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ABSTRACT 

 

Epidemiological studies have consistently shown that increased consumption of 

fruits and vegetables is associated with reduced risk of various chronic diseases 

including cardiovascular diseases, hypertension, diabetes and cancers. Phytochemicals 

in fruits and vegetables have been identified as the primary contributors to these health 

benefits. However, the molecular mechanisms of the anticarcinogenic effects of fruits 

and vegetables are not completely understood. 

Previous works from our lab clearly showed the antiproliferative activity of 

quercetin-3-glucoside towards human breast cancer MCF-7 cells. In the project 

investigating the mechanism of action of the quercetin-3-glucoside, my work 

demonstrated that quercetin-3-glucoside inhibits MCF-7 cell proliferation by activating 

p38/MAPK pathway through targeting ASK1. It also induces cell apoptosis via 

p53-dependent pathway. 

In conclusion, we demonstrated that quercetin-3-glucoside exerted anticarcinogenic 

effects via counteracting antiproliferation and apoptosis induction. These data may be 

important in further understandings of the protective effects of fruits and vegetables 

against related cancers.
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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION 

Nowadays, people are focusing more on natural ways in prevention of chronic 

diseases. Foods, which are necessary for every human being, become the top 

consideration. Epidemiological studies consistently showed that food pattern is related 

to disease incidence. A dietary pattern that is high in fruits and vegetables, whole 

grains, dairy products and fiber and low in fat could lower the risk of various chronic 

diseases including cancer, hypertension, and cardiovascular diseases. 

Cancer accounts for 22.9% of total deaths in United States, exceeded only by heart 

disease (25.0%) (SEER Cancer Statistics Review 1975-2008). The estimated number 

of new cancer cases is 1,596,670 in 2011, and the estimated number of deaths due to 

cancer reached 571,950 in 2011. The overall cost of cancer in 2010 was $263.8 billion, 

which led to a huge economical and psychological burden for the country (American 

Cancer Society 2011). The lifetime risk for being diagnosed with all sites of cancers is 

41.21% (95% CI 41.11-41.30%). The lifetime risk for dying from cancer is 21.07% (95% 

CI 21.04-21.10%). (SEER Cancer Statistics Review 1975-2008) 

Breast cancer is the first most common malignant tumor among women. In the 
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United States, nearly every 1 in 3 cancers diagnosed among women is breast cancer. 

It’s also the second leading cause of death resulting from cancer among women. 

Estimated number for new breast cancer cases in US in 2011 is 57,650 and 230,480 for 

in situ cases and invasive cases respectively. Total deaths number is estimated to be 

39,520 in women. As age goes up, these numbers go up accordingly. The long-term 

incidence trend shows an increase in breast cancer incidence in early 1980s due to the 

introduction of mammography screening and changes in reproductive patterns. It 

dropped sharply between 2002 and 2003 probably due to the decreased use of 

menopausal hormones. The incidence rates among women older than 50 stayed stable 

since 2004. The long-term mortality rate dropped approximately 2.2% every year from 

1990 to 2007. It could be attributed to improvements in treatments and early detection 

(DeSantis et al 2011). Risk factors of breast cancer include weight gain after 18, 

overweight or obese, use of hormones, physical inactivity, alcohol consumption, family 

history of breast cancer and inherited genetic mutations (American Cancer Society 

2011). Commonly used therapies include lumpectomy or mastectomy, radiation, 

chemotherapy, hormone therapy and target therapy. Patients usually suffered from 

these therapies both mentally and physically (American Cancer Society 2011). 

Therefore, a more easily executed method is in serious need. Modified food patterns 

were proved to be related to breast cancer incidence, though the relationship was not 

statistically significant (Prentice et al 2006, Pierce et al 2007). It could be used as a 

supplementary treatment. 
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1.2 FOOD PATTERN AND REDUCED RISK OF COMMON DISEASES 

The American Dietary Guidelines 2010 recommended a food-based eating pattern to 

promote health and reduce risk of major chronic diseases (Dietary Guidelines for 

Americans 2010). The increased amount of fruits, vegetables and whole grains was 

proved to be related to the reduced risk of cardiovascular diseases and various types of 

cancer (Flock et al 2011). Vegetable oils containing mono unsaturated fatty acids and 

poly unsaturated fatty acids can improve the blood lipid profile (Dietary Guidelines for 

Americans 2010). Epidemiology studies have consistently shown that a plant-based 

dietary pattern could beneficially affect health (Flock et al 2011). 

Dietary pattern is associated with risk of cancer. Incidence of lung cancer is clearly 

proved to be related to smoking status, but it’s usually difficult to interpret the observed 

association of lung cancer and food pattern. Here a case-control study involving 299 

never smoker lung cancer patients and 317 controls was conducted to develop the 

association (Gorlova et al 2011). Dietary data were collected using a modified Health 

Habits and History Questionnaire. Two major dietary patterns were identified: healthy 

eating pattern including fruits and vegetables and low-fat food items, and mixed dishes 

pattern including most foods with positive loadings. Results were controlled for age, 

gender, supplement use, total caloric intake, second hand smoke expose, family history 
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of cancer, education, and physical activity score. They found that the lung cancer risk 

was significantly reduced by the healthy eating pattern (OR = 0.65, 95% CI 0.42-0.98 

for the highest compared to the lowest tertile) after adjusting for confounders. 

Supplement use and physical activity did not modify the effect. For the adenocarcinoma 

cases in subgroup analysis, a consistent protective effect of healthy eating pattern was 

also observed [OR = 0.58 (0.34–0.99) in women; OR = 0.71 (0.34–1.49) in men; OR = 

0.60 (0.26–1.39) for the highest versus the lowest tertile]. The statistical insignificance 

might be resulted from the small sample size. (Gorlova et al 2011).  

Then a population-based case-control study was conducted to assess the effect of 

dietary patterns on risk of oesophageal cancers. 365 oesophageal adenocarcinoma 

(OAC), 426 oesophagogastric junction adenocarcinoma (OGJAC) and 303 

oesophageal squamous cell carcinoma (OSCC) cases were selected. 1580 controls 

were matched to cases. Data on dietary factors, lifestyle and demographic factors were 

collected using questionnaires. Three dietary patterns were identified: fruit and 

vegetable, meat and fat, and pasta and pizza. Logistic regression models were used to 

estimate association of OAC, OGJAC, OSCC and dietary pattern scores. High scores 

on fruit and vegetable pattern were associated with a decreased risk of OGJAC (OR = 

0.66, 95% CI 0.42-1.04, p = 0.07) and significantly reduced risk of OSCC (OR = 0.41, 

95% CI 0.24-0.70, p = 0.002). When assessing the effect of high-fat dairy foods, 

significantly increased risks of OAC and OGJAC were observed (OR 2.46, 95% CI 

1.54- 3.94; OR 1.83, 95% CI 1.17-2.86, respectively). These data shown was not 
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affected by BMI, reflux or smoking (Ibiebele et al 2011). Further research of 

prospective studies is needed to confirm these findings in case-control studies. 

In a cohort study with a follow-up time of 12.9 years, 28082 women with no history 

of cardiovascular disease, cancer, and hypertension at baseline were recruited. Their 

fruits and vegetables intake was assessed using semiquantitative food frequency 

questionnaires (FFQs). Incidence of hypertension was recorded by annual follow-up 

questionnaires. After adjusted by age, race and total energy intake, the hazard ratio and 

95% CI of hypertension were reduced to 0.97 (95% CI 0.89-1.05), 0.93 (95% CI 

0.85-1.01), 0.89 (95% CI 0.82-0.97) and 0.86 (95% CI 0.78-0.94) (p trend <0.0001) 

comparing women who consumed 2-4, 4-6, 6-8 and 8 servings/day of total fruits and 

vegetables with those consuming < 2 servings/day. Lifestyle factors did not affect the 

association. When fruits and vegetables were analyzed separately, high intake of all 

fruits were still significantly associated with reduced risk of hypertension, but the BMI 

adjustment eliminated all effects (Wang et al 2011). This study suggested that the 

beneficial effect of a healthy diet containing high intake of fruits and vegetables might 

be resulting from body weight regulation. 

The Dietary Approaches to Stop Hypertension (DASH) diet is recommended by 

Dietary Guidelines. The relationship between food pattern and coronary heart disease 

risk was estimated by DASH trial (Chen et al 2010). Individuals with prehypertension 

or stage-1 hypertension without taking any antihypertensive medication were recruited. 

They were randomly assigned to 3 diets: control, fruits and vegetables (F/V), and 
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DASH (rich in fruits and vegetables, low-fat dairy, and reduced fats and cholesterol). 

The Framingham risk equation was applied to calculate 10-year risk of developing 

CHD. Results showed that systolic and diastolic blood pressure, total cholesterol and 

LDL cholesterol were lowered by DASH diet when compared to control. Estimated 

CHD risk was reduced to 0.93 (95% CI 0.85-1.02) for F/V and to 0.82 (95% CI 

0.75-0.90, p < 0.001) for DASH. The CHD risk for DASH compared to F/V was 0.89 

(95% CI 0.81-0.97, p = 0.012). These data indicated a significant reduction in the 

10-year estimated risk compared with baseline for those in F/V diet, and the reduction 

is even more significant for those in DASH diet. The advantage of this study is that it 

is a feeding study. The effects of the dietary pattern were measured under maximal 

adherence. The research population is diversified with high rates of internal validity. 

Thus a credible conclusion can be drawn from this trial that the DASH dietary pattern 

can substantially decrease estimated 10-year CHD-risk (Chen et al 2010). 

Dietary pattern was also linked to insulin sensitivity, which could affect risk of 

chronic diseases (Anderson et al 2011). This relationship was assessed by a prospective 

cohort study of 3075 older adults. Food intake was estimated with a modified Block 

food frequency questionnaire. Blood sample was used to measure fasting glucose and 

fasting insulin levels. CRP, IL-6 and TNF-α levels were used as inflammation markers. 

Socio and lifestyle variables include age, gender, race, education, smoking status, 

alcohol consumption, physical activity. Six clusters were identified in 1751 participants 

who completed the study. The healthy foods cluster (higher intake of low-fat dairy 
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products, fruit, whole grains, poultry, fish and vegetables) had significantly lower 

fasting insulin and insulin resistance values as well as the fasting glucose when 

compared with other groups (p ≤ 0.05). Changes in all inflammatory markers showed 

similar patterns. The means of CRP were lower in the healthy food cluster, indicating a 

decrease of production of pro-inflammatory cytokines and a reduced metabolic risk. 

This study suggested that a diet containing low-fat dairy products, fruits and vegetables, 

whole grains, poultry and vegetables might be beneficial for older adults by inducing 

insulin sensitivity and lowering systemic inflammation (Anderson et al 2011). 

 

1.3 FOOD PATTERN AND REDUCED RISK OF BREAST CANCER 

As early as 1997, breast mammographic changes among women that had a low-fat 

eating pattern were shown in a randomized trial (Prentice et al 1997). 817 women were 

assigned either to self-selected diet or dietary intervention with a goal of 15%, 20% 

and 65% of energy from fat, protein and carbohydrates, respectively. They were then 

followed for 2 years. Total breast area and total area of dense tissue from each 

mammographic view were analyzed using mammographic images taken before and at 

the end of the trial. 2.5% reduction in breast area and 6% reduction in density were 

observed in intervention group when compared to control group (less than 1% and 2.5% 

respectively). But the hypothesis that a low-fat well-balanced diet pattern may reduce 
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breast cancer risk was not adequately tested (Prentice et al 1997). 

The feasibility of a high vegetable diet on preventing breast cancer was assessed in 

another randomized trial (Pierce et al 1997). Women who had been diagnosed with 

stage I, II and IIIA breast cancer within the previous four years and who had completed 

initial treatment was recruited. The dietary goals were 5 servings of vegetable, 16 

ounces of vegetable juice, 3 serving of fruits, 30 g fiber and 15-20% energy from fat. 

The adherence to the study diet was assessed using recalls at 6 and 12 months and 

measurement of circulating carotenoid concentrations in blood samples. The control 

group was provided with the diet containing 5 servings of fruits and vegetables. At the 

end of the trial, women in intervention group and control group were not statistically 

different in baseline characteristics. The difference in vegetable intake occurred by 6 

months. Mean intake increased from 2.8 servings/day to 7.4 servings/day compared 

with 3.0 servings/day in control group. Dietary adherence score did not differ in the 

two groups at baseline, but was significantly greater for the intervention group at 6 

months and 12 months (p = 0.0001). The majority of the intervention group was 

adherent to study goals. Concentration of carotenoids significantly increased in 

intervention group when compared with control group (66% vs. 52% in β-carotene, 

265% vs. 26% in α-carotene, 63% vs. 2% in lutein). Other dietary biomarkers 

including β-cryptoxanthin, lycopene and total cholesterol remained no change. Results 

from this study demonstrated that the adoption and maintain of the hi-vegetable, 

reduced-fat and increased-fiber diet is feasible in breast cancer trials. The methods of 



 

9 
 

self-modified diet can be achieved with high adherence (Pierce et al 1997). 

In the following years, several studies were conducted to test the hypothesis, but 

controversial results were obtained.  

The very first trial to test the association between dietary pattern and invasive breast 

cancer was the Women’s Health Initiative Dietary Modification randomized controlled 

trial (WHI)(Prentice et al 2006). It was a randomized, controlled, primary prevention 

trial that conducted at 40 US clinical centers from 1993 to 2005. The objective is to 

assess the effect of low-fat diet on breast cancer incidence. 48835 postmenopausal 

women aged from 50 to 79 years without prior breast cancer were enrolled. They were 

randomly assigned to either the modified diet intervention group or the control group. 

The intervention goal was to reduce total dietary fat to 20% of total energy intake, and 

to increase fruit and vegetable intake to at least 5 servings per day and grains intake to 

at least 6 servings per day. The control group was not asked to make any dietary 

changes. Invasive breast cancer incidence was measured in the follow-up years. 

Percent energy from fat was lower in the intervention group by 10.7%, 9.5%, 8.1% at 

year 1, 3, 6 respectively. Fruits and vegetables intake was increased by 1.2, 1.3, 1.1 

servings at 1, 3, 6 years respectively. Grain consumption was higher by 0.9, 0.7, 0.4 

servings at these times. The incidence rate of invasive breast cancer was 3.35% and 

3.66% in intervention group and control group respectively. The estimated HR was 

0.91 (95% CI 0.83-1.01). This number did not change after additional adjustment for 

calcium and vitamin D. Mortality ratio was 0.77 (95% CI 0.48-1.22), indicating a not 
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significantly reduced mortality rate in intervention group. Total cancer incidence and 

mortality and total mortality ratio were slightly less than 1 and were not statistically 

significant when comparing the two groups (Prentice et al 2006). These data suggests a 

moderate decrease in breast cancer risk for the intervention group. But subgroup 

analysis might be useful since breast cancer can be categorized into several subtypes 

according to tumor hormone receptor. Also, baseline consumption of fat is highly 

correlated with HR in intervention group. 

One analysis on ovarian, breast, endometrial, colorectal and all invasive cancer rates 

were performed using same data from WHI trial(Prentice et al 2007). Postmenopausal 

women aged from 50 to 79 years were randomly assigned to a dietary modification 

intervention or control. The average length of follow-up was 8.1 years. The diet pattern 

was assessed by the WHI food-frequency questionnaire. Weighted log-rank tests were 

used to compare incidence of invasive cancers. Percent energy from fat was lower in 

the intervention group by approximately 10%. Fruits and vegetables intake was 

increased by about 1 serving per day. Grain consumption was higher by a lesser extent. 

The hazard ratio for total invasive cancer was 0.95 (95% CI 0.89-1.01), suggesting a 

moderate protective effect of the modified diet. One thing to be mentioned is that the 

hazard ratio of ovarian cancer averaged over the entire intervention period was not 

statistically significantly less than 1. When the follow-up period was divided into the 

first 4 and the latter 4.1 years, hazard ratio reduced to 0.60 (95% CI 0.38-0.96, p = 0.03) 

in the latter 4.1 years, which was statistically significant (Prentice et al 2007). These 
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data suggested that the effect of diet on cancer risk might be time dependent, and the 

protective effect might not be apparent until later in time. Disappointingly, the same 

analysis was not performed in other types of cancers. 

