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SUMMARY 

When the class boundaries used in constructing a chi-square goodness-of-fit 

statistic are predetermined and the unknqwn parameters are estimated by maximum 

likelihood from the ungrouped data, the resulting statistic does not have a limiting . 

X2-distributi~n but instead is asymptotically distributed as a linear function of 

chi-square variables. The same result applies in the more realistic and useful 

case where only· the number of classes and their proba9ility content are predetermined. 

It is shown he~e that in both of the above cases, in the case of exponential ~amily, 

the ~uadratic form of the asymptotic multinormal conditional distribution of the 

class frequencies given the parameter estimates can be used to test the goodness-

of-fit. The statistic does have a limiting X2 -distribution and the degrees of 

freedom are only one less than the number of classes after grouping, regardless of 
.'. •' 

the number of parameters estimated. 

~key words: Conditional probability density function (c.p.d.f.), approximation 

to c.p.d.f., power comparisons. 

1. INTROWCTION 

The classical procedure for testing whether a sample x1, •••, xn is obtained 

from a specified univariate parametric family f(x;e), such as Poisson or Normal, 

~ Part of the work was done at the National Institute of Environmental Health 
Sciences, Research Triangle Park, North Carolina • 

. .., ,-



employs a statistic measuring goodness-of-tit between the observed (\Ji) and 

expected (npi) numbers of observations falling into r predetermined classes. If 

f(x;e) involves unknown parameters e = (91 , •••, 9s) these can be estimated as 

fUnctions of \Ji using the maximwn likelihood or minimum X2 -procedure to obtain 

estimates pi= pi(\Ji 1 •••, \Jr) of class probabilities p1(i = 1, •••, r). Under 

certain regularity conditions (cf'. Cramer (1946) pp. 477-479) the goodness-of'-fi t 

statistic 

(1.1) 

is then asymptotically distributed as X2 with r-s-1 degrees of' freedom (X2 1, r-s-

briefly). However, if the original observations x1, •••, xn are available and if 

the class frequencies \Jl' •••, vr-l are not a statistically sufficient reduction 

of x1 ;·· • • •, xn' then more efficient estimators of pi are available, such as maximum 
..... ..... 

likelihood estimators pi = pi (e) obtained by maximizing the likelihood of x1, • • •, xn 

with respect to e. Chernoff and Lehmann (1954) have shown that the statistic thus 

constructed 

(1.2) 

is asymptotically distributed as a linear function of chi-square variables, 

r:& yf + ••• + ~-s-1 + A.l~-s + ••• + ).sy~-1' where yi are independent standard 

normal variables and the A.'s, constrained by 0 s Ai < 1, may depend on the s unknown 

parameters el, ···, es. 

Chernoff and Lehmann (1954) considered only the case where the class boundaries 

are predetermined. SUbsequently, A. R. Roy (1956) and Watson (1957, 1958) inde-

pendently showed that this same result applies in the more realistic and useful case 
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where only the number of classes, r, and the pi are predetermined; the class 
,.. 

boundaries are then functions of e. Watson (1958) concludes that if the parameters 

involved are those of location and scale, the asymptotic distribution of (1.2) is 

independent of parameters. Moore (19Tl) and Dahiya and Gurland (19T2) tabulated 

the percentile points of the asymptotic diGtribution of (1.2) when f(x;e) is the 

normal probability density function with unknown mean and variance. 

We show here that the asymptotic dependence on both the parameters and the 

functional form of f(x;e) can be eliminated by adding a correction term Y2 which 

converges in law to {1- ~1)~ + ••• + (1- ~ )~ 1• The s degrees of freedom r-s s r-

which are completely lost in (1.1) where the parameter estimates are based on 

grouped data, fractionally recovered in X2 where e is estimated before grouping, 

are thus totally recovered in the corrected statistic x2 + Y2 • 

The existence of such a statistic is evident in the special case where f(x;e) 

is a member of the exponential family. Rae and Chakravarti ( 1956) following up 

the work of Fisher (1950) obtained a test statistic for testing the goodness-of-fit 

of a Poisson distribution. They developed the statistic from the distribution of 

class frequencies given the sufficient statistic. H. Levene (1949) used this 

technique to test if the frequency of any one cell is a violator of the binomial 

distribution (q + p)2 , and C. Vithayasai (1971) examined the small sample behavior 

of the statistic proposed by Levene. The method presented in this paper unifies 

the conditional approach and extends it to the continuous case when f(x;e) belongs 
,.. 

