
OPERATING SYSTEMS ABSTRACTIONS FOR
SOFTWARE PACKET PROCESSING IN

DATACENTERS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Tudor Simion Marian

January 2011

© 2011 Tudor Simion Marian

ALL RIGHTS RESERVED

OPERATING SYSTEMS ABSTRACTIONS FOR SOFTWARE PACKET

PROCESSING IN DATACENTERS

Tudor Simion Marian, Ph.D.

Cornell University 2011

Over the past decade, the modern datacenter has reshaped the computing landscape by

providing a large scale consolidated platform that efficiently powers online services, fi-

nancial, military, scientific, and other application domains. The fundamental principle

at the core of the datacenter design is to provide a highly available, high performance

computing and storage infrastructure while relying solely on low cost, commodity com-

ponents. Further, in the past few years, entire datacenters have become a commodity

themselves, and are increasingly being networked with each other through high speed

optical networks for load balancing and fault tolerance. Therefore, the network substrate

has become a key component that virtually all operations within and between datacen-

ters rely on. Although the datacenter network substrate is fast and provisioned with

large amounts of capacity to spare, networked applications find it increasingly difficult

to derive the expected levels of performance. In essence, datacenters consist of inex-

pensive, fault-prone components running on commodity operating systems and network

protocols that are ill-suited for reliable, high-performance applications. This thesis ad-

dresses several key challenges pertaining to the communication substrate of the modern

commodity datacenter.

First, this thesis provides a study of the properties of commodity end-host servers

connected over high bandwidth, uncongested, and long distance lambda networks. We

identify scenarios associated with loss, latency variations, and degraded throughput at

the attached commodity end-host servers. Interestingly, we show that while the network

core is indeed uncongested and loss in the core is very rare, significant loss is observed

at the end-hosts themselves—a scenario that is both common and easily provoked. One

common technology used to overcome such poor network performance are packet pro-

cessors that carry out some sort of performance enhancement protocol.

Second, this thesis shows how packet processors may be used to improve the per-

formance of the datacenter’s communication layer. Further, we show that these perfor-

mance enhancement packet processors can be built in software to run on the commodity

servers resident in the datacenter and can sustain high data rates.

And third, this thesis extends the operating system with two novel packet processing

abstractions—the Featherweight Pipes (fwP) and NetSlices. Developers can use the new

abstractions to build high-performance packet processing protocols in user-space, with-

out incurring the performance penalty that conventional abstractions engender. Most

importantly, unlike the conventional abstractions, fwP and NetSlices allow applications

to achieve high data rates by leveraging the parallelism intrinsic of modern hardware,

like multi-core processors and multi-queue network interfaces. The key feature of the

new abstractions is a design that enables independent work to proceed in parallel while

aggressively minimizing the overheads during the contention phases. We demonstrate

the performance of packet processors built with these new abstractions to scale linearly

with the number of available processor cores.

BIOGRAPHICAL SKETCH

Tudor Marian was born in Câmpia Turzii, Romania, on a snowy Tuesday evening, De-

cember 9, 1980. He grew up sharing the bulk of his time between playing tennis (on

beautiful red clay) and football (the kind with a round ball), while trying to avoid home-

work as much as possible. During his early years, he enjoyed tinkering with an old

TIM-S computer, the Romanian clone of the Z80 Sinclair Spectrum. He later attended

the “Pavel Dan” high school, during which he developed a passion for physics, military

jet fighters, and a knack for QBasic. He decided to pursue a career in Computer Science,

instead of a career in Physics or one as a military fighter pilot, and promptly joined the

Technical University of Cluj-Napoca. Five years later, he graduated with an engineer-

ing degree and the will to further pursue his academic endeavors, since he genuinely

enjoyed doing research within Professor Ioan Salomie’s group, under the supervision

of Mihaela Dı̂nşoreanu. In the fall of 2004, he joined the Ph.D. program at Cornell

University, where he spent six beautiful years working on systems research under the

supervision of Ken Birman and Hakim Weatherspoon.

iii

For my parents, my sister, Katie, and my dearest grandma (măicuţă dragă).

iv

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my advisors, Hakim Weatherspoon and Ken

Birman. They have taught me the trade of being a systems researcher, one that is firmly

anchored within the fundamentals, with an eye towards the art and the engineering of

systems building. Hakim strived to mold me into a successful researcher, proving he has

incommensurable amounts of patience, and showing extraordinary belief in my abilities.

I thoroughly enjoyed the times when I simply walked into his office and had vivid de-

bates about various subjects. Ken guided me in my early years, with enthusiasm and

constant invaluable advice. His passion for the field of computer science, his extensive

expertise, and his quest for excellence in research have been inspiring. I especially cher-

ish the many stories he recounted of the “good old days” of systems research, and I was

always amazed at the accuracy of his predictions on the future of the field. I wish to

thank them both for all their guidance and support—without which this thesis would not

have been possible.

I am especially grateful to Robbert van Renesse, who was, at times, my substitute

advisor. Robbert appeared to me as a paragon of balance that managed to intertwine

research with a myriad of other activities in his life. Danny Dolev’s visits to Cornell

allowed me to learn the fundamentals of the theory of distributed systems from one of

the pioneers of the field. I enjoyed the ski trips we took together, the endless talks we had

while stuck on ski lifts, and the time we spent together watching NFL football games.

I have had both the luck and the pleasure to be part of a wonderful research

group, with remarkable collaborators. Mahesh Balakrishnan has been like a mentor

to me, providing much needed support and guidance for which I owe him an enormous

debt of gratitude. Likewise, I enjoyed very much my fruitful collaboration with Dan

Freedman—he proved to be a valuable source of discussions, and brought to the table a

particular, slightly unconventional, and eye opening perspective on things.

v

I would like to thank my dissertation committee, Hakim Weatherspoon, Ken Bir-

man, Robbert van Renesse, Joe Halpern, and Rafael Pass. Many thanks to the entire

administrative staff for all the help they provided me with throughout my stay at Cor-

nell. I would especially like to thank Bill Hogan, for his invaluable aid, and for all the

entertaining stories he kindly shared with me.

I thank my office mates, systems lab co-tenants, and colleagues that provided good

company over the years, including Dan Sheldon, Sam Arbesman, Thành Nguyen, Chun-

Nam Yu, Kevin Walsh, Amar Phanishayee, Hitesh Ballani, Dan Williams, Saikat Guha,

Bernard Wong, Alan Shieh, Maya Haridasan, Krzysztof Ostrowski, Lakshmi Ganesh,

Tuan Cao, Art Munson, Yee Jiun Song, Ian Kash, Jonathan Kaldor, Muthu Venkita-

subramaniam, Anton Morozov, Bistra Dilkina, Daria Sorokina, Benyah Shaparenko,

Yogi Sharma, Vikram Krishnaprasad, Alexandru Niculescu-Mizil, Cristian Danescu-

Niculescu-Mizil, and Maks Orlovich.

I was fortunate enough to have amazing friends outside of Upson Hall as well. My

soccer teammates and friends, without whom the summer, fall, spring, and even winter

days (when we played indoor) would have felt dull—thank you for enjoying the “beauti-

ful game” with me, and making my daily routine less monotonous and immensely more

joyful.

Lastly, I would like to extend all my gratitude to my family for all their continuous

support and encouragement, and to Katie, my lovely wife, who was patient enough with

me, and picked up the slack when instead of doing my designated chores, I was working

towards this very dissertation. I hope I can make it up to you.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 The Modern Commodity Datacenter 1
1.2 Challenges . 5
1.3 Contributions . 11
1.4 Organization . 13

2 The Scope of the Problem and Methodology 15
2.1 Testbeds . 17

2.1.1 Cornell NLR Rings . 17
2.1.2 Emulab . 20

2.2 Commodity Servers Hardware Configuration 21
2.3 Metrics . 24
2.4 Software Packet Processor Examples 25

2.4.1 TCPsplit . 26
2.4.2 IPdedup . 28
2.4.3 IPfec . 30
2.4.4 Baseline Performance . 31

2.5 Summary . 35

3 Lambda Networked Commodity Servers 36
3.1 Uncongested Lambda Networks . 40

3.1.1 TeraGrid . 40
3.1.2 Cornell NLR Rings . 43

3.2 Experimental Measurements . 44
3.2.1 Experimental Setup . 44
3.2.2 Packet Loss . 45
3.2.3 Throughput . 49
3.2.4 Packet Batching . 54
3.2.5 Summary of Results . 57

3.3 Discussion and Implications . 58

4 Packet Processing Abstractions I: Overcoming Overheads with Feather-
weight Pipes 60
4.1 Challenges . 63

4.1.1 Overheads . 64

vii

4.1.2 Design Goals . 68
4.2 Multi-Core and the fwP Design . 70

4.2.1 fwP . 71
4.2.2 fwP Under the Hood . 77
4.2.3 Taking Advantage of Multi-Core CPUs 79

4.3 Experimental Evaluation . 80
4.3.1 Real World Applications . 81
4.3.2 Microbenchmarks . 89

4.4 Experience . 94
4.5 Summary . 95

5 Packet Processing Abstractions II: Harnessing the Parallelism of Modern
Hardware with NetSlices 96
5.1 The Case Against The RAW Socket: Where Have All My CPU Cycles

Gone? . 99
5.2 NetSlice . 104

5.2.1 NetSlice Implementation and API 107
5.2.2 Discussion . 110

5.3 Evaluation . 112
5.3.1 Experimental Setup . 113
5.3.2 Forwarding / Routing . 115
5.3.3 IPsec . 119
5.3.4 The Maelstrom Protocol Accelerator 122

5.4 Discussion and Limitations . 123
5.5 Summary . 125

6 Related Work 126
6.1 Network Measurements and Characterization 126
6.2 High-speed Long-distance Transport 128
6.3 Intra-datacenter Transport . 130
6.4 Packet Processors . 130

7 Future Work and Conclusion 138
7.1 Future Work . 138
7.2 Conclusion . 142

A Background On Commodity Processor Architectures 145

B Network Stack Primer 152

C Glossary of Terms 155

Bibliography 169

viii

LIST OF TABLES

1.1 Single processor and network speed evolving over the years. 2
1.2 Typical Specifications of Datacenter-hosted Commodity Server. 3
1.3 Typical Specifications of NOW Commodity Workstation. 3

4.1 fwP API. All functions take a parameter indicating the direction of the
buffer (in / out) and like traditional IPC, the IPC NOWAIT flag indicat-
ing if the task should block or not while issuing the operation. 73

4.2 Gigabit IP multisend metrics per stream. 85
4.3 Packet delivery delay (µs). 90
4.4 Memory bus transactions / cpu cycles. 91
4.5 Load ratio (L1d loads / cpu cycles). 92
4.6 Store ratio (L1d stores / cpu cycles). 93
4.7 Pipeline flushes / number of instructions retired. 93
4.8 RFO / memory bus transactions (total). 93

ix

LIST OF FIGURES

1.1 A network of geographically spread data centers. 4
1.2 Depiction of a router with four bidirectional network interfaces. The

router is depicted at two points in time, the initial configuration before
any packets are forwarded on the left, and a subsequent configuration
after it forwarded five packets and is processing the sixth on the right. . 7

1.3 Operating system kernel multiplexing hardware resources and perform-
ing requests received from several user-space applications. 9

2.1 The testbed topology. 18
2.2 Shared bus (a) and NUMA (b) quad core (Intel Xeon) architectures. . . 22
2.3 TCPsplit diagram depicting traffic pattern. 27
2.4 IPdedup diagram depicting traffic pattern. 28
2.5 IPfec diagram depicting traffic pattern. 30
2.6 IPdedup throughput vs. number of CPUs used. 32
2.7 IPfec (Maelstrom) Throughput vs. number of 1Gbps clients, RTT =

15.9ms (tiny path). 33
2.8 IPfec and TCPsplit Throughput vs. RTT. 34

3.1 Network to processor speed ratio. 37
3.2 Observed loss on TeraGrid. 40
3.3 Test traffic on large NLR Ring, as observed by NLR Realtime Atlas

monitor [29]. 43
3.4 The path of a received packet through a commodity server’s network

stack. Packets may be dropped in either of each of the finite queues
realized in memory: the NIC buffer, the DMA ring, the backlog queue,
or the socket buffer / TCP window. Each queue corresponds to one
kernel counter, e.g. rx ring loss is incremented when packets are
dropped in the receive (rx) DMA ring. The transmit path is identical,
with the edges reversed (i.e., packets travel in the opposite direction). . 46

3.5 UDP loss as a function of data rate across Cornell NLR Rings: sub-
figures show various socket buffer sizes and interrupt options for bal-
ancing across or binding to cores; insets rescale y-axis, with x-axis
unchanged, to emphasize fine features of loss. 47

3.6 TCP throughput and loss across Cornell NLR Rings: (a) throughput
for single flow, (b) throughput for four concurrent flows, (c) loss asso-
ciated with those four concurrent flows; TCP congestion control win-
dows configured for each path round-trip time to allow 1Gbps of data
rate per flow. 50

3.7 Packet inter-arrival time as a function of packet number; NAPI disabled. 54

4.1 Four socket quad core (Xeon) cache performance and architecture. . . 65
4.2 Linux network stack path of a packet forwarded between interfaces. . . 71
4.3 fwP buffers and shared memory layout. 71

x

4.4 Memory layout of a (32bit) process / task. 75
4.5 Pseudo code for a security fwP application. 77
4.6 The Emulab (DETER) experimental topology. 80
4.7 Snort deep packet inspection throughput. 82
4.8 IPsec throughput vs. worker threads. 86
4.9 Maelstrom implementations throughput. 87
4.10 fwP IPsec throughput, 2x1Gbps links. 89

5.1 Nehalem cores and cache layout. 102
5.2 NetSlice spatial partitioning example. 104
5.3 One NetSlice (1st) batched read/write example. 107
5.4 Experimental evaluation physical topology. 113
5.5 Packet routing throughput. 116
5.6 Routing throughput for a single NetSlice performing batched send / re-

ceive operations. 117
5.7 Routing throughput for a single NetSlice and different choice of u-peer

CPU placement. 118
5.8 IPsec throughput scaling with the number of CPUs (there are two peer

CPUs per NetSlice). 120
5.9 IPsec throughput for user-space / raw socket. 120
5.10 IPsec throughput. 121

A.1 Diagram of von Neumann architecture. 146
A.2 Canonical five-stage pipeline in a processor. Shown in the gray

(shaded) column, the earliest instruction in the WB (register write back)
stage, and the latest instruction being fetched (IF). 147

A.3 Diagram of dual-CPU commodity system with front-side bus (FSB).
The peripheral devices are connected to the Southbridge, which acts as
an I/O hub. The Southbridge is in turn connected to the Northbridge.
The figure depicts the Southbridge with the following interfaces: Pe-
ripheral Component Interconnect Express (PCIe) bus (e.g. to attach
high speed 10GbE network cards), Serial Advanced Technology At-
tachment (SATA) bus (e.g. to attach mass storage devices such as hard
disk drives), and Universal Serial Bus (USB). 149

A.4 Diagram of quad-CPU commodity system with integrated memory
controllers (note the Northbridge is lacking) and point-to-point inter-
connects between the processors. The figure depicts the Southbridge
(also known as the I/O hub) with the following interfaces: Periph-
eral Component Interconnect Express (PCIe) bus (e.g. to attach high
speed 10GbE network cards), Serial Advanced Technology Attachment
(SATA) bus (e.g. to attach mass storage devices such as hard disk
drives), and Universal Serial Bus (USB). 150

xi

CHAPTER 1

INTRODUCTION

The modern datacenter has taken the center-stage as the dominant computing platform

that powers most of today’s consumer online services, financial, military, and scien-

tific application domains. Further, datacenters are increasingly being networked with

each other through high speed optical networks. Consequently, virtually every oper-

ation within and between datacenters relies on the networking substrate. This thesis

focuses on the study and the enhancement of the datacenter’s network layer.

1.1 The Modern Commodity Datacenter

Over the past decade, the modern datacenter has emerged as the platform of choice

for an increasingly large variety of applications. Datacenters are based on the simple

concept of leveraging the aggregate resources of a cluster of inexpensive, commodity,

servers and network equipment to perform tasks at large scales [58, 6]. According to

the Merriam-Webster dictionary, a commodity item is a mass-produced unspecialized

product supplied without qualitative differentiation across a market. The success of

the datacenter and its rapid industry adoption to replace legacy computing platforms

like high-end mainframes and supercomputers can be attributed to several factors. First,

network bandwidth became an abundant resource. As can be seen in Table 1.1, the band-

width of commodity networks has been increasing exponentially, at a rate that outpaced

the growth of single processor core speed [103, 163] (expressed in metrics such as CPU

core frequency or operations executed per core per second). Second, the performance

to price ratio of commodity hardware components has made them viable alternatives to

high-end, consolidated, mainframe servers and custom network interconnects [58, 42].

1

Table 1.1: Single processor and network speed evolving over the years.

Year Single CPU frequency (MHz) Network data rate (Mbps)
1982 12 10
1995 133 100
2001 1800 1000
2008 3200 10000

2012 (projected) 3500 40000

And third, the shift towards Internet applications, like search and email, whose typical

workloads are inherently parallel by virtue of user parallelism which means they can be

distributed across a cluster of independent machines with little effort [97, 119, 87].

Financial, military, scientific, and other organizations have turned to datacenters with

commodity components to lower operational costs [122, 132]. As a result, more func-

tionality (i.e., applications) and data that has previously resided on personal computers

is migrating towards an online service model [44, 4, 1, 2, 3, 16, 19, 11, 34, 13, 35, 15,

5, 161, 162]. Today, users are not only interacting with fundamentally online services,

like search and online games, they also perform tasks like document, spreadsheet, im-

age, and video processing while manipulating data that is stored remotely [18, 30]. All

user activity is channeled over high-throughput networks to be handled by datacenters,

making the respective online services constantly available around-the-clock from any-

where in the world. These online services are specifically engineered to be deployed on

commodity computing components.

Notably, commodity computing components have continuously evolved over time,

and should be referenced within the time-frame that encompasses them. For example,

“commodity” meant something different in the past than what commodity means today

in the context of the modern datacenter, and it will surely mean something else in the

future. Table 1.2 provides a reference system by summarizing the characteristics of a

commodity server that can be found in today’s modern datacenter, while Table 1.3 shows

2

Table 1.2: Typical Specifications of Datacenter-hosted Commodity Server.

Component Specifications
Processors (CPUs) 2-16 cores (x86), clocked at 2-3GHz
Last Level Cache 2-16MB L2 or L3, 10-40 cycles access time

Cache Coherent Interconnect Shared bus or point-to-point (e.g. HyperTransport)
Memory (RAM) 4-16 GB, 50ns access time, 20GB/s throughput
Storage (Disks) 2TB, 10ms access time, 200MB/s throughput

Network (Ethernet) 2-8 1GbE interfaces, 1-4 10GbE interfaces

Table 1.3: Typical Specifications of NOW Commodity Workstation.

Component Specifications
Processors (CPUs) 1-2 cores (RISC, Alpha), clocked at 30-100MHz
Last Level Cache 0-1MB (optional) L2, 3-16 cycles access time

Cache Coherent Interconnect Shared bus
Memory (RAM) 2-128 MB, 100ns access time, 200MB/s throughput
Storage (Disks) 500 MB, 15ms access time, 2-10MB/s throughput

Network (Ethernet) Single 10Mb/s Ethernet or 155Mb/s ATM interface

the characteristics of the typical NOW workstation (cca. 1994). The network of work-

stations (NOW) project [58] along with the high performance computing community’s

Beowulf clusters [6] are early examples of modern datacenters. For example, looking at

processing units (CPUs), the Table shows the current trend of multiprocessor commod-

ity systems, and in particular multi-core systems, where several independent processors

(or cores) share the same silicon chip. This recent architectural shift was caused by

the inability to continuously scale in frequency a single processor, due to the energy

limitations and cooling requirements of current semiconductor technology [178].

In fact, the datacenters themselves have become a commodity. For example, “plug-

and-play” datacenters-in-a-shipping-container [40, 48, 111] can be purchased today.

Such a datacenter comes equipped with commodity off-the-shelf hardware and soft-

ware, requiring only to be plugged with electrical power, network, and potentially a

cooling source before being operational [64]. This great ease, coupled with the avail-

3

Figure 1.1: A network of geographically spread data centers.

ability of relatively cheap or already emplaced “dark” (unused) optical fiber is ushering

in the global network of datacenters [120].

Geographically spread datacenters are interconnected with semi-dedicated or private

high-speed optical links for scenarios such as load balancing and failover (as depicted in

Figure 1.1). For example, data may be mirrored between datacenters to protect against

disasters, while client requests may be redirected to the closest datacenter to improve

latency, provide localized services (e.g., news aggregators like Google News [17] serve

content in English for North America), and to balance the load in general. These op-

tical networks are known as lambda networks since they employ multiple wavelengths

to provide independent communication channels on a single optical fiber strand. Each

independent channel has a capacity of 10 or 40 Gigabits/second (Gbps), while a stan-

dard for 100Gbps for the same physical medium is currently being drafted [170]. A

single fiber strand may therefore carry tens to hundreds of wavelengths of light, provid-

ing large amounts of aggregate bandwidth. In this thesis we consider packet-switched

lambda networks that are largely uncongested (are lightly used) with little to no traffic

that competes for shared physical resources along paths.

4

1.2 Challenges

The underlying network substrate has become a first-class citizen of the modern com-

modity datacenter, with virtually all operations within and between datacenters rely-

ing on it. We identify three research questions and related challenges pertaining to

the commodity datacenter’s communication substrate. First, what are the properties of

the communication traffic between commodity servers over long-distance, uncongested

lambda networks? Although lambda networks have sufficient bandwidth, are dedicated

for specific use, and often operate with virtually no congestion [29], end-hosts and

applications find it increasingly harder to derive the full performance they might ex-

pect [50, 154, 46, 150, 180]. Second, given the abundance of commodity servers within

a datacenter, how can we leverage them to build efficient, high-speed packet processors

in software, in order to enhance the performance of the (inter-) datacenter communica-

tion substrate? A packet processor is a forwarding element in a packet-switched network

that is capable of performing additional processing on the stream of packets that flows

through it. For example, a packet processor may perform a performance enhancement

protocol to increase throughput or mask packet loss. And third, how can we provide

primitive functional building blocks and abstractions that enable constructing software

packet processor applications capable of operating at high, or even maximum line, data

rates? Current modern operating systems do not provide developers with abstractions

for building packet processors at the application level, without additionally incurring a

severe performance penalty cost.

This thesis is concerned with addressing the three above mentioned questions that

have not been cohesively addressed by prior work. We proceed to discuss, detail, and

elaborate each question in turn.

5

Lambda Networked Commodity Servers: Lambda networks play an increasingly

central role in the infrastructure supporting globally distributed, high-performance sys-

tems and applications [120]. However, the end-to-end characteristics of commodity

servers communicating over high-bandwidth, uncongested, and long-distance lambda

networks have not been well understood [163]. Although convenient, relying on con-

ventional transport protocols to utilize the network efficiently and yield nominal per-

formance with commodity servers has proven to be difficult [163, 142, 166, 107, 50].

Simply connecting commodity servers to a lambda network without understanding their

properties yields degraded performance which is common and easily provoked. For ex-

ample, the Transmission Control Protocol (TCP), the de-facto protocol used for reliable

communication over the Internet, yields poor throughput on high bandwidth / high delay

links [129, 130, 217, 227, 63], making TCP a less than ideal candidate for tasks such as

remote site backup and mirroring.

Consequently, datacenter operators have had little choice but to develop custom pro-

tocols that best suit the challenges of such an environment. For instance, instead of

using conventional TCP, Google disseminates newly computed search indexes to all its

datacenters spread across the globe by means of a custom protocol. This protocol uses

the User Datagram Protocol (UDP) to send data at high rates, and TCP to reliably deter-

mine which parts of the data have arrived safely at the destination and which parts of the

data need to be retransmitted (a protocol reminiscent of RBUDP [133], SABUL [125],

and Tsunami [166, 211]).

The challenge lies in understanding the characteristics of the communication be-

tween commodity servers connected over lambda networks, especially when relying on

conventional protocols like TCP and UDP. This knowledge may be subsequently used in

designing new network protocols and supporting abstractions with the goal of improving

6

Router at time T1 Router at time T2 > T1

Routing

table
Routing

table

address

match

Packet

Input port

Output port1
2

34

1
2

34

2

3

4

Address Port

A

B

A

B

C

C

E

F

G

C

A

B

D 1

D

E

E

G

D

F

F

G

Figure 1.2: Depiction of a router with four bidirectional network interfaces. The
router is depicted at two points in time, the initial configuration before
any packets are forwarded on the left, and a subsequent configuration
after it forwarded five packets and is processing the sixth on the right.

the performance of the underlying communication layer.

Software Packet Processors: As datacenter operators find it increasingly difficult

to drive the high-speed lambda networks to their full potential with commodity servers,

more and more custom network protocols are being developed. Such protocols are very

diverse, are usually used to improve the quality of the underlying communication, and

are typically deployed using a network of packet processors. A packet processor fetches

network traffic from an input network interface controller/card (NIC), performs some

amount of computation per packet, and forwards one or more resulting packets on output

interfaces. The quintessential example of a packet processor is the Internet Protocol (IP)

router. A router forwards packets between input and output interfaces by comparing

the address information stored in the packet header with its internal routing table—as

shown in Figure 1.2. Additionally, the IP standard requires routers to alter each packet

by decrementing the time-to-live (TTL) header field, and to adjust header checksums

accordingly so as to reflect the TTL modification. A router may also generate and issue

new packets, in addition to the traffic that flows through it. For example, if a router

7

receives a packet with the TTL value of one, it will drop the original packet and generate

a “time-exceeded” Internet Control Message Protocol (ICMP) packet that is returned

to the original sender. Moreover, a router may have to fragment a large packet into

several smaller ones due to maximum transmission unit (MTU) restrictions on network

segments it is attached to.

Packet processors are often more general than the IP router. They can implement var-

ious performance enhancement functions either at the end-hosts or at some point along a

network path [227, 142, 224, 107, 146, 200, 225]—in the latter case they act as proxies

or middleboxes. Traditionally, packet processors trade off performance, quantified in

terms of data and packet processing rates, for flexibility, extensibility, and programma-

bility. Hardware packet processors provide higher performance, yet they are hard, if not

impossible in practice, to extend with new functionality beyond basic forwarding, net-

work address translation (NAT), and simple counting statistics [31, 36, 27, 12, 9, 32]. By

contrast, software packet processors yield tremendous flexibility, at the cost of perfor-

mance [43, 103, 158]. Importantly, software packet processors may be deployed on any

of the commodity servers a datacenter has in abundance, and can be quickly prototyped

by developers that take advantage of a familiar, rich environment, using powerful devel-

opment, debugging, and testing tools. Further, software packet processors are highly ex-

tensible, since unlike hardware counterparts, modifying both the data and control plane

functionality requires simple software upgrades. For example, a typical router is con-

ceptually divided into two operational planes: i) the data plane that performs packet

forwarding in hardware, and ii) the control plane that is the software which keeps up to

date the routing table by exchanging information with other routers. Only the latter can

be easily upgraded.

However, building software packet processors that run on the commodity servers

8

Hardware

Application Application Application

Operating System

Kernel

Network

Stack

Figure 1.3: Operating system kernel multiplexing hardware resources and per-
forming requests received from several user-space applications.

resident in a datacenter is challenging due to the high data / packet rates involved. Da-

tacenter networks are fast and provisioned with vast amounts of available capacity to

spare, therefore packet processors must be capable of handling large volumes of ag-

gregate data from potentially many machines. The challenge is architecting efficient

software packet processors that are scalable, transparent, deployable in today’s datacen-

ters, and can comprehensively address the problem of degraded performance on large

bandwidth-delay links.

Packet Processing Abstractions: Modern operating systems are a vital component

of the software stack which runs on top of the datacenter’s commodity servers. Unfortu-

nately, operating systems do not provide developers with abstractions for building packet

processing applications capable of achieving sufficiently high data rates. As a result,

high-speed software packet processors have been traditionally built at a low level, close

to the bare hardware resources and within the operating system kernel, so as to incur

as little overhead as possible from the software stack [147, 103]. An operating system

is the low-level software layer that multiplexes access to the hardware resources (like

disks, NICs, processors, memory) and safely exports the resources to user applications

(i.e., to “user-space”) by means of higher-level abstractions (like file descriptors, sock-

9

ets, processes, address spaces). User-space applications do not interface directly with

the hardware, instead their access is mediated via the operating system—as depicted in

Figure 1.3. Operating systems must therefore provide applications with efficient access

to physical resources with little to no interference, should performance be of paramount

importance. Further, operating systems must allow applications to take advantage of

newly emerging hardware.

Efficient operating systems support is required for developers to build general pur-

pose software packet processing applications that run in user-space and achieve perfor-

mance levels similar to the low-level software which has direct access to the hardware

resources (like the operating system’s kernel). Unfortunately, applications that reside

outside the kernel, or in user-space, incur a severe performance penalty since modern

operating systems fail to provide efficient access to the entire network traffic in bulk. An

operating system’s conventional software network stack in general, and the raw socket

in particular, exert excessive amounts of pressure on the memory subsystem and are

inefficient in utilizing the available physical resources. The raw socket is the principal

mechanism for relaying the entire network traffic to user-space applications. Conse-

quently, software packet processing applications relying on conventional abstractions

like the raw socket are unable to scale with, and take advantage of, modern multi-core

processors to drive multi-gigabit network adapters at line rates (e.g., 10Gbps for 10GbE

lambda networks).

Since general purpose software packet processing applications reside outside the

kernel, namely in user-space, the challenging aspect is designing and building a set of

abstractions that enable developers to take advantage of the emerging hardware, like

multi-core processors, to deliver upon the required levels of performance. Ideally, such

abstractions would also be familiar, un-encumbering, and universally usable by develop-

10

ers. Furthermore, such abstractions should minimize performance overheads of packet

processing at a high level in the software stack.

1.3 Contributions

We present three contributions towards studying and enhancing the commodity data-

center’s communication substrate. First, we investigate the network properties of com-

modity end-hosts connected across large geographical spans by high throughput optical

links. Next, we demonstrate how packet processing network protocols can be built in

software and run on commodity servers to enhance datacenter communication patterns.

Finally, we provide new operating systems abstractions that enable developers to build

such software packet processors that can perform complex performance enhancement

protocols in user-space, without compromising performance. Importantly, unlike the

existing conventional abstractions for packet processing in user-space, the new operat-

ing systems abstractions we introduce are able to take advantage of modern hardware

and enable applications to scale linearly with the number of processor cores.

Lambda Networked Commodity End-hosts High-bandwidth, semi-private optical

lambda networks carry growing volumes of data on behalf of large data centers, both

in cloud computing environments and for scientific, financial, defense, and other enter-

prises. In this thesis we undertake a careful examination of the end-to-end character-

istics of an uncongested lambda network running at high speeds over long distances,

identifying scenarios associated with loss, latency variations, and degraded throughput

at attached end-hosts. We use identical commodity source and destination server plat-

forms, hence expect the destination to receive more or less what we send. We observe

otherwise: degraded performance is common and easily provoked. In particular, the re-

11

ceiver loses packets even when the sender employs relatively low data rates. Data rates

of future optical network components are projected to vastly outpace clock speeds of

commodity end-host processors [163] (also see Table 1.1 and Figure 3.1), hence more

and more applications will confront the same issue we encounter. Our work thus reveals

challenges faced by those hoping to achieve dependable performance in such uncon-

gested optical networked settings, and has two implications. First, there is a growing

need for packet processors and packet processing support to improve networking per-

formance between commodity end-hosts. Second, commodity servers communicating

through conventional operating system abstractions are shown to perform poorly, there-

fore more efficient abstractions are required to support packet processing applications.

Packet processing applications typically handle significantly more traffic per second

than end-host applications, like the ones employed in this study.

Software Packet Processors Connecting datacenters over vast geographical distances

is challenging, especially when relying on traditional communication protocols [163].

One common technology used to tackle this problem are packet processing perimeter

middleboxes that perform some form of performance enhancement network protocol.

We show that such packet processors may be built in software and may be deployed on

the commodity servers resident within the datacenter to thoroughly improve the commu-

nication between datacenters. Further, we show that these software packet processors

performing performance enhancement protocols can sustain high network data rates,

thus providing a readily available commodity alternative to otherwise proprietary, dedi-

cated, hardware equipment.

Packet Processing Abstractions Packet processing (user-space) applications have

traditionally incurred a severe performance penalty due to the conventional software

12

network stack that overloads the memory subsystem. We introduce two new packet pro-

cessing operating systems abstractions to address the issue—Featherweight Pipes (fwP)

and NetSlices. FwP allows developers to run user-space packet processing applications

at high data rates on commodity, shared-bus, multi-core platforms. FwP provides a fast,

multi-core aware, path for packets between network interfaces and user-space, reduc-

ing pressure and contention on the memory subsystem, in addition to removing other

sources of overheads, like system calls, blocking, and scheduling. In our experiments,

a security appliance, an overlay router, an IPsec gateway, and a protocol accelerator, all

using fwP, are shown to run on many cores at gigabit speeds.

The NetSlice operating system abstraction takes fwP one step further, targeting

multi-core non uniform memory access (NUMA) architectures and modern multi-queue

network adapters. Unlike the conventional raw socket, NetSlice is designed to tightly

couple the hardware and software packet processing resources, and to provide the ap-

plication with control over these resources. To reduce overall contention, NetSlice per-

forms coarse-grained spatial partitioning (i.e., exclusive, non-overlapping, assignment)

of CPU cores, memory, and NIC resources, instead of time-sharing them. Moreover,

NetSlice provides a streamlined communication channel between NICs and user-space.

We show that complex user-space packet processors, like a protocol accelerator and an

IPsec gateway, built with NetSlice and running on commodity components, can scale

linearly with the number of cores and operate at nominal 10Gbps network line speeds.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we present an argument in

support of software packet processing abstractions, describe our experimental methodol-

13

ogy, and demonstrate how high-speed packet processing network protocols can be built

to improve the communication between datacenters. In particular, we show how various

complex performance enhancement proxies can be carefully built within the operating

system software layer of commodity servers to process packets at high data rates. More-

over, these packet processors serve as baseline comparison for user-space equivalent im-

plementations. In Chapter 3, we present a study of the properties of uncongested lambda

networks interconnecting 10GbE commodity end-hosts over large distances. The study

provides key insight into some of the performance roadblocks standing in the way of

achieving communication at full line-rate between different datacenters. Chapter 4 de-

tails the overheads faced by operating system abstractions for building packet processors

in user-space, and introduces Featherweight Pipes (fwP)—a new operating system ab-

straction for packet processing that overcomes these overheads. Chapter 5 introduces

NetSlice—a new operating systems abstraction that builds upon fwP to enable devel-

opers to build packet processors in user-space, while also taking advantage of modern

hardware, like NUMA multi-core processors and multi-queue network adapters. Impor-

tantly, packet processors built with NetSlice are able to scale linearly with the number

of CPU cores. We present related work in Chapter 6, and finally discuss potential future

research directions and conclude in Chapter 7.

14

CHAPTER 2

THE SCOPE OF THE PROBLEM AND METHODOLOGY

Extensible and programmable router support is becoming more important within today’s

experimental networks [20, 26, 14, 177]. Indeed, general purpose packet processors en-

able the rapid prototyping, testing, and validation of novel protocols. For example,

OpenFlow [165] evolved quickly into a mature specification, and was able to do so by

leveraging highly extensible NetFPGA [157] forwarding elements. Moreover, the Open-

Flow specification is currently being incorporated into silicon fabric by enterprise grade

router manufacturers. At the same time, extensible router support seamlessly enables the

deployment of functionality that is currently implemented by network providers through

special purpose network middleboxes, such as protocol accelerators and performance

enhancement proxies [31, 36, 27, 12, 9, 32, 63].

The prospect of software packet processors is attractive since they are highly ex-

tensible and programmable. For example, modifying both data and control plane func-

tionality of a software router requires simple software upgrades. Moreover, employing

commodity servers means that packet processors may rapidly take advantage of the new

semiconductor technology advancements. Further, software packet processors benefit

from the large-scale manufacturing of commodity components.

Traditionally, the tradeoff between specialized hardware packet processors and soft-

ware packet processors running on general purpose commodity hardware has been, and

remains still, one of high performance versus extensibility and ease of programmability.

