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Bottom up type block copolymer (BCP) self-assembly and co-assembly are 

expected to provide facile routes to nanostructured materials for various, e.g. energy 

related and photonics, applications. In many of these experimental systems, chemical 

building blocks are complex organic/inorganic hybrid molecules such as ligand-

stabilized NPs. In particular, for complex multicomponent systems involving 

assembly of nanoparticles (NPs) and macromolecules, limited understanding of the 

role of such key factors has severely hampered progress. 

Despite progress in simulations and theories, structure prediction of self-

assembled materials beyond simple model systems remain challenging. To this end, an 

efficient theoretical framework that unifies polymer field theory and density functional 

theory into a single method was presented in order to incorporate complex molecular 

details with key physical interactions. The method harnesses the efficiency of self-

consistent field theories and the flexibility of density functional theory and a 

generalized propagator method enabling the description of different types of 

components and interactions, i.e. it allows a level of complexity usually reserved to 

more costly molecular simulation treatments. Utilizing the method, design criteria for 

controlling a range of NP based nanomaterial structures were studied. 

As an application of BCP derived materials, their photonic properties were 



studied. Metamaterials, engineered metallic materials, offer new functionalities such 

as super-resolution imaging and cloaking. Despite considerable progress, finding 

efficient pathways towards 3-dimensionally isotropic metamaterials remains 

challenging thus hampering their practical applications. To this end, the photonic 

properties of 3-dimensionally isotropic metallic nanomaterials with the cubic double 

gyroid and the alternating gyroid morphologies were calculated. These materials can 

be obtained by block copolymer self-assembly with a unit cell significantly smaller 

than the free space wavelength of visible light. For double gyroid metamaterials, the 

materials parameters and design principles for negative-refractive index materials in 

the visible and near infrared spectrum were specifically identified. 

Lastly surface plasmon resonance phenomena of novel metamaterials were 

investigated. Especially, 3-dimensionally continuous metamaterials with the diamond 

cubic structure display both negative refractive index as well as complete surface 

plasmon band gaps in 3-dimensions. Results suggest further design criteria and in-

depth understandings for metamaterials exhibiting unusual optical properties. 
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CHAPTER 1 

INTRODUCTION 

Materials research is one of the key scientific topics in modern science due to 

its growing importance for improving performances of various, e.g. energy related, 

biological or photonic, devices. Device performance is highly correlated with 

materials properties such as durability, conductivity, band gap and permittivity. Since 

materials properties are dependent on composition and structure, controlling the 

nanostructure of novel materials can overcome known limitations of existing devices 

such as solar cells. Much effort has been devoted during the last decade to the control 

of nanostructures but adaptation of research results into real devices still remains 

challenging. One of the most promising techniques for nanostructure control is block 

copolymer self-assembly. This bottom-up approach techniques allows molecular 

architecture to be used to control composition and nanostructure in cost-effective ways. 

In this thesis structure prediction of block copolymer derived materials and their 

photonic properties are detailed. In Chapters 2 and 3, a novel theoretical approach that 

enables structure prediction of materials self-assembled from block copolymers as 

structure-directing agents is developed and examples of novel nanoparticle-block 

copolymer nanostructures predicted by the theory are shown. In Chapter 4 and 5, 

photonic/plasmonic properties of block copolymer derived metallic materials are 

studied theoretically thereby developing an in-depth understanding of their unusual 

optical behavior.  
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1.1. Block copolymers as structure-directing agents 

1.1.1. Block copolymer self-assemblies and co-assemblies 

 Block copolymer self-assembly provides a unique platform enabling control 

morphologies down to the nanoscale regime [1]. The typical length scale of block 

copolymer phase separation is tens of nanometers, which is useful for various device 

applications. Moreover, morphologies including 3-dimensionally continuous 

structures can be obtained from tuning the block composition as shown in Fig. 1.1. 

However, block copolymers themselves usually have no functions or robustness for 

device applications, e.g. semi-conducting materials for generating exitons in solar cells. 

In order to add functionality to nanostructured materials derived from block 

copolymer self-assembly, additional treatments such as selective etching and 

functional material deposition are thus required. As an alternative, one can synthesize 

a material through block copolymer co-assembly, where other functional materials like 

functional nanoparticles or metal oxides are structure directed by the block 

copolymers. The co-assembly strategy has been successfully applied to platinum 

nanoparticles [2]. The biggest advantage of this approach is that it provides a modular 

pathway to multicomponent materials synthesis with a one pot strategy. Combining 

various functional materials with block copolymers, an unlimited variation of 

functional materials can be obtained with simultaneous nanostructure control. 

Experimentally a variety of system parameters such as nanoparticle ligand chemical 

structure, polymer length, and particle size affect the final nanostructure. Huge 



 3 

parameter space is one of the biggest hurdles to the effective use of co-assembly 

strategies. In order to explore this parameter space and provide guidance for materials 

design, reliable theoretical and simulation studies of co-assembly systems are 

desirable that could elucidate critical factors in the assembly and predict final 

structures quantitatively. 

 

1.1.2. Structure prediction 

 Depending on the specific materials system, various simulation methodologies 

exist as shown in Fig. 1.2. All of the approaches have advantages and disadvantages. 

Atomistic or particle-based modeling such as molecular dynamics and Monte Carlo 

simulations [4] can readily incorporate different molecular details but are 

computationally more expensive than theoretical approaches; furthermore, they 

require specialized methods to measure or impose chemical potentials and an analysis 

of finite system-size effects to ensure that structures are obtained at thermodynamic 

equilibrium (e.g., some morphological features can be frustrated by a lack of 

geometric commensurability with the box dimensions) [5]. Alternatively, the 

morphologies of block copoolymer self-assembly have been successfully studied and 

predicted by self-consistent field theory (SCFT) [6], a field theoretic description of 

chemical fields exploiting the mean-field approximation. The SCFT approach is very 

efficient and powerful, but the conventional SCFT approach is not a simulation 

approach that can incorporate various components with complex molecular structure 

like ligand stabilized nanoparticles due to its inability to describe all atomistic 
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interactions from hard particle to long-range interactions. To overcome these 

limitations, in this thesis a new theoretical approach is suggested exploiting 

advantages of both, theoretical approaches (efficiency) and atomistic simulations 

(molecular details). The approach unifies density functional theory and SCFT and 

enables efficient simulations of complex molecular systems, usually reserved to more 

expensive atomistic simulations. In Chapter 2, the theoretical foundation of the 

approach is introduced and benchmarked with existing computation results. Chapter 3 

mainly demonstrates the applications of the theory to complex molecular systems 

predicting known and unknown nanostructures. 

 

1.2. Nanophotonics applications of block copolymer derived materials 

1.2.1. Plasmonics and metamaterials 

Explosive growth of nano-photonics research is transforming our 

understanding of photonic applications and stimulating work in various scientific 

communities ranging from physical sciences to chemistry and biology. Light is an 

excellent medium for imaging and signal transfer, but has a fundamental limitation for 

miniaturization due to the ‘diffraction limit’ of light [8]. Recent advances of nano-

photonics are moving various photonic applications to sub-diffraction-limited length-

scales. Some novel research areas of nano-photonics are shown in Fig. 1.3 such as 

metamaterials and plasmonics. A metamaterial is an engineered material that exhibits 

unusual optical phenomena that may not be found in nature. Metamaterials are usually 

made of structured metals so as to utilize unique properties of this materials class (see 
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the examples of metamaterials in Fig. 1.3a and b). One of the unusual phenomena is 

the negative refractive index of a material, which has attracted much attention due to 

the potential of unlimited resolution imaging [9]. In a similar context, utilizing 

metamaterial one can make an invisibility cloak to hide any object inside of the cloak 

(see Fig. 1c and invisibility cloaks in ‘Harry Potter’ movie series) [10]. Plasmonics is 

a scientific subject that treats interactions between light and nano-scale metallic 

materials. The applications of plasmonic materials, i.e. nano-scale metallic materials, 

to therapeutics [11] and solar cells [12] are being extensively studied.  

All of these unusual phenomena originate from ‘plasmon’ motions, where the 

suffix ‘-on’ respresents its bosonic character. Plasmon is an oscillation of free electron 

density in a metal (see Fig. 1.4). Although the name ‘plasmon’ implies that it is a 

quantum mechanical object, it is a classical one described by Maxwell’s equations 

[13]. While the optical behavior of a plasmon has similarities with that of a photon, 

there are fundamental differences between the two. First of all, the wavelength of a 

plasmon can be much smaller than that of a photon at the same frequency (note that 

λ=h/2πp and the momentum, p, of a moving electron is usually much bigger than the 

value of a photon). In order to generate optical modulations dielectric material usually 

has to have a comparable lattice dimension to the wavelength of a photon, e.g. 

photonic crystals [14]. Plasmonic materials barely have such limitations leading to 

manipulation of light with much bigger wavelength than the material size. In the 

process of interaction between light and matters, plasmonic materials can transform 

electro-magnetic energy into processes on the nanoscale, so called surface plasmon 

polaritons, in the terahertz regime. Due to severe ohmic losses of a metal in the 
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terahertz regime, a plasmon inside a metal usually has a very short lifetime while a 

plasmon on the surface of the metal can be alive for a longer time. Therefore, the 

plasmon existing on the surface of a metal is more important in the terahertz regime 

and is separately referred to as a surface plasmon. In other words, surface plasmons 

are surface electromagnetic waves at the interface between a dielectric material and a 

metal [15]. Interestingly, human beings have utilized these effects without any 

knowledge of surface plasmon resonances for a long time such as in stained-glass 

windows shown in Fig. 1.5a. Small particles made of metallic salts are incorporated 

into the glass, and they absorb and scatter light giving colors to the glass. 

 

1.2.2. Metamaterials fabrication challenge 

 In 1999, Pendry predicted that specifically engineered artificial materials, i.e. 

metamaterials, would have unusual magnetic responses, e.g. negative permeability [7]. 

Following his work, much effort has been devoted to metamaterials design and 

fabrication for obtaining interesting optical properties, including unlimited imaging 

and cloaking. However, since current metamaterials fabrication techniques rely highly 

on top-down lithographic approaches [16], the fabrication of three-dimensional 

metamaterials, e.g. structures shown in Fig. 1.3b, is still challenging thus hampering 

their practical applications. For overcoming fabrication challenges, novel fabrication 

technologies beyond lithography techniques are demanding. Bottom-up type 

approaches to metamaterials fabrication are promising for their potential to enable 

large-scale materials synthesis. Especially, to obtain interesting optical properties in 
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the visible regime, the unit dimension of materials need to be approximately smaller 

than 100 nm. Since block copolymer phase separation typically occurs on the 

tens of nanometer scale, block copolymer self-assembly provides a promising 

path towards novel optically active materials. 

 

1.2.3. Block copolymer derived metamaterials 

 Block copolymers can provide facile routes for controlling morphologies with 

structural length scales down to the nanometer scale. Morphologies include 3-

dimensionally isotropic morphologies like the Gyroid structure [17].  Our strategy for 

metamaterials fabrication is to utilize block copolymers as templates. Selective etching 

of nanostructured block copolymers yields porous templates and metals can be 

deposited into the porous templates using known deposition approaches, e.g. electro, 

electroless and atomic layer deposition. However, optical properties of such materials 

have not been extensively studied to date. For obtaining targeted properties of 

metamaterials, theoretical predictions are critically required but often lacking. To this 

end, optical properties of block copolymer derived metamaterials are studied 

numerically in Chapter 4. Further in-depth understanding of the optical behavior of 

such metamaterials as well as novel metamaterials with novel and unusual properties 

are described in Chapter 5. 
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Figure 1.1. Theoretical phase-diagram of di-block copolymers [3] and schematics of 

predicted morphologies 

 



 9 

 

Figure 1.2. Various computational approaches and computational budgets of 

simulated system size or timescale. 
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Figure 1.3. Novel optical applications initiated by recent advances of nano-photonics. 

a, A negative refractive index metamaterial composed of split ring resonators by 

Pendry [7]. Negative refractive index metamaterials enable us to overcome the 

diffraction limit of light for an optical apparatus. b, Various metamaterial structures 

exhibiting unusual optical phenomena including negative refraction and circular 

dichroism c, Hiding any objects inside of a metamaterial shell, i.e. an invisibility cloak 

composed of metamaterials. d, An imaginative plasmonic computing device. 
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Figure 1.4. Plasmons are an oscillation of free electron density in a metal. 
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Figure 1.5. Surface plasmon resonance phenomena of nanoscale metallic materials a, 

A stained-glass window is an old example of surface plasmon applications, where 

suspended metallic nanoparticles in the glass absorb and scatter light giving colors to 

the window. b, Scanning electron microscope and dark field optical microscope 

images of metallic nanoparticles exhibiting the optical behavior of surface plasmons 

with the variation of their size and shape. c, The near electric fields and the electron 

motion of the surface plasmon resonance of a spherical metallic nanoparticle. d, A 

metal/dielectric/metal surface plasmon waveguide and surface plasmon polaritons on 

the waveguide. 
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CHAPTER 2 

Mesoscopic Structure Prediction of Nanoparticle Assembly 

and Co-Assembly : Theoretical foundation1 

 

 

ABSTRACT 

In this work, we present a theoretical framework that unifies polymer field 

theory and density functional theory in order to efficiently predict ordered 

nanostructure formation of systems having considerable complexity in terms of 

molecular structures and interactions. We validate our approach by comparing its 

predictions with previous simulation results for model systems. We illustrate the 

flexibility of our approach by applying it to hybrid systems composed of block 

copolymers and ligand coated nanoparticles. We expect that our approach will enable 

the treatment of multi-component self-assembly with a level of molecular complexity 

that approaches experimental systems. 

 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Reproduced with permission from: Kahyun Hur, Richard G. Hennig, Fernando A. 
Escobedo, and Ulrich Wiesner, J. Chem. Phys. 133 (19), 194108-12. Copyright 2010 
American Institute of Physics. 
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2.1. Introduction 

Nanoparticle (NP) assembly and co-assembly are topics of significant current 

scientific interest due to their potential impact on the engineering of new materials. 

Recent advances in synthesis allow the growth of monodisperse NPs from a wide 

range of solids, e.g. metals, semiconductors, and insulators [1-5]. This control enables 

ordered crystal formation, including binary superlattices at the mesoscopic scale (1 to 

1000 nm ), thus providing powerful modular pathways to the design of ‘metamaterials’ 

that should ultimately result in devices with programmable chemical and physical 

properties [6-9]. NP formation and assembly has also been found to play a critical role 

in natural biomineralization processes. It recently has been shown that amourphous 

calcium carbonate (ACC) NPs nucleate in solution and assemble at an ordered 

template of macromolecules thus challenging classical crystallization theories [10-11]. 

Similar NP assembly behavior is currently utilized in the field of synthetic porous 

solids [12]. Aside from oxide structures mesoporous bulk metals are formed from 

block copolymer (BCP) / metal NP self-assembly through careful tailoring of particle-

polymer-solvent and particle-particle interactions [13]. In many of these experimental 

systems, chemical building blocks are complex organic/inorganic hybrid molecules 

such as ligand-stabilized NPs. Furthermore, Coulomb or dipolar long-range particle-

particle interactions are believed to play an essential role in their assembly. In 

particular for complex multi-component systems involving assembly of NPs and 

macromolecules, limited understanding of the role of such key factors has severely 

hampered progress. Clearly, better predictive theoretical and simulation methods are 

needed. 
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To this end, we present an efficient theoretical framework that unifies polymer 

field theory and density functional theory (DFT) into a single method in order to 

incorporate complex molecular details with key physical interactions. Atomistic or 

particle-based modeling such as molecular dynamics and Monte Carlo (MC) 

simulations can readily incorporate different molecular details but are computationally 

more expensive than field-theoretical approaches. Furthermore, they require 

specialized methods to measure or impose chemical potentials and an analysis of finite 

system-size effects to ensure that structures at thermodynamic equilibrium are 

obtained (e.g., some morphological features can be frustrated by a lack of geometric 

commensurability with the box dimensions) [14-18]. Alternatively, the morphologies 

of BCP self-assembly have been successfully studied and predicted by self-consistent 

field theory (SCFT) [14, 19-23], a field theoretic description of chemical fields 

exploiting the mean-field approximation [21]. Shi et al. [56] and Wang et al. [57] 

proposed SCFT approaches to simulate polyelectrolyte by incorporating Coulomb 

interactions between polymer segments. The SCFT approach is very efficient and 

powerful, but the original SCFT approach is not readily applicable to systems beyond 

BCP self-assemblies due to its inability to describe the interactions associated with 

NPs. A combined approach of atomistic and field theoretic modeling as well as a 

novel MC approach have been suggested for simulation of BCP/NP self-assembly [24], 

but they have the same or similar limitations found in atomistic simulations. 

Meanwhile, DFT approaches were suggested for different molecular systems [25-27], 

but their applications were limited to local structure prediction. Thompson et al. 

introduced a new numerical scheme of combining SCFT with DFT [28-29]. The 
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SCFT/DFT approach seems quite promising for investigating the equilibrium 

properties of BCP/NP composites, but its application has been limited to simple 

mixture systems of BCPs and hard sphere (HS) particles [28-30]. Due to the 

difficulties in describing arbitrary types of molecular structures and interactions, 

applications of field theoretic approaches to more complex molecular systems such as 

those systems with charged NPs or ligand-stabilized NPs remain a significant 

challenge. 

