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Competitive exclusion in a vector-host model 
for the dengue fever 

Zhilan Feng • Jorge X. Velasco-Hernandez t 

Abstract 

In this work we study a system of differential equations that models the 
population dynamics of an SIR vector transmitted disease with two 
pathogen strains. This model arose from our study of the population 
dynamics of dengue fever. The dengue virus presents four serotypes 
each of which induces host immunity but only certain degree of cross­
immunity to the other different serotypes. The model studied here has 
been constructed as a paradigm for the study of the epidemiological 
trends in the disease and for the theoretical study of conditions that 
permit coexistence in competing strains. Dengue is mainly an epidemic 
disease in the Americas and this model is geared to generalize this type 
of dynamics. In the model two different strains of virus are considered 
with temporary cross-immunity. The model shows the existence of an 
unstable endemic state ('saddle' point). The nature of this equilibrium 
produces a transient behavior characterized as a quasi-steady state of 
long duration during which both dengue serotypes co-circulate. Con­
ditions for asymptotic stability of the equilibria are discussed together 
with numerical simulations. We argue that the existence of competi­
tive exclusion in this system is due to the interplay between the host 
superinfection process and the frequency-dependent (vector to host) 
contact rates. 

1 Introduction 

Dengue fever is a disease endemic in many areas of the world that is in­
vading and recolonizing regions where either it was absent or it had been 
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eradicated. Dengue is a viral disease whose etiologic agent presents up to 4 
different serotypes. We construct and analyze a mathematical model about 
its transmission dynamics. The model is a system of differential equations 
that incorporates variable population size in both host and mosquito popula­
tions, two co-circulating strains and frequency dependent biting rates, all of 
them characteristic of the dengue virus and its transmission by mosquitoes 
to human hosts. The model also is designed ac; a theoretical framework for 
the discussion of some questions that arise naturally from the epidemiology 
of the infection, regarding the coexistence or competitive exclusion of closely 
related pathogen strains. 

In the next section we give a bac;ic background on the disease summariz­
ing its epidemiological importance as well as the main features incorporated 
into our model. Then we proceed with the model formulation where we 
also discuss previous work on the principle of competitive exclusion. This 
section is followed by the model analysis in the cac;e of no diseac;e induced 
mortality (negligible virulence). In section 4 we discuss the computational 
results obtained when virulence can not be neglected and, finally, in the last 
section, we compare our findings with other published models that deal with 
superinfection, variable population size and frequency dependent infection 
rates. 

1.1 Dengue fever 

We start first with a brief summary of the epidemiology of dengue. 
In this section we follow references [23], [22] as well ac; others that are 

indicated where appropriate. 
In developing countries population growth is an important factor that 

contributes to the increac;e in the incidence of communicable diseac;es which 
affect mainly the urban poor, with infants and children among the groups 
particularly at risk [23], [22]. Urbanization and population growth increac;e 
the demand on bac;ic essential services such ac; housing, water supply, etc., 
and at the same time induce conditions that increase the transmission poten­
tial of some vector borne diseases [23]. In particular, inadequacies in water 
supplies require large-scale water storage which are ideal breeding habitats 
for Aedes spp mosquitoes, the vectors of dengue fe\·er, dengue hemorrhagic 
fever and dengue shock syndrome as well ac; yellow fever. Changes in food 
habits created by the migration of rural populations to the cities lead to in­
crease use of tinned food and more use of disposable containers that provide 
more breeding sites to vectors of this type. In summary population growth, 
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urbanization and poverty enhance presence and transmission of infectious 
diseases. 

Unfortunately not only dengue ha<> increa<>ed its incidence in urban cen­
ters of the developing world but also yellow fever, malaria and Chaga<> di<>­
ea.<>e have been benefited. The destruction of city water supplies, temporary 
housing for refugees, high fertility and rural to urban migration and the 
steady deterioration of urban environments have led to sustained growth in 
density and area occupied by Aedes aegypti and Aedes albopictus, two of 
the main vectors of dengue virus. 

Other important problems of the dengue virus in the America<> and else­
where are the public health consequences of global warming [25]. In partic­
ular, of concern is the potential spread of dengue through the vector Aedes 
albopictus, recently introduced to the American continent [24]. 

·Dengue ha<> been known for long time a'> occurring in tropical regions of 
the world. Dengue causes a spectrum of illnesses in humans ranging from 
clinically inapparent to severe and fatal hemorrhagic disea'5e [9]. Classical 
dengue fever is generally observed in older children and adults and is char­
acterized by sudden onset of fever, frontal headache, nausea, vomiting and 
other symptoms. The acute illness last for 3 to 7 days is usually benign. 
The hemorrhagic form of dengue and its associated dengue shock syndrome 
(DHF-DSS) is most commonly obserYed in children under the age of 15 years 
but it can also occur in adults [9]. It is characterized by acute onset of fever 
and a variety of symptoms that la'5t 2 to 7 days. This form of dengue can 
terminate in death of the patient. 

Dengue is produced by viruses of the genus Togaviridae, subgenus Fla­
vivirus. Four distinct dengue viruses have been distinguished, denoted by 
types 1, 2, 3 and 4. Dengue viruses can infect only a restricted number 
of vertebrates but is an essentially human disease [11]. Infection by any 
dengue virus strain produces long lasting immunity but only temporary 
cross immunity to other serotype.'>. Three of the vectors are Aedes aegypti 
Linnaeus, Aedes albopictus Skuse, and Aedes scutellaris Walk. Aedes ae­
gypti mosquitoes acquire infection from infected individuals 6 to 18 h before 
onset of fever and then for the duration of the fever. A minimum extrinsic 
incubation period of 8 to 14 days is required after an infective blood meal 
before the mosquito becomes infectious. The infection in the vector is for 
life. Dengue virus is transmitted in t\\'O cycles: urban and sylvan although, 
as mentioned before, it is predominantly a human virus[ll]. 