The currency for packet processors is performance. More recently, several significant

efforts strived to render networking hardware more extensible [47, 23, 165, 157, 10].

Conversely, software routers have successfully harnessed the raw horsepower of mod-

ern hardware to achieve considerably high data rates [103, 159]. However, for the sake

15

of performance, such software routers were devised to run within the operating system’s

kernel, at a low level immediately on top of the hardware.

Writing a packet processor on domain specific, albeit extensible, hardware is difficult

since the developer needs to be aware of low level issues, intricacies, and limitations.

We argue that building packet processors in the kernel, even when taking advantage of

elegant frameworks such as Click [147], is equally difficult. In particular, the developer

does not simply learn a new “programming paradigm.” She needs to be aware of the

idiosyncrasies of the memory allocator (e.g., small virtual address spaces, the limit on

physically contiguous memory chunks, the inability to swap out pages), understand var-

ious execution contexts and their preemptive precedence (e.g., interrupt context, bottom

half, task / user context), understand synchronization primitives (like various spinlock

variants, mutexes, and semaphores) and how they are intimately intertwined with the

execution contexts (e.g., when an execution context is not allowed to block), deal with

the lack of standard development tools like debuggers, and handle the lack of fault iso-

lation. A bug in a conventional monolithic kernel brings the system into an inconsistent

state and is typically lethal—leading at best to a crash, or worse, may corrupt data on

persistent storage or cause permanent hardware component failure.

Although user-space packet processing applications could potentially ease the devel-

oper’s burden, the premium on performance has rendered such an option largely invalid

for all but modest data rates. Packet processors running in user-space on modern op-

erating systems (OSes) are rarely able to saturate modern networks [103, 168, 93, 43],

given that 10 Gigabit Ethernet (GbE) Network Interface Controllers (NICs) are currently

a commodity. Yet the opportunity to achieve both performance and programmability

rests in taking advantage of the parallelism intrinsic in modern hardware (like multi-

core processors and multi-queue NICs). However, to scale linearly with the number of

16

cores, contention must be kept to a minimum. Conventional wisdom, and Amdahl’s

law [53, 184, 136], states that when adding processors to a system, the benefit grows at

most linearly, while the costs (cache coherency, memory / bus contention, serialization,

etc.) grow quadratically. Unfortunately, current operating systems fail to provide devel-

opers with user-space abstractions for building high-speed packet processors that take

advantage of the modern emerging hardware.

The rest of the chapter is structured as follows. Section 2.1 describes the experimen-

tal testbeds used throughout this thesis for both measurements and system evaluation.

Section 2.2 details the commodity hardware configurations employed by the testbeds,

while Section 2.3 reports on the metrics we used to perform quantitative assessments.

Finally, Section 2.4 presents three examples of complex software packet processors that

can improve the performance of datacenter communication.

2.1 Testbeds

Throughout this thesis, we employ two testbed configurations on which we perform our

measurements and system evaluation. The first testbed, called the Cornell NLR Rings,

leverages a high-end production lambda network that is currently in use by the scientific

community. The second consists of the Emulab network emulation testbed—a public

resource freely available to most researchers worldwide.

2.1.1 Cornell NLR Rings

To emulate a pair of datacenters connected over large geographical distances, we created

a “personal” lambda network by tapping into the National Lambda Rail [26] network

17

R900R900
Egress
Server

t iny

small
med ium

large

NLR(NYC)
Router

~ 3 5 0 k m

Cornell (NYC)
Router

R900 2950 R900 2950

Cornell
(Ithaca)
Router

Ingress
Server

Left
datacenter

clients

Right
datacenter

clients

10GbE (CX4)

4x1Gb/s 4x1Gb/s2x1Gb/s 2x1Gb/s

10GbE (CX4)

10GbE (LR) 10GbE (LR)

Figure 2.1: The testbed topology.

resources. In particular, we created our own network measurement testbed centered at

Cornell University and extending across the United States; this is the Cornell National

LambdaRail (NLR) Rings testbed.

Depicted in Figure 2.1, our Cornell NLR Rings testbed takes advantage of the ex-

isting National LambdaRail [26] backbone infrastructure. Two commodity servers are

connected to the backbone router in Ithaca, New York, and function as Ingress and

Egress servers; these are four-way 2.4 GHz Xeon E7330 quad-core Dell PowerEdge

R900 servers with 32GB RAM, each equipped with an Intel 10GbE LR PCIe x8 adapter

18

(EXPX9501AFXLR) and an Intel 10GbE CX4 PCIe x8 adapter (EXPX9502CX4). They

run a preemptive 64-bit Linux 2.6.24 kernel, with the Intel ixgbe driver version 1.3.47.

The generic segmentation offload (GSO) was disabled since it is incompatible with the

Linux kernel packet forwarding subsystem. We connected a pair of client machines to

each commodity router through a pair of HP ProCurve 2900-24G switches. The client

machines are Dell PowerEdge R900 and PowerEdge 2950 respectively, with Broadcom

NetXtreme II BCM5708 Gigabit Ethernet cards (R900 has four such 1Gbps NICs while

the 2950 has two). They run the same Linux 2.6.24 kernel as the routers, with stock

bnx2 network drivers for the Broadcom Gigabit network interfaces.

Through a combination of IEEE 802.1Q virtual Local Area Network (VLAN) tag-

ging and source-, policy-, and destination-based routing, we have established four static

10GbE full duplex routes that begin and end at Cornell, but transit various physical

lengths: a tiny ring to New York City and back, a small ring via Chicago, Atlanta,

Washington D.C., and New York City, a medium ring via Chicago, Denver, Houston,

Atlanta, Washington D.C., and New York City, and a large ring across Chicago, Denver,

Seattle, Los Angeles, Houston, Atlanta, Washington D.C., and New York City (Fig-

ure 2.1). The one-way latency (one trip around the ring) as reported by the ping utility

is 8.0 ms for the tiny path, 37.3 ms for the small path, 68.9 ms for the medium path,

and 97.5 ms for the large path. All optical point-to-point backbone links use 10GbE

with Dense Wavelength Division Multiplexing (DWDM) [210], except for a single OC-

192 Synchronous Optical Networking (SONET) [37] link between Chicago and Atlanta.

The Cornell NLR Rings employ all NLR routers and 10 of the 13 NLR layer three links.

The NLR routers are Cisco CRS-1 [7] devices, while the Cornell (Ithaca and NYC)

backbone routers are Cisco Catalyst 6500 series [8] hardware. These routers all have

sufficient backplane capacity to operate at their full rate of 10Gbps irrespective of the

19

traffic pattern; the loads generated in our experiments thus far have provided no evi-

dence to the contrary. The Cisco Catalyst 6500s are equipped with WSX6704-10GE

Ethernet modules with centralized forwarding cards. The Quality of Service (QoS) fea-

ture on these routers was disabled, hence in the event of an over-run, all traffic is equally

likely to be discarded. In particular, packets are served in the order in which they are

received. If the buffer is full, all subsequent packets are dropped, a discipline some-

times referred to as first-in-first-out (FIFO) queueing with drop-tail [90]. Enabling QoS

requires wholesale reconfiguration of the production NLR network by NLR engineers,

and was not feasible.

Note that the Cornell NLR testbed also has a loopback configuration, by connecting

the egress and the ingress servers directly back-to-back with a 10 meter optical patch

cable. The loopback configuration is typically used for baseline measurements, and for

packet processor prototype development and testing.

2.1.2 Emulab

The Utah [109] and Deter [101] Emulab [220] testbeds have been an invaluable resource

for prototyping, debugging, and ultimately evaluating the system software artifacts im-

plemented in support of this thesis. Emulab is a network testbed for emulated experi-

ments. Each emulated experiment allows one to specify an arbitrary network topology,

and provides a controllable, predictable, and repeatable environment, which includes ex-

clusive access to leased commodity servers. All the resources of an emulated experiment

are instantiated over hardware within a datacenter, and are isolated from all other con-

currently emulated experiments. For example, the network topology paths are created

by segregating virtual LANs (VLANs) within switches, and relying on additional com-

20

modity servers (also employed exclusively) along paths to perform traffic shaping (e.g.,

to emulate packet loss, and link delays corresponding to various connection lengths).

Although each Emulab testbed provides various flavors of commodity servers and

underlying local area network substrates, we relied exclusively on the pc3000 class of

servers, which are connected to 1Gbps Ethernet. With respect to the available Emulab

hardware components, the pc3000 servers have the best performance while also being

equipped with at least two network interface controllers. Each pc3000 server is a Dell

PowerEdge 2850 with one or two hyperthreaded 3.0 GHz 64-bit Xeon processors, 2GB

DDR2 RAM, and up to six Intel PRO/1000 MT network adapters. Furthermore, the

intermediate nodes performing traffic shaping in our experiments were also pc3000

servers. Since Emulab allows roughly any operating system to run on the servers, we

used various flavors of the Linux 2.6 kernel.

2.2 Commodity Servers Hardware Configuration

The measurements and system evaluations in this thesis use several commodity server

hardware configurations. Although the capabilities of the commodity servers differ

slightly from one to the other, all servers fall into one of two categories, depending

upon the memory architecture. The first class of commodity servers, the most common

until recently, consists of shared bus memory architectures. By contrast, the second class

of commodity servers consists of non uniform memory access (NUMA) architectures.

For a detailed exposition of the architecture of a modern commodity server’s memory

architecture (i.e., shared bus and NUMA architectures) refer to Appendix A.

The shared bus memory architecture commodity servers comprise of the following:

21

L2L2 L2L2

L2L2 L2L2

Northbridge

(Memory Controller Hub)
PCIe Mem Bus

CPU

0

CPU

8
CPU

4

CPU

12

CPU

1

CPU

9

CPU

5

CPU

13

CPU

2

CPU

10
CPU

6

CPU

14

CPU

3

CPU

11
CPU

7

CPU

15

NICs Memory

(a) Shared bus architecture

L3 cache

I/O Hub
PCIe

CPU

0,8

CPU

2,10
CPU

4,12

CPU

6,14

NICs
PCIe

NICs

L3 cache

CPU

1,9

CPU

3,11
CPU

5,13

CPU

7,15

socket-IO link
integrated memory

controller

Memory

inter-socket

link

Mem Bus

Memory

Hyper-threads

(b) NUMA architecture

Figure 2.2: Shared bus (a) and NUMA (b) quad core (Intel Xeon) architectures.

• All Emulab machines, namely the Dell PowerEdge 2850 with a single or dual

Intel Xeon CPU and 2GB of DDR2 RAM.

• The Cornell NLR Rings machines both in regular and in loopback configuration,

used in Chapters 4 and 5 respectively. More precisely, the Dell PowerEdge R900

machines are four socket 2.40GHz quad core Xeon E7330 (Penryn) with 6MB of

L2 cache and 32GB of RAM—the E7330 is effectively a pair of two dual core

CPUs packaged on the same chip, each with 3MB of L2 cache. The Dell Pow-

erEdge 2950 are dual socket 2.66GHz quad core Intel Xeon X5355 (Core) with

8MB of L2 cache and 16GB of RAM—like the E7330, the X5355 also bundles

a pair of two dual core CPUs on the same chip, each with 4MB of L2 cache.

Figure 2.2 (a) depicts a diagram of the shared bus Xeon E7330 and X5355 archi-

22

tectures respectively.

In Chapter 5 we employ more recent hardware, namely a pair of NUMA commodity

servers, acting as ingress and egress routers in the Cornell NLR Rings loopback configu-

ration. Each server is a Dell PowerEdge R710 machine, equipped with dual socket quad

core 2.93GHz Xeon X5570 (Nehalem) processors with 8MB of shared L3 cache and

12GB of RAM, 6GB connected to each of the two CPU sockets through the QuickPath

Interconnect (QPI). Unlike the previous generations of shared bus Xeon processors (e.g.,

Penryn and Core), the Nehalem CPUs do not package pairs of dual cores on the same

chip, instead all four cores were designed to be part of the same silicon die sharing the

L3 cache. Further, the Nehalem CPUs support hardware threads, or hyperthreads, hence

the operating system manages a total of 16 processors per R710 machine. Figure 2.2 (b)

depicts a diagram of the NUMA Xeon X5570 architecture.

All servers are connected exclusively to commodity 1 Gigabit and 10 Gigabit Eth-

ernet networks through a variety of commodity network interface controllers. For ex-

ample, all Emulab machines are equipped with Intel PRO/1000 MT Gigabit Ethernet

adapters, while the Cornell NLR Rings servers are equipped with Broadcom NetXtreme

II BCM5708 Gigabit Ethernet adapters. Furthermore, two Power Edge R900 and the

two R710 commodity servers part of the Cornell NLR Rings are equipped with Intel or

Myricom 10 Gigabit Ethernet LR and CX4 adapters, depending on the experiments. The

10GbE adapters are also commodity components, and provide only basic DMA packet

transmit and receive operations; although both the Intel and Myricom 10GbE NICs have

the ability to multiplex traffic onto multiple receive and transmit hardware queues, they

do not have memory-mapped virtual interface support.

23

2.3 Metrics

The performance of packet processors and networked end-hosts is quantified and com-

pared in terms of network throughput. The throughput is defined as the average rate of

successful data delivery over a communication channel, and is usually measured in bits

per second (bps), and sometimes in data packets per second (pps). When quantifying

throughput (and other metrics as well), we perform multiple independent measurements,

typically in an end-to-end [192] fashion, and we report on the average value accompa-

nied by error bars that denote the standard error of the mean. The standard error of the

mean is the standard deviation of the sampling distribution of the mean, and is estimated

by σ√
N

where σ is the standard deviation of the sample and N is the sample size. It can

also be viewed as the standard deviation of the error in the sample mean relative to the

true mean. Standard error of the mean quantifies variability while accounting for the

sample size, unlike standard deviation that only quantifies variability, therefore standard

error of the mean indicates the confidence in the measurement of the mean.

Another metric used in this thesis is the end-to-end packet loss fraction (or percent-

age) that occurs over a communication channel. The measurements in Chapter 3 report

on the packet loss percentage of traffic across the Cornell NLR Rings lambda network.

To measure throughput and packet loss, we use the standard Iperf [204] and Net-

perf [28] measurement applications. Both network tools create TCP and UDP data

streams, and allow the user to set various parameters, like UDP sender data rate, or

UDP datagram size. The tools report the throughput of the payload, without protocol

header encapsulation, like TCP/IP or UDP/IP.

Chapter 3 also reports on the measurement of packet inter-arrival time, a metric de-

noting the time interval in seconds between consecutively received packets. By contrast,

24

Chapter 4 reports on the measurement of packet delay as the packet percolates through

the software stack of a commodity server, from the time it was picked up by the network

interface off the transmission medium, until it was delivered to the application.

In Chapter 4 we also report on the count of processor micro-architecture events dur-

ing the execution of certain benchmarks and tests. The events are statistically sampled

and recorded into the processor’s hardware performance counters, counters that are read

and recorded both prior and after the tests. To compare different test and benchmark

programs we report on the ratios of two related events. In particular, we measure the

ratio of memory bus transactions per number of CPU cycles, the load ratio (number of

words loaded in the L1 cache per number of CPU cycles), the store ratio, the number of

pipeline flushes per number of instructions retired, and the number of read for ownership

(RFO) cache consistency messages per memory bus transactions.

2.4 Software Packet Processor Examples

Packet processors at the perimeter of datacenters may be used to improve the perfor-

mance of the communication over high bandwidth, high latency, uncongested lambda

network links. By contrast, conventional protocols that were built for high bandwidth,

high latency links (or high bandwidth-delay product links) like the datagram congestion

control protocol (DCCP) [146], stream control transmission protocol [200], the explicit

control protocol (XCP) [142], and the variable-structure congestion control protocol

(VCP) [225] are a poor fit for such an environment, since congestion is not the main

issue affecting the performance on semi-private lambda networks [163, 142].

In this section we show how packet processors can be carefully designed within

the operating system’s kernel layer of commodity servers. We show that these packet

25

processors are capable of sustaining high data rates while improving the performance of

the communication channels over lambda networks. Furthermore, the packet processors

are evaluated to provide a baseline for the expected performance equivalent user-space

solutions may achieve, when deployed on identical commodity hardware.

For a proof of concept, we have carefully designed, built, and measured three com-

prehensive and fully functional high-speed packet processors—a TCP protocol acceler-

ator (TCPsplit), a protocol independent redundancy elimination proxy (IPdedup), and a

proactive forward error correction proxy (IPfec). All are designed for performance, and

are carefully built at a low level close to the bare hardware—namely within the operating

system layer as loadable kernel modules—to minimize software stack interference.

2.4.1 TCPsplit

We begin by presenting a packet processor that implements a conventional performance

enhancement proxy scheme previously proposed in the past to mitigate high bandwidth-

delay product link-related degradations [72, 207].

Networked applications require reliable transport protocols. TCP is currently the de-

facto communication protocol on virtually all networks. This holds true for datacenter

networks—the vast majority of datacenter traffic consists of TCP flows; TCP has been

observed to make up 99.91% of the traffic within datacenters [50]. TCP provides a

reliable, connection oriented, bidirectional stream abstraction. Data is delivered in the

order it was sent, received data is positively acknowledged, and loss is inferred either

by means of timeouts or duplicate acknowledgments. Once loss occurs, TCP assumes it

was due to congestion, and enters the congestion control operational mode.

26

TCP data packet
TCP buffer

Figure 2.3: TCPsplit diagram depicting traffic pattern.

Importantly, TCP performance depends not upon the transfer rate itself, but rather

upon the product between the transfer rate and the round-trip delay time (RTT). This

metric, referred to as the “bandwidth-delay product” (BDP) measures the amount of in-

flight unacknowledged data that would saturate the capacity of the link. This amount of

in-flight data is controlled by the minimum size of the TCP window (i.e., the amount

of buffer space) at the sender and at the receiver. However, the TCP window size is

an operating system (OS) specific configuration parameter, and requires elevated priv-

ileges in order to configure it. Since the window size should be altered to match the

BDP between any possible pair of end-hosts, this is hardly a desirable option within a

datacenter, where standardization is the key to low and predictable maintenance costs.

The conventional solution is to use a pair of proxies that transparently “split” the

TCP connection into three separate TCP flows, while increasing the window size to

match the large BDP on the middle (i.e., the large delay) segment, as depicted in Fig-

ure 2.3. Note that this solution breaks the end-to-end [192] properties of TCP in order

to transparently increase the amount of in-flight data. This is what the TCPsplit packet

processor does [62]. In particular, the egress and the ingress servers (depicted in Fig-

ure 2.1) running TCPsplit will track all end-to-end TCP connections flowing through

them, intercept them, sever them, and transparently create three equivalent TCP flows

instead, while increasing the BDP on the TCP flow between themselves. TCPsplit there-

27

data packet

compressed packet

Figure 2.4: IPdedup diagram depicting traffic pattern.

fore increases the end-to-end throughput without any end-host intervention.

2.4.2 IPdedup

Next, we present a memory bound packet processor that performs a type of low-latency

on-the-fly compression of the traffic that flows through it. We employ a protocol inde-

pendent packet level redundancy elimination technique originally proposed by Spring

et al. [199] by adapting the algorithm initially conceived by Manber [160] for finding

similar files in a large file system to finding temporal similarities in a stream of pack-

ets. Manber proposed that instead of using expensive diffs [137] or hash functions

over the entire contents of a file, Rabin fingerprints [189] can be efficiently generated

instead by performing a per-byte sliding window computation. Further, since it is pro-

hibitive to store all fingerprints for each file (for a file of size F bytes and signature size

S bytes there are (F − S + 1) Rabin fingerprints), a set of representative fingerprints is

selected to identify the file’s content. Since Rabin fingerprints are the result of applying

a cryptographic hash function, the common way of choosing the representative finger-

prints is selecting the ones that have γ least significant bits zero, and hence ensuring that

approximately one fingerprint out of every 2γ bytes in the stream is selected.

28

Spring et al. [199] proposed applying Manber’s fingerprinting algorithm on a pair

of routers at opposite ends of a bandwidth constrained link (as depicted in Figure 2.4).

Given a cache storing past packets, and an index mapping representative fingerprints to

packets in the cache, the algorithm identifies contiguous strings of bytes in the current

packet that are also stored in the cache. For each fingerprint matched against the cache,

the matching packet is pulled out of the cache and the matched region is expanded byte-

by-byte in both directions, thus obtaining the maximal region of overlap. Each of the

matches within the current packet is replaced by a tuple consisting of the fingerprint,

the matched region index, and the matched region length. The modified packet, now of

smaller payload, is forwarded to the receiving router that will recover the original packet

payload, provided that it holds a cache and an index consistent with the sending router.

This algorithm was also revisited in the context of universal packet level redundancy

suppression and new redundancy-aware routing algorithms [54, 55]. Further, the same

technique has since been used for different problem domains, for example to fingerprint

malware [196] or to enable low bandwidth file systems [173].

Our goal in designing the IPdedup packet processor was to reduce memory ac-

cesses. Accordingly, we implemented the packet cache and the index both as CPU-cache

friendly data structures—packet and index data is kept into fixed size arrays, avoiding

linked list chaining which increases CPU-cache pollution. We provisioned each proxy

with a packet cache that can hold up to roughly six seconds worth of 1Gbps data. (The

six-second value was chosen in order for the cache and index together to utilize the

entire RAM memory available on our commodity servers, without having to resort to

slow disk accesses.) Furthermore, each proxy has a corresponding index whose size

is computed based on the expected number of representative signatures per maximum

transmission unit (MTU). For example, for 1500 byte MTU size TCP packets (of 1448

29

data packet

proactive redundancy

Figure 2.5: IPfec diagram depicting traffic pattern.

byte payload), 64-bit Rabin fingerprints, and γ = 8 least significant fingerprint bits set

to zero, there are an expected 5.4 signatures per packet. (Since there are (1448−64+1)

hash values per packet, and the probability that one hash value has at least γ = 8 bits set

to zero is 1
28 .) In this case, the index will be a multiple of d f ×5.4×Se, where S is the

capacity of the packet cache, and f = 2 is the hash table load factor.

2.4.3 IPfec

Finally, the IPfec packet processor was also designed to reduce memory accesses. IPfec

is the dual of IPdedup—it adds redundancy on a path between an egress and an ingress

router so as to recover quickly, without waiting for timeout and retransmissions, from

packet loss events that are potentially bursty (as depicted in Figure 2.5). IPfec is essen-

tially the implementation of the Maelstorm [63, 62] protocol—a performance enhance-

ment proxy developed to overcome the poor performance of TCP when loss occurs on

high bandwidth-delay product lambda network links. Like IPdedup, IPfec appliances

work in tandem, with each appliance located at the interface between the datacenter and

the high bandwidth wide area network (WAN) link.

The IPfec packet processors perform forward error correction (FEC) encoding over

30

the outbound traffic on one side and decoding over the inbound traffic on the opposite

side. In Figure 2.1, for example, the Egress and the Ingress servers are running IPfec ap-

pliances, with the egress server encoding over all traffic originating from the left-hand

side R900 and 2950 client boxes and destined for the right hand side R900 and 2950

client machines. The ingress server receives both the original Internet protocol (IP)

packet traffic and the additional FEC traffic and forwards the original traffic and poten-

tially any recovered traffic. Note that this is a symmetric pattern, each IPfec appliance

working both as an ingress and as an egress router at the same time.

Maelstrom trades off maximum effective bandwidth to increase network perfor-

mance measured in throughput: a constant overhead due to FEC masks potential future

loss of packets, which reduces effective bandwidth. For example, for every 100 IP pack-

ets forwarded, Maelstrom may send three repair packets thereby reducing the available

bandwidth by 3/103. Importantly, Maelstrom can be configured to tolerate packets lost

in bursts while keeping the FEC overhead constant, which is useful for network provi-

sioning and stability. The latency to recover a lost packet degrades gracefully as losses

get burstier, but the FEC overhead stays constant.

2.4.4 Baseline Performance

We evaluate the low-level, in-kernel implementations of the TCPsplit, IPdedup, and

IPfec packet processors, and provide baseline throughput measurements for the com-

modity server hardware they ran on. In particular, we measured the packet processors’

performance on the Cornell NLR Rings experimental setup previously described in Sec-

tion 2.1.1, with all commodity servers consisting of shared-bus multi-core architectures.

We show that all packet processors can sustain multi-gigabit throughput, being lim-

31

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2 4 8

T
hr

ou
gh

pu
t (

M
bp

s)

Number of CPUs used

1 flow
2 flows

Figure 2.6: IPdedup throughput vs. number of CPUs used.

ited by the memory bandwidth. More precisely, the throughput depends on the amount

of per-packet processing and memory accesses performed while saturating the mem-

ory bandwidth. For example, the IPdedup and IPfec are memory bound, with IPdedup

performing significantly more memory accesses than IPfec since the index mapping sig-

natures to previous packets is many times larger than the CPU caches. By contrast, the

data structures used by IPfec are an order of magnitude smaller. The TCPsplit exerted

the least amount of pressure on the memory system.

We evaluate the packet processors by issuing 120 second Iperf [204] flows (1500

byte MTU size packets) between the left hand side and the right hand side clients (Fig-

ure 2.1). All traffic flows through the egress and the ingress commodity servers. The

servers are running one or a composition of the performance enhancement proxies pre-

viously described. All throughput values presented are averaged over eight independent

runs; the error bars denote standard error of the mean and are always present.

Figure 2.6 shows the end-to-end TCP throughput between one and two clients send-

ing data at around 1Gbps on the tiny path (RTT=15.9 ms), with the IPdedup appliances

32

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4

T
hr

ou
gh

pu
t (

M
bp

s)

Number of 1Gbps clients (RTT = 15.9ms)

TCP
TCP / IPfec

Figure 2.7: IPfec (Maelstrom) Throughput vs. number of 1Gbps clients, RTT =
15.9ms (tiny path).

performing packet-level redundancy elimination between the egress and the ingress

servers. The data is a synthetic merge of a large 700MB video file, yielding a 50% re-

dundant stream. The Figure shows the throughput plotted against the number of worker

kernel threads used by the appliances. Since the machines have multiple cores, IPdedup

is structured as several pipelines in superscalar fashion. The IPdedup packet processor

is capable of performing as much as 49% redundancy suppression, at speeds in excess of

1.4Gbps. The value closely follows the throughput achieved by previous deduplication

benchmarks that loaded packet traces in memory instead of running on live traffic [55].

Although the IPdedup implementation may use multiple processor cores, once the mem-

ory bandwidth is saturated, adding more processing cores degrades overall performance

on the shared-bus commodity servers due to contention, as can be seen in Figure 2.6.

Figure 2.7 shows the end-to-end TCP throughput between various number of clients

sending data at around 800Mbps each on the tiny path, with and without the IPfec appli-

ances running on the egress and ingress commodity servers respectively. The IPfec ap-

33

 0

 500

 1000

 1500

 2000

 2500

 3000

15.9 74.6 137.8 194.9

T
hr

ou
gh

pu
t (

M
bp

s)

Round Trip Time (ms)

TCP
TCP / IPfec
UDP / IPfec

TCP / (TCPsplit + IPfec)

Figure 2.8: IPfec and TCPsplit Throughput vs. RTT.

pliance is capable of sustaining little more than 2Gbps aggregate throughput, given that

the maximum forwarding rate is little more than 2.9Gbps (at which point the shared-bus

commodity architecture saturates the memory bandwidth). Moreover, for the nominal

FEC parameters used (for every r = 8 data packets, c = 3 redundant / FEC packets are

sent) there is a 27% FEC protocol overhead, which means that the effective maximum

goodput achievable by IPfec is
(
2.9× r

r+c = 2.9× 8
11

)
= 2.1Gbps.

Finally, Figure 2.8 shows the end-to-end throughput of a 4MB TCP-window flow

without any proxy, with the IPfec packet processor, and with a composition of IPfec and

TCPsplit packet processors against the RTT of the tiny, small, medium, and large paths

respectively. For comparison, we include a maximum throughput UDP flow with the

IPfec packet processor.1 Note that as expected, a 4MB window is sufficient to saturate

the capacity of the IPfec packet processors over the tiny (RTT=15.9 ms) path, however

it is insufficient for longer paths. By contrast, using the TCPsplit packet processor we

1The maximum throughput achieved by UDP/IPfec is slightly larger than TCP/IPfec. This is because
unlike UDP, a TCP flow sends small acknowledgment packets on the return path, for which the ingress
and egress routers spend CPU cycles and memory bandwidth to forward and compute the additional FEC.

34

achieve the same throughput irrespective of the link delay, similar to the throughput of

a steady rate UDP flow—which is precisely what TCPsplit was designed to achieve.

2.5 Summary

In this Chapter we argued that there is a growing need for extensible router and packet

processor support, and in particular, that there is a need for building software packet

processors that run in user-space, on commodity servers. We also introduced the experi-

mental testbeds used throughout the thesis, the commodity hardware employed for mea-

surements and system evaluation, and the metrics employed in performing quantitative

assessments. Finally, we provided three examples of software packet processors, and

evaluated their performance. The evaluation showed that complex software packet pro-

cessors can be built at a low level within the operating system’s kernel layer of commod-

ity servers to achieve high data rates. Furthermore, the evaluation provides a baseline for

the expected performance equivalent user-space solutions may achieve, when running

on the same commodity hardware architectures. For example, the evaluation provides a

baseline for packet processors built with the new user-space abstractions introduced in

Chapters 4 and 5. Importantly, the evaluation also shows that packet processors can sig-

nificantly improve the performance of the communication channel between commodity

end-hosts connected by high bandwidth, high latency lambda networks.

35

CHAPTER 3

LAMBDA NETWORKED COMMODITY SERVERS

Optical lambda networks play an increasingly central role in the infrastructure sup-

porting globally distributed, high-performance systems and applications. Scientific, fi-

nancial, defense, and other enterprise communities are deploying lambda networks for

high-bandwidth, semi-private data transport over dedicated fiber optic spans between ge-

ographically dispersed data centers. Astrophysicists at Cornell University in New York

receive high-volume data streams from the Arecibo Observatory in Puerto Rico or the

Large Hadron Collider in Switzerland, process the data at the San Diego Supercomputer

Center in California, and retrieve the results for future reference and storage at Cor-

nell. Enterprise technology firms, such as Google and Microsoft, have begun to build

proprietary networks to interconnect their data centers; this architecture balances the

economics of consolidation against the benefits of end-user proximity, while increasing

fault-tolerance through redundancy.

This trend will only accelerate. We are seeing a new wave of ambitious commercial

networking initiatives. For example, Google recently announced a fiber-to-the-home

test network [41] in the United States to deliver bidirectional bandwidth of 1 Gigabit

per second (Gbps), while major Internet providers such as Verizon and Time Warner

are projecting significant future improvements in consumer bandwidth. In contrast, as

illustrated in Figure 3.1, the sending and receiving end-hosts themselves are approaching

a (single-core) performance barrier. Thus, the future may bring high-speed networks

connected to commodity machines powered by an ensemble of slow cores.

One consequence is that, while lambda networks typically have greater bandwidth

than required, dedicate their transport for specific use, and operate with virtually no

congestion [29] (in fact, the networks are routinely idle), commodity end-host servers

36

1975 1980 1985 1990 1995 2000 2005 2010
Year

10-1

100

101

N
e
tw

o
rk

 B
a
n
d
w

id
th

 /
 C

P
U

 S
p
e
e
d
 [

M
b
p
s/

M
H

z]

3Mbps
5MHz

100Mbps
200MHz

10Gbps
3.2GHz

Processor - Network
Impedance Mismatch

Figure 3.1: Network to processor speed ratio.

increasingly find it hard to derive the full performance they might expect [154, 46]. This

can be especially frustrating because, unlike the public Internet, traffic across these semi-

private lambda networks encounters seemingly ideal conditions. For example, since

lambda networks operate far from the congestion threshold and employ high quality op-

tical fiber, they should not drop any packets at all. Further, one might reasonably believe

that, if traffic is sent at some regular rate well below the actual capacity of the lambda

network, it will arrive intact and more or less at the same rate. In particular, if end-host

Network Interface Controllers (NICs) can reliably communicate at their maximum data

rates in the lab, they should similarly do so over an uncongested and lossless lambda

network.

In this chapter, we show that packet loss occurs in precisely such situations. Our

study reveals that, in most cases, the problem is not due to loss within the optical network

span itself but instead arises from the interaction of lower-speed commodity end-host

servers with such a high-bandwidth optical network: a kind of impedance mismatch.

37

This mismatch is further aggravated in situations where the bottlenecks prove to be end-

host memory buses, which are generally even slower than processors. And the situation

may soon worsen: end-host performance increase is expected to be achieved mostly

through multicore parallelism, yet it can be a real challenge to share a network interface

among multiple processor cores. One issue is contention [103], and a second is that

the performance-enhancing features of modern multi-queue NICs (like Receive Side

Scaling) work best only for a large number of distinct, lower bandwidth, flows.

Our goal in this chapter is not to solve this problem, but rather to shed more light

on it, with the hope of informing future systems architecture research. Accordingly,

we have designed a careful empirical measurement of the end-to-end behavior of a

state-of-the-art high-speed optical lambda network interconnecting commodity 10 Gi-

gabit Ethernet (10GbE) end-host servers. Our community has a long history of per-

forming systematic measurements on many prominent networks as they have emerged,

including ARPANET, its successor NSFNET [91, 134], and subsequently the early In-

ternet [193]. However, few studies have looked at semi-dedicated lambda networks,

and none consider the interactions between the high-bandwidth optical core [172] of

a lambda network and 10GbE commodity end-hosts [195]. Nevertheless, this thesis

shows that packet processors implementing performance enhancement protocols may

be successfully employed to overcome the perfromance issues identified in this chapter.

This study in this chapter uses a new experimental networking infrastructure

testbed—the Cornell National LambdaRail (NLR) Rings—consisting of a set of four

all-optical end-to-end 10GbE paths, of different lengths (up to 15000 km) and number

of routing elements (up to 13), with ingress and egress points at Cornell University. On

this testbed, the core of the network is indeed uncongested, and loss is very rare; ac-

counting for all loss associated with sending over 20 billion packets during a 48-hour

38

period, we observed only one brief instance of loss in the network core, in contrast to

significant packet loss observed on the end-host commodity servers themselves.

Our key findings pertain to the relation between end-to-end behavior and fine-

grained configuration of the commodity end-host server:

• The size of the socket buffer and of the Direct Memory Access (DMA) ring deter-

mines the loss rate experienced by the end-host (the socket buffer and the DMA

ring are depicted in Figure 3.4). Similarly, the interrupt affinity policy of the net-

work adapter, that maps interrupts to individual processor cores upon receipt of

network traffic, also affects the end-host loss distribution.

• The throughput of the ubiquitous Transmission Control Protocol (TCP) decreases

as packet loss increases, and this phenomenon grows in severity as a function of

both the path length (and therefore number of forwarding hops) and the window

size (the TCP window size is depicted in Figure 3.4). The congestion control

algorithm turns out to have only a marginal role in determining the achievable

throughput.

• Batching of packets, through both kernel and NIC techniques, increases overall

throughput, at the cost of disturbing any latency-sensitive measurements, such as

packet inter-arrival times.

This chapter first introduces two examples of uncongested lambda networks—the

TeraGrid [39] and our own Cornell NLR Rings testbed. In Section 3.2, we present and

discuss our experimental results, summarized in Section 3.3.

39

 0

 5

 10

 15

 20

 25

0.01 0.03 0.05 0.07 0.10 0.30 0.50 0.70 1.00

Pr
ob

ab
ili

ty
 [

%
]

Packet loss [%] (logscale)

Figure 3.2: Observed loss on TeraGrid.

3.1 Uncongested Lambda Networks

Lambda networking, as defined by the telecommunications industry, is the technology

and set of services directly surrounding the use of multiple optical wavelengths to pro-

vide independent communication channels along a strand of fiber optic cable [210]. In

this section, we present two examples of lambda networks, namely TeraGrid [39] and

the Cornell NLR Rings testbed. Both networks consist of semi-private, uncongested

10Gbps optical Dense Wavelength Division Multiplexing (DWDM) [210] or OC-192

Synchronous Optical Networking (SONET) [37] links.

3.1.1 TeraGrid

TeraGrid [39] is an optical network interconnecting ten major supercomputing sites

throughout the United States. The backbone provides 30Gbps or 40Gbps aggregated

throughput over 10GbE and SONET OC-192 links [172]. End-hosts, however, connect

40

to the backbone via 1Gbps links, hence the link capacity between each pair of end-host

sites is 1Gbps.