In order to overcome such limitations of existing theories, we extend the Green 

function propagator to hard particles and incorporate key physical interactions in the 

form of direct correlation functions for complex molecular systems. The Green 

function propagator approach has been used to describe polymer configurations in 

polymer field theory, but their applications have been limited to polymers. By using 

this propagator we introduce a theoretical framework that enables us to integrate not 

only discrete but also continuous segments into a molecule. The framework offers 

greater flexibility to incorporate complex molecules composed of soft and hard 

chemical species than existing SCFT, SCFT/DFT, and other polymer DFT 

approaches.27,46 The direct correlation functions are widely used in well-established 

DFT approaches.31 Atomistic interactions such as Coulomb [32-34], Yukawa [33], 

dipole [34], and Lennard-Jones interactions [33, 35] can be incorporated in this 

context. Therefore, our approach enables us to incorporate the complexity of 

molecular structures and their interactions while taking advantage of the efficiency 

of field theories for sampling phase space of molecular systems. We demonstrate the 

validity of our approach by first comparing its predictions with previous results [28] 
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and then applying it to a hybrid materials system consisting of multi-component 

molecules with NPs. Further applications of our approach will be presented 

elsewhere [36]. 

 

2.2. Theoretical and numerical procedures 

2.2.1. Overview 

Our field-theoretic approach is based on the minimization of the Helmholtz 

free energy functional, [ ],F w! , of a system with respect to variations of the density 

functions, ! , and chemical fields, w . The general schematic procedure and key 

equations are summarized in Fig. 2.1. In Sections 2.2.2 and 2.2.3, F  is obtained 

from the particle-based partition function, where interactions are added to the excess 

free energy functional, exF , in a functional form. Various interactions can be 

incorporated following Eq. (11). The process is similar to that of incorporating 

different force field terms in particle-based simulations. The most general form of F  

for the present work is given as Eqs. (9) and (13). In Sections 2.2.3 and 2.2.4, the 

chemical fields, w , given in Eqs. (14) and (18) are obtained from the functional 

derivative of F  with respect to ! . In Section 2.2.5, the density functions, ! , are 

obtained from the functional derivative of F  with respect to w , see Eq. (40). It is 

shown that !  can be calculated from the single molecular partition function Q  and 

the segment distribution functions, q  and †q . To obtain Q , q  and †q , we 

introduce the Green’s function,  G , that propagates from one segment to another as  i  

to 1i +  in Fig. 2.2. The density distribution functions q  and †q  for each segment 
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are calculated from their convolution with  G  via Eqs. (34) and (35) with the 

boundary conditions given by Eqs. (37) and (38). In Section 2.2.6, q , †q , and  G  

are formulated for continuous segments, see Eqs. (44), (47), and (48). For each step 

in the calculations outlined in Fig. 2.1, w  and !  are updated iteratively until 

changes of ( )! r  and ( )w r  become sufficiently small. Finally, in Section 2.2.7, 

field theories beyond the mean-field approximation in Section 2.2.7 are considered. 

 
2.2.2. Helmholtz free energy functional 

For clarity, we only present the equations derived for a homogeneous system 

with one type of molecule; the extension to inhomogeneous mixture systems is 

straightforward. The configurational partition function of the canonical ensemble is 

given by 

 

 ( ) ( ) ( ) ( )1
exp /

!
! "= #$ %& n n n n n

BZ d P E R U k T
n

r r r r r , (1) 

 

where n  is the number of molecules, ( )nR r  is the incompressibility constraint term, 

( )nU r  is the interaction potential, and Bk T  is the Boltzmann constant multiplied by 

the temperature (note that we neglect unimportant constant terms such as the de 

Broglie thermal wavelength). The term ( )nP r  accounts for the molecular 

configuration of multi-component molecules such as polymers or hybrid molecules 

(see discussion in Section 2.2.5). For hard particle interactions, the excluded volume 
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constraint, ( )nE r , is included. For multi-component molecules, we specify each 

monomer species with a parameter, i . The density operator of the i th monomer 

species, ( )ˆi! r , for multi-component molecules is given by 

 

 ( )!̂ " # $= %& '(
n

j
i i

j
r r r ,   (2) 

 

where j
ir  is the positional vector of the monomer species i  of molecule j . 

Consequently, ( )nU r  is given by 

 

 ( ) ( ) ( ) ( )
,

1 ˆ ˆ,
2

n
i ij j

i j
U d d u! !" " "= #$$r r r r r r r , (3) 

 

where ( ),iju !r r  is a pair potential function describing the interaction between 

monomer species i  at r  and j  at !r . For example, ( ),iju !r r  for Coulomb 

interactions between point charges is given by ( ), / 4ij i ju Z Z !"# #= $r r r r , where iZ  

and jZ  are charges of species i  and j  respectively, and !  is the permittivity. 

The 2nd order direct correlation function defined by 

( ) ( ) ( )2, 1/ / ! !" "= # $ ex
ij B i jC k T D F D Dr r r r  in Sections 2.2.3 and 2.2.4 has a 

meaning consistent with ( ), /ij Bu k T!" r r , where [ ]exF !  is the ‘excess’ free energy 

functional and the free energy contributions of pair-wise interactions between particles 
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(noting that /DF D!  denotes the functional derivative of the functional [ ]F ! ). 

Higher order direct correlation functions than 2nd order can be neglected for slowly 

varying potentials such as the Coulomb potential without significant loss of accuracy 

[33], since they are related to multi-body interactions. The excluded volume constraint 

( )nE r  in Eq. (1) is also included in the excess free energy functional form as in 

Section 2.2.4. Therefore, particle-particle interactions including enthalpic interactions 

and purely entropic excluded volume interactions are given in the form of the excess 

free energy functional. In field theoretic approaches, the partition function Z  is re-

expressed in terms of local densities, ( )! r , and chemical potential fields, ( )w r , 

using the identities for the delta functional [20, 37], 

  

 [ ]ˆ 1i i iD! " ! !# =$  (4) 

 
and 
 
 [ ] ( ) ( ) ( ){ }ˆ ˆexpi i i i i iDw d w! " " " "# $% = %& '( ( r r r r , (5) 

 

where D  represents the functional integral. Then Z  for the field theoretic 

description takes the form 

 

 
( ) ( ){ }

{ } ( ) ( )

exp
!

1
exp 1 exp

N

i i i i
i

N
n ex

i
i B

C
Z D D Dw d w

n

Q w d F
k T

! " "

! #

$ %
= & '

( )

* + , -, -
, -. / /0 1 2 32 34 5

4 5 4 56 7

89 9

:9

r r r

r r r
 (6) 
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where C  is the normalization constant, N  is the number of monomer species in one 

molecule, and Q  is the single molecular partition function discussed in Section 2.2.5. 

The excess free energy functional  F ex  details interactions between particles as 

( )nU r  in Eq. (1) and will be discussed more detail in Section 2.2.3. The 

incompressibility term, ( )nR r , in Eq. (1) is given in a functional form, 

 

 ( ) ( ) ( )1 exp 1
N N

i i
i i

D d! " # # "
$ %& ' ( )

* = *+ ,- . / 0
1 2 3 45 6
7 78 8r r r r , (7) 

 

satisfying the incompressibility condition, 

 

 ( ) 1
N

i
i
! =" r , (8) 

 

where ( )i! r  is the local volume fractional functional of the i th monomer species, 

obtained from its density function, ( )i! r , by convolution with its shape function, 

( )iS r , defined as ( ) ( )1
0iS ! "#=r r  for point-like monomer species, and 

( ) ( )i iS H R= !r r  for spherical monomer species, where 1
0!
"  is the reference 

volume for point-like monomer species, ( )x!  is the Dirac delta function, ( )xH  is 

the Heaviside step function, and iR  is the radius of the spherical monomer species i . 

The ( )! r  is a Lagrange multiplier function that needs to be chosen to satisfy Eq. (8). 
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The Helmholtz free energy functional, F , is given as 

 

 [ ] [ ] [ ]0, , exF w F w F! ! != + , (9) 

 

where 0F  describes the mixing and conformational entropy as well as the pressure 

energy, and is obtained from 

 

 

{ } ( ) ( ){ }

( ) ( )

0 / ln

1

B i i
i

i
i

F k T n Q w d w

d

!

" #

$ %= & &' (

$ %
& &) *

' (

+ ,

+,

r r r

r r r
, (10) 

 

where we neglect unimportant constant terms for clarity. When the incompressibility 

condition is satisfied, the last term of Eq. (10) vanishes. 

 

2.2.3. The excess free energy functional 

exF  in Eq. (9) primarily contains the enthalpic interactions between all 

species but also includes purely entropic hard sphere (HS) interaction terms (hence the 

notation of ‘excess’ instead of ‘enthalpic’); in its most general form it is given by:  

 

 ex HS C Dipole YukawaF F F F F F!= + + + + +! . (11) 

 

The conventional SCFT approach [14, 19-23, 38-39] only includes the first term 

describing short range enthalpic interactions, F ! . A combined SCFT/DFT approach 
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was recently developed to also implement short range HS interactions, HSF , in 

addition to F !  [28-30]. In order to describe more realistic experimental systems, 

long range interactions such as Coulomb, CF , dipole, DipoleF , and screened Coulomb 

interactions, YukawaF , have to be included. By choosing Coulomb interactions as an 

example, here we introduce our strategy to implement such long range interactions. 

The excess free energy functional is obtained as 

 

 

( ) ( ) { }

( ) ( ) ( )

0/ ;

1 ,
2

ex HS
B ij i j

i j

C
i ij j

ij

F k T d d d

d d C

! " # # !

! !

<

$ $ % &= + ' ( )

$ $ $*

+ ,, ,

+,,

r r r r r r

r r r r r r
, (12) 

 

where the first term represents F ! , the second term HSF , and the last term CF . 

Here C
ijC  is the direct correlation function for Coulomb interactions [33]. By 

combining Eqs. (10) and (12), the Helmholtz free energy functional, F , is obtained 

as 

 

 

{ } ( ) ( ){ }

( ) ( )

( ) ( ) { }

( ) ( ) ( )

0

/ ln

1
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" #
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./
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B i i
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i
i

HS
ij i j

i j

C
i ij j

ij

F k T n Q w d w

d

d d d

d d C

r r r

r r r

r r r r r r

r r r r r r

, (13) 

 

where the first three terms in the right hand side represent the entropic part, 0F , and 
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the last three terms represent the excess part, exF , for short-range enthalpic, HS, and 

long-range Coulomb interactions, respectively.  The Helmholtz free energy 

functional, F , is not directly used in the self-consistent iteration process, but is 

evaluated for obtaining the system with the lowest free energy as shown in Fig. 2.1. 

Applying the mean-field approximation [21, 38], the average chemical potential field 

felt by the i th monomer, ( )iw r , is obtained at saddle points of F , where 

( )/ 0iDF D! =r , and is given by 

 

 ( ) ( ) ( ) ( ) ( )/HS C
i i i i B iw k T!µ µ µ" #= + + +$% &r r r r r . (14) 

 

where ( )i
!µ r , ( )HS

iµ r , and ( )C
iµ r , are the chemical potential fields of short range 

enthalpic, short range HS, and long range Coulomb interactions, respectively, and 

( )i! r  is the pressure field for monomer i . As in the conventional SCFT, short range 

enthalpic interactions between distinct chemical species are described by 

dimensionless Flory-Huggins interaction parameters, ij! , and the first term in Eq. 

(14), ( )i
!µ r , is given by 

 

 ( ) ( ) ( )0/i B i ij j
i j

k T d S N
N

! "
µ ! #

$

% % %= & '(r r r r r . (15) 

 

Here we use ij!  parameters for the short range enthalpic interactions, since 
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experimental solubility parameters can be directly applied as simulation parameters. 

We utilize the fundamental measure theory (FMT) approach [39] for short range HS 

interactions described by the second term, ( )HS
iµ r  in Eq. (14), as outlined in Ref. 

[33] and repeated in Section 2.2.4. The third term in Eq. (14), ( )C
iµ r , describes the 

long-range Coulomb interactions and is obtained from the direct correlation function 

as 

 

 ( ) ( ) ( )/ ,C C
i B ij j

j
k T d Cµ !" " "= #$%r r r r r , (16) 

 

The non-negligible contribution of the long range Coulomb potential tail on the 

chemical field is efficiently computed via the Ewald summation technique [31]. Thus, 

long range interactions can be incorporated into the theory by using direct correlation 

functions and the Ewald summation technique, which is discussed in Section 2.2.4. 

Other long-range interactions such as screened Coulomb [33], dipole [34], and 

Lennard-Jones interactions [33, 35] can be included in the theory in the same way as 

the Coulomb interaction case exemplified here. Finally, the last term in Eq. (14), 

( )i! r , is given by 

 

 ( ) ( ) ( )0
i id S

N
!

"# # #$ = %&r r r r r . (17) 

 

Combining Eqs. (15), (16), and (17) yields the chemical fields felt by monomer 
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species i  

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0

/ ,

i ij j i
j

HS C
i B ij j

j

w d N S
N

k T d C

!
" # $

µ !

% &
' ' ' '= + () *
+ ,

' ' '+ (

-.

-.

r r r r r r

r r r r r
. (18) 

 

 

2.2.4. Density Functional Form 

To account for excluded volume interactions in our field theoretic approach, 

we include the excluded volume constraint, ( )nE r , in Eq. (1) that particles cannot 

concurrently occupy the same space. In contrast to other interactions, hard-particle 

interactions are purely entropic. Unfortunately, there is no exact analytic solution for 

3-dimensional systems. Instead, Percus obtained an exact result for the free energy 

density of 1-dimensional hard rods [40]. Although the 1-dimensional result is not 

widely useful in itself, it is an important starting point for evaluating other hard-

particle interactions [41]. The FMT method pioneered by Rosenfeld for hard-particle 

interactions in 3 dimensions is based on Percus’ result [39]. In the present work, we 

utilize the FMT since it is the most advanced hard particle DFT for inhomogeneous 

hard body systems [41]. The FMT was originally developed for inhomogeneous 

mixture systems of HSs. It supersedes other approaches in (i) providing flexibility for 

incorporating inhomogeneous hard particle mixtures, and in (ii) providing accurate 

predictions for dense packing behaviors, e.g. liquid to solid transitions, of hard 

particles [41-42]. The excess free energy functional is given as 
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( )/HS HS
BF k T d= !" r r , where the excess free energy density, HS! , is obtained from 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

23
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2
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ln 1 / 1 / 1 / 24

/ 1 / 1 / 8

!

!

" = # # + # + #

# $ # # $ #

HS

V V V V

n n n n n n n

n n n

r

n n n n
. (19) 

 

HS!  is a function of the weighted densities, n! , which are given by 

 

 ( ) ( ) ( ) ( )!
! "# # #= $%& i i

i
n d Wr r r r r , (20) 

 

where the weighting functions are ( ) ( ) ( )3 = !i iW H Rr r , ( ) ( ) ( )2 != "i iW Rr r , 

( ) ( ) ( )2 != "V
i iR

rW r r
r

, ( ) ( ) ( ) ( )1 2 / 4!=i i iW W Rr r , ( ) ( ) ( ) ( )0 2 2/ 4!=i i iW W Rr r , and 

( ) ( ) ( ) ( )1 2 / 4!=V V
i i iRW r W r  and iR  is the radius of HS particle i . The excess 

chemical potential functional is obtained as 

 

 ( ) ( ) ( )/HS
i B ik T d W !

!
!

µ µ" "= #$%r r r r , (21) 

 

where /HS n! !µ = "# "  and 
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The direct correlation function for the Coulomb potential, ( ) / /= !B i jV k T Z Zr r , was 

obtained based on the mean-spherical approximation [42]. The direct correlation 

function, C
ijC , for charged HS particles can be interpreted as the effective interaction 

between two spherical cavities with the radii, iR  and jR , where charges are 

uniformly distributed [33]. Blum’s theory for C
ijC  is also based on interactions 

between two spherical charged cavities with radii increased as much as the 

capacitance length [32, 43-44]. In this work, we use Rosenfeld’s formulation of the 

direct correlation function [42] which is given by 

 

 ( ) ( ) ( )(2) (2), /ʹ′ ʹ′ʹ′ ʹ′ ʹ′ʹ′ ʹ′ ʹ′ʹ′= − Γ − − −∫∫C
ij i j i j i i j jC Z Z d d W Wr r r r r r r r r r  (23) 

 

and 
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 (24) 

 

where ! ij = Ri ! Rj  and ( ) ( )( )2 2
0 2 4 / 4 4π π π π= i j i jB RR R R . The Coulomb potential 

decays slowly and long-range contributions to the free energy in a periodic system are 

not negligible. The Ewald summation technique is widely used to calculate the long-

range contributions efficiently [31]. In this work, the Ewald summation technique is 

not applied to the Coulomb potential. Instead, since long-range contributions are very 

important in the formation of ordered nanostructure [36], we introduce our approach to 

apply the Ewald summation technique in the context of the direct correlation function. 

