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Abstract

When the class boundaries used in constructing a chi-square goodness-of-fit
statistic are predetermined and the unknown parameters are estimated by maximum
likelihood from the ungrouped data, the resulting statistic does not have a limiting
X2-distribution but instead is asymptotically distributed as a linear function of
chi-square variables. The same result applies in the more realistic and useful
case where only the number of classes and their probability content are predetermined.
It is shown here that in both of the above cases, in the case of exponential family,
the quadratic form of the asymptotic multinormal conditional distribution of the
class frequencies given the parameter estimates can be used to test the goodness-
of-fit. The statistic does have a limiting X®-distribution and the degrees of
freedom are only one less than the number of classes after grouping, regardless of

the number of parameters estimated.
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SUMMARY

When the class boundaries used in constructing a chi-square goodness-of-fit
statistic are predetermined and the unknown parameters are estimated by maximum
likelihood from the ungrouped data, the resulting statistic does not have a limiting .
X2-distributisn but instead is asymptotically distributed as & linear function of
chi-square variables. The same result applies in the more realistic and useful
case where only the number of classes and their probability content are predetermined.
It is showﬁ here that in ﬁoth’of the above cases, in the case of exponential f;mily,
the quadratic form of the asympto£ic multinormal conditional distribution of the
class freqﬁencies given the parameter estimates can be used to test the goodness-‘
of-fit. The statistic does have a limiting X2-distribution and the degrees of
freedom are only one less than'the number of classes after grQuping, regardless §f

the number of parameters estimated.

Some key words: Conditional probability density function (c.p.d.f.), spproximation

to c.p.d.f., power comparisons.

1. INTRODUCTION

The classical procedure for testing whether a sample X5ttt x is obtained

from a specified univariate parametric family f£(x;0), such as Poisson or Normal,

* Part of the work was done at the National Institute of Environmental Health
Sciences, Research Triangle Park, North Carolina.
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employs a statistic measuring goodness-of-fit between the observed (vi) end
expected (npi) nunbers of observations falling into r predetermined classes. If
£(x;0) involves unknown parameters 6 = (91, tee, Bs) these can be estimated as

functions of v, using the maximum likelihood or minimum X2-procedure to obtain

i
estimates ii = ﬁi(vi, cen, vr) of class probabilities pi(i =1, ¢+, r)s Under

certain regularity conditions (cf. Cramer (1946) pp. 477-479) the goodness-of-fit

statistic
. v (v, -np)?
R = Z .__2'_.—_1—— (lol)
i=1 opy
is then asymptotically distributed as X2 with r-s-1 degrees of freedom (x§~s-l’

briefly). However, if the original dbsefﬁations Xy, ®**, X ere available and if

the class frequencies v,, ¢+, V. j are not & statistically sufficient reduction

1
of xl;‘°~', X, then more efficient estimators of p; are available, such as maximum
likelihood estimators 31 = pi(e) obtained by maximizing the likelihood of Xyy 00y X

with respect to 6. Chernoff and Lehmann (l95h) have shown that the statistic thus

constructed

~
r (v, - np,)?
2= 5 i . i
i=1 npi

(1.2)

is asymptotically distributed as a linear function of chi-square variables,
X?é:yi 4 e + y?_s_l + xlyi_s + eee Xsyi-l’ vwhere y, are independent standard
normal variables and the A's, constrained by 0 = Xi < 1, msy depend on the s unknown

Parameters 61, s, es.

Chernoff and Lehmann (1954) considered only the case where the class boundaries
are predetermined. Subsequently, A. R. Roy (1956) and Watson (1957, 1958) inde-

pendently showed that this same result applies in the more realistic and useful case
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where only £he.number of classes{ r, and the p; are predetermined; the class
boundaries ;re then functiomns of 8. Watson (1958) concludes that if the parameters
involved are those of location and scale, the asymptotic distribution of (1.2) is
independent of parameters. Moore (1971) and Dahiya and Gurland (1972) tabulated
the perééntile points of the asymptotic distribution of (1.2) when £(x;8) is the

normal probability density function with unknown mean and variance.