Of particular interest is the TeraGrid monitoring framework [46]; each of the ten sites

reports measurements of throughput (average data rate of successful delivery) and loss

rates of User Datagram Protocol (UDP) packets performed with Iperf [204]. Every site

issues a 60-second probe to every other site once an hour, resulting in a total of 90 overall

measurements collected every hour. Figure 3.2 shows a histogram of percentage packet

loss (on a logscale x-axis) between November 1st, 2007, and January 25th, 2008, where

24% of the measurements had 0.01% loss and a surprising 14% of the measurements

had 0.10% loss. Though not shown in the Figure, after eliminating a single TeraGrid

site (Indiana University) that dropped incoming packets at a steady 0.44% rate over the

monitored time period, 14% of the remainder of the measurements showed 0.01% loss,

while 3% showed 0.10% loss. Dialogue with TeraGrid operators revealed that the steady

loss rate experienced by the Indiana University site was due to a faulty commodity

network card at the end-host.

Although small, such numbers are sufficient to severely reduce the throughput of

TCP on these high-latency, high-bandwidth paths [63, 180]. Conventional wisdom sug-

gests that optical links do not drop packets. Indeed, carrier-grade optical equipment is

often configured to shut down beyond bit error rates of 10−12 (one out of a trillion bits).

However, the reliability of the lambda network is far less than the sum of its optical

parts—in fact, it can be less reliable by orders of magnitude. Consequently, applica-

tions depending on protocols like TCP, which require high reliability from high-speed

networks, may be subject to unexpectedly high loss rates, and hence low throughput.

Figure 3.2 shows the loss rate experienced during UDP traffic on end-to-end paths

which cannot be directly generalized to TCP loss rates. It is unclear if packets were

41

dropped along the optical path, at intermediate devices (e.g., optical or electrical

switches), or at the end-hosts. Furthermore, loss occurred on paths where levels of opti-

cal link utilization (determined by 20-second moving averages) were consistently lower

than 20%, making congestion highly unlikely, a conclusion supported by the network

administrators [216].

Lacking more detailed information about the specific events that trigger loss in Tera-

Grid, we can only speculate about the sources of the high observed loss rates. Several

hypotheses suggest themselves:

Device clutter: The critical communication path between any two end-hosts consists

of many electronic devices, each of which represents a potential point of failure.

End-host loss: Conventional wisdom maintains that the majority of packets are

dropped when incoming traffic overruns the receiving end-host. With the NewAPI

(NAPI) [25] enabled, the Linux kernel software network stack may drop packets

in either of two places: when there is insufficient capacity on the receive (rx)

DMA ring, and when enqueueing packets for socket delivery would breach the

socket buffer limit (see Figure 3.4). In both cases, the receiver is overwhelmed

and loss is observed, but they differ in the precise conditions that induce loss.

Cost-benefit of service: It may be the case that loss rates are typical of any large-

scale networks, where the cost of immediately detecting and fixing failures is

prohibitively high. For example, the measurements performed with the faulty net-

work card at Indiana University persisted over at least a three month period.

42

Figure 3.3: Test traffic on large NLR Ring, as observed by NLR Realtime Atlas
monitor [29].

3.1.2 Cornell NLR Rings

Clearly, greater control is necessary to better determine the trigger mechanisms of loss

in such uncongested lambda networks. Rather than probing further into the characteris-

tics of the TeraGrid network, we chose instead to create our own network measurement

testbed centered at Cornell University and extending across the United States; we call it

the Cornell National LambdaRail (NLR) Rings testbed. In order to understand the prop-

erties of the Cornell NLR Rings, the reader should first consult the detailed description

of our measurement infrastructure previously described in detail in Section 2.1.1.

Figure 3.3 illustrates the topology of the large path and highlights the network layer

load on the entire NLR backbone while we performed controlled 2Gbps UDP traffic

experiments over this path. Importantly, the Figure legend also demonstrates that the

backbone (and our path) is uncongested. While our tests were performed, the large

path, exclusive of the rest of the backbone, showed a level of link utilization of roughly

20%, corresponding directly to our test traffic.

43

3.2 Experimental Measurements

In this section, we use the Cornell NLR Rings testbed to answer the following questions

with respect to the traffic characteristics over uncongested lambda networks:

• Under what conditions does packet loss occur, where does packet loss take place,

and how is packet loss affected by NIC interrupt affinity? (Section 3.2.2)

• What is the impact of packet loss, path length, window size, and congestion con-

trol variant on TCP throughput? (Section 3.2.3)

• How does packet batching affect overall throughput and latency measurements?

(Section 3.2.4)

3.2.1 Experimental Setup

Our experiments generate UDP and TCP Iperf [204] traffic between the two commodity

end-host servers over all paths, i.e. between the Ingress and Egress servers depicted in

Figure 2.1. We modified Iperf to report, for UDP traffic, precisely which packets were

lost and which were received out of order. Before and after every experimental run, we

read kernel counters on both sender and receiver that account for packets being dropped

at the end-host in the DMA ring, socket buffer, or TCP window (see Figure 3.4). The

default size of each receive (rx) and transmit (tx) DMA ring is 1024 slots, while the

Maximum Transmission Unit (MTU) is set to the default 1500 bytes. Unless specified

otherwise (Section 3.2.4), both NAPI and interrupt coalescence packet batching tech-

niques are enabled. NAPI and interrupt coalescence are software and hardware tech-

niques respectively, that batch process multiple received packets in a single operation in

order to amortize per-packet processing overheads.

44

Throughout our experiments, all NLR network segments were uncongested—as a

matter of fact, the background traffic over each link never exceeded 5% utilization (com-

puted by the monitoring system [29] every 1-5 seconds). All values are averaged over

multiple independent runs, and the error bars denote standard error—they are always

present, most of the time sufficiently small to be invisible.

3.2.2 Packet Loss

To measure packet loss over the Cornell NLR Rings testbed, we performed many se-

quences of 60-second UDP Iperf runs over a period of 48 hours. We consecutively

explored all paths (tiny, short, medium, and large) for data rates between 400Mbps to

2400Mbps, with 400Mbps intervals. We examined the following six different configu-

rations of sender and receiver end-hosts (both identical in all cases): socket buffers sized

at 1, 2, or 4MB; and use of either the irqbalance [21] daemon or static assignment

of interrupts issued by the NICs to specific CPUs. The irqbalance daemon uses

the kernel CPU affinity interface (through /proc/irq/IRQ#/smp affinity) and

periodically re-assigns (and balances if possible) hardware interrupts across processors

in order to increase performance by spreading the load.

Figure 3.5 shows our measurements of UDP packet loss, with subfigures correspond-

ing to different combinations of socket buffer size and bound versus balanced interrupts.

Each subfigure plots packet loss observed by Iperf on the receiver end-host, as a percent-

age of transmitted packets, for various sender data rates across each of the Cornell NLR

Ring; insets provide rescaled y-axes to better view trends. Packet loss is subdivided into

three components denoting the precise location where loss can occur—as depicted in

Figure 3.4. In particular, loss may be a consequence of over-running the socket buffer

45

On−device RAM Resident (system) RAM

NIC buffer

per−NIC DMA

ring

per−CPU backlog

queue(s)

per−socket buffer/

TCP window

NAPI (bypass)

Figure 3.4: The path of a received packet through a commodity server’s network
stack. Packets may be dropped in either of each of the finite queues
realized in memory: the NIC buffer, the DMA ring, the backlog queue,
or the socket buffer / TCP window. Each queue corresponds to one
kernel counter, e.g. rx ring loss is incremented when packets are
dropped in the receive (rx) DMA ring. The transmit path is identical,
with the edges reversed (i.e., packets travel in the opposite direction).

(sockbuf loss), over-running the receive (rx) DMA ring (rx ring loss), or nu-

merous factors within the network core (network loss). Since NAPI is enabled,

there is no backlog queue (to over-run) between the DMA ring and the socket buffer.

Moreover, we dismiss the remaining possibilities for end-host loss for the following

reasons: i) the sender socket buffer is never over-run during the entire 48-hour dura-

tion of the experiment—in accordance with the blocking nature of the socket API; ii)

the sender transmit (tx) DMA ring is never over-run during the entire experiment; iii)

neither the sender nor receiver NIC report any errors (e.g. corruption) or internal (on

board) buffer over-runs throughout the experiment; iv) the receiver does not transmit

any packets (since we used Iperf with UDP traffic).

Interrupts via Irqbalance Figure 3.5(a) considers the scenario with the

irqbalance daemon running and the socket buffer size set to 1MB. We observe zero

loss in the network core; all loss occurs within the receiver’s socket buffer. At rates

beyond 2000 Mbps, irqbalance spreads the interrupts to many CPUs and the loss de-

creases. (Of note, omitted for space constraints, irqbalance with 2 and 4MB buffers

result in zero loss for all tested data rates.)

46

 0

 5

 10

 15

 20

 25

 30

 35

 40

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

Pa
ck

et
 lo

ss
 [

%
]

sockbuf_loss
rx_ring_loss

network_loss

largemediumsmalltiny

0.00

0.01

0.02

0.03

0.04

0.05

Pa
ck

et
 lo

ss
 [

%
]

tiny small medium large

(a) 1MB buffers, balanced interrupts

 0

 5

 10

 15

 20

 25

 30

 35

 40

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

Pa
ck

et
 lo

ss
 [

%
]

sockbuf_loss
rx_ring_loss

network_loss

largemediumsmalltiny

0.00

0.01

0.02

0.03

0.04

0.05

Pa
ck

et
 lo

ss
 [

%
]

tiny small medium large

(b) 1MB buffers, bound interrupts

 0

 5

 10

 15

 20

 25

 30

 35

 40

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

400
800
1200
1600
2000
2400

Pa
ck

et
 lo

ss
 [

%
]

sockbuf_loss
rx_ring_loss

network_loss

largemediumsmalltiny

0.00

0.01

0.02

0.03

0.04

0.05

Pa
ck

et
 lo

ss
 [

%
]

tiny small medium large

(c) 4MB buffers, bound interrupts

Figure 3.5: UDP loss as a function of data rate across Cornell NLR Rings: sub-
figures show various socket buffer sizes and interrupt options for bal-
ancing across or binding to cores; insets rescale y-axis, with x-axis
unchanged, to emphasize fine features of loss.

47

Interrupts Bound to a Single CPU Figures 3.5(b) and 3.5(c) consider the scenario

when we assign all interrupts from the NIC to a single core, with 1 and 4MB socket

buffers, respectively. (The results for 2MB buffer, not shown, are identical to those of

4MB, but with ∼ 12% packet loss for a sender data rate of 2400Mbps.)

There are three key points of interest. First, at 2400Mbps there is an abrupt increase

in observed loss. Taking a closer look, we noticed that the receiver was experiencing

receive livelock [169]. The onset of receive-livelock occurs when packets arrive at a rate

that is larger than the interrupt processing rate. On a Linux 2.6 kernel, receive livelock

can easily be observed as the network bottom-half cannot finish in a timely manner, and

it is forced to start the the corresponding ksoftirqd/CPU# kernel thread. A typi-

cal interrupt service routine is split into a top and a bottom half: the top half cannot

be interrupted itself and hence needs to quickly service the interrupt request, and the

bottom half that performs the bulk of the operations in a deferred execution context and

can be interrupted. The ksoftirqd/CPU# thread runs exclusively on the same CPU,

and picks up the remaining work the bottom-half did not finish, acting as a rate lim-

iter. As a result, the receive livelock occurs given that all interrupts (rx, tx, rxnobuff,

etc.) were serviced by a single overwhelmed CPU—the same CPU that runs the cor-

responding ksoftirqd/CPU# and the user-mode Iperf task. The Iperf task is placed

on the same CPU since the scheduler’s default behavior is to minimize cache thrashing.

Consequently, there is not enough CPU time remaining to consume the packets pending

in the socket buffer in a timely fashion. Hence, the bigger the socket buffer, the more

significant the loss, precisely as Figures 3.5(b) and (c) show.

Second, end-host packet loss increases with sender data rate, as visible in the Figure

insets. Figure 3.5(b) corresponds to a relatively small buffer, 1MB, so the effect is clear.

Figure 3.5(c) corresponds to a larger buffer (4MB) for which, with the exception of data

48

rates of 2400Mbps, there is a single negligible packet loss event along the tiny path at

a data rate of 2000Mbps (almost unobservable on scale of Figure). Similarly, this trend

is evident in Figure 3.5(a) (irqbalance on); however, at higher data rates, irqbalance

spreads the interrupts to many different CPUs and the loss decreases.

Third, Figure 3.5(c) shows a particular event—the only loss in the core network we

experienced during the entire 48-hour period, occurring on the medium path (one way

latency is 68.9 ms) for a sender data rate of 400Mbps. During the course of the experi-

ments, this was a single outlier that occurred during a single 60-second run. We believe

it could have been caused by events such as NLR maintenance—we have experienced

path blackouts due to various path segments being serviced, replaced, or upgraded.

To summarize, the experiments show virtually no loss in the network core. Instead,

loss occurs at the end-hosts, notably at the receiver. End-host loss is typically the result

of a buffer over-run in the socket, backlog queue, or DMA ring. Unless the receiver

is overloaded, a sufficiently large socket buffer prevents loss. NIC interrupt affinity to

CPUs affects loss, and is pivotal in determining the end-host’s ability to handle load

graciously. Our experiments show that, at higher data rates, irqbalance works well (it

decreases loss), whereas, at lower data rates, binding NIC interrupts to the same CPU

reduces loss more than irqbalance. One benefit of binding all NIC interrupts to the same

CPU stems from the fact that the driver (code and data), the kernel network stack, and

the user-mode application incur less CPU cache pollution overhead.

3.2.3 Throughput

Although UDP is well suited for measuring packet loss rates and indicating where loss

occurs, TCP [138] is the de-facto reliable communication protocol; it is embedded in

49

 0

 1000

 2000

 3000

 4000

 5000

tiny small medium large

T
hr

ou
gh

pu
t [

M
bp

s]

Cornell NLR Ring (ascending path length from left to right)

reno
cubic

bic
vegas

htcp
hybla

illinois
scalable

westwood
yeah

(a) TCP throughput for single flow

 0

 1000

 2000

 3000

 4000

 5000

tiny small medium large

T
hr

ou
gh

pu
t [

M
bp

s]

Cornell NLR Ring (ascending path length from left to right)

reno
cubic

bic
vegas

htcp
hybla

illinois
scalable

westwood
yeah

(b) TCP throughput for four concurrent flows

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

reno
cubic
bic
vegas
htcp
hybla
illinois
scalable
w

estw
ood

yeah

reno
cubic
bic
vegas
htcp
hybla
illinois
scalable
w

estw
ood

yeah

reno
cubic
bic
vegas
htcp
hybla
illinois
scalable
w

estw
ood

yeah

reno
cubic
bic
vegas
htcp
hybla
illinois
scalable
w

estw
ood

yeah

Pa
ck

et
 lo

ss
 [

%
 o

f
by

te
s]

rcv_rxloss
rcv_txloss

rcv_tcploss
rcv_tcppruning

snd_rxloss
snd_txloss

snd_tcploss
snd_tcppruning

largemediumsmalltiny

(c) Loss associated with four concurrent flows

Figure 3.6: TCP throughput and loss across Cornell NLR Rings: (a) throughput
for single flow, (b) throughput for four concurrent flows, (c) loss as-
sociated with those four concurrent flows; TCP congestion control
windows configured for each path round-trip time to allow 1Gbps of
data rate per flow.

50

virtually every operating system’s network stack. Many TCP congestion control algo-

rithms have been proposed—Fast TCP [217], High Speed TCP [114], H-TCP [152],

BIC [226], CUBIC [128], Hybla [81], Vegas [75], TCP-Illinois [156], Westwood [83],

Compound TCP [202], Scalable TCP [143], YeAH-TCP [60]—and almost all have fea-

tures intended to improve performance over high-bandwidth, high-latency links. The

existence of so many variants indicate there is as yet no clearly superior algorithm.

To measure the achievable throughput, we used 120-second Iperf bursts to conduct

a set of 24-hour bulk TCP transfer tests over all the Cornell NLR Rings; we examined

all TCP variants available in the Linux kernel (except for TCP-LP, a low priority variant

designed to utilize only the excess network bandwidth, and for TCP Veno, a variant

designed specifically for wireless and cellular networks).

Figure 3.6(a) shows TCP throughput results for a single flow with window sizes

configured with respect to each path round-trip time (RTT) to allow for a 1Gbps data

rate. A higher window translates into larger amount of in-flight, not yet acknowledged

data, which is necessary but not sufficient to yield high throughput on such high-latency,

high-bandwidth links. In particular, a single TCP flow of 1Gbps requires a window of at

least 2MB on the tiny path, 9.4MB on the short, 17.3MB on the medium, and 24.4MB on

the large. Almost all TCP variants yield roughly the same throughput, with the exception

of TCP Vegas that underperforms. TCP Vegas uses packet delay, rather than packet loss,

as a signal for congestion and hence an indicator for the rate at which packets are sent.

Furthermore, the performance of TCP Vegas depends heavily on accurate calculations

of the round trip time value, which are perturbed by the packet batching techniques

(see Section 3.2.4). No packet loss occurs for any of the single-flow TCP variants, yet

throughput decreases for longer paths, even though the end-hosts have sufficiently large

windows.

51

Since TCP window size is a kernel configuration parameter that requires superuser

privileges for adjustment, typical user-mode applications like GridFTP [51] strive to

maximize throughput by issuing multiple TCP flows in parallel to fetch / send data. To

experiment with multiple flows, we issued four TCP Iperf flows in parallel in order to

saturate each end-host’s capacity and yield maximum throughput. Figure 3.6(b) depicts

the throughput results. Note that the maximum achievable aggregate data rate is 4Gbps

since each channel was configured with a window size corresponding to 1Gbps. Al-

though the window sizes should be sufficient, the overall throughput decreases as the

path length increases. Importantly, loss at the end-host does occur for multiple TCP

flows. Moreover, some TCP variants yield marginally better aggregate throughput when

competing with flows of the same type. The TCP throughput over the tiny path is iden-

tical to the maximum throughput achieved during control experiments (performed in

the loopback configuration by directly linking the commodity servers with an optical

patch cable), which means we reached the maximum performance for this particular

commodity server.

Even though TCP is a reliable transport protocol, packet loss, albeit at the end-

host, does affect performance [180]. TCP will resend any lost packets until the sender

successfully acknowledges they were received. Figure 3.6(c) shows the percentage of

packet loss corresponding to the TCP throughput in Figure 3.6(b). Unlike UDP loss,

any analysis of TCP loss must account for retransmissions, selective and cumulative ac-

knowledgments, different size of acknowledgments, and timeouts. Figure 3.6(c) shows

percentage of loss in bytes, unlike UDP, for which packet count suffices since all UDP

packets have identical size. Loss is reported both at the sender (denoted by snd) and

receiver (rcv), within the DMA rings (txloss and rxloss), inferred by TCP it-

self (with tcploss), and due to the inability of the user-mode process owning the

socket to read the data in a timely fashion (tcppruning).

52

Loss occurs solely in one of the following locations: the receiver’s receive

(rx) DMA ring (rcv rxloss), loss that is then largely inferred by the sender’s

TCP stack (snd tcploss), and finally, within the sender’s receive (rx) DMA ring

(snd rxloss). The sender sends MTU-size (1500-byte) TCP data packets and re-

ceives TCP empty (52-byte) payload acknowledgments (ACKs), as 20-byte IP header +

20-byte TCP header + 12-byte TCP options.

There are two key observations. First, loss occurs at the end-host in the rx DMA

rings—the receiver will drop inbound payload packets, while the sender will drop in-

bound ACK packets. Recall that the NIC is configured to a default value of 1024 slots

per DMA ring. The socket buffer is essentially the TCP window; hence, it is adjusted to a

large value in this experiment. Second, there are far more ACK packets (snd rxloss)

being lost than payload packets (rcv rxloss). However, since ACKs are cumulative,

TCP can afford to lose a significant portion of a window worth of ACKs on the rx DMA

ring, provided that a single ACK with an appropriate (subsequent) sequence number is

delivered to the TCP stack. Note that there is no loss observed by TCP Vegas since its

low throughput is insufficient to induce end-host loss, a scenario identical to the one

already described in Figure 3.6(a).

Our experiments show that as path length increases, more data and, importantly,

more ACKs are lost since the TCP windows are enlarged to match the bandwidth delay

product of the longer paths. This affects performance, and throughput decreases as the

path length increases.

53

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 50 100 150 200 250 300

Pa
ck

et
 I

nt
er

-A
rr

iv
al

 T
im

e
[µ

s]

Packet Number (Receiver Interrupt Throttling Off)

Measured at the receiver
Intended at the sender

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 50 100 150 200 250 300
Packet Number (Receiver Interrupt Throttling On)

Figure 3.7: Packet inter-arrival time as a function of packet number; NAPI dis-
abled.

3.2.4 Packet Batching

In this section, we look closely at the impact of packet batching techniques on the mea-

surements reported above.

A CPU is notified of the arrival and departure of packets at a NIC by interrupts. The

typical interrupt-driven commodity kernel, however, can find itself driven into a state in

which the CPU expends all available cycles processing interrupts, instead of consuming

received data. If the interrupt processing overhead is larger than the rate at which packets

arrive, receive livelock [169] will occur. The interrupt overhead consists of two context

switches plus executing the top half of the interrupt service routine. The typical solution

is to batch packets by parameterizing the NIC to generate a single interrupt for a group

of packets that arrive during some specified time interval. For example, Intel NICs

offer an Interrupt Throttling configuration parameter that limits the maximum number

of interrupts issued per second. If the device supports it, the kernel can take it one step

54

further by functioning in NAPI [25] mode. Instead of being exclusively interrupt-driven,

a NAPI kernel is interrupt-driven at low data rates, but switches to polling at high data

rates.

Packet batching techniques provide the benefit of an increase in maximum achiev-

able bandwidth for a particular commodity architecture. For example, with NAPI and

Interrupt Throttling disabled, the maximum achievable TCP throughput on our setup

is approximately 1.9Gbps, in control experiments on the loopback topology with the

end-host servers directly connected to each other. With NAPI enabled and Interrupt

Throttling set to default parameter values, we achieved around 3Gbps throughput, as

shown in Figure 3.6(b). By default, the NICs in our experiments implement Interrupt

Throttling by limiting interrupts to a rate of 8000 per second.

However, this does not mean that packet batching is ideal in all scenarios, even

though vanilla kernels and drivers enable batching by default. To illustrate this, consider

a standard metric provided by high-end Ethernet test products [22]—the packet inter-

arrival time, also known as packet dispersion. To perform this type of measurements,

we patched the Linux kernel to time-stamp every received packet as early as possible

(in the driver’s interrupt service routine) with the CPU time stamp counter (TSC) that

counts clock cycles instead of the monotonic wall-clock, thereby achieving cycle (i.e.

nanosecond) resolution. Our implementation overwrites the SO TIMESTAMPNS socket

option to return the 64-bit value of the TSC register. For the TSC time-stamp values

to be monotonic (a validity requirement), they must originate from the same CPU. This

means that all NIC interrupts notifying a packet arrival must be handled by the same

CPU, since received packets are time-stamped in the interrupt service routine.

Figure 3.7 shows the packet inter-arrival time for a UDP Iperf experiment consisting

of a sequence of 300 packets at a data rate of 100Mbps (about one packet every 120

55

µs) with and without Interrupt Throttling enabled and NAPI disabled. We see that the

interrupt batching superimposes an artificial structure on top of the inter-arrival times,

thereby yielding spurious measurement results. This phenomenon may have signifi-

cant consequences. For example, tools that rely on accurate packet inter-arrival mea-

surements to estimate capacity or available bandwidth yield meaningless results when

employed in conjunction with packet batching. The TCP Vegas variant also may be

affected, since it relies on accurate packet round trip time measurements.

Although it is beyond the scope of this thesis, we have already started to investigate

how to perform accurate timing measurements of packets without the interference from

commodity end-host hardware and software. The Software Defined Network Adapter

(SDNA) [115] is a device that transmits packets by modulating 1/10GbE software gen-

erated bitstreams onto optical fiber by means of a laser and a pulse pattern generator,

and receives packets by sampling the signal with an optical oscilloscope. By relying

on the precisely calibrated time-base of the optical instruments, SDNA achieves six or-

ders of magnitude improvement in packet timing precision over endpoint measurement

and three orders of magnitude relative to prior hardware-assisted solutions. Using the

SDNA, we showed that as it traverses an uncongested lambda network, an input flow

with packets homogeneously distributed in time becomes increasingly perturbed to such

an extent that, within a few hops, the egress flow has become a series of minimally-

spaced packet chains. Interestingly, this phenomenon occurs irrespective of the input

flow data rate, and may cause packet loss at the commodity end-host server.

56

3.2.5 Summary of Results

Our experiments answer two general questions with respect to uncongested lambda net-

work traffic. First, we show that loss occurs almost exclusively at the end-hosts as

opposed to within the network core, typically a result of the receiver being over-run.

Second, we show that measurements are extremely sensitive to the configuration of the

commodity end-hosts. In particular, we show that:

• UDP loss is dependent upon both the size of socket buffers and DMA rings as

well as the specifics of interrupt affinity in the end-host network adapters.

• TCP throughput decreases with an increase in packet (data and acknowledgment)

loss and an increase in path length. Packet loss also increases with an increase in

TCP window size. The congestion control algorithm is only marginally important

in determining the achievable throughput, as most TCP variants are similar.

• Built-in kernel NAPI and NIC Interrupt Throttling improve throughput, although

they are detrimental for latency sensitive measurements. This reinforces the con-

ventional wisdom that there is no “one-size-fits-all” set of parameters, and careful

parameter selection is necessary for the task at hand.

Although this chapter limits itself to measurement, we should note that this the-

sis proposes a practical way to overcome poor end-to-end performance. In particular,

we show that a packet processor perimeter middlebox (or a performance enhancement

proxy) can significantly improve end-to-end throughput in the face of packet loss. We

achieved this through a combination of Forward Error Correction (FEC) [63] at line

speed and TCP segment caching which transparently stores and re-transmits dropped

TCP segments without requiring a sender retransmission to travel across the entire net-

57

work to reach the destination [62]. Additionally, we greatly increased both the perfor-

mance and reliability of wide-area storage using such a technique [215].

3.3 Discussion and Implications

In this chapter, we used our Cornell National LambdaRail Ring testbed to methodically

probe the end-to-end behavior of 10GbE networks connected to commodity end-host

servers to send and receive traffic. Surprisingly, we observed significant penalties in

end-host performance and end-to-end dependability in this scenario, consistently mea-

suring packet loss at the receiving end-host even when traffic was sent at relatively low

data rates. Moreover, such effects were readily instigated by subtle (and often default)

configuration issues of these end-hosts—socket buffer size, TCP window size, NIC in-

terrupt affinity, and status of various packet batching techniques, with no single con-

figuration alleviating observed problems for all scenarios. Interestingly, there was no

difference between the congestion control variants employed.

As optical networking data rates continue to outpace clock speeds of commodity

servers, more end-to-end applications will invariably face similar issues. This empirical

study confronts the difficulty of reliably and consistently maximizing the performance of

such networks, which brings forth two consequences pertinent to this thesis. First, new

network protocols are required and are being constantly developed to overcome the per-

formance issues faced by commodity servers communicating over such high-bandwidth

networks. Therefore, support for building efficient packet processors is crucial to fully

utilize the networking substrate of modern datacenters. Second, the study reveals that

user-space applications, like the Iperf used in this study, built on top of conventional

operating system abstractions, like the socket, and running on commodity servers suffer

58

from significant performance penalties when communicating over a lambda network.

Conventional packet processing applications rely on the same operating systems ab-

stractions (namely, the socket—although packet processors use raw sockets instead of

endpoint ones), therefore new packet processing abstractions are required in order to

build high-performance packet processing applications that run on commodity servers.

This thesis continues by introducing new operating system abstractions that enable

developers to build high-speed packet processing network protocols that run in soft-

ware, in user-space, on commodity servers, and ultimately improve the performance of

datacenter communication.

59

CHAPTER 4

PACKET PROCESSING ABSTRACTIONS I: OVERCOMING OVERHEADS

WITH FEATHERWEIGHT PIPES

Enterprise networks of all kinds are increasingly dependent upon technologies that

enable real-time data processing at line rates, for tasks such as lawful intercept, targeted

advertisement, malware detection, copyright enforcement, and traffic shaping / analy-

sis [131, 57]. Examples include deep packet inspectors (DPI), wide-area performance

enhancement proxies (PEP) [72, 207], protocol accelerators, overlay routers, multime-

dia servers, security appliances, intrusion detection systems (IDS), and network moni-

tors, to name a few.

Today, such applications are expensive, and implemented as in-kernel software run-

ning over dedicated hardware. For example, commercially available PEP, DPI, and

WAN Optimization appliances [31, 36, 27, 12, 9, 32] typically cost tens to hundreds of

thousands of dollars and offer a rigid proprietary technology solution. As high-speed

networked applications become more pervasive, the ability to implement them inexpen-

sively with user-space software on commodity platforms becomes increasingly vital.

Writing and debugging such applications in user-space is simple and fast, and running

them on commodity machines can slash deployment and maintenance costs by an order

of magnitude. Unfortunately, such packet processing applications that run on modern

OSes and multi-core hardware are rarely able to saturate modern networks [168, 93].

The key barrier to running high-speed networked applications on commodity hard-

ware and OSes is the memory subsystem (i.e. the “memory wall”)—multi-core systems

create tremendous demand for memory bandwidth [194, 95, 132]. (For a detailed expo-

sition of the architecture of a modern commodity server refer to Appendix A.) In one

sense, this is an old problem; for example, the scientific computing community has ex-

60

tensively dealt with memory bandwidth issues, which led to the development of domain-

specific optimization schemes like ATLAS [219]. The advent of multi-core platforms

has ensured that the memory subsystem is a bottleneck for a wide range of applications

in general settings—including high-speed network-facing systems—for which existing

data partitioning techniques do not work well.

Further, modern commodity OSes exacerbate the effects of the memory barrier for

networked applications. Network packets follow a tortuous path from the device into

the memory of a user process. Packets are copied and placed on queues multiple times,

memory is allocated and paged in, locks are acquired, and processes are blocked and

awakened, incurring the cost of system calls and context switches. The critical path

of each packet has a dramatic effect upon processing throughput and latency, to the

point where it is nearly impossible to write user-space applications that perform non-

trivial per-packet processing and can saturate gigabit links. Worse, such processing may

be less effective on a multi-core machine than on a single processor due to excessive

contention. For example, it has been shown that commodity network stacks are slow

and bulky due to general contention for shared data structures in the kernel, and run

poorly on multi-core machines [194, 121, 74].

This chapter reports on the implementation of the featherweight pipes (fwP)—a fast,

streamlined communication channel between the kernel and user-space. The fwP is

custom designed to enable the execution of high-speed packet processing application in

user-space, while leveraging multi-core hardware. The fwP provides the convenience

of standard user-mode processes—safety, ease of development / debugging, and large

memory address spaces—while achieving levels of performance previously available

only with specialized, dedicated appliances.

Unlike previous high-performance networking approaches [182, 118, 56, 209, 208,

61

69, 106, 181], zero-copy is not the center-piece. Interestingly, current multi-core / SMP

systems have sufficient aggregate cycles to spare for copying data at least once more, es-

pecially if the data is resident in cache [95]. Instead, our work in this chapter focuses on

mitigating the memory pressure issued by multiple cores and DMA (Direct Memory Ac-

cess) devices. In particular, we focus on reducing memory bus traffic—cross-core cache

coherency messages and host main memory access. We borrow from early pioneer-

ing work concepts such as streamlined I/O data paths, short-circuiting the conventional

network stack, and shared circular buffers between the kernel and user-space.

Furthermore, we chose to target a very narrow class of network-centric applications,

namely packet processors. This enabled us to provide a limited, yet extremely fast multi-

core aware packet processing application programming interface (API). This new API

does not supersede nor replace the extant conventional socket API, instead it coexists

with it. Moreover, fwP is relatively easy to deploy and use on commodity systems—

unlike U-Net [208] and its variants, fwP does not require specialized hardware and can

be installed via a simple modular addition and a kernel patch (fwP also requires a kernel

compilation) to commodity Linux, and runs over ubiquitous Ethernet interconnects.

The contributions of this chapter are as follows:

• We show that memory pressure, and in general the memory subsystem, is the

fundamental bottleneck a shared-bus multi-core machine faces when performing

per-packet processing at line speed.

• We present a novel kernel to user-space communication channel, enabling packet

exchange with minimal kernel involvement and overhead. The featherweight

pipes channel is aggressively designed to mitigate memory pressure and con-

tention costs, while leveraging the power of multi-core processors.

• We implement and evaluate a security appliance, a protocol accelerator, an IPsec

62

gateway and an overlay router with fwP. Each has comparable performance to in-

kernel implementations and significantly greater performance than applications

developed with user-space libraries such as libpcap [38, 221] that rely on conven-

tional operating abstractions like the raw socket.

4.1 Challenges

Developing high-performance networked applications in user-space on a commodity

OS is a difficult and challenging task. The key problem in modern multi-core machines

stems from the fact that the memory subsystem is slower than the processors (refer to

the von Neumann bottleneck in Appendix A) and cannot cope with the demands of mul-

tiple cores and DMA devices. The pressure on the memory subsystem results primarily

from three sources: the “memory wall,” data contention, and raw bus contention. The

memory wall describes the current integrated circuit status quo in which the data trans-

fer rate between memory and CPUs is significantly smaller than the rate at which a CPU

operates, data contention is when multiple cores introduce sharing overheads by access-

ing data concurrently, while raw bus contention is when many devices issue requests to

the memory controller(s). All are exacerbated by inefficient OS design yielding exces-

sive memory accesses at inopportune times. Moreover, network stacks are subject to

other sources of overhead that impact packet processing latency and indirectly stress the

memory subsystem even further—namely, blocking, system calls, and context switches.

In this section we examine these overheads and define a road-map to mitigating them.

63

4.1.1 Overheads

Memory Wall and Data Contention

Although recent emphasis has shifted away from CPU clock speed [201], there remains

a serious mismatch between processor clock rates and memory latencies. This disparity

has forced chip architects to explore a number of performance-enhancing optimizations.

However, none of them eliminate the underlying problem.

The first optimization has been to aggressively increase cache sizes across all levels.

This technique continues to be used to date, and has been used since the early CPU

designs. Unfortunately, large caches are useless in the face of data contention. For ex-

ample, thread-safe symmetric multiprocessing (SMP) code acquiring locks will bounce

the lock variable itself between CPUs.

Another notable change was to limit complexity, unless it results in a significant in-

crease in SMP performance. For example, deep pipeline (20+ stage) CPUs, like the In-

tel Pentium 4, were replaced in subsequent processor generations by more “reasonable”

(14 stage) designs since pipeline flushes and stalls caused by branch mispredictions and

atomic instructions became prohibitively expensive. An example of atomic instructions

are atomic memory updates (e.g., instructions that store into a memory location and

are prefixed by the lock assertion on Intel x86 architectures). Such atomic instruction

support is typically implemented by expensive locking of the memory bus or freezing

the cache—should the memory being accessed be resident in the cache. Importantly,

SMP code makes extensive use of atomic instructions to implement synchronization

primitives that are necessary for ensuring the correctness of concurrent executions.

The most noteworthy advancement in recent years has been placing multiple cores

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 15 20 25 30

lo
ad

s
/ s

to
re

s
pe

r
cy

cl
es

 (
1

=
 m

ax
)

Memory block size (log2)

L2 cache main memory

read, 1 core
read, 2 cores (shared L2 cache)

read, 2 cores (different L2 cache)
write, 1 core

write, 2 cores (shared L2 cache)
write, 2 cores (different L2 cache)

(a) Raw cache performance

L2L2 L2L2

L2L2 L2L2

Northbridge

(Memory Controller Hub)
PCIe Mem Bus

CPU

0

CPU

8
CPU

4

CPU

12

CPU

1

CPU

9

CPU

5

CPU

13

CPU

2

CPU

10
CPU

6

CPU

14

CPU

3

CPU

11
CPU

7

CPU

15

NICs Memory

(b) Four socket quad core (Xeon) machine

Figure 4.1: Four socket quad core (Xeon) cache performance and architecture.

on the same silicon die, and was motivated by several factors [178]: energy and cool-

ing constraints of current semiconductor technology have limited the frequency scaling

of single processors, instruction level parallelism (ILP) cannot be easily extracted any

longer from programs, and the complexity required to implement ILP on the chip yields

diminishing returns and fundamentally caps the performance of CPUs. Placing many

simple cores on the same die instead means that each core can scale well since the phys-

ical constraints such as silicon real-estate and frequency caps due to wiring are loosened.