There are no effective programs for vector control and, as a consequence, 
the absolute numbers of dengue infection and dengue infection rates have 
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increased during the lac;t 40 years [12]. Unfortunately, countries where pos­
itive results exic;t for vector eradication have been suffering from epidemic 
outbreaks: the disease is coming back. Dengue viruses where introduced in 
the Americas around 1960 and since, dengue has been reported in countries 
where it was absent before as Cuba, Mexico [19], the United States, most 
Central America, Ecuador, Peru, Paraguay, Bolivia, Argentina and Brazil 
[12]. 

Dengue transmission occurs throughout the year in endemic tropical ar­
eas but there exists, however, a distinct cyclical pattern ac;sociated with the 
rainy season [9]. In particular, in Thailand where the vector life cycle is 
highly domiciliary, temperature and humidity conditions during the rainy 
seac;on favor survival of infected mosquitoes. In the Americac; the situa­
tion is different since in these areac; larvae develop in the outdoors. Here, 
peak transmission takes place in the days of highest rainfall and warmer 
temperatures season [9]. 

We can distinguish two types of dengue: classical dengue which is essen­
tially benign in the long run and DHF-DSS that can cause death. In regions 
where mosquito and humans exists, an introduction of dengue virus may 
produce an epidemic depending upon a) the strain of the ,·irus (influenc­
ing magnitude and duration of viremia), b) the susceptibility of the human 
population, c) the density, behavior, and competence of the mosquito vector 
population, and d) the introduction of the virus into an area where it has 
contact with the local mosquito population [9]. Severity of dengue fever 
hac; been ac;sociated with secondary dengue infections although its causes 
are far from being explained. Epidemiological studies in Thailand suggest 
that an important risk factor for DHF-DSS is the presence of preexisting 
dengue antibody at subneutralizing levels. Also, endemic DHF-DSS is found 
in areas where Aedes aegypti densities are high and dengue Yirus of multi­
ple types are endemic. Moreover, DHF-DSS is a.c;sociated with individuals 
older than 1 year with a secondary type antibody response and with pri­
mary infections in newborn babies whose mother where immune to dengue 
[9], [11]. These facts led to the formulation of the secondary infection or 
immune enhancement hypothesis to explain it [9]. This hypothesis states 
that only those persons experiencing a second infection with heterologous 
dengue serotype present DHF-DSS. In particular it has been found that only 
secondary dengue-2 disease is immunologically enhanced and that infection 
with this virus serotype cause the majority of DSS cases [12]. Other factors 
are also ac;sociated with DHF-DSS. These are sex (more frequent infections 
in females), nutritional status (higher incidence in well-nourished babies of 
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middle and upper socioeconomic class), and the interval between first and 
second infections. 

To conclude this brief review of the epidemiology of dengue, we show in 
Table 1 a summary of dengue epidemic in se,·eral countries of the world. 

2 Superinfection and coexistence 

As seen in the previous section, in dengue certain sequences of infection 
appear to be more damaging to the host tha:1 others. We decided to model 
this process through the use of a susceptibility coefficient similarly to the 
one used by (13] and (4]. This coefficient allows us to explore varying degrees 
of susceptibility to secondary infections and their effect on the asymptotic 
dynamics of the disease. Through the anal~·sis of the model we attempt to 
explore the consequences of the coupling of two populations that differ in 
the infection pathway that the virus follows (SIR with superinfection in the 
host, SI in the vector), the effect of the frequency-dependent infection rate 
in the coupling of both systems, and to compare it \\"ith published results 
dealing with the evolution of virulence in directly transmitted diseases. 

Most diseases are produced by an spectn:.m of closely related pathogens 
rather than by single strains and dengue is c:early an example of this a'lser­
tion. In fact, in this disease an analogous phenomenon to superinfection, as 
defined by Nowak and May [21] and :\1ay and :'-Jowak [16] takes place. One 
strain invades the host population. produces a brief period of temporary 
immunity to other strains but whe:1 this im:~llinity is lost it leaYes the host 
susceptible to reinfection with another strai::.. The particular process that 
takes place in dengue fever is that before reinfection can occur, there is a 
period where the host is resistant, i:1 varying degrees, to all strains, not only 
the one that produced the primar:· infectio:1 [9]. One important theoreti­
cal problem that can be discussed \\·hen superinfection occurs is that of the 
coexistence of all strains or the ewntual ex<nction of some of them. This 
problem ha'> been theoretically exp:ored by se\'eral authors [13], [2], [6], [5]. 

In dengue fever we are confro:1ted witl~ a vector-transmitted disea<;e, 
co-circulating strains, certain degree of cross-immunity or even increa<;ed 
susceptibility to infection, and a ,-a~iable hos: population size. Thus we can 
address certain issues on the evolcion of ,-::·ulence. :\owak and 1\Iay [21] 
and Tilman [27]have explored the ir:cerrelatio:1 that exists between virulence 
and superinfection in a constant tost population. It is expected that con­
ditions for coexistence of different strains de?end strongly on the constant 
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population assumption. 
There are numerous published results discussing the problem of coexis­

