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Abstract 

The epidemiological models with age structure, proportionate mi­
xing, and cross-immunity which have been studied by Castillo Chavez 
et al. (1989). The removal of age-structure from the two strain mo­
dels led to damped oscillations. Numerical simulations of a discrete 
version gave rise to sustained oscillators provided that age-structure, 
two co-circulating viral strains, and cross-immunity was included. 
The hypothesis that the interaction between cross-immunity and age­
dependent survivorship may be enough to drive sustained oscillations. 
In this paper we simulate the continuos time version of this model u­
sing an algorithm based on the finite difference method used by Milner 
et al. (1993). The numerical scheme is proved to converge. 

1 Introduction 

1.1 Influenza 

Influenza is disease we frequently refer to as the "flu ", is one of the 
oldest and most common diseases known in the history of disease 
spreading. It is a detrimental disease since it can be responsable for 
the largest lost of population comunities. Initially influenza was intro­
duced by Hippocrates in 412 BC. The first well-described pandemic 
of influenza-like disease occurred in 1580. From the begining of the 
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influenza existence, 31 influenza pandemics have been studied, with 
three occurring in this century: in 1918, 1957 and 1968. 

The disease today still affects large sections of the population each 
year. Influenza is particularly interesting since the virus can mutate 
quickly, often producing new strains against which human beings have 
no immunity. When this occurs,the disease can have adverse effects 
in the population, for instance, during the "Spanish flu "pandemic of 
1918-1920, when a large population of about 20 million suffered the 
consequences of such deadline disease. 

Influenza is an important disease to study due to its ability to 
infect the respiratory system. The influenza virus is spread when an 
infected individual interacts with its surrounding contacts by coughing 
and/ or sneezing. Outbreaks of influenza develope abruptly. Since the 
disease spreads through communities, the number of cases arising is of 
about 3 weeks and dies out after another 3 or 4 weeks. From the past 
years we have noted that about twenty to fifty percent of a population 
may be affected. Most of the infected individuals tend to be in the 
ages of 5 to 14 years old. Schools are a primary location that allows 
for the transmission of influenza virus, therefore we can observe that 
families with school age children have a higher rate of infection than 
other families. 

Since the begining of research of influenza virus,three types of 
strains have been identified. These types can be describe by two ma­
jor groups A or B. These names are given accordinly to their place 
where they were the strains initially become isolated. New strains 
of the virus appear each year. The most interesting epidemics have 
been associated with influenza A viruses. Influenza B viruses are also 
responsable for minor, local epidemics and are less detrimental. Cur­
rently, there are three different influenza strains circulating worldwide; 
two subtypes of influenza A and one of influenza B. 

An important characteristic of the influenza virus is its surface 
antigenic structure which changes rapidly and makes its deletion al­
most impossible. There are two kinds of antigenic changes in influenza: 
drift, the gradual, relatively minor change in antigenics, and shift, the 
sudden, complete change of one or more of the antigens. Drift of sur­
face antigens produces new variants and is the main reason why strain 
A can stay alive for several concurring years in the same host popula­
tion. Shift is responsable for the new subtypes and is the major cause 
of influenza pandemics (Liu,W. Levin, S. 1989). 
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1.2 The model for two strains with age-structure 

The first model with structure with age structure was introduced by 
Castilla-Chavez et al. (1989). Incorporates age-specific mortalities 
and age-specific contact. The two influenza strains are coupled by a 
coefficient cross-immunity (o-); the coupling is strong when o- is small 
( antigenically very similar strains) and weaker when o- is intermediate 
(different strains same subtype). In both instances, the simulations of 
an associated discrete model yield sustained oscillations driven mostly 
by the shape of survivorship function. 