Likewise, multi-core chips potentially simplify and reduce the costs of the MESI (Mod-

ified, Exclusive, Shared, Invalid) cache coherency protocol, and in particular, expensive

read for ownership (RFO) inter-processor bus messages.

However, none of these techniques eliminate the underlying problem. Today, vir-

tually any commodity machine is a real SMP system, and hence kernel code, and in

particular the network stack, runs simultaneously on multiple cores. Conventional wis-

dom, and Amdahl’s law, states that when adding processors to a system, the benefit

grows at most linearly, while the cost (memory / bus contention, cache coherency, seri-

alization, etc.) grows quadratically. To make matters worse, the network stack is littered

with shared data, locks, memory barriers and queues that are usually implemented as

65

linked lists—a data structure notorious for cache thrashing.

To harness the power of multi-core processors, it is vital to reduce the load on the

memory subsystem. In particular, solutions must keep cores busy for relatively long

periods of time working on independent tasks that touch little or no shared data. Ideally,

solutions would have one writer per cache line and use as few locks as possible.

To get a rough idea of the costs of cache contention, we ran a simple experiment,

in which a block of data is concurrently read or written by threads pinned to distinct

cores. Figure 4.1 (a) shows the results for the quad core Intel Xeon X5355 (Core)

system presented in Section 2.2. The system has 8MB of L2 cache, but since the X5355

bundles a pair of two dual core CPUs on the same chip as depicted in Figure 4.1 (b),

the effective size of the L2 cache for any one core is 4MB. We measured the number of

load / store operations per cycle for all power of two block sizes ranging from 512 bytes

to 512MB. This particular CPU can service a single load operation per cycle, hence a

ratio of one is ideal for a memory-bound workload. There are no spinlocks or memory

barriers (e.g. bus lock prefix), hence the system achieves the upper bound.

Note that read performance does not degrade, even when the data no longer fits in

the L2 cache. The lack of performance degradation is due to the prefetching mechanism

of the Xeon CPU (since data is traversed in ascending memory address order).1 There is

a small degradation in read performance when the cores do not share the caches, since

the MESI protocol has to bounce the cache lines between the cores.

In contrast, write performance is significantly worse. Moreover, for cores that do

not share the L2 cache, the performance is in fact worse when touching data in the L2

cache than when going directly to main memory (the L2 cache size is 4MB = 222 on the

1Intel Xeon processors are sold to the higher-end server market—by contrast, for the lower end Intel
Core 2 processor, the read performance plummets as soon as the data block is larger than the L2 cache.

66

x-axis). Cores that share the L2 cache exhibit (slightly) better performance.

Given this analysis, consider one of the most basic locking primitives of a SMP

kernel—the spinlock. Although an indispensable interlocking building block of all mod-

ern operating system kernels, when contended for, spinlocks are detrimental for perfor-

mance since the lock intrinsically has multiple writers, which means the writer cores

enter expensive RFO cache coherency cycles. Moreover, a spinlock spends most of

the time performing costly atomic updates (e.g. the spinlock built for the Linux kernel

version 2.6.28 performs lock; decb instructions).

Raw Bus Contention

Consider the path of a typical packet entering a modern commodity operating system.

The packet is first copied from the wire / NIC FIFO buffer into the kernel host memory—

this happens by means of a DMA transfer, and memory pressure, e.g., memory bus

contention (Figure 4.1 (b)), is still exerted even if the main CPU(s) is not utilized. The

packet is then copied from the kernel buffer into a user-space buffer—this operation may

block if a page fault is taken while copying. If conventional packet-capture and packet

redirection mechanisms are used, like libpcap [38, 221] or libipq [24], the kernel buffer

is duplicated before being forwarded or delivered to the appropriate socket; this (third)

copy is enqueued for independent delivery into user-space. A packet follows the same

sequence in reverse when the application sends data on the wire.

System Calls and Blocking

System calls have been a major source of overhead for high-performance applications

running within user-space. Practically all conventional existing approaches to moving

67

data between kernel and user-space involve one or more system calls. The recently-

introduced fast system call hardware instructions (SYSCALL/SYSENTER and SYS-

RET/SYSEXIT) reduce this cost, provided that all parties support them (CPU, OS, and

library). For example, on a Pentium 4, the SYSENTER getpid system call is three

times faster than the traditional variant based on a trap (or a synchronous exception).

However, issuing one system call per packet remains rather expensive, especially when

dealing with massive amounts of data available in short time frames. This is exacer-

bated by the blocking nature of the standard application programming interfaces (APIs)

for packet send / receive (e.g. the socket API), which means that the kernel typically

performs potentially expensive task wake-up / resume operations for every system call.

Scheduling / Context Switches

Boundary crossings and in particular context switches are also expensive operations—

consider for example the boundary crossings involving the receipt of a network frame:

hardware interrupt handler to softirq to context switch to return from system call. When

processes block for resources (e.g., to time-share a CPU), they are context-switched

out, when the resources become available, they are switched back in. In addition, the

process incurs scheduling delays that depend on the scheduling policy used. Moreover,

context switching often performs an expensive translation lookaside buffer (TLB) flush,

and further has a latent cost in terms of cache-pollution.

4.1.2 Design Goals

Consequently, we designed an abstraction (the fwP) with the following objectives:

68

• Minimize data and raw bus contention across multiple cores with a three pronged

approach: using cache friendly data structures, sharing L2 caches between pro-

ducer and consumers, and streamlining the communication path and bypassing

the conventional network stack.

• Attain near linear speedup for network processing applications in multi-core en-

vironments.

• Employ traditional overhead reduction techniques:

– Block the user-space process only if there are no new packets to be pro-

cessed.

– Not use system calls for sending and receiving packets unless blocking /

signaling is required.

– Minimize context switches and rescheduling when receiving and sending

packets.

More precisely, fwP tackles the overheads in the following fashion:

• The fwP design bypasses the conventional network path, uses cache-friendly data

structures, and has a single spinlock per communication channel, used both in

kernel and user-mode. By contrast, while processing a packet, the conventional

network stack acquires multiple spinlocks.

• fwP reduces packet copies, although it is not a zero-copy but a 1-copy system—

arguably more efficient for commodity OSes with protection domains [94, 96]

running over Ethernet NICs [73]. To reduce raw bus contention, we perform only

the necessary minimum amount of work in the kernel network stack—a shared

global resource and potential hot spot—thereby conserving the memory band-

width resources for the user-space application [192].

69

• fwP is designed to exchange data without issuing any system calls, while blocking

occurs solely if there are no pending packets.

• fwP uses thread core-placement that minimizes context switches and rescheduling

when exchanging packets, while at the same time reducing the impact of the cache

coherency cross-talk.

4.2 Multi-Core and the fwP Design

Ahmdal’s Law is more relevant than ever in a multi-core environment—in order to gain

near linear benefits / speedup with the number of cores, we must reduce the overheads

due to the data / bus contention. The featherweight pipes design takes advantage of

multi-core CPUs while reducing memory pressure / contention. We bypass the con-

ventional network stack, and provide a fast streamlined shared memory communica-

tion channel between the kernel and user-space. We reduce context switches signif-

icantly, and perform cache-aware placement of tasks on cores, thereby reducing the

cache-coherency and memory contention penalties.

In this section we start by describing the mechanisms that comprise fwP, discuss

some optimizations, and show an example of a security appliance developed using the

fwP API. Next, we delve into technical details pertaining to the fwP internals and discuss

some of the limitations. Finally, we summarize how fwP takes advantage of multi-core

CPUs in order to maximize performance.

70

Backlog Queue

rx

ring
tx

ring

NAPI

IP Layer
rx tx

Socket Layer

fwP

buffers

circular Userspace Application

Kernel

Top Half

Bottom Half

(softirq)

Figure 4.2: Linux network stack path of a packet forwarded between interfaces.

ReadWrite

Read

Write
0

18

19

10

4
5

6

7

8

9
3

2

1

17

16
15

14

13

12

11

(a) “inbound and outbound” chan-
nels

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

(b) memory layout

Figure 4.3: fwP buffers and shared memory layout.

4.2.1 fwP

The Conventional Path of a Packet

Figure 4.2 depicts the journey of a network packet through the Linux kernel network

stack. Upon receipt of an Ethernet frame, the network interface card (NIC) performs a

DMA cycle to place the frame directly in host kernel memory (rx ring in Figure 4.2),

before issuing an interrupt. Alternatively, a single interrupt is issued to signal the ar-

rival of several packets in a row if the NIC and/or the kernel performs batching (e.g.

NAPI [169]). The network driver acknowledges the interrupt, enqueues the received

71

frame on a backlog queue, and enables a deferred execution context, or a bottom half,

that will process the frame at a later time. (If NAPI mode is enabled, the backlog queue

is bypassed, and frames are accumulated directly on the DMA rx ring.) In Linux termi-

nology, the top half of a driver is the code that executes in the interrupt handler, while

the bottom half runs outside it. To maximize IO performance, it is important that the top

half execute as quickly as possible, deferring work for later completion by the bottom

half, since the bottom half runs with all interrupts enabled to allow other interrupts to be

serviced in a timely fashion.

In most cases, as with the networking stack, the bulk of the work is done in the

bottom half. The Linux kernel implements the entire network stack using softirq bottom-

halves, which are non-reentrant, interruptible contexts of higher priority than tasks, with

no backing process control block. (A softirq is thus considered to be an interruptible

interrupt context.) The softirq picks up every packet and pushes them along a battery

of layers (e.g. IP and socket layers) before copying them into buffers provided by the

user-space application and waking up the user-space task if necessary.

Instead of using the traditional network software stack, we designed a more direct,

streamlined path for the packets, bypassing the conventional, bulky network stack and

placing the frames on a fwP channel, as shown on the left-hand side of Figure 4.2.

The packets are demultiplexed at an early point to avoid synchronization hot spots, and

relieve memory pressure in general.

fwP channel and API

The fwP channels are a fast, streamlined communication channels between the kernel

and the user-space. A fwP channel is a pair of unidirectional circular buffers residing on

72

Table 4.1: fwP API. All functions take a parameter indicating the direction of the
buffer (in / out) and like traditional IPC, the IPC NOWAIT flag indi-
cating if the task should block or not while issuing the operation.

fwP channel interface:

fw crte Create a fwP channel by applying
a template over the shared buffer.

fw rcv Copy data from next channel read slot onto
a buffer. Similar to the POSIX msgrcv.
It advances the read index.
Equivalent to fw get r + fw put r.

fw snd Copy data from a buffer onto next channel
write slot. Similar to the POSIX msgsnd.
It advances the write index.
Equivalent to fw get w + fw put w.

fw flip Atomically swap a non-empty read slot from
one direction with an empty write slot in the
other direction.
Typically used for user-space in-place
buffer modification and return into the kernel.

zero-copy fwP channel interface:

fw get r Get index of the next channel read slot.
Slot can be manipulated in place.
Used in conjunction with fw put r.
Read index is not advanced.

fw put r Release the next channel read slot.
Used in conjunction with fw get r.
Read index is advanced.

fw get w Get index of the next channel write slot.
Slot can be manipulated in place.
Used in conjunction with fw put w.
Write index is not advanced.

fw put w Release the next channel write slot.
Used in conjunction with fw get w.
Write index is advanced.

fw buf Compute buffer pointer based on index.

a shared memory region, one channel for data going from the kernel to the user-mode

task and the other channel for data going in the opposite direction. Figure 4.3 shows

the data structure template over the shared memory region, while Figure 4.4 depicts the

memory layout of a task. The kernel places data on the “inbound” slot and fetches data

from the “outbound” slot, advancing the appropriate read and write pointers. In turn,

the user-mode task performs the dual operations—fetching data from the “inbound” slot

and placing data on the “outbound” slot.

In contrast to conventional circular buffers [222, 99, 100, 94, 213], fwP channels are

different in that they consist of a tandem of tightly coupled circular buffers holding posi-

tion independent pointers to frame buffers, all of which are placed on a shared memory

region. This allows operations like atomic pointer swapping between the rings, therefore

enabling zero-copy receive, in-place processing, and forwarding of packets. Moreover,

by using fixed size channel buffers we avoid chains of linked-list queues which would

degrade cache performance.

73

The fwP channel has the same memory pages mapped by both the kernel and the

user-space task, in a fashion somewhat similar to the System V IPC (Inter Process Com-

munication) shared memory mechanism. However, the pages are proactively faulted and

pinned into physical memory, and are charged to the user-space task’s address space—

hence the channel resources are automatically reclaimed at process exit.

We overload the shmget, shmat and shmdt system calls to create, attach, and

release the channel shared memory region, and we altered the process control block to

maintain a list of fwP channels.

The fwP API described in Table 4.1 was designed to allow data exchange without

issuing system calls—every function has a fast path on which no system calls are per-

formed. The slow path of the API functions may need to block the current task, e.g.

if a channel is empty, or conversely may need to wake up tasks that have been waiting

for events. We implemented two system calls, fw wakeup and fw sleep, to perform

this functionality. Each direction of the channel is protected against concurrent accesses

by a per-channel spinlock embedded within the fwP channel data structure. In particu-

lar, fw wakeup and fw sleep are called holding the appropriate spinlock—the only

synchronization point on the path between the fwP bottom half and user-space. (The

current API fast path & spinlock design requires that the Linux kernel be preemptive,

i.e. compiled with CONFIG PREEMPT support.)

Optimizations

While blocked, a process does not get work done. Moreover, a process blocking while

taking page faults can have disastrous performance, especially if it needs to process

large volumes of network traffic in a timely fashion. Ideally, a task would only block

74

Physical

Address Space

Stackstack_limit

fwP channel

Virtual

Address

 Space

Kernel

0xC0000000

0xFFFFFFFF

brk_limit

Heap

text, data, bss

0x00010000

0x00000000

fwP channel

Figure 4.4: Memory layout of a (32bit) process / task.

when performing initializations (e.g. calling shmget, shmat), or in situations where

the system has no more incoming data, or no room to store outgoing packets.

Consequently, we provide an optional system call, ffork, that allows a task to

proactively request and commit needed memory resources up front, trading higher start-

up costs for low and predictable runtime latencies. Note that if start-up and warm-up

performance is not an issue, ffork need not be used. To enable this behavior without

breaking the malloc and sister functions, we modified the brk and mmap system calls.

Unlike the conventional fork, ffork takes in two parameters—the sizes of the

heap and the stack. These values are enforced as limits for the address space of the

newly forked task. (Memory resources are bounded and typically known in advance for

applications that process a continuous transient stream of data.) The task’s break value

is first copied into a shadow break point (held into the process control block) and then

set to the limit. ffork then proceeds to walk the entire address space, including the

text, data, heap and stack and pin it into memory, shown in Figure 4.4.

A process may use any of mmap and brk to solicit an address space increase. While

75

brk increases the heap in a contiguous manner, mmap can return a memory region

mapped anywhere in the virtual address space. To simplify memory region accounting

and eliminate a kernel synchronization point, we modified the mmap system call to

prevent a ffork’ed task from increasing its address space. Library allocators work

by using a combination of brk and mmap system calls to request for address space

increase; if one method fails they default to the other. The library allocator is thus

forced to use the brk system call exclusively. When this happens, the brk system call

uses the shadow break value to satisfy requests without blocking, returning a region of

memory that is already resident.

There is a subtle difference between our approach and the mlock/mlockall sys-

tem calls that lock current and future pages of a process in resident memory. After a

mlock/mlockall is issued, subsequent malloc requests may still block, and the

caller process may also take expensive page faults in the future—not to mention the fact

that page faults continue to be taken automatically whenever the stack grows.

Application Example

Figure 4.5 shows pseudo code for a security application developed using fwP. The fig-

ure illustrates a number of key characteristics. First, the program is written in C, in a

conventional fashion. Second, a relatively small amount of familiar setup code is re-

quired to create an application: the pseudo code in the figure serves as a template for

creating real packet-processing applications. Third, standard compilers and debuggers

can be used to build and test this code.

76

1: #include "fwp.h"

2:

3: int main(void) {

4: int heap_sz = 64*ONE_MEG;

5: int stack_sz = 8*ONE_MEG;

6:

7: // Fork process and pin in memory

8: child_pid = ffork(heap_sz, stack_sz);

9: if(child_pid == 0) {

10:

11: // shared memory region with kernel

12: id = shmget(IPC_PRIVATE, map_len,

13: (SHM_FWIPC | IPC_CREAT));

14: map = shmat(id, 0, SHM_FWIPC);

15:

16: // apply buffer template

17: chan = fw_crte(map);

18:

19: // register filter w/ kernel module

20: filter.proto = IPPROTO_TCP;

21: filter.dst_port = htons(80);

22: fw_register(id, chan, &filter);

23:

24: for(ever) {

25: // Manipulate buffer in place

26: peek_idx = fw_get_r(chan, IN, 0);

27: buf = fw_buf(chan, peek_idx);

28:

29: if(cmpsig(buf, signature)!=NULL){

30: // cmpsig can be memmem

31: alert_msg = get_alert_msg(buf);

32:

33: // Release slot, do NOT forward

34: fw_put_r(chan, IN);

35:

36: fw_snd(chan, OUT, alert,

37: len(alert), flags);

38: syslog(LOG_INFO, "%s", alert);

39:

40: }else {

41: // Forward packet by moving

42: // it from IN to OUT channel

43: fw_flip(chan, IN);

44: }}}

45: exit(0);

46:}

Figure 4.5: Pseudo code for a security fwP application.

4.2.2 fwP Under the Hood

Packet Demultiplexing

Up to now, we have described the system as if only one task were running. However,

to use many cores, a system will have many potentially multi-threaded tasks running in

parallel, each using one or more fwP channels. (We modified the clone system call

such that threads share the fwP channel descriptors.) Accordingly, the fwP bottom half

(left side of Figure 4.2) demultiplexes received IP datagrams before placing them on

appropriate channels.

The fwP bottom half listens for registration requests from fwP user-mode tasks. A

registration request consists of a fwP channel identifier, as returned by the shmget

77

syscall, and a rudimentary packet filter / classifier rule—for example in Figure 4.5 lines

20 and 21 indicate that the protocol is TCP, and destination port is 80.

For each received IP packet, fwP seeks a match with a filter in the order in which

filters were registered, and upon success places the packet on the corresponding channel.

The fwP bottom half creates one kernel thread per fwP channel used to receive packets

from user-space, route and enqueue them for transmission.

Core Affinity

The fwP bottom half creates one kernel thread per fwP channel so as to perform thread

binding per core in a flexible, memory, cache-aware, and dynamic fashion. In particular,

the kernel and user-mode threads touching data on the same fwP channels are placed

on cores that share the L2 caches to reduce the cache coherency penalties. Moreover,

the threads are exclusively assigned to cores, thereby preventing tasks from being re-

scheduled on different CPUs—this reduces scheduling overheads since producer and

consumer tasks work in parallel on different cores.

Limitations

In our current system, multiple threads cannot use the zero-copy API (Table 4.1) con-

currently, since they could alter the circular buffer indices in an inconsistent fashion. If

multiple threads are to be used, there are generally two options: each thread registers

their private fwP channel with the same filter, in which case the kernel module will per-

form a round robin load balancing over the channels interested in packets of the same

type, or data can be copied from the shared fwP channel onto user-space buffers using

fw rcv.

78

The fwP API was specialized for a narrow breed of applications and may not fit all

packet processing types. For example, while developing TCP and UDP stacks on top

of the fwP API we found that using the zero-copy functions was almost impossible for

tasks like TCP and IP reassembly—we let the kernel stack perform the latter before

placing the datagrams on channel buffers.

4.2.3 Taking Advantage of Multi-Core CPUs

The overall goal of our system is maximize throughput by having multiple cores run

concurrently, while at the same time minimize the pressure exerted over the memory

subsystem. The fwP achieves this by:

• Providing a streamlined path for packets by sidestepping the conventional IP net-

work stack. Packets are demultiplexed at an early point, bypassing the default,

bulky in-kernel network stack, and hence we avoid synchronization hot spots, and

relieve memory pressure in general.

• Using shared fixed size fwP channel buffers. We avoid cache-degrading chains

of linked-list queues and reduce system call overheads. This essentially allows

the application to exchange data with the kernel without issuing system calls.

Moreover, our narrow interface minimizes blocking overheads.

• Using page flipping between unidirectional circular buffers to reduce additional

copies.

• Placing threads that touch data on the fwP channels on cores that share the L2

cache, to reduce the cache coherency penalties. Moreover, this technique signif-

icantly reduces the scheduling overheads, since producers and consumers work

simultaneously in parallel on different cores.

79

node10

node1 node2

node20
node21

node22

node23

node24node25

Figure 4.6: The Emulab (DETER) experimental topology.

4.3 Experimental Evaluation

We evaluated our system on the DETER Emulab [220] testbed using the topology de-

picted in Figure 4.6. Each machine is a Dell PowerEdge 2850 with single 3.0GHz Pen-

tium 4 Xeon processors (with Hyperthreading enabled), 2 GB of memory and 5 Intel

PRO/1000 MT adapters, running the 2.6.20-16 Linux kernel patched with fwP support.

We emulate inter-node link latencies between nodes 1 and 2, if any, using Emulab’s traf-

fic shaping mechanisms. Throughout this section we shall refer to nodes in the topology

by name, as shown in Figure 4.6.

All links have a capacity of 1Gbps. This topology is intended to represent two in-

teracting datacenters—node1 and node2 at the perimeter of their respective datacenters

would typically be running packet processor applications like protocol accelerators and

security appliances.

Unless mentioned otherwise, we ran 120 second end-to-end Iperf [204] TCP

flows (with the Reno congestion control variant) with traffic flowing through nodes

1 and 2. Whenever possible, we compare fwP with in-kernel and user-space, po-

tentially multi-threaded, implementations of the same functionality. Out of the con-

ventional user-space alternatives, the pcap [38, 221] (Packet CAPture) mechanism

80

has been the only viable out-of-the-box user-space option since at high data rates,

libipq/libnetfilter queue [24] consistently crashed with a “Failed to receive

netlink message” fault. Note that Click-userspace [147] is built atop pcap.

The fwP consists of 1897 lines of kernel patch code, 1508 lines of kernel module

code and some 4488 lines of library code, of which 832 are AES / IPSec ports.

We begin the evaluation by showing that real world applications, like a deep packet

inspection security tool, an overlay router, a protocol accelerator, and an IPsec gate-

way can be implemented in user-space with fwP and vastly outperform conventionally-

built (i.e., pcap based) user-space counterparts. We then report the results of several

micro-benchmarks that reveal the overheads of modern commodity operating systems

and libraries. We show the extent to which the featherweight pipes mechanism mitigate

memory pressure. Most importantly, our experiments show that we can take advantage

of emerging multi-core architectures.

4.3.1 Real World Applications

We show four examples that demonstrate how developers can write user-space applica-

tions while at the same time reducing memory pressure and overheads, thus allowing

the applications to take advantage of multi-core chips. In particular, we show that:

• A deep packet inspection security appliance built with fwP and using a single core

reduces conventional overheads significantly.

• The fwP interface is flexible and can be extended to provide a highly efficient

multi-send operation, enabling a user-space gigabit overlay router.

81

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t (

M
bp

s)

Number of passes

Snort (in-kernel)
Snort (fwP)

Snort (pcap)

Figure 4.7: Snort deep packet inspection throughput.

• An IPsec gateway may use independent tasks to take advantage of multiple cores,

reducing memory contention and achieving near linear scalability.

• Finally, putting it all together, we show that a complex, multi-threaded cooperative

protocol accelerator achieves the same performance as the equivalent hand-tuned,

optimized, in-kernel counterpart.

Deep Packet Inspection

Deep Packet Inspection technologies enable network operators to throttle, inspect and

shape protocol data in real time on potentially high-volume backbone networks. Net-

work operators would benefit from the ability to deploy such technology over cost-

effective commodity machines. Instead, they purchase expensive hardware appliances

able to perform various degrees of traffic inspection and modulation. For example, the

$800,000 PacketLogic PL10000 can operate full-duplex at 40Gbps.

We have built a simple DPI over the skeleton from Figure 4.5 that sifts through all

82

IP traffic and checks for a set of signatures (e.g., malware signatures). Our implemen-

tation is fairly straightforward, in that each packet received is matched against a set of

signatures, one signature at a time; there is a single thread of control. For all practi-

cal purposes, it is precisely the byte test functionality of the Snort [198] intrusion

prevention and detection system.

Figure 4.7 shows the throughput plotted against the number of signatures, i.e. the

number of memory-passes per packet. Zero passes means that packets are simply for-

warded through. To memory-stress all variants, we do not compile and collapse all the

signatures into one big non-deterministic finite automata (NFA) that accepts when any

of the signatures is matched. The fwP implementation vastly outperforms the pcap im-

plementation. The in-kernel implementation performs slightly better than the fwP since

the signature matching is done early in softirq context.

Interestingly, the fwP version slightly outperforms the in-kernel implementation for

seven passes. This is due to the fact that the softirq implementation spends too much

time processing each packet and does not clean up fast enough the DMA rx ring (NAPI,

Figure 4.2). As a result, packets are dropped, and the low priority ksoftirqd kernel

thread picks up the remaining bottom half processing. By contrast, the fwP implemen-

tation has a producer (the fwP bottom-half) that cleans up the rx ring, and a consumer

(the user-space application) that performs the matching, each running on distinct cores

simultaneously.

Gigabit Overlay Multicast Router

Overlay networks have been employed as an effective alternative to IP multicast for

efficient point to multipoint data dissemination across the entire Internet [148]. To prove

83

the versatility of fwP, we built a high performance multicast router that can operate at

gigabit speeds from user-space. The key functionality within such a device is the ability

to forward an incoming packet to multiple destinations rapidly and efficiently.

While the fwP API is designed for forwarding packets efficiently, it does not in-

trinsically support multi-destination sends; however, its simple design allows extended

functionality of this nature to be easily layered above the basic interface. To support

multi-destination sends, we implement a new operation called a splace over the fwP

API. The user-mode task places the original packet and a set of destination addresses on

the fwP buffer. The kernel helper module then iteratively grafts each destination address

on the original packet, recomputes the checksums and enqueues the packet for transmis-

sion. As a result, the addition of the splace layer above the basic fwP API allows a task

to batch multiple sends of a packet in a single non-blocking operation.

We implemented a simple IP and UDP multicast relay and we deployed it on the

topology in Figure 4.6 such that node2 will multicast all IP inbound traffic to nodes

20, 21, 22, 23, 24, and 25. Node1 produces a steady stream of UDP data at 150Mbps.

For this experiment we built our own version of “Iperf” in python so as to report the

bandwidth at every node of the multicast stream.

Table 4.2 contains the experimental results, with the first column indicating the num-

ber of forwarding destinations, and the last column indicating the average throughput per

receiver node. Ints/sec and cs/sec represent interrupts and context switches per second.

The CPU utilization is split between the time spent by the in-kernel producer context

(marked ⇑), the fwP user-mode context and the in-kernel consumer context respectively

(marked ⇓). Note that the fwP task spends less CPU cycles as the number of forwarding

destinations increases then the kernel thread which performs the the multi-send.

84

Table 4.2: Gigabit IP multisend metrics per stream.

Receivers cpu(%) ints/sec cs/sec Mb/s
⇑ fwP ⇓

1 9 7 8 20318 65331 175.4
3 9 11 16 27629 73727 175.1
5 9 11 16 32801 75910 167.3
6 11 12 38 34703 79575 155.4

IPSec

Next we built a multi-threaded version of IPsec using both fwP and libpcap. Our so-

lution implements AES encryption in Cipher-block Chaining (CBC) [45] mode of op-

eration (128 bit key). Our experiments focused on steady-state performance, the key-

establishment protocol is not included as it runs outside our framework.

The experiments ran on the Cornell NLR Rings topology in loopback mode (see

Section 2.1.1) identical to the one presented in Figure 4.6. The fwP packet processing

elements were deployed on the four-way 2.4 GHz Xeon E7330 quad-core Dell Pow-

erEdge R900 servers with 32GB RAM. Since each R900 server was equipped with only

two NetXtreme II BCM5708 Gigabit Ethernet cards, the maximum forwarding data rate

achievable is 1Gbps. We did not introduce any link delay—the one way latency be-

tween any two adjacent nodes is roughly 40µs. Figure 4.8 reports the throughput in

Mbps against the number of threads performing the CBC AES encryption; as usual,

error bars denote standard error.

The three lines correspond to the fwP implementation, and two pcap implementa-

tions, one in which the pcap (main) producer loop places all packets on a shared queue

for several consumer threads to process, and a second one in which the producer places

packets on a private queue for each consumer thread. The pcap implementations use

standard pthreads, semaphores and futexes (fast mutexes) to implement queues. We

85

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

M
bp

s)

Number of worker threads

pcap per-thread-dispatch-queue
pcap shared-dispatch-queue

fwP

Figure 4.8: IPsec throughput vs. worker threads.

also experimented with spinlocks instead of futexes to accelerate the pcap implementa-

tion, however the performance was marginally worse, hence we report the best results

we were able to achieve. The fwP implementation forks a process, that in turn clones a

set of worker threads via the clone system call. Each worker thread maps a fwP buffer

and registers for receiving all IP packets—the fwP kernel bottom half will round-robin

load balance packets for identical filter rules. (Recall from Section 4.2.2 that fwP is

inherently designed to use individual buffers per thread.)

The graph shows that the single-threaded fwP implementation achieves 2.5 times the

throughput of the best pcap implementation. With two threads, the fwP version comes

close to line (1Gbps) speed. Note that the pcap implementation with a shared queue

performs better than the implementation with a private queue per worker thread—this is

due to the fact that when the private queues become empty the producer must wake its

worker threads. We see that beyond seven worker threads both pcap implementations

yield the same throughput (there are eight distinct CPUs, sufficient for the producer and

seven worker threads). With the producer thread pegged to a CPU the behavior was the

86

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bp

s)

One way link latency (ms)

in-kernel
fwP

user-space (pcap)

Figure 4.9: Maelstrom implementations throughput.

same, hence we attribute this degradation to increased scheduling and contention (e.g.

schedule out a thread that already holds a lock thus preventing threads that are waiting

for the lock to be released from making progress as well).

The takeaway from this experiment is that developers who use a conventional net-

work stack must be intimately aware of impedance matching issues, especially when

using threads and synchronization. By contrast, the fwP implementation easily reaches

the maximum achievable throughput (1Gbps in this setup) with almost as little as two

cores, while the pcap version plateaus at just 530Mbps.

The Maelstrom Protocol Accelerator

Maelstrom [63] is a performance enhancement proxy developed to overcome the poor

performance of TCP when loss occurs on high bandwidth / high latency network links.

Maelstrom appliances work in tandem, each appliance located at the perimeter of the

network and facing a LAN on one side and a high bandwidth / high latency WAN link on

87

the opposite side. The appliances perform forward error correction (FEC) encoding over

the egress traffic on one side and decoding over the ingress traffic on the opposite side.

In Figure 4.6, for example, node1 and node2 are running Maelstrom appliances, with

node1 encoding over all traffic originating from node10 and destined for, say node20.

Node2 receives both the original IP traffic and the additional FEC traffic and forwards

the original traffic and potentially any recovered traffic to node20. Note that this is

a symmetric pattern, each Maelstrom appliance working both as an ingress and as an

egress router at the same time.

The existing hand-tuned, in-kernel version of Maelstrom is about 8432 lines of C

code. It is self contained with few calls into the exported base of kernel symbols. In con-

trast, the fwP implementation required just 496 lines of user-space C code (not counting

libraries or the fwP kernel bottom half). Figure 4.9 shows the throughput as a function

of the round trip time with a pair of Maelstrom appliances running on nodes 1 and 2,

on the Emulab testbed. The graph shows that the fwP implementation yields almost

identical performance to the in-kernel version. We also compared with a libpcap imple-

mentation; the fwP version is more than an order of magnitude faster. Moreover, these

results continue to hold in the presence of message loss on the WAN link.

Note that the throughput shown in the figure is the end-to-end measured goodput be-

tween node10 and node20. Maelstrom introduces additional FEC traffic between nodes

1 and 2. In particular, for the parameters we ran the experiments with 27% of the band-

width is allotted to FEC traffic (i.e., for every r = 8 packets we send c = 3 additional

FEC packets), hence the goodput is at most 686Mbps. This is precisely the performance

obtained: the fwP version of Maelstrom reduces memory contention / pressure and is

thus running as fast as possible on the given hardware, being constrained by network

bandwidth—1Gbps in this case—and not processing power.

88

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4

T
hr

ou
gh

pu
t (

M
bp

s)

Number of worker threads

IPsec, standard
IPsec, core-aware

Figure 4.10: fwP IPsec throughput, 2x1Gbps links.

4.3.2 Microbenchmarks

In the previous section we showed four examples of user-space packet processing ap-

pliances built with fwP while taking advantage of multi-core chips. In this section we

use instrumentation and profiling to look at fine-grained performance characteristics.

In particular, we investigate how does fwP scale and what are the limitations, next we

quantify the baseline performance of receiving a packet, and finally we examine how

well does fwP mitigate memory contention.

Multi-Core Scaling and Limitations

To test the limits of fwP we modified the local topology from Figure 4.6 so that there

are two independent 1Gbps channels between nodes 10 and 20.

As a baseline, forwarding 2Gbps of packets through the fwP workqueue bottom half

pegs one CPU to 50% usage, not accounting for cycles spent during the top half, while

89

Table 4.3: Packet delivery delay (µs).

delay pcap fwP (wq) fwP (all)
run1 run2 run1 run2 run1 run2

avg 70.4 59.5 6.8 7.0 22.3 22.5
stdev 114.3 98.0 28.0 6.9 62.2 76.7

achieving the maximum line throughput of 1876Mbps (for TCP-reno), or 938Mbps on

each channel. If packets are routed through a user-mode fwP application without per-

forming any processing, the maximum achievable throughput is about 1621Mbps, about

810Mbps on each channel, and 1721Mbps if threads are intelligently assigned on cores

(as described in Section 4.2.2).

Figure 4.10 shows how fwP IPsec scales given more network capacity. The take-

away is two-fold. First, core-aware placement boosts the performance of fwP: the plot

shows an average 12.49% improvement in end-to-end throughput for a single worker

thread, and 33.39% for four worker threads. Importantly, the throughput gap increases

with the number of cores. Second, although we can process data at 1300Mbps, to breach

1800Mbps we would need faster memory architecture and / or a few more cores.

The Path of a Packet

Both fwP and pcap implementations can sustain routing packets throughput at 1Gbps

without additional processing. The end-to-end throughput on the Emulab testbed can be

seen in Figure 4.7, for zero passes on the x-axis, the left most set of bars. However, the

pcap implementation spends more CPU cycles, therefore it has fewer cycles to spare for

additional per-packet computation.

In addition to CPU cycles, another metric is per-packet delivery latency. We mea-

sured the time to deliver a packet, percolating through the network stack, from the mo-

90

Table 4.4: Memory bus transactions / cpu cycles.

a) fwP b) pcap
binary ratio

vmlinux .015
fw test .0015
bnx2 .007

fw mod .0065
total .01004

binary ratio
vmlinux .014
pcap test .00388

bnx2 .0059
af packet .0046

total .0104

ment it is time-stamped by the kernel (by the NIC driver) until it is delivered to the

user-space application. Table 4.3 shows the statistics for a few separate Iperf runs. Each

measurement is over about 10.2 million packets, i.e. the number of packets processed

in a 120 second Iperf run.

For fwP we report both the end to end delay (marked “all”) and the delay since the

packet is handled by the dispatching workqueue (marked “wq”)—this is where the bulk

of the fwP work is done. Due to design tradeoffs, we added another level of indirec-

tion, namely enqueueing packets from the fwP softirq bottom half onto a workqueue

(essentially a queue serviced by a task)—unlike softirqs, tasks can block and be bound

to cores. The delay penalty incurred is shown in Table 4.3 as the difference between the

columns marked “all” and “wq.” The table illustrates that the latency for fwP to deliver

the packet from the NIC to user-space is about a third that of pcap. The high variance

for both fwP and pcap is due to scheduling delays.