tence in pathogen-host interactions. Levin and Pimentel [13]constructed a 
mathematical SI model where the population in the absence of di~ease would 
grow exponentially. Two strains with different virulences compete with each 
other. The most virulent strain can takeover hosts already infected with 
the less virulent strain. Under these assumptions a globally stable equilib­
rium is possible where both strains may coexist [3]. The stability of the 
positive equilibrium i~ only guaranteed for certain range of values of superin­
fection. Outside this range one of the boundary equilibria is a~ymptotically 
stable. Bremermann and Thieme [2] postulate a competitive exclusion prin­
ciple in a mathematical model where several strains compete for a single 
host population. The pathogens differ on their virulence. In this model the 
a~sumption that virulence is a strictly convex function of the transmission 
rate implies that the evolution of virulence lead~ to a transmission rate that 
maximizes the basic reproductive number of the pathogen [2]. This model 
describes a SIR epidemic in a population with variable size. Ca~tillo-Chavez 
et al [6] find, for a SIS two-sex model with variable population size, that 
competitive exclusion is the norm: the strain with the highest reproductive 
number persists in both host types. Mena-Lorca, Velasco-Hernandez and 
Castilla-Chavez [17] have studied the effect of variable population, virulence 
and density-dependent population regulation. The interplay between this 
demographic process and the presence of a potentially fatal and conditions 
for coexistence and competitive exclusion of the two pathogen strains were 
established. In this model too, coexistence is feasible only in certain window 
of parameter values. Previous models for dengue fever are those reported in 
[26] and [20]. The first one is a cost-effectiveness model for the management 
of dengue. It thus addresses different issues than the ones we are concerned 
with in this paper. The second model follows the same ba~ic methodology 
that we adopt here. The model in [20] explicitly establishes the existence 
of an incubation or latent period where both mosquitoes and humans have 
been exposed to a single virus strain but are not yet infectious. Both total 
populations of hosts and vectors are considered constant. 

In the model that we analyze here, we consider variable population sizes 
of both hosts and vector populations, we do not incorporate the exposed 
compartment, but include instead the existence of a second co-circulating 
strain that can produce secondary infections in those individuals either sus­
ceptible or already recovered from a primary infection with a different strain. 

6 



2.1 Model equations 

Consider a human population settled in a region where a mosquito popula­
tion of the genus Aedes is present and carrier of the dengue virus. 

Model equations then stand as follows('= d/dt): 

S'(t) h- (B1 + B2)S- uS, 

I~(t) = B1 S - a2B2h - ui1, 

I~(t) = B2S- a1B1h - uiz, (1) 

Y{(t) a1B1J2- (e1 + u + r)Yi, 

Y;(t) a2B2h- (e2 + u + r)Y2 
R'(t) r(Yi + Y2) - uR 

and 

M'(t) q- (A1 +A2)M- 8M, 

V{(t) A1M- 8V1, (2) 

v;(t) A2M- 8V2. 

In the above N = S + I1 + J2 + Y1 + Y2 + R and T = M + Vi + Vz are 
the host and vector total population size.c,; respectively (see Table 2 for other 
parameter definitions and values). Primary infections in human hosts are 
produced by either of the two strains at rates 

for i = 1, 2 (in vector to host transmission). Primary infections in vectors 
are produced at rate.c,; 

The.se function forms are used since we are modeling frequency-dependent 
disease transmission. Both are special cases of the Holling type II functional 
re.sponse [7]. Moreover, these expre.ssions are also generalizations of the 
basic formulation in the Ross- Macdonald model for Malaria transmission as 
discussed in [1] and for Chagas disease in [28]. The assumptions reflect the 
fact that in a vector-host interaction, mosquitoe.c,; are able to choose their 
food source in a frequency dependent fashion while hosts cannot. 

We assume that once a mosquito is infected it never recovers and, more­
over, it can not be reinfected with a different strain of virus. 

7 



Secondary infections, therefore, may take place only in the host. We as­
sume that these occur by contact with infected mosquitoes with a different 
strain. Two cases develop: either previously h individuals are infected by 
strain 2, through contact with infected mosquitoes V2, becoming Y2 hosts, 
or previously h individuals are infected with strain 1, through contact with 
V1 mosquitoes, to become Yi infected host~, at rates a1B1h and a2B2J1 , 

respectively. Here, ai is a positive real number that may mimic the immune 
enhancement hypothesis in dengue infections discussed in the introduction. 
We consider this type of dynamics an special ca.~e of superinfection as dis­
cussed in [21]. In dengue, however, the immunity developed after infection is 
a factor that does not appear in the models developed by the cited authors. 
Moreover, in the dengue ca.~e the cross-immunity is a two-way factor (either 
of the primary infected populations can be reinfected with the other strain) 
that appears whenever a primary infection takes place, regardless of the 
strain. In the ca.~e a < 1, we have a certain degree of cross-immunity which 
diminishes the infection rate of the secondary strain. General results on the 
effects of cross-immunity [21], [17] in SIS and SI models respectively, indi­
cate that for certain values of a coexistence of competing strains is possible. 
As will be seen later, the existence of a two-way cross-immunity together 
with the induction of permanent immunity specific to each individual strain, 
and the fact that the contact rates from vector to host are frequency depen­
dent, prevent coexistence. The generic outcome of our model is competitive 
exclusion although in some ca.~es in a very long time scale. 

Thus, in this model, if ai < 1, primary infections confer partial immu­
nity to strain i; if ai = 1 secondary infections with strain i take place as if 
they were primary infections, and if ai > 1 primary infections increa.~e sus­
ceptibility to strain i. Once an individual has suffered from both infections 
it gets immunity to both strains at a rate r independent of the sequence of 
infections. 

Since the equation for the total vector population is 

T' = q- oT, 

we have that a.~ t --+ oo, T(t) --+ qfo. This allows us to substitute M = 
qfo- V1- V2 making the equation forM in (2) redundant. 
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3 Model analysis 

Let 

Vi+ v2 ~ q/8} 

be the set bounded by the total host and vector population in the absence of 
disea.'se. Note that we can immediately identify three equilibrium solutions 
to (1-2). The disease-free equilibrium E0 = (S*,O,O,O,O,O,O,O) and the 
other two (boundary) equilibria 

Ei = (Si,Ji, 0, 0, 0, 0, Vt, 0), 

where only strain 1 survives, and 

E2 = (S2,0,J2,0,0,0,0, Vz*) 

where only strain 2 survives. 