The chemical potential from the Ewald summation is separately calculated and the 

direct correlation function is modified as 
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and 
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 ( ) ( ) ( ), , α
Γʹ′ ʹ′ ʹ′ ʹ′= + −
ʹ′−

i jC C
ij ij

Z Z
C C erfr r r r r r

r r
, (26) 

 

where the positive constant !  in the error function ( )erf x  determines the width of 

the Gaussian compensating charge distribution. The reciprocal space contribution, 

( ),µC ewi r  to the chemical potential from the Ewald summation is calculated by 

 

 µi
C ,ew r( ) / kBT = Zi!FT"1 4!

k
2
!! k( )exp " k
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'
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where !! k( ) = FT Z j
j
! ! j r( )
"

#
$
$

%

&
'
'

, FT  and 1−FT  are the Fourier and the inverse 

Fourier transformations. Since 1/ k
2
 is singular at k = 0 , !! 0( )  should be zero, i.e. 

the charge neutrality condition should be met. In an infinitely periodic system, the 

boundary condition at infinity affects the system free energy due to long-range 

Coulomb interactions and the resulting polarization energy should be considered [31]. 

Eq. (27) is valid for a system embedded in materials with infinite dielectric constant, 

i.e. metals. For a vacuum boundary condition, the polarization energy needs to be 

included and the chemical potential field and the free energy become 
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and 

 

 ( )
2

2
3
π

ρ
Γʹ′ = + ∑ ∫ex ex

i i
i

F F Z d
V

rr r . (29) 

 

2.2.5. Single molecular partition function 

 Here we discuss the single molecular partition function, Q , for the discrete 

limit and the linear configuration of monomer species as shown in Fig. 2.2. The 

extension to the continuous monomer segments as in SCFTs and configurations other 

than linear is discussed in Section 2.2.6. Q  is given by 

 

 ( ) ( )1 1, , exp⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑∫ L L
N

N N i i
i

Q d d K wr r r r r , (30) 

 

where K  is the product of constraints between neighboring monomers 

 

 ( ) ( )
1

1 1, , ,
N

N i i i
i

K P
!

+="r r r r! . (31) 

 

The bond length between neighboring monomers of polymers is usually approximated 

to follow a Gaussian distribution [45] and the constraint for the polymer configuration 

shown in Fig. 2.2A is given by 
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" # $ %
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P
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where ia  is the average distance between neighboring monomers, i.e. the Kuhn 

length. If the i th monomer is a HS as shown in Fig. 2.2B, the constraint is given by 

 

 ( ) ( ) 2, / 4! "# #= $ $iP R Rr r r r , (33) 

 

where R  is the radius of the HS. To calculate Q , we introduce the segment 

distribution functions, ( )iq r  and ( )†
iq r , defined as 

 

 ( ) ( ) ( )1 ,+ ! ! != "i i iq d G qr r r r r  (34) 

 

and 

 

 ( ) ( ) ( )† †
1, +! ! != "i i iq d G qr r r r r , (35) 

 

where iG  is physically interpreted as the propagator from the i th monomer to the 

1i + th one toward the right in Fig. 2.2. The propagator, iG  is given by 

 

 ( ) ( ){ } ( ) ( ){ }1, exp / 2 , exp / 2+! ! != " "i i i iG w P wr r r r r r . (36) 
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Eqs. (34) and (35) can be numerically obtained from convolution of the distribution 

functions, q  and †q , respectively, with the propagator, G , if boundary conditions 

are given such as,  

 

 ( ) ( ){ }1 1exp / 2= −q wr r  (37) 

 

and  

 

 ( ) ( ){ }† exp / 2= −N Nq wr r .  (38) 

 

Therefore, the distribution functions, q  and †q , are obtained from the chemical 

potential fields, w , as shown in Fig. 2.1. Finally, Q  is given as 

 

 ( ) ( )†= ∫ i iQ d q qr r r , (39) 

 

where i  can be arbitrarily chosen, since Eq. (39) is equal to Eq. (30) regardless of 

i . Physically, ( )iq r  and ( )†
iq r  have the meaning of distribution functions of 

species i  propagated from the free ends, 1i =  and i N= , respectively. The density 

function of monomer species i  is obtained from Eq. (10) with the condition, 

( )/ 0=iDF Dw r , as 
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 ( ) ( ) ( )†ρ =i i i
n q q
Q

r r r . (40) 

 

Although we only introduced two kinds of constraint functions, one for polymers in 

Eq. (32), and the other for hard particles in Eq. (33), this formulation can be 

generalized to other constraints such as the continuous-segments propagator relevant 

for SCFTs (see Section 2.2.6) as well as to other monomer species such as non-

isotropic Janus NPs. Furthermore, the approach can be applied to the mixed case of 

continuous and discrete segments as needed for ligand-stabilized NPs [36]. Such 

flexibility in the choice of monomer species and constraints clearly highlights the 

advantages and versatility of the proposed approach compared with previous SCFT, 

SCFT/DFT, and other polymer DFT approaches [27, 46], and allows us to simulate 

complex multi-component systems. 

 

2.2.6. Numerical implementation 

Eqs. (34) and (35) can be numerically evaluated using the convolution 

theorem as 
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where ( ) ( )i iP P= ! "# $k FT r! . However, in SCFTs, the propagator is modified for the 

continuous case and the parameter, i , becomes a continuous parameter. For clarity, 

we use s  for the continuous parameter. The constraint function, ( ),i jP! "r r , 

becomes 
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and the propagator is given by the path integral 
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so that ( ) ( )0 ,!" "= #s sq d Gr r r r  and ( ) ( )† ,!" "= #s s Nq d Gr r r r . The molecular 

partition function Q  can be obtained from ( ) ( )†
s sQ d q q= ! r r r , where s  has any 

value between 0  and N . From the boundary conditions, ( )0 1q =r  and ( )† 1Nq =r , 

one can obtain ( )sq r  and ( )†
sq r  from the modified diffusion equations [20-21, 45, 

47-49] 

 



 39 

 
!qs r( )
!s

=
a s( )

2

6
"2 #ws r( )

$

%
&

'&

(

)
&

*&
qs r( )  (45) 

 

and 

 

 !
"qs

† r( )
"s

=
a s( )

2

6
#2 !ws r( )

$

%
&

'&

(

)
&

*&
qs
† r( ) . (46) 

 

In this work, we utilize this functional form in order to account for the conformational 

entropy of polymers and ligands. Solving the diffusion equation is usually the most 

time consuming step in the iterations. The computation time required for the 

calculation is proportional to M 2 , where M  is the number of spatial grid points. 

Matsen et al. proposed a spectral method where qs r( )  and qs
† r( )  are a linear 

combination of symmetry-adopted basis functions [20]. The method reduces the 

computational load dramatically but requires knowledge of the exact symmetry of the 

expected morphologies. Alternatively, the real space approach doesn’t need such 

information and structures are obtained without any restriction of symmetry [19] but 

then the computational cost of calculating the partition function becomes extremely 

large. We adopt the real space approach but minimize the computational effort by 

implementing a recently developed algorithm, called the ‘split step algorithm’ [49], 

which extensively utilizes the Fast Fourier Transform (FFT). The basic scheme is 

given as 
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These equations can be numerically implemented as 
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(note that Eq. (49) is identical to Eq. (41), if the constraint function is given by Eq. 

(32)). Up to now, we have limited the discussion to the case of chains with a linear 

configuration. The extension to more complex configurations is identical to that 

reported for other polymer systems such as branched polymers [47-48] and is not 

repeated here. Since, in our work, monomer species can be soft molecules and hard 

molecules, multi-component molecular structures can be readily described by defining 

the monomer-monomer connectivity and specifying monomers with a parameter, i  

or s .   

We adapted a numerical algorithm called the combinatorial screening 

technique by Drolet et al. [19] to iteratively solve Eqs. (8), (39), (34), (35), (40), 

and (14).  The algorithm is illustrated in Fig. 2.1 and operates as follows. In the first 

step, we generate trial configurations of all species, ( )! r , and obtain ( )w r  from 

( )! r  using Eqs. (8) and (14). In the next step, new ( )! r  are calculated from 

( )w r  of the previous step using Eqs. (39), (34), (35), and (40). Following this way, 

each step generates values for ( )w r  and ( )! r  from results of the previous step. 

This process is iterated until changes of ( )! r  and ( )w r  become sufficiently small. 

Since the free energy strongly depends on the box dimensions, we also minimize the 

system’s free energy by varying the system size between iterations [14]. This 

procedure yields different solutions depending on the initial configurations. Thus, we 

perform these calculations with various initial configurations and choose the solution 

with the lowest free energy as the likely equilibrium phase. 
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2.2.7. Beyond the mean-field approximation 

 As shown in the previous sections, the numerical implementation is drastically 

simplified by the mean-field approximation, which is generally accurate for dense 

molecular systems. By limiting configurations to saddle points, the mean-field 

approximation greatly reduces the numerical complexity of the calculations. However, 

to properly describe dilute systems composed of small molecules, for example, a more 

advanced approach than the mean-field approach is required. In general, the chemical 

fields, w , and density functions, ! , are complex (noting that w  in Eq. (14) is a 

real function due to the mean-field approximation, see also relevant discussions in 

Refs. [50-51]). Therefore, they cannot be calculated with the numerical procedure 

given in Section 2.2.6. For such calculations, Ganesan et al. applied a complex 

Langevin dynamics for thermodynamic sampling [50-51]. We expect that such 

sampling method can be applied to our approach, since DFTs do not assume the mean-

field approximation. Validation of these ideas is left for future work.  

 

2.3. Simulation Results 

2.3.1 HS Particle Behavior within BCPs 

To test our theory for HS interactions, we compare our 1-dimensional 

predictions with the results obtained by Thompson et al.  [28] using the DFT 

approach by Tarazona [52] for the same parameters. In this study, BCP composition is 

set to 0.35Af =  and a typical value of 0.4655  is assigned for 1 3
0 gN R!" " , a 

parameter that specifies the volume of BCP relative to that of NPs. The radius of 
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gyration of unperturbed BCPs, gR , is the basic length unit in this work. The Flory-

Huggins N!  parameters are summarized in Table 2.1. We utilize the original form 

of the FMT approach and its hyper-netted chain (HNC) approximation form [33, 39, 

42], so that the ( )/HS
i Bk Tµ r  term in Eq. (14) becomes ( ) ( ),HS

ij j
j

d C !" " "#$% r r r r , 

where ( ),HS
ijC !r r  is the direct correlation function of the excess HS interaction free 

energy functional [39]. We examine two cases: large NPs, ( )00.735 0.3 p gR R R= = , 

with a small volume fraction, 0.03p! =  (Fig. 2.3A), and small NPs, 

( )00.490 0.2 p gR R R= = , with an intermediate volume fraction 0.15p! =  (Fig. 

2.3B), where 0R  is the unperturbed chain end-to-end distance of BCPs equal to 

gR6 . For the case near the dilute limit, 0.03p! = , all of the DFT approaches yield 

consistent results as shown in Fig. 2.3A. This is expected because both, the DFT by 

Tarazona [52] as well as the FMT approach, utilize virial expansions of the excess 

chemical potential corresponding to pair exclusions at the dilute limit, and the HNC 

approximation is generally accurate if the density functional has small deviations from 

the reference state [33, 39, 52]. However, at the intermediate volume fraction of NPs, 

0.15p! = , shown in Fig. 2.3B, the results given by Thompson et al. [28] are in 

between those of the FMT and its HNC approximation form in terms of its shape and 

lamellar spacing. Compared with the FMT approach, the HS interactions of the DFT 

method by Tarazona [52] and HNC approximation are more repulsive. The 

discrepancy originates from the different functional forms of the excess free energy 

for HS interactions. A detailed discussion for those approaches can be found in Refs. 
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[41-42]. 

 

 

2.3.2. Binary Mixture of Charged HS Particles near a Charged Hard Wall 

To benchmark the accuracy of HS and Coulomb interactions in our approach, 

we calculate the double layer formation of HS particles with opposite charge to the 

surface charge of a hard wall and compare to results of previous simulations [53-54]. 

We study a binary mixture of charged HS particles near a charged hard wall. We add 

positively (+ ) and negatively (! ) charged HS particles near a positively charged flat 

wall. The charges are fixed at 1Z+ =  and 1Z! = ! , and the Bjerrum length is set to 

019.8145 d! =  for the Coulomb potential, ( ) / /B i jk T Z Z! = "r r , where 0d  is the 

diameter of particles and the basic length unit in these simulations. The overall volume 

fractions of particles are set to 0.0462!+ =  and 0.0462!" = . The surface charge 

densities are given by * 0.25! = , 0.42 , 0.55 , and 2
00.7 d ! . Figure 2.4 shows the 

formation of the double layer formation of negatively charged HS particles at high 

surface charge densities. This is consistent with previous exact Monte Carlo 

simulations for * 2
00.7 d! "= , shown as the open red circles in Fig. 2.4 [53]. Results 

are further compared to a previous DFT study [55] that used the same surface charge 

densities, shown in the inset of Fig. 2.4. Our 1-dimensional simulation results 

correctly predict the position of the correlation peak but overestimate the particle 

density relative to the exact Monte Carlo simulation data. Deviations between these 

simulation and theoretical results are expected and are due to the different levels of 
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approximations involved. The deviations between the predictions of the two theories 

arise from the different functional forms adopted for HS and long-range Coulomb 

interactions. 

 

2.3.3. Self-assembly of two chemically distinct HS particles connected by a 

homopolymer molecule within BCPs 

As an example of the Green function propagator for the mixed case of the 

continuous and discrete segments, we introduce two chemically distinct HS particles, 

p1 and p2, connected with a homopolymer, H, as well as A-B di-BCPs. We want to 

determine how the HS particle distribution in the A and B regions of the di-BCP 

depends on the length of the homopolymer H. For this molecule, the single molecular 

partition function is given by 
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where HG  is the continuous propagator for the homopolymer H defined by Eq. (44). 

To obtain Q , we introduce the segment distribution functions, ( )iq r  and ( )†
iq r  in 

Eqs. (34) and (35). The numerical calculation is performed using the equations, 

 

 ( ){ }1 1expp pq w= ! r  (52) 
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and 

 ( ) ( ) ( )0 1
1

pq q!" # $# $= % &% &r FT k FT r! , (53) 

 

where ( ) ( ) 2/ 4R R! ! "# $= %& 'k FT r!  and ( )0q r  is the segment distribution 

function of one end of the homopolymer propagated from the particle p1. The segment 

distribution functions of the homopolymer from ( )0q r  to ( )
hN

q r  are calculated 

utilizing Eq. (45). The segment distribution ( )2pq r  is obtained from 

 

 ( ) ( ){ } ( ) ( )2 2
1exp

hp p Nq w q!" # $# $= " % &% &r r FT k FT r! . (54) 

 

and the ( )†
iq r  for the opposite direction from p2 to p1 are obtained using the same 

equations by replacing p1 with p2. To segregate p1 HS particle into block A and the 

p2 HS particle into block B, we set the N!  parameters as shown in Table 2.2 

(noting that for this simulation the N!  parameters between the homopolymer and 

the two blocks were set equal to zero in order to clearly monitor the homopolymer size 

dependence). The radii of HS particles are fixed at 1 2 0.735 p p gR R R= = , i.e. identical 

to the simulation described in Fig. 2.3A for single NPs in only one block and the 

overall volume fraction of p1 and p2 particles in the system is set to 1 2 0.03p p! != = . 

We assign a typical value of 0.4655  for 1 3
0 gN R!" " . For comparison, Fig. 2.4A shows 

the results of the simulations for HS particles without homopolymers. When a long 

homopolymer with the size, / 0.5hN N = , bridges two HS particles, the HS particles 
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are slightly segregated to the edge of the blocks, i.e. towards the interface. In case of a 

short homopolymer bridge, / 0.1hN N = , the segregation becomes significantly more 

pronounced. These results are physically reasonable, since shorter homopolymers are 

expected to bring two HS particles closer due to the smaller end-to-end chain length. 

 

 

 

 

2.3.4. Ligand-stabilized NP / BCP self-assembly: bead-spring model of polymers 

and charged ligand effect on NP self-assembly behavior 

In order to demonstrate flexibility of our methodology for incorporating 

complex molecular structures and interactions, we introduce NPs with charged ligands 

and BCPs represented by a bead-spring model where the BCP monomers have a hard-

sphere core as shown in Fig. 2.6A. Firstly, we compare our bead-spring model with a 

comparable model system without hard-sphere cores, for which the system parameters 

are set to fA = 0.4  and !ABN = 45 . For the hard spheres BCPs, A and B, we chose 

NA = 40  and NB = 60 , equivalent to fA = 0.4 . The radius of a monomer is set to 

R = 0.106Rg , where Rg = Na2 / 6  and a  is the Kuhn length set to a = 0.245Rg . 