We show here that the asymptotic dependence on both the parameters and the
functional form of f(x;0) can be eliminated by adding a correction term Y2 which
converges in law to (1 - xl)yi_s + eee + (1 - xs)yi_l. The s degrees of freedom
which are completely lost in (1.1) where the parameter estimates are based on
grouﬁéd data, fractionally recovered in X2 where 6 is estimated before grouping,

are thus totally recovered in the corrected statistic X® + Y2.

The existence of such a statistic is evident in the special case where f(x;0)
is a member of the exponential family. Rao and Chakravarti (1956) following up
the work of Fisher (1950) obtained a test statistic for testing the goodness-of-fit
of a Poisson distribution. They developed the statistic from the distribution of
class frequencies given the sufficient statistic. H. Levene (1949) used this
technique to test if the frequency of any one cell is a violator of the binomial
dis£ribution (@ + p)3, and C. Vithayaesai (1971) examined the small sample behavior
of the statistic proposed by Levene. The method presented in this paper unifies
the con&itional approach and extends it to the continuous case when f(x;6) belongs
to the exponential family and hence admits a minimal sufficient statistic, 6. The
following development holds if Var(8) is of the form c/n; and if Var(8) is of the

+5

form c/nl , 8> 0, it can be shown that (1.2) is asymptotically distributed as

Xi_l. Some comparisons are given between the power of the statistic proposed in

this paper and the power of (1.1) and (1.2).
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In what follows, i tskes values from 1 to r and j,k assume values from 1 to 5.

The notation y = op(rn) means |y'n|/rn approaches zero in probability.

2. RESULTS

Let xl, see, xn be n independent random variables having a common probability
density function (p.d.f.) £(x;0), 6 = (Bl, vee, 98). We assume that f£(x;6) belongs
to the s-parameter exponential family. Iet T = (T,, -, TS) be a minimal suffi- .
clent statistic for 0. ILet 8 = 8(T) = (8,(z), =++, 8,(T)) be the maximm likeli-
hood estimator of © so that 6 has asymptotically s-variate normal distribution.

Let © have mean 6 + b(8)/n and covariance matrix V(8)/n + o(/n).

Let f(xllg) be the conditional p.d.f. of x, given § while f(xl;g) denotes

1
f(xl;e) with © replaced by 8. Ve assume the regularity conditions on f(x;8) as
described on p. 194 of Zacks (1971). In addition to these conditions, we assume

that J £2(x;6)dx is finite. Then one can show that .

8) = b(8) 137
f(xlle) =f - - 3f - 3'Vaf, + op(l/n) | (2.1)
and
?) = - b'(8 L 7 PR
f(xl,lee) .5, - (flaf2 + feafl) - 5 (fla Vaf, + 23'f,Vaf,

(2.2)

where £, =»f(xi;§) i=1,2 V= v(@);‘a'(-) = (égél, oo, ié;l) is a row vector,

and the subscript 'p' denotes the probability with respect to the joint p.d.f. of

Xy and g. We follow the convention that 3(+) is an operator acting only on f

(or f2) but not on V.

1

Let (z.

1-1’21)’ for i = 1, *++, r, be the 1'® class interval in the case of

predetermined class intervals and (21-1(6)’ zi(g)) be the it! class interval when
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the class boundaries are selected as functions of the parameter estimates. In the
- first case the class boundaries are fixed and{the class probabilities are unknown
while in the latter case the class probabilities are predetermined with respect to
F(x ‘6) Let I, denote the ith class in either case. Define gi(x )=1lor O
according as the a'® observation falls in Ii or not. Ietp, = F(zi,e) - F(z l,e)
(or F(zi(e);e)-F(zi_l(B);e)) where F(z;8) = f f(xl;e)dxl. Using (2.1) and (2.2)

we obtain omitting terms op(l/n)

B{e, (x)18)} = [ &, (x) e, |8)ax,

1 A
1 " 5m j B'Vafld.xl

Ii Ii

]
o)

Ay b'(8)
Be, (x, )8, (xp) |8} = oo, - 222 (o, [ R ) [oryax))
I, L
- = (o, Iavafdx +2J‘6f VJafdxg