to the e~onential family and hence admits a minimal sufficient statistic, a. The 

following development holds if Var(e) is of the form c/n; and if Var(e) is of the 

I 1+5 
form c n , 5 > O, it can be shown that (1.2) is asymptotically distributed as 

X2 1 • Some comparisons are given between the power of the statistic proposed in r-

this paper and the power of (1.1) and (1.2). 
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In what follows, i takes values from 1 to r and j,k assume values from 1 to s. 

The notation y = o (r ) means IY 1/r approaches zero in probability. n p n n n 

2. RE&JLTS 

Let x ••• x ben independent rand~m variables having a common probability 
1' ' n 

density function (p.d,f.) f(x;e), a= (e1, •••, 98 ). We assume that f(x;9) belongs 

to the a-parameter exponential family. Let T = (T1, • • •, Ts) be a minimal suffi­

cient statistic for e. .Let a = 9'(T) = (a1 (T), .. •, as (T)) be the maximumlikeli-

"' hood estimator of e 80 that e has asymptotically s-variate normal distribution. 

Let e have mean e + b(e)/n and covariance matrix v(e)/n + o(l/n). 

Let f(xlje) be the conditional p.d.f. of x1 given e while f(xl;e) denotes 

f(x1;e) with 9 replaced by a. We assume the regularity conditions on f(x;e) as 

described on p·. 194 of Zacks (1971). In addition to these conditions, we assume 

that J f 2 (x;9)dx is finite. Then one can show that 

f(x Je) = f - b(e) of - Jl o'Vof + o (l/n) 
1 1 n 1 2n 1 p (2.1) 

and 

t(x1,x21e> = f 1f 2 - b'(e) (f of + f of ) - ~ (f o'Vof + 2o'f vof 
n 1 2 · 2 1 2n 1 2 1 2 

(2.2) 
"' + f 2o'VOf1).+ op(l/n) 

where fi = f(x1;e) i = 1,2, v = v(e), o'(·) = (o<:>, ···, oi•)) is a row vector, 
oel aes 

and the subscript 'p' denotes the probability with respect to the joint p.d.f. of 
A 

x1 and a. We follow the convention that o( •) is an operator acting only on f 1 

" (or f 2 ) but not on v. 

Let (z1_1,z1), fori= 1, •••, r, be the ith class interval in the case of 

predetermined class intervals and (z. 1(e), z.(e)) be the 1tb class interval when 
l.- l. 
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the class boundaries are selected as functions of the parameter estimates. In the 

first case the class boundaries are fixed and the class probabilities are unknown 

while in the latter case the class probabilities are predetermined with respect to 
,.. 

·f(x1;~). Let Ii denote the i'h class in either case. Define gi(xa) = 1 or 0 
,.... " 

according as the ath observation falls in Ii ~r not. Let pi= F(zi;a) - F(zi_1,e) 

(or F(zi {e); e) -F(zi-l (e); e)) where F(z; e) = J f(x1; e)dx1• Using (2.1) and (2.2) 

we obtain omitting terms o (1/n) 
p 

= p - b ,-<e> J of ax - 1:.. I o 'Vof dx 
i n 1 1 2n . 1 1 

Ii Ii 

+ Pt J o'v~r1dx1). 
Ii 

From these expressions, after some simplification and again omitting terms op(l/n), 

we obtain 

(2.3) 
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Let 

(2.4) 

v12 = (uij) = v21 and v11 ~ (5itpi - pipt) where 8it = 1 or 0 according as i = t 

or not. We assume that rank v12 = s. 

"" The conditional p.d.f. of (v1 , ···, vr_1 ) given e is not a. multinomial distri-

bution; and also the vectors (g1(xa), ···, gr_1(xa)), (a= 1, ···, n) are not 

independent in the conditional approach. Thus one cannot use either the a.pproxi-

mation of multivariate normal distribution to multinomial distribution or the 

central limit theorem to prove the as~totic normality of (v1, ···, vr_1)/IO. 