The risk of benign proliferative breast disease was then assessed using the same data 

set again from the WHI trial(Rohan et al 2008). Women aged 50 to 79 years who 

reported breast biopsies free of cancer were identified in this study. The dietary 

intervention was designed to reduce total dietary fat to 20% of total energy intake, 

increase fruit and vegetable intake to more than 5 servings/day, and increase intake of 

grain products to at least 6 servings/day. The length of follow-up was 7.7 years in 

average. One year after randomization, statistical significant differences in intake of 

these dietary items were evident. The association between dietary modification and 

benign proliferative breast cancer cases was 1.09 (95% CI, 0.98-1.23). A slight 

increase in risk of benign proliferative breast disease without atypia (HR = 1.10, 95% 

CI 0.97-1.25) and a significant increased risk for either atypical hyperplasia or 

moderately extensive or florid proliferative disease without atypia (HR = 1.16, 95% CI 

1.02-1.33) were observed. The overall effect of dietary modification was unchanged by 

exclusion of the first year of follow-up or exclusion of women with a breast biopsy 

before the trial, or adjustment for annual measures of height and weight, or use of 

hormone (Rohan et al 2008). These data suggested that a slightly modified diet with 

moderately reduced fat, increased fruits and vegetables and fiber, instead of reduce the 

risk of breast cancer, increased the risk, but the effect is not statistically significant. 
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In the Women’s Healthy Eating and Living (WHEL) Randomized Trial, the effect of 

a diet very high in fruits and vegetables, fibers and low in fat was studied (Pierce et al 

2007). 3088 women aged 18 to 70 years who were treated for stage I, II and IIIA breast 

cancers were recruited. The intervention group was randomly assigned and had dietary 

goals of 5 servings of vegetable, 16 ounces of vegetable juice, 3 servings of fruits, 30 g 

fiber and 15-20% energy from fat. The control group was provided with dietary 

guidelines containing 5 servings of fruits and vegetables. Invasive breast cancer event 

and death from all causes were measured. At 4 years, vegetable servings, fruit servings, 

fiber and energy intake from fat changed +65%, +25%, +30% and -13% respectively in 

intervention group (p < 0.01). Plasma carotenoid concentration increased 43% (p < 

0.001). Breast cancer incidence was 16.7% in intervention group compared with 16.9% 

in control group. The hazard ratio adjusted for potential confounders was 0.96 (95% CI 

0.80-1.14, p = 0.63). Mortality rate was 10.1% in intervention group and 10.3% in 

control group. More than 80% of all deaths were due to breast cancer. The adjusted 

hazard ratio was 0.91 (95% CI 0.72-1.15, p = 0.43) (Pierce et al 2007). These results 

showed that the adoption of a diet that was very high in vegetables, fruits, fiber and 

low in fat did not lead to the significantly reduced risk of breast cancer or mortality 

risk although the calculated hazard ratio is less than 1.  

In the subgroup analysis of WHEL study, breast cancer events among women 

without hot flashes after treatment of early-stage breast cancer were assessed again 

(Pierce et al 2009). The risk of secondary breast cancer in women without hot flashes 
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(HF-) was analyzed. 896 women reported no baseline hot flashes were identified in the 

HF- group. Dietary intake was assessed by recalls, and plasma carotenoid 

concentration was performed to validate the dietary self-report. Height, weight and 

physical activity were also recorded. The crude event rate in the intervention group 

was highest in quartile 1 (21%, consuming less than 4.9 servings/day) and lowest in 

quartile 4 (9.6%, consuming more than 8.9 servings/day). When looking at the fruits 

and vegetables intake, the hazard ratio of additional breast cancer events in quartile 4 is 

0.41 (95% CI 0.196-0.86), and the hazard ratio in quartile 1 is 0.8 (95% CI 0.48-1.35). 

When looking at the fiber intake, the hazard ratio of additional breast cancer events in 

quartile 4 (consuming more than 25.2 g/day) is 0.48 (95% CI 0.26-0.87), and the 

hazard ratio in quartile 1 (consuming less than 15.6 g/day) is 0.82 (95% CI 0.45-1.48). 

When looking at the fiber to fat ratio, the hazard ratio of additional breast cancer 

events in quartile 4 (> 0.54) is 0.38 (95% CI 0.19-0.77), and the hazard ratio in quartile 

1 (≤ 0.25) is 0.82 (95% CI 0.42-1.63). The p values for trend are less than 0.05 in all 

comparisons. These data suggested that the intervention group experienced fewer 

cancer events than did the comparison group for all of the baseline quartiles. The 

difference was significant when comparing upper baseline quartiles. A significant trend 

for fewer breast cancer events was observed across quartiles of vegetable-fruit and 

fiber intake (Pierce et al 2009). 

Prognosis of breast cancer in women without hot flashes was the second subgroup 

analysis that derived from the WHEL trial (Gold et al 2009). The identified 
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intervention and control groups were not statistically different in baseline characters. 

Using the Cox model in developing hazard ratio, HF-negative intervention women had 

a 31% reduction in the risk of developing additional breast cancer when compared with 

the control group (HR = 0.69, 96% CI 0.51-0.93, p = 0.02). Additionally, both the 

intervention and comparison groups in HF-positive subgroup had a significantly better 

prognosis than the HF-negative comparison group. The hazard ratio was 0.77 (95% CI 

0.59-1.00, p = 0.05) and 0.65 (95% CI 0.49-0.85, p = 0.02) respectively. Significant 

dietary intervention effect was observed in postmenopausal women with a hazard ratio 

of 0.53 (p = 0.003). But no effect was observed for premenopausal women in the 

HF-negative subgroup. In fact, the hazard ratio was 1.16, suggesting an increased risk 

in additional breast cancer event. When premenopausal women was eliminated from 

the Cox model, the hazard ratio for HF-negative women in the intervention group 

reduced to 0.49 (95% CI 0.32-0.75, p = 0.001) (Gold et al 2009). These data suggested 

that the effect of modified diet on breast cancer depends on the occurrence of hot 

flashes. Moreover, a significant protective effect was observed in postmenopausal 

women, suggesting that this sub-population is more sensitive to the dietary pattern. 

 

1.4 CARCINOGENESIS AND REACTIVE OXYGEN SPECIES 

A strong association exists between free radicals production and carcinogenesis. In 
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vitro studies showed that some pro-oxidant chemicals promoted tumors in several 

animal models (Devasenaetal 2006, Liebler et al 2000, Slaga et al 1981, Huang et al 

1999), whereas primary endogenous antioxidant enzymes can affect tumor promotion 

(Zhao et al 2005, Fukuyama et al 2005). The involvement of reactive species (ROS) in 

tumor progression has also been shown in human cells (Gibellini et al 2010). ROS are 

a group of highly reactive free radicals produced from molecular oxygen. It can be 

categorized into four subclasses: singlet oxygen (
1
O2), superoxide anion radical (O2

-.
), 

peroxide anion (O2
2-.

), and hydroxyl radical (
.
OH). ROS production is constant in cells. 

For example, hydrogen peroxide can be generated during fatty acids breakdown. 

Activated leucocytes can produce ROS when responding to immune system(De Duve 

1983). A large amount of superoxide is released from macrophages. It can also be 

generated by the oxidative environment, such as smoking (Babior 1984). The major 

sources of endogenous ROS are superoxide anion and hydrogen peroxide (Nohl et al 

2003). Hydrogen peroxide can be converted to water by enzymes catalase or 

glutathione peroxidase. Superoxide anion is converted by superoxide dismutase (SOD) 

to H2O2, then participates in ‘Fenton reaction’ to produce the highly active hydroxyl 

radical (Waris et al 2006). 

ROS normally exists in cells in balance with biochemical antioxidants. Oxidative 

stress occurs when the balance is disrupted due to excess ROS, antioxidants depletion, 

or both (Klein et al 2003). Firstly, ROS induces damage of various biomolecules. Cells 

have developed several antioxidant defenses mechanisms during evolution, including 
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DNA repair, detoxifying enzymes, and small scavenger molecules. But these systems 

might not be sufficient to completely remove oxidative stress (Poli et al 2004, Valko et 

al 2004). Secondly, ROS acts as secondary messengers in several pathways, and results 

in the resistance to apoptosis, increased proliferation and metastasis (Hussain et al 

2003). Thus a significant shift of cellular oxidative balance could result in abnormal 

physiological conditions (Gibelliniet al 2010).  

Free radicals can result in long-term damage and lead to diseases. It has been proved 

that ROS is associated with various diseases including degenerative diseases, cancers 

and cardiovascular diseases(Beckman et al 1997). About 20,000 unpaired or 

misrepaired DNA bases are caused by ROS per day (Beckman et al 1997). Certain 

types of cancer cells also produce significant amounts of ROS. As a result, oncogenes 

might be activated, and tumor-suppressor genes might be turned off, resulting in cancer 

initiation and progression (Ames et al 1993). Thus ROS are considered as potential 

carcinogens since they facilitate mutagenesis, tumor promotion and progression (Waris 

et al 2006). Scientific results showed that potentially cancer-inducing oxidative stress 

resulted from ROS could be prevented or limited by dietary antioxidants found in fruits 

and vegetables. Phytochemicals in fruits and vegetables exhibit antibacterial and 

antiviral effects. It can also react with oxidative agents, stimulate immune system and 

regulate gene expressions and hormone metabolism and serves as chemopreventers 

(Liu 2002). Among all natural chemopreventers, the most widely studied group of 

antioxidant compounds are flavonoids (Ramos 2007, Gibellini et al 2010). 
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1.5 PHYTOCHEMICALS AND FLAVONOIDS 

Phytochemicals can be defined as bioactive non-nutrient plant compounds in fruits, 

vegetables, grains, and other plant foods that have been linked to reducing the risk of 

major chronic diseases (Liu 2004). They are proved to be the active ingredients in plant 

food. Based on their chemical structures, phytochemicals could be classified as 

phenolics, carotenoids, alkaloids, nitrogen-containing compounds and organosulfur 

compounds (Liu 2004). (Table 1) 

Phenolics are characterized as containing one or more aromatic rings, each bearing 

at least one aromatic hydroxyl and connected with a carbon bridge (Williams et al 

2004). Phenolics are plant secondary metabolites. They can function against fungal 

parasites, herbivores, pathogens and oxidative cell injury to protect plants. Phenolics 

can be categorized into five subclasses: phenolic acids, flavonoids, stibenes, 

courmarins and tannins. It is likely to be responsible for decreased risk of cancer, 

cardiovascular diseases, and other chronic diseases by reducing oxidative stress and 

affecting cell signaling pathways that involved in cell proliferation and apoptosis. 

(Williams et al 2004, Liu 2004). 
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TABLE 1. CATEGORIES OF PHYTOCHEMICALS AND DIETARY SOURCES. 

Adopted from Liu 2004 

Classes Subclasses Phytochemicals Dietary 

sources 

Terpenes Carotenoids α-carotene Pumpkin 

  β-carotene Carrot 

  β-cryptoxanthin Papaya 

  Lycopene Tomato 

  Lutin Broccoli 

 Monoterpenes D-limonene Lemon 

Phenols Phenolic acids Gallic acids Gall nut 

  Caffeic acid Coffee 

 Flavonoids Quercetin Apple 

  Genisten Soybean 

  Catechin Tea 

  Naringenin Grapefruit 

 Stibenes Resveratrol Grape 

 Coumerins Auraptene Bell pepper 

 Tannins Proanthocyanidins Blueberry 

Alkaloids  Nicotine Tobacco 

  Pyrrolizidine Comfrey 

Organosulfur Indoles Indole-3-carbinol Cabbage 

 Isothiocyanates Isothiocyanate Brussel sprout 

 Allylic sulfur Diallyl sulfide Garlic 
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Among phenolics, flavonoids accounts for two thirds of the total dietary phenolics 

intake (Liu 2004). It is widely distributed in almost every plant and act as 

pharmacologically active constituents in many medicines. More than 5,000 flavonoid 

compounds have been identified (Appleton 2010). All these compounds share the same 

basic structure. It is formed by two benzene rings (A and B rings) that joined together 

by a three carbon link, which is formed into a γ-pyrone ring (C ring) (Liu 2004) 

(Figure 1.1). According to the different connections between B and C rings, the 

oxidation state and the functional group on C ring, flavonoids can be further divided 

into six subclasses: flavonols, flavones, flavonols (catechins), flavanones, 

anthocyanidins, isoflavonoids (Figure 1.2). More convincing evidence these years 

suggests that flavonoids exhibit various biological, pharmacological and medical 

properties including platelet aggregation inhibition, free radical scavenging, 

anti-proliferation and beneficial effects on cancer, cardiovascular disease and 

neurodegenerative disorders (Amira et al 2008, Liu 2004). 
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FIGURE 1.1GENERIC STRUCTURE OF FLAVONOID 
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  Flavonols     Flavones   Flavanols (Catechins) 

 

     

  Flavanones     Anthocyanidins   Isoflavonoids 

 

FIGURE 1.2 STRUCTURES OF MAIN CLASSES OF DIETARY FLAVONOIDS 
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1.6 STRUCTURE, SOURCES AND SYNTHESIS OF Q3G 

1.6.1 Structure 

Substitution patterns on the basic flavonoid structure occur in natural compounds. 

Flavonoids usually exist as glycosides, which means one or more hydroxyl groups on 

the skeleton are joint by a sugar moiety. D-glucose is the most common sugar that 

appears among the 179 different naturally existing quercetin glycosides. The presence 

of the sugar in 3-position on quercetin can significantly change its biochemical 

activities, which leads to the attention of quercetin-3-β-D-glucoside (Q3G) (Cornard et 

al 1998). 

Q3G is also known as isoquercitin, isoquercitrin, and quercetin-3-O-glucoside. It has 

a molecular formula of C21H20O12 with the molar mass of 464.38g/mol (Appleton 

2010). Its molecular structure and the conformational possibilities of the sugar moiety 

were determined in 1998 (Figure 1.3). In Q3G, the sugar substituent on position three 

results in an out-of-plane bending of the rotatable bonds. All the rotatable bonds adopt 

a unique preferential position in order to maximize the stability of the molecule 

(Cornard et al 1998). The structural related activity of Q3G was assessed by its 

capability of enhancing the endothelial nitric oxide (NO) release of isolated porcine 

coronary arteries. Taubert et al demonstrated that Q3G only induced moderate NO 
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release (5 nM to 8.5 nM) when compared to quercetin (more than 8.5 nM), indicating 

a loss in function due to the three position substitution of sugar (Taubert et al 2002). 

 

 

 

 

 

FIGURE 1.3 STRUCTURE OF QUERCETIN-3-GLUCOSIDE 
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1.6.2 Sources 

Q3G exists naturally in apple, onion, broccoli, sophora flower and few other plants 

as well as herbal medicines, but the concentration is as low as 0.01%. This compound 

was successfully isolated in some plant species as Crataegus sp., Argemoneplatyceras，

Scutiabuxifolia and Hyptis fasciculate (Boligon et al 2009). The amounts of Q3G in 

different stages of growth as well as different parts of plant are not always the same. 

Suzuki et al reported the change of Q3G and rutin levels in buckwheat seeds. The 

seeds were harvested during ripening, and Q3G concentration was measured by HPLC 

analysis. It clearly increased in the early stages of ripening, reached the maximum at 

23 days after pollination (DAP), and decreased rapidly to undetectable at 30 DAP. 

Rutin level changed following the same trend as Q3G (Suzuki et al 2002). 

Then the changes of phenolic compounds of bush butter during ripening were 

reported by Missing et al. compared to unripe stage, total polyphenol concentration 

slightly increased to 22.7 mg/g at the preripe stage and decreased to 18.6 mg/g at the 

soft fruits stage. Q3G content presented in relatively high quantities and increased 

slightly between the first two stages of ripening and then decreased gradually as 

ripening progressed (Missing et al 2003). 

Several years later, Kalinova et al assessed the Q3G level as well as the quercetin, 

catechin and myricetin levels within individual plant parts of buckwheat by HPLC 

analysis (Kalinova et al 2009). Among the compounds tested, Q3G represented the 
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largest component in buckwheat. Their results indicated that at the flowering stage, 

Q3G concentration decreased in the following order: flowers > stems > leaves > 

roots.The level in stems increased gradually during the growing period. And the Q3G 

level doubled in leaves at the flowering stage compared to the beginning of branching, 

and continued to increase after flowering. Weather in the given year had an effect on 

Q3G level. The positive correlations between rutin level and the Q3G level in leaves 

and roots (0.5053, p ≤ 0.05 and 0.6674, p ≤ 0.01, respectively) were also consistent 

with the previous Suzuki study (Kalinova et al 2009). The above three studies showed 

consistent results of changes of Q3G during ripening. 

Recently Black et al provided evidence of the seasonal variation of fifteen most 

abundant phenolic contents including Q3G by HPLC in Northern Labrador Tea, 

Rhododendron tomentosum ssp. Subarcticum(Black et al 2011). Q3G and quercetin 

both had relatively low seasonal average concentrations compared to other compounds 

tested. The seasonal minima were achieved at the end of August as the leaves grew and 

flowers were produced, and maxima were achieved in September (Black et al 2011). 

 

1.6.3 Synthesis 

Q3G can be synthesized by the hydrolysis of rutin.  

Biotransformation of rutin to Q3G was conducted in a study by controlling 

α-L-rhamnosidase and β-D-glucosidase activities from crude enzyme extract of 
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Aspergillusniger, a food-grade microorganism (You et al 2010). α-L-rhamnosidase 

activity was most effectively induced by 1% (w/v) rhamnose when compared to other 

carbon sources. The ratio of α-L-rhamnosidase activity to β-D-glucosidase activity was 

optimized at pH 6.0 with the buffer containing 15% (v/v) methanol, followed by heat 

treatment at 70 ℃ for 30 min. After 4 h of biotransformation, 99% of rutin was 

transformed to Q3G and no quercetin was detected (You et al 2010). 

