
An Overview of Variance Component Estimation 

by 

Shayle R. Searle 

Biometrics Unit, Cornell University, Ithaca, N.Y., U.S.A., 14853 

BU-1231-M April 1994 



AN OVERVIEW OF VARIANCE COMPONENT ESTIMATION 

Shayle R. Searle 

Biometrics Unit, Cornell University, Ithaca, N.Y., U.S.A. 

BU-1231-M April1994 

ABSTRACT 

Variance components estimation originated with estimating error variance in analysis of variance 

by equating error mean square to its expected value. This equating procedure was _then extended to 

random effects models, first for balanced data (for which minimum variance properties were 

subsequently established) and later for unbalanced data. Unfortunately, this ANOVA ·methodology 

yields no optimum properties (other than unbiasedness) for estimation from unbalanced data. Today 

it is being replaced by maximum likelihood (ML) and restricted maximum likelihood (REML) based on 

normality assumptions and involving nonlinear equations that have to be solved numerically. There is 

also minimum norm quadratic unbiased estimation (MINQUE) which is closely related to REML but 

with fewer advantages. 

ORIGINS 

The analysis of variance table, as developed by R.A. Fisher in the 1920s, is a well-established 

summary of the arithmetic for testing hypotheses using ratios of mean squares which, under normality 

assumptions, have F-distributions (so named by Snedecor in honor of Fisher). This arithmetic was 

initially designed for what are now called fixed effects models, for which the F-statistics are suited to 

testing hypotheses that the effects of levels of a factor are all equal: e.g., in a randomized complete 

block experiment involving t treatments for testing if all t treatment effects (on the .response variable) 

are equal. 

An inherent part of Fisher's procedures was that of estimating the error variance. This was (and 

still is) done by equating the error mean square to its expected value, which is the error variance. In 

this way the error variance is estimated by t.he mean square for error. Thus with MSE being the mean 

square for error and E(MSE) its expected value, we have 
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E(MSE) = u~ 
yielding (1) 

u~ = MSE, 

where u~ is the_error variance and u~ is its estimate. 

Traditional analysis of variance was developed without the use of models and model equations 

such as 

Y •. k = p.+a·+/3·+1· ·+e .. k IJ I J IJ IJ · 

which we use today. And in those models, in analysis of variance situations, we think of the eijk as 

being random error terms, and symbols like p., ai, {3 j and 1 ij are unknown fixed constants, i.e., fixed 

effects; the model is called a fixed effects model. It has only one variance, the error variance. But in 

what are called variance components models some or all of the symbols like a;, {3 i and 'Yij represent 

random variables, with variances. Thus variance components models involve more than one variance. 

Moreover, since (on assuming, which we do, that all covariances among those random variables are 

zero) those variances add to the variance of the response variable, e.g., u~ = u! + u~ + u; + u~, they are 

called variance components. 

The history of estimating these variance components begins with extending the estimation idea 

involved in E(MSE) = u~ yielding MSE = u~, as in (1). That idea. is simply one of equating a mean 

square to its expected value and calling the result an estimate. The extension is no more than applying 

this to other mean squares of the analysis of variance. 

BALANCED DATA: ANOVA ESTIMATION 

Consider, for example, the completely randomize9 design (or 1-way classification) of a groups and 

n observations in each. The usual model equation for y ij• the j'th observation in the i 'th group, is 

Y .. = u+a-+e··· 
IJ r I I] (2) 

for i = 1, 2, .. ·, a and j = 1, 2, .. ·, n. With p. representing an overall mean, ai the effect of the 

observation being in the i'th group, and eij being the random error term, the usual conditions for the 

variance components form of this model, i.e., when a; is a random variable, are as follows: 
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E(ai) = 0 E(eij) = 0 v i andj, 

var(ai) = u! var(eij) = u~ v i and j, (3) 

cov(ai, ai,) = 0 Vi :fo i' cov(ai, ei'j') = 0 v i, i' and j , 

and 

( ) 0 l . ., d . ., 
cov eij• ei'j' = except w 1en 1 = 1 an J = J • 

Notice two things. First, that (2) is the model equation; but it is (2) and (3) that is the model. 

Equation (3) is where assumed properties of elements of the model equation are specified. Second, that 

there is no assumption of normality in the model. That can be introduced later when needed for 

considering properties of estimators or for maximum likelihood estimation. 

