from 

milk stored at 6°C on days 1, 7, 10, 14 and 17 post-pasteurization.  Of 589 bacterial 

isolates identified from milk samples, 346 were identified as gram-positive sporeforming 

bacteria, and of those, 240 were identical to those previously identified from samples that 

had been obtained previously in NYS, indicating the widespread presence of 

sporeforming bacteria in fluid milk production and processing systems within the US.  

Further, the bacterial ecology of the products during refrigerated storage mirrored work 

reported by Fromm and Boor (2004) and Huck et al., (2007b).  On days 1, 7 and 10, 

Bacillus spp. comprised over 84% of the gram-positive sporeforming isolates collected, 

whereas at day 17 Paenibacillus spp. totaled more than 92% of the isolates characterized.  

These results indicate a clear shift in gram-positive spoilage genera from Bacillus spp. to 

Paenibacillus spp. during refrigerated storage of pasteurized milk.  Due to their 

predominance at the end of shelf-life, and low numbers in raw and initial days post-

pasteurization, Paenibacillus spp. pose a considerable challenge to dairy processors that 

desire to further extend HTST pasteurized milk shelf-life. 

The ability to identify and track transmission of sporeforming gram-positive 

bacteria was enabled by development of the rpoB subtyping method, which has been 

applied to psychrotolerant sporeforming bacteria isolated from milk production and 

processing systems (Durak et al., 2006; Huck et al., 2007a,b; Huck et al., 2008; Ranieri et 
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al., 2009; Ranieri and Boor 2009).  Currently, over 1,100 gram-positive sporeforming 

isolates from New York State farms, dairy processing environments, raw milk and 

pasteurized milk samples have been isolated and subtyped.  An additional 346 isolates 

have been isolated from across the U.S., including from fluid milk processing plants in 

Pennsylvania, Florida, Georgia, Tennessee, Texas, Michigan, Wisconsin, Minnesota, 

California, New Mexico and Idaho, as described above.  Based on rpoB subtyping 

analysis, from the > 1,400 isolates characterized to date, over 260 unique subtypes have 

been classified, illustrating the rich diversity of sporeforming microbes present in fluid 

milk production and processing systems (Huck et al., 2008; Ranieri et al., 2009; Ranieri 

and Boor, 2009).  Figure 2.2 illustrates the ability to trace bacterial contaminants 

throughout a food production, processing and distribution system using data generated by 

DNA subtyping.  Further, it is clear that sporeforming bacteria capable of limiting HTST 

fluid milk shelf-life are present in products manufactured across the US.  Therefore, 

psychrotolerant sporeforming bacteria represent important target organisms for 

development of tests designed to assess the quality of raw milk relative to its post-

processing functionality.  Specifically, we hypothesize that implementation of effective 

strategies for controlling the presence of allelic types 1, 15, and 27, which were found 

frequently and in all sample types (farm, tanker truck, plant silos, and pasteurized 

products; Figure 2.2) will reduce the overall presence of sporeforming bacteria in milk 

processing systems.    
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Figure 2.2:  Venn diagram (non-proportional) indicating the distribution of common 
rpoB allelic types (AT) isolated from dairy farm (F), raw milk tank truck (T), raw milk 
storage silo (S), and pasteurized milk (P) samples.  Letters in each square indicate sample 
types in which these rpoB AT were identified.  AT in bold represent those found in 
pasteurized milk from across the United States, including plants representing the 
Northeast, Southeast, South, Midwest and West (Ranieri and Boor 2009).  Common 
Bacillus spp. includes AT1, AT6, and AT9 (B. licheniformis), AT17 and AT73 (B. 
arenosi), AT20 (B. pumilus), and AT158 (B.cereus).  Common Paenibacillus spp. 
includes AT2, AT13, AT15, AT25, and AT27 (P. odorifer) and AT23 and AT111 (P. 
amylolyticus).  Figure adapted from Huck et al., (2008). 
 

*rpoB AT158 was found solely in pasteurized milk samples from a single processing 
plant (n=149), highlighting the existence of processing plant-specific contamination. 
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Consequences of Spores in Dairy Products Other than Fluid Milk 

The presence of sporeforming bacteria can be detrimental to a wide spectrum of 

dairy products.  It is well documented that clostridia can cause late blowing defects in 

Dutch and Italian hard cheeses (Ingham et al., 1998).  More recently, Bacillus polymyxa 

and Bacillus macerans were associated with the spoilage of Argentinean cheeses 

(Quiberoni et al., 2008).  Spoilage of these products was attributed to the presence of 

Bacillus spoilage organisms in raw milk and the subsequent ability of these microbes to 

resist heat treatments, or to the entry of these organisms via post-pasteurization 

contamination.   

In the manufacture of whole milk powder, the predominant sites identified as 

harboring large numbers of thermotolerant spores were the pre-heater plate heat 

exchanger and the evaporator (Scott et al., 2007).  While not proven, initial 

contamination of milk powder plants is thought to arise from the presence of small 

numbers of thermophilic microbes present in raw milk that can survive pasteurization and 

multiply in accommodating niches.  The sporeforming isolates identified in the plant 

survey were Anoxybacillus flavithermus and Geobacillus spp.  While Scott et al., (2007) 

classified thermophilic organisms based on partial 16S rDNA sequences, as described by 

Flint et al., (2001b), other methods such as randomly amplified polymorphic DNA 

(RAPD) have been employed to identify thermophilic bacterial isolates recovered from 

milk powder products (Ronimus et al., 2003).  Real-time methods have also been 

reported, allowing the rapid detection and enumeration of thermophilic bacilli in milk 

powder.  Rueckert et al., (2005) designed a TaqMan-based real-time PCR assay targeting 

the 16S rRNA gene for selective and quantitative detection of thermophilic bacilli, and a 
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SYBR Green-based real-time PCR assay targeting the spo0A sporulation gene (Rueckert 

et al., 2006).  UHT milk products are also recognized to spoil due to the presence of 

thermotolerant sporeforming bacteria.   Specifically, highly heat-resistant spores of 

Bacillus sporothermodurans have been isolated from UHT milk (Montanari et al., 2004). 

Highly heat resistant spores were also recently isolated from dairy farm samples 

following sample treatment at 100°C for 30 minutes (Scheldeman et al., 2005; 

Scheldeman et al., 2006).  As the dairy industry wishes to develop novel UHT and 

extended shelf-life products, the presence of such spores in milk production systems will 

become increasingly important.  Typing methods, such as rpoB subtyping, will provide 

for rapid identification of such organisms from farm to finished product, thus enabling 

development of effective intervention strategies.  Additionally, characterization of the 

diversity of sporeforming dairy spoilage organisms will help prepare the industry to 

address issues related to the presence of highly heat resistant sporeforming bacteria. 

While we have concentrated on the presence of spoilage organisms in dairy 

products, it is important to describe the potential of some dairy-associated sporeforming 

bacteria to cause human illness.  In particular, Bacillus cereus represents a common 

aerobic sporeforming bacterium associated with raw and pasteurized milk.  B. cereus can 

produce heat stable enzymes capable of causing foodborne illness (Granum 2002).  The 

toxigenic potential of closely related aerobic sporeformers is also under investigation 

(From et al., 2005; De Jonge et al., 2009).  In the past year a product recall has been 

associated with the presence of B. cereus; the recall involved a commercial ready-to-

drink dairy product (Larsen 2010).  Such incidences highlight the need for effective 

methods for tracking and screening potentially toxic Bacillus spp. in dairy products.    
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CONCLUSIONS 

Sporeforming spoilage bacteria play an important role in the quality of dairy products.  

As dairy processors strive to meet consumer demand by developing new products with 

extended or novel shelf-life characteristics, the need to understand characteristics, 

ecology, and spoilage potential of sporeforming bacteria will become increasingly 

important.  Spores are ubiquitous in nature, and are capable of enduring many of the 

processing hurdles developed and implemented to date.  With reliable tracking and 

characterization methods, we will be able to mitigate problems associated with 

sporeforming spoilage organisms by using a systematic approach for controlling points of 

entry and multiplication for these microbes in dairy systems.  The combined efforts of 

farmers, dairy processors, retailers and researchers will be needed to provide consumers 

with the highest quality dairy products possible.  To that end, it is essential that all 

segments of the dairy industry work together to integrate practical measures for control of 

spoilage organisms in dairy processing systems.  
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CHAPTER THREE 
 

REAL-TIME PCR DETECTION OF PAENIBACILLUS SPP. IN RAW MILK TO 

PREDICT SHELF-LIFE PERFORMANCE OF PASTEURIZED FLUID MILK 

PRODUCTS2 

 

INTRODUCTION 

 Despite advances in food preservation techniques, bacterial spoilage remains a 

leading cause of global food loss (Gram et al., 2002).  Nearly one-third of all food 

produced worldwide is estimated to be lost post-harvest, much of which can be attributed 

to microbial spoilage (Gustavsson et al., 2011).  Dairy products constitute one of the 

leading sectors impacted by food loss in the US, as nearly 20% of conventionally 

pasteurized (high temperature short time; HTST) fluid milk is discarded prior to 

consumption each year (Kantor et al., 1997).  In the US, the shelf-life of fluid milk ranges 

from approximately 1-3 weeks.  Most consumer complaints result from the growth of 

psychrotolerant bacteria, typically either non-sporeforming Gram-negative rods or Gram-

positive sporeforming bacteria (Mayr et al., 1999; Hayes et al., 2002; Fromm and Boor, 

2004; Huck et al., 2008; Ranieri and Boor, 2009; Schmidt et al., 2011).  The presence of 

psychrotolerant, non-sporeforming bacteria (e.g., Pseudomonas) in pasteurized milk 

indicates either inadequate heating of the milk or, more commonly, post-pasteurization 

contamination (Eneroth et al., 2000).  Therefore, pasteurized milk contamination with 

Pseudomonas and other non-sporeforming bacteria can be controlled or eliminated by 

adhering to pasteurization specifications for minimum time and temperature 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!Published!in!Applied!and!Environmental!Microbiology!(Ranieri!et.!al.,!2012).!
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combinations (FDA, 2011) and by adhering to proper sanitation and equipment 

maintenance protocols, particularly with respect to milk filler sites (Ralyea and 

Wiedmann, 1998).  Conversely, Gram-positive psychrotolerant sporeformers can survive 

pasteurization as spores, germinate, and then grow during refrigerated storage to numbers 

capable of causing off-flavors or curdling of milk (Huck et al., 2007; Ranieri et al., 2009; 

Ranieri and Boor, 2009; De Jonghe et al., 2010).       

 The predominant Gram-positive sporeforming bacteria isolated from milk are 

Bacillus spp. and Paenibacillus spp.  Both Bacillus spp. and Paenibacillus spp. have been 

isolated from farm environments (e.g., soil, water, and feed), raw milk, dairy processing 

plants, and pasteurized milk (De Jonghe et al., 2010; Huck et al., 2008; Giffel et al., 

2002; Scheldeman and Goossens, 2004).  In HTST pasteurized milk, when post-

pasteurization contamination is excluded, Bacillus spp. represent the predominant 

bacteria found early in shelf-life (< 7 days).  However, during refrigerated storage of 

pasteurized milk, Paenibacillus spp. become the predominant spoilage organisms, 

typically representing over 95% of the bacterial population identified late in shelf-life (> 

10 days) (Ranieri and Boor, 2010).  Paenibacillus spp. are generally present in very low 

numbers in raw milk and early in pasteurized milk shelf-life, yet can reproduce to high 

numbers during cold-storage.  Numerous microbiological tests have been applied to raw 

milk with the goal of predicting shelf-life performance of the milk, but none are 

adequately predictive of HTST pasteurized fluid milk shelf-life (Martin et al., 2011).  

This, in part, is likely due to the inability of traditional microbiological tests to identify or 

quantify low levels (< 10 spores/ml) of Paenibacillus spp.  Currently, only limited 

phenotypic methods are available to differentiate between Bacillus spp. and closely 
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related Paenibacillus spp., including cold-growth, which requires 7 to 10 days of 

incubation, and lactose utilization, which can be difficult to interpret and is not a 

consistent indicator of sporeformer genus (Ivy et al., 2012).      

 The aim of this study was to develop a novel PCR assay targeting 16S rDNA so 

that specific identification of Paenibacillus spp. could be performed rapidly.  The 

objectives of this study were to: (i) design primers and a probe for detection of 

Paenibacillus spp. while limiting non-specific detection of closely related Bacillus spp. 

(ii) validate primers and probe using a real-time PCR assay on select Paenibacillus and 

Bacillus isolates from a collection of over 1200 isolates from fluid milk and dairy 

environments, and (iii) develop a systematic approach to aid in identification of 

Paenibacillus spp. from raw milk.  The results of this study will provide the food industry 

with an assay to monitor the quality of raw milk.  This assay may even be adapted to aid 

in the development of strategies to limit spoilage of other pasteurized, refrigerated foods 

like vegetable purees (Carlin et al., 2000; Guinebretiere et al., 2001) and fermented 

beverages (Haakensen and Ziola, 2008) .  Finally, our assay has potential for use as a 

screening tool to isolate novel enzyme producing Paenibacillus spp. from other foods 

(Piuri et al., 1998) and the natural environment (Naghmouchi et al., 2011; Sakai et al., 

2005), as previous identification of Paenibacillus strains has led to the discovery of many 

compounds with promising applications in agriculture and medicine (30).   

 

MATERIALS AND METHODS 

TaqMan Probe and Primer Design.  rpoB and 16S rDNA alignments were performed 

in MegAlign (DNASTAR, Inc. Madison, WI). rpoB sequences (632 bp) from a total of 
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1,288 isolates representing Paenibacillus (n = 737), Bacillus (n = 467), and genera 

formerly classified as Bacillus (n = 84) (e.g., Viridibacillus), collected from farm 

environments, raw milk, fluid milk processing plants, and HTST fluid milk products were 

analyzed to identify unique subtypes (Ivy et al., 2012).  rpoB sequences lacked sufficient 

conservation for design of TaqMan primers and probes that could detect all 737 

Paenibacillus sequences represented in this collection.  Therefore, alignments of partial 

(> 600 bp) 16S rDNA sequences representing each of the 283 rpoB subtypes identified 

among these Bacillus and Paenibacillus spp. were used to create consensus sequences for 

(i) all Paenibacillus rDNA sequences and (ii) all non-Paenibacillus rDNA sequences 

(which includes sequences for Bacillus, Lysinibacillus, Oceanobacillus, Psychrobacillus, 

Solibacillus, and Viridibacillus).  The consensus sequences were exported to Primer 

Express (Version 2.0.0 Applied Biosystems, Foster City, CA) for primer-probe design.  

Primers were designed to detect a conserved region within the Paenibacillus genus, while 

excluding Bacillus spp. and other closely related genera.  The designed amplicon was 158 

bp, and included a 24 bp probe located 34 bp downstream from the 5' end of the forward 

primer (see Table 4.1 for primers and probe).  The probe was labeled on the 5' end with 

6-carboxyfluorescein (FAM) and the 3' end with tetramethylrhodamine (TAMRA).  

Detailed information on all isolates used in this study, including 16S and rpoB sequences, 

can be accessed at www.pathogentracker.net.   

TaqMan Conditions.  Real-time PCR was conducted in a 12.5 µl reaction containing 

6.25 µl of 2X TaqMan Universal Master Mix (Applied Biosystems), 900 nM of each 

forward and reverse primer (MR-18_16S F, MR-19_16S R), 250 nM TaqMan probe 

(MR-21_16S Probe), and 1.375 µl water (Table 4.1).  Each reaction also contained 1.25 
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µl of 10X Exogenous Internal Positive Control (IPC) Mix and 0.25 µl of 50X Exogenous 

IPC DNA (PE Applied Biosystems).  Finally, 1.0 µl of DNA template was added to each 

reaction.  

 Real-time PCR was performed as follows:  1 cycle at 50°C for 2 min, 1 cycle at 

95°C for 10 min, and 40 cycles of denaturation at 95°C for 15 s followed by extension 

and annealing at 60°C for 1 min.  Threshold cycle (Ct) values represent the fractional 

PCR cycle in which fluorescence first passed a defined threshold for each sample 

amplification plot.  

Bacterial Isolate Selection and Assay Validation.  To validate the primers and probe, 

Paenibacillus and closely related Bacillus strains (n = 9 for each genus) were selected to 

represent the most frequently isolated rpoB allelic types (AT; i.e., those isolated ≥ 10 

times) from a collection of over 1200 isolates collected from dairy farms, processing 

plants, raw milk and pasteurized fluid milk (Ivy et al., 2012).  An additional 8 Bacillus 

(or closely related genera of Lysinibacillus, Oceanobacillus, and Viridibacillus) and 7 

Paenibacillus strains were included to represent genetic diversity (Table 3.2).    

 Pure bacterial cultures, stored in 15% glycerol at -80°C, were streaked onto brain-

heart infusion (BHI) agar (Difco, BD Diagnostics, Franklin Lakes, NJ) and grown for 18-

24 h at 32°C.  A single colony from plates that confirmed a pure culture was inoculated 

into 5 ml of BHI broth (Difco) and grown for 18-24 h at 32°C.  Total genomic DNA was 

extracted from 1 ml of overnight culture according to QIAamp DNeasy kit instructions 

(Qiagen Inc., Valencia, CA).  Purified DNA concentrations were determined using 

Hoechst Dye Assay (Thermo Fisher Scientific, Wilmington, DE) and standardized to 105 

genomes/µl. 
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 To determine amplification efficiency, genomic DNA from Paenibacillus 

odorifer isolate FSL H7-592, representing the predominant spoilage allelic type (AT15), 

was serially diluted (107 to 101 genomes/ml) to produce a standard curve.   Amplification 

efficiency was calculated using the following equation: E = [10(-1/slope)]−1. 