Another method is to obtain the characteristic function of a linear function of v's 

(cf. C. R. Rao (1965) p. loB) and show the convergence to that of a univariate 

normal distribution. To accomplish this, we first let n .... ro then take a. subsequence 

of n1 observations x1, •••, xn
1

' and find the approximation for the conditional 

p.d.f. of xl, ···, xnl given e as in (2.2) up to terms op(l/nq) where q is the 

largest integer in nJ!2. Then put the n1 observations into classes to obtain the 

class frequencies (v1, ···, vr_1) and derive the characteristic function (c.f.) of 

a linear function of these v's, properly normalized. It can then be shown that as 

nrfn .... 1, the c.f. of (v1 , ···, vr_ 1)/~ approaches the c.f. of a normal distri-

"" bution with mean zero and covariance v11 - v12vv21• The quadratic form associated 

with this normal distribution can be used as the test statistic to test goodness-

of-fit to the family f(x;e). This statistic is asymptotically distributed as X2 1, r-

( "") - 1( )'( "" )-1( )~ 2 Qr-1 v;e - n v - np vll - vl2vv21 v - np xr-1 
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where (ajk) .., (v1 - J)-1, j • ( L ~ uiju~). 
1 

Since the decompoa1 tion of' Qr-l ( v; a) into r + y2 corresponds to wr1 ting 

-1 ( A -1 -1 {( ~ )-1 •1} B .. V11 - v12vv21) "' v11 + v11 - v12vv21 - v11 , then to study the 

limiting distribution of y2 it is sufficient to obtain the characteristic roots of 

{(v11 - v12vv21)-1) B =I- v~i<v11 - v12vv21) = v~iv12vv21• The product v12Vv21 

is the estimated covariance matrix of liiv12(e - e) and hence is positive semi­

definite of rank s (since rank v12 = s). Thus only s ot the characteristic roots 

are non zero and are determined from !v12w21 - (1 - ~)vllJ = o. However, since 

"' V 11 - V 12 VV 21 and V 11 are positive de:f'ini te it can be seen ( cf. C. R. Rao ( 1965) 

" P· 56) fv11 - ~(v11 - v12vv21H = 0 has all roots ~ ;:: 1. From this we obtain 

lv12w21 - ~ - 1 v111 .. o w~th all ~ ;:: 1 and hence deduce that 1 - X ... ~with 
~ ~ 

0 ~ "- ~ 1. Thus Y2 - (1. x1)r: + ••• + (1- A )~ 1 where yi ~ N(O,l) random , r-s s r-

variables, and since the ch~~~teristic roots of v~is are characteristic roots of 

I- v-~ Vv then x2 - ~ + ••• + ~ + x y + ••• + x ~ . 11 12 21 1 r-s-1 l r-s s r·l. 

The following section contains results ot simulation of the distribution of 

the statistic Q. These simulations support the results (2.1) - (2.3) and the 

asymptotic normality of {v1, •••, vr_1)//Di. In the simulations we used all the 

n observations instead of n1 described above. '1 ··::' 

3 • SOME NUMERICAL EXAMPLES 

" In this section we calculate the statistic ~-1(v;e) in the cases ot testing 

the goodness-of-fit of binomial, exponential and normal distributions. 

Binomial: f(x;e) = ~)ex(l- 9)r-x, x = o, 1, ···, r. Let x • • • x be a sample 
1' ' n 

of n independent observations. 
..... 

The m• .t,. estimate e of e is r.xJn and is a sufficient 

statistic for e. Using (2.1) the conditional probability density of x1 given e is 
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• A d2f(x ·e) 
f(~la>. f(xl;a)- lL 9(1- e) ~1' + 0 (!) . 

.L 2n r de2 . r :· P n 
.i ~ t • • • . , ,. -

.n··:··r.·· 
Suppose that the first m classes {x = 0, 1, • • •, m - 1) are pooled while the last 

The exact -s.ize of the ·cond:L-t:fional test is evaluEited ~· Table 1 for r = 3, m = 2, 
"' . ,-;·:- .... ·. '"tr.J 
e = • 6 at the nominal. vahles a = .05 and a = .025; critical regions are thus given 

by C ~ { ( v1, v2, v3) : Q2 (''V; e) .fi.P''X~;J where P{X~ > X~;o) = a. 
. . -,.:r . 