Memory Pressure

The design of the fwP aimed to reduce memory pressure / contention. We use

oprofile to measure the overheads imposed on the memory subsystem by the IPsec

appliance built both with fwP and with pcap.

91

Table 4.5: Load ratio (L1d loads / cpu cycles).

a) fwP b) pcap
binary ratio

vmlinux .1567
fw test .691
bnx2 .1

fw mod .148
total .2712

binary ratio
vmlinux .145
pcap test .5529

bnx2 .0935
af packet .134

total .377

Oprofile [179] is a statistical profiler that can measure CPU events by a sampling

technique. It does so by taking advantage of existing CPU performance counters. Each

CPU has a limited number of counters that can be configured to decrement every time

some internal event occurs (e.g. L2 cache miss). When the counter reaches zero, an

interrupt is issued, and the handler will gather statistics, like the event count and the

position of the instruction pointer. Each counter can be initialized to some arbitrary

overrun value, therefore it is possible to gather more accurate results at the expense of

more overhead.

The profiling runs consist of consecutive fwP and pcap IPsec tests with a single

worker thread, as described in section 4.3.1. Care must be taken when choosing the

events to profile and the methodology employed. Absolute values are misleading, for

example the number of branch mispredictions in a function is meaningless unless we

know how often that function is called. To compare two programs, we use the ratios of

two events sampled at the same frequency (overrun value is 6000).

We report on all symbols: the kernel marked as vmlinux, device driver as bnx2, the

bottom half mechanism marked as fw mod for the fwP kernel module and af packet for

the traditional network stack and test binary marked as fw test and pcap test. We omit

irrelevant symbols, like all other user-mode processes and kernel drivers (however, they

are represented by the total field).

92

Table 4.6: Store ratio (L1d stores / cpu cycles).

a) fwP b) pcap
binary ratio

vmlinux .0837
fw test .194
bnx2 .039

fw mod .0569
total .111

binary ratio
vmlinux .072
pcap test .41

bnx2 .0361
af packet .064

total .236

Table 4.7: Pipeline flushes / number of instructions retired.

a) fwP b) pcap
binary ratio

vmlinux .000121
fw test .000015
bnx2 .000166

fw mod .000155
total .000054

binary ratio
vmlinux .00015
pcap test .00009

bnx2 .000122
af packet .00011

total .000096

We start by comparing the number of memory transactions on the bus, per CPU

cycles (while not halted). The memory transaction counter aggregates the number of

burst read and write-back transactions, the number of RFO (read for ownership) trans-

actions and the number of instruction fetch transactions, all between the L2 cache and

the external bus. Table 4.4 contains the results. In both cases the kernel is the dominant

component. We can see that the fwP test program issues about 2.58 less transactions

than the pcap test program.

Taking a closer look, Tables 4.5 and 4.6 show the load and store rates for fwP and

pcap: fwP performs about 28% less load operations per cycle (in total) with respect to

pcap and roughly half the number of stores per cycle (in total); therefore reducing the

Table 4.8: RFO / memory bus transactions (total).

version ratio
fwP .1244

fwP (core-aware) .105
pcap .1087

93

pressure on the memory subsystem and yielding an end-to-end throughput 2.5 times

higher. A high load / store ratio means the execution is bound by memory.

Table 4.7 shows the ratio between the CPU(s) pipeline flushes and the number of

retired instructions. The fwP version performs half the total pipeline flushes per instruc-

tion retired the pcap does—a fair improvement.

Finally, Table 4.8 shows that when smart core placement is used, fewer RFO trans-

actions are issued on the bus, and the scheduler spends less time balancing tasks. In

contrast, with smart core placement disabled, we noticed that besides copying data—to

and from the fwP buffer and duplicating the sk buff for pcap—the kernel spends most

time in the scheduler, a significant part of which is re-balancing tasks. The pcap version

performs less RFO transactions, since during this IPsec test we used a single thread,

and the conventional network stack typically wakes up the af packet receiver on the

same CPU.

4.4 Experience

To appreciate the value of the fwP abstraction, it may be helpful to understand our

own experience developing Maelstrom. The Maelstrom box has to run over high-speed

optical links while performing XOR computations over the packets that pass through

it—hence, it’s imperative that it be able to run at line rates on a gigabit link. Our first

prototype of Maelstrom was a user-space application that used libpcap (on FreeBSD) to

pick up packets and process them—it ran at a disappointing 60 Mbps on a 1 Gbps link,

beyond which it began to experience buffer overflows and data losses.

In the ensuing six months we dropped Maelstrom into the kernel and optimized it

94

extensively, resulting in versions that ran at 250 Mbps, 400 Mbps and finally 940 Mbps.

In the course of optimizing our kernel implementation, we learned several useful things

about building high-performance networked systems. In particular, we were able to

categorize the various sources of overheads for such a system, as well as abstract out

the functionality required by a packet processing application. This led to the idea of the

Revolver IPC.

With fwP, we were able to code a Maelstrom implementation in a single day—and it

ran with zero optimization at 900+ Mbps of output data rate. And most importantly, we

were able to code multiple different applications—such as the security packet inspector

that scanned packets for suspicious signatures, a gigabit overlay router and an IPsec

proxy—within hours. Each of these applications ran without any optimization at line-

speed. Given that the majority of a developer’s time is arguably spent optimizing code,

and this is especially true for high-performance networked systems, we believe this

result to be a significant advance in the state-of-the-art.

4.5 Summary

In this Chapter we show how to overcome the overheads incurred by packet process-

ing applications that run on commodity shared bus multi-core systems. In doing so, we

have distilled the lessons learned and the prototype engineering process into a new oper-

ating system abstraction—fwP. We demonstrate the efficacy of fwP by building various

packet processors that can improve the inter-datacenter communication while operating

at multi-gigabit speeds. In the next chapter, we leverage the knowledge we gained to

generalize and improve upon the fwP abstraction, and ultimately extend its scope and

applicability.

95

CHAPTER 5

PACKET PROCESSING ABSTRACTIONS II: HARNESSING THE

PARALLELISM OF MODERN HARDWARE WITH NETSLICES

Newly emerging non-uniform memory access (NUMA) architectures that use point-

to-point interconnects reduce the memory pressure since concurrent memory accesses

from different CPUs may be routed on different paths to distinct memory controllers in-

stead of being issued over a shared bus to the same memory controller. However, NUMA

architectures do not eliminate the memory contention caused by CPU cores that are con-

currently accessing shared data and peripheral (e.g., memory mapped) devices [103]. In

other words, NUMA architectures mitigate the raw bus contention, but not the data

contention (see Section 4.1), whereas the memory wall remains an issue. Therefore,

the conventional raw socket—the de-facto abstraction exported by operating systems to

enable packet processing in user-space—remains highly inefficient and unable to fully

take advantage of the emerging hardware, like multi-core NUMA architectures.

In Chapter 4 we have shown that packet processors running on shared-bus commod-

ity servers are unable to take advantage of the available spare CPU cores, due to the

conventional software network stack that overloads the memory subsystem. After re-

vealing the intrinsic overheads of the operating systems’ network stack, we introduced

fwP—a new operating system abstraction that mitigates these overheads—and demon-

strated how fwP can be utilized to build high-performance software packet processors

in user-space that outperform conventional counterparts.

Although fwP does mitigate memory contention in general, it was not designed

specifically for NUMA architectures (fwP was designed prior to the emergence of com-

modity NUMA servers). Moreover, fwP was not designed to mitigate the contention

exerted by multiple CPU cores accessing the same high-speed 10GbE network adapters,

96

nor was it designed to interface with modern multi-queue 10GbE NICs. Hardware multi-

queue NIC support has been introduced since a single CPU core is not sufficiently fast

to drive a 10GbE NIC, whereas the contention and synchronization overhead of multi-

ple CPU cores accessing the same NIC is prohibitive [103]. Another drawback of fwP

is that it is somewhat invasive since it alters the core operating system kernel interface

and functionality. This severely limits fwP’s portability and maintainability, since a core

kernel patch is required before fwP is deployed, unlike regular device drivers that are

self-contained in a kernel extension, or module, and can be loaded at runtime without

requiring a custom interface with the core kernel. Moreover, fwP presents an unfamiliar

and awkward programming interface (e.g. the fw flip operation).

In this chapter we report on the design and implementation of NetSlice—a new

fully portable operating system abstraction that enables linear performance scaling with

the number of CPU cores while processing packets in user-space. We achieves this

through an efficient, end-to-end, raw communication channel akin to the raw socket,

that leverages modern hardware. NetSlice performs spatial partitioning (i.e., exclusive,

non-overlapping, assignment) of the CPU cores, memory, and multi-queue Network

Interface Controller (NIC) resources at coarse granularity, to aggressively reduce overall

memory and interconnect contention.

NetSlice tightly couples the hardware and software resources involved in packet pro-

cessing. The spatial partitioning effectively offers the illusion of a battery of indepen-

dent, isolated SMP machines working in parallel with near zero contention. At the same

time, each individual NetSlice partition was designed to provide a fast, lightweight,

streamlined path for packets between the NICs and the user-space raw endpoint. More-

over, the NetSlice application programming interface (API) exposes fine-grained control

over the hardware resources, and also provides efficient batched send / receive opera-

97

tions. NetSlice is completely modular and easy to deploy, requiring only a simple kernel

extension that can be loaded at runtime, like any regular device driver. As a result it is

highly portable since it does not depend on any special hardware. By contrast, fwP

requires the kernel to be patched and recompiled prior to loading a portable module.

We show that complex user-space packet processors built with NetSlice—like a pro-

tocol accelerator and an IPsec gateway—closely match the performance of state-of-the

art, high-performance, in-kernel RouteBricks [103] variants. Moreover, NetSlice packet

processors scale linearly with the number of cores and operate at nominal 10Gbps net-

work line speeds, vastly exceeding alternative user-space implementations that rely on

the conventional raw socket.

The contributions of the work in this chapter are as follows:

• We argue that the conventional raw socket is ill-suited for packet processing ap-

plications.

• We propose NetSlice—a new operating system abstraction for developing packet

processors in user-space that can leverage modern hardware.

• We evaluate NetSlice and show that it enables linear throughput scaling with the

number of cores, closely following the performance of state-of-the-art in-kernel

variants.

• We provide a drop-in replacement for the conventional raw socket that requires

only a simple kernel extension which can be loaded at runtime.

The rest of the chapter is structured as follows. Section 5.1 expands on the motiva-

tion behind user-mode packet processors. Section 5.2 details the NetSlice design and

implementation while Section 5.3 presents our evaluation.

98

5.1 The Case Against The RAW Socket: Where Have All My CPU

Cycles Gone?

Refer to Appendix B for details pertaining to the path of a packet through a modern,

in-kernel, network stack.

Operating systems abstractions for packet processing in user-space are overly gen-

eral, and in need of an overhaul. The issue stems from the fact that the entire network

stack handles the raw socket in the same fashion it handles a regular endpoint (TCP

or UDP) socket—essentially taking the least common denominator between the two.

However, unlike TCP or UDP sockets, a raw socket is different in that it manipulates

the entire traffic seen by the host. Given today’s network capabilities, such traffic is

sufficient to easily overwhelm a host that uses raw sockets. We argue that applications

are unable to take advantage of modern hardware since:

1. The raw socket abstraction is too general and provides the user-mode application

with no control over the physical resources.

2. Although simple and common to all types of sockets, the socket API is largely

inefficient.

3. The conventional network stack is not end-to-end. In particular, the hardware

and software resources that are involved in packet processing are loosely coupled,

which results in increased contention.

4. Likewise, the conventional network stack was built for the general / common case.

This renders the path taken by a packet between the NIC and the user-space raw

endpoint unnecessarily expensive.

99

Engler et al. [110] have similarly argued for an end-to-end approach, and against the

high cost introduced by high-level abstractions. A fixed set of high level abstractions has

been known to i) hurt application performance, ii) hide information from applications,

and iii) limit the functionality of applications. The conventional (raw) socket is such an

example—it offers a single, arguably ossified, API which abstracts away the path taken

by a packet between the NIC and the application, thus providing no control over the

hardware resources utilized, which is why applications fail to perform.

Next, we expand on the four above claims. First, the socket API does not provide

tight control over the physical resources involved in packet processing. For example,

the user-mode application has no control over the path taken by a packet between some

NICs queue and the raw endpoint. Second, although providing a simplified interface,

the socket API is largely inefficient. For example, it requires a system call for every

packet send / receive operation (the asynchronous I/O interface is currently only used

for file operations, since it does not support ordering—equally important for both TCP

send/receive and UDP send operations).

Third, the network stack is not end-to-end. For example, the raw socket endpoint

is loosely coupled with the network stack by virtue of the user-mode task it belongs

to. Since processing is performed in a separate protection domain, an additional cost is

incurred due to packet copies between address spaces, cache pollution, context switches,

and scheduling overheads. Importantly, the cost depends on the CPU affinity of the

user-mode task relative to the corresponding in-kernel network stack that processed the

packets in the first place. In general, there are several choices where the user-mode task

may run with respect to the in-kernel network stack:

• Same-core: In lockstep on the same CPU with the in-kernel network stack.

• Hyperthread: Concurrently on a peer hyperthread of the CPU that runs the

100

in-kernel network stack, if one is available.

• Same-chip: Concurrently on a CPU that shares the Last Level Cache (LLC),

e.g. L3 for Nehalem.

• Different-chip: Concurrently on a CPU that belongs to a different packaging

socket / silicon die.

The first option is ideal in terms of cache performance, however one has to consider

the cost of frequent context switches and the impedance mismatch between the in-kernel

network stack running in softirq context (a type of bottom half), at a strictly higher

priority than user-mode tasks, and the user-mode task. If the user-mode task is not time-

shared sufficient CPU cycles to clear the socket buffers in a timely fashion, packets will

be dropped.

If hyperthreads are available, the second option may be ideal. However, hyperthreads

need to be simultaneous, i.e. the CPU can fetch instructions from multiple threads in a

single cycle. Hyperthreads are not ideal if they work on separate data (i.e. at different

physical locations in memory), since they would split all shared cache levels into half.

However, if hyperthreads work on shared data, e.g. the packets passed between a user-

mode task and the in-kernel network stack, then this scenario has the potential of also

reducing cache misses beyond the LLC. Alternatively, two CPUs may only share the

LLC and still reduce the number of cache misses. The final option is sub-optimal, since

every packet would induce an additional LLC cache miss.

By default, however, the kernel scheduler dynamically chooses on which CPU to run

the user-mode task, constantly re-evaluating its past decision, and potentially migrating

the task onto a different CPU. Although the user-space application is able to choose a

CPU affinity to request on which CPUs to run, the socket interface provides no insight

101

L3 cache

I/O Hub
PCIe

CPU

0,8

CPU

2,10
CPU

4,12

CPU

6,14

NIC 0
PCIe

NIC N

L3 cache

CPU

1,9

CPU

3,11
CPU

5,13

CPU

7,15

socket-IO link
integrated memory

controller

Memory

inter-socket

link

Mem Bus

Memory

Hyper-threads

tx/rx queues (0-8) tx/rx queues (0-8)

Figure 5.1: Nehalem cores and cache layout.

into what the placement should be. The socket traffic may have been handled by the

in-kernel network stack on any of the available CPUs. Worse, the raw socket receives

traffic from all queues of every NIC, that is handled by all (interrupt receiving) CPUs,

thus increasing the contention overhead. Further, in such a case, there is no optimal

CPU placement for the task.

Fourth, and final, the in-kernel network stack is overly general, bulky, and unnec-

essarily expensive. To illustrate this, consider a user-space application processing the

entire traffic by means of raw sockets. For the system depicted in Figure 5.1, in order

to utilize the available CPU cores, boilerplate solutions either use several raw sockets

in parallel, one per process / thread, or a single raw socket and load balance traffic to

several worker threads.

If several raw sockets are used in parallel, each received packet is processed by

protocol handlers as many times as there are raw sockets, and a copy of the packet is

delivered to each of the raw sockets. Moreover, the original packet is also passed to the

default in-kernel IP layer. To implement a packet processor in user-space, an additional

firewall rule is needed that instructs the kernel to needlessly drop the packet. Berkeley

102

Packet Filters (BPF) can be installed on each raw socket in an attempt to disjointly split

the traffic, however:

• BPF filters are expensive, and they scale poorly with an increase in the number of

sockets [116].

• Writing non-overlapping filters for all possible traffic patterns is hard at best, and

requires a priori knowledge of traffic characteristics, not to mention the complex-

ity of handling traffic imbalances. Filters may be installed at runtime, by reacting

to the traffic patterns, however, installing filters on the fly at rates around 10Gbps

is not feasible [223].

• Without understanding the NICs opaque hash function that classifies flows to

queues we are unable to predict the CPU that will be executing the kernel network

stack, hence filters may exacerbate interference (e.g. cache misses). Such predic-

tions are only possible if the interrupts from queues are issued in a deterministic

fashion, and if the classification function is itself deterministic. The issue is fur-

ther aggravated by using NICs from different vendors, which implement different

classification functions (in our experience this is true of the Intel and Myricom

10GbE NICs).

Alternatively, a single raw socket may be used to load balance and quickly dispatch

traffic to several worker threads. In this scenario, there are two potential contention

spots. First, between the in-kernel network stacks running on all (interrupt receiving)

CPUs and the dispatch task, and second, between the dispatch task and the worker

threads (we evaluate this scenario in Section 5.3).

103

C P U

0

tx/ rx

Q u e u e 0

Impl ic i t P r o c e s s o r s N I C 0 N I C N

N e t S l i c e 0

Ne tS l i ce i

N e t S l i c e 7

tx / rx

Q u e u e i

tx / rx

Q u e u e 7

tx / rx

Q u e u e 0

tx / rx

Q u e u e i

tx / rx

Q u e u e 7

C P U

i

C P U

7

C P U

8

C P U

i + 8

C P U

1 5

...

.

C P U

1

tx/ rx

Q u e u e 1
N e t S l i c e 1

tx / rx

Q u e u e 1
C P U

9

...

. . .

. . .

. . .

. . .

RAM,

P C I e

RAM,

P C I e

RAM,

P C I e

RAM,

P C I e

Figure 5.2: NetSlice spatial partitioning example.

5.2 NetSlice

We argue that user-mode processes need end-to-end control over the entire path taken by

packets, all the way from the NICs to the applications and back. NetSlice relies on a four

pronged approach to provide an efficient end-to-end OS abstraction for packet process-

ing in user-space. First, NetSlice spatially partitions the hardware resources at coarse

granularity to reduce interference / contention. Second, the NetSlice API provides the

application with fine-grained control over the hardware resources. Third, NetSlice pro-

vides a streamlined path for packets between the NICs and user-space. Fourth, NetSlice

exports a rich and efficient API.

The core of the NetSlice design consists of spatial partitioning of the hardware re-

sources involved in packet processing. In particular, we provide an array of independent

packet processing execution contexts that “slice” the network traffic to exploit paral-

lelism and minimize contention. We call such an execution context a NetSlice. Each

NetSlice is end-to-end [192], tightly coupling all software and hardware components

from the NICs to the CPUs executing the in-kernel network stack and the user-mode

task.

104

A NetSlice packet processing execution context consists of one transmit (tx) and

one receive (rx) queue per attached NIC, and two (or more) tandem CPUs. Modern high

speed (10GbE) NICs support a configurable number of tx/rx queues, usually larger than

the number of cores. Importantly, a NIC queue belongs to a single NetSlice context.

While the NIC queues and CPU cores are resources explicitly partitioned by NetSlice,

each execution context also consists of implicit resources, like a share of the physical

memory, PCIe bus bandwidth, etc. The tandem CPUs are sharing at the very least the

LLC; NetSlice defaults to using hyperthreads if available. NetSlice automatically binds

the tx/rx queues of each context to issue interrupts exclusively to one of the peer CPUs in

the context—we call this the k-peer CPU; we call the other CPU(s) the u-peer CPU(s).

The in-kernel (NetSlice) network stack executes on the k-peer CPU, while the user-

mode task that utilizes NetSlice runs on the u-peer CPU. If a NetSlice has more than

two CPUs, several threads may execute concurrently in user-mode.

There are as many NetSlices as there are CPU tandems. For our experimental setup

depicted in Figure 5.1, NetSlice partitions resources as depicted in Figure 5.2. Every

NIC is configured with eight tx/rx queues, associating the ith tx/rx queue of every NIC

(e.g. NICs 0 and 1 in Figure 5.1) with tandem pairs consisting of CPUs i (k-peer) and

i + 8 (u-peer). Each NIC issues interrupts signaling events pertaining to the ith queue

to the ith CPU exclusively. Through this technique, no two k-peer CPUs will handle

packets on the same NIC queue, thus eliminating the costs of contention like locking,

cache coherency, and cache misses. This scheme that binds NIC queues to CPUs was

previously evaluated for 1Gbps NICs [70] and is the keystone to RouteBrick’s individual

forwarding element scaling (RouteBricks relied on Click [147] which uses a polling

driver instead of the conventional interrupt driven one, however, NAPI and Interrupt

Coalescence achieve the same effect).

105

Further, NetSlice exposes fine-grained control over the hardware resources of the

entire packet processing execution context to the user-mode application. For example,

NetSlice provides control over which CPU the in-kernel (NetSlice) network stack is

executing with respect to the user-mode application to take advantage of the physical

cache layout. The added control is key to minimizing inter-CPU contention in general,

and cache misses and cache coherency penalties in particular.

Importantly, the path a packet takes through each NetSlice execution context is

streamlined, bypassing the default, bulky, in-kernel general purpose network stack. Net-

Slice hijacks the packets at an early stage subsequent to DMA reception and before it

would have been handed off to the network stack. Next it performs minimal process-

ing while in kernel context executing on the k-peer CPU, and then passes the packets

to the user-space application to be processed in overlapped (pipelined) fashion, on the

u-peer CPU. Notably, on an entire NetSlice path there is a single spinlock being used

per send / receive direction. The spinlock is specialized for synchronization between the

communicating execution contexts, namely between a bottom half and a task context.

While the NetSlice API provides tight control over physical resources, it also su-

persedes and extends the ossified socket API, which, although providing a simplified

interface, is largely inefficient. Instead of requiring a system call for every packet send

or receive, the NetSlice API supports batched operations to amortize the cost associated

with protection domain crossings. At the same time, the NetSlice API is backwards

compatible with the conventional BSD socket API. In particular, the API supports con-

ventional library read/write operations with precisely the same semantics as the

ones used on file or socket descriptors.

106

1: #include "netslice.h"

2:

3: struct netslice_iov {

4: void *iov_base;

5: size_t iov_len; /* capacity */

6: size_t iov_rlen;/* returned length */

7: } iov[IOVS];

8:

9: struct netslice_rw_multi {

10: int flags;

11: } rw_multi;

12:

13: struct netslice_cpu_mask {

14: cpu_set_t k_peer;

15: cpu_set_t u_peer;

16: } mask;

17:

18: fd = open("/dev/netslice-1", O_RDWR);

19:

20: rw_multi.flags = MULTI_READ |

21: MULTI_WRITE;

22: ioctl(fd, NETSLICE_RW_MULTI_SET,

23: &rw_multi);

24:

25: ioctl(fd, NETSLICE_CPUMASK, &mask);

26: sched_setaffinity(getpid(),

27: sizeof(cpu_set_t), &mask.u_peer);

28:

29: for (i = 0; i < IOVS; i++) {

30: iov.iov_base = malloc(MTU_LARGE);

31: iov.iov_len = MTU_LARGE;

32: }

33: if (mlockall(MCL_CURRENT) < 0)

34: exit_fail_msg("mlockall");

35:

36: for (;;) {

37: ssize_t cnt, wcnt = 0;

38: if ((cnt = read(fd, iov, IOVS)) < 0)

39: exit_fail_msg("read");

40:

41: for (i = 0; i < cnt; i++) {

42: /* iov_rlen marks bytes read */

43: scan_pkg(iov[i].iov_base,

44: iov[i].iov_rlen);

45: }

46: /* forward the packets back */

47: do {

48: size_t wr_iovs;

49: /* write iov_rlen bytes */

50: wr_iovs = write(fd, &iov[wcnt],

51: cnt-wcnt);

52: if (wr_iovs < 0)

53: exit_fail_msg("write");

54: wcnt += wr_iovs;

55: } while (wcnt < cnt);

56: }

Figure 5.3: One NetSlice (1st) batched read/write example.

5.2.1 NetSlice Implementation and API

The NetSlice API is UNIX-like, as elegant as the file interface, and as flexible as the

ioctl mechanism. User-mode applications perform conventional file operations using

the familiar API, e.g. open / read / write / poll over each slice, which map to cor-

responding operations over the per-NetSlice data flows. For example, a conventional

read operation will return the next available packet, block if no packet is available, or

return -EAGAIN if there are no packets available and the device was opened with the

O NONBLOCK flag set. In fact, we implemented the NetSlice abstraction as a set of char-

acter devices with the same major number and N minor numbers—one minor number

107

for each of the N slices.

The ioctl mechanism was sufficient to provide NetSlice additional control and

API extensions. For example, the NETSLICE CPUMASK ioctl request returns the

mask of the tandem CPUs, thus enabling the current user-mode task fine control over

the CPU it runs atop. The NETSLICE TX CSUM SET ioctl request allows the user-

mode application to offload the kernel module to perform TCP, IP, both or no checksum

computation. The in-kernel NetSlice stack in turn has the knowledge to enable hardware

specific offload computation to spare CPUs from unnecessarily spending cycles.

The NETSLICE RW MULTI SET ioctl request is of particular interest. Once set,

the user-mode application can use the read / write calls to send and receive an array

of datagrams encoded within the parameters. This is fundamentally different than the

readv / writev calls which can only perform scatter-gather of a single datagram

(or packet) per call, which means that using readv / writev a system call is to be

issued for every packet. Batched packet receive and send operations are instrumental

in mitigating the overheads of issuing a system call per operation. At the same time,

it reduces per packet locking overheads, e.g. spinlock induced cycle waste and cache

coherency overheads, between the user-mode task while executing system calls and the

in-kernel NetSlice network stack.

Figure 5.3 shows an example of application code using NetSlice batched read / write

for a naı̈ve deep packet inspection tool. Commenting out lines 44 through 48, the appli-

cation forwards packets acting as a regular router. The array of buffers are passed to the

read and write functions encoded in netslice iov structures. The example consists

of a single NetSlice (the 1st NetSlice) hence the application will only receive packets

classified to be handled by the 1st queue of each NIC. To handle the entire traffic, the

example can be easily extended to accommodate all available queues using either an

108

equal number of threads or separate processes.

For outgoing packets, the routing decision is performed by default within the in-

kernel NetSlice stack. However, the NETSLICE NOROUTE SET ioctl request allows

applications to perform routing in user-space (the chosen output interface is encoded

within the parameters of the write call). If the hardware decides which NIC rx queue

to place the received packets onto, the software is responsible for selecting an outbound

NIC queue to transmit packets on. For the conventional network stack, the kernel or

the device driver is responsible for implementing this functionality. NetSlice provides a

specialized classification “virtual function” that overrides any driver or kernel provided

hash functions (we update the select queue function pointer of every net device

structure). The NetSlice classification function ensures that packets belonging to a par-

ticular NetSlice context are placed solely on the tx queues associated with the context.

Unlike driver provided (e.g. myri10ge driver’s myri10ge select queue) or the

kernel’s default simple tx hash classification function, the NetSlice classification

function is considerably cheaper, consisting of three load operations, one arithmetic,

and one bitwise mask operation.

Note that instead of a character device, we could have implemented NetSlice by

extending the socket interface and adding a new PF PACKET (e.g. SOCK RAW) socket

type. Instead, the current approach allowed us to seamlessly commandeer received pack-

ets immediately after reception. By contrast, a new PF PACKET socket does not curtail

the default network stack, nor does it prevent the kernel from performing additional

processing per packet (e.g. pass packets through all relevant protocol handlers).

109

5.2.2 Discussion

The reader familiar with the large body of user-space networking work [182, 118, 56,

209, 208, 69] may rightly have a sense of déjà vu. Nevertheless, we point out that

NetSlice is in fact orthogonal to past work that relocated the networking stack into the

user-space—user-space networking may very well be built on top of NetSlice, however

the converse does not hold. Leveraging modern hardware resources is at the core of

the NetSlice design, whereas most user-space networking approaches predate multi-

core CPUs, multi-queue NICs, and in fact predate conventional in-kernel SMP network

stacks.

Although we could have, we did not implement the network stack encapsulation to

replace endpoint sockets. In our experience, TCP and UDP sockets using the conven-

tional in-kernel network stack implementation still perform sufficiently well, to date.

Moreover, given that a typical host may have an arbitrarily large number of concurrent

TCP and UDP connections, it is not clear that user-space networking, even built over

NetSlice, would perform better than the current network stack.

Unlike most prior user-space networking solutions, we chose not to implement zero-

copy / copy avoidance [106, 181] for the reasons described below:

• With the advent of modern NUMA architectures like the Intel Nehalem, the bot-

tleneck for network I/O has shifted away from the raw memory bandwidth [103].

In particular, if for shared bus architectures, both raw bus contention and data

contention were the main sources of overhead, only data contention remains a

source of overhead for NUMA architectures, along with a bound on the available

number of CPU cycles. Performance scaling may thus predictably follow from the

performance increase with each processor generation. With NetSlice, we provide

110

a mechanism to minimize data contention and harness the aggregate spare cycles

of multi-core CPUs for packet copies, while the data already resides in the LLC.

• Most zero-copy techniques introduce new interfaces that are incompatible with

the conventional socket API. By contrast, NetSlice extends the socket API while

maintaining backwards compatibility.

• Typical zero-copy techniques are hardware dependent, thus requiring significant

driver porting effort. By contrast, NetSlice is completely portable, requiring a

single modular addition, instead of one for each possible device driver. Moreover,

zero-copy can be expensive on modern commodity hardware due to the cost of

memory management (e.g. on-demand page mapping and un-mapping).

• Alternatively, solutions may preemptively set aside a fixed physical memory re-

gion from which all packet (sk buff) payloads are allocated [69]. However, this

solution is deficient, since it over-commits and pins down large physical memory

spaces for which ultimately the user-space processes are responsible and trusted

to relinquish.

• The OS needs to ensure tight impedance matching between the top-half interrupt

service routine and the user-mode task. This would require invasive scheduler

modifications [96, 73] we chose to avoid.

To summarize, a zero-copy designs for NetSlice would reduce the number of CPU

cycles spent on performing a copy per network packet. However, a zero-copy design

would also render NetSlice significantly less portable and would require each device

driver to be rewritten and maintained, whereas the current design is fully portable. More-

over, a few spare CPU cores are sufficient to compensate for the cost of packet copies,

provided that data contention does not increase. (Section 5.3 shows that NetSlice scales

linearly with the number of cores, therefore data contention is indeed minimized.) Given

111

the current trend in semiconductor technology of placing an increasing number of CPU

cores per silicon chip with each new generation, we believe that the cost of pursuing a

zero-copy design is not justified at this time.

5.3 Evaluation

In this section we evaluate software packet processors running NetSlice against the state-

of-the-art user-space and in-kernel equivalent implementations. In particular we have

ported packet processors to run over RouteBricks [103] forwarding elements, as well as

to run in user-space using the Packet CAPture (pcap) library [38]. Pcap is implemented

on top of the conventional raw (PF PACKET) sockets. We also linked the pcap appli-

cations with Phil Wood’s libpcap-mmap library [222], which uses the memory mapping

functionality of PF PACKET sockets (known as PACKET MMAP). A kernel built with

the PACKET MMAP flag copies each packet onto a circular buffer before adding it to

the socket’s queue. The circular buffer is shared between the kernel and the user-space

in order to reduce the numbers of system calls. Note that PACKET MMAP sockets do

not provide zero-copy receive—a packet is copied the same number of times as with a

traditional socket. During our experiments, we set the circular buffer size to the maxi-

mum possible (PCAP MEMORY=max)—a limit imposed by the (physically contiguous)

kernel memory allocator.

NetSlice requires a simple modular kernel extension that can be loaded at runtime,

like any other device driver. NetSlice consists of 1739 lines of kernel module code and

2981 lines of user-space applications—e.g. a router, an IPsec gateway, and a protocol

accelerator, of which 839 lines are AES / IPSec ports.

Our evaluation tries to answer the following questions:

112

E g r e s s

R o u t e r

1 0 G b E

CX4

~ 1 0 m
R 7 1 0 R 7 1 0

1 0 G b E

CX4

4 x 1 G b E 1 0 G b E

CX4

10GbE LR op t i ca l

s i n g l e - m o d e f i b e r

4 x 1 G b E

I n g r e s s

R o u t e r 1 0 G b E

CX4

R 9 0 0R 9 0 0 R 9 0 0 R900

Figure 5.4: Experimental evaluation physical topology.

• What is the performance of NetSlice with respect to the state-of-the-art, for both

routing and IPsec?

• How efficient is the streamlining of individual NetSlices? To quantify this sce-

nario, we funnel all traffic to be handled by a single NIC queue. Since there is no

interference from the other CPUs and NIC resources, we evaluate a single commu-

nication channel in isolation. We refer to this scenario as receive-livelock [169],

even though it is not strictly identical to the original definition.

• What is the benefit of NetSlice batched send / receive operations?

• What is the performance of various choices of NetSlice peer CPUs placement?

• How does NetSlice scale with the number of cores?

• Can complex packet processors built with NetSlice deliver the advertised perfor-

mance increase?

5.3.1 Experimental Setup

We used the Cornell NLR Rings testbed topology 2.1.1 in the loopback configuration,

with several modifications. In particular, we deployed the testbed as depicted in Fig-

ure 5.4, with four Dell PowerEdge R900 machines serving as end-hosts that generate

and receive traffic. The traffic is aggregated by two Cisco Catalyst 4948 series switches,

113

instead of the original HP ProCurve 2900-24G switches, before being routed through

a pair of identical Dell PowerEdge R710 machines. We refer to the R710 machines as

the egress and the ingress routers. The egress and the ingress routers run various packet

processors, e.g. NetSlice, or RouteBricks [103].

Each R900 machine is a four socket 2.40GHz quad core Xeon E7330 (Penryn) with

6MB of L2 cache and 32GB of RAM—the E7330 is effectively a pair of two dual

core CPUs packaged on the same chip, each with 3MB of L2 cache. By contrast, the

R710 machines are dual socket 2.93GHz Xeon X5570 (Nehalem) with 8MB of shared

L3 cache and 12GB of RAM, 6GB connected to each of the two CPU sockets. The

Nehalem CPUs support hardware threads, or hyperthreads, hence the operating system

manages a total of 16 processors. Each R710 machine is equipped with two Myri-10G

NICs, one CX4 10G-PCIE-8B-C+E NIC and one 10G-PCIE-8B-S+E NIC with a 10G-

SFP-LR transceiver. Figure 5.1 depicts the R710 internal structure, including the two

NICs.

The egress router is connected to the ingress router through a 10 meter single-mode

fiber optic patch cable, and each router is connected to the corresponding switch through

a 6 meter CX4 cable. Two of the R900 machines are each equipped with an Intel

82598EB 10-Gigabit CX4 NIC, while the other two R900 machines are connected to

the switches through all of their four Broadcom NetXtreme II BCM5708 Gigabit Ether-

net NICs. We use the additional R900 machines, although the egress and ingress routers

only have one 10GbE connection on each side, since a single R900 machine with a

10GbE interface is unable to receive (in the best configuration) more than roughly 5Gbps

worth of MTU size (1500 byte packets) traffic. The packet rate (pps) for the R710 router

with the Myricom 10GbE NIC is roughly the same for small (64 byte) and MTU size

packets. The same observation applies for the R900 client with the Intel 10GbE NIC.

114

RouteBricks altered the NIC driver to increase the packet rate by performing batched

DMA transfers of small packets. We have not implemented this feature yet—it is not

clear this is possible on our Myricom NICs.

Unless specified otherwise, we generate traffic between the R900 machines with

Netperf [28] that consists of MTU size UDP packets at line rate (10Gbps). The ma-

chines run the Linux kernel version 2.6.28-17; we use the myri10ge version 1.5.1 driver

for the Myri-10G NICs and the ixgbe version 2.0.44.13 driver for the Intel NICs. Both

drivers support NAPI and are configured with factory default interrupt coalescence pa-

rameters. To enable RouteBricks, we modified the myri10ge driver to work in polling

mode with Click (we used Linux kernel version 2.6.24.7 with Click, the most recent

version supported).