3.1 Basic reproductive number 

In a situation when co-circulating strains are present in a vector-host system, 
the colonization or invasion of susceptible hosts is a two-sided eYent. Each 
pathogen strain has to manage to be transmitted from an infected type 1 
host to a susceptible type 2 host, and back again from a now infected type 
2 host to a susceptible type 1 host. The invasion criterion is summarized in 
the basic reproduction number. This is defined as the number of secondary 
infection that an infectious individuals produces in a population where all 
hosts are susceptible. 

To find the ba.c;;ic reproductive number of our model we equate (1-2) to 
zero and solve each one for S, Ii, Yi, R, ~ in terms of Bi and Ai to obtain 

S h/(u + B1 + B2), 
Ii BiS/(u + OjBj), i =!= j, i,j = 1, 2, 
Yi aiBJj/(u+ej +r), i =f=j, i,j = 1,2, 
R r(Y1 + Y2) fu, 
Vi qA1/(8 + A1 + A2), 
V2 qA2/(8 + A1 + A2). 

Let K = (B1, B2, A1, A2)' (1 denotes transpose) be a four dimensional vector. 
Substituting the above expressions into the definition of Bi and A we get 
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a system of four non-linear algebraic equations in terms of Bi and Ai. We 
denote this system by <l>(K). The fixed points of <l>(K) give, by construction, 
all the equilibrium points of (1-2). 

This change of variables allows an easy computation of the next gener­
ation operator [8] and the associated basic reproduction number. By con­
struction, the next-generation operator is simply the Jacobian of <I> evaluated 
at the disease-free equilibrium (given by B1 = B2 = A1 = A2 = 0): 

( 0 

0 (}_lh 0 

) 
u2(c+hwh/u) 

0 0 0 f32h 

D<l>(O) = arq 
u2(c+hwh/u) 

Ol(c+~wv/u) 
0 0 0 

a2q 0 0 c2(c+hwv/u) 

The basic reproduction number is therefore 

Ro =max{ .fij;_, JR;} 

with 
~ = aif3ihqj8u 

uo(c + hwh/u)(c + hwv/u). 
Note that the basic reproductive number is a generalization of the Ross­
Macdonald basic reproductive number for malaria. We want to remark 
that these expressions arose from a vector-transmitted di<>ease model with 
variable population size, and contact rates of Holling type II to account for 
frequency-dependence in the contact process. Therefore, our equations are 
a correct generalization of the Ross-Macdonald model for multiple strains 
and variable population size in both host and vector. 

It follows then that if Ro > 1, then the disease is able to invade the host 
population. Otherwise, if Ro :::; 1 the virus eventually disappears from the 
host population (local result). 

3.2 Boundary equilibria 

We are interested in the conditions that guarantee that at least one of the 
viral strains remains in the population. To this end we proceed now to 
analyze the so-called boundary (non-trivial) equilibria of our model. These 
points correspond to steady-states where only one of the strains persists 
in the population, the other being driven to extinction through competi­
tion. The existence of the boundary equilibria is determined by the relative 
magnitudes of the basic reproductive numbers of each strain. 
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Whenever Rj < 1 then Bj, Ai both vanish. Therefore, f4 > 1, Rj < 
1, i =!= j, i,j = 1, 2, implies the existence of Ei* which is also a unique 
endemic equilibrium (but where only one strain is present). Under these 
conditions the asymptotic dynamics of system (1-2) is completely contained 
in an invariant manifold ni c n defined as 

Taking Vj = Ij = Yj = R = 0 we find the dynamics of our model within 
ni is described by the equations 

S'(t) h- BiS- uS, 

I:(t) 

Vi'(t) 

BiS- uli, 

aJi (q/8- Vi)- ol;i, 
c + w"N 

with the total host population size (in ni) satisfying the equation 

N'(t) =h-uN. 

(3) 

In (3) the unique (non-trivial) equilibrium point is the projection of Ei 
onto the subspace Qi. Moreover, virulence (extra mortality induced by the 
virus) plays no role in this asymptotic system. 

Since N(t) - h/u as t- CXJ, (3) can be reduced further to the equations 

I:(t) = 

Vi' ( t) 

f3·V 
' h' / (h/u- Ii) - uh 

c+wh u 

aJi (/ ) --_______,- q o - Vi - oVi, 
c+w'"h/u 

which is the same system as the one studied for Malaria by Aron and 
May [1]. Therefore, whenever R > L this limiting system is globally asymp­
totically stable in ni[18]. 

3.2.1 Boundary equilibria and virulence 

Before proceeding to the derivation of threshold parameters for the exis­
tence and stability of the boundary equilibria, we comment on the general 
properties to be expected when the Yirulences ei are positive quantities. 
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The local stability analysis of Ei (equilibrium with only strain i present) 
can be looked at by computing Dii>(Ei). The eigenvalues of this matrix 
around this equilibrium are 

.\; = Ri\ and J.Li = Rj'I/J((J;, (Ji, ~), i-# j, 

where 'ljJ is a multiplicative perturbation of Rj that depends on the basic 
reproductive number of strain i as well a<; on the superinfection indices (}1 

and (Tz. This perturbation has the general form 

where 
'1/J; = c1 '1/Jj = C3(Jj(Ri- 1) 

u + Cz(J;(~- 1)' c4(ej + r + u)' 

with q, c2, c3 and c4 positive constants. In particular u satisfies 8'1/J;/ O(Ji < 
0, and 8'1/Jj/O(Jj > 0 and 8'1/Jj/Oej < 0. 

Note that the stability of the equilibrium point Et is favored (J.L; tends 
to reduce its magnitude) when the virulence (extra host mortality induced 
by the virus) of strain j is large. 