Detection Limit and Raw Milk Sample Testing.  To determine the detection limit for 

Paenibacillus in the presence of other bacteria in a complex matrix, raw milk was 

obtained from the Cornell Teaching and Research Center (Dryden, NY).  An overnight 

culture of Paenibacillus odorifer (FSL H7-592; AT15) was grown in BHI broth (Difco), 

then centrifuged at 10,000 × g (Eppendorf 5417C, Hamburg, Germany) and re-suspended 

in phosphate buffered saline solution (Weber Scientific, Hamilton, NJ) before serial 

dilution into the raw milk; final Paenibacillus concentrations of 105, 104, 103, 102, and 

101 CFU/ml of milk were achieved.  A negative control containing no added 

Paenibacillus DNA was also included.  To test the sensitivity of the PCR assay with a 

high background flora of mesophilic sporeforming bacteria typically found in milk, 100 

ml of raw milk was heated to 80°C and held for 12 min, cooled, and then incubated at 

32°C for 18 h before inoculation with Paenibacillus odorifer to achieve final 

Paenibacillus DNA concentrations of 105, 104, 103, 102, and 101 CFU/ml of enriched 

milk. The Norgen Milk Bacteria DNA Isolation Kit (Norgen Biotek Corp., Ontario 

Canada) was used according to manufacturer's instructions to extract DNA from 1 ml of 

all milk samples, and a final elution volume of 100 µl was obtained.  

Paenibacillus Assay Testing of Raw Milk Samples.  Approximately 400 ml of raw milk 

was collected from ten different farms across upstate NY from March to May of 2011.  

Bulk tank raw milk samples (n = 24) were shipped on ice to the Cornell University Milk 
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Quality Improvement Laboratory (Ithaca, NY).  Upon receipt, raw milk was spore-

shocked (80°C for 12 min) to eliminate vegetative cells and activate spores (Franks and 

Yousef, 2004).  Approximately 150 ml of milk was aliquoted to 4 sterile 250 ml screw-

capped Pyrex containers for aerobic plate count (APC) determination on the initial day of 

heat treatment and at days 7, 14 and 21 of storage at 6°C; APCs were performed 

according to Standard Methods for the Examination of Dairy Products (Franks and 

Yousef, 2004).  An additional 25 ml of spore-shocked milk was aliquoted into a sterile 

vial; this sample was incubated at 13°C for 48 h to encourage growth of Paenibacillus 

spp. while limiting Bacillus spp. growth.  Bacterial counts in the 13°C enrichment were 

monitored immediately following the spore-shock, at 24 h post spore-shock, and 48 h 

post spore-shock; bacterial counts were determined by plating 1 ml of milk over 5 BHI 

plates (200 µl per plate) supplemented with bromo-chloro-indolyl-galactopyranoside (X-

gal; 100mg/L; Gold Biotechnology, St. Louis, MO).  Plates were incubated at 32°C for 

24 h before enumeration. Plating onto BHI agar supplemented with X-Gal allowed for 

simultaneous APC determination and identification of β-galactosidase positive 

sporeforming bacteria, which, in milk, generally have been found to be Paenibacillus spp. 

(Ivy et al., 2012).  From APC plates, both X-gal positive and negative colony counts were 

recorded.  Up to 5 isolates, representing colonies with unique morphologies and including 

both β-gal positive and negative activity, were selected from each plate for Paenibacillus 

TaqMan PCR; crude lysates were prepared by touching a single colony with a sterile 

toothpick, transferring the cells into 100 µl of sterile water in a 1.5 ml Eppendorf tube 

(Eppendorf, Hamburg, Germany), vortexing briefly, then microwaving on high for 4 

minutes. TaqMan PCR results from colony lysates were interpreted as positive for 



! 31!

Paenibacillus if the Ct value was < 36.71; this cutoff value was the mean Ct for the non-

Paenibacillus isolates (38.66 ± 0.65) that were used to evaluate assay specificity (Table 

3.2) minus 3 standard deviations (to limit false-positive detection). An isolate 

representing each colony was also characterized to the genus and species level by 16S 

rDNA or rpoB sequence based subtyping, as previously described (Huck et al., 2007).  

 In addition to direct testing of colonies, total genomic DNA was isolated from 

milk, after incubation of the spore-shocked milk at 13°C for 48 h, using the Norgen Milk 

Bacteria DNA Isolation Kit.  Final elution volumes of 100 µl were collected and used in 

the TaqMan PCR reported here to test for the presence of Paenibacillus.   

 To test for an association between the detection of Paenibacillus colonies in raw 

milk samples (after heat-shock of milk, 48 h incubation at 13°C and plating onto BHI 

agar supplemented with X-gal) and final bacterial count in heat treated milk samples 

stored for 21 d at 6°C, Fisher's Exact tests were performed (JMP Version 8.0; SAS 

Institute Inc., Cary, NC).  Paenibacillus assay results were coded as presence (≥ 1 

Paenibacillus colony confirmed by TaqMan PCR) or absence (no detectable 

Paenibacillus colonies) depending on TaqMan colony PCR results.  For statistical 

analysis, final bacterial counts at day 21 were used to assign milk samples into one of two 

groups (≤ 2 × 104 or > 2 × 104 CFU/ml) based on the Pasteurized Milk Ordinance (PMO, 

2009) bacterial count limit of 2 × 104 CFU/ml for Grade A pasteurized fluid milk.  For 

descriptive analysis, milk samples with day 21 bacterial counts > 2 ×104 CFU/ml were 

separated into 'intermediate' (> 2 × 104 and ≤ 1 × 106 CFU/ml) and 'high' (> 1 × 106 

CFU/ml) categories, while day 21 bacterial counts ≤ 2 × 104 remained designated at 'low.'  

P-values less than 0.05 were considered significant. 
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RESULTS 

TaqMan allows for specific detection of Paenibacillus spp.  The TaqMan primers and 

probes designed here (Table 3.1) were first used to generate a standard curve based on 

mean Ct values from assays performed in duplicate with Paenibacillus DNA representing 

107 to 101 log genome copy numbers (Figure 3.1).  The linear regression line relating log 

genome copy number to Ct values was: y = -3.58x + 37.98 and the R2 value for the linear 

equation was 0.98.  The amplification efficiency for real-time PCR amplification was 

determined to be 90.11%.  

 
TABLE 3.1:  TaqMan primers and probe designed for the detection of Paenibacillus spp. 
16S rDNA. 

aDenaturation temperatures were calculated using the Sigma-Aldrich DNA calculator 
(Sigma-Aldrich, St. Louis, MO) 
 

The specificity of primers and probe for detection of Paenibacillus spp. was 

evaluated using 105 copies of genomic DNA isolated from 16 Paenibacillus isolates.  All 

16 Paenibacillus isolates were detected with the assay, and the mean Ct value was 19.14 

± 0.54 (Table 3.2).  The 16 isolates tested represented 16 rpoB allelic types (ATs).  These 

rpoB ATs represent over 56% (414/737) of Paenibacillus isolates previously collected 

from each of the four fundamental steps in dairy processing (i.e., from dairy farms [feed, 

bedding materials, manure, soil and milking parlor wash water], tank trucks, plant storage 

silos, and pasteurized milk) that were classified into these 16 ATs.  These ATs also 

represent five of the predominant rpoB ATs identified among sporeformer isolates 

Primer or probe Sequence (5'-3') Denaturation temp (°C)a

MR-18_16S F AAA TCA TCA TGC CCC TTA TG 61.1
MR-19_16S R CGA TTA CTA GCA ATT CCG ACT 59.8
MR-21_16S Probe CGT ACT ACA ATG GCC GGT ACA ACG 69.6
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obtained from HTST pasteurized milk processed in different geographical regions 

throughout the US (AT2, AT15, AT23 and AT27; isolated from milk processed in the 

Northeastern, Midwest, West, South and Southeastern US) (Ranieri and Boor, 2009).   

 

  

Figure 3.1: Standard curve for determination of amplification efficiency. Error bars 
indicate ±1 standard deviation for duplicate tests of each genome copy number. The 
average efficiency for real-time amplification was 90.11%. 
 

 A total of 17 isolates representing Bacillus and other genera closely related to 

Bacillus (i.e., Viridibacillus, Lysinibacillus, and Oceanobacillus) were also tested with 

the TaqMan PCR.  These isolates represented 17 unique rpoB ATs, including 9 common 

ATs (i.e., ATs that represented ≥ 10 isolates among a total of 551 non-Paenibacillus 

isolates).  In total, > 85% (470/551) of non-Paenibacillus isolates collected and  

 

Figure 1.  Standard curve for determination of amplification efficiency.  Error bars 

indicate ±1 standard deviation for duplicate tests of each genome copy number.  The 

average efficiency for real-time amplification was 90.11%. 
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Table 3.2: Bacterial isolates used to evaluate the specificity of a real-time PCR assay for 
detection of Paenibacillus spp.    

aBacillus AT1, AT6, AT17 and Paenibacillus AT2, AT15, AT23 and AT27 represent AT 
commonly isolated from HTST milk produced in plants throughout the US (35).  AT1, 
AT15, AT21 and AT27 also represent ATs commonly isolated throughout the dairy 
processing continuum (i.e., dairy farm environment, tank trucks, plant storage silos, and 
pasteurized milk) in New York State (20).    
bGroup ID based on phylogenetic comparison previously described (22). 
cNumbers are based on a total of 737 Paenibacillus and 551 non-Paenibacillus (i.e., 
Bacillus, Lysinibacillus, Oceanobacillus, Viridibacillus) dairy associated isolates 
characterized by rpoB sequence based subtyping (22).  AT isolated > 10 times considered 
predominant and used to test assay specificity; all other isolates included to represent 
unique phylogenetic clades based on partial rpoB sequence comparison. 
dSamples not detected in 40 cycles assigned ">40".  Samples without SD only detected in 
one of two replicates.

Isolate ATa Group IDb No. isolates in 
ATc Mean Ct

d 

FSL R5-510 1 Bacillus licheniformis s.l. 1 134 >40
FSL H7-687 3 Bacillus weihenstephanensis 19 >40
FSL R5-450 6 Bacillus licheniformis s.l. 1 35 39.53
FSL R5-213 17 Viridibacillus spp. 24 >40
FSL H7-346 20 Bacillus pumilus 24 >40
FSL H7-608 59 Bacillus cereus s.l. 26 >40
FSL R5-280 73 Viridibacillus spp. 18 >40
FSL H8-103 75 Bacillus weihenstephanensis 23 >40
FSL R5-860 158 Bacillus cereus s.l. 137 >40
FSL H3-288 34 Lysinibacillus spp. 3 >40
FSL H7-305 55 Bacillus clausii 2 >40
FSL H7-431 64 Bacillus sp. 2 2 >40
FSL H7-432 65 Bacillus subtilis s.l. 1 6 >40
FSL H7-719 84 Oceanobacillus chironomi 1 >40
FSL H7-729 85 Bacillus cf. flexus 1 38.65
FSL H8-493 135 Bacillus aerophilus s.l. 9 >40
FSL R5-231 140 Bacillus safensis 6 38.22 ± 0.34
FSL F4-077 2 Paenibacillus odorifer 1 52 19.06 ± 0.06
FSL F4-126 13 Paenibacillus odorifer 1 21 18.31 ± 0.25
FSL H7-592 15 Paenibacillus odorifer 1 112 19.09 ± 0.11
FSL F4-190 21 Paenibacillus odorifer 3 28 18.62 ± 0.18
FSL H7-689 23 Paenibacillus amylolyticus s.l. 35 18.88 ± 0.04
FSL F4-242 25 Paenibacillus odorifer 1 19 18.40 ± 0.08
FSL F4-248 27 Paenibacillus odorifer 1 79 19.01 ± 0.10
FSL R5-925 30 Paenibacillus odorifer 3 12 20.28 ± 0.22
FSL H3-442 32 Paenibacillus odorifer 1 16 19.43 ± 0.10
FSL F4-100 8 Paenibacillus lautus 3 18.92 ± 0.21
FSL H3-318 41 Paenibacillus sp. 1 3 19.87 ± 0.28
FSL R7-277 45 Paenibacillus graminis 1 3 19.02 ± 0.13
FSL H7-331 58 Paenibacillus sp. 10 5 19.95 ± 0.06
FSL H8-287 100 Paenibacillus cf. xylanilyticus 9 18.94 ± 0.04
FSL H8-551 157 Paenibacillus cf. peoriae 8 19.38 ± 0.23
FSL R5-978 163 Paenibacillus graminis 2 9 19.01 ± 0.14
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characterized from the fluid milk-processing continuum, including dairy farm 

environments, tank trucks, plant storage silos, raw and pasteurized milk were classified 

into the 17 ATs tested here. Overall, 14 isolates were negative in the TaqMan PCR (Ct > 

40), including 8/9 predominant Bacillus AT found in fluid milk or dairy processing 

environments.  The remaining three isolates (FSL R5-450, FSL H7-729, and FSL R5-

231) yielded weakly positive results in the TaqMan PCR (i.e., Ct values ≥ 38.22).  Isolate 

FSL R5-450, which represents a common AT (i.e., AT6, see Table 3.2) was negative in 

one and weakly positive in the other replicate (Ct = 39.53). FSL H7-729 (AT85, an isolate 

included for genetic diversity; Table 3.2) was also negative in one and weakly positive in 

the other replicate (Ct = 38.65).  Bacillus strain FSL R5-231 (AT140, an AT isolated only 

6 times) was the only non-Paenibacillus strain that yielded a positive result in both 

TaqMan replicates (Ct = 38.22 ± 0.34).   

Detection limit for vegetative Paenibacillus cells in raw milk is 3.25 × 101 CFU/ml. 

The ability of the assay to detect vegetative Paenibacillus cells in whole raw milk, with 

and without spore enrichment, was tested.  Detection of Paenibacillus in raw milk (no 

enrichment) inoculated with Paenibacillus isolate FSL H7-592 (AT15) was possible at 

concentrations ranging from 3.25 × 105 ± 0.21 × 105 CFU/ml (Ct = 26.14 ± 0.78) to as 

few as 3.25 × 101 ± 0.21 × 101 Paenibacillus CFU/ml (Ct = 39.15; only one of two 

replicates had a Ct < 40) (Table 3); background flora in the raw milk was present at 3.85 

× 103 ± 1.91 × 103 CFU/ml (Table 3.3).  The negative control was not detected in two 

biological replicates (Ct > 40). 

 The detection of Paenibacillus cells inoculated into spore activated and enriched 

raw milk ranged from 3.25 × 105 ± 0.21 × 105 Paenibacillus CFU/ml (Ct = 26.73 ± 0.09) 
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to 3.25 × 102 ± 0.21 × 105 Paenibacillus CFU/ml (Ct = 39.46; only one of two replicates 

detected).  Paenibacillus was not detected (Ct > 40) in the enriched milk sample 

containing 3.25 × 105 ± 0.21 × 105 CFU/ml or the negative control. While the Ct values at 

higher Paenibacillus concentrations (3.25 × 104 and 3.25 × 105 CFU/ml) were similar for 

both raw milk and spore enriched raw milk, at lower Paenibacillus concentrations (3.25 × 

101, 3.25 × 102, and 3.25 × 103 CFU/ml) the Ct values were higher for heat shocked and 

enriched samples. In enriched milk samples, the sensitivity of detection for Paenibacillus 

was approximately 10-fold lower when Paenibacillus was inoculated in the non-enriched 

raw milk (with a mean background flora of 3.85 × 103 ± 1.91 × 103 CFU/ml) as compared 

to when Paenibacillus was inoculated in the enriched milk samples, which showed a 

background flora of 4.65 × 107 ± 0.21 CFU/ml.  A high concentration of mesophilic 

sporeforming (i.e., Bacillus) bacterial 16S rDNA may have contributed to the decreased 

Paenibacillus sensitivity observed in the enriched milk samples. 

 
Table 3.3: Sensitivity of Paenibacillus detection using real-time PCR. 

 
aMean aerobic plate count of raw milk: 3.85 ×103 ± 1.91×103 CFU/ml. 
bMilk was incubated at 32°C for 18 h to achieve high levels of competitive microflora. 
The mean aerobic plate count post enrichment was: 4.65 ×107 ± 0.21 ×107 CFU/ml. 
cOnly one of two sample replicates detected in 40 cycles. 
dSamples not detected in 40 cycles assigned Ct ">40."

Paenibacillus inoculated into 
raw milka

Paenibacillus inoculated into heat-shocked and 
enriched (32°C for 18 h) raw milkb

3.25 × 105 ± 0.21 ×105 26.14 ± 0.78 26.73 ± 0.09
3.25 × 104 ± 0.21 ×104 29.47 ± 0.40 30.80 ± 0.50
3.25 × 103 ± 0.21 ×103 31.76 ±1.20 38.22 ± 0.06
3.25 × 102 ± 0.21 ×102 35.61 ± 0.95 39.46c

3.25 × 101 ± 0.21 ×101 39.15c >40d

Negative Control >40d >40d

Paenibacillus (CFU/ml)
Ct after
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Assay detects low levels of Paenibacillus spores capable of germination and 

outgrowth to spoilage levels in milk.  In order to evaluate the utility of the 

Paenibacillus TaqMan colony PCR, we also compared results from Paenibacillus 

detection in raw milk by TaqMan colony PCR to bacterial counts of milk stored at 6°C 

post heat-treatment. Briefly, 24 raw milk samples collected from farm bulk tanks were (i) 

evaluated by the TaqMan colony PCR and (ii) subjected to simulated HTST 

pasteurization, followed by monitoring of bacterial numbers in the HTST treated milk 

over a simulated shelf life of 21 days (i.e., incubation at 6°C) (Figure 3.2). While initial 

day counts for all 24 milk samples were below 2 × 102 spores/ml, and ranged from < 1 

spore/ml to 117 spores/ml (mean of 11 spores/ml), subsequent bacterial outgrowth varied. 