. . . 
VI 

.. wa~J;.e J: Exact,·Distribution of· Q .• 
for Samples from Binomial Distribution 

,, ... >/ ·~., r \' . 
' '>w' 

P{X2 > x2 ) = a 
,.S~le size 

2 2;cx ... , 

.05 .025 

~ .. .>.lO .o480l .00667 
..-,~. 

:•.·:r i:i ~T:.~o .03588- .02511 
30 .o4224 .. .02338 

' ... 
40 . ' .o4681 .02148 

59' .. 
, .... ~ ~.:{)5<140 ,' ' ' ·• 02151 

6o ~94467 --~ ..... .02507 

. ,,; In the following two examples the r classes are selected such that the class 
A 

boundaries are fUnctions of e and each class has the same probability content under 
A 

f(x;e), that is, 
A 

z1(a) 

J A 1 
:..·f{x;e}dx = r . 

z (a) 
i-1 

• •:: I~ 
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Exponential Distribution: 

The sample mean .X is a sufficient statistic for e. ~t the r class intervals be 

(xzi-l'xzi), i = 1, ···, r'- 1, with zo = 0 and zr = m, where zi's are determined 
. i 

from (3.1), giving z. = -log(l - -). Let 
J. r 

xz. 1 J.-

and vi = iui, (i = 1, 

statistic as 

, r). After some simplification, we obtain the test 

{.E(vi - n/r)viF~ 
( -) = ! L (v - .!!)2 + r2 i Q 1 v;x i _,;;.., ______ _ 

r- n r n ( 1 _ r.E~) 
i i J. 

where v. = number of x 's falling in (iz. 1 ,izi). Thirty-five h'4.Ildred samples of 
J. J.-

"" size n (= 100) were generated and for each such sample Q 1(v;e), (for r = 4, 6, r-

8, 10, 12) and X2 were computed. In Table 2, (n = 100), the fir.st line for each 
. 1 1 

value of r gives the value a, the proportion of samples in which Qr-l(v;e) exceeds 

X2 1 a' and the second line gives the value a , the proportion '* samples in which r- ; c 
i 

~ exceeds X~_2;a· The sampling distribution of Q is seen to agree wit~ the 

nominal chi-square distribution for all values of r, while the distribution of ~ 

becomes nominal only for sufficiently large r. 

Normal Distribution: 

H : 
0 

Let i and s2 be the sample mean and variance; 

I.L and a2 unknown. 

Let 



Table 2: Simulated sampling distribution of goodness-of-fit statistics Q and ~ 
for samples of size 100 from an exponential distribution with unknown mean. 

~ .g-(5 ·95 -90 .80 ·10 -50 ·30 .20 .10 .05 .025 .01 

Q .982 .948 .goo ·794 -70.2 -501 ·302 .206 .102 .056 .025 .009 
4 

~ .998 .978 -968 .882 .805 -574 .364 .241 .120 .057 .029 .010 

Q ·973 .944 .90(> ·796 .• 692 -501 .291 .187 .090 .044 .022 .ooa 
6 

x_2' .984 .9()0 .912 .823 ·139 .528 -317 .204 .ogr .045 .024 .008 

Q .g-(2 ·953 .900 .802 .6gr .491 ._306 .204 .096 .047 .024' .ooa 
8 

r -983 -956 .922 .818 -726 -511 ·3C17 .214 .100 .052 .024 .008 b 

Q ·975 ·950 .897 .801 .694 .483 -276 .185 .()90 .043 .020 .008 
10 

~ .984 -955 .9CT( .826 -719 -503 ·295 .190 .090 .047 .025 .009 

Q ·973 -944 .896 .804 -708 .504 .296 .196 -099 .050 .022 .em 
12 

r .g73 .948 ·912 .813 -729 -516 -315 .200 .101 .058 .020 .008 

Entries 1st line: Proportion of Q's > X2 1 a,· 2nd line: Proportion of~> X2 2 ~in 3500 samples. r- ; r- ;~ 
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(i + z1_1s, i + z1s), i = 1, •••, r be the r class intervals, where the zi are 

determined from (3.1) with z0 = -=, zr = =. From (2.4) we obtain 

(e-z21_,/2 -z;/2 1 -z~ ,/2 -z;/2 
uil = ~ • - e • ), ui2 = 2s2J2rr (zi-le ~-· - zie • ). 