All values presented are averaged over multiple independent runs, between as low

as eight and as high as 32 runs; the error bars denote standard error of the mean and

are always present, although most of the time they are sufficiently small to be virtually

invisible.

5.3.2 Forwarding / Routing

Figure 5.5 shows the UDP payload throughput for the most basic functionality—packet

routing with MTU size packets. We compare the NetSlice implementation with the

default in-kernel routing, a RouteBricks implementation, and with the best configura-

tions of pcap user-space solutions. In the absence of receive-livelock, NetSlice forwards

packets at nominal line rate (roughly 9.7Gbps for MTU packet size and MAC layer

overhead), as do the kernel and RouteBricks routing. However, the best pcap variants

top off at about 2.25Gbps. There is virtually no difference between regular pcap and

115

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

kernel
RouteBricks

NetSlice

Click user-space

pcap-mmap

pcap

T
hr

ou
gh

pu
t (

M
bp

s)

best configuration
receive-livelock

Figure 5.5: Packet routing throughput.

pcap-mmap, while Click user-space does in fact perform worse.

For each case, the Figure shows the additional scenario we previously described as

receive-livelock, when all traffic is sent to and handled by a single NIC queue. During

receive-livelock, the kernel achieves 7.59Gbps, while NetSlice achieves 74% of the ker-

nel throughput, while pcap-mmap achieves one fifteenth of the throughput achieved by

NetSlice, and about 7.6 times better than regular pcap. As expected, in-kernel variants

perform better since routing is performed at an early stage, and less CPU work is wasted

per dropped packet [169].

The take-away is that the NetSlice kernel to user-space communication channel is

highly efficient, even when a single CPU is used and receive-livelock ensues. Moreover,

using more than a single NetSlice easily sustains line rate—currently, our clients are not

able to generate more than 10Gbps worth of MTU-size packet traffic.

To quantify the performance benefits of the NetSlice batching send / receive op-

eration, we measured throughput for a single NetSlice. Figure 5.6 shows the packet

116

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

M
bp

s)

Batched send/receive number of I/O vectors

Figure 5.6: Routing throughput for a single NetSlice performing batched send / re-
ceive operations.

forwarding throughput for various number of I/O vectors (i.e., the number of pack-

ets sent/received during a single system call), in geometric expansion. The Figure

shows a 46.2% increase in aggregate throughput from singleton send / receive opera-

tions to 256 batched I/O vectors shuttled between user-space and the kernel in a sin-

gle operation, even though the kernel uses the fast system call processor instructions

(SYSCALL/SYSENTER).

Next, we evaluate the importance of the u-peer CPU placement. User-space process-

ing takes place on the u-peer CPU as part of the spatial partitioning that isolates indi-

vidual NetSlices. We used a single NetSlice to stress one communication channel that

handles all traffic in isolation. This means that only two tandem CPU cores are utilized,

hence the experiment only accounts for direct interference (e.g. cache coherency, cache

misses due to pollution) between the tandem CPUs of a single NetSlice—additional

indirect interference is expected in the general case. Figure 5.7 shows the throughput

given various core placement choices and the number of I/O vectors used for batched

117

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

M
bp

s)

Batched send/receive number of I/O vectors

no affinity
the same core
hyperthreads

on the same chip, but not hyperthreads
on different chips

Figure 5.7: Routing throughput for a single NetSlice and different choice of u-
peer CPU placement.

operations. There are several key observations. First, if the user-mode task does not use

the CPU affinity as instructed by NetSlice, the default choice made by the OS scheduler

is suboptimal. Moreover, the high error bars imply that the kernel does not attempt to

perform smart task placement. Indeed, the Linux scheduler is primitive in that it typi-

cally moves a task on the runqueue of a different CPU only if the current CPU is deemed

congested.

The second observation is that using the same CPU core for both in-kernel and user-

space processing performs the worst—there are simply not enough cycles to counter

the excessive overheads introduced by the context switches. Additionally, there is an

impedance mismatch between the task context and the in-kernel processing that happens

in a softirq context and is of strictly higher priority than the task. This scenario is

complicated further by the kernel’s per-CPU ksoftirqd threads that are spawned to

act as rate-limiters during receive-livelock scenarios in order to give the task the chance

to process packets.

118

The third observation is that same-chip and hyperthread placement outperform the

scenario in which the user-space processing happens on a different chip. This is con-

sistent with the memory hierarchy—i.e. accessing the shared L3 cache is faster than

accessing data over the QuickPath Interconnect inter-socket link. However, the gap

between same-chip and different-chip data access decreases considerably with the in-

crease in the number of I/O vectors. This is because the QuickPath Interconnect link is a

packet oriented point-to-point channel, which takes advantage of message passing opti-

mizations like batching and pipelined processing. Interestingly, batched processing also

improves the performance of user-space processing on the hyperthread—presumably

because the hardware threads still contend for functional units (like ALUs) within the

(shared) physical CPU core.

The best case is when the peer CPUs are on the same chip yet are not hyperthreads.

However, the Figure shows the scenario in which a single NetSlice is used, hence only

the peer CPUs are utilized, all the remaining cores are idle. In the general case, such a

placement choice is only viable when there is a lower number of NetSlices than there

are available CPUs. By default, NetSlice performs user-space processing on the sibling

hyperthread, if one is available. Moreover, having two sibling hyperthreads work on

different NetSlices would split the cache levels (higher than the LLC) into half.

5.3.3 IPsec

Next we experiment with IPsec encryption with 128 bit key (typically used by VPNs)—

a CPU intensive task. We implemented AES encryption in Cipher-block Chaining

(CBC) [45] mode of operation. Our experiments focused on steady-state performance

and the key-establishment protocol is not included in the evaluation.

119

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
bp

s)

of CPUs used

RouteBricks
NetSlice

Figure 5.8: IPsec throughput scaling with the number of CPUs (there are two peer
CPUs per NetSlice).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

M
bp

s)

of worker threads

pcap
pcap-mmap (max memory ring)

Click user-space

Figure 5.9: IPsec throughput for user-space / raw socket.

We use the IPsec application to evaluate how NetSlice scales with the number of

cores. IPsec accelerators typically need all the CPU cycles they can spare and two Net-

Slices proved sufficient to forward all the 10Gbps MTU-size traffic that our testbed was

able to generate. Figure 5.8 shows NetSlice scaling linearly with the number of CPUs,

120

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

RouteBricks

NetSlice

Click user-space

pcap-mmap

pcap

T
hr

ou
gh

pu
t (

M
bp

s)

best configuration
receive-livelock

Figure 5.10: IPsec throughput.

closely following RouteBricks. RouteBricks tops off at 9157Mbps, about 600Mbps shy

of achieving nominal line rate. NetSlice tops off at about 8011Mbps. We expect both

NetSlice and RouteBricks to continue to scale linearly given more cores. By contrast,

Figure 5.9 shows that the best of the userspace variants (with a dispatch thread load bal-

ancing packets to threads bound to CPUs exclusively) using pcap scale poorly. Hence,

they are unable to take advantage of the current technology trend towards placing many

independent cores on the same silicon die.

Figure 5.10 shows IPsec throughput results for the best configurations of NetSlice,

RouteBricks, and pcap user-space solutions. For each case, the Figure also shows the

additional scenario we previously described as receive-livelock (all traffic is sent to

and handled by one NIC queue). First, notice that the pcap variants top off at about

2250Mbps in the common case, with poor performance during receive-livelock. Nev-

ertheless, as with routing, the pcap-mmap does outperform conventional pcap during

receive-livelock. By contrast, NetSlice, like RouteBricks, vastly outperforms the user-

space variants. NetSlice yields better throughput than RouteBricks during receive-

121

livelock. This is because during receive-livelock, all traffic is routed to a single NIC

queue, which RouteBricks handles with a single CPU in kernel mode, whereas NetSlice

handles with a pair of CPUs, one running in kernel-mode and one running the user-mode

task.

The take away is that NetSlice scales with the number of available cores as good

as the in-kernel RouteBricks implementation does. By contrast, user-space implemen-

tations that use conventional raw sockets scale poorly. Finally, during a CPU intensive

task, NetSlice and RouteBricks vastly outperform the best user-space configurations that

rely on conventional raw sockets.

5.3.4 The Maelstrom Protocol Accelerator

Maelstrom [63] is a performance enhancement proxy developed to overcome the poor

performance of TCP when loss occurs on high bandwidth / high latency network links.

Maelstrom appliances work in tandem, each appliance located at the perimeter of the

network and facing a LAN on one side and a high bandwidth / high latency WAN link on

the opposite side. The appliances perform forward error correction (FEC) encoding over

the egress traffic on one side and decoding over the ingress traffic on the opposite side.

In Figure 5.4, for example, the egress and the ingress routers are running Maelstrom

appliances, with the egress router encoding over all traffic originating from the clients

on the same LAN and destined for the clients on the LAN behind the ingress router.

The ingress router receives both the original IP traffic and the additional FEC traffic and

forwards the original traffic and potentially any recovered traffic to original destination

nodes. In reality, each Maelstrom appliance works both as an encoder and as an decoder

at the same time.

122

The existing hand-tuned, in-kernel version of Maelstrom is about 8432 lines of C

code. It is self contained with few calls into the exported kernel base symbols. By

contrast, the NetSlice implementation required 934 lines of user-space C code, not

counting the NetSlice kernel module or the 263 lines of hash-table implementation.

For MTU size packets, NetSlice achieves a goodput of 6993.69± 35.7Mbps for a

throughput of 8952.04± 37.25Mbps. For the nominal FEC parameters we used (for

every r=8 packets we send c=3 additional FEC packets), there is a 27.27% overhead,

and we achieve close to maximum effective goodput—6993.69Mbps ×
(
1+ c

r+c

)
=

6993.69Mbps ×
(
1+ 3

11

)
= 8901Mbps.

Thus we have shown that highly complex protocol accelerators may be built atop

NetSlice. Such performance enhancement proxies run on commodity components and

scale with the number of cores to achieve line rates.

5.4 Discussion and Limitations

Building upon fwP, the NetSlice operating system abstraction enables high-speed scal-

able packet processors in user-space, while fully taking advantage of modern hardware

resources, like CPU cores and multi-queue NICs. We demonstrate NetSlice by show-

ing that complex user-space packet processors can scale linearly with the number of

cores and operate at nominal 10Gbps line speeds. Furthermore, unlike fwP, NetSlice is

portable, requiring only a simple modular addition at runtime like any device driver, and

it does not introduce an unfamiliar programming interface—instead, the NetSlice API

is backwards compatible with the socket API.

Nevertheless, the NetSlice design does have several drawbacks. First, NetSlice does

not employ zero-copy techniques to achieve portability, hence processors spend cycles

123

to copy packets between the kernel and the user-space protection domains, albeit only

once per packet and while packets are already in the last level of cache (LLC). Nev-

ertheless, as we argued in Section 5.2.2, Moore’s Law works in our favor since the

current semiconductor trend is to place an increasing number of cores on the same die.

In particular, a few spare CPU cores are sufficient to compensate for the cost of packet

copies, provided that data contention is kept to a minimum, which NetSlice does (see

Section 5.3).

Second, the NetSlice design relies on the hardware capabilities of modern 10GbE

network adapters, namely the hardware multi-queue support. More precisely, NetSlice

relies on the NICs ability to classify inbound (i.e., received) packets onto hardware

queues in a deterministic fashion, without the intervention from the host CPUs, or at

least without the host CPU intervention on the critical data path. For both devices we

employed in our experiments, the classification is performed by immutable opaque func-

tions, while for the Intel 10GbE adapter, the classification appears to be nondeterminis-

tic. The nondeterminism prevents us from building (efficient) packet processing middle-

boxes that work in tandem, like the ones exemplified in Section 2.4, while the inability to

change the functions potentially leads to pathological traffic imbalance. For example, all

the compressed traffic between the IPdedup packet processors (see Section 2.4) is clas-

sified to be received on the same hardware queue by the Myri-10G NICs. This occurs

because the IPdedup implementation encodes that a packet was diff-compressed in the

protocol field of the IP datagrams. Since the Myri-10G NIC does not recognize the IP

protocol, it will default to placing the traffic always on the first queue. (The NIC would

otherwise use the protocol field to infer other header fields used in the classification hash

function, e.g. TCP or UDP port numbers.)

Nevertheless, we believe that multi-queue NIC technology will continue to mature,

124

ultimately providing a means for loadable classification hash-functions. Our judgment

is based on the fact that multi-queue NIC support is aggressively driven by the cur-

rent foray of virtualization technologies into the datacenter environment as a means to

increase the network performance of guest virtual machines.

5.5 Summary

The end of CPU frequency scaling is ushering in a world of slow cores and fast networks.

The immediate impact of this trend is seen on networked systems, like packet proces-

sors, that need to process data at wire speeds. In this Chapter we demonstrated how to

achieve high data rates while performing packet processing in user-space. In particular,

we demonstrate how to reduce memory contention overheads and how to leverage the

parallelism intrinsic of modern hardware, like multi-core processors and multi-queue

network interfaces, to improve application packet processing performance. We present

NetSlice—a new operating system abstractions that embodies these techniques, and we

demonstrate that complex user-space packet processors built with NetSlice can scale

linearly with the number of cores and operate at nominal 10Gbps line speeds. Conse-

quently, developers may use NetSlice to build general purpose packet processing per-

formance enhancement protocols to ultimately improve the datacenter communication.

125

CHAPTER 6

RELATED WORK

6.1 Network Measurements and Characterization

There has been a tremendous amount of work aimed at characterizing the Internet at

large by analytical modeling, simulation, and empirical measurements. Measurements,

in particular, have covered a broad range of metrics, from end-to-end packet delay and

packet loss behavior [71, 89], to packet dispersion (spacing) experienced by back-to-

back packets [82], packet inter-arrival time [134], per-hop and end-to-end capacity,

end-to-end available bandwidth, bulk transfer capacity, achievable TCP throughput, and

other general traffic characteristics [91]. However, there has been little work aimed at

characterizing uncongested semi-private or dedicated networks [195], like modern opti-

cal lambda networks.

The need for instruments with which to perform such measurements has led to the

development of a myriad of tools [82, 141, 104, 105, 139, 190]. These tools are typically

deployed in an end-to-end fashion for convenience and often embody a tradeoff between

intrusiveness and accuracy [186]. For example, some tools rely on self-induced conges-

tion, while others rely on relatively small probes consisting of packet pairs or packet

trains. Tools like these have become essential and provide a solid foundation for mea-

surements; for example, we have saved significant time by working with (and extending)

the existing Iperf [204].

Internet measurements provide a snapshot of the characteristics of the network at the

time the measurements are performed. For example, in its early days, the Internet was

prone to erratic packet loss, duplication, reordering, and the round-trip time delays were

126

observed to vary over a wide range of values [193]. Today, none of these issues remain,

although other challenges have emerged.

Historically, networks have been characterized as they became available—

ARPANET, its successor, NSFNET [91, 134], and the early Internet [193] have all been

the focus of systematic measurements. Murray et al. [172] compared end-to-end band-

width measurement tools on the 10GbE TeraGrid backbone, while Bullot et al. [80]

evaluated the throughput of various TCP variants by means of the standard Iperf, over

high-speed, long-distance production networks of the time (from Stanford to Caltech, to

University of Florida, and to University of Manchester over OC-12 links of maximum

throughput of 622Mbps)—similar to the experiments in Section 3.2.3.

However, unlike our experiments, Bullot et al. [80] focused on throughput and re-

lated metrics, like the stability (in terms of throughput oscillations), and TCP behavior

while competing against a sinusoidal UDP stream. Although disregarding loss patterns

and end-host behavior, the authors did provide insight into how the txqueuelen pa-

rameter (i.e., the capacity of the backlog queue between the IP layer and the DMA

rx ring—currently made obsolete by NAPI) affects throughput stability. In particular,

larger values of the txqueuelen are correlated with more instability. An equally in-

teresting observation was that reverse-cross-traffic affects some TCP variants more than

others, since they alter ACK delivery patterns (e.g. ACK compression due to queue-

ing or loss). It is also worth noting that the authors performed a set of tentative TCP

performance measurements on 10Gbps links, using jumbo (9000-byte) frames.

By contrast, relatively few works have investigated the effect of traffic patterns on

end-hosts and their ability to handle such traffic, especially when connected to uncon-

gested lambda networks. Mogul et al. [169] investigated the effect of high data rate

traffic on the end-host, noting that a machine would live-lock and spend all available

127

cycles while handling the interrupt service routine as a result of packets being received,

only to drop these packets at the subsequent layer, and hence fail to make forward

progress. Consequently, NAPI [25] and on-board NIC Interrupt Throttling have been

widely adopted, to the point where they are enabled by default in vanilla kernels. On

the other hand, an interesting study looked at how “interrupt coalescence” (produced

by NAPI possibly in conjunction with Interrupt Throttling) hinders active measure-

ment tools that rely on accurately estimating packet dispersion to measure capacity and

available bandwidth [187]. Since the packets were time-stamped in user-space, context

switches at the receiver cause similar behavior as packet batching.

6.2 High-speed Long-distance Transport

TCP/IP is the de-facto standard for unicast communication, especially in datacenters,

where it makes up 99.91% of all network traffic [50]. However, TCP/IP does not work

well on networks with high bandwidth delay products, a fact that has been established

through analytical proofs as well as practical experience [150, 180]. Consequently, the

last decade has seen much research aimed at developing viable TCP/IP variants and

alternatives for high-speed long-distance networks. Some approaches like XCP [142]

have brought good results but require significant changes to the routing infrastructure.

Other approaches like TCP Vegas [75] or more recently FAST TCP [217] use delay as

a congestion signal. Still some approaches attempt to differentiate between loss caused

by congestion and non-congestion events, to enable TCP/IP to react appropriately by

cutting back on the window size only when congestion occurs [183, 112, 76, 50]. In a

similar vein, other TCP variants replace the ‘Additive Increase Multiplicative Decrease’

(AIMD) curve with more sophisticated control curves. For example, the TCP BIC [226]

protocol window resizing mechanisms alleviate problems that commodity TCP/IP has

128

with preserving fairness across flows with different window sizes and different RTTs.

TCP CUBIC [128] further improves on BIC’s fairness properties, factoring in the pas-

sage of wall-clock time while resizing the window to prevent the RTT of a flow from

influencing the growth of the congestion window.

A large body of research in high-speed data transfer has emerged from the efforts

of the e-science and grid computing communities, which were early adopters of high-

bandwidth long-haul networks for shuttling large data-sets between supercomputing

sites [77, 98, 113, 175]. A Grid is a set of distributed, networked, middleware-enabled

computing, storage, and visualization resources [144]. A LambdaGrid is a Grid in which

lambdas form end-to-end connections (lightpaths) among computing resources [77].

Many of these solutions replace TCP/IP with application-level protocols that operate

above UDP. For instance, SABUL [125] and Tsunami [166, 211] are application-level

flow control protocols that use UDP for the data plane and TCP for control plane. Simi-

larly, RBUDP [133] is an aggressive ‘blast’ protocol that attempts to send data over UDP

at the maximum constant rate the network will allow. An interesting alternative solu-

tion that does not require changing or eliminating commodity TCP/IP involves striping

application-level flows across multiple parallel TCP/IP flows, an idea first described in

PSockets [197].

Performance enhancing proxies were proposed in RFC 3135 [72] as a means to

enhance TCP/IP performance on specialized networks—such as wireless networks,

satellite networks, or long-distance links—without changing the end-host protocol

stack [207, 85, 171, 167].

129

6.3 Intra-datacenter Transport

Within a datacenter, new network architectures and protocols have also been recently

proposed: DCTCP [50], VL2 [123], Monsoon [124], SEATTLE [145], Portland [177],

DCell [127], BCube [126]. These are designed to solve recently identified problems,

such incast onset [102, 88, 185, 206] and increased round-trip time estimates measured

within virtual machine instances [212] (TCP acknowledgment offloading [140]).

6.4 Packet Processors

In practice, developers can implement high-speed packet processing applications today

in one of five ways. None of these explicitly take advantage of multi-core chips, nor do

they reduce memory pressure:

1. As runtime loadable modules—Writing kernel code demands a great degree of

sophistication from the developer. While modules allow for rapid compilation

and deployment of new functionality, they do not alleviate the difficulties of kernel

development.

2. As packet filters [73, 164]—Packet filters are extremely fast and highly optimized,

but are severely limited in the set of things they can do. Filters are typically state-

less and building arbitrarily complex functionality within them is almost impossi-

ble.

3. As safe kernel extensions—This requires using an extensible kernel like SPIN

[67] where the OS is written in a type-safe language. Most developers writing

high-performance applications are constrained to use commodity OSes and / or

conventional languages like C.

130

4. Using an embedded / real-time OS—Many commodity OSes provide a real-time

branch (e.g. RTAI [191] or PREEMPT RT [188]), used mostly in settings where

predictable real-time responses are required (e.g. to control traffic lights or indus-

trial laser welder). However, such OSes typically achieve real-time responsiveness

via strict scheduling mechanisms that sacrifice high throughput. Packet batching

techniques like NAPI [25] and device interrupt coalescence that significantly in-

crease network throughput are incompatible with such an operating system.

5. Using user level device drivers—This approach had little traction within main-

stream OSes, dismissed for severe performance degradation due to system

call, context switch, data copying, and event signaling overheads. Recent at-

tempts [153] try to alleviate the overheads of data copying, without addressing

the remaining issues.

A large body of research literature is also relevant to building high-speed packet proces-

sors in software:

Symmetric Multiprocessors (SMP) Early work on packet-level parallelism [174] has

found its way into commodity OSes like Linux in the form of interrupt balancing and

the per-CPU network stack. However, it has been well known that large scale cache

coherent—potentially NUMA—multiprocessors require careful operating system de-

sign, or else bottlenecks prevent the systems from reaching their performance potential.

Indeed, operating systems like Tornado/K42 [205, 149] have been carefully designed

to minimize contention by clustering and replicating key kernel data structures, and by

employing intricate scheduling algorithms that, for example, take NUMA locality into

account.

More recently, there have been several research efforts that aimed at redesigning the

131

OS from the ground up in order to effectively exploit the emerging and now ubiquitous

multi-core architectures. Corey [74] is an ExoKernel-like OS within which shared kernel

data structures and kernel intervention are kept to a minimum, while applications are

given explicit control over the sharing of resources. This allows the Corey kernel to

perform finer grained locking of highly accessed data structures, like process memory

regions. The Barrelfish research operating system [66] explores how to structure the OS

as a distributed system in order to best utilize future multi- and many-core, potentially

heterogeneous systems. Similarly, the Helios [176] operating system tackles building

and tuning applications for heterogeneous systems through satellite kernels. Satellite

kernels export a uniform set of OS abstractions across all CPUs and communicate one

with another by means of explicit message passing instead of relying on a cache coherent

memory system. The Tessellation OS [155] introduces a “nano-visor” to enforce strict

spatial and temporal resource multiplexing between library OSes. To ensure resource

isolation, the Tessellation OS envisions hardware support for resources that have been

traditionally hard to share, like caches and memory bandwidth.

By contrast, fwP focuses on the network stack and high-performance packet process-

ing, and has the orthogonal goal of minimizing memory pressure, including the effects

of locking due to cache coherency. Like the Tessellation OS, NetSlice performs spa-

tial partitioning of resources at coarse granularity, in particular, it partitions the CPU,

memory, and multi-queue network interface controller (NIC). However, the NetSlice

partitioning is domain specific, and the performance isolation need not be strongly en-

forced, instead it is implicit by the design of the NetSlice abstraction itself.

Zero-Copy Architectures Historically, there have been a large number of zero-copy

user-space network stacks proposed [182, 118, 56, 209, 208, 69, 106, 181]. Their gen-

eral approach was to eliminate the OS involvement on the communication path, and

132

virtualize the NIC while providing direct, low-level access to the network. Some of

these approaches relied on hardware support. For example, U-Net [208] and its com-

mercial successor VIA [108, 61], required a communications co-processor capable of

demultiplexing packets into user-space buffers, and an on-board MMU (Memory Man-

agement Unit) to perform RDMA (Remote DMA) [52]. The former is not available on

typical commodity Fast Ethernet NICs, and as a result U-Net/FE [218] requires an extra

copy for every received frame, as well as a system call to send every packet. A further

obstacle to this approach is the inability of current modern IOMMUs to handle page

faults [117]. VIA over Gigabit Ethernet has enjoyed success in the cluster computing

community, though still relying on a specialized chipset [61].

Other techniques relied on virtual memory and page protection techniques to im-

prove performance by avoiding unnecessary copies. Fbufs [106] introduced copy avoid-

ance techniques across protection boundaries by using immutable buffers, and IO-

Lite [181] described the composition of these buffers. Brustoloni et al. [78, 79] used

virtual memory mechanisms in conjunction with a set of new techniques, like input-

disabled page-out, to provide high performance I/O with with emulated copy semantics

over the write/read API. However, on demand memory mapping of shared buffers

is particularly tricky and can be unnecessarily expensive; as a result, such techniques

are yet to be adopted by mainstream kernels.

Importantly, zero-copy techniques were proposed in the context of single proces-

sor machines and do not explicitly handle memory contention. Additionally, they were

targeted at general end-host applications and did not allow the zero-copy interface-to-

interface forwarding central to packet processing applications. By contrast, fwP per-

forms an additional copy in L2 cache, taking advantage of locality while harnessing

the aggregate horsepower of multiple cores. NetSlice is orthogonal to past work that

133

relocated the network stack into user-space; further, NetSlice does not use zero-copy

techniques since currently, as our evaluation shows, they were not necessary.

Packet Routing / Processing Software routers Achilles’ heel has been, and continues

to be, the low performance with respect to their hardware counterparts. Nevertheless,

recent efforts, like RouteBricks [103], have shown that modern multi-core architectures

and multi-queue NICs are well suited for building low-range software routers, albeit

in kernel-space. RouteBricks relies on a cluster of PCs fitted with Nehalem multi-core

CPUs and multi-queue NICs, connected through a k-degree butterfly interconnect. Pack-

ets are forwarded / routed at aggregate rates of 24.6Gbps per PC, however, the intercon-

nect routing algorithm introduces packet re-ordering.

Internally, RouteBricks uses the Click [147] modular router—an elegant framework

for building functionality from smaller building blocks arranged in a flow graph. How-

ever, Click is aimed at building routers and does not easily express general packet pro-

cessing; e.g., it cannot support global state that extends across building blocks. Net-

Tap [69] was specifically designed to support building packet processing applications

like routers and bridges in user-space. NetTap modified the BSD kernel to allocate all

mbufs (the data structure holding frames) from a single pinned region, which can be

mapped into application address space; however, the interface fails to address synchro-

nization between modern SMP kernel and user-space threads and safe mbuf reclaiming.

Active networks [203] proposed that routers run arbitrary code as instructed by

untrusted packets—for example, packets may carry code that would decide how they

should be routed. By contrast, fwP and NetSlice both require a trusted user to alter the

packet processing performed by a router.

Both fwP and NetSlice can be effectively used to provide rapid prototyping of Open-

134

Flow [165] forwarding elements. For example, the current reference NetFPGA [157]

implementation is limited to four 1GbE interfaces, whereas NetSlice is only limited by

the number of CPUs and PCIe connections a commodity server can support. Moreover,

developers need not have intimate Verilog knowledge, or worry about details such as

gateware real-estate.

In general, software routers are implemented within the kernel, early in the network

stack and below the (raw) socket interface. Full blown software routers like Route-

Bricks [103] may require distributed coordination algorithms to decide interconnect

forwarding paths [49]. By contrast, fwP and NetSlice provides support for user-space

implementation of individual packet processing units, independent of interconnects.

Therefore, complex packet processing logic, like multi-dimensional packet classifica-

tion [159] or the RouteBricks’ distributed coordination may be seamlessly built using

fwP and NetSlice (note that fwP and NetSlice elements do not introduce packet re-

ordering, which may otherwise severely cripple the performance of TCP).

Packet Capture Tools The PACKET MMAP socket option [33] is an extension to raw

PF PACKET sockets that allows receiving packets onto a size configurable circular

buffer mapped by the user-space application. Optionally, packets may also be enqueued

on the socket buffer, subject to the kernel global limits. The user-space application can

then poll the arrival of new packets, at which point packets can be received without

the cost of issuing an additional system call per packet. The same net effect of this

is achieved by the NetSlice batching read operation, however unlike NetSlice batched

transmit, PACKET MMAP sockets do not offer the same support for outbound packets,

which means they do not facilitate interface-to-interface forwarding. Moreover, it is

important to note that PACKET MMAP sockets do not provide zero-copy receive—each

packet is copied the same number of times as with a traditional socket. Importantly,

135

PACKET MMAP sockets suffer the same performance debilitating symptoms as regular

raw sockets our evaluation shows in Section 5.3.

Zero-copy packet capturing tools like nCap [100] map the NICs descriptor rings

and frame buffers into the application’s address space. There are several issues with

this approach—it requires a device-specific rewrite of the device driver, which in turn

has to coordinate with a user-space library. Also, there is no efficient, general way of

delivering events to the application (e.g. interrupt delivery). Likewise, since nCap takes

exclusive control of the interface, demultiplexing packets to applications is expensive

(requiring copy or memory re-mapping). Moreover, it needs the tight cooperation of the

kernel scheduler, otherwise the user-space application may miss DMA traffic [73, 96].

In general, packet capture tools are not designed for building packet processing ap-

plications and interface-to-interface forwarding is an inefficient operation, often requir-

ing a copy and a system call per message, and are excessively costly in a multi-core

environment due to locking and scheduling effects.

Inter-process Communication (IPC) Circular buffers have been used for decades to

relay data between producers and consumers, typically in cases where dynamic memory

allocation is infeasible; e.g., NIC ring buffers, hypervisor ring buffers [213, 65], belt-

way buffers [94] for packet filters [73], and so on. The fwP buffers are different than

vanilla circular buffers in that they consist of a tandem of tightly coupled circular buffers

holding pointers to frame buffers. This enables operations like atomic pointer swapping

between the rings, thus enabling zero-copy receive, in-situ processing, and forwarding

of packets.

Lightweight RPC [68] proposed a mechanism that used a stack handoff technique

for passing arguments, using a call-by-value return semantics, where the caller thread

136

continued in the callee context. This is not always an option when the kernel does an

upcall into user-space. Also, the assumption was that most communication is simple,

involving few arguments and little data, which is hardly the case with network frames.

137

CHAPTER 7

FUTURE WORK AND CONCLUSION

7.1 Future Work

The network has become a core component of the datacenter ecosystem, some may go

as far as claiming that the “network is the distributed operating system.” In the future,

we wish to provide datacenter operators and developers with systems and services that

allow them to control and leverage the next-generation network of datacenters. We ex-

pect these systems to harness the modern commodity hardware designs, like multi-core

processors and high speed network adapters, and leverage lambda network pathways

that connect peer datacenters. Furthermore, due to the enormous scale at which a net-

work of datacenters operates, power awareness and fault-tolerance will be first-class

design principles. We plan to start by addressing the following key challenges: (i) How

to leverage the new packet processing abstractions to extend and improve the datacenter

network substrate? (ii) How to perform “ground-truth” accurate network measurements

to reveal the underlying characteristics of lambda networks? (iii) How to utilize the net-

working substrate effectively, that is currently power-hungry yet largely underutilized?

(iv) How to tolerate varying degrees of faults automatically, within and across datacen-

ters? (v) How to strike a balance between processing speed and energy utilization for

the applications resident in the datacenter?

Extensible router and packet processing support is key to enabling and improving the

next generation datacenter networking. Accordingly, we plan to provide NetSlice as an

alternative, more flexible, forwarding element for emerging network technologies—like

OpenFlow [165], RouteBricks [103], and PortLand [177]—which depend heavily on

extensible router or extensible switch support. Currently, OpenFlow and PortLand rely

138

on NetFPGA [157] hardware for their reference implementations, whereas RouteBricks

relies on the in-kernel Click [147] software modular router to perform packet forward-

ing. Using NetSlice instead would ease the developer burden considerably, and it would

provide much needed fault-isolation. For example, with RouteBricks we plan to replace

Click forwarding elements with NetSlice forwarding elements, while maintaining the

original distributed coordination algorithm that decides packet forwarding paths along

the interconnect. Furthermore, there are a large number of user-space applications and

tools that are currently built using the raw socket. Such tools would greatly benefit from

the performance improvement provided by the NetSlice and fwP abstractions. A notable

example is the Packet CAPture (PCAP [38]) library that is the de-facto interface used

by developers in general to build various flavors of network protocol and traffic analyz-

ers [221, 198]. In the near future, we plan to provide support for the PCAP library built

atop NetSlice. This would enable conventional applications that relied on PCAP to be

seamlessly ported and take advantage of NetSlice in a transparent fashion.

Existing Internet measurement methods and conventional wisdom does not always

apply in the newly emerging fiber-optic world. As we have shown in Chapter 3, even

in an uncongested lambda network, packets can be lost, inter-packet spacing disrupted,

and other issues arise. Only by understanding the causes of these phenomena can we de-

velop accurate network models that would enable the development of new protocols to

overcome the problems. Yet, existing tools, measurements, and experimental method-

ologies do not provide the high-resolution timings needed for creating those accurate

models. In fact, end-host network measurement software on commodity hardware had

completed masked the phenomena that we observed and now attribute to causing packet

loss in a lightly loaded fiber-optic network [115, 163]. In order to characterize lambda

networks and understand how the physical layer impacts the performance of the rest

of the networking stack, we have recently designed and developed a software defined

139

network adapter (SDNA) [115] apparatus. The SDNA is a high-precision instrumenta-

tion apparatus to enable generation of extremely precise network traffic flows, and their

capture and analysis. With SDNA, we can generate and acquire analog traces in real-

time directly off optical fiber, using typical physics laboratory equipment (oscilloscopes,

lasers, etc.) and an off-line software (post-/pre-)processing stack. SDNA achieves six

orders of magnitude improvement in timing precision over existing software end-host

measurements and two to three orders of magnitude relative to prior hardware-assisted

solutions. We plan to conduct network experiments using SDNA in various controlled

environments and diverse network settings, like the Cornell NLR Rings testbed, to an-

swer interesting questions such as: Under what conditions does a steady stream of pack-

ets degenerate into packet convoys and what is the expected length of packet convoys

based on the length of a path in an uncongested lambda network?

Energy utilization in modern datacenters has recently received an enormous amount

of attention because of the growing importance of leaner operational budgets and long-

term environmental impact. We also plan to explore power saving opportunities across

the entire spectrum of components, and at various layers. For example, current network

protocols and equipment were not designed with power awareness in mind, hence they

are not always efficient. Particularly, wired networks, like 10GbE, send bit-streams con-

stantly on the wire at the maximum symbol rate, consisting of mostly idle symbols and

the occasional data packet sandwiched in between. This means that network elements

are expending energy to encode symbols that are useless idles into frames, and likewise

expend energy to decode frames into symbols that are predominantly useless idles.1 The

SDNA apparatus allows us to rapidly prototype and implement in software new phys-

ical medium dependent (PHY) layers. We intend to leverage the SDNA apparatus to

investigate and explore the feasibility of alternative power efficient PHY layers.

1Except for the time intervals during which packets are sent at a sufficiently high data rate so as to
have small inter-frame gaps consisting of idle symbols.

140

The sheer scale at which a network of datacenter operates makes failures a common

and frequent event [119, 97, 87]. However, mirroring or replicating data at a remote

location is highly sensitive to the latency between the sites. Consequently, many orga-

nizations trade off the safety of their data for performance. To offer stronger guaran-

tees on data reliability without sacrificing performance, we designed and developed the

Smoke and Mirrors File System (SMFS) [215]. The SMFS design relies on a packet

processing middlebox at the perimeter of the site, or datacenter, which further increases

the reliability of the high-speed optical link by introducing proactive redundancy (e.g.,

Forward Error Correction [63]) at the network level in addition to the transmitted data.

Furthermore, the middlebox sends feedback to end-hosts which makes it possible for a

file system (or other applications) to respond to clients as soon as enough recovery data

has been transmitted to insure that the desired safety level has been reached (e.g., if the

link’s reliability is the same as that of a local disk). Using this new mirroring mode,

which we named network-sync, SMFS effectively hides the latency penalty incurred

over long distance links due to the limit on the wave propagation speed of a transmis-

sion medium. We are beginning to think on ways to enable heavier weight fault-tolerant

protocols [84, 151, 86] that can similarly benefit from using packet processing middle-

boxes to improve performance.

