
 

 

IMPROVING RISK ESTIMATES OF RUNOFF  

PRODUCING AREAS: FORMULATING  

VARIABLE SOURCE AREAS AS A BIVARIATE PROCESS 

 

 

 

 

 

 

 

 

A Thesis 

Presented to the Faculty of the Graduate School  

of Cornell University  

in Fulfillment of the Requirements for the Degree of  

Master of Science 

 

 

 

 

 

 

 

by 

Xiaoya Cheng 

May 2012 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2012 Xiaoya Cheng 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

Predicting runoff producing areas and corresponding risks is important for protecting water 

quality from nonpoint source pollution. However, the currently proposed engineering 

methods to do this do not account for antecedent soil wetness status, which may 

substantially impact risk estimates, especially where variable source area hydrology is a 

dominate storm runoff process. In this study, I developed a bivariate approach to estimate 

spatially-distributed risks of runoff production by incorporating both rainfall and antecedent 

soil moisture conditions into a method based on the Natural Resource Conservation 

Service-Curve Number equation. I used base flow immediately preceding storm events as an 

index of antecedent soil wetness status. Using the data from a study hillslope near Ithaca, 

NY, I demonstrated that my estimates agreed with independent field-observations. I further 

applied the proposed approach to the Upper Susquehanna River Basin and mapped 

predicted saturated areas with a Geographic Information System using a Soil Topographic 

Index. 
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CHAPTER ONE  

INTRODUCTION 

 

Predicting storm runoff risks is important in watershed management. While practical 

engineering methods for predicting runoff volumes and rates and their associated risks have 

been developed and are widely accepted (McCuen, 2002; Michele and Salvadori, 2002; 

Mishra and Singh, 2006), there has been less attention paid to developing similar methods 

for predicting risks associated with specific locations where runoff is generated. This 

information is potentially valuable for developing strategies for controlling non-point source 

(NPS) pollution because it allows managers to avoid potentially polluting activities in areas 

where there is a high risk of generating storm flow (e.g., Walter et al. 2000, 2001; Gburek et 

al., 2002; Agnew et al., 2006). 

 

Understanding where storm runoff is generated in a watershed depends on runoff 

producing mechanisms. There are two primary storm runoff producing processes, 

infiltration excess overland flow and saturation excess overland flow. Infiltration excess 

overland flow, also known as Hortonian Flow, occurs when precipitation intensity exceeds 

the infiltration capacity of the soil (Horton, 1933, 1940). This process often occurs during 

high intensity storms and in areas where the soil’s infiltration capacity is relatively low. In 

the northeastern USA, where this research is focused on, this situation is relatively 
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uncommon (Walter et al., 2003). In contrast, in areas that have shallow soils and/or are 

generally humid and well-vegetated, runoff is usually generated from areas where the soils 

are or become effectively saturated during storms. This process is referred to as saturation 

excess overland flow (Ward, 1984).  Strictly speaking, soils do not always have to be 

saturated to the soil surface to generate storm runoff. Lyon et al. (2006a,b) and Dahlke et al. 

(2012a,b) observed storm flows in headwater watersheds in upstate, NY, when the shallow 

water table was within 10 cm of the soil surface.  The “saturated” areas vary in location 

and size depending on the time of year and the characteristics of individual storm events, 

thus, they are often referred to as variable source areas (VSAs) (e.g., Dunne and Black, 1970; 

Frankenberger et al., 1999; Fiorentino and Iacobellis, 2001). Although VSAs can be small 

portions of a watershed, they account for a disproportionately large amount of overland 

flow. Therefore, predicting runoff risks associated with the location of VSAs could provide 

valuable information for targeting water quality protection strategies to small, 

hydrologically sensitive areas of the landscape that could have substantial impacts on 

reducing NPS pollution (e.g., Walter et al., 2000; Gburek et al., 2002; Walter et al., 2007).  

 

One widely used technique for estimating runoff volume is the Soil Conservation Service 

(currently the Natural Resources Conservation Service - NRCS) Curve Number (CN) method 

(SCS, 1972): 
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Where Q is the runoff volume over the watershed (mm), S is the maximum available soil 

storage (mm), and Pe is the effective precipitation (mm); Pe = total precipitation (P) minus 

initial abstraction (Ia); Ia is the minimum amount of rainfall that is necessary to initiate runoff.  

This rainfall-runoff equation maintains its popularity because of its simplicity and exclusive 

reliance on readily available data (Ponce and Hawkins, 1996; Garen and Moore, 2005).  

 

Although it is often typical to determine S in Eq.1 using tables that implicitly assume the 

runoff mechanism is Hortonian flow (Walter and Shaw, 2005), Steenhuis et al. (1995) 

showed that the SCS-CN equation can be interpreted as predicting saturation excess runoff 

and that differentiating Eq.1 with respect to Pe, results in an expression of the fraction of a 

watershed that is generating runoff, i.e., “saturated” areas (Af): 

 

 

 

One implicit problem in the way the SCS-CN method is used is that the runoff probability or 

return period is assumed to be the same as that of causative storm events. This is generally 

not the case (Shaw and Riha, 2011) and almost definitely not true for areas where the 

process of runoff production is governed by VSA hydrology (Walter et al., 2009). Besides 

precipitation, antecedent soil moisture conditions also influence runoff generation 

significantly, often in complex ways (Macrae et al., 2010). Because it is derived from the 
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traditional SCS-CN method, Eq.2 faces the same challenge, i.e., the risk that a given fraction 

of a watershed will generate runoff needs to be linked to both the precipitation amount and 

antecedent wetness conditions. 