2 The model for two strains with par­
tial cross-immunity 

In this section, Castilla-Chavez et al. (1989), we reformulate two­
strain epidemiological model for a homogeneous population. The 
population is divided in eight classes: x (fraction of susceptible), y 
(fraction of infected by strain 1), u (fraction of infected by strain 2), 
z (fraction of recovered from strain 1), k (fraction of recovered from 
strain 2), v (fraction of infected by strain 1 after recovery from the 
other strain), q (fraction of infected by strain 2 after recovery from 
the other strain), w (recovered from both strains). The interations 
among classes are represented in the transfer diagram show in Fig.l. 

The initial boundary value problem governing the dynamics of 
these classes under proportionate mixing age-dependent bilinear in­
cidence rates is: 

ax ax 
{)a+ {)t = ->.1(t)b(a)x(a, t)- >.2(t)b(a)x(a,t)- J.t(a)x(a,t) (2.1) 

~~ + ~; = >.1(t)b(a)x(a,t)- 'Yl(t)b(a)y(a,t)- J.t(a)y(a,t) (2.2) 

au au 
{)a+ {)t = >.2(t)b(a)x(a,t)- 12(t)b(a)u(a,t)- J.t(a)u(a,t) (2.3) 

{)z {)z 
{)a+ {)t = 'YI(t)y(a,t)- o-2>.2(t)b(a)z(a,t)- J.t(a)z(a,t) (2.4) 
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Figure 1: Transfer diagram for two co-circulating viral strain or subtypes on 
a single host population. 

ok ok 
oa + ot = 12(t)u(a, t)- UIAI(t)b(a)k(a,t)- p(a)k(a, t) (2.5) 

ov ov 
oa + ot = u1>.1(t)b(a)k(a,t)- 11v(a,t)- p(a)v(a,t) (2.6) 

oq oq 
oa + 8t = u2>.2(t)b(a)z(a,t) -11q(a,t)- p(a)q(a,t) (2.7) 

ow ow 
oa + 8t = 11v(a, t) + 12q(a, t)- p(a)w(a, t) (2.8) 

where 

>.1(t) =fh 1 00 b(a')[y(a',t)+v(a,t)]da' (2.9) 

and 

>.2(t) = !32100 b(a')[u(a', t) + q(a, t)]da' (2.10) 
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x(O, t) = p = J,oo it(al)d I' 
0 e a 

y(O, t) = u(O, t) = z(O, t) = k(O, t) = v(O, t) = 0 

x(a,O) = 
z(a,O) 
q(a,O) = 

xo(a), y(a,O) 
zo(a), k(a,O) 
qo(a), w(a,O) 

Yo(a), 
ko(a), 
wo(a), 

u(a,O) 
v(a,O) 

(2.11) 

uo(a) 
vo(a), (2.12) 

where /1, 12 denotes constant recovery rates from strain 1 and strain 
2 respectively, and J.L( a) and b( a) denote age-specific mortality and 
activity level rates. We let !31, !32 denote the transmission coefficients 
of strain 1 and 2. The susceptibility factors u1 , 0"2 are measures of the 
cross-immunity. They satisfy the conditions 0:::; 0"1 ~ 1, if u1 = 0 (re­
spectively u2 = 0) then there is no cross-infection with strain 2 (strain 
1 respectively) that is strain 1 (strain 2) imparts complete immunity. 
If u1 = 1 (respectively 0"2 = 1) then there is no cross-immunity to 
strain 2 (strain 1). The functions >.1. >.2 are the instantaneous force 
of infection and p is the birth rate. 

3 Discretization 
We discretize the system equations (2.1)-(2.11). Let 0 :::; a < A, 
0:::; t:::; T. h to be the step-size in both directions, so that 

Nh=A, Mh=T. 