At day 21 post spore-shock treatment, bacterial numbers in the milk samples ranged from  

< 10 CFU/ml (8 samples) to 4.37 × 107 CFU/ml (Sample D-3, Table 3.4).  Bacterial 

numbers after storage at 6°C for 21 d were categorized: 5 samples had bacterial counts > 

1 ×106 CFU/ml (high); 16 samples remained < 2 × 104 CFU/ml (low); and 3 had numbers 

between 2 ×104 and 1 ×106 CFU/ml (intermediate).  In 4/5 milk samples that reached 

bacterial numbers over 1 × 106 CFU/ml by day 21, Paenibacillus was detected by 

applying the Paenibacillus TaqMan to β-gal positive colonies recovered from raw milk 

after a 48 h enrichment at 13°C (t = 48 h assay result [+]; Figure 3.2).  For sample D-4, 

total bacterial counts were 4, 15, and 153 CFU/ml after enrichment at 13°C for 0, 24 and 

48 h, respectively.  Of these counts, 0 β-gal positive CFU/ml were identified at t = 0, 5 β-

gal positive CFU/ml were identified at t = 24, and 114 β-gal positive CFU/ml at t = 48 h.   
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Figure 3.2:  Aerobic plate counts of spore shocked milk stored at 6°C for 21 days.  For 
each milk sample (n = 24), the Paenibacillus TaqMan assay was applied to individual 
colonies following heat treatment (80°C for 12 min), enrichment (13°C for 48 h), and 
plating of raw milk samples.  Assay results indicate presence (+) or absence (-) of one or 
more Paenibacillus colonies. The horizontal line at 4.3 log CFU/ml indicates the 
maximum permissible bacterial count in high temperature short time pasteurized milk in 
the US.  The horizontal line at 6 log CFU/ml indicates the maximum bacterial count 
typically associated with sensory scores of 8 and above ("good" flavor) on a 10 point 
scale.  
 

Representative blue colonies selected from t = 24 (FSL R7-693) and t = 48 h (FSL R7-

708) were identified as Paenibacillus by the TaqMan colony PCR reported here (Ct = 

22.56 and 21.69, respectively).  Confirmation of genus and species was performed by 

rpoB or 16S rDNA sequence-based characterization, and isolates FSL R7-693 and FSL 

R7-708 were determined to be Paenibacillus peoriae and Paenibacillus polymyxa, 

respectively.  By day 21, milk sample D-4 reached a bacterial count of 9.33 × 106 
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CFU/ml.  The predominant spoilage bacteria identified in the heat-treated milk stored at 

6°C for 21 d was also determined to be Paenibacillus.     

 Only one sample reached the "high" bacterial count category (> 1 × 106 CFU/ml) 

after storage for 21 d at 6°C and did not contain detectable Paenibacillus after enrichment 

(D-3; Table 3.4).  For the raw milk corresponding to this sample, the aerobic plate counts 

were 2, 2, and < 1 CFU/ml following 0, 24, and 48 h of enrichment.  The only colonies 

obtained at t = 0 and t = 24 h were determined to be Bacillus (Table 3.4).  After 21 days  

of storage at 6°C, the bacterial count of sample D-3 reached 4.37 × 107 CFU/ml; the 

predominant organisms detected at this time were Paenibacillus, suggesting that very low 

levels (< 1 spore/ml) of Paenibacillus are still capable of reaching high numbers in 

pasteurized products stored at refrigeration temperatures.    

 Among the 3 milk samples reaching intermediate bacterial counts by day 21 of 

cold storage (samples C-5, D-5, and J-5), only sample C-5 contained detectable 

Paenibacillus colonies during the 13°C enrichment and plating on BHI supplemented 

with X-gal.  Aerobic plate counts during enrichment of sample C-5 were 117 (6 β-gal 

positive colonies), 87, and 550 (10 β-gal weakly positive [partial or light blue] colonies) 

at 0, 24 and 48 h enrichment times, respectively.  Two isolates, FSL R7-726 and FSL R7-

727, from the t = 0 plating were β-gal positive and were determined to be Paenibacillus 

by the TaqMan colony PCR (Ct = 21.5 and 23.9, respectively).    
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Characterization by rpoB sequence analysis confirmed both isolates as Paenibacillus.  

Plating at 24 h of enrichment yielded only Bacillus colonies (n = 3), however, one 

Paenibacillus colony was identified after 48 h of enrichment (FSL R7-739; Ct = 18.98).  

After storage at 6°C for 21 d, the bacterial count for milk sample C-5 reached 6.76 × 105 

CFU/ml, and the predominant bacteria identified was Paenibacillus.  The other two milk 

samples (D-5 and J-5) in the "intermediate" count category contained no detectable 

Paenibacillus.   Plating at 0, 24 and 48 h during sample enrichments yielded no β-gal 

positive colonies. Analysis of colonies using the Paenibacillus TaqMan determined 

colonies to be genera other than Paenibacillus (Ct > 40).  rpoB sequence-based 

characterization identified all 5 isolates collected from enrichment samples as Bacillus 

pumilus or licheniformis (FSL R7-740 to FSL R7-745).  The predominant spoilage 

organism identified after storage of milk samples at 6°C for 21 d was determined to be 

cold-tolerant Bacillus weihenstephanensis.  Final bacterial counts were 3.55 and 1.95 × 

105 CFU/ml for samples D-5 and J-5, respectively.  

 A total of 16 raw milk samples had bacterial counts below 2 × 104 (4.30 log) 

CFU/ml after storage at 6°C for 21 d (Table S1).  During enrichment of those samples, 54 

isolates were collected and only one sample (H-5) contained detectable Paenibacillus.  

After 48 h of enrichment, plating of sample H-5 resulted in 12 CFU/ml, 5 of which were 

weakly β-gal positive.  β-gal weakly positive isolate FSL R7-747 was tested with the 

assay and determined to be Paenibacillus (Ct = 20.37).  rpoB based characterization 

confirmed FSL H7-747 identification of Paenibacillus.  Following storage of milk 

sample H-5 for 21 d at 6°C, the bacterial count was 2.88 × 101 CFU/ml. 
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 Results for the 24 milk samples were tested for a statistical association between 

detection of Paenibacillus (Table S1; Paenibacillus colonies detected in 6 of 24 samples 

at T = 48 h) and final APC after heat treatment and storage of raw milk samples for 21 d 

at 6°C.  In raw milk samples where Paenibacillus was detected, there was a significant 

association with higher bacterial counts at d 21 (> 2 × 104 CFU/ml; P = 0.0069).     

 Overall, a total of 109 bacterial isolates were collected during screening for 

Paenibacillus colonies by 13°C enrichment for 48 h and plating onto BHI supplemented 

with X-gal.  Of these, 97 isolates were β-gal negative; 96/97 β-gal negative isolates were 

also negative in the TaqMan colony PCR (Ct  > 40; Table S1).  The only β-gal negative 

colony that yielded a positive signal with the TaqMan colony PCR (FSL R7-679, Ct = 

18.37) was confirmed as Paenibacillus by rpoB sequence-based characterization.  rpoB 

sequence-based identification identified the remaining 96 isolates as: Bacillus (n = 92), 

Brevibacillus (n = 2),  Oceanobacillus (n = 1), and Staphylococcus (n = 1).  All 9 β-gal 

positive colonies were positive in the TaqMan colony PCR (mean Ct = 21.57 ± 2.26).  

There were also 3 weakly β-gal positive (+/-; Table S1) colonies.  Based on rpoB 

characterization, 2/3 of these colonies were identified as Paenibacillus and were detected 

with the TaqMan PCR (FSL R7-739 and FSL R7-747; Ct = 18.98 and 20.37, respectively).  

The remaining weakly β-gal positive colony (FSL R7-712) was determined to be Bacillus, 

and was not detected by the TaqMan colony PCR (Ct  > 40).   

 In addition to testing individual colonies, total genomic DNA was collected from 

each of the 24 raw milk samples after 48 h of incubation at 13°C.  Among these samples, 

only one milk sample was positive for Paenibacillus with the TaqMan PCR (G-4; 190 β-

gal positive CFU/ml; Ct = 34.49 ± 0.81).  This suggests that Paenibacillus contamination 
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in the raw milk is typically at levels below the detection limit of the TaqMan PCR when 

used on DNA directly extracted from milk (i.e., < 3.25 × 101 ± 0.21 spores/ml).   

 

DISCUSSION 

Our real-time PCR based approach represents an improved tool for identifying the 

predominant psychrotolerant sporeforming spoilage bacteria associated with pasteurized 

fluid milk stored at refrigerated temperatures.  Based on a diverse collection of aerobic 

sporeforming bacteria, which included over 1200 isolates collected from different 

segments of the dairy production continuum (Ivy et al., 2012), we targeted Paenibacillus 

spp., the microbes that present the current biological limit to extension of pasteurized 

fluid milk shelf-life.  Our detection method requires heat-treating raw milk at 80°C for 12 

min to activate spores and eliminate vegetative bacterial cells, followed by a 48 h 

enrichment at 13°C to enrich for psychrotolerant bacteria.  After enrichment, milk 

samples are plated onto BHI supplemented with X-gal to allow direct colony screening of 

colonies, including β-gal positive colonies, which, in milk, generally represent 

Paenibacillus spp.  Next, crude colony lysates are prepared for immediate testing of 

individual colonies using our TaqMan PCR, and final testing results (i.e., Paenibacillus 

or non-Paenibacillus spp.) can be obtained within a few hours.  Overall, this colony 

screening strategy combined with a TaqMan PCR presents a novel approach for detecting 

Paenibacillus in raw milk, and for predicting psychrotolerant bacterial outgrowth in milk 

held at 6°C.  

A Paenibacillus real-time PCR assay has potential applications for detection of 

psychrotolerant sporeforming bacteria in a variety of foods.  Few rapid, molecular 
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based detection methods targeting sporeforming bacteria responsible for food spoilage 

have been developed (Luo et al., 2004; Fernández-No et al., 2011; Jang et al., 2011), and 

of these, none have focused on Paenibacillus, the psychrotolerant sporeforming genera 

associated with dairy spoilage.  The absence of appropriate tools may reflect, in part, the 

fact that bacterial ecology present in pasteurized fluid milk has only recently been 

characterized at the molecular level, which led to identification of Paenibacillus as the 

predominant fluid milk sporeforming spoilage genera (Fromm and Boor, 2004; Huck et 

al., 2008; Ranieri and Boor, 2009; Ivy et al., 2012).  Rapid methods to detect 

sporeforming bacteria have primarily focused on foodborne pathogens, e.g., Bacillus 

cereus (Martínez-Blanch et al., 2009; Wehrle et al., 2010; Gracias and McKillip, 2011), 

that pose a significant health threat.  However, the presence of sporeforming bacteria that 

can resist multiple processing hurdles and affect food product quality represents 

considerable economic and food security concerns.  One commercial assay has been 

developed by Pall GeneSystems for the detection of spore-forming bacteria in food 

(Postollec et al., 2010).  However, when testing 34 food matrices, the authors reported the 

detection system was unable to identify any Paenibacillus.  Conversely, when applying 

standard methods to the same 34 food matrices, researchers were able to identify 

Paenibacillus in sliced nuts and chocolate (Postollec et al., 2010), which illustrates the 

difficulty of reliably identifying low levels of Paenibacillus in food.  Other than this 

method, development of assays for Paenibacillus spp. to date has focused on P. larvae 

(Martínez et al., 2010; Chagas et al., 2010), an important honeybee pathogen.  Thus, an 

assay targeting psychrotolerant Paenibacillus associated with milk spoilage represents a 

new and important tool for the dairy industry to identify high quality raw milk, as well as 
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potential contamination sites at the farm and processing facility level.  Sporeformers, 

including Paenibacillus, have the potential to form biofilms (Yegorenkova et al., 2011), 

reside within processing facilities (Huck et al., 2007), and have been isolated from 

paperboard packaging (Pirttijärvi et al., 1996).  Thus, it is important to develop sensitive 

tools for detection of spoilage organisms and to apply them throughout the processing 

chain to identify entry points to enable development of control strategies to reduce 

spoilage and improve the quality of our foods.  In the future, our assay could be extended 

to other refrigerated and pasteurized foods, including processed vegetables (Carlin et al., 

2000; Guinebretiere et al., 2001; Fangio et al., 2010) where psychrotolerant Paenibacillus 

are a potential spoilage concern.   

Direct PCR based detection of Paenibacillus in raw milk to predict shelf-life is 

challenging due to the high sensitivity required.  Previous studies have demonstrated 

that low spore levels are typically found in raw milk.  For example, sampling of raw milk 

from 43 processing plant silos in New York State yielded a mean aerobic spore count of 

52 spores/ml (Martin et al., 2011).  Additional studies in Europe reported similar findings, 

as mean counts of 131 mesophilic aerobic spores/ml (Stulova et al., 2010) and < 100 

spores/ml of raw milk (Giffel et al., 2002) were detected.  Of these aerobic spores, only a 

small percentage are likely to be Paenibacillus, as a number of studies have found 

Bacillus spp. comprise the majority of spores identified in raw, and in recently heat-

treated milk (Fromm and Boor, 2004; Huck et al., 2008; Coorevits et al., 2008; Ranieri et 

al., 2009).  Consistent with this, only 12/109 (11%) isolates collected during our study 

represented Paenibacillus spp., and 9/12 of those Paenibacillus isolates were detected 

only after enrichment for 24 or 48 hours at 13°C.  Thus, due to the low levels of spores 
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naturally present in raw milk, particularly of psychrotolerant Paenibacillus spp., an 

enrichment or concentration step is needed to improve assay sensitivity.   

 In addition to low levels of Paenibacillus spp., high levels of closely related 

Bacillus spp. further complicate detection, particularly for assays targeting 16S rDNA.  

The detection limit for our assay increased nearly 10-fold when Paenibacillus were 

inoculated into heat-shocked and enriched (32°C for 18 h) raw milk.  This reduction in 

sensitivity is likely due to high levels of closely related Bacillus spp. competing for 

primers and probe.  Postollec and colleagues (Postollec et al., 2010) encountered cross 

reactivity when testing a commercial assay based on 16S rDNA primers and probes, and 

reported Paenibacillus detection with Bacillus primers and vice versa.  Many Bacillus 

and Paenibacillus spp. share over 99% identity based on partial (632 bp) 16S rDNA 

analysis (Ivy et al., 2012).  Therefore, continued development of new assays, particularly 

through leveraging full genome sequencing technologies and concentrating on defining 

characteristics of sporeforming bacteria, such as the differential presence of cold growth 

genes (Francis et al., 1998), will be critical to further improve detection capabilities.  

PCR based detection of individual colonies after enrichment and plating allows for 

sensitive and specific detection of Paenibacillus spp.  Results from TaqMan detection, 

performed on DNA extracted from milk samples, were predominantly negative due to 

low levels of Paenibacillus and competition from closely related Bacillus spp.  Our 

observed detection limit for Paenibacillus inoculated into raw milk was 3.25 × 101 

CFU/ml, which explains why only 1/24 raw milk samples tested positive for 

Paenibacillus.  However, plating the same spore-shocked and enriched milk samples onto 

BHI supplemented with X-gal allowed for detection of Paenibacillus in 6/24 raw milk 
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samples.  Therefore, use of a TaqMan colony PCR following a short enrichment and 

plating on BHI supplemented with X-gal greatly improves the reliability of the assay.  

Direct colony screening allowed us to lower the detection limit for Paenibacillus from 

3.25 × 101 CFU/ml to 1 CFU/ml when a 1 ml sample was plated.  In addition to improved 

sensitivity, the colony screening method avoids the time and costs associated with 

genomic DNA purification steps.    

 The colony screening method employs two important phenotypes that aid in 

distinguishing Paenibacillus from other sporeformers: cold-growth and β-galactosidase 

activity.  In general, Paenibacillus spp. are capable of growth at 6°C, whereas most 

Bacillus spp. are not; the most notable exception is Bacillus weihenstephanesis (Ivy et al., 

2012).  By applying a 48 h incubation step for heat shocked milk at 13°C, we were able 

to enrich for psychrotolerant Paenibacillus without promoting growth of mesophilic 

Bacillus spp., which typically represent a higher proportion of spores in raw milk.  

However, two samples (C-5 and J-5) reached counts above the Pasteurized Milk 

Ordinance (FDA, 2011) limit for pasteurized milk (> 20,000 CFU/ml) after storage at 

6°C for 21 d, and were not detected by our assay.  The predominant spoilage organism in 

the two milk samples was determined to be B. weihenstephanensis. This outcome 

demonstrates the need for a detection system that utilizes genetic targets, such as cold 

growth genes, shared by the psychrotolerant spoilage organisms of concern (i.e., 

Paenibacillus spp. and B. weihenstephanensis).   

 In addition to cold-growth, β-galactosidase activity proved useful in identification 

of Paenibacillus.  Previous work has shown that the majority of dairy-associated 

Paenibacillus subtypes are β-galactosidase positive, whereas the majority of Bacillus 
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subtypes are not (De Jonghe et al., 2010; Ivy et al., 2012).  However, as some dairy-

associated Bacillus isolates have expressed positive or weakly positive β-gal activity, this 

phenotypic test cannot be completely relied upon to distinguish Paenibacillus from other 

sporeformers (Ivy et al., 2012).  In fact, we identified two β-gal weakly positive isolates 

and one β-gal negative isolate as Paenibacillus by TaqMan colony PCR and rpoB 

sequence based characterization.  Thus, the combination of β-gal screening and a 16S 

rDNA TaqMan assay proved necessary for accurate and sensitive detection of 

Paenibacillus spp..  Application of this culture dependent assay to screen for 

Paenibacillus spp. in non-dairy environments could facilitate identification of strains 

with important metabolic capabilities (e.g., production of polymyxin, bio-remediation, or 

nitrogen fixing ability) of importance to agriculture, food processing, and medicine 

(Sakai et al., 2005; Naghmouchi et al., 2011; Shaheen et al., 2011).       