I, L I,

+ gt

P, J 3 VAfldxl).
I,

i

From these expressions, after some simplification and again omitting terms op(L/n),

we obtain

s(410) - /ey

Var(Zilg) = Pi(l - pi) - I 3'f dx V I 3f ,dx,, (2.3)
Vo Ii Ii
Cov(;-_i /._f; ) = -p;p, - I a'e ax ¥ I afdx,

Ii Iz



Let
afl
uij = - d.xl (2.)-1-)
i
Vi = (u ) = Vj and V,, = (Bizpi - pipz) vhere 8, , = 1 or O according as 1 = 4
or mot. We assume that rank V .

127
The conditional p.d.f. of (vl, cee, Vr-l) given § is not a miltinomial distri-
bution; and also the vectors (gl(xa), vee, gr_l(xa)), (=1, *++, n) are not
independent in the conditional spproach. Thus one cannot use either the approxi-
mation of multivariate normal distribution to maltinomial distribution or the
central limit theorem to prove the asymptotic normelity of (vl, cee, vr_l)//E .
Another method is to obtain the characteristic function of a linear function of v's
(ef. C. R. Rao (1965) p. 108) and show the convergence to that of a univariate
normal distribution. To accomplish this, we first let n — ~ then take a subsequence

1 1

P.d.f. Of x;, ***, X glven 8 as in (2.2) up to terms op(l/nq) where q is the
1

largest integer in n1/2. Then put the nl observations into classes to obtaln the

of n., observations x,, °°*°, X, and find the epproximetion for the conditional
: 1

class frequencies (vl, cee, v and derive the characteristic function (c.f.) of

r—l)
a linear function of these v's, properly normalized. It can then be shown that as
nl/n - 1, the c.f. of (vl, cee, vr_l)//ﬁb approaches the c.f. of a normai distri-
bution with mean zero and covariance Vll V12VV21 The quadratic form associated
with this normal distribution can be used as the test statistic to test goodness-

of-fit to the family £(x;0). This statistic is asymptotically distributed as X2

r-1’
Q. (v8) = 3(v - mp)'(Vyy - ViV, )M - mpf 2
(v - n -n - n
Ittt ek T (L D e
Jok 1

X2 + Y2
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where (a"k) = (7t - (g-’% ‘;ij :Lk>

Since the decomposition of Q l(v;@) into X2 + Y° corresponds to writing

-1
B = (V) - Vg 21) 1t vy v12 21

limiting distribution of 22 it is sufficient to obtain the characteristic roots of

)-l ii}, then to study the

l - A
(v -V v, ) B=1-7v] Yvyy - Vi) = V lv12 #V,,. The product V iV,

is the estimated covariance matrix of vnV,,.(6 - 8) and hence is positive semi-

12(

definite of rank s (since rank V = g). Thus only s of the characteristic roots

12
are non zero and are determined from |V12VV2l (1- X)Vll' = 0. However, since
v, - vlzvv21 and V, are positive definite it can be seen (cf. C. R. Rao (1965)

p. 56) 'vll - u(Vll - 12 21)' O has all roots p 2 1. TFrom this we obtain

T _E;l = ] ‘ - :u
(VoW " V,,| = Ovith all u 2 1 and hence deduce that 1 - A m with

< 2 o - " ee e - ~
0 <X <1, Ths Y° ~ (1 xl)yi_s + + (1 Ks)yifl where y, N(0,1) random
variables, and since the characteristic roots of ViiB are characteristic roots of

+ooo+ly2

2~ LN ]
-V lv VV then X yi * + yi—s-l * ler-s g'r~1’

11'12° 21

The following section contains results of simlation of the distribution of
the statistic Q. These simulations sﬁpport the results (2.1) - (2.3) and the
asymptotic normality of (vl, cee, vr_l)ﬁfﬁz . In the simlations we used all the

n observations instead of nl described above. S

3. SOME NUMERICAL EXAMPLES
\

In this section we calculate the statistic Qr_l(v;g) in the cases of testing

the goodness-of-fit of binomial, exponential and normal distributions.
Binomial: f(x;0) = (;)ex(l - e)r‘x, x=0,1, ***, r. Let Xyy *t0y X be a sample
of n independent observations. The m.4. estimate 6 of 0 1is in/n and is a sufficient

statistic for 6. Using (2.1) the conditional probability density of x, given 8 is