We approximate 

x(a,t) ~ Xiji y(a,t) ~ Yiji u(a,t) ~ Uiji z(a,t) ~ Ziji 
k(a,t) ~ Kiji v(a,t) ~Viii q(a,t) ~ Qiji w(a,t) ~ Wij· 

We choose the same step-size in age and time since the characteristic 
lines of the system (2.1)-(2.11) have slope one. We approximate the 
derivates along the characteristic lines (see F. Milner et al. 1992). We 
consider the following finite difference scheme: 
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(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Qij - Qi-1,j-1 ' b Q Q 
h = 0"2A2,j-1 iZij - /'2 ij - JLi ij (3.7) 

(3.8) 

and 

N 

A1,j = !31 L w1,kbk[Ykj + Vkj]h (3.9) 
k=O 

N 

A2J = f32 L w2,kbk[Ukj + Qkj]h (3.10) 
k=O 

where WI,k, w2,k, k = 1, ... ,N are weights which determine the 
quadrature rule. We solve the equations (3.1)-(3.10) to obtain: 

Xij = Xi-lJ-l (3.11) 
1 + .Xl,j-1bih + .X2,j-lbih + JLih 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

w; .. _ 'YlhVi,i + 12hQi,i + Wi-l,j-1 

ZJ- 1 + f.lih (3.18) 

Clearly, the solution of (3.11)-(3.18) is no negative if the initial 
and boundary conditions are non-negative. 

We approximate the boundary condition by 

1 
x(O, t) = p = fooo e-M(a')da'. 

First we note that e- I; 1-'(r)dr is a solution to the ODE: 

{ ~~ + JL(a)u(a) = 0, 
u(O) = 1 

And approximate this solution numerically using the scheme 
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The solution of this scheme is given inductively by 

{ 

'Ui-1 
Ui = l+f'ih 

uo = 1 

or explicitly by 

It is easy to show that if 

I {)i I::; O(h), Vi 

then 

Hence: 

Thus 

therefore 

1 1 
-::roo:=--e--M::-::(-;-a):--da- = ""N . rri _l_h + O(h); 
JO L..ti=O Wt k=l l+f'kh 

we see what 

1 
XoJ =p= N i 1 +O(h) 

woh Ei=O Wi rrk=l 1+1-'kh h 

Yo,j = Uo,j = Zo,j = KoJ = Vo,j = Qo,j = Wo,j = 0 

We discretize the boundary conditions as follows 

X·o =X~>. Y.io = Y 0· U·o = U9· Z·o = Z9· t, t ' t, I ' t, I ' t, I ' 

K ·o-Ko. Tr. 0 _Trn, Q·o-Qo· W.·o-wo t, - i, Vi, - vi-' t, - i' t, - i .. 

To evaluate the system of differential equationsat (ai,tj), we ob­
serve from the Taylor's series expansion that we obtain 
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8f(ai,tj) 8f(ai,tj) = f(ai,tj)- f(ai-1,tj-1) O(h) 
aa + at h + . (3.19) 

Set-up 

Y(a· t·)- Y. · = n· ·· ~' J t,J •tt,J ' 

z(a· t·)- z .. = x· .. ~. J ~.J t,J' 

v(a· t·) -ll; · = .,.. ·· ~. J tJ ~~J· 

w(a· t ·) - W:· · = 0· ·· tl J ~J ~J• 

We can compute the system (2.1)-(2.8) at (ai,ti) using (3.19) and 
subtrating the corresponding equation in system (3.1)-(3.8). Hence 
we have that: 

€ij- ~i-1,j-1 [' ( ) \ ( )]b ( ) h = - '"'1 ti - '"'1 tj-1 iX ai, ti (3.20) 

-A1,j-1bi€ii- [.X1(tj-1) -A1,j-1]bix(ai, ti)- [.X2(tj) -A2(tj-1)]bix(ai, ti) 

-.X2,i-1bi~ii- [.X2(tj-1)- A2,j-1]bix(ai, ti)- J.tif.ii + O(h), 

'f/ij- 'f/i-1,j-1 [' ( ) \ ( )]b ( ) h = /\1 tj - A1 tj-1 iX ai, tj (3.21) 

(ij -(i-1,j-1 [' ( ) \ ( )]b ( t) h = '"'2 ti - '"'2 tj-1 iX ai, i (3.22) 

(3.23) 