Now, with this model we have the simple between- and within-groups sums of squares 

n a n 
summarized in Table 1, where Yi· = E Yij/n and y, = E E Yi/an. 

j=l i=l j=l 

Source of 
Variation 

Between groups 

Within groups 

Total ( c.f.m.) 

TABLE 1. Analysis of variance for a 1-way classification 

of n observations in each of a groups 

Degrees 
of Freedom 

a-1 

a(n - 1) 

an- 1 

Sum of Squares Mean Square 

SSA = n_E (Yi· - 'Y .. )2 

t=l 
MSA = SSA/(a- 1) 

MSE = SSE/a(n - 1) 

MSE = SSE/a(n- 1) 

In the fixed effects form of the model equation (2), the ratio MSA/MSE is, under normality, used 

for testing the hypothesis H: all ai equal, i.e., If: o 1 = o2 = · · · = fra· But in the random effects form 

of (2), with the conditions (3) applying, we use MSA and MSE to estimate u! and u; by finding the 

expected values of MSA and MSE, using those conditions (3). Then we extend to MSA and MSE the 

procedure of "equating mean squares to their expected values" originated in (1). Thus, using (3) gives 
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E(MSA) = ncr; + cr~ 

and 

E(MSE) = cr~ 

and so we take 

u~ = MSE 

which yield 

G- 2 - MSE e- and a-; = (MSA - MSE)/n . (4) 

This method of estimating variance components was extended in the 1930s and '40s to numerous 

different experiment designs; Daniels (1939), Tippett (1931) and Anderson and Bancroft (1952) are just 

a few of the interesting references. It is now known as the ANOV A method of estimation and has, as 

shall be described, been applied to unbalanced (unequal-subclass-numbered) data as well as to balanced 

data from well-planned experiments. In those situations it has some advantages: it is easy to 

calculate; it is easy to understand; it has very few basic assumptions, e.g., those of {3); the resulting 

estimators are unbiased, and they have the nice property of being minimum variance quadratic 

unbiased (Graybill and Hultquist, 1961) and under normality assumptions on the errors and on the 

random effects [still under conditions like those of (3)] these ANOV A estimators are minimum variance 

unbiased (Graybill, 1954, and Graybill and Wortham, 1956). These are all attractive properties. But 

there are also some unattractive features: estimates can be negative (which is embarrassing, a negative 

estimate of a positive parameter); and although under normality their sampling variances and unbiased 

estimates thereof can be derived, analytic forms of their distribution cannot be derived. Despite this, 

AN OVA estimators of variance components are widely used when data are balanced; and wisely so. 

UNBALANCED DATA: ANOVA ESTIMATION METHODOLOGY 

Some of the earliest users of variance components were geneticists with their particular interest in 

heritability defined as 4crb / ( crb + cr~ ), in which subscripts G and E indicate genetic and environ­

mental variance. This was the context that motivated the landmark Henderson (1953) paper in 

Biometrics, dealing with the estimation from unbalanced data of variance components in mixed 
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models- those having both fixed and random effects. An example of this would be estimating dose 

effects and clinic variance in a nationwide clinical trial of several dose rates of a drug in clinics all over 

the country. An example in dairy breeding would be estimating herd-year effects and sire variance in 

the milk production records .of cows, sired by many different bulls, milked in numerous herds over a 

period of years. In each of these examples it would be quite usual to have a large number of cells in 

the data grid that had no data in them. It was just such a situation that Henderson was interested in 

for estimating variance components. And h~s paper described three ways of doing this, which have 

come to be well known as Henderson's Methods 1, 2 and 3. They are, in fact, three ~ifferent ways of 

selecting a set of sums of squares (or mean squares) for using in the algorithm "equate observed mean 

squares to their expected values". Henderson suggested using this principle on sums of squares which 

are either (i) analogous to analysis-of-variance sums of squares for balanced data or (ii) are 

adaptations of the former or (iii) come from fitting sub-models of the model being used for the data. 

And he carefully described th.ese three different classes of sums of squares and illustrated them with a 

small numerical example. 

Involving, as they do, the principle of "equate sums of squares to their expected values", these 

methods are nothing more than extensions of that ANOVA estimation principle from balanced data to 

unbalanced data. And it was a major step forward, e'Specially for practical application. Method 1, for 

instance, has always been readily computable, even before computers came on the scene. And Methods 

2 and 3, which in those pre-computer days were very impractical computationally, have now also 

become computable, even for large data sets. 