Wang et al then analyzed various acids and enzymes catalyzed rutin hydrolysis 

(Wang et al 2011). When 2.5% H3PO4, 1% HCl and 0.5% H2SO4 were used as catalysts 

under 70 ℃ for 20 hours, transformation yields of Q3G were 9.60, 0.69 and 1.25%, 

respectively. When hesperidinase, snailase and cellulose-T2440 were used as catalysts, 

the yields were 43.21, 3.07 and 0.00%, respectively. Quercetin was also produced in all 

reactions (Wang et al 2011). These results suggested the feasibility of chemical 

transformation of rutin to Q3G, but the purity and yield is not satisfying when 

compared to biotransformation. 

 

1.6.4 Bioavailability 

Bioavailability is defined as the proportion of the compound that appears in plasma 

over time when the compound is administered orally. It is expressed as the proportion 

of an ingested dose that is excreted in urine compared with the proportion excreted in 

feces over time (Birt et al 2001). The cell uptake and bioavailability of flavonoids 
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depend on the presence of different substitutions on the carbon atoms of the basic 

structure (Amira et al 2008). Most flavonoids are present in the diet as glycosides. 

Conjugation with sugar molecules could stabilize the aglycone and increase its water 

solubility. Flavonoid glycosides could be converted back to the deglycosylated form 

and modified during absorption and metabolism (Middleton et al 2000). Q3G is a 

naturally occurring compound which has a 3-position hydroxyl group on C ring joined 

by a hemiacetal link to a glucose. Various research results showed contradictory 

evidences on its absorption inside human body versus quercetin, the aglycone. 

In cell model, Caco-2 cells were incubated for 24, 48 and 72 h with Q3G at 70μM. 

Then the flavonoid content of cells was analyzed by HPLC. A rapid uptake of Q3G by 

cells after 24 h of incubation was observed. The cellular uptake of Q3G reached a 

maximum of 0.50 ± 0.20 ng/10
6
 cells after 48 h, and disappeared at 72 h (Salucci et al 

2002). 

The absorption of quercetin aglycone and Q3G were then compared using Caco-2 

cells (Boyer et al 2004). The compounds were purified from whole onion and apple 

peel extracts. The Caco-2 cell monolayers were treated with 100μM Q3G or 50μM 

quercetin at 37 ºC for 20, 40, 60 and 90 min in the kinetics design. In the 

dose-response design, cells were treated with full concentration range from 10 to 

100μM of quercetin or Q3G for 40 min. Then the cells were collected, and the cellular 

extracts were analyzed by HPLC for quercetin and Q3G. Quercetin uptake increased 

through the 40 nmol doses, while Q3G uptake continued to rise through the maximal 



 

28 
 

dose of 100 nmol. Peak accumulation of Q3G in cells occurred at 40min after 

treatment of 100 nmol of Q3G, while unidentified peaks were seen after the treatment 

of quercetin. Overall, the percentage of pure quercetin absorbed by the cells was higher 

than Q3G (p < 0.05). When the cells are treated with apple peel and shallot extracts 

that containing quercetin and Q3G, the absorption manner remained the same. The cell 

took up 45.8 ± 10.0% of the total quercetin, while only 4.5 ± 0.4% of Q3G was 

absorbed. Different from other studies, no quercetin conjugates in cell was detected in 

this study (Boyer et al 2004). 

Interestingly, in human model, Hollman et al observed that 52% of quercetin 

glucosides from onions was absorbed while only 24% of quercetin was absorbed, 

which is contradictory to the previous cell model studies. Participants in this study 

followed a quercetin-free diet for 12 d. On days 4, 8, and 12, three different 

quercetin-containing breakfasts in random order were provided, including an onion 

breakfast containing mainly quercetin glucosides, and two other diets containing 

capsules of quercetin equivalents of 100 mg. Urine and stoma effluent of the 

participants were collected before breakfast and at the end of the day. Samples were 

then freeze-dried and extracted before the HPLC analysis. And the authors pointed out 

that in fact, the 52% absorption might be underestimated because quercetin glucosides 

need to be released from food and then absorbed, resulting in the loss of amount 

(Hollman et al 1995). Their findings suggested that quercetin glucosides, rather than 

the aglycone, is better absorbed in human. 
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Besides, Cermak et al measured the relative total bioavailability of Q3G in pigs. 

Pigs were either administered a diet containing 50 mg/kg quercetin or isomolar 

amounts of Q3G or rutin, or a second diet containing 10 mg/kg quercetin or isomolar 

amount of Q3G. Jugular and portal blood samples were collected over 24 h and were 

analyzed by HPLC. The changes in plasma levels of quercetin and its metabolites 

increase after the administration of quercetin and Q3G, and the proportions of 

metabolites were similar. But the calculated relative bioavailability of Q3G increased 

48% when compared to quercetin aglycone with an oral dose 50 mg/kg, and 67% with 

a dose of 10 mg/kg (Cermak et al 2003). The absorption mechanism of Q3G remained 

controversial since the cell model studies and the animal studies showed contradictory 

results. 

 

1.6.5 Mechanism of Absorption 

Two absorption mechanisms were proposed in Q3G absorption. Controversial 

research results have been obtained. 

One possible absorption mechanism of Q3G was investigated by Wolfferam et al 

(Wolffram et al 2002). They proposed that Q3G was transported by the intestinal 

sodium-dependent glucose transporter (SGLT1) on the intestine. Pieces of rat jejunum 

were mounted in Ussing-type chambers and incubated at 37 ℃. Q3G was added to the 

mucosal or serosal bathing solution, and the samples for HPLC analysis were collected 
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after 1 and 2 h from both compartments. In the absence of D-glucose from the mucosal 

medium, Q3G concentration continuously decreased with time. Only 43% and 14 % of 

the initial concentration were detected after 1 and 2 h, respectively. But the 

disappearance of Q3G was significantly suppressed by addition of 10 mmol/L 

D-glucose, leaving 35% of initial concentration in the medium. When the glucose 

transporter SGLT1 was maximally silenced by omission of Na+ and the specific 

SGLT1 inhibitor, phloridzin, 54% of the initial Q3G remained in the mucosal 

compartment after 2 h. Then in order to rule out the possibility of the involvement of 

sodium-independent fructose transporter GLUT-5, 10 mmol/L D-fructose was added in 

the sodium free mucosal medium. The disappearance of Q3G was not affected. 

Therefore, they concluded that Q3G was absorbed via SGLT-1 (Wolffram et al 2002). 

Day et al later proposed that the actual quercetin glucoside absorbed through 

SGLT-1 was quercetin-4’-glucoside (Q4G), rather than Q3G (Day et al 2003). They 

showed that in their in vitro model, Q3G was first hydrolyzed by lactase phlorizin 

hydrolase (LPH), and then absorbed as quercetin. In their rat everted-jejunal sac model, 

free quercetin and quercetin conjugates were detected within the tissue at the end of the 

incubation with Q3G and Q4G. N-(n-butyl)-deoxygalactonojirimycin (NB-DGJ), an 

inhibitor of lactase, inhibited 79% and 83% deglycosylation of Q3G and Q4G 

respectively. And phlorizin, the SGLT-1 inhibitor, only reduced Q4G hydrolysis. 

NB-DGJ only inhibited the apical efflux from the enterocyte when Q3G was the 

substrate, while conversely phlorizin only inhibited the efflux of Q4G metabolites. 
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Q3G metabolism was significantly reduced (53%, P< 0.05), and the concentration of 

quercetin metabolites in serosal solution was significantly decreased (39%, P< 0.05) in 

the presence of NB-DGJ. Also they found that inhibitor of membrane-bound 

β-glucosidases significantly inhibited Q3G hydrolysis by 87%. Thus they concluded 

that Q3G was first hydrolyzed to quercetin by lactase on the membrane of mucosal 

cells, and then absorbed (Day et al 2003). 

 

1.7 COMPOUNDS RELATED TO Q3G 

1.7.1 Quercetin 

Quercetin is also a powerful antioxidant that widely distributed in edible plants, 

including tea, apples, onions and berries. It’s not the most predominant flavonoid in 

diets, but it is the one that has been most widely studies. Its structure is shown in 

Figure 1.4. Various experimental results showed that quercetin is involved in the 

regulation of enzymes, carcinogenesis, inflammation, and cardiovascular diseases. 

Though the absorption and bioavailability of quercetin is usually considered much 

lower that Q3G, its bioavailability can be influenced by dietary factors (Lesser et al 

2004). 
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FIGURE 1.4 STRUCTURE OF QUERCETIN 
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 In pig model, the effect of dietary fat content on quercetin absorption was assessed 

(Lesser et al 2004). Male pigs received either quercetin aglycone or Q3G (30μmol/kg 

body weight) mixed into a test meal directly before administration. The fat contents of 

the test meals were 3%, 17% and 32%. Plasma samples were collected after 24 h and 

then analyzed by HPLC. The peak plasma concentration of quercetin metabolites was 

detected at 102.9 ± 8.0 min after quercetin intake with 3% fat diet. This length was 

shortened to 70.0 ± 8.6 min and 51.4 ± 8.0 min by the 17% and 32% fat diet. The 

elimination of quercetin was clearly delayed by the enriched-fat diets. The significantly 

higher plasma concentration at 720 min after intake was 0.073 ± 0.016μM and 0.070 ± 

0.015μM with the 17% and 32% diet respectively compared with 0.015 ± 0.015μM 

with 3% diet (p < 0.05). These data suggested that higher fat content can enhance the 

bioavailability of quercetin. Besides, the early appearance of maximal quercetin 

plasma concentrations after ingestion might be explained by the formation of quercetin 

chylomicrons and exported into the peripheral blood via lymph (Lesser et al 2004). 

Since quercetin is rapidly metabolized during absorption, the tissue distribution of 

quercetin is not very clear. One study was conducted to assess the long-term tissue 

distribution (Boer et al 2005). Rats received 0.1% of 1% quercetin diet for 11 weeks. 

These diets contained about 50 or 500 mg quercetin/kg body weight. A three-day 

short-term study was also conducted in pigs receiving 500 mg quercetin/kg body 

weight. At the end of the study, tissues including kidneys, lungs, spleens, adipose 

tissues, brains, hearts, and bones as well as blood samples were collected and 
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homogenized for extraction. All the extraction samples were further analysis by HPLC. 

The results were corrected for residual blood. In rats, 10-fold increase in the dose of 

dietary quercetin resulted in a 4-fold increase in plasma and tissue concentrations. The 

concentration of quercetin was about 30% of the total concentration of quercetin 

metabolites in most tissues excluding bone, muscle, thymus and adipose tissues. The 

highest concentrations were found in lungs (1.04 nmol/g tissue), followed by kidneys 

(0.93 nmol/g tissue) and livers (0.52 nmol/g tissue). In pig, the highest concentration of 

quercetin was found in liver (3.78 nmol/g tissue) and kidney (1.84 nmol/g tissue) (Boer 

et al 2005). Based on the biological properties of quercetin that has been well 

demonstrated, the assumption that quercetin can reduced the risk of lung, kidney, and 

liver cancers was brought up. The assumption is partly proved by the research results 

that quercetin regulates proliferation and apoptosis in corresponding cell lines. 

 

1.7.2 Enzymatically modified Isoquercitrin 

Apart from pure Q3G, enzymatically modified isoquercitrin (EMIQ), a mixture of 

quercetin monoglucoside and its α-oligoglucosides, has drawn much attention these 

years (Nielsen et al 2006, Yamada et al 2006). It mainly consists of Q3G and its 

α-glucosyl derivatives with 1-7 of additional linear glucose moieties (Figure 1.5). It 

has been recognized as safe by the Food and Drug Administration (Akiyama et al 2000, 

Emura et al 2007).  
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FIGURE 1.5 STRUCTURE OF ENZYMATICALLY MODIFIED ISOQUERCITRIN 
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Several studies show that EMIQ is absorbed into human body and contributes to 

human health. 

Makino et al first showed that quercetin glucosides were absorbed differently in rat 

model (Makino et al 2009). Quercetin, rutin, Q3G and EMIQ dissolved in water were 

orally administered to rats under anesthesia. Bioavailability was calculated from the 

concentrations of total quercetin in plasma from 0 to 12 h after the administration. A 

rapid increase in plasma concentrations of quercetin and quercetin metabolites were 

observed after oral administration of EMIQ, and reached maxima in 15 min. Similar 

change was found after oral administration of Q3G, but the plasma level was about 

30%. Only a trace level of plasma quercetin was found after administration of 

quercetin and rutin. Enzymatic hydrolysis of rat intestinal epithelium crude extract 

showed that EMIQ and Q3G were rapidly converted to quercetin during incubation, 

while no conversion of rutin was observed, suggesting the higher bioavailability of 

Q3G and EMIQ (Makino et al 2009). 

Murota et al tested in human if the introduction of α-oligoglucosides to the sugar 

moiety could enhance the bioavailability of quercetin glucosides using EMIQ as model 

reagent (Murota et al 2010). Healthy male and female volunteers aged 21 to 57 years 

were recruited. All participants were given a flavonoid-free, low-fat meal containing 

equivalent to 2 mg quercetin aglycone/kg body weight with 200 mL of water. Blood 

samples were obtained 0.5 h before and 0.5, 1.5, 3, and 6 h after food consumption. 

Plasma concentrations of quercetin metabolites 1.5 h after the intake of quercetin 



 

37 
 

aglycone, Q3G, Q3,4’diG and EMIQ were determined by HPLC analysis and the 

results were compared. Results showed that Q3G exhibited a weak lipophilicity, while 

EMIQ is more hydrophilic. After Q3G and EMIQ consumption, plasma quercetin 

conjugates increased simultaneously with a small increase in isorhamnetin conjugates, 

and the profile of plasma metabolites were nearly identical, indicating the addition of a 

α-oligoglycosyl chain into the sugar moiety of Q3G did not change the intestinal 

metabolism of quercetin. The poor absorption of quercetin aglycone was also 

consistent with the Makino study, which might be attributed to its high hydrophobicity 

(Murota et al 2010). These data suggested that EMIQ can be used as a substitute of 

Q3G with even better bioavailability in body.  

 

1.8 GENERAL RELATIONSHIP WITH DISEASES 

Epidemiology and animal studies consistently showed that Q3G exhibits various 

health benefits including anti-inflammation, anti-cancer, reducing oxidative stress and 

reducing incidence of chronic diseases. 

1.8.1 Animal Studies – EMIQ, Q3G and Tumor 

There are several animal studies showing Q3G and its effect on inhibiting tumor 

formation and growth in rats.  

Yokohira et al tested the effect of EMIQ and Q3G on liver carcinogenesis. Male rats 
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were first given a single intraperitoneal injection of N-diethylnitrosamine (DEN, 200 

mg/kg body weight), and then fed with diets containing 1.0, 0.1, 0.01 or 0% EMIQ or 

Q3G starting on week 2. All rats were subjected to two-thirds partial hepatectomy at 

week 3. At week 8, rats were sacrificed and livers were excised and fixed in 10% 

neutral buffered formalin. Then immunohistochemical staining for GST-P was 

performed. Rat serum was analyzed for potential antioxidant power by measuring 

Cu+-reduction. Results showed that EMIQ or IQ treated groups did not change the 

number or area of GST-P positive foci compared with the DEN alone group. But higher 

doses of Q3G or EMIQ in vivo (1, 0.1, 0.01%) were correlated with smaller numbers 

of GST-P positive foci (p = 0.002 and p = 0.049, respectively). 1% solutions of EMIQ 

or IQ exhibited high antioxidant power (80953 and 92980μmol/L, respectively). The 

antioxidant power of rat serum after the treatment was also significantly increased 

compared to the basal diet (1388 ± 118 and 1387 ± 82μmol/L compared to 883 ± 

114μmol/L) (Yokohira et al 2008). 

Later Shimada et al investigated again the effect of EMIQ on liver preneoplastic 

lesions (Shimada et al 2010). Male rats received a single injection of DEN at the 

concentration of 200 mg/kg body weight. Three diets were provided to rats: basal diet, 

diet with 0.5% β-naphthoflavone (BNF), diet with 0.5% BNF and water with 0.2% 

EMIQ. All rats were subjected to two-thirds partial hepatecomy at week 3. After the 

6-week treatment, livers were excised and weighed. Then liver samples were fixed and 

stained with hematoxylin and eosin or elastic-van Gieson (EVG) method for 



 

39 
 

histopathological analysis. GST-P staining and COX-2 staining were used in 

immunohistochemical analysis. The number of COX2-positive cells in DEN-BNF 

group significantly increased compared to DEN group, but EMIQ group suppressed 

this number by 36% (p < 0.01). The area of EVG-positive connective tissue fibers was 

also reduced by 84% in EMIQ treated group compared with DEN-BNF group. The 

area and the number of GST-P positive foci increased significantly in the BNF treated 

group compared with the DEN-alone group. But the co-treatment of EMIQ in water 

significantly suppressed the area and the number of GST-P positive foci compared to 

BNF treated group (61 and 47%, p < 0.01 and p < 0.05, respectively). The 

inconsistency of the results with Yokohira study might be caused by high solubility of 

EMIQ in water (Shimada et al 2010).  