The short-range interaction parameter is given by !AB / (4"R
3 / 3) = 80  and the 

overall system volume fraction is given by 0.4 . Fig. 2.6B shows the normalized 

volume fractions of monomers A and B. The overall shape of the lamellar self-

assembly behavior is very similar. However, compared with SCFT, the bead-spring 
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model of BCPs yields a larger lamellar spacing. This is due to the more extended 

conformations of the polymers represented by the bead-spring model arising from 

excluded volume interactions between monomer units, compared to those for 

unperturbed polymer models, as expected theoretically [45]. Having established our 

bead-spring model, we add NPs with charged ligands and counter anions (CAs) 

satisfying the charge neutrality condition. The overall volume fraction of ligand-

stabilized NPs and CAs is set to 0.08, while the value of BCPs is set to 0.32. The 

radius of NPs is given by RNP = 0.530  and the number of ligands per NP is set to 

nLigand = 20 . The ligands are composed of 5 HSs with the radius equal to that of the 

BCP monomers and the terminal HSs have a positive charge Z+ = 1   as shown in Fig. 

2.7A. CAs have a negative charge Z! = !1 . As discussed in Section 2.2.4, the 

boundary condition at infinity affects the overall system energy in case of the long-

range Coulomb potential. In our simulation, the vacuum boundary condition was 

assumed. The interaction parameters are summarized in Table 2.3. The single 

molecular partition function of the ligand-stabilized NPs shown in Fig. 2.7A is given 

by 

 

( ){ } ( )
( ) ( )exp ,

4

!

"

# $% % %
& % ' (

+' () *
+ +

Ligand

Ligand Ligand

n

NP i NP
NP NP NP i N Ligand i N

NP

R R
Q d w d d G

R R
r r

r r r r r r ,

 (55) 
 

where  ( ),
LigandLigand i NG r r  is the propagator from one ligand chain end  i  to the 

other end NLigand . The first step is to obtain ( )†
iq r  for the ligand monomer  i  in Fig. 
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2.7A from the boundary condition, ( ) ( ){ }† exp / 2= !
Ligand LigandN Nq wr r  using Eq. (36) 

with the Gaussian constraint given in Eq. (32). Then ( )†
NPq r , ( )NPq r , and ( )iq r  

are calculated using the following equations,  

 

 ( ) ( ){ } ( ) ( ){ }† †1exp / 2 !" # $# $= " % &% &
!

NP NP iq w qr r FT k FT r , (56) 

 

 ( ) ( ){ } ( ) ( )
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! Ligandn

NP NP iq w qr r FT k FT r , (57) 

 

and 

 

 ( ) ( ){ } ( ) ( )1exp / 2 !" # $= " # $% &% &
!

i i NPq w qr r FT k FT r , (58) 

 

where ( ) ( ) ( )2/ 4! ! "# $= % % +& '
!

NP NPR R R Rk FT r . Finally, other ligand components, 

1+ ! Ligandi Nq q , can be calculated using Eq. (36) with the Gaussian constraint. Two 

different conditions are studied: (i) no Coulomb interactions, i.e. ! = 0  and (ii) 

Coulomb interaction with  ! = 7.0Rg , which corresponds to a typical dielectric 

constant of a polymeric materials with Rg = 5 nm  at room temperature of !r = 20 . 

In the absence of Coulomb interactions (! = 0 ), NPs are highly localized within block 

A as shown in Fig. 2.7B due to a very weak entropic driving force of mixing (noting 

that the volume ratio of NPs to BCPs is 2.25).  When the Coulomb potential is 
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applied by setting ! = 7.0Rg , the NP-NP repulsion forces become stronger and NPs 

are more dispersed (compare Fig. 2.7D and 2.7E). Such repulsive interactions between 

ligands can lead to an enhanced dispersion of NPs when they are mixed with BCPs [13, 

58]. The density profile of CAs are shown in Fig. 2.7F and Fig. 2.7G. Due to the long-

range Coulomb interactions, CAs and NPs form an ordered structure where CAs 

localize between NPs to screen the Coulombic repulsive force among NPs. Such 

ordered NP localization in BCPs has not been experimentally observed to date and is 

intriguing. Future work will include a full study of this phenomenon. 

 

2.4. Conclusion 

We presented a theoretical framework that unifies polymer self-consistent field 

theory and density functional theory that incorporates the complexity of hybrid 

molecular structures and their interactions. The Green function propagator was 

extended to hard particles for describing multi-component molecules composed of soft 

and hard chemical species. Furthermore, direct correlation functions used in DFTs 

were utilized to describe key physical interactions including long-range Coulomb and 

HS interactions. To validate our approach, we compared our results with two previous 

simulation studies: (i) the NP segregation behavior within BCPs and (ii) the double 

layer formation of charged HS particles near a charged wall. In both cases, we 

obtained good agreement with previously reported results on these systems.  We then 

applied our approach to demonstrate the self-assembly of two chemically distinct NPs 

connected by a polymer molecule within the phase-separated BCPs. Finally, we 

investigated a model system for the self-assembly of BCPs and NPs with charged 
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ligands. Due to sampling efficiency of phase space and descriptive power of molecular 

structures and interactions, we expect that our approach will vastly improve our ability 

to simulate large complex systems without loss of molecular details. Our approach is 

based on the mean-field approximation. To overcome the limitations of the mean-field 

approximation such as the neglect of thermal fluctuations, we expect that our method 

can be combined with a recent field theoretic approach50 that goes beyond the mean-

field approximation. Future research will include systems with dipole interactions 

between NPs and various polymeric systems with unique architectures. 
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TABLE 2.1. Flory-Huggins N!  parameters for the simulation of HS particle 

self-assembly within BCPs. 

 

 

 

 

 

 

 

 

TABLE 2.2. Flory-Huggins N!  parameters for the simulation of self-assembly 

of two chemically distinct HS particles connected by a homopolymer molecule 

within BCPs 

N!  B p1 p2 H 

A 20 0 20 0 

B  20 0 0 

p1   20 0 

p2    0 

 

 

 

N!  B P 

A 20 0 

B  20 
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TABLE 2.3. Flory-Huggins !  parameters for the self-assembly of BCPs and 

NPs with charged ligands 

! / (4"R3 / 3)  B NP Ligand CA 

A 80 0 0 0 

B  80 80 80 

NP   0 0 

Ligands    0 
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Figure 2.1. The general schematic procedure and key equations of the present 

approach for a homogeneous system of n  molecules composed of N  monomers 

specified as i . 

 

 

 

  



 55 

 

Figure 2.2. Multi-component molecule representations with the linear configuration 

for (a) flexible monomers and (b) HS particles with flexible molecules 
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Figure 2.3. Comparison of particle density profiles, p! , in the lamellar morphology 

of BCP/NP self-assembly varying the excess HS free energy functional. We verify our 

approach by comparing with results of previous calculations [28]. Black solid lines are 

results applying the FMT, blue dashed lines results from the HNC approximation form 

of the FMT, and red dotted lines results from applying the DFT by Tarazona, see Ref. 

[28]. (a) Large particles at the dilute condition ( 0.735 p gR R= , 0.03p! = ). (b) Small 

particles with intermediate volume fraction ( 0.490 p gR R= , 0.15p! = ). Compared 

with the FMT approach, the HS interactions of the DFT approach by Tarazona [52] 

and HNC approximation are more repulsive. The discrepancy originates from different 

functional forms of the excess free energy for HS interactions. 
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Figure 2.4. Density profiles of positively charged, !+ , and negatively charged HS 

particles, !" , as a function of distance from a positively charged flat wall with 

different surface charge densities, * 0.25! = , 0.42 , 0.55 , and 2
00.7 d !  (bottom to 

top for !"  and top to bottom for !+ ), where 0d  is the diameter of HS particles. 

Open red circles are Monte Carlo simulation results of Ballone et al. at * 2
00.7 d! "=  

[53]. The inset displays results from R. Groot [55]. The double layer formation is 

observed at high surface charge densities. 
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Figure 2.5. Density profiles of NPs, ! , and local volume fractions of BCPs, ! . The 

solid blue lines depict !  of the p1-type NPs and the solid red lines show !  of the 

p2-type NPs. The dotted blue lines represent !  of block A and the red lines show !  

of block B. (a) Free NPs. (b,c) NPs connected by a homopolymer molecule with size 

(b) / 0.5hN N =  and (c) / 0.1hN N = . 
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Figure 2.6. Comparison of the bead-spring model and SCFT. The bead-spring model 

exhibits a larger lamellar spacing due to excluded volume interactions between 

monomer units. (a) Illustration of the bead-spring representation of a BCP. (b) 

Normalized local volume fractions of block A (black) and block B (red). The solid 

lines are results of SCFT and the dotted lines are those of the bead-spring model. 
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Figure 2.7. Self-assembly of BCPs, NPs with charged ligands, and CAs, illustrating 

the effect of NP Coulomb repulsions on enhancing the regular dispersion of NPs. (a) 

Illustration of NPs with charged ligands and CAs. (b,c) Red color represents block A, 

blue color block B, and green color NPs with ligands. Density profiles of (d,e) NPs 

and (f,g) CAs. Two different conditions are studied by varying the parameter ! : 

(b,d,f) ! = 0 , (c,e,g) ! = 7.0Rg . 
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CHAPTER 3 

Predicting Chiral Nanostructures, Lattices and Superlattices 

in Complex Multi-Component Nanoparticle Self-Assembly2 

 

ABSTRACT 

‘Bottom up’ type nanoparticle (NP) self-assembly is expected to provide facile 

routes to nanostructured materials for various, e.g. energy related applications. Despite 

progress in simulations and theories, structure prediction of self-assembled materials 

beyond simple model systems remains challenging. Here we utilize a field theory 

approach for predicting nanostructure of complex and multicomponent hybrid systems 

with multiple types of short- and long-range interactions. We propose design criteria 

for controlling a range of NP based nanomaterial structures. In good agreement with 

recent experiments the theory predicts that ABC triblock terpolymer directed 

assemblies with ligand-stabilized NPs can lead to chiral NP network structures. 

Furthermore, we predict that long-range Coulomb interactions between NPs leading to 

simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP 

superlattice formation within the phase separated BCP nanostructure, a strategy not 

yet realized experimentally. We expect such superlattices to become of increasing 

interest to communities involved in research on, e.g., energy generation and storage, 

metamaterials, as well as microelectronics and information storage.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Reproduced with permission from: Kahyun Hur, Richard G. Hennig, Fernando A. 
Escobedo, and Ulrich Wiesner, Nano Lett. 12 (6), 3218-3223 (2012). Copyright 2012 
American Chemical Society. 
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3.1. Introduction 

Nanoparticle (NP) assembly and co-assembly is currently one of the key topics 

in materials science due to its broad relevance, ranging from fundamental aspects to 

technological applications in energy production and conversion, drug delivery, and 

tissue growth [1-13].For efficient materials design, predictive theoretical approaches 

that can quickly explore the associated vast parameter space are highly desirable, but 

are often lacking. This is particularly true for multicomponent soft materials systems. 

Here we utilize and further develop a recently developed field theory method detailed 

elsewhere [14] that harnesses the efficiency of self-consistent field theories (SCFTs) 

[15, 16] and the flexibility of density functional theory and a generalized propagator 

method. The method [14] enables the description of different types of components and 

interactions, i.e., it allows a level of complexity usually reserved to more costly 

molecular simulation treatments [17]. Via the prediction of both known and unknown 

structures, we elucidate key factors governing self-assembly with resolution down to 

the near-molecular level, a step that may ultimately help to move theory closer to the 

realm of experiments. 

The fundamental idea of field theory is to use chemical potential fields to 

represent the n-dimensional molecular phase space; i.e., the position vector space of n 

particles. The correlated motion of the interacting particles is replaced with the motion 

of non-interacting particles moving in the field. Since the computational budget is 

independent of n, large molecular systems can be simulated efficiently. In this context, 

soft materials such as polymers have been successfully studied by SCFT [15, 16, 18-

21], a mean-field theory employing the ‘Gaussian model’ for polymers [15]. 
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Limitations of the mean-field approximation to polymers were later overcome by 

Ganesan et al. [22]. For polymer and NP mixtures, Thompson et al. developed a 

combined approach of SCFT and DFT for capturing hard sphere (HS) interactions [23]. 

Despite all these advances, major challenges remain in applications of field theories to 

multi-component/hybrid soft materials systems. Most importantly, not enough 

molecular detail in terms of structures and interactions could be incorporated in 

previous methods to make them general prediction tools of more realistic materials 

systems. Simulation approaches were suggested to overcome some of these limitations 

for hybrid systems [24, 25]. However, they have similar drawbacks as those of 

particle-based simulations such as finite system size effects on morphologies [18, 26] 

and significant computational budgets for large systems. 

In order to overcome these limitations, we recently developed a field 

theoretical framework that provides substantially greater flexibility in the choice of 

molecular detail and interactions [14]. In most experiments of NP assembly and co-

assembly, systems encompass multiple components such as sols, block copolymers, or 

ligand-stabilized NPs with multiple types of short- and long-range interactions 

including van der Waals, hard-particle and Coulomb interactions. For simulating such 

complex molecular systems, two separate approaches, density-functional theory (DFT) 

and polymer field theory, are unified into one method to exploit their combined 

descriptive power. Furthermore, the Green-function propagator approach used in 

polymer-field theory is extended to particles with different architectures including 

ligand-stabilized NPs (see Fig. 3.1). Key physical interactions such as long-range 

Coulomb interactions are incorporated in the context of DFT. 
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For the case of block copolymer directed nanoparticle self-assembly, the theory 

[14] enables us to find numerical solutions for the hybrid phase behavior without a 

priori knowledge of the ordered phase symmetries. This is made possible by the use of 

non-symmetrized basis sets in the numerical calculations, similar to other SCFT 

approaches to block copolymer mesophases [20, 38]. While the non-symmetrized 

approaches are advantageous for studying phase behavior in unexplored molecular 

hybrid systems, symmetry-adopted approaches [16] requiring the symmetry of the 

ordered phase as input provide more accurate free energies, needed for identifying the 

most stable structure, e.g. at phase boundaries between competing morphologies. 

While for the case of non-symmetrized basis sets real space as well as reciprocal 

(Fourier) space methods have been developed [20, 38], symmetrized basis sets have 

only been employed in reciprocal space [16]. However, such a symmetry-adopted 

reciprocal space approach [16] is not appropriate for systems with non-linear 

interactions such as hard-particle interactions. Here we therefore propose a symmetry-

adopted real-space approach that can be applied to systems with any combination of 

interactions. To accurately identify the phase behavior of complex nanoparticle-block 

copolymer systems, both non-symmetrized14 and symmetrized real space approaches 

are then utilized. The applications to be discussed henceforth exemplify the degree of 

experimental complexity that can be captured with this theory. 

In the engineering of soft hybrid materials containing nanoparticles and block 

copolymers one important goal involves attaining precise control of ordered structures 

and spatial distributions of the polymeric components, the nanoparticles, or both. In 

this context, the use of special chemistries to create suitable enthalpic driving forces 
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toward spatial order is essential to compensate entropic forces that typically favor 

more uniformly mixed states. Here we explore the use of ionic interactions as well as 

favorable van der Waals interactions in the NP design as a means to create suitable 

self-assembled nanostructures. 

 

3.2. Results and Discussion 

The first example for the application of our theory is the study of a realistic 

hybrid system with NPs and block copolymers (BCPs). In real experiments, NPs are 

typically complex hybrids themselves composed of hard inorganic cores and organic 

ligands. We want to incorporate such molecular features of the NP architecture in our 

calculations in order to investigate a synthetic route to chiral triblock terpolymer based 

composite network structures involving ligand-stabilized NPs. To the best of our 

knowledge, a theoretical or simulation study of such complex hybrid systems has not 

been attempted before. To illustrate that such systems may be experimentally feasible, 

it is instructive to take a look at the literature. Recently, mesoporous metals were 

synthesized using BCPs as structure directing agents for ligand-stabilized metal NPs 

[11]. On the block copolymer side Epps et al. synthesized poly(isoprene-b-styrene-b-

ethylene oxide) (PI-b-PS-b-PEO) triblock terpolymers and obtained various network 

phases in a wide range of phase space [27]. Later, Tyler et al. studied the theoretical 

terpolymer phase diagram consistent with the experimental one applying SCFT [21]. 