 

Shaw and Walter (2009) addressed this issue with respect to runoff risk by using a bivariate 

approach to the SCS-CN method (Eq.1). This accounted for antecedent wetness conditions 

by linking antecedent soil storage volume, which influences S in Eq.1, to base flow 

immediately preceding the storm event. The rationale for linking S to base flow was based 

on Troch et al. (1993), in which they demonstrated a way to relate the effective depth to the 

water table to base flow measurements at the outlet of the basin. 

 

The purpose of this paper is to present a simple approach to more accurately estimate the 

fraction of runoff generating areas and the corresponding frequency. I consider the 

development of saturated areas as a bivariate process using an approach similar to that 

developed by Shaw and Walter (2009). I then demonstrate the application of my approach 

by applying this process to the Upper Susquehanna River basin. 
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CHAPTER TWO 

METHODS AND DATASETS 

 

This project was composed of two distinct studies: 1) I tested the proposed method of 

estimating Af against field measurements for a small, well monitored hillslope watershed 

and 2) I applied the proposed method for estimating VSA risk to several watersheds in the 

Upper Susquehanna River Basin to demonstrate a large-scale application and explore the 

impacts of land use and watershed size on my estimates. 

 

2.1 Bivariate Method for Quantifying VSA Risk 

Assuming the occurrence of Pe and S are independent over short time spans, risks 

associated with the fraction of a watershed generating runoff (Af) can be predicted as: 

 

 

 

Where Af is determined from Eq. 2.  Following Shaw and Walter (2009), antecedent 

conditions are incorporated into the proposed methodology by first back-calculating S from 

observed pairs of Q and Pe for storms that occur following a representative range of base 

flows (Qbase), by rearranging Eq.1 into Eq.4:   
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Secondly, watershed-specific relationships between the back-calculated S-values and 

associated base flow immediately preceding the rain event, Qbase, are established.  Based 

on Shaw and Walter (2009), a power function is fit to the S-Qbase relationships allowing the 

estimation of S from Qbase.  The probability distribution of S is based on the probability 

distribution of Qbase, based on stream discharge records transformed by the S-Qbase 

relationship.  The rainfall probability distribution can be determined directly from rainfall 

data.   

For details of estimating runoff volumes and rates and their associated risks as a bivariate 

process, refer to Shaw and Walter (2009). 

 

2.2 Descriptions of the Field Test Site 

I used a hillslope site near Ithaca, New York (76°14’48.44” W, 42°24’56.86” N) (Fig. 1) to 

field-test my modified approach, where Eq. 2 is combined with an S-Qbase relationship to 

determine S. The site is 0.5ha with an average slope of 7° and an elevation ranging from 482 

to 499 m a.s.l. (Fig. 1). Mean annual precipitation is 930mm and average annual 

temperature is 7.8 °C (Cornell University climate station). The site is mostly mixed grassland 

with a dominant soil type of Mardin channery silt loam. 

 

The monitoring layout is described in detail in Dahlke et al. (2012a). Briefly, rainfall data 

were collected by a tipping bucket rain gauge (Spectrum Technologies Inc., Plainfield, IL, 

USA) on-site at 5-min intervals from October 2009 to May 2010 (excluding January to 
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March); these data were aggregated to daily totals. Surface flow, shallow interflow, and 

total discharge were monitored by a trench excavated at the bottom of the hillslope (Fig. 1). 

Base flow was calculated as the minimum of total discharge within 24hr prior to a 

precipitation event. Storm runoff was the sum of surface flows and interflows.  A total of 

nine distinct events occurred at this site during the monitoring period.  A network of 17 

capacitance probes (TruTrack Inc., New Zealand) was installed in about 60% percent of the 

contributing area to measure water table levels.  

 

Figure 1. Location of study hillslope in central New York State, U.S.A. Black dots indicate locations of 

piezometers (Dahlke et al., 2012a). 

 

Observed Af was estimated as the proportion of the area with water table within the top 

10cm of the soil surface relative to the total hillslope area (2575 m2). I considered all areas 

where the water table was within 10cm to be runoff generating areas based on the findings 
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of Lyon et al. (2006a, 2006b) and Dahlke et al. (2012b). Water table depths between probes 

were estimated by interpolating 17 observations using ordinary kriging (Ripley, 1981; 

Goovaerts, 1999).  Runoff volumes and rates were also predicted for these basins using the 

method proposed by Shaw and Walter (2009). 

 

2.3 Upper Susquehanna Site of Application 

I applied my bivariate method for quantifying risks for saturated, runoff generating areas to 

nine sub-basins (Fig. 2) in the Upper Susquehanna River Basin as an illustration of the 

proposed methodology and to evaluate how results vary across different types of 

watersheds. Runoff volumes and rates were also predicted for these basins using the 

method proposed by Shaw and Walter (2009). 

 

The Upper Susquehanna River Basin is located in the southern tier of New York State and 

extends slightly into Pennsylvania (Fig. 2). This basin encompasses the headwaters of the 

Chesapeake Bay estuary, an extremely large and diverse ecosystem in the USA. The Upper 

Susquehanna River Basin is 19,430 km2 (7,500 mi2) in size with 20,920 km (13,000 miles) of 

roads and 27,360 km (17,000 miles) of streams. It is covered by 59% forest, 28% agricultural 

land, 5% urban/suburban land, 4% open water/wetlands, and 4% other types of land (Fry et 

al., 2011).   
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I used three criteria in choosing the sub-basins: 1) Size: Considering the representativeness 

of the observed data from stream gages and rain gages, I mainly chose basins of relatively 

small size, less than 700 km2 (300 mi2). To investigate the effect of basin size on runoff 

generation, I included two larger basins (A and B, Fig. 2); 2) Location: I chose the sub-basins 

distributed across the Upper Susquehanna River Basin; 3) Availability of data: I selected the 

sub-basins with most available recorded data. The characteristics and land use types of each 

sub-basin are summarized in Table 1. 