Nishimura et al used the same model again with a different tumor promoter, 

oxfendazole (OX) (Nishimura et al 2010). Rats were administered with a single dose of 

DEN (200 mg/kg body weight). 2 weeks later, rats were fed with different diets: 

control diet (containing 500 ppm OX), DEN-alone diet, DEN-OX diet, 

DEN-OX-EMIQ diet (2000 ppm EMIQ in water), and DEN-OX-MLT diet (100 ppm 

melatonin in water). Rats were subjected to two-thirds of hepatectomy at week 3. 

Livers were excised and fixed at the end of study. Hematoxylin and eosin staining for 

histopathological analysis and GST-P staining for immunohistochemical analysis were 

performed to evaluate hepatocellular preneoplastic lesions. The area of GST-P positive 

foci in DEN-OX group increased, and the number of GST-P positive foci significantly 
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increased compared with DEN-alone group (p < 0.05). Combined EMIQ 

administration reduced the area, and significantly reduced the number when compared 

with DEN-OX group (p < 0.01) (Nishimura et al 2010). 

Morita et al used a third tumor initiator, phenobarbital (PB), in their study. A single 

injection of 200 mg DEN/kg body weight was administered to male rats. Diets 

containing 500 ppm PB with or without EMIQ (2000 ppm) were provided. One week 

after PB administration, rats were subjected to a two-thirds partial hepatctomy. 

Hematoxylin and eosin staining for histopathology analysis, GST-P staining, PCNA 

staining and CAR staining for immunohistochemical analysis were performed. 

RT-PCR was used to assess the RNA content. PB-EMIQ co-treatment significantly 

attenuates PCNA positive ratio as well as the number and area of GST-P positive foci 

compared with PB-alone treatment (p < 0.05, p < 0.05 and p < 0.01, respectively). 

Transcriptional expressions of metabolizing enzymes, cell growth-related genes were 

significantly altered in EMIQ treated group. The ROS production was stimulated in 

both the DEN-PB and PB-EMIQ groups without significant difference (Morita et al 

2011). 

In 2011, Kuwata et al confirmed these finding with same results (Kuwata et al 2011). 

Male rats received an injection of 200mg DEN/kg body weight, and then fed with 

either diets containing 0.5% BNF with or without 0.2% EMIQ in water, or a basal diet. 

After 3 weeks of DEN-initiation, rats were subjected to a two-thirds partial 

hepatectomy. Samples were collected at the end of the 8-week trial. GST-P staining, 
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additional immunohistochemistry stain for HO-1, PCNA and TRAADD and TUNEL 

assay were performed. Co-treatment of BNF and EMIQ exhibited significantly 

decreased number and area of GST-P positive foci compared to BNF alone group (47 

and 61% respectively). The numbers of GST-P+ and HO-1+ single cells were also 

significantly reduced by EMIQ. Both PCNA+ proliferating and TUNEL+ apoptotic 

liver cells in EMIQ treated group returned to the level of DEN-alone group. Genes for 

antioxidant enzymes were stimulated by EMIQ. Genes associated with inflammation, 

apoptosis and cell proliferation were also altered by EMIQ compared with the 

DEN-alone group (Kuwata et al 2011). These studies showed additional insight into 

the possible mechanism of action of EMIQ on liver-tumor promotion. And all these 

animal studies consistently showed that EMIQ can significantly inhibit the tumor 

generation. 

 

1.8.2 Clinical Trials – Q3G and Common Diseases 

A few clinical trials also indicated a relationship between Q3G and diseases.  

Herbal medicine red vine leaf extract (RVLE, pharmaceutical extract code AS195) 

containing large amount Q3G was assessed for its effect on chronic venous 

insufficiency (Kiesewetter et al 2000). Kiesewetter et al conducted a 12-week, 

randomized, double-blinded, placebo-controlled, parallel-group, multi-center trial. 

Male and female patients with stage I and II chronic venous insufficiency (CVI) were 
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recruited. They were randomly assigned to treatments with placebo, 360 mg AS195 or 

720 mg AS195 once daily for 12 weeks with 2-week washout period, respectively. Out 

of 219 patients that completed the trial, lower leg volume of the placebo group increase 

by 15.2 ± 90.1 g (water mass, expressed in mean ± SD) and 33.7 ± 96.1 g in week 6 

and week 12. Patients receiving 360 mg AS195 and 720 mg AS195 exhibited a clearly 

reduction in mean lower leg volume of -75.9 g (95% CI: -106.1 to -45.8 g) and -99.9 g 

(95% CI: -130.3 to -69.6 g) compared with the placebo group, respectively. Calf 

circumference showed a similar trend. A clear reduction was observed in both 

treatment groups: -1.40 to -0.56 cm and -1.73 to -0.88 cm for 360 and 720 mg AS 195, 

respectively, while the placebo group remained no change. All of these differences 

were statistically significant with a p value less than 0.001. Ankle circumference 

reduction and improvement of key CVI-related symptoms were also observed in 

treated groups. No adverse effects different than placebo group were observed. They 

concluded that AS195 with a daily dose of 360 and 720 mg were confirmed to be safe 

and effective in the treatment of mild CVI (Kiesewetter et al 2000).  

Later in 2003, another 6-week observational trial on AS195 was conducted 

(Schaefer et al 2003). Schaefer et al reported the tolerability and efficacy of AS195. 

Participants aged 25-82 years with stage I or II CVI were recruited and were provided 

with film-coated tablets containing 360 mg AS195 daily for 42 days. All the subjective 

symptoms of CVI, including tired, heavy legs, sensation of tension in legs, tingling 

sensations, pain in the leg, were statistically significantly improved in all groups. The 
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efficacy and tolerability were rated good or satisfactory in both patients and 

investigators. Therefore, they concluded that AS 195 film-coated tablets can be 

considered as effective and safe in patients with CVI grade I or II. These two trials 

provided possibility of Q3G as an effective constituent in herbal medicine treating mild 

CVI (Schaefer et al 2003).  

The most recent clinical trial on AS195 was conducted in 2010 by Rabe et al. It was 

a multicenter, randomized, double-blinded and placebo-controlled study (Rabe et al 

2010). CVI patients with CEAP grades 3-4a and moderate-to-severe clinical symptoms 

were recruited. They were given 720 mg AS195 per day for 12 weeks. Changes in limb 

volume were determined by water displacement volumetry, clinical CVI symptoms and 

global efficacy evaluations. Among the 248 patients that completed the study, the 

significant difference of leg oedema between AS195 and placebo groups reached -17.0 

± 8.6 mL (95% CI -34.1-0.0, p = 0.05) at Day 42. The continuous linear improvement 

of leg oedema over time was observed in AS195 group. Center effects and treatment by 

center interactions and calf circumference did not show significant difference between 

the two groups. Subjective CVI symptoms improved in both treatments, but AS195 

was more effective. The symptoms of tired, heavy legs and pain in the legs were 

increased approximately linearly over time. The largest difference was observed in the 

symptom of sensation of tension in the legs on Day 42 (p = 0.031) and on Day 84 (p = 

0.047). The investigators assessed efficacy as good or satisfactory in 71% of AS195 

patients compare to 54% in placebo group. Patient ratings were similar (70% in AS195 
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and 59% in placebo) (Rabe et al 2010). These results suggested that AS195 was 

beneficial for a wider range of CVI grades. 

Apart from Q3G, Quercetin was also linked to various diseases. It is shown that 

quercetin can reduce systolic blood pressure and plasma oxidized LDL concentrations 

in overweight subjects. This was a double-blinded, placebo-controlled cross-over study. 

Overweight or obese subjects aged 25-65 years with metabolic syndrome traits were 

selected. They were then randomized to 150 mg quercetin/d in the 6-week treatment 

periods. Fasting venous blood samples were collected at the first and last day. Clinical 

safety parameters and haematological parameters were determined. Serum quercetins, 

lipid parameters, glucose, uric acid, TNF-α, C-reactive protein, LDL, and antioxidant 

capacity were measured. Fasting plasma quercetin concentration increased from 71 to 

269 nmol (p < 0.001) during treatment. Systolic blood pressure was reduced by 2.6 

mmHg (p < 0.01) in entire treated group. HDL-cholesterol and oxidized LDL 

concentrations were also decreased (p < 0.001). No TNF-α or C-reactive protein levels 

were affected in treated group. Also, blood parameters and haematology parameters 

indicating liver and kidney function did not reveal any adverse effects (Egert et al 

2009). Their findings support the point of view that quercetin might provide protection 

against CVD. 

One prospective randomized, double-blind, placebo-controlled trial showed that 

quercetin can improve prostatitis status in patients (Shoskes et al 1999). 30 men with 

category IIIa and IIIb chronic pelvic pain syndrome were recruited and randomized to 
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placebo or 500 mg quercetin twice daily for 1 month. In a follow-up unblinded, 

open-label study, 17 additional men were given quercetin supplements as well as 

bromelain and papain (to enhance quercetin absorption) for a month. The NIH chronic 

prostatitis symptom score was used to assess symptoms and the quality of life. In the 

28 patient who completed the study, an significant improvement of 21.0 to 13.1 in NIH 

symptom score was observed in quercetin group (p = 0.003). 67% of patients in the 

treated group had at least 25% improvement compared to 20% in placebo group (p = 

0.001), while in the open-label study, 82% had at least 25% improvement in symptom 

score. Thus the conclusion is drawn that quercetin can provide significant symptomatic 

improvements (Shoskes et al 1999). 

Another trial assessed the effect of EMIQ on Japanese Cedar Pollinosis(Kawai et al 

2009). It is an allergic disease, and about 24-28% of the population is thought to be 

suffering from this disease. Food additive EMIQ with the highest water solubility 

among all quercetin derivatives was assessed for effect in the trial. In this randomized, 

double-blinded, parallel-group, placebo-controlled trial, subjects with the disease were 

recruited and give two capsules daily of 100 mg EMIQ or placebo for 8 weeks during 

the pollen season. Symptoms and activities of daily living (ADL) scores and quality of 

life (QOL) score were recorded. Blood sample collected before and after the study was 

used to measure serum cytokins, chemokines, IgE, quercetin and oxidized biomarkers. 

Total symptom score continuously decreased during the whole period, and there was 

significant therapeutic effect of EMIQ in week 4-5 when a marked increase of the 
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cypress pollen count was observed (p < 0.05). Total ocular score and ocular itching 

score for the treated group were significantly lower (p < 0.05) compared to placebo 

group. Other scores such as total nasal score (p = 0.06), nasal obstruction score (p = 

0.08), lacrimation score (p = 0.06), ocular congestion score (p = 0.08) and ADL score 

(p = 0.08) that measured during individual period were also tend to be lower. Oxidized 

LDL was also significantly decreased in EMIQ group. They concluded that EMIQ was 

safe and influenced ocular symptoms caused by pollinosis. Since EMIQ was generally 

recognized as safe and has been approved for use as food additive, this provided the 

possibility of reducing disease symptoms by food additives (Kawai et al 2009). 

 

1.8.3 Animal Studies -Quercetin and Breast cancer 

It is confirmed in one study that dietary quercetin decrease tumor latency in 

rats(Singh et al 2010). Female ACI rats were obtained at 4 weeks of age. After 1-week 

acclimatization period, rats were randomly divided into two groups. The E2 + 

quercetin group was implanted with E2 pellets and fed quercetin enriched AIN76A diet. 

The control group was implanted with cholesterol pellets and fed with the same diet. 

Quercetin treatment began 7 days prior to pellet implantation. The length of the study 

was 240 days and animals were monitored for tumor development weekly. At the end 

of the study, rats were sacrificed and tissues were collected and analyzed. Tumor 

incidence and number of tumor nodules were counted and evaluated by pathologists. 
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Serum samples were obtained for quercetin analysis. Western blotting was used for 

PCNA analysis. Results showed that ductal carcinoma in situ and microinvasive 

cancers were present in animals from quercetin + E2 experimental group. The breast 

tissue was similar in both groups. PCNA levels did not show significantly change, 

either. However, PCNA expression was significantly induced in both treated breasts 

compare to control breast. Serum quercetin levels were 6.24 ± 0.78μM and 6.68 ± 

0.70μM in quercetin + E2 treated group and quercetin group, respectively. Tumor 

incidence in quercetin + E2 treated group was 100% compared to 82% in the E2 group, 

but the difference was not statistically significant. These results showed that breast 

tumors appeared earlier in quercetin + E2 co-treated group compared to 

quercetin-alone group (Singh et al 2010). This might be explained by the fact that 

quercetin can induce cell proliferation at low concentrations. Thus the breast cancer 

cells were promoted, and the latency of tumor was reduced. 

In another animal study, rejection of established breast cancer in mice was induced 

by the co-treatment of quercetin and doxorubicin (Du et al 2010). Female BALB/c and 

athymic nude mice were obtained. Marine breast cancer cell line 4T1 was cultured and 

grown in syngeneic BALB/c mice where it metastasized to lungs. After the injection of 

4T1 cells into second mammary fat pad and the formation of tumors with 1 cm 

diameter, mice were randomly assigned to control group, intratumoral doxorubicin 

injection group, intravenous doxorubicin injection group, quercetin group, 

co-treatment group. T cells were purified and assessed for intracellular cytokine and 
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apoptosis. The median survival time in dietary quercetin group was 66 days (95% CI 

60-72days), and significantly longer than control group (48 days, 95% CI 45-51 days, 

p <0.01). The quercetin-alone or doxorubicin-alone treatment did not show changes in 

the size of tumor, but the co-treatment significantly reduced the initial tumor volumes 

and led to tumor-free survivals. Serum cytokines including IFN-γ, IL-2, IL-4 and IL-10 

were suppressed in the co-treatment group. T cells apoptosis was increased as well. 

Histopathology examinations showed that more necroric cells existed in combinational 

treatment group, and no metasatic spread was found. These data indicated a promoted 

immune system by the co-treatment and quercetin and intratumoral doxorubincin. The 

two compounds might have synergic effect (Du et al 2010). These two animal studies 

showed that quercetin as a dietary supplement can function against or promote tumor 

in rat model. The real effect largely depends on the concentration and the co-treatment 

of other agents. 

 

1.8.4 Epidemiology Studies – Quercetin and Cancer 

In a population-based case-control study in New Jersey, phytoestrogen and its effect 

on endometrial cancer risk was assessed (Bandera et al 2009). 424 cases and 398 

controls were identified. Women with a hysterectomy record were excluded. They 

completed interviews as well as the Block 98.2 food frequency questionnaire. The 

individual phytoestrogen intake was calculated by the supplemental questions for 
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phytoestrogen foods. Risk estimates were derived using an unconditional logistic 

regression. Results shows that cases tended to consumer lower quantities of 

phytoestrogens than the controls. A reduction in endometrial cancer risk with quercetin 

was observed. The adjusted OR was 0.65 (95% CI 0.41-1.01, p = 0.02) in the highest 

quartile of consumption. The relationship retained even after controlling for total fat 

and fiber consumption with an OR of 0.63 (95% CI 0.4-0.99) for the highest versus the 

lowest quartile of consumption. This study showed an inverse association between 

endometrial cancer and quercetin intake. But the association between total 

phytoestrogen intake and endometrial cancer risk was not supported by the evidence 

(Bandera et al 2009). 

The effect of quercetin intake on risk of cancer was also part of one prospective 

cohort study that conducted in middle-aged and older women. The Women’s Health 

Study (WHS) was a randomized, double-blind, placebo-controlled trial that designed 

for the risks and benefits of aspirin and vitamin E. This subgroup analysis identified 

the women who completed a 131-item validated semiquantitative food frequency 

questionnaire (SFFQ). Women with implausible energy intake (less than 600 or more 

than 3500 kcal/day), or diagnosed with cardiovascular disease or cancers were 

excluded. The median intake of total flavonoids ranged from 8.88 mg/day in the lowest 

quintile to 47.44 mg/day in the highest quintile. Quercetin was the major contributor 

among the 5 individual flavonoids recorded. Median intake ranged from 6.49 to 32.79 

mg/day. The multivariate RRs and 95% CIs of total invasive cancer for quercetin from 
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the lowest quintile to the highest was 1.00 (reference), 0.92 (0.92-1.10), 0.96 

(0.85-1.08), 0.94 (0.83-1.06), 0.94 (0.83-1.07). A slightly reduced risk was observed in 

all quintiles, but not statistically significant (Wang et al 2009). The imperfection of this 

study includes the lack of use in biomarkers, less accurate flavonoid intake assessment, 

bioavailability assessment. These were resulted from the original study design. More 

studies need to be conducted to further investigate the topic. 