Nevertheless, there are some difficulties with thes~ methods. First, Method 1 should not be used 

with mixed models and Method 2 cannot be used with models that have interactions between fixed 

effects factors and random effects factors. Second, even when used outside these limitations, the 

Henderson Methods yield estimators that. have no useful properties other than unbiasedness. Sampling 

variances (under normality) have been derived for a number of special cases; they are quadratic forms 

in the unknown variance components, with coefficients that are horribly complicated functions of the 

values of nij• the number of observations in the (i, j) cell. For example, in the 1-way classification 
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with unbalanced data the variance of the estimator of u! is . 

The complicated nature of the sampling variances (and that just displayed is by far the simplest) only 

aggravates the further result that each variance component estimator has no known analytic function 

for its probability density function (except for· u~, which is based on x2). As a result of all this there is 

no analytical way of comparing estimators from the three different Henderson methods. And, even 

though the suggestion is sometimes made that Method 3 is the best, there is truly no foundation . for 

such a statement. Indeed, it begs the question "Which form of Method 3?", because Method 3 has the 

awkward feature that for many models there is no unique way of using Method 3. There can be several 

ways, and there are no analytical results that permit one to settle on an optimal use of Method 3. 

All of these difficulties spring from the fact that the Henderson methods are just a collection of 

ways in which the ANOV A method of estimating variance components can be applied to unbalanced 

data (to any data, in fact). All that need be done, when there are r variance components to be 

estimated, is to choose r quadratic functions of the data that have expected values that are linear in 

the variance components. Denote those quadratics by a vector q, and the variance components by u 2• 

Then the ANOVA method is no more than using 

E(q) = Mu2 

to give 

and thus 

This always gives unbiased estima.t.es, because 

But what other properties does it give? None. Other than demanding that the elements of E( q) be 
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linear in the elements of u2 (which leads to o-2 being unbiased), the method is based upon no other 

conditions. This means that other than unbiasedness the method has no built-in conditions -let alone 

any that lead to optimal properties for the resulting estimators. Indeed, the method is not even 

confined to using mean squares: any quadratic forms of the data will do (provided only that their 

expected values are linearly independent linear combinations of variance components). For example, in 

a 1-way classification something as wildly unorthodox as 

could be used. It has 

E(q) = r 
2(cr~ + cr~) 

] 2cr2 + 6cr2 
a e 

and so estimators are given by 

[ 20"~ + 20"~ 
]= q' 20"~ + 60"~ 

namely 

and 

Clearly, from a commonsense point of view, these estimators are ridiculous. Nevertheless, as an 

application of the ANOV A method of estimation they are perfectly legitimate. But, as is obvious, 

unbiasedness is the only known property of the estimators. And, as we have discussed in our book 

(Searle, Casella and McCulloch, 1962, Sec. 5.2c), this is not necessarily an important or attractive 

feature for variance components estimation to have. 

Thus it is that the ANOV A method of estimating variance components contains no procedures at 

all for indicating what quadratic forms to use as elements of q in E(q) = Mu2; indeed not even an 

indication of how many to use. It. has been assumed that M is square and nonsingular, in order to 
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have u2 = ~1q. But even that is not dictated by the method. It is perfectly possible to choose more 

quadratic forms as elements of q than there are variance components as eleme~ts oft?. Then M would 

be rectangular, the equations Mu2 = q would not have to be consistent, but provided M had full 

column rank a- "least squa!~" solution of MD-2 = q could be used; i.e., ir2 = (M'Mr1 M'q; or if M did 

not have full column rank then (M'M)-M'q would be a solution, with (M'M)- being any generalized 

inverse of M'M. 

In addition to this lack of uniqueness Qf the ANOV A method, it has other serious weaknesses: 

first, it can yield the embarrassment of negative estimates. Second, even under normality assumptions, 

ANOVA estimators have distributions that are unknown; and sampling variances (which are quadratic 

functions of the unknown components) involve very complicated functions of the numbers of 

observations in the subclasses of the data. Analytic comparison of different applications of the 

ANOVA method is therefore impossible. And arithmetic comparison cannot be satisfactorily designed 

to produce informative results. 

It is within this environment of deficiencies of the ANOVA method that maximum likelihood 

estimation is coming to be the preferred method, ·certainly for unbalanced data and for many (if not 

all) cases of balanced data. 