 

 

Figure 2. Nine studied sub-basins (lighter areas) and related US Geological Survey stream gauges 

(triangles) and National Weather Service rain gauges (circles). Refer to appendix for gauging station 

numbers. 
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Weather data were taken from the National Oceanic and Atmospheric Administration 

(NOAA) weather stations (circles in Fig.2), which are available from the United States 

National Climate Data Center. I used data records from the 1998 to 2008 time period. Daily 

data were applied in this study because these data are most commonly used in engineering 

hydrologic design. I selected precipitation events that were distinct in time with no rainfall 

for at least one day before and one day after.  I used inverse distance weighted (IDW) 

interpolation of gauges within and surrounding the basin to estimate precipitation values 

for each sub-basin.  

Table 1. Characteristics of nine studied sub-basins and the entire basin 

Sub-basin A B C D E F G H J 

Area (km2) 1350 2540 270 200 260 80 150 760 380 

Average Slope (°) 6.5 7.6 8.1 6.5 7.3 6.9 8.1 7.2 7.4 

Average Elevation (m) 453 503 541 398 509 548 562 464 484 

Average Soil Depth (cm) 104 99 75 97 74 / / / 80 

Average Annual Rainfall (mm) 1073 1079 1099 946 874 943 952 1069 1077 

Average Temperature (ºC) 0 - 15 

Land 

Use*

(%) 

Forest 48  59  61  54  51  74  70  52  62 

Agriculture  35  27  30  22  41  20  20  31  24 

Developed  3  5  4  16  4  1  5  5  3 

Open water/Wetlands  8  7  3  3  0  1  1  7  6 

Number of events used to 

establish S-Qbase 
19 16 16 36 18 16 11 18 16 

*From National Land Cover Database (NLCD) 2006, zone 63, USGS 

Daily stream-flow data were collected at the US Geological Survey (USGS) gauges located at 

the outlet of each basin (triangles in Fig.2) from 1998 to 2008. Base flow was extracted using 

the local minimum method, which is automated in the web-based hydrograph analysis tool 

(WHAT) (Lim et al., 2005). The number of pairs of weather data and stream-flow data for the 
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nine sub-basins ranges from 11 (basin G) to 36 (basin D) (Refer to appendix for event pairs 

of nine sub-basins).  

 

Precipitation frequency data were obtained from the website of “Extreme Precipitation in 

New York and New England” (http://precip.eas.cornell.edu/), which is a joint collaboration 

between the Northeast Regional Climate Center (NRCC) and the Natural Resources 

Conservation Service (NRCS) (Refer to appendix for precipitation frequency data for nine 

sub-basins). The frequency histograms of S were developed based on the “fraction of time” 

of corresponding Qbase. 

 

Based on the spatial extent of saturated areas predicted by this new method, runoff 

generating areas within each basin are mapped in a Geographic Information System (GIS) 

using a Soil Topographic Index (Walter et al. 2002; Lyon et al., 2004). 

 

2.4 Other Considerations 

Because the SCS-CN-method does not work well for very small rainfall-runoff events due to 

the accuracy of rain gauges and the sensitivity of the model (Shaw and Walter, 2009; 

Buchanan et al., 2011), I only used events associated with daily rainfall higher than 5mm 

(0.2inch).  

 

http://precip.eas.cornell.edu/
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Although Ia = 0.2S is a traditional assumption, recent research shows Ia varies for different 

study areas or events (Jiang, 2001; Shaw and Walter, 2009; Dahlke et al., 2012a). In my 

calculation, I set Ia = aS, in which a is constant for each basin. I calibrated a so that the 

least-squares differences between observed and predicted runoff were minimized. 
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CHAPTER THREE 

RESULTS 

 

3.1 Results of Field Test 

I first validated my bivariate method with application to the hillslope study site near Ithaca, 

New York, by comparing the estimated results with observations. 

Table 2. Observed rainfall and runoff for the nine storm events 

Event Qobs Qbase P Af obs 

 (mm) (mm/h) (mm) (mm) 

8-Apr-10 0.1 0.01 4.8 3.1 

9-Oct-09 0.1 0.00 6.8 2.0 

12-Oct-09 0.0 0.00 4.8 2.8 

16-Oct-09 0.0 0.00 6.4 0.8 

28-Oct-09 6.7 0.00 45.5 2.2 

5-Nov-09 0.2 0.01 4.7 2.2 

27-Nov-09 0.5 0.00 14.7 0.3 

30-Nov-09 0.5 0.02 8.1 0.3 

2-Dec-09 0.9 0.01 9.9 0.0 

 

Considering the limited available event pairs, I used a “leave-one-out cross-validation” 

strategy to test my method. Instead of using all nine events, I established the relationship 

between maximum available soil storage (S) and Qbase for every eight of the nine events. 

Therefore I obtained nine S-Qbase relationships, which are very similar to each other (Fig. 3). 
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Figure 3. S versus Qbase for the study hillslope in central New York State. Two thick black lines are for 

the outer bounds of the nine lines. 