The specific risk of breast cancer was determined in people with high dietary 

flavonols and flavonol-rich foods (Adebamovo et al 2005). The study population was 

identified in the Nurses Health Study II (NHS II), which was designed to investigate 

the associations between lifestyle factors and diseases incidence. Follow-up with the 

first dietary assessment of this cohort was conducted. The exclusion criteria included 

postmenopausal, implausible values of total energy intake, less than half-completed 

semiquantitative food frequency questionnaire, or previously diagnosed cancer except 

nonmelanoma skin cancer. Calculated median quercetin intake ranged from 5.3 mg/day 

to 30.1 mg/day. The multivariable adjusted RR for breast cancer in relation to quercetin 

intake was then calculated. The RRs and 95% CIs from lowest quintile to the highest 

quintile were 1.00 (reference), 1.08 (0.85-1.37), 1.02 (0.30-1.30), 1.08 (0.85-1.37), 

1.05 (0.83-1.33). In this subgroup analysis, no association between breast cancer risk 

and quercetin intake was found (Adebamovo et al 2005). In fact, a slightly increase 

relative risk was observed in groups consuming more quercetin than baseline intake, 

though it was not statistically significant. But the author admitted the possibility of 
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chance findings. So more information is in need on this topic. 

The true relationship remained unclear when putting these epidemiology and animal 

studies results together. But the effect of quercetin on cancer is well demonstrated. 

 

1.9 FUNCTION AGAINST OXIDATIVE STRESS 

There have been consistent research results showing Q3G exhibits ability to reduce 

oxidative stress in various cell lines. Free radicals exist in endogenous systems in 

human body. They are mainly generated from oxygen (reactive oxygen species/ROS) 

and nitrogen (reactive nitrogen species/RNS) (Darley-Usmar et al 1996). 

Physicochemical conditions, pathophysiological status and environmental stress could 

lead to imbalanced oxidants production and cumulated oxidative stress, thus results in 

DNA damage, lipid peroxidation and protein damage. Q3G can function as an 

antioxidant to scavenge free radicals, thus relieves the oxidative stress in cells (Ioku et 

al 1995). Some research results consistently showed this effect. 

Q3G can protect fibrosarcoma HT1080 cell against oxidative stress (Kong et al 

2008). Key protein involved in the process was matrix metalloproteinase (MMP), 

enzymes in extracellular matrix degradation and involved in tumor initiation and 

growth, invasion, angiogenesis, and metastasis. Studies showed that oxidative stress 

can activate MMPs. Kong et al demonstrated that MMP activity was inhibited by Q3G 
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in cells treated by H2O2 (Kong et al 2008). Hydroxyl radical scavenging activity of 

Q3G was analyzed by electron spin resonance spectroscopy. Cell viability and 

cytotoxicity were determined by MTT assay. MMP activity was stimulated by phorbol 

12-myristate 13-acetate (PMA), then the inhibitory effect of Q3G on MMP activity 

was measured by gelatin zymography. Gelatins hydrolyzed by MMPs were visualized 

and the intensities of the bands were estimated. No toxicity was observed on the cells 

treated with up to 10μM Q3G. Q3G resulted in a clearly increased scavenging activity 

(p < 0.05), and 94% of hydroxyl radical production was inhibited at the concentration 

of 10μM compared with control cells. MMP-2 and MMP-9 expressions were 

dose-dependently inhibited in cells co-treated with Q3G and PMA compared with 

PMA-alone group. These results suggested that Q3G is a potential chemopreventive 

agent for cancer (Kong et al 2008). 

Q3G can protect neuroblastoma SH-SY5Y, embruonic kidney HEK293 and breast 

cancer MCF-7 cells against oxidative stress (Soungdararajan et al 2008). 

Soundararajan et al performed MTT assay, TUNEL assay and ELISA to assess cell 

viability and apoptotic death. In addition, ROS production was measured by 

fluorescence to determine oxidative stress in cell. cDNA microarray and quantitative 

RT-PCR were used to determine gene expressions. Lipid peroxidation and cholesterol 

assay were used to assess lipid status. Results showed that 10μM Q3G treatment 

increased cell viability by 55% compared to H2O2 treated cells. TUNEL-positive cells 

were significantly decreased by Q3G treatment. LPH enzyme release reduced 66%, 
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indicating the improvement of membrane integrity. Lipid peroxidation reduced by 

4-fold compared with H2O2 treated cells. Genes associated with lipid pathways were 

modulated by Q3G, and de novo cholesterol synthesis was enhanced. The mRNA level 

of sterol regulatory element-binding protein 2 (SREBP-2) increased 2 times, and the 

increased transcriptionally inactive SREBP-2 cleavage was also confirmed by western 

blotting. Therefore they concluded that protection in SH-SY5Y is via inducing 

SREBP-2 to maintain membrane integrity. But the same activation was not observed in 

other two cell lines (Soungdararajan et al 2008).  

Oxidative stress in transformed cell line can be reduced by Q3G as well. Jung et al 

demonstrated that Q3G attenuated the oxidative stress in RGC-5 retinal ganglion cells. 

Cells were exposed to H2O2 with or without Q3G. Cell viability and apoptosis were 

then determined. ROS production was assessed using DHE staining. Total intracellular 

glutathione and lipid peroxidation were also measured. Results showed that viability of 

H2O2 treated cells increased from 63% to 83% and 90% when co-treated with 10 and 

50μM of Q3G, respectively. In addition, western blotting results showed that Q3G 

significantly reduced the up-regulation of cleaved PARP and p53, and blunted the 

decrease of Gpx-1, Bcl-2 and catalase proteins, suggesting the suppression of apoptosis. 

The production of ROS was reduced by Q3G in a dose-dependent manner, and a 

significant reduction was seen at the concentration of 10μM (P < 0.001). GSH 

depletion was reversed by 10μM Q3G (p < 0.01). This study showed the beneficial 

effect of Q3G on diseases like glaucoma, in which oxidative stress is thought to play a 
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major role in the cause of visual loss (Jung et al 2010). 

 

1.10 Q3G, QUERCETIN AND BREAST CANCER 

Various pathways are involved in cancer formation and progression. Most of them 

affect the normal cell cycle and suppress the cell apoptosis. Key factors in cancer 

prognosis and treatment are the activation or inactivation of cellular regulatory proteins. 

Thus phytochemicals that can target these proteins are considered to be possible 

chemotherapy agents. Q3G and quercetin are potential chemopreventive compounds 

that can affect cell viability and induce apoptosis in breast cancer cells. The 

mechanisms have been studied for the past few years, and several pathways and key 

proteins have been identified. 

 

1.10.1 Regulation on Estrogen Receptors 

Two types of breast cancer cells are widely used in research: the 

estrogen-receptor-negative cell lines including HCC-38 and MDA, and 

estrogen-receptor-positive cell lines including MCF-7 and T47D (Maggiolini et al 

2001, Woude et al 2005). 

The biphasic modulation of cell proliferation by quercetin was observed in several 

cell lines including MCF-7 (Woude et al 2003). Cell viability and proliferation were 
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assessed in cells exposed to quercetin by LDH-leakage method, ELISA and BrdU kit. 

The inhibitory effect on cell proliferation was only observed at a relatively high 

concentration of quercetin, 30μM for HCT-116 and 80μM for HT29 cells. When cells 

were exposed to a relatively low concentration of quercetin, a significant increase in 

cell proliferation of up to 20% for colon cell lines was observed, while this number 

increased to 100% for MCF-7. These results suggested that quercetin regulates cell 

proliferation in a biphasic manner (Woude et al 2003). 

Regulation of quercetin on estrogen receptor α in MCF-7 cells was studied. 

Proliferation assay was used to assess the effect of quercetin on regulating cells 

(Maggiolini et al 2001). Ligand binding assay for ERs, evaluation of gene expression 

and immunoblotting against ERα were performed in the study. The biphasic effect of 

quercetin on proliferation was observed and consistent with previous study. 

Endogenous ERα was activated by 10-fold in MCF7SH cells. The maximal stimulation 

was achieved at 1um. Quercetin also served as the agonists of the C-terminal 

HBD-associated AF2 in ERα and the mutated AF2 was not responding to quercetin. 

ERα and ERβ were trans-activated by quercetin. ERα mRNA levels and ERα protein 

content were down-regulated by quercetin in a dose-dependent manner. Their results 

suggested that quercetin was the ligand of ERα, thus showed the possibility of 

regulating cell proliferation through ER (Maggiolini et al 2001). 

Woude et al conducted the study on estrogen receptor as well (Woude et al 2005). 

ER-positive MCF-7 and T47D cells, and ER-negative HCC-38 and MDA-MB231 cells 



 

56 
 

were used. Cell proliferation was measured by ELISA, BrdU kit after 24 h treatment. 

The reporter gene assay was conducted in U2-OS cells transfected with ERα or ERβ. 

ER-ERE-mediated ERα and ERβ expressions remained no change, and then increased 

rapidly at concentrations higher than 10 μM. The maximum induction of ERα reached 

1.7 times higher than the induction of 17β-estradiol (E2), the commonly used ligand 

for ER, while the maximum induction of ERβ reached 4.5 times higher. Other results 

showed that at lower concentration, quercetin simulated proliferation of ER-positive 

cells only. Both T47D and MCF-7 cells proliferation was enhanced approximately 50%. 

Inhibition occurred at concentrations higher than 45 or 55μM for the two cell lines, 

respectively. They suggested the effect to be ER-dependent (Woude et al 2005). 

Then the effect of quercetin specifically on ERβ in breast cancer cells was studied 

(Cappelletti et al 2006). Contradictory results were obtained. Hormone-sensitive T47D 

cell line and hormone-insensitive BT20 cell line were used in this study. Total RNA 

was extracted for RT-PCR in the analysis of mRNA expression. T47D cell line 

expressed a 2.5 fold higher levels of total ERβ compared with BT20 cells. The β2 

isoforms accounted for up to 50% of the total ERβ in T47D cells and β5 isoforms 

accounted to up to 84% in BT20 cells. T47D cells were exposed to 1, 5 and 

10μMquercetin. A slight increase in total ERβ levels was observed. The β2 isoform 

was up-regulated by 52% (p < 0.05) compared with control. No change in total ERβ or 

isoform mRNA was observed in BT20 cell line. At the highest concentration, ERα 

levels were slightly lowered by quercetin in T47D cell line but remained same in BT20 
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cells (Cappelletti et al 2006). These results suggested that ERβ and ERβ mRNA 

isoforms might be regulated by natural hormone or by weaker estrogen agonists like 

genistein. Quercetin might active ER by another mechanism. 

The hypothesis that the ERα/ERβ ratio might be affecting T47D breast cancer cell 

proliferation was brought up and then tested. T47D cells were cultured and cell 

proliferation was measured (Sotoca et al 2008). The ERα and ERβ specific U2OS 

reporter gene assay was performed. Western blotting was used to quantitatively 

analysis of protein contents. Quercetin EC50 values of binding to ERα-Luc and 

ERβ-Luc in U2OS cell lines were 6.5μM and 9μM respectively. But the maximal 

ERE-Luc activity increased to 166% and 598% when compared with E2 induced cells. 

The maximal proliferation level induced by quercetin was achieved at 1μM, and then 

continued to drop at concentrations up to 100μM. T47D were then transfected with 

ERβ and an Enhanced Green Fluorescence Protein (EGFP) gene as a co-expressed 

reporter. The ERβ expression in transfected cells can be regulated by tetracycline, thus 

created different ERα/ERβ ratios. Quercetin stimulated transfected cell proliferation 

within the concentration range from 5 to 50μM, and then proliferation dropped to 

values that were lower than control cells. In the presence of 50% and 100% of the 

maximal expression of ERβ, quercetin induced full inhibition of cell proliferation at all 

concentrations tested. These results showed that ERα/ERβ ratio can affect the 

inhibitory effect of quercetin on proliferation of T47D cells (Sotocaet al 2008). 

Quercetin might be able to function through the type-II estrogen-binding site 
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(type-II EBS)(Scambia et al 1993). It has drawn much attention in studying the 

estrogen receptors involved in breast cancer cell regulation. The effect of quercetin of 

type-II EBS was first investigated in 1993. In this study, both MDA-MB231 and 

MCF-7 cell lines were cultured and exposed to quercetin. Specific binding of type-II 

EBS was measured by the binding of radioactive [
3
H]-estradiol and liquid scintillation 

spectrometer. The increase of type-II EBS was dose dependent in both cells lines, and 

reached the maximal value at 10μMquercetin. The induction is significantly different 

from untreated cells (P< 0.05). The induction was correlated with the increased 

sensitivity of cells to the inhibitory effect of low quercetin concentrations. Therefore 

the conclusion was drawn that quercetin might regulated both cell line through type-II 

EBS rather than ER (Scambia et al 1993). 

The downstream regulation of ERs has been widely studied. The induced activation 

of ERKs and JNKs in breast carcinoma cells was observed in cells treated with IGF-I 

and 17β-estradiol (E2), and led to cell proliferation. Quercetin showed effective 

inhibitory activities against E2/IGF-I induced proliferation. In this study, DNA 

synthesis indicating proliferation was measured by [3H]-thymidine incorporation. 

Western blot analysis was used to detect the protein levels. Intracellular ROS 

production was monitored by flow cytometry using an oxidant-sensitive DCHF-DA 

probe. Increasing cell numbers and [3H]-thymidine intensity in DNA in MCF-7 cells 

indicated a significantly induced proliferation by E2. When ER was inhibited, the 

induction was suppressed, suggesting E2 induced proliferation by activation of ER. 
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The phosphorylated ERα level increased in E2/IGF-I treated cells. No change in 

phosphorylated p38 was observed. E2 alone slightly induced ERKs, and the IFG-I 

addition significantly stimulated ERKS, IRS-I and JNKs. The expression of c-Jun 

protein, downstream of ERK and JNK was also induced. Incubation of MCF-7 cells 

with ERK or JNK inhibitor significantly reduced the proliferation. Results also showed 

that ROS production was simulated by E2/IGF-I. Pre-incubation with antioxidants 

inhibited the E2/IGF-I induced proteins, suggesting E2/IGF-I-induced proliferation 

might be initiated by ROS production. In quercetin treated cells, E2/IGF-I induced 

proliferation was inhibited, and c-Jun expression and peroxide production was also 

inhibited (Lin et al 2007). These results showed that cell proliferation can be induced 

through estrogen receptor and insulin-like growth factor receptor. The downstream 

MAPKs (ERKs and JNKs) were then stimulated and resulted in cell proliferation in 

MCF-7 cells. Quercetin can sufficiently inhibit this pathway. 

 

1.10.2 Inducing Apoptosis Through p53 Dependent Pathway 

Protein p53 has been widely studied for the past decades. It is proved to be involved 

in the regulation of apoptosis and proliferation in various cancer cell lines. The 

regulation of p53 in human breast cancer cell lines was first investigated in 

MDA-MB-468 cells in 1994(Avila et al 1994). Cell cycle was analyzed by flow 

cytometry. mRNA level measurements, immunoblotting and immunoprecipitation were 
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performed to assess the effect of quercetin on p53 expression. A dose-dependent 

inhibition on cell growth was observed in quercetin treated cells. Cell viability 

decreased to 62, 38, 27 and 20% when exposed to 5, 10, 15 and 30 μg/ml quercetin, 

respectively. G2/M phase cell cycle arrest was observed in cells treated with 7 or 30 

μg/ml of quercetin. G2/M cells represented 46% and 61% of the total population at day 

6 respectively. Level of p53 decreased both dose and time dependently when exposed 

to quercetin. 75 μg/ml quercetin inhibited p53 level to nearly undetectable. Changes in 

p53 levels were detected 2 h after addition of 50μg/ml quercetin and p53 level 

continued to drop during the following 6 hours. These changes were not subject to 

overall protein synthesis inhibition or cell cycle. mRNA transcription was not 

suppressed by p53, but newly synthesized p53 levels were reduced in quercetin treated 

group, suggesting the inhibitory effect of quercetin on p53 synthesis (Avila et al 1994). 

These results for first time showed that quercetin can regulate breast cancer cells via a 

p53 dependent pathway. 

Up-regulation of phosphorylated p53 was confirmed to be associated with cell 

apoptosis (Seo et al 2011). Non-malignant MCF-10A and malignant MDA-MB-231 

breast cells were treated with quercetin. Cell proliferation was determined. Cell cycle 

was analyzed by flow cytometry. Western blotting was used for related protein analysis. 

Both cell lines were strongly inhibited when exposed to high concentrations as of 

100μM, but not effect was observed at low concentrations tested (1 to 10μM). Sub 

G0/G1 phase cells were decreased and the cell population in G2/M phase were induced 
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in both cell lines, but the effect was more significant in MDA cells. Western blot 

results showed that after 24 h quercetin treatment, increased level of phosphorylated 

p53 was found in both MCF-10A and MDA-MB-231 cells. But the total p53 level was 

not altered. p21, the p53 target gene that function as inhibitor of CDKs, was also 

significantly increased. Cyclin B1 and Bcl-xL were suppressed in both cell lines, 

indicating enhanced apoptosis and cell cycle arrest (Seo et al 2011). Results from this 

study provided more information on p53 regulation and downstream protein 

regulations. Also the fact that ERα negative cell line MDA was responding to quercetin 

and showed apoptosis and cell cycle arrest confirmed the hypothesis that quercetin 

could affect cells through mechanisms other that ER. 