 Conclusion.  We developed a sensitive and specific TaqMan assay that can detect 

psychrotolerant sporeforming Paenibacillus spp. associated with dairy spoilage.  While 

the low levels of spores initially present in raw milk prevented direct detection of 

Paenibacillus in DNA extracted from raw milk or from enriched milk samples, an 

alternative colony screening method proved feasible.  A 16S rDNA-based TaqMan assay 

on crude colony lysates obtained from heat-shocked milk that had been enriched at 13°C 

for 48 h and plated on BHI supplemented with X-gal provided fast and accurate 

identification of Paenibacillus.  Overall, the assay provides an improved tool for the 

dairy industry to differentiate raw milk with the potential for lower post-pasteurization 

bacterial outgrowth.  Further development of rapid and effective detection methods for 
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psychrotolerant sporeformers within a comprehensive farm to fork framework are needed 

for improved control of these important spoilage organisms in the food supply.  
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CHAPTER FOUR 
 

PREDICTION OF SALMONELLA SEROVARS BY DNA-BASED SUBTYPING 

METHODS AND A PCR AND SEQUENCE-BASED SEROTYPING METHOD 

FOR IDENTIFICATION OF O, H1 AND H2 ANTIGENS5 
 
 

INTRODUCTION 

 Salmonellosis is a considerable public health concern as non-typhoidal 

Salmonella serovars cause an estimated 93.8 million cases of gastroenteritis globally 

each year (Majowicz et al., 2010).  The genus Salmonella is divided into two species, 

Salmonella enterica and Salmonella bongori.  Salmonella enterica is further divided 

into 6 subspecies, including subspecies I (enterica), II (salamae), IIIa (arizonae), IIIb 

(diarizonae), IV (houtenae), and VI (indica) (Grimont and Weill, 2007).  The 

traditional method of subtyping Salmonella, below the subspecies level, has been 

serotyping, which has been applied for over 70 years (Grimont and Weill, 2007; 

Guibourdenche et al., 2010). Serotyping can provide valuable information regarding 

likely pathogen sources (as certain serovars are associated with specific hosts or 

geographical regions), potential disease severity, and potential antimicrobial resistance 

of Salmonella isolates. Identification of Salmonella serovars thus remains an important 

public health diagnostic need.  There are over 2,600 currently recognized serovars, 

with the majority (over 1,500) belonging to S. enterica subsp. enterica, which is also 

the group of greatest clinical relevance due to its common association with humans 

and warm-blooded animals (CDC, 2011).   

 Traditional serotyping is performed according to the White-Kauffmann-Le 

Minor scheme, which identifies the somatic (O) and flagellar (H) antigens based on 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!Submitted!to!the!Journal!of!Clinical!Microbiology!
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agglutination of bacteria with specific sera (Grimont and Weill, 2007). Despite its 

widespread use, traditional serotyping does have a number of drawbacks.  Serotyping 

of Salmonella takes at least 3 days to complete, is labor intensive, requires 

maintenance of over 250 typing sera as well as 350 different antigens, and is unable to 

type rough or mucoid strains.  Furthermore, traditional serotyping is often not 

sensitive enough to provide the level of discrimination needed for foodborne illness 

outbreak investigations, and cannot be used to infer phylogenetic relationships. 

Currently, 46 somatic (O) and 114 flagellar (H) variants for Salmonella have been 

identified (Grimont and Weill, 2007).  The O antigen is a component of the 

lipopolysaccharide that is exposed on the bacterial cell surface, and multiple O 

antigens may be expressed together at the same time (Samuel and Reeves, 2003; 

Reeves et al., 1996).  Genes responsible for O antigen expression (e.g., sugar 

transferases, O antigen flippase [wzx], and polymerase [wzy]) are located within a 

large regulon called the rfb cluster (Samuel and Reeves, 2003).  Comparison of wzx 

and wzy genes from common serogroups has shown that these genes have little 

similarity even at the amino acid sequence level, making wzx and wzy appropriate 

candidates for serogroup-specific primer design (Fitzgerald et al., 2003; Herrera-León 

et al., 2007).  Additional work has shown that sugar synthase genes within the rfb 

cluster can be targeted to distinguish between common serogroups (Luk et al., 1993).  

The genes responsible for the flagellin structure are fliC (phase 1 flagellin) and fljB 

(phase 2 flagellin).  Both fliC and fljB are generally conserved at the terminal ends, but 

highly variable in the central region that encodes antigens (Joys, 1985; McQuiston et 

al., 2004).  A number of studies have utilized variability in the rfb region, fliC and fljB 

to identify serovars, typically using probe based assays or PCR strategies (Franklin et 

al., 2011; Yoshida et al., 2007; McQuiston et al., 2011).  While these approaches have 

been reported to show good concordance with traditional serotyping, limitations of 
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these methods include problems with characterization of new or unusual serovars or 

allelic variants that do not react with existing primers or probes (Franklin et al., 2011; 

Yoshida et al., 2007; McQuiston et al., 2011).  

 In addition to serotype identification through use of genetic targets that are 

directly responsible for O and H antigen expression, molecular subtyping methods 

(e.g., pulsed-field gel electrophoresis [PFGE]) can be used to predict the serovars of 

Salmonella isolates. In addition to PFGE (Zou et al., 2012; Kérouanton et al., 2007), 

ribotyping (Esteban et al., 1993; Bailey et al., 2002), repetitive extragenic palindromic 

sequence-based PCR (rep-PCR) (Wise et al., 2009; Chenu et al., 2011), multi-locus 

sequence typing (MLST) (Kotetishvili et al., 2002; Achtman et al., 2012), and 

molecular typing based on genomic markers (Wattiau et al., 2008b; Kim et al., 2006) 

have been investigated for their ability to replace or complement traditional serotyping.  

While many of these methods have been able to reliably predict a limited set of 

serovars, they still lack widespread adoption, likely due to requirements for 

specialized equipment as well as a lack of proven reliability for predicting Salmonella 

serovars.  Furthermore, these methods are based on genomic targets that are not 

directly responsible for antigen expression, which may lead to serovar 

misidentification, particularly for newly emergent serovars (e.g., 4,5,12:i:-), which 

may be misidentified as the serovar of the evolutionary ancestor (Soyer et al., 2009; 

Moreno Switt et al., 2009).  To facilitate further development and implementation of 

DNA-based approaches for serovar identification of Salmonella isolates, we compared 

the ability to predict serovars between different molecular subtyping methods (i.e., 

PFGE, rep-PCR, ribotyping, and MLST) and a newly implemented combined PCR 

and sequencing based approach that directly targets O and H antigen encoding genes. 
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MATERIALS AND METHODS 

Bacterial Isolates. Salmonella isolates were selected to include representation of (i) 

the top 20 serovars among US human sources, the top 20 serovars among US non-

human sources, and the top 20 serovars among non-clinical nonhuman sources (all as 

reported to CDC) (CDC, 2006) and (ii) the top 20 serovars among human sources 

worldwide (as reported to the WHO) (Galanis et al., 2006); this strategy identified a 

total of 40 serovars (Table S1). Two isolates were chosen to represent the 5 most 

commonly reported serovars (i.e., Typhimurium, Enteritidis, Newport, Heidelberg, 

and Javiana), and a single isolate of Typhimurium var. 5- (formerly Salmonella var. 

Copenhagen) was included, for a total of 46 isolates.  In addition, we assembled a set 

of 70 isolates that included all additional 63 serovars present on our laboratory strain 

collection; these isolates represent less common (rare) serovars not represented in the 

top 40 set (Table S1).  Finally, seven isolates that included incomplete serovar 

information (e.g., IIIb 35:Rough) or that were identified as “Untypable” by traditional 

serotyping were included in the less common isolate set.  Detailed isolate information 

can be found at www.foodmicrobetracker.com under the isolate ID (e.g., FSL R8-

1987). 

PFGE.  PFGE with XbaI (Roche Molecular Diagnostics, Pleasanton, CA) was 

performed according to the CDC PulseNet protocol using a CHEF-Mapper (Bio-Rad 

Laboratories, Hercules, CA) (RIBOT et al., 2006). The CDC Salmonella Braenderup 

strain H9812 was used as the reference (Hunter et al., 2005). PFGE gel images were 

captured with the Gel ChemiDoc system (Bio-Rad Laboratories).  BioNumerics 

version 5.1 (Applied Maths, Austin, TX) was used to analyze the PFGE patterns. 

Similarity analysis was performed using the Dice coefficient and clustering was 

performed using the unweighted pair group method by arithmetic mean.  PFGE 

patterns for test isolates were compared against a custom PFGE database available in 
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the Cornell Food Safety Laboratory (FSL); this database included, at the time of 

analysis, 5,935 isolates representing 170 serovars (this database is available upon 

request). A serovar was assigned to a given test isolate based on the serovar associated 

with the isolate that provided the top match in the PFGE pattern comparison; only 

PFGE patterns that showed ≤ 3 band differences to the pattern of the test isolate were 

considered; if a test isolate did not match any isolate in the database by ≤ 3 band 

differences, the serovar for the isolate was considered “Unidentified.” 

rep-PCR. Salmonella isolates were cultured on BHI agar for 18 h at 37°C, and the 

UltraCleanTM Microbial DNA Isolation Kit (Mo Bio Laboratories, Solana Beach, CA) 

was used to extract DNA according to the manufacturer's instructions.  All DNA 

samples were amplified using the DiversiLab Salmonella Kit for DNA fingerprinting 

(bioMerieux, Inc., Durham, NC) according to the manufacturer's instructions.  

Analysis of rep-PCR patterns was conducted as previously described (Wise et al., 

2009), using DiversiLab software version 3.4.  The 'Top Match' feature of the software 

was utilized; a query sample that matched a serovar library entry at > 85% was 

considered to represent a positive identification.  At the time of analysis the rep-PCR 

database included 313 isolates (309 S. subsp. enterica and 4 S. subsp. arizonae 

isolates) representing 55 serovars.  

Ribotyping. Automated ribotyping with the restriction enzyme PvuII was performed 

using the RiboPrinter microbial characterization system, and reagents from the DuPont 

Qualicon ribotyping kit according to the manufacturer's instructions (DuPont 

Qualicon, Wilmington, DE).  PvuII patterns were compared, using the RiboPrinter 

software, against the DuPont Salmonella PvuII database, which at the time of analysis 

included 592 isolates representing 227 serovars. The top match was used to predict the 

serovar of a tested isolate; if no pattern in the DuPont database matched with >70% 

similarity, the isolate serovar was reported as “Unidentified.”  
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MLST. Partial sequencing of seven housekeeping genes (aroC, dnaN, hemD, hisD, 

purE, sucA, and thrA) was performed as previously described (Kidgell et al., 2002) at 

the Cornell University Life Sciences Core Laboratories Center (Ithaca, NY).  

Sequences were assembled and analyzed using Lasergene 7.2.1 software (DNAstar).  

Allelic type (AT) and sequence type (ST) numbers were assigned by submitting the 

sequences and strain information to the Salmonella MLST website 

(http://mlst.ucc.ie/mlst/dbs/Senterica).  When a sequence from a Salmonella isolate 

matched an existing ST in the database, the serovar information for the existing ST 

was assigned to our query.  For new STs, the nearest ST (matching 6/7 ATs) was used 

to assign a serovar; all new ATs (including corresponding electropherograms) and STs 

were submitted to the MLST database.  All sequences for the 7-gene MLST are 

available at www.foodmicrobetracker.com.  

DNA Preparation for PCR.  For PCR amplification of O serogroups, fliC and fljB, 

total genomic DNA was extracted from 1 mL of overnight culture in BHI according to 

QIAamp DNeasy kit instructions (Qiagen Inc., Valencia, CA).  DNA concentrations 

were determined using Nanodrop 1000 (Thermo Scientific, Wilmington, DE) and 

standardized to 25 ng/ml. 

PCR detection of O serogroups.  PCR detection of serogroups was performed using 

(i) a multiplex PCR that identifies serogroups O:4, O:7, O:8, O:9, and O:3,10 (19) and 

(ii) two separate single PCRs that identify O:13 (12) and O:18 (13); PCRs were 

performed using previously published primers (Table 4.1) and optimized PCR 

conditions (Table S2). PCR products were separated by agarose gel electrophoresis 

using Tris-acetate-EDTA buffer and visualized by staining with 0.005% ethidium 

bromide. PCR products obtained from select O antigen PCRs were also sequenced, 

using standard methods as detailed below. 
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PCR amplification and sequencing of genes encoding H1 and H2 antigens. 

Amplification of fliC and fljB was performed using primers (Table 4.1) and optimized 

PCR conditions (Table S2) previously described (Mortimer et al., 2004; Imre et al., 

2005). We also designed an alternative set of fljB PCR primers (fljB set 2; Table 4.1) 

that was used for amplification of an approximately 1600 nt fragment (see Table S2 

for PCR conditions); this set was designed as the previously described set of fljB 

primers (fljB Set 1, Table 4.1) did not allow for reliable amplification of fljB, 

predominately among isolates representing rare serovars (Table S1 details primers that 

were used for each isolate). Prior to sequencing, all PCR products were purified using 

Exonuclease I and shrimp alkaline phosphatase according to the manufacturer's 

instructions (Affymetrix, Cleveland, Ohio).  As sequencing with previously published 

fliC or fljB primers only provided single coverage of the PCR product, newly designed 

primers MR-1_forward and MR-2_reverse (Sequencing Set 1) were used to obtain 

double coverage of the variable internal regions in fliC or fljB (Table 4.1). Sequencing 

was carried out on the Applied Biosystems Automated 3730 DNA Analyzer using Big 

Dye Terminator Chemistry at the Cornell University Life Sciences Core Laboratories 

Center.  Sequences were assembled and analyzed using Lasergene 7.2.1 software 

(DNAstar, Madison, WI).  BLASTN search analysis was used to compare fliC and fljB 

sequences with those in GenBank (Altschul et al., 1990), and to infer fliC or fljB 

antigens. Alignment of fliC and fljB sequences was performed using MAAFT (Katoh 

and Toh, 2008), and cluster analysis was performed using the maximum-likelihood 

(ML) algorithm in RAxML (Stamatakis, 2006) with rapid bootstrapping (100 

bootstrap replicates).  Amino acid sequence distances (p-distances) were calculated 

using MegA (Version 5.05) (Tamura et al., 2011).  
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Traditional Serotyping.  Immunological serotyping was completed by either the New 

York State Department of Health or the National Veterinary Services Laboratory 

(Ames, IA).   

 

RESULTS 

PFGE.  PFGE patterns were generated for all 46 isolates tested, and then compared to 

a custom database that included PFGE patterns for isolates representing 170 serovars, 

including all 40 serovars evaluated here. Using the methods detailed above, serovars 

were predicted correctly for 35/46 (75%) isolates (Table 4.2).  Among the 11 isolates 

that were not accurately predicted, 3 isolates were predicted to be serovars that were 

not congruent with traditional serotyping; one serovar Typhimurium isolate matched 

serovar 4,5,12:i:- (0 band difference), one serovar Saintpaul isolate matched serovar 

Typhimurium (2 band difference), and one serovar Typhimurium var. 5-  isolate 

matched serovars Typhimurium (0 band difference) and Typhimurium var. 5- (0 band 

difference) (Table S3).  No serovar could be assigned for 8/46 isolates as PFGE 

patterns differed by > 3 bands from all isolates in the database; these isolates 

represented serovars Choleraesuis, Give, Mississippi, Orion var. 15+,34+, Reading, 

Virchow, Weltevreden, and Worthington (Table 4.2).  

rep-PCR.  rep-PCR patterns were generated, on the DiversiLab system, for all 46 

isolates tested.  Overall, the DiversiLab rep-PCR system accurately predicted 30/46 

(65%) serovars tested when applying an 85% similarity cutoff (Table 4.2).  Of the 

remaining 16 isolates, 11/16 had rep-PCR patterns that matched an existing pattern in 

the rep-PCR library at > 85% identity, but the assigned serovar was not congruent 

with traditional serotyping (Table 4.2).  Among the 5 isolates that had rep-PCR 

patterns with < 85% identity to patterns in the DiversiLab library, four represented 

serovars were not included in the library (Give, Orion var. 15+, 34+, Typhimurium var.  
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5- and Weltevreden; Table 4.2). While rep-PCR patterns for 5 serovar Javiana isolates 

were in the DiversiLab library, one serovar Javiana isolate tested (FSL S5-406) did not 

match an existing pattern at > 85% identity (top match was Mississippi at 72.3% 

identity) (Table S3).  

Ribotyping.  Automated ribotyping produced ribotype patterns for all 46 isolates.  A 

total of 34/46 (74%) serovars predicted by ribotyping were congruent with traditional 

Salmonella serotyping results.  Of the 12 serovars that were not accurately predicted, 7 

isolates had ribotype patterns that matched database patterns with > 70% identity, but 

the assigned serovars were not congruent with traditional serotyping results (Table 

4.2). Ribotype patterns for serovars Montevideo (FSL S5-630) and Typhi (FSL R6-

540) did not match any existing patterns in the database at > 70% similarity and thus 

could not be assigned a serovar; both Montevideo and Typhi ribotype patterns were 

available in the database (Table S2).  An additional 3 isolates did not match any 

existing patterns at > 70% and the database did not contain those serovars (i.e., 

serovars Blockley [FSL S5-648], Dublin [FSL S5-439], and Typhimurium var. 5- 

[FSL S5-786]) (Table 4.2).   

MLST.  The Max Planck 7-gene MLST scheme was able to accurately predict 

serovars for 42/46 (91%) isolates (Table 4.2).  Two isolates, representing serovars 

4,5,12;i;- and Typhimurium var. 5- (FSL S5-580 and FSL S5-786, respectively), were 

identified as serovar Typhimurium.  An additional 2 isolates representing serovars 

Orion var. 15+,34+ (FSL R8-3408) and Reading (FSL R8-1987) could not be 

identified; isolates representing the corresponding STs in the MLST database lacked 

serovar information.  Among the 322 partial housekeeping gene sequences submitted, 

new ATs were identified for serovars Javiana (FSL S5-406; hisD AT520), 

Oranienburg (FSL S5-642; hemD AT315), and Give (FSL S5-487; sucA AT397).  A 

total of 6 new STs were identified for isolates representing serovars Javiana (ST1674), 
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Montevideo (ST1677), Oranienburg (ST1675), Dublin (ST1673), Uganda (ST1676), 

and Give (ST1678) (Table S4). 