Let vi1 = suil' vi2 = s2ui2' (v-1 - J)-l = (~jk), j,k = 1,2; then 

~ll = -(rtvf2 - 2}/D, ~12 = ~21 = rEvi1v1~D, ~22 = -(rEvf1 - 1)/D where 

D = (rtv~1 - l}(rtvf2 - 2) - r 2(I:v il v i 2)2 • The test statistic is given by 

( ( Al2 
+ 2 I: :vi - n/r}vil)(I:(vi - n/r)vi2) a 

+ (E(vi - n/r)vi2)2 ~22]. 

The distribution of this statistic was simulated by Monte Carlo methods. If 

y1, •••, yn are independent standard normal variates, then the variables 

x. ;;: (yi - y)/s will have x = 0, s2 = 1. Using these values of x's the statistics 
J. , y X 

Qr_1(v;x;s2 ) and~ were computed. Using y's the statistic R = ~ E(mi - n/r)2 

where m. i~ the number of y' s falling in ( z. 1, z. ) , '( i = 1, • • •, r) was computed 
J. . ~ . J. . 

as the test statistic to test H0 : f(y;9) = (l/12IT)exp(-y2/2). Table 3 gives the 

comparison ·of·· s~nru.lated sampling distributions of the goodness-of-fit statistics 

Q, R, X2• For fixed r, the first and second lines give the proportion of samples 

in which ~-1(v;~;s2 ) and R exceed X~-l;a' respectively; the third line gives the 

proportion of samples in which X2 exceeds X2 3 for r = 4, 6, 8, 10, 12. As r- ;a 

anticipated, the sampling distributions of Q and R agree well with their nominal 

distributions for all r. 



~ 
Q 

4 R 

x_2 

Q 

6 R 

x_2 

Q 

8 R 
x2 

Q 

10 R 

x_2 

Q 

12 R 

x2 

Table 3: Simulated sampling distribution of goodness-of-fit statistics for samples 
of size 100 from a normal distribution with unknown mean and variance. 

·975 ·95 ·90 .Bo -70 .50 -30 .20 .10 .05 

.gr8 -949 -915 .809 -710 .510 .292 .184 .095 .051 

.gr8 -955 .898 .830 -722 -509 -301 .207. .103 .050 

-999 ·999 -999 ·999 .964 .822 -529 -389 .209 -107 

·977 -953 ·900 .809 -715 -503 .0S .204 .094 .o46 

.gr2 ·959 -913 .811 ·707 -513 -312 .197 .105 .056 

-995 -984 -957 ·900 .814 .609 ·392 .251 -130 .061 

• gr4 -946 .8gr ·792 .693 .490 .283 .185 .o87 .o41 
.981 ·956 -905 .813 .696 ·505 .298 .199 .102 .055 
.988 .gro .928 .855 ·765 ·551 -340 -233 .lll -058 

-970 -950 .899 -788 .685 .485 .288 .191 .095 .047 

·978 ·957 -910 .817 -716 .5o8 -306 .199 .105 .052 
.982 -968 -914 .817 ·733 ·541 -341 .221 .110 .054 

·973 ·950 .896 -789 .68o .494 .289 .196 .101 .053 
.980 ·957 -914 .817 ·707 -500 • 2'.1'( .210 .114 .058 
.982 -961 ·907 .815 -725 -523 -327 .222 .119 .059 

-- --- -~- --~ ------- - -

.025 .01 

.028 .010 

.028 .012 

.055 .024 

.023 .008 
I 

.032 .014 : 

.033 .014 I 

-' 

.026 .010 

.027 .011 

.027 .013 

.023 .008 

• O'i:!'f .012 
.028 .011 

.025 -009 

.021 .011 

.031 .013 
----- --- ----------

.... 
1\) 
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4. POvlER COMPARISONS 