Downstream proteins including Bax, Bcl-2, caspase-3, caspase-9 and PARP are 

proteins involved in cell apoptosis that regulated by p53. Their expression and 

cleavage can induce apoptosis. Studies showed that quercetin induced cell cycle arrest 

and apoptosis in MDA-MB-453 cells (Choi et al 2008). Cell proliferation was inhibited 

by quercetin in a time- and dose- dependent manner. The first significant difference in 

cells occurred at 10μM after 3 h, and 1μM after 24 h. G2/M phase cells increased to 

39.5 % when compared with 10.8% of the controls, and the G1 phase cells decreased 

to 37.42% when compared with 60.81% of the controls. DNA flow cytometry revealed 

that 19.0% of cells contained small DNA fragments, which were indicated to be 

apoptotic cells. In order to study the pathway involved, immunoblotting assay was 

performed. In cells exposed to quercetin for 24 h, p53 expression was elevated, along 
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with an increased expression of Bax and decreased expression of Bcl-2. Then the 

downstream protein cytochrome c that regulated by Bax was released from 

mitochondria, and induced the cleavage of caspase-3 and PARP, resulting in cell 

apoptosis (Choi et al 2008). These results suggested that quercetin can induce cell 

cycle arrest and apoptosis in MDA-MB453 cells through p53 dependent pathway. 

 

1.10.3 Inducing Apoptosis Through Caspase-3 dependent pathway 

Activated cleavage of caspase-3 is usually required in apoptosis (Choi et al 2001). 

Thus the regulation on caspase-3 and its downstream proteins is crucial in investigating 

the apoptotic effect. One study was conducted to investigate the effect of quercetin on 

apoptosis pathway (Chien et al 2009).Cell cycle and apoptosis of MDA-MB-231 cells 

were measured by flow cytometry. Apoptosis was also verified by DNA fragmentation 

assay. Western blotting was used to analyze the cleavage of caspase-3, -8, and -9, and 

the actual activity were measured by activity assays. Significantly inhibited cell 

viability was observed in quercetin treated cells in both dose- and time-dependent 

manner when compared with control cells. 50% inhibition at 24 h was reached at 

278μM. G2/M phase cell cycle arrest was seen at 200μM quercetin. DNA damage and 

DNA fragmentation in MDA cells that induced by quercetin were shown at all 

concentrations tested. Mitochondrial membrane potential was significantly lowered by 

quercetin resulting in decreased levels of pro-caspases, PARP and cyclin A and E. In 
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contrast, protein levels of Fas, caspase-3, Bax and cytochrome c and activities of 

caspase-3, -8, and -9 were clearly up-regulated. The reduce in cyclins might be the 

reason of induced cell cycle arrest, and increased levels of Bax, caspases and decreased 

levels of PARP might led to apoptosis. However, p53 protein levels were not affected 

by quercetin, indicating a p53 independent apoptosis pathway (Chien et al 2009). 

The mitochondria related apoptosis pathway was further investigated by Chou et al 

using MCF-7 cells (Chou et al 2010). Cell cycle was analyzed by flow cytometry, 

while apoptosis was assessed by DAPI staining and DNA fragmentation. 

Mitochondrial membrane potential and Ca
2+

 concentrations were determined. Western 

blotting was used to analyze the apoptotic associated proteins. When cells were treated 

with quercetin for 24 and 48 h with various doses of quercetin (10-175μM), cell 

viability was significantly inhibited in time- and dose-dependent manner. The highest 

inhibition was approximately 90.25%. S phase MCF-7 cells increased significantly 

after being exposed to quercetin. Both DAPI staining and DNA fragmentation showed 

induced apoptosis by quercetin in cells. No intracellular ROS production was increased 

in treated cells with DCFH-DA, which was inconsistent with previous ER study. But 

the Ca
2+

 concentration significantly increased from 3 h up to 36 h following treatment. 

Loss of membrane potential of mitochondria was also observed. Protein levels change 

was consistent with the previous reported Chien study. Caspase-6, -8, -9 activation was 

enhanced by quercetin. The observed decrease in cyclin A and E might result in cell 

cycle arrest, while the increase in Fas, caspase-8, -9 and decrease in Bcl-2 and PARP 
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were shown to be related to cell apoptosis (Chou et al 2010). 

 

1.10.4 Suppressing PI3K-Akt Signaling Pathway 

Increased activity of enzymes and elevated signal transduction were remarkable in 

cancer cells. As early as 1995, study results showed that quercetin can down-regulate 

signal transduction in human breast carcinoma cells MDA-MB-435(Singhal et al 1995). 

When cells were growing in the log phase, PI kinase and PIP kinase activities 

increased 95.8- and 15.5- fold when compared with normal human breast cells. The 

steady-state activities also increase 7.3- and 2.3- fold respectively. MDA cells were 

treated with quercetin, then collected and analyzed for enzyme activity. Cell growth 

was inhibited dose-dependently by quercetin and completely stopped when treated 

with 150μM quercetin. Various concentrations of quercetin were added to cell extracts, 

and PI kinase activity was inhibited by 75-80% at the concentration of 100μM in vitro. 

Quercetin also inhibited PI and PIP kinase activity dose and time-dependently. When 

cells were incubated with 10, 50, and 100μM quercetin for 60min, PI kinase activity 

reduced 47%, 51% and 80% respectively when compared with control. But PIP kinase 

activity only decreased significantly at the highest concentration of 100μM. When cells 

were incubated with quercetin for 30 and 60 min, PI kinase and PIP kinase activity 

dropped to 8% and 70% and then to 5% and 63%, respectively. These data suggested 

the quercetin inhibited breast cancer cell proliferation and suppressed the activities of 
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enzymes that involved in tumor formation and progression (Singhal et al 1995). 

Quercetin also regulates proliferation via PI3K-Akt/PKB pathway (Gulati et al 

2006). PI3K and its downstream Akt/PKB are protein kinases involved in cell 

proliferation and survival in response to growth factors. The PTEN gene produces PIP3, 

which is the upstream of the Akt/PKB pathway. Loss of PTEN function is common in 

the activation of PI3K-Akt/PKB pathway. The commercially available PI3K inhibitor, 

LY294002 (LY), is structurally very similar to quercetin, and it’s actually synthesized 

using quercetin as a model. Therefore, the effect of quercetin on PI3K-Akt/PKB 

pathway was studied. Western blot analysis was used to detect the phosphorylation of 

related proteins. HCC1937 cells with homozygous deletion of PTEN gene and 

constitutively activated Akt/PKB, and T47D cells lacking constitutively activated 

Akt/PKB were used in order to determine whether quercetin inhibits Akt/PKB. The 

quercetin treated cells showed a 50% decrease in cell proliferation at 24 h. Treatments 

with quercetin (25μM) or LY (10μM) completely inhibited Akt/PKB activity when 

compared to control. Phosphorylated-Akt was undetectable in both treatments. EGF 

treatment can induced the phosphorylated-Akt in T47D cell line. But this induction did 

not happen in cells pre-treated with LY or quercetin (Gulati et al 2006). This study 

showed results of the downstream regulation of the Singhal study, and clearly showed 

that quercetin suppresses cell proliferation via Akt/PKB pathway. 

PI3K-Akt pathway can also be activated by Her-2/neu (ErbB2), the transmembrane 

tyrosine kinase that acts as a co-receptor for EGFR family members. Quercetin can 
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suppress Her-2/neuand down-regulates PI3K-Akt pathway (Jeong et al 2008). Protein 

analysis, flow cytometry and northern blot were performed on quercetin treated 

SK-Br3 cells. Her-2/neu expression was measured by RT-PCR, and its activity was 

assessed by the in vitro Her-2/neu tyrosine kinase assay. Human breast carcino SK-Br3 

cells were constituently overexpressing Her-2/neu. The expression is inhibited by 

quercetin in a time- and dose-dependent manner. Dephosphorylation of PI3K and Akt 

occurred starting from day 1 when treated with 100 or 200μM quercetin. These 

regulations were also seen in MCF-7 cells. The RT-PCR results revealed that the 

transcription level of Her-2/neuwas not affected by quercetin, indicating a translational 

machinery or protein stability regulation on Her-2/neu by quercetin. Then it was 

confirmed that ubiquitination of Her-2/neu was also induced in a dose- and 

time-dependent manner, suggesting an ubiquitin-dependent proteasome degradation 

pathway of Her-2/neu. Quercetin caused Hsp90 dissociation from Her-2/neu protein 

complex, and resulted in the destabilization and ubiquitination of Her-2/neu. The 

Her-2/neu kinase activity was also inhibited by quercetin since the phosphorylation 

level of Her-2/neu was decreased. Overall, they suggested that quercetin modulated 

PI3K-Akt pathway through regulating Her-2/neu protein in SK-Br3 cells, which 

provided a second inhibition mechanism of PI3K-Akt pathway by quercetin (Jeong et 

al 2008).  
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1.10.5 Inhibiting Hypoxia-Inducible Factor-1α 

Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcriptional factor 

composed of α and β subunits. HIF-1 is overexpressed in many human cancers, and the 

level of its activity in cells is associated with tumorigenicity and angiogenesis 

(Maxwell et al 1997, Zhong et al 1999). The α subunit is induced by hypoxia, a growth 

factor, and oncogenes. Normally, HIF-1α is ubiquitinated and degraded subsequently 

via the 26S proteasome via an oxygen-dependent way. Under hypoxic conditions, 

HIF-1α protein translocates to the nucleus and forms an active complex with β subunits. 

It regulates vascular endothelial growth factor (VEGF) at a transcriptional level. VGEF 

is required in the formation of new blood vessels and is crucial for tumor growth and 

metastasis (Ferrara et al 1997). Therefore, an agent targeting on HIF-1α/VEGF is 

promising for the treatment of cancers. A few studies investigated the effect of 

quercetin of HIF-1α/VEGF in breast cancer cells (Lee et al 2008). 

Breast cancer cell line SkBr3 was cultured in a hypoxic chamber with a 94:5:1 

mixture of N2/CO2/O2 (Lee et al 2008). Thus the hypoxic environment was created. 

The cells were treated with different concentrations of quercetin. Cell viability was 

determined. Immunosorbent assay was used to detect VEGF. Protein synthesis was 

assessed by radiolabeled amino acids. Immunoblot analysis was performed to measure 

protein contents. Interestingly, cell viability was not affected by quercetin under 

hypoxic conditions, and PARP cleavage and caspase activation were not observed. The 
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HIF-1α accumulation was reduced by quercetin in a dose-dependent manner in 

hypoxic conditions. The up-regulated VEGF production during hypoxic conditions was 

inhibited by quercetin treatment. In order to rule out the possibility of PI3K/Akt 

regulation on HIF-1α expression, the PI3K inhibitor LY was added in the treatment. It 

was shown that LY could inhibit quercetin induced HIF-1α accumulation, which is 

consistent with the previous study that quercetin could function through PI3K/Akt 

pathway. But the HIF-1α accumulation induced by hypoxia was not affected by LY, 

suggesting that quercetin did not suppress HIF-1α accumulation through PI3K/Akt 

pathway. The proteasomal inhibitor MG-132 did not affect the inhibition of HIF-1α 

accumulation by quercetin under hypoxic conditions, indicating the inhibitory effect of 

quercetin is not mediated by HIF-1α degradation. Finally, a 94% inhibition of protein 

synthesis was observed in quercetin treated cells compared to 48% in control cells 

under hypoxic condition. The inhibition was also dose-dependent. In conclusion, 

quercetin inhibited HIF-1α under hypoxic conditions through inhibiting protein 

synthesis (Lee et al 2008).  

The effect of quercetin on doxorubicin (DOX)-induced cytotoxicity was investigated 

in 4T1 breast cancer cells. Results were consistent with the previous study, but showed 

a quercetin induced increase in HIF-1α accumulation in normal cells. Doxorubicin was 

a successful antibiotic in treating various types of cancers, but the efficacy was very 

restricted by its cumulative cardiotoxicity and common side effects. Since quercetin 

exhibits cardioprotective and hepatoprotective activities, the effect of quercetin on 
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improving therapeutic index of DOX was assessed. MTT assay was used to measure 

cell proliferation. Apoptosis was assessed by DNA fragmentation assay and flow 

cytometry. HIF-1α level was measured by western blot. Results showed that quercetin 

exhibited a dose-dependent antiproliferative activity under hypoxia. But the combined 

treatment of quercetin and DOX only showed a slight induction on cell viability. 

Quercetin at 50 μM promoted DOX-induced apoptosis in 4T1 cells under hypoxia, but 

the cytotoxicity of DOX was decreased by quercetin under normoxia and IC50 of DOX 

increase by 3-4 folds when co-treated with 10 or 25μM quercetin. Mice treated with 

quercetin 100 mg/kg day had significantly smaller tumors that untreated mice. The 

combined treatment showed even greater effect. The median survival time were 55 

days in quercetin-treated mice compared with 38 days of untreated mice. HIF-1α level 

in tissue was examined by ELISA. Results showed that HIF-1α level was decreased in 

quercetin treated tumor cells, but increased in normal cells. VEGF exhibited the same 

change (Du et al 2010). These above mentioned research results showed that quercetin 

could suppress tumor cells and protect normal cells simultaneously by its opposing 

effects on HIF-1α. Thus it could be considered as an anticancer agent. 

 

1.10.6 Inhibition on COX-2 Activity 

Cyclooxygenase-2 (COX-2) can catalyze conversion of arachidonic acid. It’s 

essential in carcinogenesis and inflammation. Overexpression of COX-2 was found in 
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various cancer cell lines including breast and colon cancer. The inhibition of COX-2 

can effectively inhibit cell proliferation and angiogenesis, and induce apoptosis.  

AMP-activated protein kinase (AMPK) is a member of a serine/threonine protein 

kinase family that can be found in all eukaryotes. It can directly sense cellular energy 

status, thus it becomes a popular target for ensuring cell proliferation when cells have 

adequate amount of metabolic resources. AMPK activation is linked to apoptosis 

through pathways including p53 and p21, caspase activation. It can also regulate cell 

proliferation via COX2, Akt and mTOR. The regulation of quercetin on COX-2 and 

AMPK was investigated (Lee et al 2009). MCF-7 breast cancer cells were cultured. 

Quercetin at concentrations of 50, 100, 200μM induced the inhibition of cell growth 

and cell cycle arrest in a dose-dependent manner. Protein levels of p53 and p21 were 

elevated, and VGEF was inhibited. Apoptotic cell death was promoted by 100μM 

quercetin. AMPK was activated by quercetin in a dose-dependent manner as well. 

When AMPK inhibitor was added to the treatment, the activation of AMPK by 

quercetin was weakened. These results indicated that quercetin can activate AMPK in 

MCF-7 cells. Then the ROS production was examined since it’s an upstream protein 

candidate of AMPK. The addition of antioxidant N-acetyl-cysteine markedly abrogated 

quercetin–induced AMPK activation, suggesting the activation was through ROS 

production. The dose-dependently inhibited COX-2 expression was also observed in 

quercetin-treated cells. But the AMPK inhibitor can eliminate COX-2 expression in 

treated cells. In the cox-2 dominant negative fibroblast cells, the activation of AMPK 
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was still observed after quercetin treatment, indicating COX-2 was regulated by 

AMPK. In conclusion, quercetin can inhibit COX-2 expression in MCF-7 cells through 

ROS induced AMPK activation (Lee et al 2009). 

The transcriptional regulation of COX-2 was widely studied. COX-2 gene promoter 

activity can be regulated by cyclic AMP, CCAAT enhancer and NF-κB. The 

simultaneous binding of multiple transactivators to promoter will result in COX-2 

overexpression. P300 has a COX-2 promoter chromatin structure, and is able to 

enhance the binding activity. Since quercetin has been linked to the regulation of 

NF-κB, its effect on COX-2 was also assessed (Xiao et al 2011). MDA-MB-231 cells 

were used in the study. High expression of COX-2 protein and mRNA level were 

observed in untreated cells. Western blotting and RT-PCR confirmed that quercetin 

treatment resulted in reduced COX-2 expression in a dose-dependent manner. COX-2 

promoter activity was measured by luciferase expression vector containing COX-2 

5-flanking fragment. The down-regulation by quercetin was observed. PGE2, the 

down-stream product of COX-2 enzyme leading to angiogenesis, was also inhibited by 

quercetin. The effect of quercetin on binding activities of different transactivator was 

assessed. The biotin-streptavidin complex containing COX-2 promoter and 

transactivators (including CREB-2, C-Fox, C/EBPβ and NF-κB) was pulled down after 

quercetin treatment. Western blot results showed that the binding of multiple 

transactivators was inhibited by quercetin, but their expression levels were not affected. 

Then p300, the transcription co-activator, was studied. The streptavidin-agarose bead 
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pulldown assay and immunoprecipitation results showed that quercetin inhibited p300 

recruitment to the transactivators-COX-2 promoter complex in MDA cells. But the 

expression level was not changed. P300 was either purified after quercetin treatment, 

or followed by the treatment. HAT activity of p300 was determined. The 

dose-dependent inhibition by quercetin was observed both in vivo and in vitro. The 

conclusion is that quercetin can inhibit COX-2 expression by regulating p300 HAT 

activity (Xiao et al 2011). These results showed another possible mechanism in 

transcriptional level that how COX-2 is regulated by quercetin. 