1/Jij -1/Ji-1,j-1 ;- [ \ ( ) \ (t )]b k( t ) h = /2o..,ij - (71 /\1 tj - /\1 j-1 i ai, j (3.24) 
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(3.25) 

(3.26) 

(3.27) 

where 

N 

)q(tj)- A1,j = fJ1 L w1,kbk[7Jk,j + ck,j]h + O(h), 
k=O 

N 

A2(tj)- A2,j = !32 L w2,kbk[(k,j + l!k,j]h + O(h), 
k=O 

In addition, we also have that 

N 

At(tj)- A(tj_t) = fJ1 L Wt,kbk[y(ak, tj) - y(ak, tj_t)]h 
k=O 

N 

-!31 L w1,kbk[v(ak, tj)- v(ak, lj-1)]h + O(h), 
k=O 

N N 
-(3"""' b 8y(ak,tj)h2 -f3"""' b 8v(ak,tj)h2 O(h) 
- 1 ~ W1,k k {)t 1 ~ W1,k k Qt + . 

k=O k=O 

Consequently, 

and 

10 



Furthermore,since the boundary condition is 

1 
Xo,j = N i 1 +O(h) 

woh Li=O Wi rrk=1 l+J.Lkh h 

we obtain 

~O,j = O(h). 

The initial age-distribution conditions are given by 

'TJo,j = (o,j = xo,j = 1/Jo,j = eo,j = eo,j = Oo,j = 0, Vj 

~i,o = rJi,o = (i,o = Xi,o = 1/Ji,o = ei,o = l!i,o = ei,o = o, Vi 

Now, 

x(a, t), y(a, t), z(a, t), 'U(a, t), v(a, t), k(a, t), q(a, t), w(a, t) 

(3.28) 

are continuous functions over 0 ~ a ~ A, 0 ~ t ~ T so they are 
bounded. We assume that all of these functions are bounded by a 
constant M. In addition we assume that all the parameter functions 
are bounded except J.L( a). 

4 Convergence 

To prove convergence of our numerical scheme rewrite equations (3.20-
(3.27) by solving for ~ii> 'TJij, (ij, Xij, 1/Jij, l!ij, £ij, Oij· Hence, 

where 

P1 = ~i-1,j-1- [>.1 (tj) ->.1 ( tj_I)]hbix( ai, tj) -[>.1 (ti-d ->.1,j-1]hbix( ai, tj) 

-[.X2(tj)- >.2(tj-1)]hbix(ai, tj)- [>.2(tj)- A2,j-1)]hbix(ai, tj) 

and 

P2 'TJii =- +O(h) 
q2 
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where 

and 

where 

and 

where 

and 

where 

and 

where 

(ij = P3 + O(h) 
q3 

P4 Xii =- +O(h) 
q4 

'1/Jii = P5 + O(h) 
q5 

P5 = 'I/Ji-1,j-1 + 'Y2(ij- a1[-\1(tj)- A1(tj-1)]hbik(ai, tj) 

-a1[-X1(tj-1)- A1J-I)]hbik(ai, tj) 

P6 ( £ij =- +0 h) 
q6 
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where 

+a1[A1(tj-1)- A1,j-1)]hbik(ai, lj) 

q6 = 1 + 11h + f.Lih; 

P7 = {}i-1,j-1 + a2A2,j-1hbiXii + a2[A2(tj)- A2(tj-1)]hbiz(ai, tj); 

+a2[A2(tj-1)- A2J-1)]hbiz(ai, ti) 

q7 = 1 + /2h + f.Lih 

and finally, 

We introduce the norm 

j=1 

the following Milner et al.(1993), 

1 
l~iil ~ 1 A hb h .[l~i-1,j-11 + IA1(tj)- A1(tj-1)ihbix(ai, ti) 

+ 1,j-1 i + /-Li 

-IA2(ti)- A2(tj-1)ihbix(ai, ti) -IA2(ti)- A2J-1)ihbix(ai, ti) + O(h2) 