MAXIMUM LIKELIHOOD 

The method of maximum likelihood estimation, developed by R.A. Fisher in the 1920s (Fisher, 

1925) seems to have been first applied to the estimation of variance components by Crump (1947, 

1951). In this and almost all subsequent presentation of this topic, normality is assumed for the error 

terms and all the random effects, normality with zero means, homogeneous variance of all random 

effects pertaining to each factor, and all covariances zero. Within this framework, Herbach (1959) gave 
) 

careful attention, for balanced data, to the need for maximum likelihood estimators (MLEs) to be non-

negative, this being essential because ML theory demands that maximization be over the parameter 

space. In describing ML for variance components it is therefore essential to distinguish between 

solutions of the ML equations and estimators. They are not necessarily the same. Nor are they always 

the same as ANOVA estimators. For example, in the 1-way classification with balanced data, using 
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the mean squares MSA and MSE of Table 1, the ANOV A estimators are, as in ( 4), 

a-~ = -A-(M:SA- MSE) and o-2 = MSE. e 

The solutions to the maximum likelihood (under normality) equations are 

u~ = /i((l- ~)MSA- MSE) and o-~ = MSE. 

Because u~ can be negative, it cannot be an MLE. ML theory indicates that whenever u~ is negative, 

the MLE of u~ is 0; and this changes the MLE of u~ to be not u~ = MSE but SSTm/an. Thus the 

MLEs are as follows: 

and 

o-2- 0 Cl'- and a-;= SSTm/an 

With balanced data, there are at least three other cases (2-way nested, random model and the 2-

way crossed, mixed model, with and without int.eract.ion) where this avoidance of negative estimators is 

relatively easy (see Searle et a/., 1992, Section 4.7b-). But with a model no more complicated than the 

2-way crossed classification, random model, the ML equations for balanced data are easily written 

down (Miller, 1977), but have no closed-form solution (loc. cit. Section 4.7d). They have to be solved 

numerically. 

Maximum likelihood estimators, in general, have a number of nice properties, most of which are, 

unfortunately, asymptotic in nature. In the case of a simple sample of n observation those asymptotics 

are quite straightforward: they are based on limits as n-+oo. However, when data have multiple 

classifications, defining the limiting conditions is not so easy as just n-+oo. For example, in a 2-way 

layout of rows and columns, limiting conditions have to involve not just the total number of 

observations but also the numbers of rows and columns and numbers of observations therein and in the 

cells. Just exactly what is meant. by "in the limit" in such situations is discussed in Hartley and Rao 

(1967) and Miller (1977). 

Accepting that "in the limit" can be prescribed, the two most useful properties of MLEs are that 

in the limit such estimators are normally distributed and have sampling variances given by the inverse 

of the information matrix. These are two exceedingly useful properties, compared to those of ANOV A 

estimators- even though they are sustainable only in the limit. This begs the question, of course: 
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What does "in the limit" mean in practical terms? It certainly does not mean estimating variance 

components from a Latin Square of order 5! (I was once asked how to do that when the Latin Square 

had some missing cells!) But I think it does mean that a data set of 500,000 observations with 400 

rows and 1000 -columns is _probably dose enough to being at the limit for one to be content with using 

the asymptotic results. And data sets as large as this are not uncommon in some of the genetic uses of 

variance components. Even for data· sets more modest in size I would prefer ML to ANOV A, for the 

prime reason of knowing what is involved,. of not being bedeviled by wondering if some ANOV A 

application would be better than the one I've used, and of having no doubt- save for the "in the limit" 

meaning- about how to calculate sampling variances. 

The preceding description of MLE and its properties apply. quite generally to any mixed model for 

which the model equation can be written as 

y = xp + Zu + e I 

where y is the vector of data, P is a vector of fixed effects, u is a vector of random effects, X and Z are 

the model matrices (usually incidence matrices of zeros and ones) corresponding to P and u, 

respectively, and e is a vector of error terms. The vector u can be thought of as being partitioned into 

r subvectors: 

u' = [uJ. u2 .. · ui .. · u~] . 

Each ui will have elements that are all the qi random effects of some random factor (main effects or 

interaction factor) that is in the data. Then, under the usual assumption of homogeneity of variances 

and zero covariances, the variance-covariance matrix of u, denoted by D, is the block diagonal matrix 
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uilql 0 0 

0 u~Iq2 0 

var(u) = D = 
uliq. 0 0 

I 

0 0 0 

which can be written more compactly in various forms as 

Then, with Z of Zu partitioned conformably with u, 

Furthermore, e can be absorbed into the Zu notation by defining 

and N = qo, 

to give 

(5) 

It was this notational formulation that contributed, in my opinion, to Hartley and J.N.K. Rao 

(1967) being so successful in deriving ML equations- those obtained by differentiating the likelihood 

(under normality) with respect to the parameters, the u2s and the elements of p, and equating the 

resulting expressions to zero. The ML solutions, /3 and V (being V of (5) with each u2 replaced by its 

&2] are given by the equations 

(6) 

and 

for i = 0, · · ·, r , (7) 

where 

(8) 

with P being P with V replaced by V. Clearly, equations (6) and (7) have no closed form solution, and 

so they have to be solved numerically, usually by it.erat.ion. This involves some thorny questions in the 
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realm of numerical analysis. 