Moreover, in the limiting ca'le were (}; = (Jj = 0 (no superinfection 
occurring), 'ljJ = R! 1. Therefore, the condition Rj < 1 < R; makes ii> a 
local contraction around Ei. Thus, the local asymptotic stability of Ei in 
n follows. 

However, if 0 < (}; < (Jj, Ei may cea.'le to be an attractor under<]_) (with 
the condition Rj < 1 < ~ holding). In this ca'ie E;* is still a global attractor 
in n; and a saddle point in n. 

It is important to mention that whenever R,_ > 1 and Rj > 1 simultane­
ously, both equilibria Ei and EJ exists. Their stability properties depend 
on the magnitude of f-Li and J.lj respectively (,\ and /\j are alwa~·s less than 
one whenever R; > 1 and Rj > 1). In the following section we provide more 
detailed conditions for the existence and stability properties of the boundary 
equilibrium for (}; positive and e; = 0 (for ei > 0 numerical simulations give 
the same result). 

3.3 Threshold parameters when virulence is negligible 

To obtain precise results on the existence and stability properties of equilib­
rium points of our model we neglect mortalit~· due to disea.'le. This assump­
tion is not justifiable in all regions \\·here dengue is endemic but it is a first 
approximation to the analysis of our model. 
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In the absence of virulence, the host population is a.c;ymptotically con­
stant and therefore we can reduce the dimension of our model equations by 
one. We drop the equation for S. Let wh = Wv = w, N = hju and T = q/8 
and take ei = 0. 

To facilitate the analysis and interpretation of our results we compute 
the Jacobian matrix of (1-2) by reordering it as indicated in (4) below. 

Consider the boundary equilibrium 

(4) 

where 

and 
Vj_* = u8(R1 - :) ' Ii = uo(R: - 1) ' 

b1(8 + a1N) a1(b1T + u) 

with 
ai f3i 

ai= ,,bi= ,. 
c+wN c+wN 

With this new order the Jacobian has the form 

where 
( -8- a1Ii a1(T- Vi*) ), G1 = b1(N-Ii) -u- b1 Vi* 

-8 a2(T- Vt) 0 a2(T- Vt) 0 

b2(N- Ii) -u- 0"1b1Vt 0 0 0 
G4= 0 0"1b1 Vt -(u+r) 0 0 

0"2b2Ii 0 0 -(u+r) 0 
0 0 r r -u 

The eigenvalues of J(Ei) are given by the eigenvalues of G1 and G4. When 
R1 > 1, G1 ha.'3 two eigenvalues with negative real parts. Eigenvalues of G4 

are given by -u, -(u + r) and by the roots of the polynomial 

13 



where 

A - 2u + a1 b1 Vi* + r + 6, 

B ( u + r) (u + a1 b1 Vt) + c5( u + a1 b1 Vi*) - uc5R2 - a2a2b2 c5Vi*, 
R1 a1 

C - c5(u + a1b1 Vi*)(u + r)- (u + r)uc5R2 - (u + a1b1 Vt)a2a2b2 c5Vi*. 
R1 a1 

In the above we have used the equivalencies 

Our threshold parameters are given in terms of bounds for the superin­
fection coefficients a1 and a2. Thus, they set bound for the level of induced 
resistance or increased susceptibility that each strain produces in the host. 

Let 

a• 1 

Then the following hold 
Lemma 1: 

1. a1 > ai implies a2 > 0; 

2. a 1 > ai and a2 < a2 implies A> 0, B > 0, C > 0 and AB > C; 

3. a1 < ai or a2 > a2 imply C < 0. 

(5) 

The proofs of 1 and 3 are straightforward. To show 2, let a1 > ai and 
a2 < a2. It is eac;y to see that a2 < a:; implies C > 0. Note that 

Hence 



but C > 0, therefore B > 0. To show that AB > C we note that a2 < f(a1), 

thus obtaining 

It follows then that 

AB > (2u + a1b1 Vi*+ r + 6) · ( (u + r)(u + a1b1 Vi*+ 6) + 6(u + a1b1 Vt) 

R2 u+r Rz) 
-u6-R -6(u+r)+u6 bV/R 

1 u + 0'1 1 1 1 

> (u+r)(6(u+a1b1Vt) -u6~~)-

Since 

it follows that 
AB>C. 

Using the Routh-Hurwitz criteria we have the following result: 

Corollary 

The boundary equilibrium Ei is locally asymptotically stable if a1 > ai, 
and a2 < a2. Otherwise it is unstable. 

Lemma 1 and the corollary say that whenever the superinfection co­
efficient of the first strain is above threshold there are values of the sec­
ond superinfection coefficient that give asymptotic stability of the boundary 
equilibrium Ei. Note that the value of the thresholds ui and u2 is not 
specified. This means that the asymptotic stability of Ei is guaranteed in 
principle either when the first strain induces re:sistance or when it increases 
susceptibility to the second strain. 

Using the definition off given in (5) we have 

Lemma 2: 

1. If Rz < R1, then ai = 0, f(ai) = f(O) > 0, f'(u1) > 0. 

2. If Rz > R1, then ai > 0, f(ui) = 0, f(O) < 0 and J'(al) > 0. 
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Define D1 = lim171 _,00 f(al)· Then the region of stability of Ei given by 
Lemma 2 is shown in Figures 1 and 2 for both cases (f(O) > 0 and f(O) < 0). 

Using the symmetry between the two dengue strains, we can perform a 
similar analysis for the other boundary equilibrium E2 (where the second 
strain wins). In this case we have v;• > 0 and Ii > 0, and we can define 

(6) 

Without loss of generality assume R1 > R2 > 1. Then we can draw a 
bifurcation diagram in parameter space (a1, a2). See Figure 3. 