Multiplying both sides by h and suming from i = 1, ... , N,we have 
that 

N 

+IA2(tj)- A2(tj-1)1 + IA2(tj)- A2,j-11) L h2bix(ai, tj) + O(h2) 
i=1 

N N 

A1(tj)-A1(tj-1) = L w1,kbk[Yk,j-Yk,j-1]h+ L w1,kbk[vk,j-Vk,j-I]h+O(h2) 
k=1 k=l 

Expanding Yk,j in a Taylor series we have that 

Yk,j = Yk,j-1 + hy~,j- 1 + h.o.t 
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then 
Yk,i- Yk,j-1 = O(h) 

and thus 

and 
ll~ill :::; ~O,j-1h + ll~i-111 + O(h2) 

Hence, from (3.28) and by induction, it follows that 

Similarly, 

1 
lrJiil:::; 1 h h.[lrJi-1,j-11 + l.\1(tj)- .\1(tj-l)lhbix(ai,tj) + /1 + f.ti . 

+>.1,j-1hbil~ijl + l>.1(tj-d- >.1,j-1lhbix(ai, tj) + O(h2 ) 

Multiplying both sides by h and summing from i = 1, ... , N 

N 

+l.\1 (tj-1) - A1,j-11) L h2bix(ai, ti) + AI,j-lBhll~ill + O(h2). 
i=l 

and hence 

Therefore 

and 

Next, 

1 
l(ijl :::; h h .[l(i-IJ-11 + l>.2(tj)- A2(tj-l)lhbix(ai, tj) 

1 + /2 + f.ti 
+>.2,j-lhbil~iil + l>.2(tj-1)- A2,j-llhbix(ai,tj) +0(h2) 

Multiplying both sides by h and summing from i = 1, ... , N, we have 
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N 

+I-X2(tj-1)- A2,j-11) L h2bix(ai, tj) + A2,j-1Bhll.;i11 + O(h2); 

and hence 

Therefore, 

i=1 

ll(ill::; ll(i-111 + Chll.;ill + O(h2) 

ll(ill::; O(h). 

+o-2I.X2(tj-1)- .X2,j-1lhbiz(ai, tj) + O(h2). 

Multiplying both sides by hand summing from i = 1, ... ,N, we have 

N 

+I.X2(tj-1)- A2,j-11) L h2biz(ai, tj) + 11Bhllrlill + O(h2); 

and hence 

Therefore, 

i=1 

llxill::; llxj-1ll + Chll17ill + O(h2) 

llxill ::; O(h). 

-o-1I.X1(tj-1)- .X1,i-llhbik(ai, ti) + O(h2). 

Multiplying both sides by hand sum i = 1, ... , N, we have 

N 

+I-X1(tj-d- A1J-11) L h2bik(ai, tj) + I2Bhll(i11 + O(h2); 

and hence 

i=1 

11'1/Jill::; 11'1/Ji-111 + Chll(ill + O(h2) 

11'1/Jill ::; O(h). 
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Therefore, 

1 
leiil ~ 1 h h .[lei-l,j-II+O"IAI,j-1bihl1fiii+0"11AI(ti )-,\1 (ti-I)Ihbik(ai, t1·) + /1 + /4. . 

+O"IIAI(ti_I) - A1,j-llhbik(ai, ti) + O(h2). 

Multiplying both sides by hand sum i = 1, ... , N 

lleill ~ eo,j-lh + llei-111 + O"I(IAI(tj)- AI(tj-I)I 

N 

+1,\I(ti-d- AI,j-11) 2::: h2bik(ai, ti) + O"iAl,j-lBhll'l/Jill + O(h2); 

and hence 

Therefore, 

i=l 

lleill ~ llei-111 + Chll1/!ill + O(h2) 

!leill ~ O(h). 