 

Based on each established S-Qbase relationship and the measured Qbase, I estimated S for the 

corresponding event that was removed. Next, I calculated the fractional saturated areas (Af) 

from the estimated S and observed P using Eq.2. The predicted Af were then compared with 

observations. Recognizing that there was one large storm which might have impacted the 

statistical measures significantly, I plotted the linear regression between predicted Af and 

observed Af both with the largest storm event included (Fig. 4) and without including the 

largest storm event (Fig. 4 inset). Though the result without the largest storm event (slope = 

0.81, R2 = 0.73) is not as strong as the one for all events (slope = 1.04, R2 = 0.91), the 

generally good agreement between estimated and observed Af for both storm histories 

corroborates my bivariate method for quantifying Af.   
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I also compared observed Q with Q predicted by the method proposed by Shaw and Walter 

(2009). The slope of predicted Q versus observed Q is close to 1 and the correlation is high 

(Fig. 5). The strength of these results, however, is much weaker when the largest event is 

removed (Fig. 5, insert).  Interestingly, the predicted Af results were stronger than the 

results for Q, which anecdotally suggests the proposed method is not overly sensitive, i.e., Q 

measurements were used to derive the relationships in Fig. 3 so one might expect good 

subsequent model predictions of Q; Af is completely independent of the model 

development but still predicted well. 

 

                

Figure 4. Comparison of predicted saturated areas using a bivariate process and observed saturated 

areas for the study hillslope in central New York State. Insert shows data pairs for eight storm events 

excluding the largest storm on 28 October 2009. The lines show the 1:1 relationship. 

 

 

Af pred= 0.81Af obs+ 0.02
R² = 0.73

0.0

0.1

0.2

0.0 0.1 0.2
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Figure 5. Comparison of predicted runoff volumes using the bivariate SCS-CN method (Shaw and 

Walter, 2009) and observed runoff volumes for the study hillslope in central New York State. Insert 

shows data pairs for eight storm events excluding the largest storm on 28 October 2009.  The lines 

show the 1:1 relationship. 

 

3.2 Results of Upper Susquehanna Basin Application 

I applied the proposed approach to nine sub-basins in Upper Susquehanna River Basin to 

illustrate predicting risks associated with runoff generating areas as a bivariate process. 

 

The S-Qbase relationship for each basin were fit by a power function (Fig. 6). Basin J had the 

highest correlation (R2 = 0.80), while basin G, the one with the least available data, had the 

lowest correlation (R2 = 0).

 

Qpred = 0.63Qobs + 0.10
R² = 0.54

0.0

0.5

1.0

0.0 0.5 1.0
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Figure 6. S versus Qbase for nine studied sub-basins of the Upper Susquehanna River Basin. The 

letters correspond to the sub-basins in Table 1. Circles represent pairs of back-calculated S-values 

from observed P-Q data and base flow immediately preceding the rain event, Qbase; lines are best-fit 

power-functions; power functions and associated R2 are shown in each graph. 

 

Based on the S-Qbase relationships, S-values were calculated from Qbase for 28 independent 

storm events (Refer to appendix for Qbase, S, and the corresponding probabilities for the nine 

sub-basins). Rainfall frequency values obtained from the website of “Extreme Precipitation 

in New York and New England” (http://precip.eas.cornell.edu/) are plotted in Fig.7. With 7 

precipitation values (P) and 28 soil storage values (S), I obtained 196 Af values for each basin. 

I were then able to estimate bivariate risks associated with Af using Eq.4 (Fig. 8). 

http://precip.eas.cornell.edu/
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                Figure 7. Rainfall frequencies for nine studied sub-basins 

 

The fraction of runoff generating areas and the corresponding frequency vary from basin to 

basin and the trends are distinctly different from the rainfall frequencies (Fig. 7). This 

re-emphasizes that the risk associated with a given fraction of a watershed producing runoff 

does not depend solely on the probability or return period of the causative storm event, but 

is also influenced by the antecedent soil wetness conditions, which I incorporated in my 

bivariate approach.   
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Figure 8. Risks associated with fraction of runoff producing area (Af) for nine studied 

sub-basins   

 

Based on the S-Qbase relationships, runoff volume Q and the associated runoff risks were 

determined using the method introduced by Shaw and Walter (2009) (Fig. 9 and Fig. 10). 

These results were generated as a reference to the earlier work and for comparison to the 

Af risks shown in Fig. 8. 

Return period = 2yrs 

Af = 18% 

Return period = 2yrs 

Af = 18% 
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Figure 9. Comparison of predicted runoff volumes using the bivariate SCS-CN method (Shaw and 

Walter, 2009) and observed runoff volumes for nine studied sub-basins. The events for each basin 

are the same events previously used to establish power law relationships between S and Qbase. 



21 

 

     Figure 10. Risks associated with storm runoff volumes for nine studied sub-basins 
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CHAPTER FOUR 

DISCUSSION 

 

4.1 Effects of land uses 

The portion of developed area in sub-basin D (16%) is substantially higher than in other 

watersheds (Table 1).  I compared Af risks for sub-basin D to sub-basins C and G, which had 

much smaller proportions of developed area, 4% and 5%, respectively. All other 

characteristics for C, D, and G are relatively similar; C is slightly larger than D, and G is 

slightly smaller than D (Table 1).  For return periods less than ten years, all three 

watersheds have similar magnitudes of Af (Fig. 11a) and Q (Fig. 11b). However, when risks 

become higher (i.e., for larger return periods), the more urbanized or developed sub-basin D 

has a significantly higher Af and Q. While I expect sub-basin D to have more impervious 

surfaces than sub-basins C and G, which, logically, will generate storm runoff, it is not 

immediately obvious to us why the differences appear only at large return periods.  

However, this is an interesting observation that potentially warrants further study. 
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    Figure 11. Comparisons among sub-basins C, D, and G of risks associated with runoff   

    producing areas (a) and risks associated with runoff volumes (b). 