Since power consumption in the datacenter is of paramount importance, we are cur-

rently designing a storage system for the datacenter that aims to save power by signif-

icantly reducing the number of disks that are kept spinning. We plan to leverage the

intrinsic parallelism of commodity servers to achieve high levels of performance within

a given power envelope. More precisely, we are exploring how to generalize NetSlice’s

spatial partitioning approach to disk hardware resources—DiskSlice. In particular, we

envisage a storage system to have different slices, or DiskSlice execution contexts, work-

ing independently on different data while accessing separate hardware resources. This

141

paradigm naturally fits a RAID mirroring scheme, with cross-slice communication oc-

curring off the critical path—typically only during the rebuild phase of the RAID array,

or during journal log cleanup. Our approach is to use DiskSlice to overlay a log ab-

straction over a fault-tolerant mirrored multi-disk storage array. Consider for example

such a storage system on top of ten disks, of which five are used as primaries and five

as mirrors (typical of a RAID 1 mirroring scheme without parity or striping). A log

structured storage system writes only to the log head, hence it continuously writes to

the same two disks for long periods of time (for as long as it takes to fill these disks).

Therefore, DiskSlice has the opportunity to power down the four remaining mirror disks.

Read requests are served from the primary disks that are still powered up, trading off

read throughput for power savings. Further, periodically cleaning up the tail of the log,

which requires spinning up the mirror disks, is not on the critical path, so the storage

system may incur the large latency penalty hit due to powering up disks on demand.

Importantly, the storage system ensures stable read and write throughput even during

log cleanup. In particular, stable write throughput is achieved since the head and the

body of the log are placed on different disks, while stable read throughput is ensured by

serving reads from one mirror while the other is being cleaned.

7.2 Conclusion

The modern datacenter has taken the center-stage as the dominant computing platform

that powers most of today’s consumer online services, financial, military, and scientific

application domains. Further, datacenters are becoming a commodity themselves, and

are increasingly being networked with each other through high speed optical networks

for load balancing (e.g. to direct requests to closest datacenter and provide a localized

service) and fault tolerance (e.g. to mirror data for protection against disaster scenarios).

142

Consequently, virtually every operation within and between datacenters relies on the

networking substrate, making the network a first class citizen.

Despite the fact that the network substrate is such an indispensable part of the da-

tacenter, applications are unable to harness it to achieve the expected levels of perfor-

mance. For example, although long distance optical lambda networks have sufficient

bandwidth, are dedicated for specific use, and operate with virtually no congestion [29],

end-hosts and applications find it increasingly harder to derive the full performance they

might expect [154, 46, 150, 180]. The end-to-end characteristics of commodity servers

communicating via high-bandwidth, uncongested, and long distance optical networks—

typical of inter-datacenter communication—have not been well understood [163].

Consequently, in order to enhance the network substrate, new network protocols are

being constantly developed to stitch together commodity operating systems, previously

designed for conventional stand-alone servers, and to provide efficient large-scale co-

ordinated services. However system support for building network protocols in general,

and packet processing network protocols in particular, continues to lag. Developers are

typically forced into trading off the programmability and extensibility of commodity

computing platforms (e.g. general purpose servers with several network interfaces) for

the performance (in terms of data and packet rate) of dedicated, hardware solutions.

The emerging network of datacenters, and the datacenters themselves, require proper

abstractions that allow developers to build network protocols which power the next gen-

eration of online services. This thesis takes a step towards addressing this gap. First,

the thesis provides a study of the properties of commodity end-host servers connected

over high bandwidth, uncongested, and long distance lambda networks. We identify

scenarios associated with loss, latency variations, and degraded throughput at the at-

tached commodity end-host servers. Interestingly, we show that while the network core

143

is indeed uncongested and loss in the core is very rare, significant loss is observed at

the end-hosts themselves—a scenario that is both common and easily provoked. There-

fore, conventional applications find it increasingly harder to derive the expected levels

of performance when communicating over high-speed lambda networks.

Second, the thesis shows how packet processors may be used to improve the per-

formance of the datacenter’s communication layer. Further, we show that these perfor-

mance enhancement packet processors can be built in software to run on the commodity

servers resident in the datacenter and can sustain high data / packet rates.

Third, and last, the thesis extends the operating system with new abstractions that

developers can use to build high-performance packet processing protocols in user-space,

without incurring the performance penalty that conventional abstractions engender. Im-

portantly, these new operating system abstractions allow applications to achieve high

data rates by leveraging the parallelism intrinsic of modern hardware, like multi-core

processors and multi-queue network interfaces. In particular, we demonstrate that the

performance of packet processors build with these abstractions scales linearly with the

number of available processor cores.

144

APPENDIX A

BACKGROUND ON COMMODITY PROCESSOR ARCHITECTURES

Commodity servers, and most general and special purpose computers are designed

based on the von Neumann architecture [135]. In the von Neumann architecture (de-

picted in Figure A.1), the central processing unit (CPU) uses a single separate memory

store—typically volatile random access memory (RAM)—to hold both instructions of

programs and the data the programs operate on. Peripheral devices are also separate

from the processor and are accessed by the CPU either through port-mapped or memory-

mapped input/output (I/O). Port-mapped I/O requires CPUs to use a distinct category of

instructions for performing I/O, whereas memory-mapped I/O allows CPUs to read and

write to devices by simple memory access at pre-assigned addresses. Most modern de-

vices have memory-mapped controllers. This strict separation between the processor

and the memory has led to the von Neumann bottleneck [214, 59], which is expressed

as the limited throughput (or data transfer rate) between the CPU and the memory, when

compared to the total amount of memory.

In practice, the von Neumann bottleneck has been aggravated by the physical lim-

itations of current semiconductor technology: the inability of memory access times to

keep up with CPU frequency increases. With every new processor generation, single

CPU speed and memory size have both increased at a rate that far outpaced the increase

in (external) memory throughput. Therefore, the data transfer rate between memory and

CPU is significantly smaller than the rate at which a CPU operates, which severely limits

the efficiency of programs that access memory often, e.g. programs that perform basic

instructions (little computation) on large volumes of data, especially if the data is only

needed for brief periods of time. In such cases, the CPU will continuously stall (i.e. idly

wait) while data is being transferred to and from the main memory. This problem has

145

Processor (CPU)

Control

Unit

Arithmetic

Logic

Unit

Memory

(RAM)
Input Output

Figure A.1: Diagram of von Neumann architecture.

been named the memory wall.

There are several common mechanisms that alleviate the memory wall bottleneck.

However, the fundamental problem remains. The most common mechanism has been

to provide caches that are smaller than main memory and also are faster to access than

main memory is. Typically there are a hierarchy of caches, with the smallest cache being

the fastest and the closest to the CPU and the largest cache being the slowest and the

farthest . (Currently, caches are situated on-chip, but in the past off-chip caches were

commonplace.) For example, modern CPUs may have a split level-1 (L1) cache with a

capacity for 32KB of instructions and 32KB of data, a unified 256KB L2 cache, and a

unified 8MB L3 cache. Split data and instruction paths—as implemented by typical L1

caches (and reminiscent of the Harvard architecture [135])—are also a mechanism for

improving the CPU-to-memory throughput, as are pipelined, superscalar, out-of-order

execution logic components, and complex branch prediction units.

For example, a pipelined processor design, depicted in Figure A.2, splits the proces-

sor operation into stages, and each stage works on one instruction at a time, per time

unit (or cycle). This technique increases the throughput of instructions retired (that have

146

MEMEXIDIF

MEM WBEXIDIF

MEM WBEXIDIF

MEM WBEXIDIF

MEM WBEXIDIF

time

instruction

stream

IF=Instruction Fetch
ID=Instruction Decode
EX=Execute
MEM=Memory access
WB=Register write back

MEM

EX

ID

IF

WB

Figure A.2: Canonical five-stage pipeline in a processor. Shown in the gray
(shaded) column, the earliest instruction in the WB (register write
back) stage, and the latest instruction being fetched (IF).

been executed) per cycle, by utilizing the functional units in parallel, on subsequent

instructions. A superscalar processor may execute more than one instruction during

a clock cycle, by simultaneously dispatching multiple instructions to redundant func-

tional units. For example, a simple superscalar design is achieved by duplicating the

pipeline stages in Figure A.2. Additionally, an out-of-order execution engine may dis-

patch instructions that were fetched more recently instead of older ones, based on the

availability of the instructions’ input operands. By preventing the pipeline from stalling,

due to input operand unavailability, the CPU throughput, in terms of retired instructions

per cycle, is increased.

However, instruction level parallelism techniques (ILP) like superscalar, pipelined,

and out-of-order execution have themselves hit the ILP wall—the increasing difficulty

of extracting sufficient parallelism from a single instruction stream to keep a single

processor from stalling. Moreover, single CPU frequency scaling has ceased due to the

physical limitations of current semiconductor technology (the transistor leakage current

increase which leads to excessive energy usage and heat dissipation that in turn requires

large amounts of energy for cooling)—also known as the power wall. For that reason,

the industry has shifted to relying on (von Neumann) systems with multiple processor

147

cores (currently on the same chip) to continue to ride Moore’s Law. Moore’s Law states

that the number of transistors that can be placed inexpensively on an integrated circuit

has doubled approximately every two years.

Though in the past, symmetric multiprocessor (SMP) systems (systems equipped

with two or more identical CPUs) were uncommon for commodity computing devices—

being used mostly by high-end computing systems—the recent advancements in semi-

conductor technology, and the power wall, made them affordable. Moreover, the current

trend of placing multiple CPU cores on the same chip means that a SMP system can be

built in an integrated fashion at a lower cost. For example, the Intel Nehalem commod-

ity processors used in the experimental setup described in Section 5.3 are each equipped

with two quad-core CPUs (i.e. there are two distinct CPU chips, and each chip has

four independent processing cores). Further, certain CPUs provide several virtual hard-

ware processors per core (a technique called hyperthreading). With hyperthreading,

each core may provide a pair of virtual processors by duplicating certain sections of the

processor—those that store the architectural state, e.g. the registers as defined by the

instruction set—while sharing the main functional / execution units (e.g. the floating

point unit) and all levels of cache. Should hyperthreads not contend for the same func-

tional resources, and should the instruction fetch unit be capable of issuing more than

one instruction per cycle, hyperthreads may execute simultaneously. There is a tradeoff

in that all hyperthreads of the same core would be executing on the same shared caches,

potentially increasing the cache miss rate for all via cache pollution.

Nevertheless, the problem with such commodity multicore architectures is that they

do not alleviate the von Neumann bottleneck, instead they aggravated it further. This is

because in an SMP system, multiple processors are competing for the bandwidth to the

same memory banks, hence multiple CPUs may starve for data at the same time. For

148

CPU

1

Southbridge

RAM

PCIe SATA
USB

FSB

CPU

2 Memory

controller

Northbridge

Figure A.3: Diagram of dual-CPU commodity system with front-side bus (FSB).
The peripheral devices are connected to the Southbridge, which acts
as an I/O hub. The Southbridge is in turn connected to the North-
bridge. The figure depicts the Southbridge with the following inter-
faces: Peripheral Component Interconnect Express (PCIe) bus (e.g.
to attach high speed 10GbE network cards), Serial Advanced Tech-
nology Attachment (SATA) bus (e.g. to attach mass storage devices
such as hard disk drives), and Universal Serial Bus (USB).

example, until recently, the most common commodity architecture connected all proces-

sors with the memory through a single shared-bus, named the front-side bus (FSB)—

Figure A.3 depicts such an architecture with two processors.1 The memory controller

(in this case a single entity within the Northbridge) serializes the accesses amongst the

many CPUs that compete for the FSB’s bandwidth. Furthermore, since more CPU chips

have distinct cache hierarchies, a cache coherency protocol must also be implemented

over the FSB, so that all processors have a consistent view of the entire physical mem-

ory address space. While a single multi-core chip implements internally the cache co-

herency mechanism, multiple chips are required to participate in a coordinated protocol.

Describing the precise cache coherency protocols most commonly used today (i.e. the

Modified-Exclusive-Shared-Invalid, or MESI, protocol) is beyond the scope of this dis-

sertation, however, the underlying mechanism ensures that if a CPU modifies a memory

1This is a simplistic description that does not consider the chipset’s North and South-bridge by which
the CPUs are connected to memory banks as well as peripheral devices. Nevertheless, these details do
not alter the argument.

149

CPU

1

Southbridge

CPU

2

CPU

3

CPU

4

RAM

RAM

RAM

RAM

PCIe SATA
USB

to Southbridge Memory

controller

Figure A.4: Diagram of quad-CPU commodity system with integrated memory
controllers (note the Northbridge is lacking) and point-to-point inter-
connects between the processors. The figure depicts the Southbridge
(also known as the I/O hub) with the following interfaces: Periph-
eral Component Interconnect Express (PCIe) bus (e.g. to attach high
speed 10GbE network cards), Serial Advanced Technology Attach-
ment (SATA) bus (e.g. to attach mass storage devices such as hard
disk drives), and Universal Serial Bus (USB).

location in its local cache, then the new value is propagated to all other caches that

contain the same memory location.

The cache coherency protocol is run implicitly by modern hardware, for all but a

rare few, esoteric, experimental processors, thus consuming FSB bandwidth whenever

multiple processors access the same memory locations. Consequently, a performance

penalty for running the cache coherency protocol is incurred every time two or more

processors coordinate amongst themselves. This is due to the fact that shared memory

is the principal mechanism by which processors communicate. (Inter-processor inter-

rupts, or IPIs, are another mechanism, however they are used much more infrequently

and for very specific operating system tasks, like translation lookaside buffer (TLB)

shootdowns.)

150

Most recently, commodity multicore architectures (like Intel Nehalem) have adopted

a technique that multiprocessor supercomputing designs of the 1980s and 1990s have

used to improve CPU-to-memory throughput. In particular, each physical processor

is equipped with separate memory banks and an integrated on-chip memory controller

to avoid the performance penalty incurred when multiple processors access the same

memory. This technique, depicted in Figure A.4, is called non-uniform memory access

(NUMA), and it has the potential to mitigate the memory contention amongst CPUs,

provided that each CPU works on data that resides in its nearby physical memory. To

access memory that is “remote” to a CPU, NUMA architectures employ additional hard-

ware (and sometimes software as well) to shuttle data between memory banks. Access-

ing remote memory to a CPU is a slower operation, and may slow down the remote

CPU as well, since each CPU is integrated with a corresponding memory controller.

Furthermore, virtually all NUMA architectures are cache-coherent (although, notably,

Intel’s Single-chip Cloud Computer research microprocessor was recently developed

to explore a design that forgoes hardware cache coherency [92]), therefore there ex-

ists additional hardware support for maintaining memory consistent amongst caches.

Typically, a single mechanism is used both to move data between CPUs and to keep

their respective caches consistent, and recent commodity implementations (like Intel’s

QuickPath Interconnect or AMD’s HyperTransport) do so by using point-to-point (and

packet oriented) links between the distinct cache controllers.

151

APPENDIX B

NETWORK STACK PRIMER

We describe the path of a network packet, from the time it is received by a modern

(interrupt driven) NIC until it is delivered to user-space applications by a conventional

SMP network stack. We also briefly discuss the conventional mechanisms available for

building packet processors in user-space—the raw socket and BSD Packet Filter [164]

(BPF) / Linux Socket Filter (LSF). (There are typically two types of raw sockets that

can be used to build packet processors, namely the PF PACKET and the SOCK RAW.)

The raw socket and the BPF are the underlying mechanisms traditional applications like

software routers and packet capture libraries like tcpdump / pcap [38] are built with.

Due to the power wall (see Appendix A for a comprehensive description), major

processor vendors have focused on increasing the number of independent CPU cores

per silicon chip, instead of increasing the performance of individual processor cores. By

contrast, the data rates of network adapters have continued to increase at an exponential

rate—for example, 10GbE commodity NICs are now commonplace. This means that a

single core handling traffic at line speed from a single high speed interface has few, if

any, cycles to spare. Device interrupt coalescence, NIC offload capabilities, like large

receive offload (LRO), generic receive offload (GRO), TCP segmentation offload (TSO),

and kernel NAPI [25] support prevent the early onset of receive-livelock [169] (too many

packets overwhelm the receiver which becomes unable to do useful work). However,

they do not solve the underlying problem, namely how to take advantage of the aggregate

CPU cycles of all available cores to service network traffic from multiple fast network

interfaces. For example, if many CPUs are used to service the same NIC resources, the

contention overheads would be prohibitively expensive [103].

Consequently, multi-core scaling has driven vendors to introduce multi-queue NIC

152

hardware. A NIC with multi-queue capabilities can present itself as a virtual set of M

individual NICs (for some maximum arbitrary value of M, as specified by hardware de-

sign). The typical multi-queue NIC has the ability to classify the inbound traffic through

an opaque hardware “hashing function” to determine the corresponding destination re-

ceive (rx) queue for each individual packet (the hashing typically ensures that packets

belonging to the same flow, e.g. TCP, are classified into the same queue). Once a des-

tination rx queue is chosen, the NIC transfers the packets via Direct Memory Access

(DMA), before issuing message signaled interrupts (MSI/MSI-X) to prompt a receive

event solely for the chosen rx queue. If the hardware decides which NIC rx queue to

place the received packets onto, the software is responsible for classifying packets to

be placed on NIC transmit (tx) queues. The kernel uses a driver-specific hash function

for classification if one is provided, or the generic simple tx hash function other-

wise. In the latter case, the kernel makes no assumption about the underlying device

capabilities, hence the classification may be suboptimal.

Upon receiving a packet, the NIC issues an interrupt to some CPU—for clarity,

we omit batched processing techniques like NAPI [25] or NIC Interrupt Throttling.

The interrupted CPU executes the interrupt service routine, also known as the top-half,

which performs minor book-keeping (e.g. enqueue received packet, update NIC mem-

ory mapped registers), schedules a corresponding bottom-half execution context to run,

and terminates. The bottom-half runs exclusively on the CPU that executed the top-half,

hence there are as many bottom-halves of same type running concurrently as there are

CPUs receiving interrupts.

Next, the in-kernel network stack passes each packet through two lists of protocol

handlers, the first list contains handlers for generic packets, while the second list con-

tains handlers for specific packet types, e.g. Internet Protocol (IP) packets. Protocol

153

handlers register themselves either at kernel startup time or when some particular socket

type is created. For example, issuing a socket(PF PACKET, socket type,

protocol) system call registers the socket’s default handler either to the specific,

or the generic list (if the protocol field is ETH P ALL). Each of the handlers proceeds to

perform additional processing, e.g. TCP or UDP demultiplexing, enqueues the packet

for user-space delivery, and wakes up the receiving application before returning. Addi-

tionally, the received packets may be filtered based on various criteria by installing BPF

filters on the sockets.

154

APPENDIX C

GLOSSARY OF TERMS

• Address space: The range of discrete addresses, each of which may correspond

to physical or virtual memory, disk sector, peripheral device, or other logical or

physical entity. See also virtual memory, process, kernel, disk storage, random

access memory, peripheral device.

• Amdahl’s law: The speedup of a program using multiple processors in parallel

computing is limited by the time needed for the sequential fraction of the program.

In particular, if a fraction P of the overall computation can be sped up through

parallelism by a factor of S, then the overall speedup of the entire computation,

including the fraction (1−P) that cannot be sped up (parallelized), is 1
(1−P)+ P

S
.

• Application program: Computer program that runs in user-space. See also

computer program, user-space.

• Application programming interface (API): Interface implemented by a com-

puter program which enables it to interact with other computer programs. See

also computer program.

• Availability: Fraction of the time a service / system can promptly respond to

requests.

• Berkeley socket: Endpoint abstraction for inter-process communication, most

commonly for communication across computer networks. The berkeley socket ap-

plication programming interface (API) is the de facto standard for network sock-

ets. See also inter-process communication, application programming interface,

computer networks, network socket, unix domain socket, endpoint.

• Blocking: See process blocking.

155

• Cache: A smaller, faster memory which stores copies of the data for the most fre-

quently used main memory locations. See also processor, main memory, random-

access memory.

• Cache coherency: A mechanism by which reads and writes to the same main

memory locations are kept consistent throughout all caches of different processors

in a symmetric multiprocessing system. See also cache, MESI protocol, processor,

symmetric multiprocessing.

• Cache pollution: The scenario in which a computer program loads data into a

CPU cache which causes useful data to be evicted, thus causing a performance

penalty when the evicted data needs to be loaded back in the cache. See also

cache, program, process, processor, main memory.

• Cache thrashing: Cache pollution scenario in which main memory is accessed

in a pattern that leads to multiple main memory locations competing for the same

cache lines, resulting in excessive cache misses. This is problematic in a symmet-

ric multiprocessor system, where different CPUs engage into a potentially expen-

sive cache coherency protocol. See also cache pollution, cache coherency, main

memory, processor.

• Commodity: A mass-produced unspecialized product for which there is demand,

but which is supplied without qualitative differentiation across a market. It is a

fungible product, meaning the same irrespective of who produces it. See also

commodity computing, commodity computer systems.

• Commodity computer systems: Computer systems manufactured by multiple

various vendors, incorporating standardized commodity components. Standard-

izing commodity components promotes lower costs and less differentiation. See

also commodity, commodity computing.

156

• Commodity computing: Computing performed on commodity computer sys-

tems. See also commodity, commodity computer systems.

• Communication channel: A physical transmission medium such as a wire, or a

logical connection over a multiplexed medium such as a radio channel. See also

transmission medium.

• Communication endpoint: The entity on one end of a communication channel,

or transport connection. See also communication channel, OSI model (transport

layer).

• Communication protocol: A formal description of message formats and the

rules for exchanging those messages by the parties involved in the communica-

tion. Protocols can be defined as the rules governing the syntax, semantics, and

timing (synchronization) of communication. See also communication channel,

communication endpoint.

• Computer network: A collection of computers and devices connected by com-

munications channels. See also communication channel.

• Computer program: A sequence of instructions written to perform a specified

task for a computer system.

• Congestion control: Controlling the flow of data transmission between two

nodes when congestion has occurred along the path between the nodes, either

by oversubscribed processing or link capabilities of the intermediate nodes and

network segments. See also data transmission, flow-control, network segment,

node, link.

• Context switch: The process by which the state of a CPU is stored and restored,

so as the execution of a process can be interrupted and resumed from the same

point at a later time. This enables asynchronous event delivery (e.g., signaled

157

through interrupts) and allows multiple processes to share the same physical CPU.

See also processor, process, time sharing, interrupt.

• Central processing unit (CPU): The component part of the computer system that

carries out the instructions of a computer program. See also computer program,

symmetric multiprocessing.

• Data: Opaque sequence of bytes.

• Data fault tolerance: Ability to tolerate computer system failure without loss of

data. See also data replica, redundancy, permanent data loss.

• Data link: The means of connecting one location to another for the purpose of

transmitting and receiving digital information.

• Data replica: An entire copy of a data object. See also data and redundancy.

• Data transmission: The physical transfer of data (a digital bit stream) over a

point-to-point or point-to-multipoint communication channel. See also communi-

cation channel, data.

• Device driver: Computer program that interfaces with a hardware device, most

commonly it exists as a kernel extension module that runs in kernel-space (i.e. the

same address space as the core kernel functionality). See also kernel, kernel/user-

space, virtual memory.

• Disk storage: General storage mechanism, in which data are digitally recorded

by various electronic, magnetic, optical, or mechanic methods on a surface layer

deposited on one or more planar, round, and rotating platters. See also data.

• Endpoint: See communication endpoint.

• Error correction and control: Techniques that enable reliable delivery of data

over unreliable communication channels. See also forward error correction, com-

munication channel.

158

• Fault tolerance: See data fault tolerance.

• Flow-control: The process of managing the rate of data transmission between

two nodes to prevent a fast sender from overwhelming a slow receiver. See also

node, data transmission, congestion control.

• Forward error correction (FEC): A system of error control for data transmis-

sion, whereby the sender adds (carefully selected) redundant data to its messages.

Also known as an error-correction code. See also redundancy, data transmission.

• Forwarding: The act of relaying packets from one network segment to another

by nodes in a computer network. See also network segment, packet switched net-

works, routing, node.

• Goodput: The application level throughput, excluding protocol overhead and

retransmitted data packets. See also throughput, communication protocol.

• Internet Socket: See network socket.

• Interrupt: An asynchronous signal indicating the need for attention from the

CPU, or a synchronous event in a (software) computer program indicating the

need for a change in execution (e.g., an exceptional condition like invalid memory

access). See also processor, trap.

• Inter-process communication (IPC) Data exchange between two or more pro-

cesses. Processes may be running on one or more computers connected by a

network. See also data, process, socket, unix domain socket, network socket, com-

puter network.

• Kernel: The most basic component of operating systems, providing the low-

est abstraction layer for hardware resources, like the process, the address space,

and inter-process communication. See also operating system, kernel/user-space,

process, inter-process communication, address space.

159

• Kernel/user-space: Conventional operating systems segregate virtual memory

into kernel-space and user-space. Kernel-space is strictly reserved for running the

kernel, kernel extensions, and loadable device drivers, whereas user-space is the

(virtual) memory area wherein all user mode applications execute in. The address

space segregation is typically enforced by memory management hardware. See

also kernel, virtual memory, memory management hardware, paging.

• Kernel-space: See kernel/user-space.

• Lambda networking: Technology and set of services directly surrounding the

use of multiple optical wavelengths to provide independent communication chan-

nels along a strand of fiber optic cable. See computer network, communication

channel, transmission medium, data link.

• Link: See data link.

• Main memory: Storage that is directly accessible by the processor. The pro-

cessor directly addresses the locations of the main memory to read instructions

and to access data. See also processor, random-access memory, cache, computer

program, virtual memory.

• Maximum transmission unit (MTU): The size in bytes of the largest proto-

col data unit. See also communication protocol, packet switched network, Open

Systems Interconnect (OSI) model.

• Memory: See main memory.

• Memory management hardware: Computer hardware component that handles

accesses to main memory requested by CPUs. See also processor, virtual memory,

main memory.

• MESI (Modified, Exclusive, Shared, Invalid) protocol: The most common

cache coherency protocol that marks each cache line with one of the Modified, Ex-

160

clusive, Shared, and Invalid states. Each state determines whether the cache line

may be directly read or written by the CPU, or if a fresh copy has to be fetched in-

stead. The protocol performs state machine transitions for each cache line based

on inputs from the current CPU instruction (e.g., read/load or write/store) and

from other CPUs (e.g., if a broadcast Read For Ownership (RFO) message is is-

sued by a CPU requesting all other copies of the same cache line to be invalidated).

See also cache coherency, cache, processor, symmetric multiprocessing.

• Middlebox: Proxy network agent designed to perform some sort of packet pro-

cessing, for example to improve the end-to-end performance of certain commu-

nication protocols, such as Transmission Control Protocol (TCP). See also proxy,

performance enhancement proxy, packet processor, router.

• Multi-core: A multi-core processor is an integrated circuit that contains two or

more individual processors (called cores), typically integrated onto a single silicon

circuit die. See also processor, symmetric multiprocessing.

• Multi-queue NIC: A network interface controller/card (NIC) that is capable of

virtualizing the input and output channels (or queues). Inbound packet traffic is

classified in hardware before being placed on the corresponding queue, whereas

the device driver controls which queue outbound traffic is placed on. See also

network interface card/controller (NIC), packet switched network, device driver.

• Network: See computer network.

• Network interface card/controller (NIC): A hardware device that interfaces a

computer system with a computer network. See also computer network, periph-

eral device.

• Network link: See data link.

• Network node: A connection point, either a redistribution point or a communica-

tion endpoint. See also computer network, endpoint, router, routing, forwarding.

161

• Network packet: A finite sequence of bytes the network traffic is split / grouped

into, and on which forwarding elements operate on. See also forwarding and

packet switched networks.

• Network protocol: See communication protocol.

• Network segment: A portion of a computer network wherein every device com-

municates using the same physical layer. See also OSI model (physical layer).

• Network socket: The endpoint of an inter-process communication channel

across a computer network. Network sockets typically implement the berkeley

sockets application programming interface (API). See also socket, inter-process

communication, computer network, endpoint, communication channel, applica-

tion programming interface.

• Network throughput: The average rate of successful data delivery over a com-

munication channel. See also data, communication channel, data transmission.

• Network traffic: Data in a network. See also network, data, network packet.

• Node: See network node.

• Open Systems Interconnect (OSI) model: A way to subdivide a communica-

tions system into smaller parts called layers. Each layer is a collection of concep-

tually similar functions that provide services to the layer above it, while utilizing

services from the layer below it. The OSI model comprises the following layers:

Layer 1: Physical Layer The physical layer (PHY) consists of the basic hard-

ware transmission technologies of a network. It defines the means of trans-

mitting raw bits rather than logical data packets over a physical link con-

necting network nodes. The bit stream may be grouped into code words or

symbols and converted to a physical signal that is transmitted over a hard-

ware transmission medium. The Ethernet physical layers are representative

162

physical layers, for example, 1000BASE-T is the standard for gigabit Ether-

net over copper wiring. See also network nodes, transmission medium.

Layer 2: Data Link Layer The data link layer is the protocol layer which trans-

fers data between adjacent network nodes in a network or between nodes on

the same network segment. It provides the functional and procedural means

to transfer data between network entities and to detect and possibly correct

errors that may occur in the physical layer. Ethernet is an example of data

link protocol.

Layer 3: Network Layer The network layer is responsible for routing packets

delivery including routing through intermediate routers. It provides the func-

tional and procedural means of transferring variable length data sequences

from a source to a destination host via one or more networks while main-

taining the quality of service requested by the layer on top. The Internet

Protocol (IPv4) is the most prominent example of a network layer.

Layer 4: Transport Layer The transport layer provides transparent transfer of

data between endpoints, providing reliable data transfer services to the up-

per layers. It controls the reliability of a given link through flow-control,

segmentation/desegmentation, and error control. See also link, data trans-

mission, endpoint, flow-control, packet, packet segmentation, error correc-

tion and control.

• Operating system (OS): The set of system software programs that multiplex and

provide access to the computer hardware. The OS also provides the abstractions

and interfaces for users and user applications to control the computer, acting as an

intermediary between application programs and the computer hardware. See also

kernel, application programs, user-space, kernel-space.

• Packet: See network packet.

163

• Packet processor: A forwarding element, like a router, that performs additional

per-packet processing. See also forwarding, node, router, packet, packet switched

networks.

• Packet segmentation: The act of splitting a stream of data into packets. See also

packet switched networks, packet.

• Packet switched networks: Computer networks in which the nodes perform

packet switching. See also computer network, packet switching, node.

• Packet switching: Digital networking communications method that groups all

transmitted data—regardless of content, type, or structure—into suitably-sized

blocks, called packets. See also forwarding, packet.

• Paging: Memory management technique that divides the virtual address space

of a process into pages—i.e., blocks of contiguous virtual memory addresses. See

also main memory, virtual memory.

• Peripheral device: Device attached to a host computer, expanding the host’s

capabilities, but not part of the core computer architecture. See also device driver.

• Permanent data loss: The scenario in which data can no longer be retrieved

or reconstructed from the information within the system. See also data, fault

tolerance, forward error correction.

• Performance enhancement proxy (PEP): Network agent designed to improve

the end-to-end performance of certain communication protocols, such as Trans-

mission Control Protocol (TCP). See also proxy, middlebox, router.

• Process: The operating system abstraction representing an instance of a com-

puter program that is being executed. Whereas a computer program is a passive

collection of instructions, a process is the actual execution of those instructions.

See also computer program, kernel, operating system.

164

• Process blocking: A process that is waiting for some event, such as a signal

(e.g., due to synchronization) or an I/O operation to complete. See also process,

process waiting, context switch..

• Process synchronization: A mechanism that ensures that two or more concur-

rently (or time-shared) executing processes do not execute specific portions (or

critical sections) of a program at the same time. If one process has begun to exe-

cute a critical section of a program, any other processes trying to execute the same

section must wait until the first process finishes. See also process, time sharing,

symmetric multiprocessing, context switch.

• Process waiting: A process that is loaded into main memory or is swapped

on secondary storage and is awaiting execution on a CPU (awaits to be context

switched onto a CPU). See also process, context switch, main memory, swapping.

• Processor: See central processing unit (CPU).

• Program: See computer program.

• Protection domain: See virtual memory, user-space.

• Proxy: A proxy is an network node entity that acts as an intermediary between

parties that communicate over a channel. For example, a proxy may break an

end-to-end connection into multiple connections to use different parameters to

transfer data across the different legs. See also performance enhancement proxy,

middlebox, communication channel, network node.

• Random-access memory (RAM): Computer data storage realized to date by

integrated circuits, that allows data to be accessed in any order (i.e., at random)

with virtually the same access time. See also main memory.

• RAW socket: A socket abstraction that allows direct sending and receiving of

network packets in bulk by applications, sidestepping protocol encapsulation, if

165

any. RAW sockets implement the berkeley socket application programming inter-

face. See also socket, network packet, application programming interface.

• Read for ownership (RFO): See MESI protocol.

• Redundancy: Duplication of data in order to reduce the risk of permanent data

loss. See also replication, permanent data loss.

• Replication: Duplication of data in order to reduce the risk of permanent loss, by

creating entire, identical, copies of the original data. See also data, redundancy,

permanent data loss, data replica.

• Router: A device that interconnects two or more packet-switched computer

networks, and selectively forwards packets of data between them. Each packet

contains address information that a router can use to determine if the source and

destination are on the same network, or if the data packet must be transferred from

one network to another. When multiple routers are used in a large collection of

interconnected networks, the routers exchange information about target system

addresses, so that each router can build up a (routing) table showing the preferred

paths between any two systems on the interconnected networks. See also packet,

computer network, routing, packet switching, forwarding, routing table.

• Routing: The process of selecting paths in a network along which to send net-

work traffic. See also packet switching.

• Routing table: A data structure stored in a router that lists the routes to par-

ticular network destinations. See also router, routing, packet, packet switching,

forwarding.

• Socket: See berkeley socket.

• Swapping: Memory management scheme by which a computer stores and re-

trieves data from secondary storage (e.g., a disk) for use in main memory. See

166

also main memory, disk storage, virtual memory, paging.

• Symmetric multiprocessing (SMP): A multiprocessor computer hardware ar-

chitecture where two or more identical processors are connected to the same re-

sources (like memory, disk, network interfaces) and are usually under the control

of a single operating system instance. See also multi-core, operating system.

• System call: The interface between the operating system and a user-space pro-

cess, by which the process requests a service from the operating system’s kernel—

the process does not have the permission to perform the service by itself. See also

application programming interface, operating system, process, kernel, trap.

• Throughput: See network throughput.

• Time sharing: A method by which multiple processes share common resources,

such as a CPU, by multiplexing them in time. See also context switch, process,

CPU.

• Translation lookaside buffer (TLB): A CPU cache that the memory manage-

ment hardware uses to improve the virtual address translation speed. See also

processor, memory management hardware, cache, virtual memory, paging, main

memory.

• Transmission medium: A material substance which can propagate energy

waves.

• Trap: A type of synchronous interrupt typically caused by an exception condition

(e.g. invalid memory access or division by zero) in a process. See also interrupt,

processor, process.

• Userland: All application software, including libraries, that runs in user-space.

See also user-space, kernel/user-space.

167

• Unix domain socket: Data inter-process communication endpoint between pro-

cesses resident on the same (i.e., on the local) node. See also inter-process com-

munication, socket, process, node.

• User-space: See kernel/user-space.

• Virtual memory: A memory management technique that virtualizes a computer

system’s hardware memory devices (RAM and disk storage). The technique al-

lows programs to treat the memory as a single, contiguous, large address space

that is private from any other programs (but is not private from the kernel). See

also program, address space, paging, swapping, random access memory, main

memory, disk storage.

168

BIBLIOGRAPHY

[1] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[2] Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/
s3/.

[3] Amazon Virtual Private Cloud (Amazon VPC). http://aws.amazon.com/
vpc/.

[4] Amazon Web Services. http://aws.amazon.com/.

[5] AppScale. http://appscale.cs.ucsb.edu/.

[6] Beowulf Clusters. http://www.beowulf.org/.