The X2 test of goodness-of-fit {cf. Cochran, 1952) is most commonly used when 

we do not have a clear-cut alternative in mind, and are not in a position to make 

computations of·the power. In their discussion of the limiting distribution of 

(1.2) Chernoff and Lehmann (1954) expressed the hope that the power of the test 

would be increased if the maximwm likelihood estimates based on the original obser­

vations are employed. In general, as pointed out by Chibisov (1971) power com-

parisons by analytic methods are very difficult and we have therefore resorted to 

simulation studies of the power functions of the three statistics under consider-

ation. We have examined the alternatives including double exponential, mixtures 

of double exponential, N(0,4) and N(0,9) with N(O,l) variables. In each of these 

cases Qr-1 ( v; e) has larger power when,compared to its com;petitors. The mixtures 

of normal variables with different variances were suggested by TUkey (1960). 

In order to compare (1.1) with the others on a competitive basis we first 

remove the requirement of predetermined class boundaries, using class boundaries 

of the'form x ± zis for all three test statistics and with equal predicted class 

"" frequencies for both (1.2) and Q 1(v;e). Predicted class frequencies for (1.1) r-

are based on a sample mean and variance estimated from the class frequencies. 

Following Cramer (1946) these multinomial maximum likelihood estimates {m.m.l.e.) 

are approximated by moment estimates after replacing each ob~ervat~on in the ith 

class by the midpoint ai of this class. Midpoints of the extreme. classes are here 

defined by 

and a = -a . 
1 r 

r-1 
(r - r. a~)/2 

2 

The results given in Table 4 reveal consistent and substantial differences in 

power of the three statistics, the power of Q 1(v;e) being greatest and the power r-
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-Table 4: Comparison of power of the statistics Q, r 1 and R 
for 1000 samples of size 80. 

Sample No. of .10 .05 .01 - - .... 
Mixture Classes Q x;2 R Q x_2 R Q r R 

4 - .641 .6o8 -361 -525 .487 .216 -322 .257 .063 
DE-80 6 -- .675 -570 -364 .585 .467 .251 ·387 .244 .103 N(O,l)-0 

8 .691 .517 -365 .580 .404 .245 ·369 .200 .o89 

4 .400 -355 .222 .283 .235 .113 ~124 .Q94 .021 
DE-40 6 .417 ·3o4 .159 ·333 .215 .o82 .182 .078 .024 N(O,l)-40 

8 .436 .283 .157 -340 .181 .090 .164 ·077 .024 
' 

4 .106 .1o8 .118 .046 .058 .051 .015 .017 .008 
DE-0 6 .095 .094 .098 .036 -050 .o42 .008 .009 .007 N(O,l)-80 

8 .093 .090 .102 .050 .056 .o46 .012 .011 .007 

4 .298 .266 .164 .193 -171 .085 .(Yl7 .054 .017 
N(O,l)-6o 6 ·321 .212 .121 .221 .130 .060 .o83 .032., .. 010 N(0,4)-20 

8 ·332 .204 .117 .242 .106 .053 .103 .032 .010 

4 .615 ·573 ·327 ·507 .453 .187 ·351 .261 .039 
N(O,l)-70 
N(0,9)-10 6 .675 -507 .162 ·591 ·397 .088 .427 .217 .022 

8 ·712 .463 .130 .633 ·351 ·071 .483 .164 .013 

; 
Critical values for the distribution of x2 are obtained from Dahiya and Gurla.nd (1972). 
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of (1.1) beingj~east. Power comparisons were mad~ for the mixtures of double 

exponential (DE) variable X when the density function is given by g(x;e) = 

exp(-lx!/e)/2 with e = 2 and that of N(O,l) variabies; and also for the mixtures 

of N(O,l) variables with N(0,4) and N(0,9) variables. 

DISCUSSION 

A practical disadvantage of the classical test statistic (1.1) is the awkward-

ness of the associated estimation problem, which has resulted in the customary 

practice of calculating (1.2) in place of (1.1). A practical disadvantage of (1.2) 

is that unless a large number of class intervals are used the asymptotic distri-

bution of the test statistic depends on the null hypothesis. The proliferation of 

tables of critical values required to accommodate even the most commonly hypothe-
A 

sized parametric families can be avoided through the use of Q 1(v;e). One further 
r-

advantage of Qr_1(v;a) is the improvement in power that seems likely to occur in 

most applications a.s a result of the increase in degrees of freedom. 
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