One of the interesting network phases found by these authors is the alternating Gyroid, 

which is a cubic phase with space group 214 (I4132, also denoted ). Due to the 

lack of mirror symmetry through the two chemically distinct interweaving networks, 

Q214
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such materials are chiral [27]. Indeed, the first oxide NP/triblock terpolymer 

composites with such chiral structures have been very recently described [28]. For 

predicting the structures of such NP/BCP composites we assume 10 vol.% of ligand 

stabilized NPs in a PI-b-PS-b-PEO triblock terpolymer, where the NPs preferentially 

segregate into the PEO block. The composition of the BCPs is set to , 

, and , which is very close to the lamellar/alternating Gyroid 

phase boundary for pure PI-b-PS-b-PEO block terpolymers [27]. For simulating ligand 

stabilized NPs, we introduce HS particles with 20 ligand molecules, where one ligand 

chain end is attached to the particle surface. The HS diameter is . We 

incorporate the Gaussian chain weight term to approximately account for the ligand 

conformation entropy, as outlined in Fig. 3.1e. We utilize the interaction parameters of 

block terpolymers introduced by Tyler et al. [21]. Other system parameters are 

summarized in Appendix A. Introducing exothermic mixing between ligands and PEO 

blocks, we obtain the alternating Gyroid morphology, where one of the two chiral 

networks is composed of the PEO block plus the NPs represented by the green 

isosurface in Fig. 3.2. In cases like metal NPs, synthesis often requires a ligand 

coverage of the NP to increase solubility/misability [11]. Careful ligand molecule 

design can realize such exothermic mixing. Figure 3.2b shows the NP distribution 

inside the alternating Gyroid network with slightly elevated densities for the triple 

Gyroid nodes as compared to the struts. We further calculated the phase diagram of 

competing morphologies as shown in Fig. 3.2c utilizing the symmetry-adopted real 

space approach introduced in Appendix A in order to obtain an accurate phase 

fPI = 0.28

fPS = 0.57 fPEO = 0.15

d0 = 0.4 Rg
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diagram. Interestingly, morphological changes occur for relatively dilute amounts of 

NPs with increasing the NP content (note that the core-shell double Gyroid 

morphology is observed at  for the composite but at 

 for the neat block terpolymers shown in Ref. [21]).  

To elucidate the effect of the NP cores on the phase behavior, we also 

simulated the case of the triblock terpolymers mixed with free ligands, i.e., without 

any NP cores (see Fig. 3.2d). For this comparison the ligands are replacing the total 

volume that the ligand-grafted NPs were occupying in the previous case; this 

essentially preserves the enthalpic interactions since in both cases the terpolymer 

blocks only have direct contact with the ligands (with the NP cores mainly occupying 

a concealed space). The phase diagram for this reference system (Fig. 3.2d) is very 

different from that of the ligand-stabilized NP system (Fig. 3.2c). In particular, the 

lamellar and double Gyroid morphologies are missing (being mostly replaced by the 

O70 phase), and disordered mixtures of polymers and ligands are observed at high 

φLigand values. Such large differences indicate that a more complex interplay of 

physical and chemical interactions of polymers and NPs, beyond those associated with 

minimal interface formation, governs nanostructure formation in complex multi-

component self-assemblies. Indeed, in contrast to the case of free-ligands which blend 

uniformly within the PEO-rich domains, in the ligand-stabilized NP system the 

packing of PEO blocks around NPs favors a higher concentration of NPs in the centers 

of the PEO-rich domains (away from the interfaces, as shown in Fig. 3.2b), consistent 

with recent tomographic reconstruction data on networked oxide sol NP/triblock 

terpolymer composites [28]. This entropic “packing effect” becomes more pronounced 

!PEO +!p +!Ligand ! 0.3

!PEO ! 0.7
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as φp+φLigand increases, promoting the formation of phases with thicker PEO domains 

than those attainable in the competing O70 phase. This analysis illustrates that even 

when enthalpic interactions are equivalent in two systems, differences in the 

architecture of the secondary component can create entropic effects that strongly 

modulate self-assembly. 

These theoretical results are in good agreement with some of the results of 

recent experiments by Stefik et al. [28] for PI-b-PS-b-PEO triblock terpolymer/metal 

oxide NP self-assembly with similar polymer composition. In these experiments, 

hybrids with 5 vol.% of oxide NPs lead to the formation of an alternating Gyroid 

network phase, in agreement with the theoretical predictions (see Fig. 3.2c and d). In 

the range of 10~16 vol.% oxide NPs, a different network phase was observed 

experimentally, most likely the O70 phase; this phase exhibits broad peaks in the small 

angle x-ray scattering patterns, suggestive of structural heterogeneity within the 

samples. Such morphological inhomogeneity may arise from both the polydispersity 

of the size and shape of the oxide NPs and the slow structure formation dynamics in 

systems of higher inorganic material content. Polydispersity in the oxide NPs would 

induce spatial variations of packing entropy in the hybrids, potentially leading to the 

formation of a heterogeneous phase with alternating Gyroid and O70 domains; this 

could explain the experimental results. 

Next we elucidate long-range interaction effects in NP self-assembly. For 

studying the effects of Coulomb interactions on NP self-assembly in 2-dimensions, we 

introduce positively charged (+) NPs and negatively charged (–) counter anions. The 

diameter of counter anions is , where  is the NP diameter. The d! = 0.2041 d+ d+
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system consists of only NPs and counter anions with the overall volume fraction, 

, embedded in a homogeneous dielectric medium. The charges of NPs 

and counter anions are set to  and , respectively, and the charge 

neutrality condition is considered in the overall composition. The Coulomb interaction 

strength is controlled by the Bjerrum length, Γ, in the Coulomb potential, 

. Without long-range Coulomb interactions (Γ=0), NPs are 

homogeneously dispersed without any ordered alignments. Fig. 3.3 shows the 

formation of a closed-packed hexagonal lattice of NPs for the Coulomb interaction 

strength of . The region occupied by NPs is shown in green in Fig. 3.3a. 

The calculated density profiles of NPs (+) and counter anions (–) are depicted in Fig. 

3.3b and 3.3c, respectively. The NPs are arranged on a hexagonal lattice and 

surrounded by counter anions. Such NP packing is related to recent observations of 

NP self-assembly into crystal lattices [8, 29-31]. This self-assembly of NPs was 

attributed to long-range Coulomb or dipole interactions between NPs. Our simulation 

demonstrates that charges can induce lattice formation for mono-dispersed NPs. The 

hexagonal packing represents the densest packing for spherical particles in 2-

dimensional systems. Poly-disperse mixtures of NPs with incompatible NP sizes are 

known to lead to disordered packing [32]. The mono-disperse nature of the NPs in our 

simulations [14] is an important factor in the hexagonal lattice formation. 

Having established NP lattice formation in a pure NP system, we move on to 

study the effect of Coulomb interaction strength on NP/BCP composite systems. BCPs 

composed of two chemically distinct blocks, A and B, are added to the pure NP 

!+ +!! = 0.25

Z+ =10 Z! = !1

V (r) / kBT = !ZiZ j / r

! = 0.158 d+
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system. The overall volume fraction of NPs and counter anions is reduced to 

 while the BCPs constitute the rest of the system. The BCP composition 

is given by the portion of block A, , and the BCP radius of gyration is set to 

. NPs and counter anions are repulsive to block B and preferentially 

segregate into block A. Other system parameters for these calculations are 

summarized in Appendix A. Figure 3.4 shows the result for the NP/BCP composite 

system as a function of Coulomb interaction strength. Without Coulomb interactions 

(Γ=0), the NPs preferentially assemble inside the lamellae of block A with a slight 

preference towards the edge of the lamellae (red in Fig. 3.4a). For a weak Coulomb 

interaction with , the edge-assembly of NPs becomes more pronounced, 

as shown in Fig. 3.4b. Since the Coulomb repulsion between the NPs is in addition to 

the HS repulsions, the segregation of NPs to the lamellae interface is enhanced. When 

the Coulomb interaction is further increased to , some of the NPs as well 

as block A segments are now mixed with block B. This occurs because the Coulomb 

interaction is strong enough to overcome the mixing enthalpy penalty of NPs and 

block B, i.e., the positive  value. Interestingly, only a slight further increase of 

the Coulomb interaction strength, to , triggers the formation of a NP 

superlattice within the phase separated BCPs. Fig. 3.4d shows regularly arranged NPs 

in a lamellar block copolymer nanostructure (i.e. a NP superlattice in a 1D lamellar 

BCP lattice). The density profile of NPs shown in Fig. 3.4e clearly illustrates the 

lattice formation of NPs within block A. The transition from disordered to ordered NP 

!+ +!! = 0.15

fA = 0.35

Rg =1.02 d+

! = 0.031 Rg

! = 0.145 Rg

!B+

! = 0.161 Rg
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formation is discontinuous and the critical Coulomb strength is expected to depend on 

the interactions with the BCPs. However, a considerable amount of NPs locate in 

block B and also arrange regularly as seen in Fig. 3.4e. To completely segregate NPs 

within block A and arrange them on a lattice, a strong segregation of NPs from block 

B, i.e., a high  value, is required. Fig. 3.4f shows the effect of the interaction 

parameter, , on the critical Γ value for which lattice formation 

occurs. The critical Coulomb interaction strength Γ for lattice formation increases with 

increasing χ. Therefore, strong Coulomb interactions between NPs are needed for 

superlattice formation in the case of strong segregation, i.e., at high χ values. We 

further studied the effect of NP volume fraction on the Coulomb interaction strength 

for lattice formation. Denser NPs form a lattice with weaker Coulomb interaction 

strength as shown in Fig. 3.4f. Due to stronger NP confinement effects in denser NP 

distributions, the lattice formation is triggered with smaller Γ values. Consequently, 

higher NP loading in NP/BCP co-assemblies is more effective in driving lattice 

formation. Altogether, these results indicate that NP superlattice formation in BCP 

based polymer lattices depends on the interplay of multiple parameters including the 

interaction parameter χ, the Coulombic strength and NP loading.  

To further highlight the significance of Coulombic interactions in the 

preceding results, we studied as a reference case a NP/BCP system lacking Coulombic 

forces. The interaction parameter between the NPs and block A, χA+N, was assumed to 

give exothermic mixing to avoid macro-phase separation. We obtained an accurate 

phase diagram as a function of NP volume fraction, φ+, and χA+N (see Fig. 3.4g) 

!B+

! ABN = !B+N = !B!N
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utilizing the symmetry-adopted real space approach. The increase of φ+ (for fixed 

χA+N) leads to the morphology progression:  Lamellae → double Gyroid → 

hexagonal cylinders. The morphology is weakly sensitive to changes in χA+N (for 

fixed φ+), at least for the range of χA+N considered here. Such morphology changes 

(Fig. 3.4g) are not observed for the systems with Coulomb interactions discussed 

before (upon variation of Γ and φ+). The difference arises mainly from the fact that 

such interactions drive the spatial distribution of charged NPs to spread out with the 

most regular interparticle spacings allowable leading to the formation of a higher 

symmetry structure and a reduction of the interfacial curvature. These results illustrate 

how different types of enthalpic interactions can be utilized to design widely different 

morphologies in otherwise identical NP/BCP composites. 

In summary, we presented results of a field-theory approach for predicting 

nanostructure of self-assembled NP based materials. Our approach offers the 

flexibility to (i) include complex multi-component molecules including ligand-

stabilized NPs and to (ii) incorporate various types of interactions. The propagator 

approach was utilized to incorporate complex molecular details of soft/hard multi-

component molecules/NPs. HS and Coulomb interactions between NPs were 

implemented to describe NP self-assembly. For identifying accurate phase behavior of 

complex NP-BCP systems, a symmetry-adopted real space approach was introduced. 

As an application of the approach, insights into the formation of chiral ligand-

stabilized NP/triblock terpolymer network structures were provided. For a system of 

charged NPs and counter ions, the formation of a hexagonal lattice in two dimensions 

was predicted. The same strategy was transferred to NP/BCP assemblies to arrange 
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NPs on a superlattice within the phase separated BCP structure. Such NP/BCP 

superlattices may be of interest for energy generation and storage, metamaterials, as 

well as microelectronics and information storage. Based on the breadth of examples 

discussed, our approach is expected to provide insights into various mesoscopic 

systems and to elucidate key factors that govern the physics of the respective bottom-

up type self-assembly. Furthermore, its efficiency in sampling phase space and its 

ability to incorporate molecular details may eventually enable simulations for 

molecular systems of unprecedented size and complexity, including biological systems, 

with resolution down to the molecular level. 
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Figure 3.1. The single molecular partition functions  of simulated species. a, 

positively charged NP. b, negatively charged counter anion. c, di-BCP. d, 

Poly(isoprene-b-styrene-b-ethylene oxide) tri-BCP. e, ligand-stabilized NP composed 

of a hard sphere (HS) and  ligand molecules. Bold Greek letters represent 

positional vectors that correspond to black dots in molecular representations and 

 is the Dirac delta function. The chemical potential fields, , and the 

propagators, , are discussed in Appedix A. 
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Figure 3.2. Poly(isoprene-b-styrene-b-ethylene oxide) (PI-b-PS-b-PEO) / ligand-

stabilize NP composite forms alternating Gyroid morphology. Ligand-stabilized NPs 

embedded in the green struts form a chiral network structure directed by the BCP self-

assembly.Isosurfaces of local volume fractions equal to 0.5 are shown in distinct 

colors for each components. a, The blue isosurface represents isoprene and the green 

one ethylene oxide with ligand stabilized NPs. b, The density profile of ligand 

stabilized NPs, , superimposed on a cross section parallel to a [001] plane of the 

PI-b-PS-b-PEO / ligand stabilized NP composite with alternating Gyroid morphology. 

For clear visualization of the struts, some areas of  with small NP densities are set 

to be transparent. A slightly elevated density of NPs is observed for the nodes as 

comparedto the struts. c, The phase diagram of the ligand-stabilized NP composite for 

varying composition and interaction parameter between PEO block and ligands. d, 

The phase diagram of the block terpolymers and free ligands without the NP cores 

(shown for comparison).  

! p
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Figure 3.3. Coulomb interactions induce lattice formation of NPs. a, Green col

or represents regions occupied by NPs. b, The density profile of positively char

ged (+) NPs, . c, the density profile of negatively charged (-) counter anion

s, . 
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Figure 3.4. Coulomb interactions between NPs control lamellar morphology and 

above a critical Coulomb interaction strength induce superlattice formation of NPs 

within one dimensional (lamellar) BCP lattices. Red color represents block A, blue 

color block B, and green color represents the NPs. The insets demonstrate the cross 

sectional view of compositions along the x axis. The Coulomb interaction strength is 

controlled by varying  in the Coulomb potential, , with (a) 

, (b) , (c) , and (d,e) . e, The density 

profile  of NPs in phase separated BCP/NP assemblies. For a comparison, the 

projection on the xy plane equivalent to d is shown underneath the density profile. f, 

The critical Γ values for superlattice formation shown as a function of the repulsive 

interaction parameter,  (squares with solid lines), and as a function of the NP 

volume fraction,  (circles with dotted lines). Strong Coulomb interactions between 

NPs are needed for superlattice formation with increasing segregation strength, i.e., at 

higher  values, while due to the confinement effect of NPs in block A, the 

driving force for lattice formation decreases with increasing . g, Phase diagram for 

a reference non-ionic system as a function of  and the interaction parameter, χA+N. 

 

 

! V (r) / kBT = !ZiZ j / r

! = 0 Rg ! = 0.031 Rg ! = 0.145 Rg ! = 0.161 Rg

!+

! ABN

!+

! ABN

!+

!+
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APPENDIX A 
 

Simulation Methods 

Here we briefly introduce basic features of our approach. A more detailed 

description can be found in Ref. [14]. The Helmholtz free energy in our field theory is 

given by 

 

.                          

(1) 

 

The first term in Eq. (1) is the conformational and mixing entropy of molecules given 

by , where  is the number of molecules  in 

a system and  is its single molecular partition function.  and  are chemical 

potential fields and densities, respectively, of monomer species composing the 

molecules. The molecular partition function, , describes the molecular structures as 

exemplified in Fig. 3.1 for different molecules. The implementation of  is a key 

step for incorporating molecular structures and requires the most intensive 

computation in field theories. The Green function propagator, , of polymer 

segments has been implemented for calculating .15,16,33 By generalizing the 

propagator for other types of materials including NPs, we can simulate hybrid 

NPs/molecules composed of organic and inorganic materials without any loss of 

efficiency reserved to SCFTs. The other three terms in Eq. (1) represent the excess 

F = F 0 + F ! + FHS + FC

F 0 = ! ni lnQi" ! dr# wi r( )!i r( )" ni i

Qi w !

Q

Q

G

Q
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free energies of short-range enthalpic ( ), hard sphere (HS) ( ), and long-range 

Coulomb interactions ( ), respectively. For NP/BCP mixtures, Thompson et al. 

implemented  and  for NP interactions [23]. However, due to the different 

physical and chemical nature of NPs, various types of interactions including long-

range Coulomb interactions are required to study realistic experimental systems. To 

this end, the Coulomb potential is incorporated utilizing a direct correlation function 

[34] combined with the Ewald summation technique [35]. 

 For enabling more accurate calculations of phase diagrams than non-

symmetrized calculations, here we propose a symmetry-adopted ‘real space’ approach 

by projecting the chemical fields, , with normalized and symmetrized basis 

functions, , [36] as 

 

                            (2) 

 

where  is the symmetry-adopted chemical field of monomer species . Other 

processes are identical to those outlined in Ref. [1]. This approach can be applied to 

systems with any combination of interactions, whereas the reciprocal space approach 

[16, 38] is not feasible for non-linear interactions such as HS interactions. Non-

symmetrized approaches [20, 38] are advantageous for studying unexplored molecular 

systems while symmetrized approaches [16] provide more accurate free energy 

calculations of competing nanostructures. Exploiting advantages of both approaches, 

one can accurately identify the phase behavior of complex molecular hybrid systems. 