PCRs targeting O antigen genes allowed for reliable identification of clinically 

important Salmonella serogroups, but specific primers for less common O 

antigens need to be developed.  PCRs targeting O antigen genes were used to 

determine serogroups in 46 isolates representing clinically important S. enterica subsp. 

enterica serovars and 70 less common S. enterica serovars (Table S1).  Based on 

traditional serotyping data, these PCRs were expected to allow for identification of the 

O-groups for 44/46 isolates representing common serovars and 40/64 isolates 

representing less common serovars for a total of 84/110 isolates (Table 4.3).  PCR 

based serogroup results were congruent with immunological serotyping data for all 84 

of these isolates, including 44 isolates representing common serovars. Correctly 

identified serogroups included O:4 (n = 21), O:7 (n = 15), O:8 (n = 16), O:9 (n = 11), 

O:3,10 (n = 9), O:13 (n = 11) and O:18 (n = 1) (Table 4.3). Sequencing of selected O-

group PCR products revealed limited diversity within a given O-group; for example, a 

532 nt partial tyvD sequence obtained from six O:9 isolates showed only 4 

polymorphic nucleotides, all present in the same isolate (Figure S1).  Also, sequencing 

of a 402 nt wzx fragment in one E4 and seven E1 isolates revealed limited diversity 

and no polymorphisms that could differentiate E4 from E1 (Figure S2). 

 Twenty-six isolates represented, by traditional serotyping, O-groups that were 

not targeted by the O-group PCR assays used. Among these 26 isolates, 18 did not 

yield PCR products with any of the O-group PCRs evaluated (Table 4.3).  However, 8 

isolates each yielded a positive PCR result with one primer set; for these isolates PCR-

based serogroups were not congruent with traditional typing, these isolates included 

O-groups O:11 (n = 5), O:9,46 (n = 1), O:1,3,19 (n = 1), O:54 (n = 1).  All five O:11 

isolates were positive with O:7 primers (Table 4.3); we subsequently found that the  
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serogroup O:7 forward (22/22) and reverse (23/23) primers matched tyv (an O antigen 

gene present in the rfb region) in Salmonella Rubislaw (O:11), with a predicted 

amplicon size (615 nt) that matched the size expected for O:7.  The only isolate 

representing serogroup O:9,46 was positive with the O:9 primers; the serogroup O:9 

forward (24/25 nt) and reverse (28/29 nt) primers matched tyv in Salmonella Baildon 

(O:9,46). Sequencing and alignment of tyvD in serogroup O:9 revealed that this gene 

is highly conserved (Figure S1).  The one serogroup O:1,3,19 isolate was positive with 

the O:3,10 primers; sequencing and alignment revealed that wzx was highly conserved 

between the two serogroups (Figure S2) and primers had been designed to detect both 

O:3,10 and O:1,3,19 (Herrera-León et al., 2007).  Serovar Montevideo (serogroup 

O:54) was detected by O:7 primers; this exception was not completely unexpected as 

Montevideo serogroup expression is plasmid controlled and may mask factor O:7 

(Popoff and Le Minor, 1985). 

 Among the 7 isolates that could not be classified by immunological serotyping, 

three isolates yielded positive results with one of the O-group primer sets used here; 

these isolates were classified as serogroups O:3,10 (FSL R8-2289) and O:18 (FSL R6-

592 and R8-904) (Table 4.4).  The remaining 4 untypable isolates (FSL R8-3567, FSL 

A4-524, FSL R8-143, and FSL R8-756) did not yield PCR products with any of the O-

group primer sets used.  

fliC and fljB sequencing allows for prediction of H1 and H2 antigens, that is also 

congruent with serological typing.  Among the 109 tested isolates with serovar 

information, 28 H1 antigens and 15 unique H2 antigens were represented.  Flagellar 

antigens for these isolates were identified through a molecular approach that includes 

amplification of fliC and fljB, encoding for H1 and H2, respectively, and sequencing 

to obtain coverage of the internal, variable region. Results for PCR and sequence 

based determination of H1 antigens were congruent with traditional serotyping for all  
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109 isolates (Table S1), while H2 antigen determination was congruent with 

traditional serotyping for 104/109 isolates. Isolates where molecular and traditional H2 

antigen determinations did not match included 2 isolates from the isolate set 

representing the 40 most common serovars as well as three isolates from the set 

representing less common serovars (Table 4.5). Specifically, for one serovar 

Typhimurium isolate (FSL S5-433), we obtained a PCR product, but were unable to 

sequence the product and for one serovar Choleraesuis isolates no PCR product was 

obtained with the fljB primers. In addition, for a serovar Corvallis isolate, sequencing 

determined the H2 antigens to be 1,5 while immunological serotyping indicated [z6] 

and for a serovar Wandsworth isolate sequencing determined the H2 antigens to be 1,7 

while traditional serotyping indicated a 1,2 H2 antigen (Table 4.5). Finally, for one 

serovar Wangata isolate no fljB PCR product could be obtained (Table 4.5).  While H1 

antigens could be determined, by molecular serotyping, for all seven untypable 

isolates tested here, the H2 antigen encoding gene was only amplified for four isolates, 

which were identified as 1,5 (n=1); 1,7 (n=2), and 1,5,7 (n=1) (Table 4.4). 

 Cluster analysis performed on the 116 partial fliC aa sequences obtained here 

(Figure 4.1) showed three distinct clades that represented (i) the g-complex with "g" or 

"m,t" antigenic factors; (ii) the "z4,z23" antigenic group; and (iii) a large cluster with 

predominately single antigens (e.g., "a" or "b"; previously described as the "non g-

complex") (Mortimer et al., 2004). The tree also included a large number of well 

supported nodes (bootstrap values > 90) within these clades, typically supporting 

branches that included sequences for a given H1 antigen (a total of 26 unique 

antigenic factors were represented in this tree). Most fliC antigenic groups represented 

highly homologous sequences; for example, sequence similarities within antigenic 

group r were > 99%.  However, not all fliC antigen groups were as homologous; for  
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example sequence similarities for antigenic group k ranged from 74.1% - 100%.  

Despite this, the k antigenic group represented a clearly defined clade.  

 Cluster analysis of 90 fljB partial aa sequences (Figure 4.2) also showed that 

the majority of the 11 unique antigenic factors (represented by 32 isolates representing 

common serovars, 54 isolates representing rare serovars, and 4 untypable isolates), 

grouped into well-defined clades, with many antigenic groups displaying a high level 

of aa homology.  For example, partial aa sequence similarities for antigenic group 

e,n,x ranged from 99.5 - 100%.  Antigenic group 1,5 showed the lowest level of 

homology, sequence similarities ranged from 88.4 - 100%; even though this group is 

paraphyletic with aa sequences for antigenic factors 1,6, fljB sequencing still allowed 

for antigen determination that was congruent with traditional serotyping.  Overall, 

phylogenetic trees based on partial aa sequence for fliC and fljB display clearly 

defined clusters that allow for identification of antigenic groups, indicating their 

potential for sequence based identification of H1 and H2 antigens, respectively. 

Comparison of DNA based subtyping methods and their ability to predict 

serovars.  Based on the 46 isolates representing the 40 most common Salmonella 

serovars, the predictive ability of DNA based subtyping methods evaluated in this 

study ranged from 30/46 (65%; rep-PCR) to 42/46 (91%; MLST and molecular 

serotyping) (Table 4.2).  Serovars 4,5,12:i:-, Typhimurium, and Typhimurium var. 5- 

represented the 3 serovars for which molecular methods were most frequently unable 

to predict a serovar that was congruent with traditional serotyping.   
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Figure 4.1:  Midpoint-rooted maximum-likelihood phylogenetic tree of partial fliC amino acid 
sequences from 116 Salmonella isolates representing 46 common, 63 uncommon, and 7 untypable 
serovars.  The scale represents the estimated number of amino acid substitutions per site.  Numeri-
cal values represent the percentage of bootstrap replications that support the respective node.  
Bootstrap values greater than 60 are shown for major clades.  Label shows the H1 antigen, followed 
by Food Safety Laboratory (FSL) number; e.g., b_S5-410 indicates H1 antigen b, isolate FSL 
S5-410.
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Figure 4.2:  Midpoint-rooted maximum-likelihood phylogenetic tree of 90 partial fljB amino acid sequences from 
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DISCUSSION 

 Salmonella serotyping remains a critical component of Salmonella surveillance 

efforts as it facilitates rapid identification and source tracking of salmonellosis 

outbreaks, particularly if rapid access to molecular subtyping, such as PFGE, is not 

available.  Traditional serotyping not only provides subtyping data that allow for 

worldwide comparison, which has facilitated detection of a number of salmonellosis 

outbreaks with international scope (Werber et al., 2005; Elviss et al., 2009; Nicolay et 

al., 2011), but also facilitates comparison with historical datasets since serotyping has 

been in use for about 70 years. As new methods for serotyping and subtyping of 

Salmonella are developed, it is thus important that these methods can be referenced 

and correlated to serovars according to the existing White-Kauffmann-Le Minor 

scheme, to maintain continuity of information based on serovar data, as well as to 

facilitate communication with laboratories that use traditional serotyping. 

Conceptually, molecular approaches to serotyping of Salmonella may use either (i) 

characterization of genetic targets that are directly responsible for O and H antigen 

expression or (ii) genetic characterization of Salmonella through banding or sequence-

based subtyping methods (targeting genes unrelated to O and H antigen expression), 

followed by serovar prediction through comparison with databases that contain 

references patterns for isolates with traditional serovar information. Our study 

indicates that (i) serovar prediction based on banding pattern-based methods (i.e., 

PFGE, rep-PCR, and ribotyping) and DNA sequence typing schemes (i.e., MLST) is 

feasible for most serovars, but requires large and comprehensive databases and that (ii) 

sequence based serotyping provides an alternative method to SNP or microarray based 

O and H antigen determination or subtyping-based serovar prediction. 

Serovar prediction based on banding pattern-based methods and DNA sequence 

typing schemes is feasible for most serovars, but requires large and 
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comprehensive databases.  For banding pattern-based subtyping methods, the ability 

to correctly predict serovars ranged from 65% to 76% correct prediction of serovars 

among isolates representing the 40 most common Salmonella serovars; by comparison 

MLST correctly predicted the serovars of 91% of these isolates. Previous studies 

typically only tested the ability of one or a few subtyping methods to predict serovars 

in isolates representing limited diversity and a few serovars (Weigel et al., 2004; Gaul 

et al., 2007; Bailey et al., 2002; Wise et al., 2009; Zou et al., 2010; Chenu et al., 2011).  

For example, Gaul et al. (Gaul et al., 2007) compared one banding pattern method, 

PFGE, to traditional serotyping on a collection of 674 swine Salmonella isolates.  In 

general, if subtyping data are to be used for serovar prediction, they will require 

establishment of a large and comprehensive libraries of subtype patterns, which should 

represent the diversity of at least a majority of the 2,500 Salmonella serovars. We 

specifically observed that in some cases common serovars could not be identified due 

to database limitations, i.e., the serovar was not available in the database. In contrast to 

most databases for banding pattern methods, which are typically proprietary (e.g., for 

automated ribotyping, rep-PCR) or restricted access (e.g., PulseNet), MLST is 

characterized by the availability of open source databases 

(http://pubmlst.org/databases.shtml) with continuous community addition of subtype 

data. Among the subtype methods evaluated, PFGE and MLST have the largest 

databases, even though the PulseNet PFGE database could not be used for the study 

reported here as it not publicly available. While the Salmonella MLST database is 

large (it included > 5,700 Salmonella isolates and > 600 serovars as of October 15, 

2012), a recent study suggested that reliable MLST-based prediction of Salmonella 

serovars may remain challenging (Achtman et al., 2012). In particular, this study 

showed that a number of phylogenetic groups (e-Burst groups) contained multiple 

serovars and that many serovars are distributed across distinct e-Burst groups, 
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suggesting polyphyletic origins of these serovars. In our study, rather than using 

phylogenetic groupings to predict serovars, we used perfect ST matches to isolates in 

the MLST database to predict serovars; only in cases where no prefect ST match was 

available used the serovars for closely related isolates (matches in 6 of 7 ATs) to 

predict the serovar for a query isolate. While this approach is more pragmatic and may 

be more likely to not yield a “match” that allows for serovar prediction, it, based on 

our data, shows a good ability to predict serovars. Importantly, traditional serotyping 

of Salmonella has been estimated to allow for correct serovar identification with about 

92 to 95% of isolates (Wattiau et al., 2008b), suggesting that at least for the isolate set 

used here, the accuracy of MLST for prediction of serovars is in the same range as 

expected for traditional serotyping. For example, Wattiau et al. reported that 90.8% of 

754 S. enterica subsp. enterica isolates were correctly serotyped by classical methods 

with 9.1% of isolates showing no results with classical serotyping due to strain 

autoagglutination or lack of antigen expression (Wattiau et al., 2008a).  

 While development of larger databases for subtyping methods may allow for 

some improvements with regard to the ability of these methods to correctly predict 

Salmonella serovars, there are inherent limitations to serovar prediction by subtyping 

methods, as, for example, detailed by Achtman et al. (Achtman et al., 2012) for 

MLST-based prediction of serovars. Our data specifically support that many subtyping 

methods are not likely be able to correctly identify and differentiate the closely related 

Salmonella serovars Typhimurium (4,5,12:i:1,2), 4,5,12:i:-, and Typhimurium var. 5-.  

This is consistent with recent studies (Gaul et al., 2007; Zou et al., 2012) that also 

showed that the majority of isolates for which serovars were not correctly predicted by 

PFGE belonged to 4,5,12:i:-; in one study 135 misclassified 4,5,12:i:- isolates were 

predicted to either be serovar Typhimurium (95 isolates) or Typhimurium var. 5- (40 

isolates) (Zou et al., 2012).  Similar limitations with closely related Salmonella 
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serovars have been reported when evaluating ribotyping; in one study 20 serovar 

4,5,12:i:- isolates were predicted to be serovar Typhimurium (Bailey et al., 2002).  

While rep-PCR reported to predict were serovar 4,5,12:i:- in one study with three 

4,5,12:i:- isolates (Wise et al., 2009), our study reported problems with correct 

prediction of serovar 4,5,12:i:- across banding pattern-based subtyping methods, 

consistent with the observation that strain with this serovar appears to represent 

multiple independent emergence events from serovar Typhimurium ancestors.  In 

addition, previous studies have also shown that subtyping methods can, in some 

instances, not correctly predict serovars differing by one or two antigens, such as with 

(i) serovars Newport (I 6,8,20:e,h:1,2) and Bardo (I 8:e,h:1,2) (Soyer et al., 2010) and 

(ii) serovars Hadar (I 6,8:z10:e,n,x) and Istanbul (I 8:z10:e,n,x) (Wise et al., 2009).  

Sequence based serotyping provides an alternative method to SNP or microarray 

based O and H antigen determination. Methods that directly characterize genetic 

targets that are responsible for O and H antigens conceptually represent an attractive 

opportunity for “molecular serotyping,” which should address a number of the 

drawbacks of serovar prediction based on molecular subtyping methods. To date, 

some methods have been developed are available that use primers and probes in 

various assay formats to detect specific O, H1 and H2 antigen markers (within the rfb 

cluster, fliC and fljB), including a Luminex based system (Fitzgerald et al., 2007; 

McQuiston et al., 2011) and ArrayTube genoserotyping tool (Franklin et al., 2011). In 

initial evaluations, these methods have demonstrated good congruency with traditional 

serotyping. For example, the Luminex-based system developed by the CDC allowed 

accurate O-group prediction for 362/384 isolates (94.3%) representing 6 common O-

groups (Fitzgerald et al., 2007) and accurate H antigen prediction for 461/500 isolates 

(92.2%) (McQuiston et al., 2011). In a smaller study, the ArrayTube genoserotyping 

tool allowed for correct serovar prediction for 76/100 (76%) isolates (Franklin et al., 
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2011).  While these methods offer the potential for rapid, ease-of-use and high 

throughput molecular serovar prediction, including for both rough and mucoid strains, 

these methods can currently only identify a portion of the over 1,500 Salmonella subsp. 

I serovars.  For example, the most recently described Luminex assay was not able to 

determine H antigens for 46/500 isolates due to a limited number of probes 

(McQuiston et al., 2011) and the ArrayTube genoserotyping tool is currently only able 

to detect 41/114 flagellar antigens (Franklin et al., 2011).  While both of these 

approaches appear to work reasonably well for serovar identification of common 

serovars where sufficient genetic information (e.g., full genome sequence data) is 

available for design of appropriate reagents (i.e. primers and probes), difficulties are 

likely encountered when these systems are challenged with isolates representing rare 

serovars that were not used for the design of the primers or probes. Examples of 

specific concerns include (i) no reaction with primer and probes as genes encoding for 

O or H antigens are not targeted by primer and probes, and (ii) false positive results 

for a given O or H antigen if primers and probes target a region that is conserved 

between common and rare antigens that were not considered in the assay design.   

 In contrast to molecular serotyping systems that rely on primers and probes to 

identify genes that determine the antigenic formula for Salmonella isolates, we 

implemented an approach that combines (i) PCR-based detection of genes that are 

specific for a given O antigen based on previous studies that used PCR to identify 

major O antigen groups (Fitzgerald et al., 2006; Herrera-León et al., 2007) and (ii) 

PCR amplification of fliC and fljB, followed by sequencing of the internal variable 

region of these genes to allow for H1 and H2 antigen determination. Overall, this 

approach allowed for correct identification of 91% of the isolates representing the 

common 40 serovars and 85.7% of the isolates representing less common serovars.  