 

4.2 Mapping the predicted runoff producing areas 

In order to apply the relationships between the fraction of runoff generating areas, Af, and 

the corresponding risks to developing strategies to protect water quality, it is important to 

map these risks across a watershed.  Lyon et al. (2004) proposed using topographic indices 
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to map Af, and this concept has been adopted by some watershed modelers who use the 

SCS-CN to predict VSA storm runoff (Agnew et al., 2006; Schneiderman et al., 2007; Easton 

et al., 2008; Walter et al., 2009; Buchanan et al., 2012).  These studies generally used a 

version of the soil topographic index (STI) proposed for watersheds dominated by shallow 

restrictive layers, such as those with a fragipan or are shallow depth to bedrock (Walter et 

al., 2002)  

 

 

 

Where a is the upslope contributing area, D is the soil depth above the impervious layer, Ksat 

is the average soil permeability (or saturated hydraulic conductivity), and tanβ is the local 

topographic slope.  High STI-values indicate areas that have a high propensity of being wet 

with drier areas having low values of STI. 

 

Runoff risk is mapped as the fractional area of highest STI that corresponds to Af.  As an 

example, the 2-year Af constitutes 18% of sub-basin J (Fig. 8J).  This corresponds to an STI 

of 8.8, or 18% of sub-basin J that has an STI greater than 8.8.  The STI and 2-year Af maps 

for sub-basin J are shown in Fig. 12a and 12b, respectively.  This type of information can be 

used to target parts of the landscape for protection from potentially polluting activities.  

Unlike previously proposed methods for identifying these sensitive areas, this method 

combines realistic patterns of runoff generation, in contrast to Gburek et al. (2002) and 
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considers both the frequency of rainfall and antecedent conditions, in contrast to Walter et 

al., 2009.  The method is relatively simple compared to previously proposed modeling 

approaches that require decades of simulation modeling (e.g., Walter et al., 2000; 2001; 

Agnew et al., 2006). 

 

Figure 12. Soil topographic index map (a) and map of “saturated” runoff generating areas associated 

with a saturation frequency of once every two years (b) for sub-basin J.   

 

While the STI-mapping approach appears to work reasonably well for small to moderate 

sized watersheds, I experienced two potential problems at the scale of the Upper 

Susquehanna Basin: 1) the soil survey data describing soil properties sometimes abruptly 

changes at county boundaries resulting in un-likely discontinuities in STI. The primary cause 

of these discontinuities is that the soil depth value for the same map unit being significantly 

a. b. 
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different in adjacent counties. 2) Valley bottoms generally have very low STI (indicating 

relatively dry soil conditions) because the accumulated alluvium has a relatively large depth 

(D) (Fig. 13a); in reality, the effective depth in the valley bottoms should be the water table 

depth but this is a dynamic characteristic.  

 

An alternative approach is to omit the soil properties from Eq. 4 to calculate a topographic 

index (TI) (Fig. 13b), which effectively assumes that gravitational redistribution of soil water 

and groundwater is more important to defining soil wetness patterns than basing these 

patterns on soil properties derived from soil geographic databases. Valley bottoms appear 

very different on TI maps compared to STI maps. The TI shows valley bottoms as likely to be 

wet, i.e., runoff generating, while the STI shows the opposite. The TI probably better 

represents spring conditions, when the water table is near the surface and the STI may be 

more indicative of conditions during the summer and early fall. 
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Figure 13. Soil topographic index map (a) and topographic index map (b) for the Upper Susquehanna 

River Basin. Part of the areas in STI map is eliminated due to discontinuities of soil depth data for the 

same map units that cross county boundaries.   

 

a. 

b. 

Inconsistent soil survey data 

Example of different valley bottom values 
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CHAPTER FIVE 

SUMMARY AND CONCLUSION 

I proposed and demonstrated a bivariate approach that accounts for both rainfall and 

antecedent soil moisture status within a watershed to improve risk estimates of runoff 

generating VSAs.  My approach effectively combines and extends the previous 

re-interpretations of the SCS-CN rainfall-runoff model by Steenhuis et al. (1995), Lyon et al. 

(2004), and Shaw and Walter (2009).  The bivariate method demonstrated good 

agreement with the field-measured fraction of runoff-generating areas, considered here as 

“saturated” areas.    

 

The proposed method provides a potentially useful tool for watershed management to 

protect water quality from NPS pollution.  Mapping the Af associated with a threshold risk 

level or recurrence interval identifies areas that should be protected from potentially 

polluting activities.  The method described here is potentially simple enough and the 

computations efficient enough to implement online and/or access via mobile devices. 

 

Some unresolved issues that need more attention include: 1) developing ways to extend risk 

predictions to ungauged watersheds, 2) resolving problems with discontinuities in soil 

properties at county boundaries, and 3) determining how to make meaningful predictions 

for landscapes where a water table effectively limits the soil depth, as opposed to areas 

where there is a shallow restrictive layer.   
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APPENDIX 

 

US Geological Survey (USGS) stream gauging station number 

Sub-basin A B C D E F G H J 

USGS Stream 

Gauge Number 
1502500 1500500 1500000 1530500 1525981 1521500 1523500 1509000 1510000 

 

National Weather Service (NWS) rain gauging station number 

Rain Gauge a b c d e f g 

NWS Rain Gauge Number 30770502 30608502 30719502 30867002 30511302 30175202 30261001 

Rain Gauge h i j k l m n 

NWS Rain Gauge Number 36183806 30477201 30002301 30008501 30398301 30862702 30551202 

 

Observed runoff, baseflow, and rainfall for the nine sub-basins 

Sub-basin Event Qobs Qbase P 

  (mm) (mm) (mm) 

A 

12-Jun-01 0.45 0.38 12.45 
17-Jun-01 

 

 

1.11 0.40 37.85 
4-Aug-01 0.58 0.22 13.72 

11-Sept-01 0.11 0.10 6.86 
14-Sept-01 0.12 0.10 9.91 
15-Oct-01 0.12 0.10 11.43 
26-Nov-01 0.25 0.14 10.67 
24-Jul-02 0.29 0.25 10.67 
16-Jul-03 0.43 0.41 12.95 