F ! FHS

FC

F ! FHS

w

f

!wi r( ) = f j r( ) d !rwi !r( ) f j !r( )"
j
#

!wi i
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Although reciprocal approaches [16, 38] require a much smaller number of functions, 

M, in the basis set than real space approaches, the computational budget scales as M3 

in reciprocal approaches, while the use of the Fast Fourier Transform and the 

propagator approach leads to a scaling of MlogM in real space approaches [14]. 

Therefore, real space approaches are usually more advantageous than reciprocal 

approaches not only for a wider range of applications but also for more efficient 

computations. 

 

 

 

Simulation parameters 

Chiral self-assemblies of ligand stabilized nanoparticles (NPs) within PI-b-PS-b-

PEO tri-BCPs (Fig. 3.2) 

 

 

N!  PS PEO Ligand HS 

PI 11 45.8 45.8 45.8 

PS  14.2 14.2 14.2 

PEO   -15 0 

Ligand    0 

 

Table S1. N!  parameters for chiral self-assemblies of ligand stabilized NPs 

within PI-b-PS-b-PEO tri-BCPs 
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To simulate ligand stabilized NPs, we incorporate the Gaussian chain weight term for 

ligand conformations to account for their conformational entropy. The size of one 

ligand molecule is given by / 1/ 250LigandN N = , which corresponds to a single Kuhn 

segment. The number of ligands per HS particle is set to 20Ligandn =  and one chain 

end of the ligand molecules is attached to the HS particle surface. The single 

molecular partition function of the NPs,Q , is given in Fig. 3.1 and its calculation 

process is outlined in Section III.D of Ref. [14], where the continuous propagator for 

polymer segments is utilized for the ligands. For polymer interaction, N! , 

parameters, we utilize the parameters given by Tyler et al. due to their ability to well 

reproduce the experimental phase diagram [37]. N!  for ligand stabilized NPs are set 

to drive them to segregate into the PEO block. Exothermic mixing of ligand molecules 

and PEO blocks is assumed and all N!  parameters are summarized in Table S1 of 

Appendix A. The Kuhn lengths for each chemical species are set to / 0.917PS PIa a = , 

/ 1.3PEO PIa a = , and / 1.3Ligand PIa a =  for PS, PEO, and ligand molecules, 

respectively. The composition of BCPs is set to 0.28PIf = , 0.57PSf = , and 

0.15PEOf = . The diameter of HS particles is 0 0.4 gd R= . The volume fraction of 

ligand stabilized NPs is set to 
  
! p + !Ligand = 0.1 . We assign 0.517  for 1 3

0 gN R!" "  

based on the physical data of PI-b-PS-b-PEO BCPs given by Tyler et al. [37]. 
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Charged NP / counter anion (CA) super lattices in self-assemblies with BCPs (Fig. 

3.4) 

 

 

 

Table S2. N!  parameters for the self-assembled superlattices of charged NPs 

and CAs within lamellar BCPs 

 

In this work, we study charged NP self-assembly behavior within BCPs. The 

radius of gyration of unperturbed BCPs, gR , is the basic length unit in this work. The 

diameter of NPs is given by 0.9798 gd R+ = . Since the CA volume is expected to be 

small, the diameter of CAs is set to a small value, 0.2 gd R! = , compared with the NP 

diameter. The overall volume fraction of NPs and CAs is set to 0.15! !+ "+ = . ij N!  

parameters, as summarized in Table S2 of Appendix A, are set to 

20AB B BN N N! ! !+ "= = = , a value large enough for BCP microphase separation to 

occur, and 0A AN N N! ! !+ " +"= = =  for particles to be segregated preferentially into 

A-block domains. The BCP composition is set at 0.35Af =  for obtaining one-

N!  B + - 

A 20 0 0 

B  20 20 

+   0 
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dimensional (1D) lamellar morphologies for the NP/BCP composite. The charges are 

fixed at 10Z+ =  and 1Z! = ! , while !  is varied to control the Coulomb interaction 

strength from 0 gR! =  to 0.161 gR! = . The charge neutrality condition requires 

that the number of CAs be 10  times the number of NPs. We assign a typical value of 

0.4655  for 1 3
0 gN R!" " . 
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CHAPTER 4 

Three-dimensionally Isotropic Negative Refractive Index Materials 

from Block Copolymer Self-assembled Chiral Gyroid Networks3 

ABSTRACT 

  Engineered artificial materials named metamaterials offer new functionalities 

such as super-resolution imaging and cloaking. Despite considerable progress, finding 

efficient pathways towards 3-dimensionally isotropic metamaterials remains 

challenging thus hampering their practical applications. Here we present calculations 

of the photonic properties of three-dimensionally isotropic metallic nanomaterials with 

the cubic double gyroid and the alternating gyroid morphologies. These materials can 

be obtained by block copolymer self-assembly with a unit cell significantly smaller 

than the free space wavelength of visible light. For double gyroid metamaterials, we 

specifically identify the materials parameters and design principles for negative-

refractive index materials in the visible and near infrared spectrum. In alternating 

gyroid metamaterials, due to lack of a second minority network, a metallic band gap is 

predicted. Furthermore, both structures show circularly polarized light propagation 

originating from the intrinsic chirality of the minority gyroid networks. Results 

suggest efficient design criteria for self-assembly based metamaterials overcoming 

current fabrication challenges.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3  Reproduced with permission from: Kahyun Hur, Yan Francescato, Vincenzo 
Giannini, Stefan A. Maier, Richard G. Hennig, and Ulrich Wiesner, Angew. Chem. Int. 
Ed. 50 (50), 11985-11989 (2011). Copyright 2011 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim. 
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4.1. Introduction 

In 1999, Pendry predicted that specifically engineered artificial materials, i.e. 

metamaterials, would have unusual magnetic responses, e.g. negative permeability [1]. 

Following this work, much effort has been devoted to the design and fabrication of 

metamaterials with negative refractive index [2-6] Such negative index metamaterials 

have the potential, e.g. in the form of superlenses, to overcome the diffraction limit in 

imaging or to enable novel optical effects, including cloaking [7-9]. Today most 

metamaterial fabrication relies on top-down approaches such as lithography 

techniques, making efficient access to three-dimensionally (3D) isotropic 

metamaterials challenging thus hindering their practical applications [10, 11] Recent 

progress in bottom-up type self-assembly offers promise to overcome some of these 

limitations [12-14]. In particular block copolymer (BCP) self-assembly has emerged 

as a useful designer tool to create nanostructures including 3D continuous 

morphologies of disparate materials like ceramics and metals [15, 16] The present 

paper makes clear theoretical predictions for how to design 3D isotropic materials 

with negative refraction and circularly polarized light propagation from a class of 

block copolymer based self-assembled materials not yet rigorously studied in the 

context of metamaterials. Through theoretical understanding and guidance on 

materials choices, characteristic length and frequency scales, which are determined by 

calculations and described in detail in the manuscript, a “recipe” is provided for the 

synthesis, fabrication and characterization of these materials. 

We present calculations of the photonic properties of 3D periodic metallic 

nanomaterials with co-continuous cubic morphologies as illustrated in Figure 4.1. 
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Such structures are experimentally accessible through self-assembly of AB diblock 

copolymers and ABC triblock terpolymers and are referred to as double gyroid (D-

GYR) and alternating gyroid (A-GYR). Both of these structures have two 3D 

continuous cubic and interwoven minority networks separated by a matrix majority 

network. In the A-GYR the two minority networks are distinguishable leading to 

chirality while in the D-GYR they are not. We predict for the resulting metallic 

nanomaterials that the coupled surface plasmon resonance of the two minority 

networks of the D-GYR induces low frequency light propagation with a negative 

index of refraction. Due to their cubic symmetry, these materials are 3D isotropic (see 

Fig. 4.1e). They also show circularly polarized light propagation originating from the 

chirality of the gyroid networks. We further predict that by tailoring BCP synthesis 

one can design materials with varying refractive index and frequency at which 

negative refraction occurs. Finally, in contrast to D-GYR metallic nanomaterials, 

chiral A-GYR metallic nanomaterials are expected to exhibit a surprising metallic 

band gap despite their smaller metallic fraction. We conclude that these periodic 

structures would effectively behave like metamaterials. 

A gyroid is a 3D co-continuous structure with cubic symmetry based on the 

triply periodic G minimal surface (see Fig. 4.1 and Ref. [17, 18] for their topological 

characteristics). Minimal surfaces have a mean curvature of zero everywhere. Familiar 

examples include surfaces of minimum area formed by soap films obtained from 

dipping wire frames into soap solutions. Due to characteristics of materials with cubic 

symmetry, metamaterials with gyroid structure are inherently isotropic in 3D and so 

are their optical responses19 as compared to other metamaterials [1, 4]. After the first 
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discovery of a gyroid in BCP self-assembly, gyroid-based materials self-assembly has 

received significant attention and in the meantime has led to the first electronic 

devices [20-23]. Furthermore, such 3D isotropic gyroid structure was also in 

intermetallic compounds [24, 25] The D-GYR morphology is composed of two 

minority networks of the same monomer species obtained from AB diblock 

copolymers, where each network has opposite chirality and is the inversion of the 

other. Due to this inversion symmetry, the structure is not chiral, and belongs to the 

space group 3Ia d , denoted Q230 [26]. In contrast the A-GYR has two minority 

networks composed of different monomer species and is obtained from ABC triblock 

terpolymers (red and blue domains in Fig. 4.1c). Since the two minority networks are 

chemically distinct the structure lacks inversion symmetry and becomes chiral with 

space group I4132, denoted Q214 [26]. Our metamaterials are designed by assuming 

selective etches of different blocks of AB diblock and ABC triblock polymer derived 

gyroids and deposition of metal into the resulting pores as shown in the schematic 

diagrams in Fig. 4.1. Recent synthetic progresses [27, 28] show that the proposed 

schemes are feasible for metamaterials fabrication. 

Before describing the results of our calculations, it is instructive to look into 

what kind of optical behavior can be expected for the gyroid structures shown in Fig. 

4.1. It is expected that 3D continuous metallic networks have a metallic band gap 

below a certain cut-off frequency due to a strong plasmon response at low frequencies 

[29] However, for the D-GYR morphology, the two separate gyroid networks form a 

capacitor leading to a different light propagation mechanism. Such light propagation 

originates from the coupled surface plasmon resonances on the closed loops of gyroid 



 96 

networks (see Fig. 4.1d-f). The gyroid capacitor becomes a metal/insulator/metal 

(MIM) wave guide as depicted in Fig. 4.1g. This coaxial MIM geometry [30] supports 

surface plasmon polariton propagation. Resulting photonic behaviors are very unique. 

The longest wavelength at the Brillouin zone boundary reaches λ=34a in vacuum for a 

D-GYR metamaterial with unit cell size, a=25 nm. Furthermore, as will be shown 

below, their refractive index and frequency range can be controlled by the lattice 

constant, i.e. without changing the deposited materials. Due to limitations of the unit 

cell size to values typically below 150 nm [31], dielectric materials-based photonic 

applications utilizing BCP self-assembly for visible and longer wavelengths are 

usually challenging [32]. However, the wave-guide bands result in negative refraction 

in visible and near-infrared regimes. With calculations described below we confirm 

that in these bands the wave vector and the Poynting vector have opposite directions. 

Remarkably these bands exhibit very small refractive index dispersion and 

propagation with low losses as shown in Figure S1b of Appendix B. Our theoretical 

results suggest that metamaterials fabrication from bottom-up BCP self-assembly may 

result in interesting optical properties thus moving them closer to the realm of 

practical applications. 

 

4.2. Simulation Methods 

We used self-consistent field theory, one of the most powerful methods to 

describe BCP morphologies [33, 34], to obtain realistic representations of the D-GYR 

and A-GYR morphologies. We subsequently calculated the photonic band structures 

of three different types of metal structures as shown in Fig. 4.1, which we refer to as 
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D-GYR, hollow D-GYR, and A-GYR metamaterials. For the calculations, two 

simulation methodologies were used, an eigensolver of Maxwell’s equation following 

Ref. [35] and finite element-based software COMSOL [36]. 

 

4.3. Results and Discussion 

First, using the eigensolver approach, we calculated the band structures of the 

D-GYR metamaterial made of gold described by a Drude model [37] without losses 

with unit cell size, a=100 nm, and the plasma frequency, ωp=2π×2.19×1015 Hz, as 

shown in Fig. 4.2a. The characteristic flat bands of metallic photonic crystals [35, 38] 

are observed within a frequency range, 0.22<ωa/2πc<0.55, the orange region in the 

band structure (see Fig. 4.2b). Those bands are not shown due to extremely dense 

populations in this regime (note that the spacing between neighboring bands is less 

than 1012 Hz.). Fig. 4.2c details the low frequency bands. Despite the high portion of 

metal, low frequency light propagation is observed. Interestingly, negative refraction 

bands are found and examples are highlighted in red (fast propagation) and orange 

(slow propagation) in Fig. 4.2c. For such negative refraction bands, the photonic 

energy flux given by the Poynting vector [39] is opposite to the momentum vector, k. 

Fig. 4.2c and d show the directions of the time-averaged local Poynting vector 

S=1/2Re[E×H*] for positive and negative refraction bands. Clearly, the direction of S 

is opposite to that of k for negative refraction. Such negative refraction is further 

observed at different momentum vectors, k=[0.1,0.1,0] and k=[0.1,0.1,0.1], as shown 

in Figure S1 of Appendix B. Consequently, the photonic band is an all-angle negative 

refraction band. Since two interpenetrating networks form a metal/insulator/metal 
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waveguide, such light propagation is allowed in D-GYR metamaterials. Fig. 2d shows 

the polarization velocity field [35] of a positive refraction band (blue), Re[v], which 

corresponds to a coupled surface plasmon resonance. Each minority metal gyroid 

network has the anti-parallel electric currents of the other network and it is this 

coupled surface plasmon resonance phenomenon, which induces the propagation of 

light. Surprisingly each chiral gyroid strut allows its own circular polarized light 

propagation (see Figure S2 of Appendix B) [40]. Due to the existence of two opposite 

chiral struts, both left and right-handed circular polarizations can exist in D-GYR 

metamaterials. 

In order to determine the importance of losses, we first calculated the band 

structure of lossy D-GYR metamaterials with a damping term, Γ=2π×5.79×1012 Hz, 

without consideration of inter-band transitions [37], in the eigensolver approach. The 

results are shown in Figure S3 of Appendix B and show no significant deviations from 

the case without losses (note that metallic loss neither affects the band structure nor 

the energy flux as shown in Figure S3 of Appendix B). Second, calculations were 

compared for the negative band indicated with an asterisk (*) in Fig. 4.2b using the 

finite element-based simulator COMSOL [36] for three different metals using 

experimental data of the dielectric function obtained from the literature: gold [41], 

silver [41] and aluminum [42]. As depicted in Fig. 4.3a and b, metamaterials with 

silver and aluminum, respectively, show the same energy flux direction as the Drude 

metal case. In contrast, strong absorption from inter-band transitions in gold, which is 

not taken into account in the Drude model, prevents negative refraction to occur in that 

band (see Fig. 4.3c). A strong frequency dispersion can change the direction of the 
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group velocity [43]. Therefore, our calculations predict that low loss metals like silver 

need to be employed in the BCP self-assembly directed metamaterials described here 

to observe negative refraction in the visible range. 

One advantage of BCP self-assembly is a facile control of the unit cell size, a, 

which can be achieved by changing BCP molar mass. For BCP D-GYR morphologies 

a typically ranges from 25 nm to 150 nm [31]. We calculated the refractive index of a 

positive refraction (blue in Fig. 4.2f) and a negative refraction (red) band for different 

unit cell sizes. The band structures are shown in the inset of Fig. 4.2g with varying a. 

Interestingly, the frequency range for the negative refraction barely changes with a. 

This result implies that decreasing the gap between the gyroid metal networks linearly 

increases the wave vector k at a fixed frequency. Physically, stronger coupling 

between surface plasmon resonances, i.e. larger capacitance, induces slower surface 

plasmon polariton propagation as in 1-dimensional metal/insulator/metal waveguides 

[30]. This phenomenon sets metallic D-GYR metamaterials apart from their dielectric 

photonic crystal (PC) counterparts, where the band frequencies scale with a and the 

refractive indices are independent of a [32, 44]. The results in Fig. 4.2f and g show 

that for the D-GYR metamaterials the refractive index is roughly inversely 

proportional to a. Therefore, the refractive index of both positive and negative 

refraction bands can be controlled through tuning BCP molar mass. Such phenomena 

originate from the characteristics of the surface plasmon resonances. For this reason, 

controlling the surface plasmon resonance should be a critical design factor for band 

structure control at low frequencies. 
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One can expect that the surface plasmon resonance frequency of D-GYR 

metamaterials can be governed by the capacitance of the two minority networks. A 

larger capacitance may lower the frequency range of the negative refraction band by 

slowing surface plasmon polariton propagation. Intuitively, a smaller gap between the 

gyroid minority networks is expected to increase the capacitance. One possible block 

copolymer structure to achieve this is the so-called core-shell D-GYR observed in tri-

block terpolymers [45] where the shells surrounding the two equivalent gyroid 

minority networks (cores) will be replaced by metals. Instead, in the current work, we 

assumed a conformal metal deposition on both D-GYR minority networks after 

removal of the majority (matrix) block to ensure a shorter distance between two 

(hollow) metallic networks. The resulting hollow D-GYR metamaterial shown in the 

inset of Fig. 4.4a has a smaller metal volume fraction of 0.11, as compared to 0.34 for 

the original structure. Fig. 4.4a shows its band structure for a unit cell size a=100 nm. 