While sequencing of fliC and fljB has previously been used to discover target 
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sequences for development of probe-based molecular serotyping approaches, we are 

not aware of any comprehensive studies that used sequencing of these two genes as 

the primary approach for molecular serotyping.  While our data suggest that PCR-

based O antigen typing along with fliC and fljB sequencing presents a viable approach 

for molecular serotyping, some challenges remain to be overcome to develop this 

method so that it can be used broadly and allows for serotyping of a wide range of 

Salmonella serovars. For one, our current method only detects 7 common O antigens, 

with some primers showing positive reaction with two antigens, therefore causing 

some false positive results, including one primer set that yields positive results with 

both serogroup O:3,10 (E1) and O:1,3,19 (E4) isolates (Herrera-León et al., 2007), and 

a set that yields positive results with both serogroup O:7 (C1) and O:11 (F). Design of 

better PCR primers and approaches that use PCR and subsequent sequencing of target 

genes that contribute to O antigen expression should, in the future, be able to address 

this issue. Specifically, as full genome sequences for isolates representing additional 

O-groups become available (Bakker et al., 2011; Allard et al., 2012), design primers 

capable of detecting all 46 Salmonella serogroups should be feasible. With regard to 

identification of H1 and H2 antigens, the design of primer sets that allow reliable 

amplification of fliC and fljB remains a challenge; these genes include internal 

variable and external conserved regions, which represents a challenge in the design of 

primers that only amplify the target gene (i.e., either fliC and fljB) and allow for 

reliable amplification across diverse serovars.  We also found that previously reported 

fljB primers failed to amplify fljB in a number of isolates representing less common 

serovars.  Even though the majority of isolates evaluated here allowed for successful 

fliC and fljB amplificaton, with the new set of fljB primers designed here we found a 

few exceptions, including an inability to amplify fljB in one serovar Choleraesuis 

isolate, supporting the need to develop additional or improved primers.  Again, 
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availability of full genome sequences for additional serovars should help in the design 

of improved primers for fliC and fljB amplification, even though use of more than one 

primer set may be necessary to allow for amplification in isolates representing diverse 

serovars. Genome sequences should also facilitate development of PCR-based 

approaches for the detection of rare flagellar antigens encoded by other genes (Mehta 

and Arya, 2002). Finally, development of robust and large fliC and fljB sequence 

databases will be necessary to allow for broad use of the sequencing based molecular 

serotyping approaches described here; to this end we have deposited the fliC and fljB 

sequence data reported here in the public Food Microbe Tracker database 

(www.foodmicrobetracker.com). 

Conclusions. As a variety of efforts are under way to replace or supplement 

traditional serotyping of Salmonella with molecular methods, many laboratories 

around are faced with decisions as to which technology or approaches to implement. 

Current approaches use either serovar prediction based on molecular subtyping data or 

direct characterization of genes affecting O or H antigen expression. Among the 

methods evaluated here, sequencing based approaches including (i) MLST and (ii) a 

combination of a PCR-based O antigen screen and sequencing of internal fliC (H1 

antigen) and fljB (H2 antigen) fragments provided for the best serovar prediction. Both 

of these methods also use equipment that can be used for a variety of applications, as 

compared to the more specialized equipment used for many banding pattern based 

subtyping (e.g., ribotyping, Rep-PCR) or other molecular serotyping methods that 

were not evaluated here (e.g., PremiTest (Wattiau et al., 2008a), Luminex (Fitzgerald 

et al., 2007; McQuiston et al., 2011), ArrayTube genoserotyping (Franklin et al., 

2011)); this may favor implementation of PCR and sequencing-based methods in 

some laboratories, particularly as advances in sequencing technology could make 

these methods more attractive.  Our data also indicate that banding pattern-based 
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subtyping methods may have the potential to allow for serovar prediction that may be 

adequate under some conditions, particularly for users that have or can develop larger 

databases that contain subtype patterns for isolates representing diverse serovars or at 

least the serovars typically encountered by a given laboratory. In addition, 

combination of multiple molecular and possibly traditional serotyping approaches will 

facilitate improved serovar classification of Salmonella.  

Importantly, the combination of a PCR-based O antigen screen and sequencing 

of internal fliC and fljB fragments reported here allows for continuity with traditional 

serotyping data. While some authors have proposed that MLST-based approaches 

should fully replace serotyping (Achtman et al., 2012), we believe that compatibility 

with traditional serovar data is critical for Salmonella characterization, at least in the 

medium term future. In addition, this approach will be highly compatible with full 

genome sequencing-based strategies for Salmonella characterization as serovar 

specific sequence data can easily be extracted from full genome sequences and be used 

to predict serovars, using the information created through PCR-based O antigen screen 

and sequencing of internal fliC and fljB fragments.  
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CHAPTER FIVE 
 
 
 

CONCLUSIONS 
 

 Continued improvement of food quality and food safety remains important to 

create a sustainable and adequate food supply.  Our research presents a general 

overview of the microbiological hurdles facing dairy processors, and provides a rapid 

assay to identify the current hurdle to fluid milk shelf-life extension– Paenibacillus 

spp.  In addition, we demonstrated the ability to utilize basic lab equipment in order to 

facilitate rapid, economical serotype determination for Salmonella enterica, which is 

responsible for the largest number of known foodborne illnesses, caused by bacteria, 

in the US.  Accurate serotyping of Salmonella is important to continue surveillance 

and intervene during outbreaks of salmonellosis.   

 Sporeforming spoilage bacteria play an important role in the quality of dairy 

products.  As dairy processors strive to meet consumer demand by developing new 

products with extended or novel shelf-life characteristics, the need to understand 

characteristics, ecology, and spoilage potential of sporeforming bacteria will become 

increasingly important.  Spores are ubiquitous in nature, and are capable of enduring 

many of the processing hurdles developed and implemented to date.  With reliable 

tracking and characterization methods, we will be able to mitigate problems associated 

with sporeforming spoilage organisms by using a systematic approach for controlling 

points of entry and multiplication for these microbes in dairy systems.  The combined 

efforts of farmers, dairy processors, retailers and researchers will be needed to provide 

consumers with the highest quality dairy products possible.  To that end, it is essential 
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that all segments of the dairy industry work together to integrate practical measures for 

control of spoilage organisms in dairy processing systems.  

 We developed a sensitive and specific TaqMan assay that can detect 

psychrotolerant sporeforming Paenibacillus spp. associated with dairy spoilage.  

While the low levels of spores initially present in raw milk prevented direct detection 

of Paenibacillus in DNA extracted from raw milk or from enriched milk samples, an 

alternative colony screening method proved feasible.  A 16S rDNA-based TaqMan 

assay on crude colony lysates obtained from heat-shocked milk that had been enriched 

at 13°C for 48 h and plated on BHI supplemented with X-gal provided fast and 

accurate identification of Paenibacillus.  Overall, the assay provides an improved tool 

for the dairy industry to differentiate raw milk with the potential for lower post-

pasteurization bacterial outgrowth.  Further development of rapid and effective 

detection methods for psychrotolerant sporeformers within a comprehensive farm to 

fork framework are needed for improved control of these important spoilage 

organisms in the food supply.   

 The results of our Paenibacillus detection system will provide the food 

industry with an assay to monitor the quality of raw milk.  This assay may even be 

adapted to aid in the development of strategies to limit spoilage of other pasteurized, 

refrigerated foods like vegetable purees (Carlin et al., 2000; Guinebretiere et al., 2001) 

and fermented beverages (Haakensen and Ziola, 2008).  Finally, our assay has 

potential for use as a screening tool to isolate novel enzyme producing Paenibacillus 

spp. from other foods (Piuri et al., 1998) and the natural environment (Naghmouchi et 

al., 2011; Sakai et al., 2005), as previous identification of Paenibacillus strains has led 
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to the discovery of many important compounds (e.g., polymyxin) with promising 

applications in agriculture, food processing, and medicine (Naghmouchi et al., 2011).   

 In addition to the development of a dairy spoilage detection tool, we also 

developed a rapid, economical PCR and sequencing based Salmonella serotyping 

method.  This method utilizes basic lab equipment to serotype Salmonella spp., which 

are responsible for the largest number of known foodborne illnesses caused by 

bacteria in the US.  Our method provides an important alternative to traditional 

serotyping, which is labor intensive, time-consuming (3-5 days) and requires 

maintenance of over 250 antisera.   Accurate serotyping of Salmonella is important to 

detect and rapidly intervene during outbreaks of salmonellosis.  

 We used both known and novel primers to develop a simple, cost-effective 

PCR and sequence-based scheme to determine O, H1 and H2 antigens.  Overall, we 

were able to predict 42/46 common serotypes and 62/70 rare serotypes.  Additional 

work to expand O-antigen detection primers, and to include more robust primer sets, 

will further improve molecular serotyping.  

 As full-genome sequencing has become more accessible, a number of studies 

have generated full-genome Salmonella sequences that can be leveraged to design new, 

primers to enhance molecular detection of serotypes (Bakker et al., 2011; Allard et al., 

2012).  Specifically, these Salmonella genomes can be utilized to design primers 

capable of detecting all 46 Salmonella serogroups, including those that we could not 

differentiate between (e.g., serogroup O:3,10 vs. O:1,3,19).  Genome sequences for 

fliC and fljB could be extracted to expand available fliC and fljB databases, plus for 

development of primers to detect rare flagellar antigens encoded by other genes.  
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Overall, our PCR and sequencing based strategy allows for continuity with traditional 

serotyping data, reduces the need for expensive or proprietary equipment, and could 

be integrated into an open-source web-based database permitting review of sequence 

data for enhanced accuracy. 
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APPENDIX 
 

Table S1 (Chapter 3): Complete results of TaqMan assay used to screen 24 raw milk 
samples for Paenibacillus spoilage potential.   

 

 
 
 
 
 
 
 
 
 
 
 

T = 0 h T = 24 h  T = 48 h Isolate ID
β-gal      
(+/-)b

TaqMan 
(Ct)d

rpoB based 
species ID Isolate ID

β-gal    
(+/-)b

TaqMan 
(Ct)d

rpoB based 
species ID Isolate ID

β-gal    
(+/-)b

TaqMan 
(Ct)d

rpoB based 
species ID

Bacterial count 
(CFU/ml)

Predominant spoilage 
bacteria (rpoB or 16S 
based identification)c

High D-3 2 2 <1 FSL R7-644 - >40 Bacillus FSL R7-645 - >40 Bacillus NA 4.37 × 107 Paenibacillus

D-4 4 15 (5) 153 (114) FSL R7-677 - >40 Bacillus FSL R7-692 - >40 Bacillus FSL R7-708 + 21.69 Paenibacillus 9.33 × 106 Paenibacillus
FSL R7-678 - >40 Bacillus FSL R7-693 + 22.56 Paenibacillus FSL R7-709 - >40 Bacillus

FSL R7-710 - >40 Bacillus

C-4 30 29 313 (13) FSL R7-674 - >40 Bacillus FSL R7-690 - >40 Bacillus FSL R7-704 - >40 Bacillus 5.37 × 106 Paenibacillus
FSL R7-675 - >40 Bacillus FSL R7-691 - >40 Bacillus FSL R7-705 - >40 Bacillus
FSL R7-676 - >40 Bacillus FSL R7-706 + 25.18 Paenibacillus

FSL R7-707 + 20.73 Paenibacillus

C-3 27 23 197 (40) FSL R7-646 - >40 Bacillus FSL R7-650 - >40 Bacillus FSL R7-652 + 18.9 Paenibacillus 2.75 × 106 Paenibacillus
FSL R7-651 - >40 Bacillus FSL R7-653 - >40 Bacillus

FSL R7-654 - >40 Bacillus
FSL R7-655 - >40 Bacillus
FSL R7-656 + 17.9 Paenibacillus

G-4 14 42 (1) 530 (190) FSL R7-679 - 18.37 Paenibacillus FSL R7-695 - >40 Bacillus FSL R7-711 + 21.8 Paenibacillus 2.24 × 106 Paenibacillus
FSL R7-680 - >40 Bacillus FSL R7-696 - >40 Bacillus FSL R7-712 +/- >40 Bacillus
FSL R7-681 - >40 Bacillus FSL R7-697 - >40 Bacillus FSL R7-713 - >40 Bacillus
FSL R7-682 - >40 Bacillus FSL R7-714 - >40 Bacillus

Intermediate C-5 117 (6) 87 550 (10) FSL R7-722 - >40 Bacillus FSL R7-733 - >40 Bacillus FSL R7-736 - >40 Bacillus 6.76 × 105 Paenibacillus
FSL R7-723 - >40 Bacillus FSL R7-734 - >40 Bacillus FSL R7-737 - >40 Bacillus
FSL R7-724 - >40 Bacillus FSL R7-735 - >40 Bacillus FSL R7-738 - >40 Bacillus
FSL R7-725 - >40 Bacillus FSL R7-739 +/- 18.98 Paenibacillus
FSL R7-726 + 21.5 Paenibacillus
FSL R7-727 + 23.9 Paenibacillus

D-5 <1 3 <1 NA FSL R7-740 - >40 Bacillus NA 3.55 × 105 B. weihenstephanensis
FSL R7-741 - >40 Bacillus
FSL R7-742 - >40 Bacillus

J-5 <1 12 686 NA FSL R7-744 - >40 Bacillus FSL R7-745 - >40 Bacillus 1.95 × 105 B. weihenstephanensis

Low J-4 10 15 9 FSL R7-685 - >40 Bacillus FSL R7-699 - >40 Bacillus FSL R7-716 - >40 Bacillus 8.13 × 103 NA
FSL R7-686 - >40 Bacillus FSL R7-700 - >40 Bacillus FSL R7-717 - >40 Bacillus
FSL R7-687 - >40 Bacillus FSL R7-701 - >40 Bacillus FSL R7-718 - >40 Bacillus

B-4 30 44 2410 FSL R7-671 - >40 Bacillus FSL R7-688 - >40 Bacillus FSL R7-702 - >40 Bacillus 8.51 ×102 NA
FSL R7-672 - >40 Bacillus FSL R7-689 - >40 Bacillus FSL R7-703 - >40 Bacillus
FSL R7-673 - >40 Bacillus

H-4 3 1 <1 FSL R7-683 - >40 Bacillus NA NA 1.62 × 102 NA
FSL R7-684 - >40 Bacillus

H-5 6 4 12 (5) NA FSL R7-746 - >40 Bacillus FSL R7-747 +/- 20.37 Paenibacillus 2.88 × 101 NA
FSL R7-748 - >40 Bacillus
FSL R7-749 - >40 Bacillus

J-3 6 5 937 FSL R7- 637 - >40 Bacillus FSL R7-639 - >40 Bacillus FSL R7-642 - >40 Bacillus 2.45 × 101 NA
FSL R7-638 - >40 Bacillus FSL R7-640 - >40 Bacillus FSL R7-643 - >40 Bacillus

FSL R7-641 >40 Bacillus

A-4 3 2 3 FSL R7-662 - >40 Bacillus FSL R7-664 - >40 Bacillus FSL R7-666 - >40 Bacillus 2.04 × 101 NA
FSL R7-663 - >40 Bacillus FSL R7-665 - >40 Bacillus FSL R7-667 - >40 Bacillus

E-5 1 <1 <1 FSL R7-743 - >40 Bacillus NA NA 1.41 × 101 NA

F-5 <1 29 1017 FSL R7-719 - >40 Brevibacillus FSL R7-720 - >40 Brevibacillus FSL R7-732 - >40 Bacillus 1.41 × 101 NA
FSL R7-721 - >40 Bacillus

E-3 1 1 <1 FSL R7-635 - >40 Oceanobacillus FSL R7-636 - >40 Bacillus NA <1.00 × 101 NA

F-3 <1 <1 577 NA NA FSL R7-657 - >40 Bacillus <1.00 × 101 NA
FSL R7-658 - >41 Bacillus

H-3 2 <1 <1 FSL R7-659 - >40 Bacillus NA NA <1.00 × 101 NA
FSL R7-660 - >40 Bacillus

I-3 1 <1 <1 FSL R7-661 - >40 Bacillus NA NA <1.00 × 101 NA

E-4 <1 2 <1 NA FSL R7-694 - >40 Bacillus NA <1.00 × 101 NA

F-4 <1 1 16 FSL R7-668 - >40 Bacillus FSL R7-669 - >40 Bacillus FSL R7-670 - >40 Bacillus <1.00 × 101 NA

I-4 <1 8 5700 NA FSL R7-698 - >40 Bacillus FSL R7-715 - >40 Bacillus <1.00 × 101 NA

I-5 4 <1 <1 FSL R7-750 - >40 Staphylococcus NA NA <1.00 × 101 NA

cPredominant spoilage bacteria not identified in milk samples where the bacterial count remained ≤ 2 × 104 CFU/ml or when no bacterial colonies could be isolated; indicated by NA.

aGrowth category assigned based on APCs following heat shock and storage of milk at 6°C for 21 d.  "High" category indicates APC > 1 × 106 CFU/ml;  "Intermediate" category indicates APC ≤ 1 × 106 CFU/ml and  > 2 × 104 CFU/ml; "Low" category indicates APC ≤ 2 × 
104 CFU/ml. 

Spoilage 
growth 

categorya

bβ-gal positive (blue) colonies represented by "+"; β-gal negative colonies represented by "-"; and β-gal weakly positive colonies (partial blue or light blue) indicated by "+/-."

Milk   
sample

Milk assessment following 21 d at 6°C
CFU/ml after 13°C enrichment for                                      

(β-gal positive count)
Colony screening results after 13°C milk enrichment for

T = 0 h T = 24 h T = 48 h
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Figure S1 (Chapter 4):  Alignment of 532 nt from tyvD for 6 serogroup O:9 (D1) 
isolates representing common serovars.  Left hand label includes isolate identification 
information, e.g., s5483tyvD is isolate FSL S5-483. 
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Figure S2 (Chapter 4):  Alignment of 302 nt fragment from wzx for 7 serogroup 
O:3,10 (E1) isolates and 1 serogroup O:1,3,19 (E4) isolate.  Left hand label includes 
isolate identification information, e.g., R6938wzxE4 is isolate FSL R6-938, 
representing serogroup E4. 
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Table S1 (Chapter 4):  Summary of molecular serotyping results for all top 40 and 
rare 70 Salmonella isolatesa. 