Putting together the three lemmas and the corollary above, we summa­
rize our results in the following lemma about the local stability properties 
of both boundary equilibria (where we use the definition of g giYen in (6)): 

Lemma 3: 

1. Ei is locally asymptotically stable if a2 < f(al) for ec·ery a1 > 0, 
and unstable ifa2 > f(ai)· 

2. Ei is locally asymptotically stable if a2 > g-1(a1) for eccry a1 > 0, 
and unstable if a2 < g-1(a1). 

3. Ei and Ei are locally asymptotically stable if g- 1(ai) < CJ2 < f(ai). 

Note that it is possible to have threshold \·alues of ai and a] such that 
both Ei and Ei are locally asymptotically stable. This conclusion indicates, 
at the very least, that there are situations where the asymptotic dynamics 
of our model depends on the initial conditions. 

4 Characterization of the interior endemic equi­
librium 

In this section we present the conclusions that we obtained from numerical 
simulations. They provide strong e\·idence of the existence of an interior 
endemic equilibrium, that is, an equilibrium point with positi\·e densities 
of both infected host types. In these simulations we have explored the 
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interdependence of three key parameters: the basic reproductive numbers 
of each strain, the superinfection coefficients and the disease-induced death 
rate for each strain. The dimension of the limiting equations (1) and (2) ha.c; 
one less dimension than the original system if the virulences for both strains 
are set to zero. This is the ca.c;e analyzed in the previous section. However, 
when virulence is not negligible the populations of hosts and vectors are 
not constant. It is known [17] that variable population size can have a very 
dramatic effect on the result of a competitive interaction. In particular it 
can 'reduce' the area of parameter space on which coexistence is possible 
(compared with the equivalent model with constant total population size). 
The following conclusions were found through the numerical simulation of 
model (1-2) for the case ei > 0. 

Conclusions: 

1. Whenever Ri > 1 for i = 1, 2 there exists an equilibrium point in the 
interior of Q. This point (represented in the figure by a 6) has a local 
unstable and a local stable manifold of positive dimension (Figure 5). 

2. If ~ > 1 > Rj then the boundary equilibrium EJ and the interior 
endemic equilibrium do not exist and the boundary equilibrium Ei is 
globally a.c;ymptotically stable (Figure 4). 

3. When ~ > Rj > 1, the superinfection coefficients a1 and a2 may 
change the a.c;ymptotic beha,·ior of the system, rendering strain j a.c; 
the winner over strain i (which would be the winner if a1 = a2 = 1, 
see Figure 6). 

4. When Ri > Rj > 1 and both boundary equilibria are locally a.c;ymp­
totically stable, there exists a separatrix that cuts n into two disjoint 
ba.c;ins of attraction (one for each boundary equilibrium). The location 
of the endemic equilibrium is indicated by a 6 in Figure 5. 

The model simulations show that there is no long term persistence of 
both strains in the host population. However, the unusual nature of the en­
demic equilibrium (a 'saddle' point) produces a somewhat prolonged (years 
of duration) quasi-steady state pro\·ided Ri are both greater than one. Given 
the time-scale inherent to the disease (months), this qua.c;i-steady state would 
look a.c; an stable endemic equilibrium (see Figures 5 and 6). Under these 
conditions there are two possibilities depending on how many boundary equi­
libria are locally stable. If only one of them is locally a.c;ymptotically stable, 
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according to our computer simulations the corresponding dengue strain will 
be the winner. However, although the primary infection is driven by the 
strain with the highest reproduction number, if this infection enhances sec­
ondary infections with the other strain, the long-term behavior of the disea<;e 
can be changed (see Figure 6). The strain with the smallest reproductive 
number may end up persisting in the host with the consequent extinction of 
the other one. 

The second possibility occurs when both boundary equilibria exist and 
both are locally asymptotically stable. In this case the outcome of the 
interaction depends on the initial conditions (Figure 5). 

5 Discussion 

The incorporation of full vector-host dynamics in a multiple strain epidemi­
ological system has been partially analyzed in this work. Conditions for 
existence and stability properties of the interior endemic equilibrium point 
are somewhat unusual in this model. Although the existence of the endemic 
equilibrium is still a function of the magnitude of the basic reproduction 
numbers of each of the strains, whenever both ba'3ic reproduction numbers 
are greater than one, the endemic equilibrium is always unstable with stable 
and unstable manifolds of non-zero dimension. The existence of an interior 
endemic equilibrium point with this characterization imposes a potentially 
unpredictable outcome of the evolution of the infection in the ho:::t popu­
lation. A new infection after the primary epidemic burst will settle to a 
transient, apparently stable, low level of endemicity where co-ci:-culating 
strains might be present. However, a<; time passes, one of the strains will 
eventually and steadily increase its prevalence until most of the susceptible 
population is infected. The other strain will disappear. 

The simulations performed in Figure 5 were carried out based on the 
numbers reported in [15] regarding the basic reproduction number of the 
dengue epidemic of 1990-91 in Brazil. The authors report that R) had an 
average value of 2.03. They cite a previous work that took place in .\Iexico 
where the average reproduction number was found equal to 1.33 with a max­
imum of 2.41 [15]. The parameter values that we have chosen here are such 
that the basic reproduction number for both strains is about 2. However, 
which of the strains will be the winner depends on the initial conditions 
preexisting when the new strain arrived and on the le\·el of susceptibility 
induced by the primary infection (Figures 4 and 5). Of course, if during the 
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transient phase, a new wave of infected mosquitoes appears, it ,,·ill not be 
possible to predict which strain will become endemic. In general, as Figure 3 
shows, the region where both boundary equilibria are locally a.c:;ymptotically 
stable is large and, according to our model, most dengue epidemics fall into 
this situation. 