26-Sept-03 0.93 0.68 5.08 
25-Nov-03 2.87 2.25 10.67 
16-May-04 1.39 1.29 10.16 
19-May-04 1.16 1.10 5.59 
1-Aug-05 0.21 0.20 6.86 

30-Sept-05 0.54 0.27 12.70 
2-Nov-05 4.29 3.70 8.89 
7-Nov-05 2.67 2.34 7.87 
8-Apr-06 1.96 1.22 9.40 

24-Nov-06 3.25 3.13 5.84 
 11-Jul-01 0.40 7 11 
 15-Oct-01 0.10 10 15 
 3-Nov-01 0.10 11 3 
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 10-Apr-02 2.13 4 10 
 24-Jul-02 0.31 0.36 15.24 
 13-Nov-02 1.66 0.08 10.16 

B 12-Apr-03 3.90 0.08 6.86 
 30-Aug-03 0.60 1.95 8.13 
 6-Nov-03 2.65 0.26 15.75 
 20-Nov-03 5.74 1.16 12.45 
 25-Nov-03 3.14 3.60 5.84 
 19-May-04 1.11 0.28 44.20 
 3-Oct-04 1.26 2.55 5.33 
 23-Jul-05 0.32 1.69 35.56 
 30-Sept-05 0.20 2.23 8.38 
 10-Sept-06 0.93 0.99 7.87 

C 

1-Jun-98 1.38 0.29 28.96 
5-Jul-98 2.28 1.29 12.19 
7-Jul-99 0.61 0.10 30.73 
4-Jul-00 1.38 0.66 11.18 

24-Aug-00 0.83 0.56 28.70 
4-Sept-00 0.30 0.25 17.27 

13-Sept-00 0.94 0.31 41.40 
11-Jul-01 0.54 0.26 16.76 
10-Apr-02 1.43 1.35 8.38 
13-Nov-02 1.85 1.66 12.45 
8-Apr-03 4.46 4.11 7.87 
8-Jul-03 0.62 0.51 11.18 

20-Nov-03 7.88 1.48 38.61 
25-Nov-03 3.56 1.91 8.89 
23-Jul-05 0.32 0.27 8.64 

29-Sept-06 3.76 1.37 32.77 
 27-Apr-98 1.85 1.34 10.41 
 30-May-98 0.44 0.39 13.97 
 1-Jun-98 1.69 0.37 24.89 
 3-Jun-98 0.69 0.36 13.21 
 5-Jul-98 2.11 0.83 10.92 
 16-Sept-98 0.17 0.13 12.70 
 10-Apr-99 1.68 0.95 15.75 
 30-Sept-99 0.44 0.12 28.96 
 14-Oct-99 0.26 0.11 12.19 
 22-Jun-00 3.01 1.55 15.24 
 22-Jul-00 0.27 0.23 11.43 
 7-Aug-00 0.22 0.20 13.97 
 10-Aug-00 0.41 0.19 13.21 
 10-Sept-00 0.16 0.14 15.75 
 18-Oct-00 0.23 0.14 16.26 
 10-Apr-01 5.56 1.74 10.92 

D 17-Jun-01 0.23 0.18 22.86 
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 17-Aug-01 0.16 0.10 27.43 
 14-Sept-01 0.13 0.08 15.75 
 15-Oct-01 0.15 0.12 15.24 
 28-Jun-02 1.93 0.41 48.51 
 16-Sept-02 0.15 0.10 13.72 
 23-Sept-02 0.13 0.10 16.00 
 5-Apr-03 8.02 2.30 18.80 
 17-May-03 0.63 0.49 11.94 
 23-Sept-03 1.85 0.30 30.99 
 26-Apr-04 3.01 1.24 12.45 
 3-May-04 6.37 1.23 29.21 
 7-Jun-04 0.39 0.27 11.43 
 6-Jul-05 0.34 0.19 24.38 
 10-Nov-05 3.10 0.80 15.75 
 20-Jun-06 0.40 0.26 18.29 
 4-Aug-06 0.55 0.31 28.96 
 10-May-07 0.55 0.47 14.22 
 19-Jun-07 0.20 0.17 20.83 
 20-Oct-07 0.15 0.12 12.45 
 5-Sept-01 0.04 0.02 12.95 
 14-Sept-01 0.01 0.01 11.94 
 26-May-02 0.65 0.50 9.14 
 10-Jul-02 0.10 0.08 6.35 
 14-Sept-03 0.22 0.19 5.33 
 16-Sept-03 0.86 0.23 15.49 
 29-Nov-03 1.77 0.86 9.40 
 3-May-04 2.47 0.60 23.88 
 29-Jun-04 0.09 0.06 14.22 

E 3-Nov-04 0.86 0.25 6.35 
 4-Jun-05 0.14 0.11 5.84 
 7-Jun-05 0.18 0.11 16.51 
 2-Nov-05 0.55 0.45 7.87 
 7-Nov-05 0.63 0.38 6.10 
 11-May-07 2.05 0.28 17.27 
 9-Jun-07 0.16 0.05 7.11 
 20-Jun-07 0.05 0.03 20.83 
 8-Aug-07 0.02 0.01 18.03 
 5-Sept-01 0.03 0.02 6.10 
 21-May-03 0.96 0.49 8.38 
 28-May-03 1.42 0.52 16.51 
 16-Jul-03 0.20 0.10 16.26 
 27-Aug-03 0.13 0.12 11.43 
 30-Aug-03 0.15 0.12 6.35 
 16-Sept-03 0.71 0.19 18.29 
 25-Nov-03 1.88 1.13 6.60 
 28-May-04 5.87 2.67 13.46 
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F 26-Jun-04 0.29 0.23 7.62 
 29-Jun-04 0.40 0.20 10.41 
 11-Aug-04 0.40 0.22 18.54 
 8-Apr-06 2.10 1.13 8.64 
 10-Jun-06 0.34 0.24 11.18 
 20-Jun-06 0.24 0.11 10.92 
 26-Jul-06 2.87 0.80 12.70 
 28-May-03 1.42 0.97 14.48 
 27-Aug-03 0.33 0.20 16.51 
 30-Aug-03 0.67 0.38 6.60 
 16-Sept-03 0.62 0.16 16.76 
 25-Nov-03 1.68 1.24 7.11 