1
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2 .8

L G(l - §) FFGp®) ).
_r d,ga vr;‘ p n

£(x, |8) = f(xl,e)

a7 |
Suppose that the first m classes (x = 0, 1, ***, m - 1) are pooled while the last

k=r-m--1 classes e,re kept as they a.re. Then

VR DR AR (u ‘”’i} e TGN

The exact size of the condi:tional tdst 1s evalusted in Tsble 1 for r = 3, m= 2,
14"

6 = .6 at the nominal values o = .05 a.nd Q= .025, ci'ltlcal regions are thus given
A L
= * ) ‘, 2 >
by C {(vl,ve,v3) : Qa(v,e) a} where P(X X2 ja) = Q.

Tahle 1: Exact.Distribution of Q
for Samples from Binomial Distribution

AT

N}

2 2 =
| Sample size P(X ~ X2 a) 24 :
.05 .025
.10 .0l80o1  .00667
. 720 -| .03588-  .02511
30 | .ow224 . .02338
T owo ¢ 04681  .02148
50« -~ | O5LH0 T 02151 |
60 OuLET . .02507

v In the following two examples the r classes are selected such that the class
boundaries are functions of 6 and each cia.ss has the same probability content under

£(x;8), that is,

2(x;8)ax = % (3.1)



Exponential Distribution:

H: f(x;0) = e'X/e, x 20, 0 unknown.

D+

The sample mean x is a sufficient statistic for 6. Let the r class intervals be

(izi_l,izi), i=1, ¢, v'= 1, with z_ = O and z,. = ©, where zi's are determined

0]
from (3.1), giving z; = -log(1l - %). Let

Xz,
1

o= |
le*l

.- -7, -Z
.a_fSlCJ_xl dx = -}- (zi le i-1 - zie i)
Y x i

and v, = iui, (1 =1, ***, r). After some simplification, we obtain the test
statistic as

(G, - oo,
0 s8) =E) (v, - BE e D2
1

n
(1 - rivi)

where v, = number of x's falling in (izi_l,izi). Thirty-five hundred samples of
size n (= 100) were generated and for each such sample Qr_l(v;g), (for r = 4, 6,
8, 10, 12) and X? were computed. In Tsble 2, (n = 100), the first line for each
value of r gives the value &, the proportion of samples in wﬁicﬁ Qr_l(v;g) éxceeds
xi-l;a’ and the second line gives the value &c, the proportion of sampl%s in which

X2 exceeds X2

H . H
P The sampling distribution of Q@ is seen to agree with the
-2; 1

nominal chi-square distribution for all values of r, while the distribution of X2

becomes nominal only for sufficiently large r.

Normal Distribution:

1 -(x-up)3/20%
——— e ’

H : £f(x;0) = £(x;u,0%) =
° /2o

p and 02 unknown.

- A -
Let x and s® be the sample mean and variance; i.e., 8 = (x,5%). ILet



Table 2: Similated sampling distribution of goodness-of-fit statistics Q and X2

for samples of size 100 from an exponential distribution with unknown mean.

4 975 .95 .90 .80 .70 .50 .30 .20 .10 .05 .025 .01
r
Q 982 .948 . 900 Tk .702 .501 .302 .206 .102 .056 .025 .009
* X2 | .998 .978 968 .882 .805 5Tk . 364 241 .120 .057 .029 .010
Q .973 < G4k .900 796 .692 .501 «291 .187 .090 0oLl .022 .008
; x2"‘ .984 .960 912 ;823 .739 .528 .317 . 204 .097 045 .024 .008
Q .972 .953 . 900 .802 697 491 .306 . 204 .096 .ob7 o2l .008
° x2 | .983 .956 .922 .818 726 .511 .307 214 .100 .052 .02k .008
Q <975 950 897 .801 694 .483 .276 .185 .090 043 .020 .008
0 X | .98  .955 .907 .826 719 .503 .295 .190 .090 047 .025 .009
Q |.973 o .896 .80k .708 < 504 .296 .198 .099 .050 .022 .007
. X¥* |.9713 .98 912 .813 729 .516 .315 .200 .101 .058 .020 .008
Entries 1°% line: Proportion of Q's > xi_l; o 2*% line: Proportion of X* > x§_2; o 10 3500 samples.