 

1.10.7 Regulation on Matrix Metalloproteinas 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteases and 

could be divided into four subgroups based on the substrate. Activation of MMPs is 

crucial in tumor invasion and metastasis. It destroys extracellular matrix components in 

the surrounding tissues. Tumor cells could then invade through basement membrane of 

blood vessels and spread to other organs (Duffy et al 2000).  

Among the 24 kinds of MMPs that have been identified, MMP-2 and MMP-9 are 

the most important mediators (Duffy et al 2000). The expressions of these two proteins 

are highly correlated with the metastatic potential. While MMP-2 is constitutively 

overexpressed in highly metastatic tumors, MMP-9 can be stimulated by TPA. MAPK 

and PI3K are the important cascades affecting MMP-9 expression. Transcription 
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factors including activator protein-1 (AP-1), NF-κB and Sp-1 were also related to 

MMP-9 regulation. The regulatory effect of quercetin on MMP-9 expression was 

investigated (Lin et al 2008). Wound-healing assay was used to assess MCF-7 cell 

migration. In vitro invasion assay was performed to examine tumor invasion. RT-PCR 

and western blotting were carried out for MMP-9 expression analysis. The enzyme 

activity of MMP-2 and -9 was measured by gelatin zymography and fluorimetric kit. 

Results showed that quercetin can prevent the cell invasion and colony formation that 

induced by TPA. RT-PCR revealed that mRNA level, protein expression and enzyme 

activity of MMP-9, but not MMP-2, was blocked by quercetin treatment. TPA was also 

correlated with PKC activation. It was shown that PKCδ translocated to membrane in 

TPA-treated cells, but the translacation was blocked by quercetin. Phosphorylation of 

ERK and JNK, but not p38 or Akt, was induced by TPA, and then blocked by quercetin 

treatment. Furthermore, ERK inhibitor could abrogate MMP-9 expression as well as 

ERK activation and cell migration, suggesting quercetin suppressed ERK through 

PKCδ, and consequently suppressed MMP-9 expression. The binding site of AP-1 and 

NF-κB located on MMP-9 gene promoter was involved in MMP-9 activation. 

Pretreatment of quercetin showed inhibition on AP-1 promoter activity and 

TPA-induced c-Jun expression. These results suggested that quercetin inhibits MMP-9 

activity through PKCδ/ERK/AP-1 cascades (Lin et al 2008). Therefore quercetin has 

the potential to be a therapeutic agent for breast cancer metastasis by suppressing 

MMP-9.  
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Then in MDA-MB-231 human highly invasive breast cancer cell line, the inhibition 

of MMP-3 activity by quercetin was demonstrated (Phromnoi et al 2009). MMP-3 

level in MDA-MB-231 cell was 4-fold higher than MCF-7, indicating the involvement 

of MMP-3 in cell migration. Cell invasion was measured by modified Boyden chamber 

assay. MMP-3 activity was measured by casein zymography. Western blot and ELISA 

were performed to analysis MMP-3 secretion. A dose-dependent inhibition of cell 

proliferation was observed in MDA cells treated with quercetin. Cell invasion was 

significantly inhibited by quercetin with IC50 value of 27μM. MMP-3 activity was 

reduced by quercetin with IC50 value of 30μM, but the MMP-3 secretion was not 

affected by quercetin (Phromnoi et al 2009). Therefore, quercetin can regulate cancer 

cell invasion and migration through regulating MMP-3 in addition to MMP-9. 

 

1.10.8 Regulation on Other Related Pathway 

The F-box protein S phase kinase-associated protein 2 (Skp2) was identified to be 

associated with CDK2, the cyclin A-cyclin-dependent kinase 2. As cells exit the cell 

cycle, Skp2 level decreases, and as cells re-enter the cycle, Skp2 level increases. The 

expression of Skp2 is cell cycle regulated. The accumulation occurs during S/G2 phase, 

and degradation occurs during M phase. It is overexpressed in a number of human 

cancer cells including breast cancer, prostate cancer and small cell lung carcinoma. 

High expression of Skp2 is also associated with poor prognosis. It can also mediate the 
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degradation of cyclin E, p21, c-Myc. 

The effect of quercetin on Skp2 gene expression was examined in multiple breast 

cancer cell lines. Cells were treated with quercetin, and cell viability was assessed by 

MTT assay. Immunoblotting was performed for proteins involved. The highest 

expression of Skp2 was found in MDA-MB-231 and BT474. The lowest expression of 

p27 was observed in these two cell lines as well, indicating the inverse correlation 

between Skp2 and p27. After the quercetin treatment, cell growth was inhibited by a 

time- and dose-dependent manner. G2/M phase arrest was induced in MDA cells, while 

G1 phase arrest occurred in BT474 cells. Up-regulated p27 protein level and 

down-regulated Skp2 level were confirmed in MDA cell, but no significant change was 

shown in BT474. Skp2 siRNA knocked down the protein level of Skp2 in MDA cells 

with increased p27 level as expected. But no decrease in Skp2 mRNA level was found, 

indicating a post-transcriptional regulation by quercetin. Then the decreased Skp2 level 

after quercetin treatment was observed by western blot without changes in cyclins and 

CDKs, suggesting quercetin induced cell cycle arrest through regulating Skp2 (Huang 

et al 2011).  

 

In conclusion, food pattern has been linked to various diseases including 

cardiovascular diseases, hypertension, diabetes and cancers. Study results showed that 

a diet containing a large amount of fruits and vegetables could lower the risk of certain 

diseases. The functional compounds are thought to be the phytochemicals in plant 
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foods. Among all phenolics, flavonoids is the most widely studied compound family. 

Quercetin, Q3G and EMIQ are three flavonoids. The first two can be found in apples, 

onions, etc. EMIQ can be synthesized artificially, and has a significantly higher 

bioavailability than Q3G and quercetin due to the additional sugar chain. 

These three compounds are related to diseases as well. They function as natural 

antioxidants as well as regulatory compounds. Epidemiological studies showed that the 

disease incidence as well as the symptoms can be reduced by consuming these 

compounds or the crude extracts containing these compounds. Animal studies 

confirmed that the tumor formation was delayed by the treatment of either quercetin or 

Q3G. Other experimental results provided insights into the reduction of oxidative 

stress and induction of cell cycle arrest and apoptosis by Q3G and quercetin in breast 

cancer cells. The potential mechanisms include the regulation of enzymes that involved 

in ROS production, and the regulation on cell signaling pathways that involved in cell 

proliferation and apoptosis. These results indicate that these phytochemicals are of 

potential value for chemoprevention of breast cancer, and can serve as the co-treatment 

with other chemopreventive agents. 

 

OBJECTIVES 

Although various studies investigated the quercetin-induced regulations on cell 
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signaling pathways, the mechanisms of action of Q3G still remains unclear. Since the 

existing studies mainly focused on the inhibitory effect of Q3G in ROS production in 

various cell lines, and little were conducted to investigate the signal transduction 

pathways, the objective of my study is to demonstrate the mechanism of action of Q3G 

induced apoptosis and inhibited cell proliferation in human breast cancer MCF-7 cells. 
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CHAPTER TWO 

POTENTIAL MECHANISM OF ACTIONS OF 

QUERCETIN-3-GLUCOSIDE (Q3G) IN REGULATING CELL 

PROLIFERATION AND APOPTOSIS IN HUMAN BREAST 

CANCER MCF-7CELLS THROUGH P38/MAPK SIGNAL 

TRANSDUCTION PATHWAY 

 

2.1 INTRODUCTION 

Cancer accounts for 22.9% of total deaths in United States, exceeded only by heart 

disease (25.0%) (SEER Cancer Statistics Review 1975-2008). Among all sites of 

cancers, breast cancer is the second most common malignance among women. Nearly 

every 1 in 3 cancers diagnosed among women is breast cancer in the United States. It’s 

also the second leading cause of among all cancers in women. Estimated number of 

new breast cancer cases in U.S. in 2011 is 57,650 and 230,480 for in situ cases and 

invasive cases, respectively. Total deaths number is estimated to be 39,520 in women 

(DeSantis et al 2011). Commonly used therapies include lumpectomy or mastectomy, 

radiation, chemotherapy, hormone therapy and target therapy. Patients usually suffered 

from these therapies both mentally and physically (American Cancer Society 2011). 

Therefore, novel alternative treatments and preventive strategies for human breast 
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cancer are in great need. In searching for new chemopreventive and treatment agents 

for breast cancer, natural products including various fruits and vegetables are studied 

and used as a source of anticancer agents or dietary supplements for women. Recent 

epidemiology studies consistently showed that a diet rich in fruits and vegetables can 

reduce the risk of various chronic diseases including hypertension, cancer, coronary 

heart diseases and cardiovascular diseases (Wang et al 2011; Anderson et al 2011; 

Gorlova et al 2011; Ibiebele et al 2011). 

As is shown in several studies, apples have significant positive effects on human 

health. It has been linked to a lowered risk of cancer, coronary heart disease, asthma 

and type II diabetes. The antioxidant status in human body can be boosted after apple 

juice consumption (Yuan et al 2011). Animal studies showed that apple extracts can 

prevent mammary tumors in rats by suppress proliferation and induce apoptosis (Liu et 

al 2009; Liu et al 2005). Querceting-3-glucoside (Q3G) is one of the most important 

and abundant bioactive compounds in apple. Previously reported research results 

showed that Q3G exhibits in vitro antioxidant and antitumor activity on both 

estrogen-dependent and estrogen-independent human breast cancer cells by modulating 

cell cycle in cells (Yang et al 2009; Sun et al 2008) 

However, little published literatures addressed the mechanism of action of Q3G in 

human breast cancer cells. In the present study, to investigate the anticancer activity of 

Q3G, we studied the inhibition of cell growth of human breast MCF-7 cells by the 

modified methylene blue assay (Felice et al 2009). To study the anticancer activity of 
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Q3G, we also tested the regulation of protein expression in induced apoptosis and cell 

cycle arrest. Further investigation on the mechanism of action of cell antiproliferation 

and apoptosis that induced by Q3G was also conducted in human breast cancer MCF-7 

cells. 

 

2.2 MATERIAL AND METHODS 

2.2.1 Chemicals and Antibodies. 

Quercetin-3-glucoside was purchased from Sigma Chemical Co. (St. Louis, MO). 

Minimum Essential Medium Alpha Medium (MEM), epidermal growth factor, fetal 

bovine serum (FBS), gentamicin, Hepes, insulin, penicillin, streptomycin and other cell 

culture reagents were purchased from GIBCO (Life Technologies, Grand Island, NY). 

Butanol, methanol, xylene, phosphate-buffered saline (PBS), and sodium hydroxide 

were obtained from Fisher Scientific (Pittsburgh, PA). Folin-Ciocalteu reagent, 

hyrdrochloric acid, aprotinin, leupeptin, pepstain, phenylmethanesulfonyl fluoride 

(PMSF), sodiumorthovanadate and sodium fluoride were purchased from Sigma 

Chemical Co. (St. Louis, MO). Ultrapure Tris (base) and Tris (acid) were obtained 

from J. T. Baker (Phillipsburg, NJ). All other reagents used in the study were of 

analytical grade. 

Rabbit polyclonal anti-TRAF2 was obtained from Cell Signaling Technology, Inc 
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(Beverly, MA); rabbit polyclonal antibodies to ASK1, phospho-p53, caspase-3, mouse 

monoclonal antibodies to phospho-p38, p21, Cyclin-D1, CDK4, Bax, Bcl-2 were 

purchased from Santa Cruz Biotechnology Co. (Santa Cruz, CA); mouse monoclonal 

anti-β actin, anti-α Tublin, rabbit polyclonal anti-Caspase 9 were obtained from Sigma 

Chemical Co. (St. Louis, MO); mouse monoclonal anti-PCNA was obtained from 

Oncogene; secondary antibodies include anti-mouse IgG and anti-rabbit IgG were 

purchased from Sigma Chemical Co. (St. Louis, MO); anti-rabbit IgG-HRP conjugated 

antibody was obtained from Santa Cruz Biotechnology Co. (Santa Cruz, CA). 

 

2.2.2 Measurement of Antiproliferative Activity toward Human Breast Cancer 

Cells 

The antiproliferative activity of Q3G was measured by the methylene blue assay. 

Q3G was dissolved in DMSO with the final concentration of 40mM. Human breast 

cancer MCF-7 cells (American Type Culture Collection, ATCC, Rockville, MD) were 

incubated at 37 °C with 5% CO2 in MEM containing 10 μg/mL insulin,10 mMHepes, 

50 μg/mL streptomycin, 50 units/ mL penicillin, 100 μg/mL gentamicin, and 10% fetal 

bovine serum (Gibco, Life Technologies). MCF-7 cells in growth media were then 

seeded in 96-well flat-bottom plates at the density of 2.5 × 10
4
 cells/well. After 8 hours 

of incubation at 37 °C with 5% CO2, the growth medium was removed and cells were 

treated with media containing different concentrations of Q3G. Control cultures 



 

82 
 

include MEM and 0.6% DMSO only. After 72 h of incubation, treatment medium was 

removed, and the cells were washed with PBS once. A volume of 50 μL methylene 

blue staining solution (98% HBSS, 1.25% glutaraldehyde, 0.6% methylene blue) was 

applied to each well, and the plate was incubated at 37 °C for 1 h. After removal of the 

dye, the plate was rinsed by fresh deionized water three times, or until the water was 

clear. The water was tapped out of the wells, and the plate was allowed to air-dry 

briefly before applying 100 μL of elution solution (49% PBS, 50% ethanol, 1% acetic 

acid) to each well. The plate was shaken for 30 min to allow uniform elution. The 

absorbance was read at 570 nm using the MRX II DYNEX spectrophotometer 

(DYNEX Inc., Chantilly, VA). 

 

2.2.3 Measurement of Cytotoxicity toward Human Breast Cancer Cells 

The cytotoxicity of Q3G was measured by methylene blue assay. MCF-7 cells were 

plated in a 96-well plate at a density of 4 × 10
4
 cells/well in 100 μL of MEMα medium 

and incubated at 37 ℃ in 5% CO2. After 24 h incubation, the medium was removed, 

and the cells were treated with different concentration of Q3G in 100 μL medium. Then 

the plate was incubated at 37 °C for another 24 h. Cell cytotoxicity was then determined 

by the methylene blue assay described above. The absorbance readings at 570 nm for 

each concentration compared to the control were used to determine cell cytotoxicity 

(percent). At least three replications for each concentration were analyzed for the 
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cytotoxicity. 

 

2.2.4 Protein Extraction and Western Blot Analyses 

Cells were seeded at a density of 0.5 × 10
6
 cells/well in 6-well plates. Six hours after 

seeding, MCF-7 cells were treated with different concentrations of Q3G and were then 

harvested after 16, 24, 44 h exposures. Each treatment was in triplicate, and the cells 

receiving the same concentration of treatment were combined together for protein 

extraction and further Western blot Analysis. Prior to analysis of proteins, cell culture 

media were removed from the treatment plates and each well was rinsed twice with 

PBS. Cells were then scraped off in PBS and centrifuged at 1000rpm at 4 °C for 5 

minutes. After discarding PBS, 100 μL of lysis buffer (50 mMTris, pH 7.4; 1% Igepal; 

150 mM sodium chloride; 1 mM EDTA) with protease inhibitors (1 μg/mL aprotinin; 1 

μg/mL leupeptin; 1 μg/mL pepstain; 1 mM PMSF; 1 mM sodiumorthovanadate; 1 mM 

sodium fluoride) was added to each sample and vortexed. Cell lysates were kept on ice 

and vortexed periodically for 20 min to facilitate protein extraction. Lysates were then 

centrifuged at 12000g for 15 min at 4 °C, and protein concentrations of the lysates 

were determined using a Sigma Diagnostics Micro Protein Determination Kit and a 

DynexMicroplate Reader (Dynex Technologies). Electrophoresis was carried out on 

SDS-PAGE gel, followed by the transfer to PVDF membranes. The membranes were 

blocked in 5% nonfat dry milk in TBST (Tris Buffered Saline with 1% Tween 20) for 1 
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h at room temperature. After blocking, the membranes were incubated with primary 

antibodies for 24h at 4 °C. Membranes were then incubated with the corresponding 

secondary antibody in TBST with 1% nonfat dry milk powder for 2 h under agitation at 

room temperature. The expression of human β-actin and α-Tublin were used as an 

internal standard. Protein was visualized by the Enhanced Chemiluminescence kit 

(Cell Signaling Technology, Inc., Beverly, MA) according to the manufacturer’s 

instruction. The densities of the specific protein bands were quantified by optical 

densitometry using ImageJ. All results were expressed as mean ± SD for three 

independent replications. 

 

2.2.5 Determination of cell apoptosis 

The cell apoptosis was determined in situ using the ApopTag@PlusPeroidaseIn Situ 

Apoptosis Detection Kit (Serologicals Corporation, Norcross, GA) based on the 

terminal deoxynucleotidyl-transferase mediated dUTP nick end labeling (TUNEL) assay. 