[7] Cisco Carrier Routing System (CRS-1). http://www.cisco.com/en/US/
products/ps5763/.

[8] Cisco Catalyst 6500 Series. http://www.cisco.com/en/US/
products/hw/switches/ps708/.

[9] Citrix, application delivery infrastructure. http://www.citrix.com/.

[10] DAG Network Monitoring Cards. http://www.endace.com/
dag-network-monitoring-cards.html.

[11] Eucalyptus. http://open.eucalyptus.com/.

[12] F5 WAN Delivery Products. http://www.f5.com/.

[13] FlexiScale. http://flexiscale.com/.

[14] Global Environment for Network Innovations (GENI). http://www.geni.
net/.

[15] GoGrid. http://gogrid.com/.

[16] Google App Engine. http://code.google.com/appengine/.

[17] Google News. http://news.google.com/.

169

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/vpc/
http://aws.amazon.com/vpc/
http://aws.amazon.com/
http://appscale.cs.ucsb.edu/
http://www.beowulf.org/
http://www.cisco.com/en/US/products/ps5763/
http://www.cisco.com/en/US/products/ps5763/
http://www.cisco.com/en/US/products/hw/switches/ps708/
http://www.cisco.com/en/US/products/hw/switches/ps708/
http://www.citrix.com/
http://www.endace.com/dag-network-monitoring-cards.html
http://www.endace.com/dag-network-monitoring-cards.html
http://open.eucalyptus.com/
http://www.f5.com/
http://flexiscale.com/
http://www.geni.net/
http://www.geni.net/
http://gogrid.com/
http://code.google.com/appengine/
http://news.google.com/

[18] GoogleDocs. http://docs.google.com/.

[19] Heroku. http://heroku.com/.

[20] Internet2. http://www.internet2.edu/.

[21] Irqbalance. http://www.irqbalance.org/.

[22] Ixia. http://www.ixiacom.com/.

[23] Juniper Networks: Open IP Service Creation Program (OSCP).
http://www-jnet.juniper.net/us/en/company/partners/
open-ip/oscp/.

[24] libipq/libnetfilter queue. http://www.netfilter.org/projects/
libnetfilter queue/.

[25] NAPI. http://www.linuxfoundation.org/.

[26] National LambdaRail. http://www.nlr.net/.

[27] Netequalizer Bandwidth Shaper. http://www.netequalizer.com/.

[28] Netperf. http://netperf.org/.

[29] NLR PacketNet Atlas. http://atlas.grnoc.iu.edu/atlas.cgi?
map name=NLR%20Layer3.

[30] Office Web Apps. http://office.microsoft.com/web-apps/.

[31] Packeteer WAN optimization solutions. http://www.packeteer.com/.

[32] PacketLogic Hardware Platforms. http://www.proceranetworks.
com/.

[33] PF RING. http://www.ntop.org/PF RING.html.

[34] Rackspace Cloud. http://www.rackspacecloud.com/.

[35] RightScale. http://rightscale.com/.

170

http://docs.google.com/
http://heroku.com/
http://www.internet2.edu/
http://www.irqbalance.org/
http://www.ixiacom.com/
http://www-jnet.juniper.net/us/en/company/partners/open-ip/oscp/
http://www-jnet.juniper.net/us/en/company/partners/open-ip/oscp/
http://www.netfilter.org/projects/libnetfilter_queue/
http://www.netfilter.org/projects/libnetfilter_queue/
http://www.linuxfoundation.org/
http://www.nlr.net/
http://www.netequalizer.com/
http://netperf.org/
http://atlas.grnoc.iu.edu/atlas.cgi?map_name=NLR%20Layer3
http://atlas.grnoc.iu.edu/atlas.cgi?map_name=NLR%20Layer3
http://office.microsoft.com/web-apps/
http://www.packeteer.com/
http://www.proceranetworks.com/
http://www.proceranetworks.com/
http://www.ntop.org/PF_RING.html
http://www.rackspacecloud.com/
http://rightscale.com/

[36] Riverbed Networks: WAN Optimization. http://www.riverbed.com/
results/solutions/optimize/.

[37] SONET. http://www.sonet.com/.

[38] tcpdump/libpcap. http://www.tcpdump.org/.

[39] Teragrid. http://teragrid.org/.

[40] The Sun Modular Data Center. http://www.sun.com/products/
sunmd/s20/.

[41] Think big with a gig: Our experimental fiber net-
work. http://googleblog.blogspot.com/2010/02/
think-big-with-gig-our-experimental.html.

[42] TOP500 Supercomputing Sites. http://www.top500.org/.

[43] Vyatta series 2500. http://vyatta.com/downloads/datasheets/
vyatta 2500 datasheet.pdf.

[44] Windows Azure Platform. http://www.microsoft.com/
windowsazure/.

[45] RFC 3602, The AES-CBC Cipher Algorithm and Its Use with IPsec, 2003.

[46] TeraGrid Performance Monitoring. https://network.teragrid.org/
tgperf/, 2005.

[47] Cisco opening up IOS. http://www.networkworld.com/news/2007/
121207-cisco-ios.html, 2007.

[48] Internet Archive. http://www.archive.org/, 2009.

[49] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, 2008.

[50] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitu Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. DCTCP: Effi-
cient Packet Transport for the Commoditized Data Center. In SIGCOMM, 2010.

171

http://www.riverbed.com/results/solutions/optimize/
http://www.riverbed.com/results/solutions/optimize/
http://www.sonet.com/
http://www.tcpdump.org/
http://teragrid.org/
http://www.sun.com/products/sunmd/s20/
http://www.sun.com/products/sunmd/s20/
http://googleblog.blogspot.com/2010/02/think-big-with-gig-our-experimental.html
http://googleblog.blogspot.com/2010/02/think-big-with-gig-our-experimental.html
http://www.top500.org/
http://vyatta.com/downloads/datasheets/vyatta_2500_datasheet.pdf
http://vyatta.com/downloads/datasheets/vyatta_2500_datasheet.pdf
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
https://network.teragrid.org/tgperf/
https://network.teragrid.org/tgperf/
http://www.networkworld.com/news/2007/121207-cisco-ios.html
http://www.networkworld.com/news/2007/121207-cisco-ios.html
http://www.archive.org/

[51] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.
GridFTP: Protocol extensions to FTP for the Grid. GGF Document Series GFD,
20, 2003.

[52] AMD. AMD I/O Virtualization Technology Specification, 2007.

[53] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS ’67 (Spring): Proceedings of the April
18-20, 1967, spring joint computer conference, pages 483–485, New York, NY,
USA, 1967. ACM.

[54] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott
Shenker. Packet caches on routers: the implications of universal redundant traffic
elimination. SIGCOMM Comput. Commun. Rev., 38(4):219–230, 2008.

[55] Ashok Anand, Vyas Sekar, and Aditya Akella. SmartRE: an architecture for coor-
dinated network-wide redundancy elimination. In SIGCOMM ’09: Proceedings
of the ACM SIGCOMM 2009 conference on Data communication, pages 87–98,
New York, NY, USA, 2009. ACM.

[56] Darrell C. Anderson, Jeffrey S. Chase, Syam Gadde, Andrew J. Gallatin, Ken-
neth G. Yocum, and Michael J. Feeley. Cheating the I/O bottleneck: network
storage with Trapeze/Myrinet. In Proceedings of the USENIX Annual Technical
Conference, 1998.

[57] Nate Anderson. Deep packet inspection meets Net neutrality, CALEA. Ars Tech-
nica, July 2007.

[58] Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW team.
A case for now (networks of workstations). IEEE Micro, 15(1):54–64, 1995.

[59] John Backus. Can Programming be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs. ACM Turing award lectures, page
1977, 2007.

[60] Andrea Baiocchi, Angelo P. Castellani, and Francesco Vacirca. YeAH-TCP: Yet
Another Highspeed TCP. In PFLDnet 2007: Fifth International Workshop on
Protocols for Fast Long-Distance Networks, 2007.

[61] Pavan Balaji, Piyush Shivam, and Pete Wyckoff. High Performance User Level
Sockets over Gigabit Ethernet. In Cluster Comp., 2002.

172

[62] Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, and
Lakshmi Ganesh. Maelstrom: Transparent Error Correction for Communication
between Data Centers. To appear in IEEE/ACM Transactions on Networking
(ToN), 2010.

[63] Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, and
Einar Vollset. Maelstrom: Transparent error correction for lambda networks. In
Proceedings of NSDI, 2008.

[64] Roger Barga. Cloud Computing (Invited Keynote Talk). In IEEE Ninth Interna-
tional Conference on Peer-to-Peer Computing (P2P’09), 2009.

[65] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. SOSP, 2003.

[66] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
hania. The multikernel: a new OS architecture for scalable multicore systems.
In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 29–44, New York, NY, USA, 2009. ACM.

[67] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility safety and performance in the SPIN
operating system. In Proceedings of SOSP, 1995.

[68] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. Lightweight RPC. ACM TOCS, 8(1):37–55, 1990.

[69] Stephen Blott, José Brustoloni, and Cliff Martin. NetTap: An Efficient and Re-
liable PC-Based Platform for Network Programming. In Proceedings of OPE-
NARCH, 2000.

[70] Raffaele Bolla and Roberto Bruschi. Pc-based software routers: high perfor-
mance and application service support. In PRESTO ’08: Proceedings of the ACM
workshop on Programmable routers for extensible services of tomorrow, 2008.

[71] Jean-Chrysotome Bolot. End-to-end packet delay and loss behavior in the inter-
net. In SIGCOMM ’93: Conference proceedings on Communications architec-
tures, protocols and applications, pages 289–298, New York, NY, USA, 1993.
ACM.

[72] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance En-

173

hancing Proxies Intended to Mitigate Link-Related Degradations. RFC 3135,
Network Working Group, 2001.

[73] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen, and Georgios Por-
tokalidis. FFPF: Fairly fast packet filters. In Proceedings of OSDI, 2004.

[74] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,
and Zheng Zhang. Corey: an operating system for many cores. In Proceedings
of OSDI, 2008.

[75] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end to end congestion
avoidance on a global Internet. IEEE Journal on selected Areas in communica-
tions, 13:1465–1480, 1995.

[76] Stefano Bregni, Senior Member, Davide Caratti, and Fabio Martignon. Enhanced
Loss Differentiation Algorithms for Use in TCP Sources over Heterogeneous
Wireless Networks. In Proceedings of IEEE GLOBECOM 2003, pages 666–670,
2003.

[77] Maxine D. Brown. Introduction: Blueprint for the future of high-performance
networking. Commun. ACM, 46(11):30–33, 2003.

[78] José Carlos Brustoloni and Peter Steenkiste. Effects of buffering semantics on
I/O performance. In Proceedings OSDI, 1996.

[79] José Carlos Brustoloni, Peter Steenkiste, and Carlos Brustoloni. User-Level Pro-
tocol Servers with Kernel-Level Performance. In Proceedings of the IEEE Info-
com Conference, pages 463–471, 1998.

[80] Hadrien Bullot, R. Les Cottrell, and Richard Hughes-Jones. Evaluation of ad-
vanced TCP stacks on fast long-distance production networks. In Proceedings of
the International Workshop on Protocols for Fast Long-Distance Networks, 2004.

[81] Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCP enhancement for het-
erogeneous networks. International Journal of Satellite Communications and
Networking, 22, 2004.

[82] Robert L. Carter and Mark E. Crovella. Measuring bottleneck link speed in
packet-switched networks. Perform. Eval., 27-28:297–318, 1996.

[83] Claudio Casetti, Mario Gerla, Saverio Mascolo, M. Y. Sanadidi, and Ren Wang.

174

TCP Westwood: end-to-end congestion control for wired/wireless networks.
Wirel. Netw., 8(5):467–479, 2002.

[84] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[85] Rajiv Chakravorty, Sachin Katti, Jon Crowcroft, and Ian Pratt. Flow Aggregation
for Enhanced TCP over Wide-Area Wireless. In Proc. IEEE INFOCOM, pages
1754–1764, 2003.

[86] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[87] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A distributed storage system for structured data. ACM Trans. Com-
put. Syst., 26(2):1–26, 2008.

[88] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D. Joseph.
Understanding TCP incast throughput collapse in datacenter networks. In WREN
’09: Proceedings of the 1st ACM workshop on Research on enterprise network-
ing, pages 73–82, New York, NY, USA, 2009. ACM.

[89] Israel Cidon, Asad Khamisy, and Moshe Sidi. Analysis of Packet Loss Processes
in High-Speed Networks. IEEE Transactions on Information Theory, 39:98–108,
1991.

[90] Cisco Systems. Buffers, Queues, and Thresholds on the Catalyst 6500 Ethernet
Modules, 2007.

[91] Kimberly Claffy, George C. Polyzos, and Hans-Werner Braun. Traffic Character-
istics of the T1 NSFNET Backbone. In Proceedings of INFOCOM, 1993.

[92] Intel Corp. Single-chip Cloud Computer. http://techresearch.intel.
com/articles/Tera-Scale/1826.htm, 2010.

[93] Patrick Crowley, Marc E. Fluczynski, Jean-Loup Baer, and Brian N. Bershad.
Characterizing processor architectures for programmable network interfaces. In
Proceedings of the 14th international conference on Supercomputing, 2000.

[94] Willem de Bruijn and Herbert Bos. Beltway Buffers: Avoiding the OS Traffic
Jam. In Proceedings of Infocom 2008, April 2008.

175

http://techresearch.intel.com/articles/Tera-Scale/1826.htm
http://techresearch.intel.com/articles/Tera-Scale/1826.htm

[95] Willem de Bruijn and Herbert Bos. Model-T: Rethinking the OS for terabit
speeds. In Proceedings of the HSN2008, co-located with Infocom 2008, April
2008.

[96] Willem de Bruijn and Herbert Bos. PipesFS: fast Linux I/O in the UNIX tradition.
SIGOPS Oper. Syst. Rev., 42(5):55–63, 2008.

[97] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[98] Tom DeFanti, Cees de Laat, Joe Mambretti, Kees Neggers, and Bill St. Ar-
naud. TransLight: a global-scale LambdaGrid for e-science. Commun. ACM,
46(11):34–41, 2003.

[99] Luca Deri. Improving passive packet capture: beyond device polling. In SANE,
2004.

[100] Luca Deri. nCap: wire-speed packet capture and transmission. In E2EMON
Workshop, 2005.

[101] DETER Network Security Testbed. http://www.isi.deterlab.net/.

[102] Prajjwal Devakota and A. L. Narasimha Redd. Performance of Quantized Con-
gestion Notification in TCP Incast scenarios in data centers. In IEEE MASCOTS,
2010.

[103] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In Proceedings
of SOSP, 2009.

[104] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. What Do
Packet Dispersion Techniques Measure? In Proceedings of INFOCOM, 2001.

[105] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-
dispersion techniques and a capacity-estimation methodology. IEEE/ACM Trans.
Netw., 12(6):963–977, 2004.

[106] Peter Druschel and Larry L. Peterson. Fbufs: a high-bandwidth cross-domain
transfer facility. SIGOPS Operating Systems Review, 1993.

176

http://www.isi.deterlab.net/

[107] Ita Dukkipati, Masayoshi Kobayashi, Rui Zhang-shen, and Nick Mckeown. Pro-
cessor sharing flows in the internet. In Thirteenth International Workshop on
Quality of Service (IWQoS ’05), 2005.

[108] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shubert, Frank
Berry, Anne Marie Merritt, Ed Gronke, and Chris Dodd. The Virtual Interface
Architecture. Micro, 1998.

[109] Emulab - Network Emulation Testbed. http://www.emulab.net/.

[110] DR Engler, MF Kaashoek, and J. O’Toole Jr. Exokernel: an operating system
architecture for application-level resource management. In Proceedings of SOSP,
1995.

[111] William H. Whitted et al. Modular data center, October 2007.

[112] Tae eun Kim, Songwu Lu, and Vaduvur Bharghavan. Improving congestion con-
trol performance through loss differentiation. In ICCCN ’99: The 8th Interna-
tional Conference on Computer Communications and Networks, 1999.

[113] Aaron Falk, Ted Faber, Joseph Bannister, Andrew Chien, Robert Grossman,
and Jason Leigh. Transport protocols for high performance. Commun. ACM,
46(11):42–49, 2003.

[114] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, Network
Working Group, December, 2003.

[115] Daniel A. Freedman, Tudor Marian, Jennifer H. Lee, Ken Birman, Hakim Weath-
erspoon, and Chris Xu. Exact temporal characterization of 10 Gbps optical wide-
area network using high precision instrumentation. In Proceedings of the 10th
Internet Measurement Conference (IMC’ 10), November 2010.

[116] Masanobu Yuhara Fujitsu, Masanobu Yuhara, Brian N. Bershad, Chris Maeda,
J. Eliot, and B. Moss. Efficient packet demultiplexing for multiple endpoints and
large messages. In Proceedings of the 1994 Winter USENIX Conference, 1994.

[117] Patrick Geoffray. A Critique of RDMA. http://www.hpcwire.com/
features/17886984.html, 2006.

[118] Patrick Geoffray, Loı̈c Prylli, and Bernard Tourancheau. BIP-SMP: high perfor-
mance message passing over a cluster of commodity SMPs. In Proceedings of
the ACM/IEEE conference on Supercomputing, 1999.

177

http://www.emulab.net/
http://www.hpcwire.com/features/17886984.html
http://www.hpcwire.com/features/17886984.html

[119] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-
tem. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[120] George Gilder. The Information Factories. Wired Magazine, Issue 14.10, October
2005.

[121] Corey Gough, Suresh Siddha, and Ken Chen. Kernel Scalability – Expanding
the Horizon Beyond Fine Grain Locks. In Proceedings of the Linux Symposium,
pages 153–165, June 2007.

[122] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The
cost of a cloud: research problems in data center networks. SIGCOMM Comput.
Commun. Rev., 39(1):68–73, 2009.

[123] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: a scalable and flexible data center network. In SIGCOMM ’09:
Proceedings of the ACM SIGCOMM 2009 conference on Data communication,
pages 51–62, New York, NY, USA, 2009. ACM.

[124] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Towards a next generation data center architecture: scalability and
commoditization. In PRESTO ’08: Proceedings of the ACM workshop on Pro-
grammable routers for extensible services of tomorrow, pages 57–62, New York,
NY, USA, 2008. ACM.

[125] Yunhong Gu and Robert L. Grossman. Sabul: A transport protocol for grid com-
puting. J. Grid Comput., 1(4):377–386, 2003.

[126] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: a high performance,
server-centric network architecture for modular data centers. In SIGCOMM ’09:
Proceedings of the ACM SIGCOMM 2009 conference on Data communication,
pages 63–74, New York, NY, USA, 2009. ACM.

[127] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. Dcell: a scalable and fault-tolerant network structure for data centers. In
SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008 conference on Data
communication, pages 75–86, New York, NY, USA, 2008. ACM.

[128] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly high-
speed TCP variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, 2008.

178

[129] Thomas J. Hacker, Brian D. Athey, and Brian Noble. The End-to-End Perfor-
mance Effects of Parallel TCP Sockets on a Lossy Wide-Area Network. In IPDPS
’02: Proceedings of the 16th International Parallel and Distributed Processing
Symposium, page 314, Washington, DC, USA, 2002. IEEE Computer Society.

[130] Thomas J. Hacker, Brian D. Noble, and Brian D. Athey. The effects of systemic
packet loss on aggregate TCP flows. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–15, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[131] Andreas Haeberlen, Rodrigo Rodrigues, Krishna Gummadi, and Peter Druschel.
Pretty good packet authentication. In HotDep, 2008.

[132] James Hamilton. Internet-Scale Service Efficiency (Keynote Talk). In Large
Scale Distributed Systems & Middleware (LADIS), 2008.

[133] Eric He, Jason Leigh, Oliver Yu, and Thomas A. DeFanti. Reliable Blast UDP:
Predictable High Performance Bulk Data Transfer. In CLUSTER ’02: Proceed-
ings of the IEEE International Conference on Cluster Computing, page 317,
Washington, DC, USA, 2002. IEEE Computer Society.

[134] Steven A. Heimlich. Traffic characterization of the NSFNET national backbone.
SIGMETRICS Perform. Eval. Rev., 18(1):257–258, 1990.

[135] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[136] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. IEEE
COMPUTER, 2008.

[137] James W. Hunt and M. Douglas McIlroy. An Algorithm for Differential File
Comparison. Computer Science Technical Report 41, Bell Laboratories, 1976.

[138] V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun.
Rev., 25(1):157–187, 1995.

[139] Manish Jain and Constantinos Dovrolis. End-to-end available bandwidth: mea-
surement methodology, dynamics, and relation with TCP throughput. IEEE/ACM
Tr. Net., 11(4):537–549, 2003.

[140] Ardalan Kangarlou, Sahan Gamage, Ramana Rao Kompella, and Dongyan Xu.

179

vSnoop: Improving TCP Throughput in Virtualized Environments via Acknowl-
edgement Offload. In IEEE SC, 2010.

[141] Rohit Kapoor, Ling-Jyh Chen, Li Lao, Mario Gerla, and M. Y. Sanadidi. Cap-
Probe: a simple and accurate capacity estimation technique. SIGCOMM Comp.
Comm. Rev., 34(4):67–78, 2004.

[142] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM ’02: Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 89–102, New York, NY, USA, 2002. ACM.

[143] Tom Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works. ACM SIGCOMM Computer Communication Review, 33:83–91, 2002.

[144] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, November 1998.

[145] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in SEAT-
TLE: A Scalable Ethernet Architecture for Large Enterprises. In SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 conference on Data communication,
pages 3–14, New York, NY, USA, 2008. ACM.

[146] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). RFC 4340, IETF, March, 2000.

[147] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click modular router. TOCS, 2000.

[148] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high bandwidth data
dissemination using an overlay mesh. ACM SIGOPS Operating Systems Review,
37(5), 2003.

[149] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski, Jimi
Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, and Volkmar Uhlig. K42: building a complete
operating system. In Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems, 2006.

[150] T. V. Lakshman and Upamanyu Madhow. The performance of TCP/IP for net-
works with high bandwidth-delay products and random loss. IEEE/ACM Trans.
Netw., 5(3):336–350, 1997.

180

[151] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, 1998.

[152] Douglas Leith and Robert Shorten. H-TCP: TCP for high-speed and long-
distance networks. In Second Workshop on Protocols for FAST Long-Distance
Networks, 2004.

[153] Ben Leslie, Peter Chubb, Nicholas Fitzroy-dale, Stefan Gtz, Charles Gray, Luke
Macpherson, Daniel Potts, Yueting Shen, and Gernot Heiser. User-level device
drivers: Achieved performance. Journal of Computer Science and Technology,
20, 2005.

[154] David A. Lifka. Director, Center for Advanced Computing, Cornell University.
Private Communication, 2008.

[155] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and John
Kubiatowicz. Tessellation: Space-Time Partitioning in a Manycore Client OS. In
HotPar, 2009.

[156] Shao Liu, Tamer Başar, and R. Srikant. TCP-Illinois: A loss- and delay-based
congestion control algorithm for high-speed networks. Perform. Eval., 65(6-
7):417–440, 2008.

[157] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. NetFPGA–An Open Platform
for Gigabit-Rate Network Switching and Routing. In Proceedings of the IEEE
International Conference on Microelectronic Systems Education, 2007.

[158] Lucian Popa and Ion Stoica and Sylvia Ratnasamy. Rule-based Forwarding
(RBF): improving the Internet’s flexibility and security. In Proc. of workshop
on Hot Topics in Networks (HotNets-VIII), 2009.

[159] Yadi Ma, Suman Banerjee, Shan Lu, and Cristian Estan. Leveraging Parallelism
for Multi-dimensional Packet Classification on Software Routers. In Proceedings
of ACM SIGMETRICS, 2010.

[160] Udi Manber. Finding similar files in a large file system. In Proceedings of the
USENIX Winter 1994 Technical Conference, pages 1–10, 1994.

[161] Tudor Marian, Mahesh Balakrishnan, Ken Birman, and Robbert van Renesse.
Tempest: Soft State Replication in the Service Tier. In Proceedings of the 38th

181

Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN-DCCS ’08), June 2008.

[162] Tudor Marian, Ken Birman, and Robbert van Renesse. A Scalable Services Ar-
chitecture. In Proceedings of the 25th IEEE Symposium on Reliable Distributed
Systems (SRDS 2006). IEEE Computer Society, 2006.

[163] Tudor Marian, Daniel Freedman, Ken Birman, and Hakim Weatherspoon. Empir-
ical Characterization of Uncongested Lambda Networks and 10GbE Commodity
Endpoints. In Proceedings of the 40th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN-PDS ’10), June 2010.

[164] Steven McCanne and Van Jacobson. The BSD packet filter: a new architecture
for user-level packet capture. In Proceedings of USENIX, 1993.

[165] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–
74, 2008.

[166] Mark R. Meiss. Tsunami: A High-Speed Rate-Controlled Protocol for
File Transfer. http://steinbeck.ucs.indiana.edu/∼mmeiss/
papers/tsunami.pdf.

[167] M. Meyer, J. Sachs, and M. Holzke. Performance evaluation of a TCP proxy in
WCDMA networks. Wireless Communications, IEEE, 10(5):70 – 79, oct 2003.

[168] Andrew G. Miklas, Stefan Saroiu, Alec Wolman, and Angela Demke Brown.
Bunker: A Privacy-Oriented Platform for Network Tracing. In Proceedings of
NSDI, 2009.

[169] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Trans. Comput. Syst., 15(3):217–252, 1997.

[170] Biswanath Mukherjee. Optical WDM Networks. Springer, February 2006.

[171] L. Munoz, M. Garcia, J. Choque, R. Aguero, and P. Mahonen. Optimizing In-
ternet flows over IEEE 802.11b wireless local area networks: a performance-
enhancing proxy based on forward error correction. Communications Magazine,
IEEE, 39(12):60 –67, dec 2001.

[172] M. Murray, S. Smallen, O. Khalili, and M. Swany. Comparison of End-to-End

182

http://steinbeck.ucs.indiana.edu/~mmeiss/papers/tsunami.pdf
http://steinbeck.ucs.indiana.edu/~mmeiss/papers/tsunami.pdf

Bandwidth Measurement Tools on the 10GigE TeraGrid Backbone. In Proceed-
ings of GRID, 2005.

[173] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth
network file system. In SOSP ’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pages 174–187, New York, NY, USA, 2001.
ACM.

[174] Erich M. Nahum, David Yates, James Kurose, and Don Towsley. Performance
issues in parallelized network protocols. In Proceedings of OSDI, 2004.

[175] Harvey B. Newman, Mark H. Ellisman, and John A. Orcutt. Data-intensive e-
science frontier research. Commun. ACM, 46(11):68–77, 2003.

[176] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and
Galen Hunt. Helios: heterogeneous multiprocessing with satellite kernels. In
Proceedings of the 22nd symposium on Operating systems principles, 2009.

[177] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
PortLand: a scalable fault-tolerant layer 2 data center network fabric. In SIG-
COMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on Data com-
munication, pages 39–50, New York, NY, USA, 2009. ACM.

[178] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung
Chang. The case for a single-chip multiprocessor. In Proceedings of ASPLOS-
VII, 1996.

[179] OProfile. http://oprofile.sourceforge.net/, 2008.

[180] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP
throughput: a simple model and its empirical validation. SIGCOMM Comp.
Comm. Rev., 28(4):303–314, 1998.

[181] V.S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified I/O buffering and
caching system. ACM TOCS, 2000.

[182] Scott Pakin, Mario Lauria, and Andrew Chien. High performance messaging on
workstations: Illinois fast messages (FM) for Myrinet. In Proceedings of the
ACM/IEEE conference on Supercomputing, 1995.

183

http://oprofile.sourceforge.net/

[183] Christina Parsa and J.J. Garcia-Luna-Aceves. Differentiating congestion vs. ran-
dom loss: A method for improving tcp performance over wireless links. In IEEE
WCNC2000, pages 90–93, 2000.

[184] JoAnn M. Paul and Brett H. Meyer. Amdahl’s law revisited for single chip sys-
tems. International Journal of Parallel Programming, 35(2):101–123, 2007.

[185] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gre-
gory R. Ganger, Garth A. Gibson, and Srinivasan Seshan. Measurement and
Analysis of TCP Throughput Collapse in Cluster-based Storage Systems. In Pro-
ceedings of the USENIX Conference on File and Storage Technologies (FAST),
San Jose, CA, February 2008.

[186] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy. Bandwidth Estimation:
Metrics, Measurement Techniques, and Tools. IEEE Network, 17:27–35, 2003.

[187] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Effects of Interrupt Coa-
lescence on Network Measurements. In Proceedings of the PAM Workshop, 2004.

[188] PREEMPT RT. http://lwn.net/Articles/146861, 2005.

[189] Michael Oser Rabin. Fingerprinting by random polynomials. Technical Report
TR-15-81, Center for Research in Computing Technology, Harvard University,
1981.

[190] Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, and Les
Cottrell. pathChirp: Efficient Available Bandwidth Estimation for Network Paths.
In Proceedings of the PAM Workshop, 2003.

[191] RTAI. https://www.rtai.org/, 2008.

[192] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. Comput. Syst., 2(4), 1984.

[193] D. Sanghi, A. K. Agrawala, O. Gudmundsson, and B. N. Jain. Experimental
Assessment of End-to-end Behavior on Internet. In Proceedings of IEEE INFO-
COM, 1993.

[194] Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda. IsoStack–
Highly Efficient Network Processing on Dedicated Cores. In USENIX ATC ’10:
USENIX Annual Technical Conference, 2010.

184

http://lwn.net/Articles/146861
https://www.rtai.org/

[195] Stephen C. Simms, Gregory G. Pike, and Doug Balog. Wide Area Filesystem
Performance using Lustre on the TeraGrid. In Teragrid Conference, 2007.

[196] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. In In OSDI, pages 45–60, 2004.

[197] H. Sivakumar, S. Bailey, and R. L. Grossman. PSockets: the case for application-
level network striping for data intensive applications using high speed wide area
networks. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE confer-
ence on Supercomputing (CDROM), page 37, Washington, DC, USA, 2000. IEEE
Computer Society.

[198] SNORT. http://www.snort.org/, 2008.

[199] Neil T. Spring and David Wetherall. A protocol-independent technique for elim-
inating redundant network traffic. In Proceedings of ACM SIGCOMM, pages
87–95, 2000.

[200] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol
(SCTP). RFC 2960, IETF, 2000.

[201] Herb Sutter and James Larus. Software and the concurrency revolution. Queue,
3(7):54–62, 2005.

[202] Kun Tan and Jingmin Song. A compound TCP approach for high-speed and long
distance networks. In Proc. IEEE INFOCOM, 2006.

[203] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wether-
all, and Gary J. Minden. A Survey of Active Network Research. IEEE Commu-
nications Magazine, 35:80–86, 1997.

[204] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf–The TCP/UDP
bandwidth measurement tool, 2004.

[205] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm. Ex-
periences with locking in a NUMA multiprocessor operating system kernel. In
Proceedings of the 1st USENIX conference on Operating Systems Design and
Implementation, 1994.

[206] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G. Ander-
sen, Gregory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe and effec-

185

http://www.snort.org/

tive fine-grained TCP retransmissions for datacenter communication. SIGCOMM
Comput. Commun. Rev., 39(4):303–314, 2009.

[207] Dimitris Velenis, Dimitris Kalogeras, and Basil S. Maglaris. SaTPEP: A TCP
Performance Enhancing Proxy for Satellite Links. In NETWORKING ’02: Pro-
ceedings of the Second International IFIP-TC6 Networking Conference on Net-
working Technologies, Services, and Protocols, pages 1233–1238, London, UK,
2002. Springer-Verlag.

[208] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: a
user-level network interface for parallel and distributed computing. Proceedings
SOSP, 1995.

[209] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: A Mechanism for Integrated Communication and
Computation. In Proceedings of the 19th annual international symposium on
Computer architecture, 1992.

[210] Steven Wallace. Lambda Networking. Advanced Network Management Lab,
Indiana University.

[211] Steven Wallace. Tsunami File Transfer Protocol. In PFLDNet 2003: First Inter-
national Workshop on Protocols for Fast Long-Distance Networks, 2003.

[212] Guohui Wang and T. S. Eugene Ng. The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center. In IEEE INFOCOM, 2010.

[213] Andrew Warfield, Steven Hand, Keir Fraser, and Tim Deegan. Facilitating the
development of soft devices. In Proceedings of the USENIX Annual Technical
Conference, 2005.

[214] Edsger W.Dijkstra. A review of the 1977 Turing Award Lecture by John Backus.
http://userweb.cs.utexas.edu/∼EWD/transcriptions/
EWD06xx/EWD692.html.

[215] Hakim Weatherspoon, Lakshmi Ganesh, Tudor Marian, Mahesh Balakrishnan,
and Ken Birman. Smoke and Mirrors: Shadowing Files at a Geographically Re-
mote Location Without Loss of Performance. In Proceedings of FAST, February
2009.

[216] P. Wefel. Network Engineer, National Center For Supercomputing Applications
(NCSA), University of Illinois. Private Communication, 2007.

186

http://userweb.cs.utexas.edu/~EWD/transcriptions/EWD06xx/EWD692.html
http://userweb.cs.utexas.edu/~EWD/transcriptions/EWD06xx/EWD692.html

[217] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP:
motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw.,
14(6):1246–1259, 2006.

[218] Matt Welsh, Anindya Basu, and Thorsten Von Eicken. ATM and Fast Ethernet
Network Interfaces for User-level Communication. In 3rd Intl. Symp. on High
Performance Computer Architecture, 1997.

[219] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. Software: Practice and Expe-
rience, 35(2), 2005.

[220] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated exper-
imental environment for distributed systems and networks. In Proceedings of
OSDI, 2002.

[221] Wireshark. http://www.wireshark.org/, 2008.

[222] Phil Wood. libpcap-mmap, Los Alamos National Labs, 2008.

[223] Zhenyu Wu, Mengjun Xie, and Haining Wang. Swift: A fast dynamic packet
filter. In Proceedings of NSDI, 2008.

[224] Bartek Wydrowski, Lachlan L. H. Andrew, and Moshe Zukerman. Maxnet: A
congestion control architecture for scalable networks. IEEE Communications
Letters, 6:512–514, 2002.

[225] Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, and Shivkumar Kalya-
naraman. One more bit is enough. IEEE/ACM Trans. Netw., 16(6):1281–1294,
2008.

[226] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion con-
trol (BiC) for fast long-distance networks. In Proceedings of IEEE INFOCOM,
2004.

[227] Yueping Zhang, Derek Leonard, and Dmitri Loguinov. Jetmax: Scalable max-
min congestion control for high-speed heterogeneous networks. Comput. Netw.,
52(6):1193–1219, 2008.

187

http://www.wireshark.org/

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Modern Commodity Datacenter
	Challenges
	Contributions
	Organization

	The Scope of the Problem and Methodology
	Testbeds
	Cornell NLR Rings
	Emulab

	Commodity Servers Hardware Configuration
	Metrics
	Software Packet Processor Examples
	TCPsplit
	IPdedup
	IPfec
	Baseline Performance

	Summary

	Lambda Networked Commodity Servers
	Uncongested Lambda Networks
	TeraGrid
	Cornell NLR Rings

	Experimental Measurements
	Experimental Setup
	Packet Loss
	Throughput
	Packet Batching
	Summary of Results

	Discussion and Implications

	Packet Processing Abstractions I: Overcoming Overheads with Featherweight Pipes
	Challenges
	Overheads
	Design Goals

	Multi-Core and the fwP Design
	fwP
	fwP Under the Hood
	Taking Advantage of Multi-Core CPUs

	Experimental Evaluation
	Real World Applications
	Microbenchmarks

	Experience
	Summary

	Packet Processing Abstractions II: Harnessing the Parallelism of Modern Hardware with NetSlices
	The Case Against The RAW Socket: Where Have All My CPU Cycles Gone?
	NetSlice
	NetSlice Implementation and API
	Discussion

	Evaluation
	Experimental Setup
	Forwarding / Routing
	IPsec
	The Maelstrom Protocol Accelerator

	Discussion and Limitations
	Summary

	Related Work
	Network Measurements and Characterization
	High-speed Long-distance Transport
	Intra-datacenter Transport
	Packet Processors

	Future Work and Conclusion
	Future Work
	Conclusion

	Background On Commodity Processor Architectures
	Network Stack Primer
	Glossary of Terms
	Bibliography