1 
leiil ~ 1 + 12h + J.Lih .[lei-I,j-II+0"2A2,j-lbihlxiil+u2IA2(ti)--\2(ti-I)ihbiz(ai, ti) 

+0"2IA2(tj-1)- A2,i-1lhbiz(ai, ti) + O(h2) 

Multiply both sides by h and sum i = 1, ... , N 

N 

+IA2(tj-I)- -X2,j-11) 2::: h2biz(ai, ti) + 0"2A2,j-lBhllxill + O(h2) 

then 

Therefore, 

i=l 

lleill ~ llei-III + Chllxill + O(h2) 

lleill ~ O(h). 

IBiil ~ 1 +
114.h .[IBi-I,j-1! + llhleiil + 12hi1Jiil + O(h2)]. 

Multiplying both sides by h 

IIBiill ~ Bo,j-1h + IIBi-111 + 11hlleill + 12hlleill + O(h2); 

and hence 

IIBiill ~ IIBi-111 + ch(lleill + lleill) + O(h2) 

IIBill ~ O(h). 
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5 Conclusion 
We have discretized a nonlinear system of eight partial differential 
equations by using a finite difference method. 

We have proved the convergence of each aproximation to the sys­
tem of the differential equations. 

This work leads to open questions which could be aswered by esti­
mating the error involved in the approximations made in the analysis. 

We have simulated the cases for when b( a) and J.£( a) are constants 
for the model (2.1)-(2.8) which is reduced to the model intitially pro­
posed by Castillo-Chavez et al.(1989) and shown damped oscillations 
for different cross-immunity values(o-), see appendix. 

Acknowledgements 

This study was supported by the following institutions and grants: 
National Science Foundation (NSF Grant DMS 9977919); National 
Security Agency (NSA Grants MDA 9049710074); Presidential Facul­
ty Fellowship Award (NSF Grant DEB 925370) and Presidential Men­
toring Award (NSF Grant DEB 925370) and Presidential Mentoring· 
Award (NSF Grant HRD9724850) to Carlos Castillo- Chavez; the Offi­
ce of the Provost of Cornell University; Intel Technology for Education 
2000 Equipment Grant. Special thanks to Ted Greenwood of the Sloan 
Foundation. 
I would like to thank Mia Martcheva and Carlos Castillo Chavez for 
giving me direction in this project. Special thanks to Jaime and 
Miriam Nuno for their help and moral support. 

References 
[1] Castillo-Chavez, C. Epidemiological models with age structure, 

proportionate mixing, and cross-immunity J.Math.Biol. (1989) 
27:233-258 

[2] Milner, F, A. Numerical Method for a Model of Inhomogeneous 
Muscle Fibers Num.Meth.Partial differential Equations. (1993) bf 
9:51-62 

[3] Levin, S.Aplied Mathematical Ecology. Biomathematics, 18:235-
249, Springer-Verlag, Berlin, 1989. 

17 



" . 

Appendix 
Graficas con valor de (1 = 0.1 

t.tl 

... 
1.21 

'·' 
us 

·-~ 
.... 

ba(-.) ... 
I. II 

... 
l.tl 

0.1 

.... 
·-~ 

.. CO) ... 
'·" 
... 
'·" 
... 
.... 
··~ 
'·" 

.... ·-~ o.J.I ... l.ll 

'·' ... ... 

... ... ... 

1 

... .... 

... 

. .. 



.. 

Graficas con valor de u = o.s 

'·" 
... 
.... 
... 
.... 
··~ .... 

1.11 
··~ 

.... ... 

.... 
... 
.... 
1.1 

.... 
··~ 

... ... 

··~ .... 
... ..• 

1 

.... 

. .. 

... 

... 

. .. 

.... ••<-> ... 



•• ~-r 

1 Graficas con valor de (J 0.9 

11.2(~) ... 
I.Jf 

... 
1.11 

... 
..... 
·-~ 

t.n 

Ill("") 
t.U ·-~ t.H ... t.tS ... t.JS ... 

t.n 

... 
I.IS 

O.l 

..... 

... ... ... . .. ~ 

t.ts 

·-~ 
.... 

... ... ... . .. 

1 