-0'[-
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(x +z, .8, X + zis), 1 =1, ***, r be the r class intervals, where the z, are

i-1

determined from (3.1) with 2y = -® 2z, = = From (2.4) we obtain

-z2 -z2 -z2 -z2/2
1. 2§ /2 -7/2 1, 2§ 1/2 23/

i1 - /2 -‘e et os3/3n -1 i

=
|
[}

Let v = s’auiz, (\7‘1 - 3)'1 = (é"jk), j,k = 1,2; then

31 ° %410 Vio

8 = -(er?2 - 2)/p, a~° = a2 erilviz/D, A (eril 1)/D where
= 2 - - i
D (rZwil l)(eri 2) - r2(Zv, 11 12) The test statistic is given by
a. .(v;8) = L 2(v, - /r)2 + E= [(2(v, - n/z)v,,)2 L
r-1‘"’ n i n i il

+ 220y, - o/r)v, )(EQy - o/r)v,) ai2
" @Oy - /i) 8 a*).

The distribution of this statistic was similated by Monte Carlo methods. If

¥y see, yn are independent standard normal variates, then the variables

- = - _ 2
Xy = (yi .y)/sy will have x = O, s

< 1. Using these values of x's the statistics

(v;i;sz) and X? were computed. Using y's the statistic R = % ):(m.i - n/r)?
vwhere m; is ‘the number of y's falling in (z 1224 ), (1 = e r) was computed
as the test statistic to test H : £(y;0) = (1//——7exp( y2/2) Table 3 gives the
comparison of similated sampling distributions of the goodness-of-fit statistics
Q, R, X2. Fér fixed r, the first and second lines give the proportion of samples
in which Q__ l(v;i;sz) and R exceed X2 10 respectively; the third line gives the
proportion of samples in which X2 exceeds X2 =330 forr = 4, 6, 8, 10, 12. As
anticipated, the sampling distributions of Q and R agree well with their nominal

distributions for all r.



Table 3: Simulated sampling distribution of goodness-of-fit statistics for samples
‘ of size 100 from a normal distribution with unknown mean and variance.

o _

975 .95 .90 .80 .70 .50 .30 .20 .10 .05 .025 01
r

Q .978 <949 .915 .809 .710 .510 .292 .184 .095 .051 .028 .010
4 R .978 .955 .898 .830 722 .509 .301 .207. .103 .050 .028 .012
X |.999 .999 .999 .999 .96k .822 529 .389 .209 .107 .055 .02k
Q 977 .953 .900 .809 .715 .503 x5 .20k .09k 046 .023 .008
6 R 972 .959 .913 .811 707 .513 .312 .197 .105 .056 .032 .01k
X2 |.995 . 984 .957 «900 814 .609 .392 .251 .130 .061 .033 .014
Q |.97h 946 .897 792 693 -k90 .283 .185 .087 .0k1 .026 .010
8 R .981 +956 .905 .813 .696 .505 .298 .199 .102 .055 .027 .011
X2 |.988 .970 .928 .855 .765 .551 .340 .233 111 .058 .027 .013
Q .970 .950 .899 .788 .685 485 .288 .191 .095 .ou7 .023 .008
10 R .978 «957 .910 817 716 .508 .306 .199 .105 .052 .027 .012
X [.982 .968 914 817 .733 541 .341 .221 .110 .054 .028 .011
Q <973 «950 .896 .T789 .680 L9k .289 .196 .101 .053 .025 .009
12 R .980 .957 <91k .817 .707 .500 .297 .210 Jak .058 .021 .011
X2 |.982 .961 .907 .815 .725 .523 .327 222 .119 .059 .031 .013