Briefly, cells were seeded on a Falcon 8-chamber culture slide (Becton Dickinson 

Labware, Franklin Lakes, NJ) at a density of 2.5 × 10
5
 cells/well. After reaching 60–70% 

confluence, the cells were incubated in serum-free medium for 4h. The cells were then 

exposed to different concentrations of Q3G for 4h. Then, the cells were washed with 

PBS, fixed in 1% paraformaldehyde for 20 min at room temperature, and post-fixed in 

pre-cooled ethanol:acetic acid (2:1, v:v) at -20 ºC for another 5 min. Endogenous 
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peroxidase was quenched for 15 min using 3% H2O2 at room temperature. DNA 

fragments in cell were labeled with peroxidase, which then reacted with the peroxidase 

substrate, 3, 3’-diaminobenzidine (DAB), to obtain a permanent, localized brown-color 

stain. Then cells were counterstained with methyl green to further differentiate apoptotic 

cells from normal cells. Finally, 2000 cells were randomly selected for observation for 

each treatment and the apoptosis were expressed as the percentage of apoptotic cells to 

total cells as described previously. 

 

2.2.6 Statistical analysis 

Data were analyzed using SPSS software (IBM SPSS Statistics 17.0) and presented 

as mean ± standard deviation (SD) for at least three replicates. Significance was 

determined at p value of < 0.05 or < 0.01 or < 0.001 by analysis of variance (ANOVA) 

followed by Duncan’s multiple comparison tests. 

2.3 RESULTS 

2.3.1 Antiproliferative activity and cytotoxicity of Q3G towards human breast 

cells 

The study in Figure 2.1 was designed to determine the antiproliferative activity and 

cytotoxicity of Q3G towards human breast cell line MCF-7. In order to confirm Q3G 
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inhibits MCF-7 cell proliferation without inducing cytotoxicity in the cells, the 

cytotoxicity of Q3G was first tested by the cytotoxicity assay. Results showed that no 

cytotoxicity was observed for Q3G at the concentrations lower than 75 μM (Figure 

2.1).  

Then the proliferation of Q3G treated MCF-7 cells compared to control cells was 

analyzed using the antiproliferation assay. Results showed that Q3G exhibited potent 

antiproliferative activity against MCF-7 cell growth in a dose-dependent manner. As 

the concentration of Q3G increased, the proliferation of MCF-7 cells decreased. The 

cell proliferation was inhibited by 74.3% at the concentration of 60μM (Figure 2.1). 

The EC50 value of antiproliferative activity of Q3G towards MCF-7 cells was 29.63 

μM. These results confirmed that Q3G inhibits MCF-7 cell proliferation without 

inducing cytotoxicity. 
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FIGURE 2.1 Effects of Q3G on cell proliferation and cytotoxicity in human breast 

cancer MCF-7 cells. Each value represents the mean ± SD with triplicates. 
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2.3.2 Effects of Q3G on expressions of proteins involved in the proliferation and 

cell cycle in MCF-7 cells 

To confirm the antiproliferative activity of Q3G towards MCF-7 cells, we 

determined the expression of proliferating cell nuclear antigen (PCNA), the marker of 

cell proliferation. As is shown in Figure 2.2A, PCNA expression was significantly 

decreased in MCF-7 cells treated with Q3G in a dose-dependent manner. The PCNA 

expression in the MCF-7 cells treated with Q3G was inhibited by 33.8% and 42.3% at 

the concentration of 30 and 60μM, respectively, indicating a direct antiproliferative 

effect of Q3G during the DNA synthesis phase of the cell cycle in MCF-7 cells (Figure 

2.2 A).  

To further investigate the regulation of other cell cycle related proteins, we also 

examined the expression of p21, Cyclin D1 and Cdk4 in MCF-7 cells following Q3G 

treatment (Figure 2.2 B-D). p21 expression significantly increased by 57.0 % and 85.3% 

at the concentration of 30 and 60μM when compared to that of control group (P<0.01 

and P<0.001, respectively). The expression of Cyclin D1 was reduced by 23.0% and 

49.5% at the concentration of 30 and 60μM, respectively. Cdk4 expression was also 

significantly down-regulated by 36.4% and 69.0% at the concentration of 30 and 60μM 

respectively with the treatment of Q3G (Figure 2.2 C-D). The expression of all these 

proteins is regulated in a dose-dependent manner. 
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FIGURE 2.2 Effects of Q3G on expression of PCNA (A), p21 (B), cyclin D1 (C) and 

CDK4 (D) in human breast cancer MCF-7 cells. Bars with no letters in common in 

each panel are significantly different (p< 0.05). An asterisk (*) indicates p< 0.01 when 

compared to the control. Each value represents the mean ± SD with triplicates. 
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2.3.3 Effects of Q3G on expressions of Bcl-2, Bax, Caspase-3, Caspase-9, and 

apoptosis in human breast cancer MCF-7 cells. 

It was reported that the defective apoptosis may result from abnormal expression of 

Bcl-2 and increased expression of caspase-3 (Marsden, O'Connor, O'Reilly, Silke, 

Metcalf, Ekert, et al., 2002; Okada & Mak, 2004). We therefore investigated the 

expression levels of apoptosis related proteins, including Bcl-2, Bax, Caspase-9 and 

Caspase-3 (Fig. 2.3). When compared with the control, treatment of Q3G resulted in a 

significantly decreased Bcl-2 expression and increased Bax expression in a 

dose-dependent manner in MCF-7 cells.The Bax expression was up-regulated by 33.4% 

(p< 0.01) and the Bcl-2 expression decreased by 23.9% (p< 0.01), and the Bax/Bcl-2 

ratio increased 75.8% (P<0.001) when treated with Q3G at the concentration of 60μM.  

In order to identify if Q3G can regulate cell apoptosis by inducing Caspase-3 

expression and cleavage, we tested the pro-cleaved and cleaved casepase-3 levels in 

MCF-7 cells treated by Q3G at the concentration of 0, 15, 30 and 60μM. We found that 

caspase-3 expression was stimulated by 73.8% with the treatment of Q3G at the 

concentration of 15μM. A 29.5% decrease in the pro-cleaved caspase-3 expression was 

observed with a treatment of 60μM Q3G when compared to the treatment of 15μM, 

and the cleaved caspase-3 (19 kDa) was increased by 58.5%, 73.5% and 57.9% at the 

concentration of 15, 30 and 60μM, respectively.  
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FIGURE 2.3 The effect of Q3G on expression of Bcl-2 and Bax (A), Bax/Bcl-2 ratio (B), 

Caspase-9 (C) and Caspase-3 (D) in human breast cancer MCF-7 cells. Bars with no letters in 

common in each panel are significantly different (p< 0.05). An asterisk (*) indicates p< 0.01 

when compared to the control. Each value represents the mean ± SD with triplicates. 
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When MCF-7 cells were treated with Q3G at concentrations of 0, 15 and 30μM , 

cleaved caspase-3 level increased in a dose-dependent manner when compared to the 

control.It then decreased at the highest concentration. We also investigated the 

upstream caspase, caspase-9. As is shown in Figure3C, there was no significant 

difference in caspase-9 cleavage between the treated cells with 15μM Q3G and the 

none-treated cells.However, there was a dramatic increase in caspase-9 cleavage in the 

MCF-7 cells treated with 30 and 60μM of Q3G in a dose-dependent manner (p<0.05) 

when compared to the control, resulting in the decrease level of pro-cleaved caspase-9. 

The cleavage of caspase-9 was activated by 48.0% at the concentration of 60μM of 

Q3G when compared to the control (p<0.01). 

We also confirmed Q3G induced apoptosis in human breast cancer MCF-7 cells by 

the TUNEL assay (Figure 2.4). The background apoptosis of MCF-7 cells was 0.7 

apoptotic cells per 100 cells (Figure 2.4A). Treatment of Q3G significantly induced 

apoptosis in MCF-7 cells in a dose-dependent manner. The number of apoptotic cells 

were increased to 3.2 (p < 0.05), 6.8 (p<0.01), and 11.4 (p<0.01) per 100 cells in 

MCF-7 cells treated with 15, 30, and 60μM, respectively. 

2.3.4 Regulation of proteins involved in the P38/MAPK pathway. 

We first investigated whether the apoptosis and cell cycle arrest of Q3G treated 

MCF-7 cells were activated via the p53-dependent pathway (Figure 2.5A).  
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FIGURE 2.4 Effect of Q3G on apoptosis of human breast cancer MCF-7 cells at the 

concentrations of 0 (A), 15 (B), 30 (C) and 60 (D) μM. Bars with no letters in common in each 

panel are significantly different (p< 0.05). An asterisk (*) indicates p< 0.01 when compared to 

the control. Each value represents the mean ± SD with triplicates.  



 

94 
 

Q3G significantly increased the phosphorylation of p53 in a dose-dependent manner in 

MCF-7 cells when compared to the control. The phosphorylated p53 increased by 

29.1%, 23.9% and 16.2% at the concentration of 15, 30, 60μM, respectively. Level of 

phosphor-ERK was not altered by any of the concentrations tested (data not shown), 

while the expression of phosphor-p38 increased by 75.0% at the concentration of 

60μM, indicating that p38, not ERK, was involved in Q3G-induced antiproliferative 

activity and induction of apoptosis in MCF-7 cells (Figure 2.5B). 

To further investigate the upstream proteins of p38/MAPK signal transduction 

pathway, we tested the protein expression of ASK1 and TRAF2 (Figures 2.5C and 

2.5D). Compared to control, Q3G at the concentration of 30μM significantly 

up-regulated the expression of ASK1 by 53.6% and 22.2% in MCF-7 cells (Figure 

2.5C) at the concentration of 30 and 60μM, respectively. The dose-response study on 

the expression of upstream protein TRAF2 in human breast cancer MCF-7 cells was 

performed with Q3G (Figure 2.5D). Q3G at all concentrations tested did not change 

the expression level of TRAF2 in MCF-7 cells when compared to the control.  
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FIGURE 2.5 Effect of Q3G on expression of p-p53 (A), p-p38 (B), ASK1 (C) and 

TRAF2 (D) in human breast cancer MCF-7 cells. Bars with no letters in common in 

each panel are significantly different (p< 0.05). An asterisk (*) indicates p< 0.01 when 

compared to the control. Each value represents the mean ± SD with triplicates. 
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2.4 DISCUSSION 

It has been reported that the incidence rate and mortality rate of cancers varies.  

The long-term incidence rate of breast cancer increased during 2004-2008, but the 

mortality rate decrease during 1998-2007. The 5-year survival rate is around 85% for 

all races during 2001-2007. The high survival rate is associated with optimized 

therapies and dietary factors (DeSantis et al 2011). The increased consumption of fruits 

and vegetables has been proved to be associated with a reduced risk of developing 

breast cancer (Liu et al 2009). Apple, the most commonly consumed fruit, is a good 

source of antioxidants (Wolfe et al 2008). In recent years, several studies indicated that 

apple extract can inhibit the growth of several cancer cell lines including breast cancer 

cells MCF-7 and MDA-MB-231 (Sun et al 2008; He et al 2008; Yang et al 2009). 

Quercetin-3-glucoside, one of the flavonoids in apple, is also proved to exhibit 

anticancer effect on breast cancer cells (Yang et al 2009). However, the underlying 

mechanism of Q3G induced antiproliferation and apoptosis remains unclear. 

2.4.1 Antiproliferative activity of Q3G towards human breast cancer MCF-7 

cells 

In the present study, we tested the antiproliferative activity of Q3G using MCF-7 

cells. Cell growth was inhibited by 74.3% at 60μM Q3G. The proteins that might be 

involved in the related signaling transduction pathways were then analyzed. p21 is a 
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member of the Cip/Kip family of CDK inhibitors. It can bind to and inhibit the activity 

of a broad range of cyclin/Cdk complexes, inducing cell cycle arrest (Gartel et al 2002). 

It can also bind to PCNA and inhibit the PCNA mediated DNA replication (Gohring et 

al 2001). In the present study, the increased level of p21, decreased levels of cyclin D1, 

Cdk4 and PCNA were observed in Q3G treated MCF-7 cells. 

The p21 expression can be modulated by a p53-dependent pathway. The p53 protein 

is a proapoptotic protein. The enhanced phosphorylation level of p53 and the induced 

p21 expression were found in cancer cells treated by chemopreventive agents (Gartel et 

al 2002; Jung et al 2010; Baldi et al 2011; Nakatsuka et al 2011). In this study, the 

increased level of phosphorylated p53 was observed in Q3G treated MCF-7 cells. 

These data suggests that Q3G induces cell cycle arrest and inhibits proliferation 

through p53-dependent pathway. 

Total p53 expression and phosphorylation are altered in cancer cells. Several studies 

showed the enhanced phosphorylation of p53 and caspase-3 cleavage followed by the 

activation of mitogen-activated protein kinase (MAPK). The phosphorylation of p38, 

one of the MAPKs, can significantly elevate the Ser
33

 and Ser
46 

phosphorylation on 

p53 protein and results in the negative regulation of cell cycle progression (Wu 2004; 

Bulavin et al 2004). p38 can be activated by both apoptosis signal-regulating kinase 1 

(ASK1) or the environmental stress (Takeda et al 2003; Matsukawa et al 2004; Nagai 

et al 2007). ASK1 is a member of the MAP kinase kinasekinase family (MAP3K). 

Experimental results from ASK1-deficient mice have shown that ASK1 is required for 
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apoptosis that induced by oxidative stress, TNF and endoplasmic reticulum stress 

(Matsuzawa et al 2002; Takeda et al 2003). TNFα can regulate ASK1 through TNFα 

signaling activation. Then the TNFR-associated factor 3 (TRAF3) is ubiquitinated and 

degraded by proteasome. TRAF3 degradation leads to TRAF2 degradation, and the 

subsequent activation of MAP3Ks and MAPKs as well as NF-κB pathway (Wajant et 

al 2001; Bradley et al 2001; Karin et al 2009). In this study, the elevated 

phosphorylation of p38 and increased total expression of ASK1 were observed. But no 

degradation of TRAF2 was found, indicating that Q3G induces p38/MAPK activation 

and the subsequent cell cycle arrest and anti-proliferation via targeting ASK1.  

2.4.2 Potential apoptosis induced by Q3G towards human breast cancer MCF-7 

cells 

Apoptosis is the programmed cell death. The regular apoptosis was always inhibited 

in cancer cells. Thus the induction of cancer cell apoptosis is important in cancer 

treatment. 

Apart from proliferation, p53 protein is also associated with cell apoptosis. The 

p53-dependent apoptosis is mediated by pro-apoptotic proteins including Bax and 

Bcl-2 (Schuler et al 2001). Bcl-2 and its pro-apoptotic homolog Bax are two proteins 

in the Bcl-2 family. It has been reported that Bcl-2 is overexpressed and Bax is 

under-expressed in tumorigenesis (Wong et al 2008; Hockenbery 2010). Inhibition of 

Bcl-2 and induction of Bax expressions could be induced by anti-apoptotic drugs 
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(Hockenbery 2010). The high ratio of Bax to Bcl-2 causes the loss of mitochondrial 

membrane potential, thus stimulates the release of Apaf-1, procaspase-9, cytochrome c 

and other proteins (Yang et al 1997). In the present study, we found that Q3G reduced 

the expression of Bcl-2 and induced the expression of Bax in MCF-7 cells. 

In order to further investigate the molecular mechanism involved in the Q3G 

induced apoptosis, the expressions of caspase proteins were analyzed. Our results 

showed increased level of cleaved caspase-9 in Q3G treated MCF-7 cells. Moreover, 

the increased cleavage of caspase-9 led to further activation of the downstream 

caspase-3, the apoptotic executioner. Both the decreased level of pro-caspase-3 and 

cleaved caspase3 (19 kD) were observed. The induced apoptosis by Q3G was also 

confirmed by TUNEL assay. The early apoptosis was increased to about 11% by 60μM 

Q3G treatment at 4 h. These data suggests that apoptosis in MCF-7 cells might be 

induced by p38/MAPK activation followed by the corresponding regulations on Bax, 

Bcl-2, caspase-9 and -3. 

 

As is shown in Figure 2.6, we described for the first time, to our knowledge, 

quercetin-3-glucoside can specifically inhibit cell proliferation and induce apoptosis in 

human breast cancer estrogen-dependent MCF-7 cells.  
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FIGURE 2.6 Potential mechanism of action of Q3G in regulating cell proliferation and 

apoptosis in human breast cancer MCF-7 cells through the p38/MAPK signal 

transduction pathway. 
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The Q3G treatment significantly up-regulated ASK1 expression without affecting 

TRAF2 protein level, and activated the phosphorylation of p38 and p53 proteins, 

indicating the activation of p38/MAPK pathway through targeting ASK1. The 

activated p38/MAPK pathway could then up-regulate p21 expression, and lead to the 

blockage of cyclin D1, Cdk4 and PCNA, resulting in the disrupted cell cycle and DNA 

replication. In addition, the activated p38/MAPK pathway can also result in 

down-regulated Bcl-2 level and up-regulated Bax level, and consequently lead to the 

increased cleavage of caspase-9 and caspase-3, resulting in the enhanced cell 

apoptosis. 
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