(i) What method of iteration should be used? 

(ii) There is at least one other form of (7): does the method of iteration depend on the 

form of the equations? 

(iii) Which form of the equations is best? 

(iv) Is convergence of the iteration always assured? 

(v) If convergence is achieved, is it at a. global maximum? 

(vi) Do starting values affect where convergence is achieved? 

(vii) If so, is there some set of starting values that always lead to convergence at the global 

maximum? 

(viii) The matrix V is, by definition, non-negative definite, and usually positive definite. 

What is to be done numerically if at an intermediate step of the iteration the true 

value of V is not non-negative definite? 

(ix) How will non-negativity conditions be taken into account? 

Thus it is that programming the numerical solution of the ML equations is no job for an amateur. 

Indeed, one well may wonder how satisfactorily these questions have been handled by professional 

programmers. 

Despite these numerical difficulties, I strongly adhere to the belief that maximum likelihood 

methodology is the correct estimation technique to use. Twenty-five years ago computer programs 

could barely handle the task, except for very small (and therefore effectively useless) data sets. But 

today computing power is continually increasing, and numerical techniques for sparse matrices and 

inverting matrices are always on the improve. Thus, whilst the computing power needed for every kind 

of possible data set is probably not available (nor may ever be), the power needed for a wide range of 

realistic data sets certainly is available. And it should be used: e.g., SAS and BMDP, t.o mention two 

of the widest-ranging computing sources. 
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Those packages also calculate the asymptotic sampling variance-covariance matrices for the ML 

estimators, using those estimators u2 in place of the population values u2 in the following expressions. 

In the limit, these variance results are 

cov({3, u2) --+ 0 

var(u2)--+ 2[{
01 

trace(\f1Z-Z'.\flz -Z'·)} r r r1 

I I 3 3 i=O j=O 
(9) 

iJ and u2 are the vectors of ML estii~ators; and the matrix to be inverted in var(uZ) is a 

symmetric matrix of order r + 1, its (i, j)'th element being the trace of the product matrix 

for i, j = 0, 1, · · ·, r. 

RESTRICTED MAXIMUM LIKELIHOOD 

An adaptation of ML estimation of variance components is to maximize only that part of the 

likelihood which is location invariant. It was first proposed for unbalanced data by Patterson and 

Thompson (1971) and has come to be known as restricted (in Europe, marginal) maximum likelihood 

(REML). It can also be defined as maximizing the likelihood (under normality, of course) of N- rx 

linearly independent linear combinations of the data, such that those combinations contain no fixed 

effects. This is tantamount to maximizing the likelihood of K'y where K'X = 0 and K' has full row 

rank. A Bayes description is also available (Searle et al., 1992, pp. 303 and 323). 

Compared to ML estimation REML has two features that some people feel sufficiently strongly 

about to always favor REML over ML. I'm not. convinced. One feature is that for balanced data the 

REML solutions are identical to ANOV A estimatot·s: The other is that REML estimators implicitly 

take into account the degrees of freedom associated with the fixed effects in the model. The simplest 

example of this is in estimating the variance from a simple sample of multinormal (JJ., u 2) data, 

x1, x2, · • ·, xn. The ML estimator is I:;(X;- x) 2/n, whereas the REML estimator is E;(x;- x)2/(n- 1). 

A mildly negative feature of REML compared to ML is that REML contains nothing about estimating 

the fixed effects whereas ML does. In practice, just as the ML estimator of fJ is given by (6), 

X'y-1X{3 = X'y-1y, which is simply generalized least squares estimation, GLSE({J), with the ML 

estimator V in place of V, one would of course after est.imating V by REML use it in place of V in 
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GLSE(P). But that is not part of REML. And then, of course, the Bayes justification for REML will, 

for some people, be a strong enough argument for preferring REML to ML. 

None of these reasons are strong enough for me to be vociferous over preferring REML to ML. In 

practice I would probably calculate both- and hope there was no huge difference between two sets of 

estimates. 