As expected, negative refraction bands are observed in a lower frequency range 

(compare Fig. 4.2b and Fig. 4.4a). 

Finally, we calculated the band structure of A-GYR metamaterials with a=50 

nm, where only one minority network is converted into a metal as shown in the inset 

of Fig. 4.4b (note that for the same BCP molar mass, the unit cell size, a, of the A-

GYR is approximately half the value of the D-GYR). Surprisingly, despite a much 

lower metallic volume fraction of 0.17, than that of the D-GYR of 0.34, such materials 

exhibit a metallic band gap at low frequencies [46] Due to the lack of a “counter 

electrode”, low frequency light propagation from the coupled surface plasmon 

resonance observed in the D-GYRs becomes forbidden. In order to see far-field 
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effects, further calculations were performed using COMSOL for an A-GYR slab 

composed of two unit cells with a=100 nm for gold, Drude and silver metals (note that 

this unit cell is twice as large as the one in Fig. 4.4b). The results of the COMSOL 

calculations in Fig. 4.3c show a broad peak of electric field polarization rotation below 

λ=500 nm, the frequency range of which coincides with the optically active range of 

the A-GYR band structure (losses in silver shift the peak and transmission/reflection 

spectra to longer wavelength as shown Fig. 4.3c and d). Furthermore, as expected in 

the D-GYR case, the chiral gyroid network in the A-GYR metamaterial induces a 

circular polarization. 

In summary, we calculated the photonic bands of 3D periodic metallic 

nanomaterials with D-GYR and A-GYR morphologies, which experimentally can be 

fabricated, e.g. using block copolymer self-assembly followed by selective etching and 

subsequent metal deposition. For the D-GYR structure, coupled surface plasmon 

resonances induce light propagation at low frequencies. Negative refraction is 

predicted in the visible and near infrared regime for low loss metals like silver and 

aluminum but not for gold. Due to the chirality of the gyroid minority networks, 

circularly polarized light propagation is predicted. The results suggest critical design 

criteria for controlling photonic properties of such materials. We show that the 

refractive index and negative refraction frequencies of the resulting metamaterials are 

controlled by the structural parameters of these morphologies, which in turn can be 

tuned through the selection of polymer molar mass and block structure. For the A-

GYR a surprising metallic band gap is observed at low frequencies. The unusual 

photonic behavior revealed in this theoretical work is caused by coupled surface 
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plasmon resonances. The results suggest a significant potential for bottom-up type 

self-assembly toward metamaterials design and synthesis and identify specific design 

choices for experimental realizations of 3D isotropic negative index materials in the 

visible range. Cubic bicontinuous block copolymer network structures often have 

grain sizes of up to hundred micrometers or larger providing access to single crystal 

type structures for which the phenomena described here should be measurable [47, 

48]. 
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Figure 4.1. Schematic routes to 3-dimensionally co-continuous metamaterials with 

cubic symmetry and expected optical behavior. a) D-GYR; b) hollow D-GYR; and c) 

A-GYR metamaterials. For clarity of presentation, specific blocks are represented to 

be transparent. d) D-GYR metamaterial formed from many unit cells. The two chiral 

gyroid struts are depicted in different color for clarity. e) Projected images of a D-

GYR metamaterial unit cell with unit cell length aonto three orthogonal axes. Two 

struts are cut in different planes for showing full loops. Surface plasmon plaritons (f) 

oscillate on the closed loop of gyroid networks and (g) on a 1-dimensional 

metal/insulator/metal wave-guide. 
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Figure 4.2. Results of band structure calculations using an eigensolver approach 

following Ref. [35] for D-GYR metamaterials made of a Drude metal with a=100 nm 

and the plasma frequency of gold, ωp=2π×2.19×1015 Hz [37] a) Photonic band 

structure of D-GYR where the shaded region is filled with extremely dense flat bands. 

b) Expanded view for low frequency bands. Results show low frequency propagation 

bands including positive refraction (examples highlighted in blue) and negative 

refraction (examples highlighted in red for fast and in orange for slow bands, 

respectively). c) Energy flux, S, of the positive refraction band (blue) at k=[0.1,0,0]. d) 

S of the negative refraction band (asterisk) at k=[0.1,0,0]. e) Coupled plasmon 

resonance, Re[v], of the blue band at k=[0.1,0,0]. f) Refractive indices of two 

propagation bands (blue and red in b) obtained from Γ to H are roughly inversely 

proportional to the unit cell size, a. g) The band structure with varying a. The first 

Brillouin zone boundary is defined at Γ=[0,0,0], H=[0.5,0,0], N=[0.5,0.5,0], and 

P=[0.5,0.5,0.5]. All momentum vectors, k, have the unit, 2π/a. 
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Figure 4.3. Results of finite element-based calculations using COMSOL. a-c, 

Normalized near-field profiles (yellow=1, black=0) and energy flux (arrows), S, of the 

negative band indicated with an asterisk in Fig. 4.2c at k=[0.1,0,0] for different metals 

(dielectric function from experimental data): silver (a), aluminum (b), and gold (c). 

Silver and aluminum show the same directional behavior of S calculated for gold in 

the Drude model (in which interband losses are not considered), while the direction of 

S in gold is positive due to strong losses from inter-band transitions. d) Far-field 

simulation results of a A-GYR slab composed of two unit cells with a=100 nm 

demonstrate electric field polarization rotation angle for the Au Drude metal (red) and 

silver (black). e) Reflectance (solid lines) and transmittance (broken lines) of the slab.  
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Figure 4.4.  a) The photonic band structure of (a) a hollow D-GYR metamaterial 

with a=100 nm shows a lower onset frequency of the negative refraction than D-GYR 

metamaterials (compare results in c with those in Fig. 4.2c). The color code for (a) is 

the same as in Figure 4.2b) The metallic band gap of a A-GYR metamaterial with 

a=50 nm is observed in the photonic band structure up to ωa/2πc=0.094. The low 

frequency propagation bands are missing due to lack of a “counter electrode”. 
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APPENDIX B 
 

Angular dependence of the negative refraction band (red line in Fig. 4.2b). We 

showed negative refraction along Γ  to H  at [ ]0.1,0,0=k  in Fig. 4.2d. In order to 

check angular dependence of the negative refraction band, the Poynting vectors 

*1/ 2Re ⎡ ⎤= ×⎣ ⎦S E H  for other directions, Γ  to N  at [ ]0.1,0.1,0=k  and Γ  to 

P  at [ ]0.1,0.1,0.1=k , are shown in Fig. S1a and b of Appendix B, respectively. 

Consequently, the photonic band (red line in Fig. 4.2b) is an all-angle negative 

refraction band. 

 

Ciruclar dichroism. Fig. S2 of Appendix B demonstrates the magnetic fields, 

Re eiδ⎡ ⎤⎣ ⎦H , of the negative refraction band (red line in Fig. 4.2b) at [ ]0.4,0,0=k  for 

different time steps, δ . The time evolution of magnetic fields demonstrates that each 

metal gyroid struts allow either left or right circularly polarized light propagation. 

Therefore, D-GYR metamaterial has both struts and is expected to have no circular 

dichroism. In contrast, A-GYR metamaterial, which has only one gyroid strut, is 

expected to have circular dichroism. 
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Methods 

Self-consistent field theory calculations. For the D-GYR, we simulated A-b-B di-

BCPs with overall volume fraction of block A, 0.32Af = , and product of the Flory-

Huggins interaction parameter with the number of monomers along the BCP chain, 

40Nχ =  [33]. SCFT simulations yield the local volume fractions of all blocks at each 

position r , ( )ϕ r . The metallic regions were set from the local volume fraction of 

block A, ( )Aϕ r , with ( ) 0.5Aϕ ≥r  for D-GYR and ( )0.1 0.5Aϕ≤ ≤r  for the 

hollow D-GYR (note that ( )Aϕ r  decreases with moving away from the gyroid cores 

and thus the hollow D-GYR defined at smaller ( )Aϕ r  has a shorter strut-to-strut 

distance than the D-GYR does). For the A-GYR, we simulated poly(isoprene-b-

styrene-b-ethylene oxide) (ISO) with the overall volume fractions of each blocks, 

0.28If = , 0.57Sf = , and 0.15Of = . The other simulation parameters such as Nχ

and the Kuhn lengths are taken from Ref. [45]. The metallic regions were determined 

from the local volume fraction of the polyethylene oxide block, ( )Oϕ r , with 

( ) 0.3Oϕ ≥r . Other regions were set to be vacuum. 

 

Photonic band calculations. The photonic band structures were calculated from 

Maxwell’s equations for dispersive materials following Ref. [35], with a frequency-

dependent dielectric function ( )
2

21 pww
w iw

ε = −
− Γ

. For the metal regions, we used a 
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Drude metal with the plasma frequency of gold, 152 2.19 10pw Hzπ= × ×  [37] and 

initially set the loss term, Γ , to zero. In order to determine the importance of losses, 

we subsequently calculated the band structure of lossy D-GYR metamaterials with 

122 5.79 10 HzπΓ = × ×  [37]. The results are shown in Fig. S3 of Appendix B and 

show no significant deviations from the case without losses. All simulations were 

performed using a grid of 32×32×32 points. 

 

Finite element-based calculations. Results were compared with full 3D 

electrodynamic calculations using finite element-based software COMSOL [36] for a 

Drude fit to the dielectric function of gold (thus underestimating losses in the visible 

due to interband transitions) shown in Figure S4 of Appendix B, as well as for the 

measured dielectric functions [49] for gold [41], silver [41] and aluminum [42].  A 

maximum mesh step of 1 nm was used across the whole unit cell. 
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Figure	
  S1.	
  The	
  energy	
  flux,	
   *1/ 2Re ⎡ ⎤= ×⎣ ⎦S E H ,	
  of	
  the	
  negative	
  refraction	
  band	
  

(red	
  line	
  in	
  Fig.	
  2b)	
  along	
  a)	
   Γ 	
   to	
   N 	
   at	
   [ ]0.1,0.1,0=k 	
   and	
  b)	
   Γ 	
   to	
   P 	
   at	
  

[ ]0.1,0.1,0.1=k .	
   	
   The	
  energy	
  flux	
  has	
  opposite	
  directions	
  to	
  their	
  momentum	
  

vectors.	
  These	
  results	
  clearly	
  show	
  the	
  photonic	
  band	
  is	
  an	
  all-­‐angle	
  negative	
  

refraction	
  band.	
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Figure	
  S2.	
  Magnetic	
  fields,	
   Re eiδ⎡ ⎤⎣ ⎦H ,	
  of	
  the	
  negative	
  refraction	
  band	
  (asterisk)	
  

at	
   [ ]0.4,0,0=k 	
   in	
  Fig.	
  2b	
  for	
  different	
  time	
  steps,	
   δ .	
  Each	
  chiral	
  gyroid	
  strut	
  

has	
  its	
  own	
  circular	
  polarized	
  light	
  propagation.	
  The	
  magnetic	
  field	
  evolution	
  in	
  

time	
  demonstrates	
  left	
  and	
  right	
  circular	
  dichroism	
  for	
  each	
  gyroid	
  struts.	
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Figure	
   S3.	
   Results	
   of	
   calculations	
   using	
   an	
   eigensolver	
   approach.	
   Lossy	
  D-­‐GYR	
  

metamaterials	
  with	
   100a nm= 	
   and	
   122 5.786 10 HzπΓ = × × 	
   show	
  the	
  same	
  band	
  

structure	
   with	
   lossless	
   D-­‐GYR	
  metamaterials	
   (compare	
   with	
   	
   Fig.	
   2C).	
   Neither	
  

the	
  direction	
  of	
   energy	
   flow	
   S 	
   nor	
   the	
  band	
  diagram	
   is	
   affected	
  by	
  metal	
   loss.	
  

The	
   color	
   code	
   for	
   (a)	
   is	
   the	
   same	
   as	
   in	
   Figures	
   2	
   and	
   4.	
   a)	
   Photonic	
   band	
  

structure.	
   b)	
   Imaginary	
   part	
   of	
   	
   ! 	
   for	
   each	
   frequency! .	
   Close	
   values	
   are	
  

obtained	
  considering	
  the	
  experimental	
  dielectric	
  function	
  of	
  silver.	
  c)	
  Energy	
  flux,	
  

S ,	
   of	
   the	
   negative	
   refraction	
   band	
   (red)	
   at	
   [ ]0.1,0,0=k 	
   with	
   the	
   unit,	
   2 / aπ .	
  

Note	
  that	
  for	
  these	
  modes	
  Im(ω)	
  is	
  very	
  small	
  .	
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Figure	
   S4.	
  Results	
  of	
  calculations	
  using	
   finite	
  element-­‐based	
  software	
  COMSOL.	
  

Normalized	
  near-­‐field	
  profiles	
  (yellow=1,	
  black=0)	
  and	
  Poynting	
  vector	
  (arrows)	
  

for	
  a)	
  ω=0.21,	
  where	
  negative	
  refraction	
  can	
  be	
  observed,	
  and	
  b)	
  ω=0.36,	
  case	
  of	
  

a	
  flat	
  band	
  that	
  leads	
  to	
  a	
  localized	
  state,	
  at	
   [ ]0.1,0,0=k .	
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CHAPTER 5 

Complete surface plasmon band gaps in 3-dimensional 

hierarchical metamaterials4 

 

ABSTRACT 

 Surface plasmons are collective oscillations of electrons in nanoscale metallic 

materials. Materials harnessing surface plasmon phenomena enable unusual photonic 

applications including metamaterials, therapeutics, terahertz computing and solar cells. 

Due to the complexity of light-matter interactions intuitive insights into the optical 

behavior particularly of metamaterials are challenging. Utilizing numerical 

simulations here we studied various continuous and dis-continuous metallic 

nanomaterials and compared them with their photonic crystal counterparts. Metallic 

nanomaterials with the diamond cubic symmetry ( ) display both, complete 

surface plasmon band gaps as well as negative refraction in 3-dimensions. Results 

allow in-depth understanding of and provide design criteria for metallic nanomaterials 

for plasmonic applications.  

 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Kahyun Hur, Richard G. Hennig, and Ulrich Wiesner; to be submitted 
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5.1. Introduction 

Explosive growth of nanophotonics research is transforming our understanding 

of photonics and stimulating research in various scientific communities ranging from 

the physical sciences to chemistry and biology [1-7]. Recent advances in 

metamaterials and plasmonics are moving various photonic applications to sub-

diffraction-limited scales [1, 3, 5]. A metamaterial is an engineered material that 

exhibits unusual optical properties that may not be found in nature. One such 

phenomenon is the negative refractive index of a material, which has attracted much 

attention as it may enable, e.g., unlimited resolution imaging [1]. Despite such 

potential of metamaterials for various applications, fundamental understanding of 

light-mater interactions in nanoscale metallic materials needs to be further developed. 

For example, both, metamaterials and photonic crystals, may have periodic structures 

but their photonic behavior is quite distinct [8]. In this work we calculated photonic 

band structures of various cubic metamaterials and photonic crystals [9], composed of 

metallic and dielectric materials. Three-dimensional (3D) complete surface plasmon 

band gaps are identified in continuous metamaterials with the diamond cubic structure, 

space group Q227 ( ), and a metal/insulator/metal substructure. Furthermore, the 

materials simultaneously exhibit negative refraction. Differences of light-matter 

interactions between metamaterials and photonic crystals are studied and design 

criteria are developed to realize these properties in nanomaterials. 

Photonic crystals are materials with a periodic structure composed of two or 

more materials with differing permittivity [9]. The flow of light is controlled by the 
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modulation of dielectric materials and for some specific structures such as the 

diamond cubic structure [10] the destructive interference of light waves leads to 

photonic band gaps in certain frequency ranges where light cannot propagate. A 3-

dimensional photonic band gap prohibiting any light propagation along any direction 

is called a complete photonic band gap. Compared with photonic crystals, 

metamaterials are similarly periodic but usually composed of metallic materials [11]. 

In metals, the existence of plasmons, i.e. oscillations of free electron density, leads to 

fundamentally different light-matter interactions than in photonic crystals [12]. The 

plasmons in metamaterial enable the manipulation of the propagation of photons with 

much larger wavelength than the lattice size of the material, while in photonic crystals 

the photon wavelength and the lattice size should be comparable in size [8]. Therefore, 

metamaterials have both similarities and dissimilarities with photonic crystals. 