As shown in Figure 3, the existence of two locally ac:;ymptotically stable 
boundary equilibria ac:; well ac:; the existence of an (unstable)interior endemic 
equilibrium is guaranteed for a biologically feasible range of values of the 
superinfection indices cr1 and cr2. This range covers ca.c:;es when primary 
infections induce resistance (decrea'3ed susceptibility) to secondary infections 
or when susceptibility is enhanced. 

An interesting outcome of the model is that it seems that whenever 
Ri > Rj, then for feasible values of CTi (e.g. cri E (0.1,2)), the interior 
equilibrium exists unless CTj is either very small or very large. In Figure 3 
we illustrate the case when R1 > R1 (see Figure 3's legend for parameter 
values used). Therefore, we conclude that the presence of superinfection in 
our model forces the existence of the interior equilibrium. However, from 
our numerical studies, it appears that superinfection cannot induce stability 
in this state. Going back to Figure 3, the endemic interior equilibrium 
would cease to exists for a \·alue of 0'] = 0.001 but then only the boundary 
equilibrium Ei would be asymptotically stable. 

Gupta, Swinton and Anderson :10] sho\\' in a model for malaria that 
coexistence is a likely outcome wher; cross-immunity is taken into account. 
Although malaria is a parasitic, not a viral di=oease, the mathematical struc­
ture of the model allows some comparisons \\'ith ours since both deal with 
a vector transmitted disease. Gup:a et a!. generalize directly the Ross­
Macdonald model for malaria studied by Aron and .\Iay [1] iE:roducing 
cross-immunity and two infected host subtypes: those that are infected and 
infectious, and those that are infected but uninfectious. Thus, essentially 
there is a reduction in the net number of infected individuals that can trans­
mit the disease. However all infected individuals can hold the pa::-ac:;ite. In 
particular, the rate at which parasi:es become ineffective to transmission, 
i.e. the hosts becomes infected but not infectious, is exponential, guarantee­
ing the presence of positiw densities :however small) of each type of infected 
hosts for all time. Thus, the Gupta et a!. model effectiwly creates a refuge 
for each parac:;ite strain . .\Ioreo,·er, :he total host population is considered 
constant. This factor alone when as,oociated with cross-immunity :s enough 
to enhance coexistence in models for directly transmitted diseases )1], [16]. 
The assumption of constant host population size is achie,·ed by dc_lning the 
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recruitment rate in such a way as to balance the output from all system 
compartments. 

In the case of our general model all infected indi\·iduals are infectious; 
thus there are no refuges. Also, by definition, virulence is the extra death 
rate induced by the disease. This prevents the existence of a constant pop­
ulation size for the host. To define the recruitment rate for the total popu­
lation so as to balance this outflow (and therefore achieve a constant size in 
the host population) would be equiYalent to require that the extra-mortality 
rate is compensated exactly by the cure rate of the disease and that there 
is no net loss of individuals due to permanent immunity or death. Clearly a 
contradiction since, if that were the case, the more virulent a strain is, the 
higher its cure rate would be. 

As pointed out before, we let the total host population vary constrained 
by the disease own dynamics and we do not provide refuges for the viral 
strains. If the population varies but this variation is independent of disease 
dynamics, the total host population size will be asymptotically constant with 
limiting asymptotic dynamics equiYalent to constant population size models. 
However, even in this case (no vin:.lence) our model predicts competiti\·e 
exclusion of one of the strains. 

The main reason that explains why in our model coexistence is an im­
probable outcome resides, we beliew, in the coupling of two populations, 
each with a different pattern of disec.se progression. 

The structure of the equations t:-.at describe the transmission dynamics 
in the host population is that of a:: SIR model with superinfection and 
variable population size. In a direct]:: transmitted disease with th:s structure 
and no virulence one would expect a::alogous results to those of .\"owak and 
May [21]:. coexistence of both strai1::0 a'3 a rule since the total population in 
that case is a'3ymptotically constant. However, our model also iEcorporates 
an SI model without superinfection in the vector population. b a directly 
transmitted disea'3e this structure wo·J]d predict competitive exclusion of the 
strain with lower basic reproductiYe e1umber [2]. 

When we couple both of these ~~-pes of epidemics into one. our host­
vector model (1-2), the outcome is cocnpetitiw exclusion of one o:· the strains 
if at least one of the basic reproduci\·e numbers is greater tha:: one. In a 
sense, the vector dynamics dominate:O the dynamics of the coup:ed system. 
The rea'3on for this is that the \·ecto~-host relationship is asynE::·,etric. The 
vector chooses the host. In this cc.,oe we ha\·e modeled the co:1tact rates 
according to a generalization of the Ross-I'\lacdonald model: ~he contact 
rate is frequency dependent [7] (depends on the ratios of vector numbers 
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to host numbers for both types of strains). Thus, what our results show is 
that coexistence promoted by superinfection in the host population is 
'broken' by frequency dependent dynamics in the biting (contact) rates, 
thus resulting in the competitive exclusion of one strain even when an 
interior steady-state exists. 

Other models that incorporate cross-immunity and multiple strains have 
been studied [13], [14], [17]. However, we wi"h to compare our results with 
the original one that introduced this idea of competition of multiple strains 
in epidemic models, namely the Levin and Pimentel paper (13]. In sum­
mary, the conclusions of [13] are that in a \·ariable host population system 
coexistence is possible in a bounded region of parameter space. Outside 
this region, depending on the relative magnitudes of parameter values one 
of the two strains wins and competitively excludes the other. This model 
was originally designed for the theoretical study of myxomatosis as a con­
trol factor of an exponentially growing population. The fact that virulence 
is the growth regulatory factor in this model determines the existence of a 
coexistence region in parameter space. In the dengue model that we analyze 
here, the disea'ie is not the unique factor that regulates growth although the 
model model is a generalization of Levin anci Pimentel's [13]. Besides, per­
manent immunity is explicitly introduced imo the modeL Even in the ca'ie 
when virulence is negligible competitive exch:."ion is the rule. The existence 
of frequency-dependent contact rates closes the windo\\" of coexistence. 