Equations for calculating REML solutions are 

for i = 0, • · •1 r . (10) 

These are simply equations of (7) of ML but with the V""1 on the left-hand side replaced by P. Like­

wise, in the asymptotic sampling dispersion matrix of (9) for ML, the v-1 is replaced for REML by P. 

Note from (8) that PVP = P. Therefore 

tr(PZ·Z~) = tr(PVPZ·Z'·) = tr(PZ·Z'·PV) = ~ ·tr(PZ·Z~PZ ·Z'·)u~, 
I I I I I I LJ1 I I 1 1 1 

so that the REML equations (10) can also be written as 

~ ·trace(PZ·Z~PZ ·Z'·)u~ = ..,pz.z~Py LJ1 I I 1 1 1 3 I I for i = 0, 1, · • ·, r • (11) 

MINIMUM NORM ESTIMATION 

A series of papers starting with Rao (1970) proposed a method of estimation that has come to be 

known as MINQUE, minimum norm quadratic unbiased estimation. It does not require normality, and 

it is developed by wanting to estimate a linear function of variance components, p't? say, by a 

quadratic function of the data, yAy say. The symmetric matrix A is to be chosen so that yAy 

minimizes a certain Euclidean norm (akin to a generalized variance) and is unbiased for p't?. The 

result of this (see, for example, Searle et al., 1992, Section 11.3d) is that the equations to be solved for 

the MINQUE estimators are 

for i = 0, 1, · · ·, r . (12) 

Two features of these equations are noteworthy. First is P0 : it is P of (8), which involves V, but 

with a set of pre-assigned values u~,o used in place of u~ in V. Denote those values by ~· Then 

replacing u2 by ~in V gives V0; and replacing V in P gives P0, used in the MINQUE equations (12). 

Thus the solution of those equations, which are the MINQUE estimators, depends upon what values are 

chosen as elements of u5. Different values of ~s will, from the same data set, yield different estimates. 
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Personally, I cannot live with that as an estimation procedure. 

A second feature of the MINQUE equations is that they only have to be solved as they stand. 

That is nice, because it is easy: they are just a set of linear equations in the wanted solutions. But 

that means there can be negative solutions; no provision is embodied in the method for avoiding them. 

REML, MINQUE and 1-MINQUE 

MINQUE is a non-iterative procedure: just solve (12). But (12) involves the pre-assigned value 

~ used in P0• And the REML equations (11) are the same as the MINQUE equations (12) except 

REML has P where MINQUE has P0 • But the REML equations are used iteratively and this has to 

begin with a starting value for u2• Hence if that starting value is u~ the first iteration of REML will 

yield the same solution as MINQUE. Thus, in general 

a. MINQUE estimator = a first it.erate solution of REML . 

Consider the MINQUE equations (12) again. They are based on u~, and yield a solution, ~.say. 

Suppose that solution is now used in place of u~ in (12), and those equations are solved, yielding u~. 

Continuing with this iterative procedure in (12) we have what is called Iterative MINQUE, or 
' 

1-MINQUE, and if continued until con~ergence, then providing the starting value u~ for 1-MINQUE is 

the same as for iterating REML, we have 

I-MINQUE estimates = REML solutions . 

This conclusion is of some impOl'tance. MINQUE and 1-MINQUE do not require normality 

assumptions. Yet Brown (1976) has shown that I-MINQUE estimators are asymptotically normally 

distributed. Therefore, from (13) so are REML solutions. And this is so even when REML 

calculations (which have been derived on the basis of t~ormality assumptions) are used on data that do 

not necessarily satisfy the normality assumptions. This seems to be a very strong point in favor of 

using REML. 
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MINQUE(O) and MINV AR 

MINQUE(O) is the special form of MINQUE wherein the preassigned value chosen for o-6 is 1.0 

for u; and zero for every other o-2• This reduces P to be I- X(X'xrx• and Goodnight (1978) has 

shown that that makes the MINQUE equations especially easy to compute. But Quaas and Bolgiano 

(1979) found it to be a particularly inefficient method of estimation. 

The development of MIN QUE stems from choosing A of y' Ay to minimizing a Euclidean norm 

based on o-6· If one adapts that to minimizing the variance (under normality) of y' Ay, without the 

need of any o-6, one fmishes up (Searle et al., 1992, p. 394) with the same equations as for REML, 

namely (12). But since these equations can only be solved iteratively (or by some equivalent 

arithmetic method) the resulting solutions used as estimators are neither unbiased nor minimum 

variance. 
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