-8‘[_



‘4, POWER COMPARISONS

The X2 test gf goodness-of-fit (ef. Cochran, 1952) is most commonly used when
we do not have a clear-cut alternative in mind, and are not in a position to make
computations of‘ the power. In their discussion of the limiting distribution of
(1.2) Chernoff and Iehmenn (1954) expressed the hope that the power of the test
would be increased if the maximum likelihood estimates based on the original obser-
vations are employed. In general, as pointed out by Chibisov (1971) power com-
parisons by analytic methods are very difficult and we have therefore resorted to
similation studies of the power functions of the three statistics under consider-
ation. We have examined the alternmatives including double exponential, mixtures
of double exponéntial, N(O,4) and N(0,9) with N(0,1) variables. In each of these
cases Qr_l(v;g) hes larger power when compared to its competitors. The mixtures

of normal variables with different variances were suggested by Tukey (1960).

In order to compare (l.l) with the others on a competitive basis we first
remove the requirement of predetermined class boundaries, using class boundaries
of the form x + z;s for all three test statistics and with equal preéicted class
frequencies for both (1.2) and Qr_l(v;g). Predicted class frequencies for (1.1)
are based on a sample ﬁean and variance estimated from the class frequencies.
Following Cramer (1946) these miltinomial maximum likelihood,eétimates (m.m.1l.e.)

are apprbximated by moment estimates after replacing each observation in the it"

class by the midpoint 8y of this class. Midpoints of the extreme classes are here

r-1
e, = v/(r - 2 ai)/Z

defined by

and al = —ar.

The results given in Table 4 reveal comsistent and substantial differences in

power of the three statistics, the power of Qr-l(v5a) being greatest and the power
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Table 4: Comparison of power of the statistics Q., x"’ and R
- for 1000 samples of size 80.

Sample No. of +10 - -0 - -01 -
Mixture Classes Q x2 R Q X2 R Q x2 R
. B4l .608  .361 .525 487 .216 = .322 .257 .063

11\3%5?2)-0 6" 1.6715 .570 .364 .585 W67  .251 .387 .24 .103
8 691 51T .365 .580 .uOk  .2u45 369 .200 .089

Rt 400  .355  .222 283 .235 .113 12k .09 .02l
3?51:2)_% 6 L1700 .30k .159 .333 .215 .082 182 .078 .024
8 A436  .283  .157 340 .181 .090 A6k 077 . 02}

N 106 .108 .118 046 .058 .051 .015 .017 .008

3%5?1)_80 6 .095 .O9% .098 .036 .050 .0k2 .008 .009 .007
8 .093 .090 .102 .050 .056 .046 .012 .011 .007

L .298 .266 .164 .193 - .171  .085 077 .054  ,017

g%g:,}g:gg 6 .321 .212 .121 .221  .130 .060 .083 .032. .010
8 .332 .20k ,117 - .242 .106 .053 .103 .032 .010

b 615 .57T3 .327 .507 453  .187 .351 .261 .039

g§8§$§2§8 6 675 50T .162 591 .397 .088 L2717 -022
8 712 k63 .130 .633 .351 .OT1l 483 .164  .013

\

Critical values for the distribution of X2 are obtained from Dehiya and Gurland (1972).
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of (l.l) beingj;east. Power comparisons were made for the mixtures of double
exponential (DE) variable X when the density function is given by g(x;8) =
exp(-|x|/8)/2 with 0 = 2 and that of N(0,1) variables; and also for the mixtures

of N(0,1) variables with N(O,4) and N(0,9) variables.

DISCUSSION

A practical disadvantage of the classical test statistic (1.1) is the awkward-
ness of the associated estimation problem, which has resulted in the customary
practice of calculating (1.2) in place of (1.1). A practical disadvantage of (1.2)
is that unless a large number of class intervals are used the asymptotic distri-
bution of the test statistic depends on the null hypothesis. The proliferation of
tables of critical values fequired to accommodate even‘the most commonly hypothe-
sized parametric families can be avoided through the use of Qr-l(v;a)' One further
advantege of Qr-l(v;a) is the improvement in power that seems likely to occur in

most applications as a result of the increase in dggrees of freedom.
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