 
 
 
 
 

Serogroup H1 antigens H2 antigens B C1 C2 D E G K PCR 
primers

Sequencing 
primers

Sequence 
length (No. 

nt)d

Sequencing 
coverage

fliC Blastn fliC 
antigens

PCR 
primers

Sequencing 
Primers

Sequence 
length (No. 

nt)d

Sequencing 
Coverage

fljB Blastn fljB antigens

Reading FSL R8-1987 O:4 (B) e,h 1,5 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1372* single Anatum e,h fljB Set 1 fljB Set 1 1408* single Bareilly 1,5
Derby FSL R8-2630 O:4 (B) f,g [1,2] (+) (-) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 794 double Derby f,g fljB Set 1 no pcr product – – – –
Stanley FSL S5-408 O:4 (B) d 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1375* single Muenchen d fljB Set 1 Sequencing Set 1 867 single Newport 1,2
Typhimurium FSL S5-433 O:4 (B) i 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1321* single Typhimurium i fljB Set 1  pcr product – NA – –
Paratyphi B var. Java FSL S5-447 O:4 (B) b 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1314* single Paratyphi B b fljB Set 1 fljB Set 1 1412* single Hissar 1,2
Heidelberg FSL S5-448 O:4 (B) r 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1345* single Heidelberg r fljB Set 1 fljB Set 1 1412* single Heidelberg 1,2
Schwarzengrund FSL S5-458 O:4 (B) d 1,7 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1378* single Schwarzengrund d fljB Set 1 fljB Set 1 1407* single Schwarzengrund 1,7
Heidelberg FSL S5-480 O:4 (B) r 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1388* single Heidelberg r fljB Set 1 fljB Set 1 1414* single Heidelberg 1,2
Agona FSL S5-517 O:4 (B) f,g,s [1,2] (+) (-) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 673 double Agona f,g,s fljB Set 1 no pcr product – NA – –
Typhimurium FSL S5-536 O:4 (B) i 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1382* single Typhimurium i fljB Set 1 fljB Set 1 1414* single Typhimurium 1,2
4,5,12:i:- FSL S5-580 O:4 (B) i – (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1383* single Typhimurium i fljB Set 1 no pcr product – NA – –
Saintpaul FSL S5-649 O:4 (B) e,h 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1391* single Anatum e,h fljB Set 1 fljB Set 1 1420* single Saintpaul 1,2
Typhimurium. var. 5- FSL S5-786 O:4 (B) i 1,2 (+) (-) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1353* single Typhimurium i fljB Set 1 fljB Set 1 1412* single Typhimurium 1,2
Tennessee FSL R8-1965 O:7 (C1) z29 [1,2,7] (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 737 double Tennessee z29 fljB Set 1 no pcr product – NA – –
Choleraesuis FSL R8-3632 O:7 (C1) c 1,5 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1401* single Choleraesuis c fljB Set 1 no pcr product – NA – –
Braenderup FSL S5-373 O:7 (C1) e,h e,n,z15 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1334* single Saintpaul e,h fljB Set 1 fljB Set 1 1399* single Braenderup e,n,z15
Mbandaka FSL S5-451 O:7 (C1) z10 e,n,z15 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1383* single Hadar z10 fljB Set 1 fljB Set 1 1399* single Mbandaka e,n,z15
Thompson FSL S5-523 O:7 (C1) k 1,5 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1383* single Thompson k fljB Set 1 fljB Set 1 1398* single Thompson 1,5
Oranienburg FSL S5-642 O:7 (C1) m,t [z57] (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1353* single Oranienburg m,t fljB Set 1 no pcr product – NA – –
Infantis FSL S5-734 O:7 (C1) r 1,5 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1371* single Heidelberg r fljB Set 1 fljB Set 1 1410* single Infantis 1,5
Virchow FSL S5-961 O:7 (C1) r 1,2 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1350* single Heidelberg r fljB Set 1 fljB Set 1 1197* single Hissar 1,2
Kentucky FSL S5-273 O:8 (C2-C3) i z6 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1372* single Kentucky i fljB Set 1 fljB Set 1 1349* single Kentucky z6
Kentucky FSL S5-431 O:8 (C2-C3) i z6 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1381* single Typhimurium i fljB Set 1 fljB Set 1 1394* single Kentucky z6
Newport FSL S5-436 O:8 (C2-C3) e,h 1,2, (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1402* single Newport e,h fljB Set 1 fljB Set 1 1416* single Newport 1,2
Muenchen FSL S5-504 O:8 (C2-C3) d 1,2 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1378* single Muenchen d fljB Set 1 fljB Set 1 1410* single Muenchen 1,2
Hadar FSL S5-543 O:8 (C2-C3) z10 e,n,x (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1394* single Hadar z10 fljB Set 1 fljB Set 1 1398* single Bonn e,n,x
Newport FSL S5-639 O:8 (C2-C3) e,h 1,2, (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1388* single Newport e,h fljB Set 1 fljB Set 1 1401* single Newport 1,2
Blockley FSL S5-648 O:8 (C2-C3) k 1,5 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1386* single Thompson k fljB Set 1 fljB Set 1 1348* single Blockley 1,5
Typhi FSL R6-540 O:9 (D1) d – (-) (-) (-) (+) (-) (-) (-) fliC Set 1 fliC Set 1 1417* single Typhi d fljB Set 1 no pcr product – NA – –
Javiana FSL S5-395 O:9 (D1) l,z28 1,5 (-) (-) (-) (+) (-) (-) (-) fliC Set 1 fliC Set 1 1395* single Javiana l,z28 fljB Set 1 fljB Set 1 1409* single Thompson 1,5
Javiana FSL S5-406 O:9 (D1) l,z28 1,5 (-) (-) (-) (+) (-) (-) (-) fliC Set 1 fliC Set 1 1049* single Javiana l,z28 fljB Set 1 fljB Set 1 1399* single Thompson 1,5
Enteritidis FSL S5-415 O:9 (D1) g,m – (-) (-) (-) (+) (-) (-) (-) fliC Set 1 fliC Set 1 1282* single Enteritidis g,m fljB Set 1 no pcr product – – – –
Dublin FSL S5-439 O:9 (D1) g,p – (-) (-) (-) (+) (-) (-) (-) fliC Set 1 Sequencing Set 1 774 double Dublin g,p fljB Set 1 no pcr product – – – –
Enteritidis FSL S5-483 O:9 (D1) g,m – (-) (-) (-) (+) (-) (-) (-) fliC Set 1 fliC Set 1 1286* single Enteritidis g,m fljB Set 1 no pcr product – – – –
Meleagridis FSL R6-938 O:3,10 (E1) e,h l,w (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1383* single Anatum e,h fljB Set 1 fljB Set 1 1385* single Meleagridis l,w
Uganda FSL R8-3404 O:3,10 (E1) l,z13 1,5 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1372* single Kinshasa l,z13 fljB Set 1 fljB Set 1 1408* single Uganda 1,5
Orion va. 15+,34+ FSL R8-3408 O:3,10 (E1) y 1,5 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1382* single Orion y fljB Set 1 fljB Set 1 1414* single Thompson 1,5
Muenster FSL S5-432 O:3,10 (E1) e,h 1,5 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1391* single Anatum e,h fljB Set 1 fljB Set 1 1402* single Vanier 1,5
Weltevreden FSL S5-438 O:3,10 (E1) r z6 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1351* single Weltevreden r fljB Set 1 fljB Set 1 1305* single Weltevreden z6
Give FSL S5-487 O:3,10 (E1) l,v 1,7 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1352* single Panama l,v fljB Set 1 Sequencing Set 1 928 double Give 1,7
Anatum FSL S5-540 O:3,10 (E1) e,h 1,6 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 fliC Set 1 1362* single Anatum e,h fljB Set 1 fljB Set 1 1409* single Anatum 1,6
Senftenberg FSL S5-658 O:1,3,19 (E4) g,[s],t – (-) (-) (-) (-) (+) (-) (-) fliC Set 1 Sequencing Set 1 723 double Senftenberg g,[s],t fljB Set 1 no pcr product – – – –
Mississippi FSL A4-633 O:13 (G) b 1,5 (-) (-) (-) (-) (-) (+) (-) fliC Set 1 fliC Set 1 1360* single Paratyphi B b fljB Set 1 fljB Set 1 1407* single Mississippi 1,5
Worthington FSL S5-490 O:13 (G) z l,w (-) (-) (-) (-) (-) (+) (-) fliC Set 1 fliC Set 1 1362* single Indiana z fljB Set 1 fljB Set 1 1392* single Cloucester l,w
Cerro FSL R8-370 O:18 (K) z4,z23 [1,5] (-) (-) (-) (-) (-) (-) (+) fliC Set 1 fliC Set 1 1093* single Stanleyville z4,z23 fljB Set 1 no pcr product – NA – –
Montevideo FSL S5-630 O:54f g,m,s – (-) (+) (-) (-) (-) (-) (-) fliC Set 1 fliC Set 1 1379* single Montevideo g,m,s fljB Set 1 no pcr product – NA – –

Paratyphi A FSL R6-883 O:2 (A) a 1,5 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 773 double Paratyphi A a fljB Set 2 Sequencing Set 1 874 double Paratyphi A 1,5
Abony FSL S5-469 O:4 (B) b e,n,x (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 643 double Paratyphi B b fljB Set 2 Sequencing Set 1 921 double Hadar e,n,x
Arechavaleta FSL S5-453 O:4 (B) a 1,7 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 692 double Miami a fljB Set 2 Sequencing Set 1 769 double Schwarzengrund 1,7
Brandenburg FSL R8-1984 O:4 (B) l,v e,n,z15 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 635 double Give l,v fljB Set 2 Sequencing Set 1 928 double Brandenburg e,n,z15
Indiana FSL R6-527 O:4 (B) z 1,7 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 635 double Indiana z fljB Set 2 Sequencing Set 1 809 double Indiana 1,7
Kiambu FSL R6-203 O:4 (B) z 1,5 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 603 double Indiana z fljB Set 2 Sequencing Set 1 847 double Nima 1,5
Paratyphi Be FSL R8-153 O:4 (B) z4, z23 z64 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 682 double  Paratyphi B b fljB Set 2 Sequencing Set 1 901 double Newport 1,2
Remo FSL R8-3521 O:4 (B) r 1,7 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 727 double  Weltevreden r fljB Set 2 Sequencing Set 1 808 double Schwarzengrund 1,7
Sandiego FSL A4-827 O:4 (B) e,h e,n,z15 (+) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 617 double Chester e,h fljB Set 2 Sequencing Set 1 904 double Brandenburg e,n,z15
Bareilly FSL R8-2449 O:7 (C1) y 1,5 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 722 double Coeln y fljB Set 2 Sequencing Set 1 634 double Cholerasuis 1,5
Concord FSL R8-457 O:7 (C1) l,v 1,2 (-) (+) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 730 double London l,v fljB Set 2 Sequencing Set 1 739 double Typhimurium 1,2
Georgia FSL R6-992 O:7 (C1) b e,n,z15 (-) (+) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 700 double Paratyphi B b fljB Set 2 Sequencing Set 1 860 double Brandenburg e,n,z15
Hartford FSL A4-617 O:7 (C1) y e,n,x (-) (+) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 525 double Coeln y fljB Set 2 Sequencing Set 1 805 double Hadar e,n,x
Mikawasima FSL R6-244 O:7 (C1) y e,n,z15 (-) (+) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 480 double Coeln y fljB Set 2 Sequencing Set 1 709 double Brandenburg e,n,z15
Ohio FSL S5-885 O:7 (C1) b l,w (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 821 double Paratyphi B b fljB Set 2 Sequencing Set 1 654 double Ohio l,w
Paratyphi C FSL R6-305 O:7 (C1) c 1,5 (-) (+) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 650 double Choleraesuis c fljB Set 2 Sequencing Set 1 808 double Michigan 1,5
Bardo FSL S5-774 O:8 (C2-C3) e,h 1,2 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 616 double Newport e,h fljB Set 2 Sequencing Set 1 805 double Typhimurium 1,2
Bovismorbificans FSL A4-577 O:8 (C2-C3) r,[i] 1,5 (-) (-) (+) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 626 double Heidelberg r fljB Set 2 Sequencing Set 1 666 double Paratyphi A 1,5
Corvallis FSL R8-092 O:8 (C2-C3) z4, z23 [z6] (-) (-) (+) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 592 double Cerro z4,z23 fljB Set 2 Sequencing Set 1 805 double Paratyphi A 1,5
Glostrup FSL R8-2600 O:8 (C2-C3) z10 e,n,z15 (-) (-) (+) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 761 double Hadar z10 fljB Set 2 Sequencing Set 1 831 double Brandenburg e,n,z15
Hindmarsh FSL R8-3386 O:8 (C2-C3) r 1,5 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 726 double Bovismorbificans r,[i] fljB Set 2 Sequencing Set 1 911 double Paratyphi A 1,5
Holcomb FSL R6-227 O:8 (C2-C3) l,v e,n,x (-) (-) (+) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 681 double Give l,v fljB Set 2 Sequencing Set 1 678 double Hadar e,n,x
Kottbus FSL R8-2447 O:8 (C2-C3) e,h 1,5 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 771 double Newport e,h fljB Set 2 Sequencing Set 1 738 double Paratyphi A 1,5
Litchfield FSL R8-2112 O:8 (C2-C3) l,v 1,2 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 712 double London l,v fljB Set 2 Sequencing Set 1 769 double Typhimurium 1,2
Manhattan FSL R8-1303 O:8 (C2-C3) d 1,5 (-) (-) (+) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 711 double Muenchen d fljB Set 2 Sequencing Set 1 827 double Paratyphi A 1,5
Berta FSL R8-2917 O:9 (D1) [f],g,[t] – (-) (-) (-) (+) (-) (-) (-) fliC Set 1 Sequencing Set 1 773 double Rissen f,g fljB Set 2 Sequencing Set 1 – – – –
Javianae FSL S9-275 O:9 (D1) z38 1,2 (-) (-) (-) (+) (-) (-) (-) fliC Set 1 Sequencing Set 1 719 double Javiana l,z28 fljB Set 2 Sequencing Set 1 794 double Paratyphi A 1,5
Miami FSL R8-2520 O:9 (D1) a 1,5 (-) (-) (-) (+) (-) (-) (-) fliC Set 1 Sequencing Set 1 742 double Miami a fljB Set 2 Sequencing Set 1 589 double Paratyphi A 1,5
Panama FSL R8-2486 O:9 (D1) l,v 1,5 (-) (-) (-) (+) (-) (-) (-) fliC Set 1 Sequencing Set 1 817 double Panama l,v fljB Set 2 Sequencing Set 1 637 double Nima 1,5
Wangata FSL R8-1542 O:9 (D1) z4, z23 1,7 (-) (-) (-) (+) (-) (-) (-) fliC Set 2 Sequencing Set 1 659 double Cerro z4,z23 fljB Set 2 Sequencing Set 1 – NA – –
Baildon FSL R6-199 O:9,46 (D2) a e,n,x (-) (-) (-) (+) (-) (-) (-) fliC Set 1 Sequencing Set 1 728 double Paratyphi A a fljB Set 2 Sequencing Set 1 682 double Hadar e,n,x
Amager FSL A4-650 O:3,10 (E1) y 1,2 (-) (-) (-) (-) (+) (-) (-) fliC Set 2 Sequencing Set 1 684 double Coeln y fljB Set 2 Sequencing Set 1 944 double Newport 1,2
London FSL R8-459 O:3,10 (E1) l,v 1,6 (-) (-) (-) (-) (+) (-) (-) fliC Set 1 Sequencing Set 1 785 double London l,v fljB Set 2 Sequencing Set 1 959 double Agama 1,6
Aberdeen FSL R8-3524 O:11 (F) i 1,2 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 659 double Typhimurium i fljB Set 2 Sequencing Set 1 928 double Newport 1,2
Kisarawe FSL A4-595 O:11 (F) k e,n,x,[z15] (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 858 double Zanzibar k fljB Set 2 Sequencing Set 1 955 double Abortusequi e,n,x
Luciana FSL R8-3555 O:11 (F) a e,n,z15 (-) (+) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 613 double 50:a:- a fljB Set 2 Sequencing Set 1 885 double Sanktgeorg e,n,z15
Nyanza FSL S5-654 O:11 (F) z z6 (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 819 double Indiana z fljB Set 2 Sequencing Set 1 595 double Weltevreden z,6
Rubislaw FSL S5-477 O:11 (F) r e,n,x (-) (+) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 715 double Weltevreden r fljB Set 2 Sequencing Set 1 932 double Abortusequi e,n,x
Agbeni FSL S5-417 O:13 (G) g ,m,[s],[t] – (-) (-) (-) (-) (-) (+) (-) fliC Set 1 Sequencing Set 1 707 double Enteritidis g,m fljB Set 2 no pcr product – – – –
Cubana FSL S5-632 O:13 (G) z29 – (-) (-) (-) (-) (-) (+) (-) fliC Set 2 Sequencing Set 1 655 double Tennessee z29 fljB Set 2 no pcr product – – – –
Grumpensis FSL R6-418 O:13 (G) d 1,7 (-) (-) (-) (-) (-) (+) (-) fliC Set 1 Sequencing Set 1 709 double Schwarzengrund d fljB Set 2 Sequencing Set 1 929 double Schwarzengrund 1,7
Havana FSL S5-549 O:13 (G) f , g,[s] – (-) (-) (-) (-) (-) (+) (-) fliC Set 1 Sequencing Set 1 746 double Derby f,g fljB Set 2 no pcr product – – – –
Kintambo FSL S5-712 O:13 (G) m,t – (-) (-) (-) (-) (-) (+) (-) fliC Set 2 Sequencing Set 1 665 double Oranienburg m,t fljB Set 2 no pcr product – – – –
Mississippi FSL R8-2455 O:13 (G) b 1,5 (-) (-) (-) (-) (-) (+) (-) fliC Set 1 Sequencing Set 1 831 double Paratyphi B b fljB Set 2 Sequencing Set 1 887 double Paratyphi A 1,5
Poona FSL R8-1546 O:13 (G) z 1,6 (-) (-) (-) (-) (-) (+) (-) fliC Set 2 Sequencing Set 1 702 double Indiana z fljB Set 2 Sequencing Set 1 916 double Agama 1,6
Putten FSL A4-590 O:13 (G) d l,w (-) (-) (-) (-) (-) (+) (-) fliC Set 1 Sequencing Set 1 680 double Putten d fljB Set 2 Sequencing Set 1 834 double Ohio l,w
Telelkebir FSL R8-1526 O:13 (G) d e,n,z15 (-) (-) (-) (-) (-) (+) (-) fliC Set 1 Sequencing Set 1 660 double Schwarzengrund d fljB Set 2 Sequencing Set 1 943 double Brandenburg e,n,z15
Madelia FSL R6-630 O:6,14 (H) y 1,7 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 725 double Coeln y fljB Set 2 Sequencing Set 1 638 double Nola 1,7
Barranquilla FSL R8-1295 O:16 (I) d e,n,x (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 651 double Muenchen d fljB Set 2 Sequencing Set 1 978 double Hadar e,n,x
Gaminara FSL R8-2934 O:16 (I) d 1,7 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 696 double Muenchen d fljB Set 2 Sequencing Set 1 850 double Indiana 1,7
Hvittingfoss FSL R8-789 O:16 (I) b e,n,x (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 780 double Paratyphi B b fljB Set 2 Sequencing Set 1 967 double Hadar e,n,x
Hvittingfosse FSL R8-091 O:16 (I) i 1,5 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 783 double Paratyphi B b fljB Set 2 Sequencing Set 1 914 double Hadar e,n,x
Cotham FSL R8-792 O:28 (M) i 1,5 (-) (-) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 715 double Typhimurium i fljB Set 2 Sequencing Set 1 945 double Agama 1,6
Pomona FSL S5-481 O:28 (M) y 1,7 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 663 double Coeln y fljB Set 2 Sequencing Set 1 885 double Indiana 1,7
Urbana FSL S5-410 O:30 (N) b e,n,x (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 676 double Paratyphi B b fljB Set 2 Sequencing Set 1 649 double Hadar e,n,x
Adelaide FSL S5-551 O:35 (O) f,g – (-) (-) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 786 double Rissen f,g fljB Set 2 no pcr product – – – –
Alachua FSL R8-2924 O:35 (O) z4, z23 – (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 791 double Cerro z4,z23 fljB Set 2 no pcr product – – – –
Ealing FSL A4-670 O:35 (O) g,m,s – (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 654 double Amsterdam g,m,s fljB Set 2 no pcr product – – – –
Freetown FSL S5-668 O:38 (P) y 1,5 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 626 double Coeln y fljB Set 2 Sequencing Set 1 821 double Nima 1,5
Wandsworth FSL R6-526 O:39 (Q) b 1,2 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 529 double Paratyphi B b fljB Set 2 Sequencing Set 1 680 double Indiana 1,7
Johannesburg FSL R8-3499 O:40 (R) b e,n,x (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 760 double Paratyphi B b fljB Set 2 Sequencing Set 1 818 double Hadar e,n,x
Tilene FSL R8-3597 O:40 (R) e,h 1,2 (-) (-) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 621 double Saintpaul e,h fljB Set 2 Sequencing Set 1 851 double Typhimurium 1,2
Overschie FSL R8-144 O:51 l,v 1,5 (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 601 double Give l,v fljB Set 2 Sequencing Set 1 653 double Nima 1,5
IIIb 35:Rough FSL R8-3567 O:35 (O) NA NA (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 609 double Give l,v fljB Set 2 Sequencing Set 1 734 double IIIb 38:(k):z35 z35
Untypable FSL R8-143 NA NA NA (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 699 double Arizonae z52 fljB Set 2 Sequencing Set 1 604 double IIIb 61:i:z z
Untypable FSL R8-756 NA NA NA (-) (-) (-) (-) (-) (-) (-) fliC Set 2 Sequencing Set 1 501 double Blockley k fljB Set 2 Sequencing Set 1 653 double 42:l,v:1,5,7 1,5,7
Untypable FSL R8-2289 NA NA NA (-) (-) (-) (-) (+) (-) (-) fliC Set 1 Sequencing Set 1 767 double Senftenberg g,[s],t fljB Set 2 no pcr product – – – –
Untypable FSL R6-592 NA NA NA (-) (-) (-) (-) (-) (-) (+) fliC Set 2 Sequencing Set 1 730 double Cerro z4,z23 fljB Set 2 no pcr product – – – –
Untypable FSL R8-904 NA NA NA (-) (-) (-) (-) (-) (-) (+) fliC Set 1 Sequencing Set 1 792 double Cerro z4,z23 fljB Set 2 Sequencing Set 1 NA NA NA NA
Untypable FSL A4-524 NA NA NA (-) (-) (-) (-) (-) (-) (-) fliC Set 1 Sequencing Set 1 618 double Coeln y fljB Set 2 Sequencing Set 1 1297* single Schwarzengrund 1,7