G 28-May-04 3.23 1.57 16.00 
 26-Jun-04 0.36 0.29 7.37 
 11-Aug-04 0.65 0.17 23.37 
 8-Apr-06 2.17 1.77 8.64 
 20-Jun-06 0.49 0.21 6.60 
 26-Jul-06 1.47 0.85 9.14 
 1-Jun-98 1.03 0.74 29.72 
 12-Apr-99 2.40 2.10 11.94 
 26-Jun-99 0.23 0.21 13.21 
 11-Nov-99 0.70 0.58 10.92 
 21-Nov-99 0.74 0.60 7.62 
 17-Jun-01 0.74 0.45 24.64 
 1-Sept-01 0.28 0.25 17.78 
 24-Jul-02 0.52 0.36 33.27 

H 17-Aug-03 1.58 1.16 8.89 
 25-Nov-03 3.33 2.93 12.19 
 3-Nov-04 0.79 0.66 12.95 
 2-Nov-05 2.53 2.12 8.13 
 7-Npv-05 1.70 1.53 8.13 
 16-May-06 1.03 0.95 10.67 
 27-May-06 1.95 0.91 28.19 
 2-Apr-07 4.76 4.32 8.13 
 24-Apr-07 4.53 3.87 10.92 
 20-Jun-07 0.72 0.33 41.40 
 12-Apr-99 1999 4 12 
 11-Nov-99 1999 11 11 
 17-Jun-01 2001 6 17 
 1-Sept-01 2001 9 1 
 24-Jul-02 2002 7 24 
 5-Aug-02 2002 8 5 
 4-Sept-02 2002 9 4 
 8-Apr-03 2003 4 8 
 25-Nov-03 2003 11 25 
J 3-Nov-04 2004 11 3 
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 2-Nov-05 2005 11 2 
 7-Nov-05 2005 11 7 
 27-May-06 2006 5 27 
 24-Apr-07 2007 4 24 
 9-Jun-07 2007 6 9 
 20-Jun-07 2007 6 20 
     

 

Precipitation frequency data for the nine sub-basins 

 

1 2 5 10 20 50 100 

A 53 62 76 88 108 126 148 

B 54 64 78 92 113 132 154 

C 54 63 78 91 112 132 153 

D 50 60 74 87 107 126 148 

E 50 59 73 86 106 124 146 

F 50 58 71 83 102 120 140 

G 50 58 71 83 103 120 141 

H 52 60 74 86 106 124 144 

J 52 61 75 87 107 125 146 

 

Observed base flow, predicted maximum soil storage capacity,  

and the corresponding probabilities for the nine sub-basins 

Sub-basin 
Qbase 

(mm) 

Spred 

(mm) 

Probability  

(%) 

 0.12 3491 2.6 

 0.16 2655 3.7 

 0.21 2050 3.6 

 0.26 1673 4.0 

 0.34 1296 3.7 

 0.41 1085 3.7 

  Return Period  

       (yrs) 