The model analyzed here does not incorporates the effects of age struc­
ture. According to [26], dengue in tropical A"ia affects particularly children 
with ages between 5 and 15 years old, with a modal age of 5 years. The 
same authors mention that in 1987 more tha:1 600 000 cases of dengue v;ere 
reported in Southeast Asia with 24 000 deaths: 909( of both cases and 
deaths were children. The risk of infection i,o obviously an age dependent 
factor. Moreover, the infi uence of physiological structure into the dynamics 
of dengue may have an influence in the likelihood of coexistence of both 
strains. The need for a model that incorporate:; age structure into the dengue 
population dynamics is thus justified. 
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Figure captions 

Table 1. Dengue hemorrhagic fever cases and deaths reported to the World Health 
Organization regional offices. Data obtained from Halstead (1992). 

Table 2. Parameter definitions and values used in the simulations illuestrated in the 
figures. 

Figure 1. Graph on the parameter space (a 1, a 2) for case 1 of Lemma 1. In this case 
R1 < R2, f(O) = 0. The shaded area corresponds to parameters values that render the 
boundary equilibrium for strain 1 locally asymptotically stable. 

Figure 2. Graph on the parameter space (a1, a 2) for case 2 of Lemma 1. In this case 
R1 < R2, f(O) = 0. The shaded area corresponds to parameters values that render the 
boundary equilibrium for strain 1 locally asymptotically stable. 

Figure 3. Region of parameter space (a1 , a 2) where both boundary equilibria are locally 
asymptotically stable. Fixed parameter values are r = 0.71/day, 11 = 0.000039/day, 
8 = 0.71/day, h = 0.9775, a 1 = 0.002, a 2 = 0.015, /31 = 0.001, {32 = 0.001, c = 10, 
....... ....... 

T = 50 000, N = 25 000. The corresponding basic reproduction numbers are R1 = 2.4 
and R 2 = 2.08. 

Figure 4. Phase plot in the space ( 11, 12) for values of the superinfection indices outside 
the shaded area shown in Figure 3. The graph was computed with the same parameter 
values shown in Figure 3 but with a 1 = 5, a 2 = 0.05, and positive disease-induced death 
rates e1 = 0.0001/day and e2 = 0.0005/day. These parameter values give 
a2 < g-1(a1) = 0.1. In this case strain 1 competitively excludes strain 2. Note that the 
final outcome of the disease (which strains wins) is independent of initial conditions. 

Figure 5. Phase plot in the space ( 11, 12) for values of the superinfection indices outside 
the shaded area shown in Figure 3. The graph was computed with the same parameter 
values shown in Figure 3 but with a 1 = 1, a2 = 4.2, and positive disease-induced death 
rates e1 = 0.0001/ day and e2 = 0.0005/ day. The presence of a saddle point in the 
interior of the region and the existence of a separatrix may be conjectured. Note that the 
final outcome of the disease (which strains wins) depends on initial conditions. 



Figure 6. Time plot of model (1-2) for a period of 5 years. The graph shows the total 
numbers of infected individuals for each strain 11 + Yi and 12 + Y;. Parameter values are 
the same as for Figure 3 except for the following: a 1 = 0.005, a 2 = 0.005, {31 = 0.005, 
{32 = 0.007, o-1 = 4, o-2 = 1.2. There are two curves, one for each strain. For about 3 
years both strains seem to increase and coexist. Only in the fourth year strain 1 clearly 
wins over strain 2. Note that strain 2 increases faster at the beginning of the epidemic but 
it is this strain the one that goes extinct. 



DHF cases and deaths reported to regional offices, 1981-1990 

Philippine VietNam China Thailand PDR Lao 

Year Cases Deaths Cases Deaths Cases Deaths Cases Deaths Cases Deaths 
1981 123.00 8.00 35,323.00 408.00 25,641.00 194.00 

1982 305.00 31.00 39,806.00 361.00 22,250.00 159.00 

1983 1,684.00 130.00 149,519.00 1,798.00 85,293.00 3,032.00 30,022.00 231.00 

1984 2,545.00 89.00 30,498.00 368.00 69,597.00 451.00 22.00 14.00 
1985 45,107.00 399.00 80,076.00 542.00 1,759.00 15.00 
1986 687.00 30.00 46,266.00 511.00 29,060.00 206.00 365.00 43.00 
1987 859.00 27.00 354,517.00 1,566.00 170,630.00 896.00 3,914.00 91.00 
1988 2,922.00 68.00 85,160.00 826.00 51,510.00 1,259.00 26,926.00 189.00 1,212.00 27.00 
1989 305.00 14.00 40,205.00 289.00 37,996.00 907.00 69,204.00 280.00 

1990 588.00 27.00 37,569.00 255.00 38,062.00 2,626.00 113,855.00 422.00 60.00 3.00 
Total 10,018.00 424.00 863,970.00 6,781.00 212,861.00 7,824.00 637,261.00 3,570.00 7,332.00 193.00 
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Symbol Parameter definition value 

h host recruitment rate variable 

u-1 host life expectancy 70 years 

r-1 mean length of infectious period in host 14 days 

a· t vector per capita infection rate (biting rate x vector infection probability) (0, 0.05) 

(3i host per capita infection rate (biting rate x host infection probability) (0, 0.05) 

q vector recruitment rate variable 

8-1 vector life expectancy 14 days 

c rescaling parameter (ad c and !3d c infection rates when N small) 1 

W· t 
saturation parameter (ad w i and !3d wi give maximum infection rates) 0.5 

e· t disease-induced per-capita death rate variable 

(J· t susceptibility index to strain i (0,5) 
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