aAntigenic formulae reported according to White-Kauffmann-Le Minor scheme.
bPresence of expected PCR amplicon indicated by (+) and lack of amplicon indicated by (-).
cFor specific primer details refer to Table 1.
dSequencing primers resulting in only single coverage for majority of targeted gene marked with an asterisk.
eFollowing molecular serotyping and repeated immunological serotyping, the original serotype designation was amended.  S. Hvittingfoss was previously identified as S. Idikan;  S . Paratyphi B was previously identified as S. Aaruhus; S. Javiana was previously identified as S. Lille. 

H2-antigen PCR and sequencing resultsc Results by traditional serotyping

IsolateSerotype

Rare 70

Top 40 

O-antigen PCR resultsb H1-antigen PCR and sequencing resultsc
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TABLE S2 (Chapter 4): PCR conditions used for serogroup, fliC and fljB 
amplificationa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Denaturation (°C, s) Annealing  (°C, s) Extension (°C, s)
Multiplex PCR 1 0.2 95, 10 95, 30 58, 30 72, 45
Serogroup Set 1 0.5 95, 10 94, 30 48, 60 72, 90
Serogroup Set 2 0.5 95, 10 94, 30 58, 30 72, 45
fliC Set 1 0.5 95, 10 95, 30 59, 30c 72, 90
fliC Set 2 0.5 95, 10 95, 30 70, 60d 72, 90
fljB Set 1 0.5 95, 10 95, 60 65, 30e 72, 90
fljB Set 2 0.4 95, 10 95, 30 58, 30 72, 90

bAll PCRs ended with a final extension at 72°C for 7 min and were then stored at 4°C.
cTouchdown at -0.5°C per cycle for 20 cycles, followed by 20 cycles at 49°C.
dTouchdown at -0.5°C per cycle for 20 cycles, followed by 20 cycles at 60°C.
eTouchdown at -0.5°C per cycle for 20 cycles, followed by 20 cycles at 55°C.

aEach 25 µL PCR reaction also contained: 1X PCR buffer, 1.5 mM MgCl2, 0.4 mM of each dNTP, 0.625 units of AmpliTaq Gold 360 DNA 
Polymerase, and 25 ng of purified Salmonella DNA.  Refer to Table 1 for additional primer information.

30 cycles ofb

Primer Set Start (°C, min)Primer Conc. 
(µM)
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TABLE S3 (Chapter 4):  Results for subtyping methods evaluated for their ability to 
predict Salmonella serovars in 46 isolates representing 40 common serovars. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typhimurium FSL S5-536 Typhimurium (0) Typhimurium (94.4) Typhimurium (94) Typhimurium Typhimurium
Typhimurium FSL S5-433 4,5,12:i:- (0) 4,5,12:i:- (96.9) Typhimurium (97) Typhimurium 4,5,12:i:-
Enteritidis FSL S5-415 Enteritidis (0) Enteritidis (97.1) Enteritidis (95) Enteritidis Enteritidis
Enteritidis FSL S5-483 Enteritidis (0) Enteritidis (98.5) Enteritidis (96) Enteritidis Enteritidis
Newport FSL S5-639 Newport (0) Newport (97.4) Newport (94), Bardo (94) Newport Newport
Newport FSL S5-436 Newport (0) Newport (94.6) Newport (93) Newport Newport
Heidelberg FSL S5-448 Heidelberg (0) Heidelberg (96.3) Hiedelberg (98) Heidelberg Heidelberg
Heidelberg FSL S5-480 Heidelberg (1) Heidelberg (97) Heidelberg (96) Heidelberg Heidelberg
Javiana FSL S5-395 Javiana (0) Javiana (86.5) Binza (93), Orion (93), Tomasville (93) Javiana Javiana
Javiana FSL S5-406 Javiana (0) Mississippi (72.3) Javiana (96) Javiana Javiana
4,5,12:i:- FSL S5-580 4,5,12:i:- (0) 4,5,12:i:- (96.9) Typhimurium (93) Typhimurium Typhimurium
Montevideo FSL S5-630 Montevideo (1) Montevideo (98.2) Unidentified (< 70) Montevideo Montevideo
Muenchen FSL S5-504 Muenchen (1) Muenchen (94.9) Muenchen (97) Muenchen Muenchen
Oranienburg FSL S5-642 Oranienburg (0) Oranienburg (96.9) Oranienburg (95) Oranienburg Oranienburg
Mississippi FSL A4-633 Unidentified (> 3) Mississippi (92.9) Mississippi (88), Minnesota (88) Mississippi Mississippi
Saintpaul FSL S5-649 Typhimurium (2) Saintpaul (94.6) Saintpaul (95) Saintpaul Saintpaul
Braenderup FSL S5-373 Braenderup (0) Braenderup (97.3) Bareilly (96) Braenderup Braenderup
Agona FSL S5-517 Agona (1) Agona (98.4) Agona (88) Agona Agona
Infantis FSL S5-734 Infantis (0) Typhimurium (95.3) Infantis (93) Infantis Infantis
Thompson FSL S5-523 Thompson (0) Thompson (96.3) Thompson (95) Thompson Thompson
Paratyphi B var. Java FSL S5-447 Paratyphi B var. Java (0) 4,5,12:i:- (96.5) Paratyphi B (71) Paratyphi B var Java Paratyphi B var Java
Typhi FSL R6-540 Typhi (0) Typhi (94.5) Unidentified (< 70) Typhi Typhi
Stanley FSL S5-408 Stanley (1) Senftenberg (89.6) Stanley (96) Stanley Stanley
Tennessee FSL R8-1965 Tenneessee (0) Tennessee (95) Tennessee (81) Tennesee Tennesee
Hadar FSL S5-543 Hadar (0) Hadar (97.2) Hadar (91) Hadar Hadar
Virchow FSL S5-961 Unidentified (> 3) Bareilly (94.2) Virchow (96) Virchow Virchow
Blockley FSL S5-648 Blockley (2) Blockley (97.2) Haardt (92) Blockley Blockley
Anatum FSL S5-540 Anatum (0) Anatum (92.3) Anatum (97), Newington (97) Anatum Anatum
Weltevreden FSL S5-438 Unidentified (> 3) Berta (82.8) Weltevreden (90) Weltevreden Weltevreden
Orion var. 15+,34+ FSL R8-3408 Unidentified (> 3) Thompson (96.4) Paratyphi B (93) Serotype not identifieda Orion var. 15+,34+
Dublin FSL S5-439 Dublin (0) Dublin (87.1) Enteritidis (97), San Diego (97) Dublin Dublin
Derby FSL R8-2630 Derby (0) Hadar (93) Derby (98) Derby Derby
Senftenberg FSL S5-658 Senftenberg (1) Schwarzengrund (96.2) Senftenberg (97) Senftenberg Senftenberg
Kentucky FSL S5-273 Kentucky (0) Blockley (91.6) Kentucky (95) Kentucky Kentucky
Kentucky FSL S5-431 Kentucky (0) I8,20:-:z6 (96.9) Kentucky (92) Kentucky Kentucky
Muenster FSL S5-432 Muenster (0) Javiana (96.2) Lomita (91) Muenster Muenster
Mbandaka FSL S5-451 Mbandaka (1) Mbandaka (93.2) Mbandaka (93) Mbandaka Mbandaka
Cerro FSL R8-370 Cerro (0) Cerro (95.4) Cerro (88) Cerro Cerro 
Choleraesuis FSL R8-3632 Unidentified (> 3) Litchfield (95.2); Choleraesuis (95.0)c Choleraesuis (88) Choleraesuis var. Kunzendorf 6,7;c;-
Reading FSL R8-1987 Unidentified (> 3) Bareilly (94.6) Reading (93) Serotype not identifieda Reading
Meleagridis FSL R6-938 Meleagridis (0) Meleagridis (96.5) Meleagridis (94) Meleagridis Meleagridis
Uganda FSL R8-3404 Uganda (1) Uganda (95.6) Enteritidis (90) Uganda Uganda
Schwarzengrund FSL S5-458 Schwarzengrund (0) Schwarzengrund (97.7) Schwarzengrund (95), Bredeney (95) Schwarzengrund Schwarzengrund
Give FSL S5-487 Unidentified (> 3) Oranienburg (96.6) Abaetetuba (88) Give Give
Worthington FSL S5-490 Unidentified (> 3) Worthington (87.5) Worthington (96) Worthington Worthington
Typhimurium var. 5-b FSL S5-786 Typhimurium (0); T. Copenhagen (0) Typhimurium (96.4) Typhimurium (76) Typhimurium Typhimurium
aMLST identified an exitisting sequence type, but isolates for that sequence type available in the database lacked serotype information.
bS. Typhimurium var. 5- was formerly S. Typhimurium var. Copenhagen.
cExamination of rep-PCR patterns indicated S. Choleraesuis was a better match to isolate FSL R8-3632 

IsolateSerovar
Molecular SerotypingPFGE                                                                  

(band difference from most similar 
Ribotyping                                                                               

(DuPont ID % identity to top match)
MLST

Serovar predicted by

Rep-PCR                                                       
(Diversilab % identity to top match)
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TABLE S4 (Chapter 4):  Summary of the Max Planck 7-gene MLST for the 'top 40’ 
Salmonella serovars. 

 
 
 
 
 
 
 

Serovar FSL number aroC AT dnaN AT hemD AT hisD AT purE AT sucA AT thrA AT ST Serovar predicted by MLST
Typhimurium FSL S5-433 10 7 12 9 5 9 2 19 Typhimurium
Typhimurium FSL S5-536 10 7 12 9 5 9 2 19 Typhimurium
Enteritidis FSL S5-415 5 2 3 7 6 6 11 11 Enteritidis
Enteritidis FSL S5-483 5 2 3 7 6 6 11 11 Enteritidis
Newport FSL S5-436 10 7 21 14 15 12 12 45 Newport
Newport FSL S5-639 16 43 45 43 36 39 42 5 Newport
Heidelberg FSL S5-448 2 7 9 9 5 9 12 15 Heidelberg
Heidelberg FSL S5-480 2 7 9 9 5 9 12 15 Heidelberg
Javiana FSL S5-395 13 12 17 16 13 16 4 24 Javiana
Javiana FSL S5-406 13 12 17 520a 13 16 4 1674a Javiana
4,5,12:i:- FSL S5-580 10 7 12 9 5 9 2 19 Typhimurium
Montevideo FSL S5-630 11 41 55 42 34 58 12 1677a Montevideo
Muenchen FSL S5-504 41 9 21 12 8 37 17 83 Muenchen
Oranienburg FSL S5-642 13 11 315a 15 12 15 4 1675a Oranienburg
Mississippi FSL A4-633 48 128 96 119 116 119 118 448 Mississippi
Saintpaul FSL S5-649 5 21 18 9 6 12 17 50 Saintpaul
Braenderup FSL S5-373 12 2 15 14 11 14 16 22 Braenderup
Agona FSL S5-517 3 3 7 4 3 3 7 13 Agona
Infantis FSL S5-734 17 18 22 17 5 21 19 32 Infantis
Thompson FSL S5-523 14 13 18 12 14 18 1 26 Thompson
Paratyphi B var. Java FSL S5-447 46 44 46 46 38 18 34 88 Paratyphi B var Java
Typhi FSL R6-540 1 1 1 1 1 1 5 1 Typhi
Stanley FSL S5-408 16 16 20 18 8 12 18 29 Stanley
Tennesee FSL R8-1965 118 107 8 51 2 117 16 319 Tennesee
Hadar FSL S5-543 2 5 6 7 5 7 12 33 Hadar
Virchow FSL S5-961 6 7 10 10 8 10 14 16 Virchow
Blockley FSL S5-648 23 9 15 12 17 20 12 52 Blockley
Anatum FSL S5-540 10 14 15 31 25 20 33 64 Anatum
Weltevreden FSL S5-438 130 97 25 125 84 9 101 365 Weltevreden
Orion va. 15+,34+ FSL R8-3408 99 175 58 11 111 9 2 639b 639 serovar not in database
Dublin FSL S5-439 5 2 3 6 5 5 2 1673a Dublin
Derby FSL R8-2630 39 35 8 36 29 9 36 71 Derby
Senftenberg FSL S5-658 7 6 8 8 7 8 13 14 Senftenberg
Kentucky FSL S5-273 76 14 3 77 64 64 67 198 Kentucky
Kentucky FSL S5-431 62 53 54 60 5 53 54 152 Kentucky
Muenster FSL S5-432 119 10 17 42 12 13 4 321 Muenster
Mbandaka FSL S5-451 15 70 93 78 113 6 68 413 Mbandaka
Cerro FSL R8-370 14 112 43 123 118 115 120 367 Cerro 
Choleraesuis FSL R8-3632 34 31 35 14 26 6 8 66 Choleraesuis var. Kunzendorf
Reading FSL R8-1987 46 60 10 9 6 12 17 1628b 1628 serovar not in database
Meleagridis FSL R8-938 92 125 78 128 138 9 141 463 Meleagridis
Uganda FSL R8-3404 147 13 15 123 15 9 17 1676a Uganda
Schwarzengrund FSL S5-458 43 47 49 49 41 15 114 322 Schwarzengrund
Give FSL S5-487 84 11 16 42 40 398a 4 1678a Give
Worthington FSL S5-490 189 70 68 132 175 9 172 592 Worthington
T. var. 5- (Copenhagen) FSL S5-786 10 7 12 9 5 9 2 19 Typhimurium
aRepresents a new allelic type or sequence type that was submitted to the MLST database 
bAn exisiting sequence type was found in the MLST database, however, no serovar information was available for the isolate(s).
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