Sub-basin 

24-hr Precipitation  

      (mm) 
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 0.47 953 3.1 

 0.52 865 3.7 

 0.59 768 3.9 

 0.67 680 3.1 

 0.76 603 3.7 

 0.84 548 3.6 

 0.92 503 3.7 

A 0.99 469 3.5 

 1.06 440 3.7 

 1.13 414 3.5 

 1.21 388 3.7 

 1.31 359 3.9 

 1.41 335 3.4 

 1.52 312 3.3 

 1.62 294 3.8 

 1.73 276 3.8 

 1.88 255 3.7 

 2.10 229 3.3 

 2.34 207 3.8 

 2.67 183 3.5 

 3.45 143 3.7 

 7.50 68 3.2 

 0.08 3203 1.6 

 0.12 2388 3.4 

 0.20 1649 2.8 

 0.30 1229 4.5 

 0.40 998 4.2 

 0.50 849 3.1 

 0.60 744 3.7 

 0.70 665 3.5 

 0.80 604 3.9 

 0.93 541 3.3 

 1.04 499 3.8 

 1.16 461 3.6 

B 1.26 434 3.4 

 1.40 402 3.6 

 1.53 377 2.5 
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 1.54 376 3.4 

 1.54 375 7.2 

 1.57 370 3.8 

 1.61 364 3.3 

 1.67 354 3.6 

 1.77 339 3.9 

 1.89 324 3.9 

 2.03 307 3.2 

 2.23 287 3.4 

 2.50 264 3.7 

 2.90 237 3.6 

 4.00 188 3.5 

 6.60 131 2.5 

 0.09 4013 3.2 

 0.11 3398 2.3 

 0.12 3158 2.3 

 0.14 2751 6.8 

 0.20 1993 3.2 

 0.24 1643 3.6 

C 0.29 1364 3.6 

 0.33 1221 3.5 

 0.38 1071 3.7 

 0.46 900 3.6 

 0.53 785 3.6 

 0.59 707 3.2 

 0.65 649 3.9 

 0.74 576 3.6 

 0.84 509 3.6 

 0.92 469 3.5 

 1.02 427 3.7 

 1.13 389 3.4 

 1.23 357 3.6 

 1.34 332 3.6 

 1.45 308 3.7 

 1.59 282 3.5 

 1.75 258 3.5 

 1.97 231 3.6 
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 2.20 209 3.6 

 2.80 167 4.6 

 6.00 82 5.1 

 17.30 31 1.1 

 0.09 9131 2.8 

 0.10 7853 3.3 

 0.11 6741 3.8 

 0.12 6023 3.7 

 0.13 5155 3.7 

 0.14 4576 3.7 

 0.16 3884 3.5 

 0.18 3194 3.8 

 0.21 2416 3.5 

 0.26 1705 3.8 

 0.29 1427 2.7 

 0.32 1215 3.8 

 0.35 1049 3.2 

D 0.39 880 3.6 

 0.44 722 4.0 

 0.49 606 3.6 

 0.54 517 4.0 

 0.58 460 3.6 

 0.63 402 3.2 

 0.69 347 4.0 

 0.75 302 3.4 

 0.81 267 3.3 

 0.92 217 3.9 

 1.03 180 3.6 

 1.17 146 3.3 

 1.38 112 3.8 

 1.74 77 3.4 

 7.60 7 3.9 

 0.00 14724 2.3 

 0.01 6430 4.4 

 0.02 3580 3.2 

 0.03 1942 4.3 

 0.04 1523 3.6 
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 0.06 1224 3.3 

 0.08 882 3.3 

 0.11 702 4.1 

 0.13 606 3.5 

 0.16 523 3.4 

 0.19 443 4.0 

E 0.22 391 3.3 

 0.25 351 3.4 

 0.28 322 3.7 

 0.31 297 3.7 

 0.33 278 3.1 

 0.37 252 3.6 

 0.41 231 3.7 

 0.45 214 3.1 

 0.50 196 3.7 

 0.55 180 4.1 

 0.63 161 3.7 

 0.70 147 3.2 

 0.81 130 4.0 

 0.97 112 3.4 

 1.24 91 4.0 

 1.68 70 3.5 

 12.50 13 3.4 

 0.03 3352 2.2 

 0.06 1706 6.9 

 0.08 1318 4.5 

 0.09 1132 3.8 

 0.11 965 3.7 

 0.12 854 3.8 

 0.14 739 3.5 

 0.17 617 3.7 

 0.20 522 3.7 

 0.23 464 3.3 

 0.25 413 3.6 

 0.29 359 3.6 

 0.33 314 3.7 

 0.38 275 3.6 
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 0.44 238 3.6 

 0.49 213 2.5 

F 0.50 209 1.3 

 0.56 187 3.9 

 0.63 166 3.0 

 0.71 147 2.9 

 0.80 131 4.3 

 0.89 118 4.4 

 0.96 109 3.2 

 1.07 98 3.6 

 1.20 87 3.9 

 1.50 70 4.2 

 2.50 42 3.0 

 9.20 11 2.6 

 0.08 1210 2.8 

 0.10 971 3.6 

 0.12 886 3.3 

 0.13 817 3.8 

 0.15 755 4.1 

 0.16 710 3.5 

 0.18 647 3.7 

 0.20 609 3.6 

G 0.23 552 3.6 

 0.25 519 3.8 

 0.28 476 3.1 

 0.30 449 3.6 

 0.34 411 4.0 

 0.37 387 3.4 

 0.42 353 3.3 

 0.49 316 4.2 

 0.54 295 3.3 

 0.60 274 3.0 

 0.67 253 4.2 

 0.72 240 3.2 

 0.77 229 3.6 

 0.84 215 4.6 

 0.95 197 4.4 
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 1.10 178 4.4 

 1.22 165 2.7 

 1.50 142 3.8 

 2.00 116 3.3 

 7.50 45 2.1 

 0.17 9238 2.6 

 0.22 6589 3.1 

 0.25 5528 3.7 

 0.30 4304 4.7 

 0.34 3624 3.7 

 0.39 3002 3.0 

 0.46 2393 4.1 

 0.52 2022 3.5 

 0.59 1700 3.4 

 0.64 1521 3.7 

 0.71 1319 3.9 

 0.79 1139 3.4 

 0.89 967 3.8 

H 0.98 847 3.4 

 1.06 761 3.2 

 1.13 697 3.6 

 1.24 613 4.0 

 1.35 546 3.7 

 1.44 499 3.5 

 1.57 444 3.5 

 1.68 404 3.6 

 1.83 359 4.0 

 1.99 320 3.9 

 2.18 283 3.4 

 2.42 245 3.4 

 2.85 196 3.7 

 3.60 142 3.3 

 16.00 18 3.3 

 0.08 8878 2.5 

 0.12 5851 3.4 

 0.16 4226 3.8 

 0.21 3107 4.2 
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 0.26 2440 3.5 

 0.33 1864 4.0 

 0.39 1543 3.5 

 0.47 1249 3.7 

 0.53 1091 3.3 

 0.60 948 3.5 

 0.67 837 3.4 

J 0.75 736 4.2 

 0.82 666 3.0 

 0.90 599 4.3 

 0.99 538 3.4 

 1.10 478 3.6 

 1.21 429 3.6 

 1.31 392 3.4 

 1.41 361 3.5 

 1.52 331 3.8 

 1.65 302 3.8 

 1.80 274 3.9 

 1.96 248 3.7 

 2.17 221 3.6 

 2.50 189 3.7 

 3.10 148 3.7 

 4.50 97 3.6 

 18.00 20 2.5 
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