To date quantitative comparisons between these two classes of materials, are 

rare, mostly because different computationally techniques are better suited for each 

case. In order to minimize computational cost, planewave basis sets have been 

preferentially used for calculating photonic band structures [13]. Planewave basis sets, 

however, are not well suited for capturing surface plasmon resonances in metallic 

materials. Time domain simulations are usually efficient for solving Maxwell’s 

equations [14] but unable to resolve even number degenerate bands [13]. Therefore, 

here we used a finite difference approach with Yee grids to ensure divergence free 

behavior, !"E = 0 , and ARPACK [15] as an eigenvalue solver for band structure 

calculations of both metamaterials and photonic crystals. For materials parameters, a 

Drude metal was assumed for most cases with a plasma frequency, ωp=1.366×1016 Hz, 
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i.e. the value for silver [16]. The unit cell length of the metamaterials was fixed at 

a=400 nm. 

Photonic band structures of various cubic structures obtained from constant 

mean curvature surfaces have been studied by Maldovan et al. [10, 17]. Such cubic 

structures are very interesting since some of them can be realized by block copolymer 

self-assembly [18, 19] and colloidal self-assembly [20]. The optical properties of 

metamaterials with alternating gyroid ( I4132 ) and double gyroid ( ) structures 

have also been studied [21]. Since they can be fabricated using bottom-up type block 

copolymer self-assembly [22], this may enable cost-effective fabrication of 3D 

metamaterials. 

We calculated photonic band structures of metamaterials with the diamond 

cubic symmetry ( ). In particular we varied their substructure to observe 

substructure effects on optical properties (see Appendix C for detailed structure 

building). Compared to photonic crystals, which have photonic band gaps, 

metamaterial counterparts exhibit very distinct optical behavior showing surface 

plasmon bands. Interestingly, the calculated band structures of metamaterials depend 

strongly on their substructure. For comparison we studied other metamaterials with 

differing symmetries, e.g. the alternating gyroid structure ( I4132 ), thereby elucidating 

design criteria to obtain interesting optical properties. 
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5.2. Results and Discussion 

Fig. 5.1 shows the calculated photonic bands of the diamond cubic photonic 

crystal and metamaterials. The diamond cubic photonic crystal has a complete 

photonic band gap as predicted by Maldovan et al. [10]. Depending on the 

substructure, i.e. absence of substructure (Fig. 5.1b), coaxial metal/insulator/metal 

geometry (Fig. 5.1c) or double gyroid network (Fig. 5.1d), the band structure of the 

metamaterials changes quite dramatically. Without any substructure, the single 

continuous network has a metallic band gap at lower frequencies as observed earlier in 

alternating gyroid metamaterials, a single network with Q214 space group ( I4132 ) [21]. 

Such a metallic band gap originates from the electric current conservation in the 

material (see Appendix C for the proof). Therefore, low frequency bands of 3D 

continuous metamaterials require two or more networks to form an active band at low 

frequencies to meet the electric current conservation rule. This criterion is clearly 

found in other 3D diamond structures that have two continuous networks such as the 

coaxial and double gyroid network substructures forming a metal/insulator/metal 

waveguide allowing active acoustic bands at low frequencies. At somewhat higher 

frequencies, complete band gaps are found in the diamond metamaterials with the 

coaxial and double gyroid network substructures similar to what is obtained in 

diamond photonic crystals [10]. In contrast to the photonic band gap of diamond cubic 

photonic crystals [10], the band gaps in the metamaterials are surface plasmon band 

gaps, where energy carriers are surface plasmons (see discussions in the next 

paragraph). While two-dimensional (2D) band gap materials were evidenced 

experimentally [23], to the best of our knowledge 3D complete surface plasmon band 
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gap materials have not yet been identified neither experimentally nor theoretically. 

Interestingly, the coaxial and double gyroid substructures yield structurally similar low 

frequency bands despite very different substructure shapes. Fundamentally, in both 

structures two independent networks form a surface plasmonic waveguide and 

electromagnetic waves with large wavelength, i.e. low frequency bands, are not 

strongly affected by the short-range structures. Therefore, one can expect that, for 

fixed symmetry, structures forming a metal/insulator/metal waveguide have similar 

low frequency band structures in different metamaterials. The variation of the 

waveguide geometry changes surface plasmon propagation velocity, where the double 

gyroid waveguide induces slower propagation than the coaxial waveguide due to 

larger surface area thereby forming a larger capacitor. Such slower propagation in a 

lager capacitance waveguide was also observed in double gyroid metamaterials [21]. 

Meanwhile, higher frequency bands have different structures. Due to the comparable 

plasmon wavelength to the substructural length scale in this frequency range, the 

substructures affect the band structure significantly. 

Photonic bands and surface plasmon bands are very distinct due to their 

different physical origin. Photons have two degrees of freedom with two transverse 

bands in the divergence free condition,  (note that transverse electric and 

transverse magnetic bands exist in 2D). In 3D cubic photonic crystals the two bands 

are degenerate due to the symmetry of materials as indicated in Fig. 5.1a. In contrast, 

surface plasmon bands are not degenerate (there exists only one acoustic band in Fig. 

5.1c and d). In metamaterials, the degeneracy of the photonic band is broken due to 

the Fano resonance [24] forming two non-degenerate bands in nanometallic materials 

!"E = 0
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systems. The low frequency bands in the diamond photonic crystal are split into two 

sets of the low frequency surface plasmon bands (compare the photonic bands with 

ωa/2πc<0.45 in Fig. 5.1a and the surface plasmon bands with ωa/2πc<0.45 in Fig. 

5.1c). Surface plasmon bands are intrinsically longitudinal in that surface plasmons 

exist only on metal/insulator interfaces and electro-magnetic waves propagate along 

the interfaces, where  is not necessarily zero. The non-degeneracy of surface 

plasmon bands discriminates them from photonic bands in 3D. 

Next we took a detailed look at the photonic energy flows in these materials. 

Fig. 5.2 shows the energy fluxes for two different bands at ωa/2πc=0.013 (positive 

refraction band) and 0.22 (negative refraction band) of the metamaterial with double 

gyroid substructure. The majority of the photonic energy flows through the double 

gyroid networks that form a metal/insulator/metal waveguide. Here the energy carriers 

are surface plasmons leading to fundamental differences in propagation of light from 

photonic crystals, where photons are the energy carriers. Since surface plasmons can 

have much shorter wavelengths than photons at the same frequencies, metallic 

materials can manipulate light of much larger wavelength than what one might expect 

from the characteristic structural length scales of the materials. Similar to the case of 

simple double gyroid metamaterials [21], the present hierarchical metamaterial has 

negative refraction bands. It acts as a metamaterial in a wavelength regime, 

λ=1700~3100 nm, that is larger than the characteristic unit cell size of the cubic 

gyroid lattice, a=400 nm. 

!"E = 0
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We further studied the near-field characteristics of the photonic and surface 

plasmon bands. It is known that plasmonic materials have very large scattering cross 

sections [25]. This is due to surface plasmons interacting with photons. In photonic 

crystals the photonic energy is concentrated in the higher dielectric material for lower 

frequency bands and the lower dielectric material for higher frequency bands [9]. In 

contrast surface plasmons only exist on metallic surfaces and photonic energies are 

concentrated on the surfaces for metamaterials. Such near-field behavior is shown in 

Fig. 5.3. The surface plasmon bands generally have high magnetic fields near metallic 

surfaces compared to the photonic bands (compare the relative strength of magnetic 

fields in Fig. 5.3 for the diamond metamaterial and photonic crystal). In particular, the 

highest magnetic fields are found in the metal/insulator/metal waveguide forming a 

capacitor in the metamaterial (see Fig. 5.3a). The behavior is consistent with the 

observation that photonic energy flows through the waveguide as shown in Fig. 5.2. 

Fixing the space group of the larger length scale lattice to the diamond cubic 

structure ( ), the photonic band structures were calculated for hierarchical 

metamaterials with a disconnected minority double gyroid substructure (see Fig. 5.4c) 

and a connected majority double gyroid substructure (see Fig. 5.4d), respectively. The 

acoustic band of the discontinuous diamond structure shown in Fig. 5.4c is doubly 

degenerate. In contrast, the continuous structure in Fig 5.4d results exclusively in non-

degenerate bands. In the disconnected case surface plasmons can no longer propagate 

due to the missing connectivity of the substructure and photons become the energy 

carriers. As a result, the optical characteristics of such discontinuous metallic 

structures are similar to those of photonic crystals.  
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Losses may change the overall shape of the photonic band structure. In order to 

consider the effect of losses, photonic band structure of the diamond cubic 

metamaterial with coaxial geometry was calculated replacing the Drude metal with 

gold. We utilized optical parameters of gold given by Vial et al. that nicely reproduce 

experimental results of nanoscale gold structures [22]. Overall band shapes at low 

frequencies did not change, compare results in Figs. 5.1c and 5.5a. Instead, for gold, 

the frequencies of the photonic bands shifted to lower frequencies.  

Having studied hierarchical metamaterials with diamond superstructure, we 

moved to materials with alternating gyroid superstructure, space group Q214 ( I4132 ). 

An alternating gyroid metamaterial was previously predicted to have a metallic band 

gap [21] which was experimentally observed [22]. The alternating gyroid metamaterial 

with a double gyroid substructure shown in Fig. 5.6b has an active surface plasmon 

band. Therefore, the criterion for 3D continuous metallic materials that more than one 

network is required to have active bands at low frequencies holds for the hierarchical 

alternating gyroid case. For the alternating gyroid photonic crystal, a photonic band 

gap exists as shown in Fig. 5.6a and Ref. [17]. For the case of the metamaterial with 

the double gyroid substructure, however, no surface plasmon band gap was found. 

Therefore, not all photonic band gap structures exhibit surface plasmon band gaps in 

their metamaterial counterparts. 

 In summary, we calculated the photonic band structures of various 

metamaterials with cubic symmetries. The diamond cubic metamaterials with coaxial 

geometry and double gyroid substructure have both, a surface plasmon band gap and 
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negative refractive index. The fundamental differences between surface plasmon 

bands and photonic bands are identified, where acoustic photonic bands are doubly 

degenerate in 3D but acoustic surface plasmon bands are not degenerate. Further near-

field characteristics are compared between metamaterials and photonic crystals. 

Compared to photonic crystals, metamaterials have very concentrated energies near 

metallic surfaces and photonic energy flows through the surfaces in the materials. 

Losses don’t alter the overall band structure but shift bands to lower frequencies for 

the case of gold. Interestingly, alternating gyroid metamaterials having a metallic band 

gap at low frequencies without any substructure, exhibit an active acoustic surface 

plasmon band. We expect that our theoretical work will help better understand the 

behavior of surface plasmons in nanostructured metallic materials and provide an 

impetus for future research on metamaterials and nanophotonics. 
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Figure 5.1. Photonic crystal (a) and metamaterials (b-d) with 3-dimensionally 

continuous diamond cubic structure, space group Q227 ( ), varying substructure 

of metamaterials and their photonic band structures: a, a photonic crystal with ε =13.0 

for green parts and ε=1.0 for the rest; b, a metamaterial with no internal substructure; 

c, a metal/insulator/metal coaxial substructure; d, double gyroid substructure. The first 

Brillouin zone boundaries are shown in e. Degeneracies of low frequency bands are 

indicated with red numbers. 
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Figure 5.2. Energy flux of a, positive (at ωa/2πc=0.013) and b, negative (at 

ωa/2πc=0.22) refraction bands for the diamond cubic metamaterial with double 

gyroid substructures. k represents the momentum vector. 

  



	
   134	
  

 

 

Figure 5.3. At z=0 magnetic field distributions of the acoustic band in the 

metamaterial shown in Fig. 5.1d at ωa/2πc=0.013 (a) and the photonic crystal shown 

in Fig. 5.1a at ωa/2πc=0.093 (b) show distinct field strength differences. The 

metamaterial exhibits more concentrated magnetic fields near metallic surfaces as 

compared to the photonic crystal. 
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Figure 5.4. Photonic band structures of diamond cubic photonic crystals with ε 

=13.0 for green parts and ε=1.0 for the rest (a,b) and hierarchical diamond cubic 

metamaterials with double gyroid substructure (c,d). The larger scale superstructures 

are a,c discontinuous cubic and b,d continuous majority cubic structures. The acoustic 

bands of the photonic crystals and the disconnected metamaterial are doubly 

degenerate in a-c but not degenerate in d (degeneracies of low frequency bands are 

indicated with red numbers). The first Brillouin zone boundaries are same as in Fig. 

5.1. Therefore discontinuous metamaterials are expected to exhibit similar photonic 

behavior as photonic crystals since they have degenerate acoustic bands and thus 

photons are energy carriers in the materials. 
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Figure 5.5. a, The photonic band structure of the diamond cubic metamaterial with a 

coaxial geometry for gold (the same structure as show in Fig. 5.1c) exhibits similar 

band structure to the Drude metal case. The frequencies of photonic bands shift to 

lower frequencies compared with the Drude metal case. b, Losses, Im[ω], are shown 

for different frequencies. 
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Figure 5.6. Photonic band structures of a photonic crystal (a) and a hierarchical 

metamaterial (b) with alternating gyroid, space group Q214 ( I4132 ), of which first 

Brillouin zone boundaries are shown in c. The hierarchical alternating gyroid 

metamaterial has double gyroid substructure. Degeneracies of low frequency bands are 

indicated with red numbers. While the alternating gyroid photonic crystal has a 

complete band gap, the metamaterial counterpart has no complete band gaps. 
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APPENDIX C 

 

 

Figure S1. Schematics of building a simulated hierarchical structure: a, the continuous 

minority diamond cubic; b, the continuous majority diamond cubic; c, the 

discontinuous diamond cubic and d, the alternating gyroid structures. The meet of a 

4x4x4 double gyroid super cell (left column) and a larger scale structure (middle 

column) forms a hierarchical structure (right column). 
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Figure S2. Schematic of magnetic fields and electric currents in metamaterials system 

for representing the Ampere’s law in a discrete representation. 

 

Structure building 

The continuous diamond cubic structure ( ) was obtained by a level set function 

[26], 

F x, y, z( ) = cos 2! x / a+! / 4( )cos 2! y / a+! / 4( )cos 2! z / a+! / 4( )+
sin 2! x / a+! / 4( )cos 2! y / a+! / 4( )cos 2! z / a+! / 4( )+
cos 2! x / a+! / 4( )sin 2! y / a+! / 4( )cos 2! z / a+! / 4( )+
cos 2! x / a+! / 4( )cos 2! y / a+! / 4( )sin 2! z / a+! / 4( )

. 

For example, the regime, F x, y, z( ) ! 0.5 , yields a minority continuous network 

shown in Fig. 5.1a and b with the volume fraction 0.30. For the coaxial geometry 

shown in Fig. 5.1c, the regime, !0.1" F x, y, z( ) " 0.5  and F x, y, z( ) ! 0.9 , was 
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chosen yielding the volume fraction 0.37. For the large-scale alternating gyroid 

structure with 128x128x128 grid points shown in Fig. 5.6 and the double gyroid 

substructure with 32x32x32, self-consistent field theory (SCFT) was utilized with the 

same simulation parameters used in our previous work [21]. The double gyroid unit 

cell obtained by SCFT was repeatedly placed along three directions for making a super 

cell with 4x4x4 double gyroid unit cells (see Fig. S1). The super cell was further 

structured with larger geometries as shown in Fig. S1: the continuous minority 

diamond cubic, the continuous majority diamond cubic, the discontinuous diamond 

cubic and the alternating gyroid structures (Fig. S1a). 

 

Electric current conservation in a materials system 

The metallic band gap of 3D continuous metamaterials in the low frequency regime 

originates from the requirement of electric current conservation. The proof is 

straightforward using Ampere’s law [14], 
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where B is magnetic field, E electric field and J electric current flux through a surface, 

S. In a discrete case shown in Fig. S2 the equation can be approximated as  



	
   141	
  

B !dl
"S
!# $ anx Bx

y=y0 +Bx
y=y0+a( )+ any By

x=x0 +By
x=x0+a( )  

and 

µ0 J+!0
!E
!t

"

#
$

%

&
'(dA

S
)) * a2nxnyµ0 Jz +!0 !Ez( ) , 

where the bars represent spatially averaged fields and a, nx and ny are lattice dimension, 

the number of unit cells along x direction and the number of unit cells along y 

direction respectively. For materials system, nx and ny go to infinity and the equality, 

lim
nx ,ny!"

anx Bx
y=y0 +Bx

y=y0+a( )+ any By
x=x0 +By

x=x0+a( ){ } # lim
nx ,ny!"

a2nxnyµ0 Jz +!0 !Ez( )
,
 

requires both sides of the equation to be zero since the right hand side of the equation 

grows more rapidly than the left hand side. At the low frequency regime, much 

smaller than plasma frequency ω<<ωp, the right hand side of the equation cannot be 

zero because 

!0 !Ez !"
! 2

! p
2 Jz  

for Drude metals. Otherwise, if any electric currents, i.e. plasmons, across the surface 

S exist, the magnetic field strength needs to be infinite and unphysical. However, if 

there exists a counter electric current that compensates the other electric current, the 

overall current can become zero. Thus only coupled plasmon resonances conserving 

electric currents appear at low frequencies. For 3D continuous single network 
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metamaterials, such coupled plasmon resonances are not possible and a metallic band 

gap is expected where no active photonic bands exist. 
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